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Abstract

In the contemporary healthcare landscape, Artificial Intelligence emerges as a revolu-
tionary paradigm with unprecedented potential to transform clinical practice. Vocal
biomarkers, extracted from the rich information embedded in the human voice, have
garnered substantial interest for their ability to provide valuable insights into various
aspects of health. This dissertation delved into the multifaceted applications of vocal
analysis within the healthcare domain, with a primary focus on Parkinson’s Disease.

The research explored the entire pipeline of vocal analysis, encompassing data
collection, development of automated analytical models, and comparative assessment
of professional recording equipment versus more economical alternatives. Various
speech tasks, including sustained phonation, isolated words, and text reading, were
examined to identify relevant acoustic features for speech analysis. The study
also investigated the influence of external co-factors and aimed to develop robust
methodologies supporting diagnosis, monitoring, and follow-up of speech-affecting
disorders.

A significant portion of the work was dedicated to the analysis of acoustic
parameters, involving a comprehensive literature review, comparison of algorithms
for parameter extraction, and exploration of new acoustic measures and analysis
techniques. The research considered the dependency of these parameters on speaker
characteristics, language, and the severity of the condition, as well as the recording
setup. Statistical techniques and automatic classification algorithms were employed
to evaluate algorithm effectiveness and propose novel pipelines for the analysis of
speech samples of patients with Parkinson’s Disease.

In addition, the dissertation investigated the effects of concurring pathologies,
such as Gastroesophageal Reflux Disease and obesity, on vocal production. It
explored the potential correlation between speech and poor sleep quality, shedding
light on how temporary conditions may alter vocal patterns. The impact of transitory



v

alterations from alcohol consumption on speech signals was also examined, laying
the foundation for assessing psychological changes, particularly in-car contexts.

The study demonstrated the potential effectiveness of voice analysis across
diverse fields, addressing neurodegenerative diseases, transient conditions, and the
simultaneous presence of multiple pathologies. Experiments also highlighted the
variability in speech samples due to individual characteristics and propose mitigating
solutions, including the incorporation of covariates among acoustic parameters and
the use of domain adversarial networks.

In conclusion, this dissertation emphasized the importance of constructing spe-
cialized models tailored to specific applications, mitigating the influence of confound-
ing factors. This approach enhances the reliability, applicability, and interpretability
of generated models, laying the foundation for the effective implementation of voice
analysis techniques in real-world scenarios.
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Chapter 1

Introduction

1.1 Overview and Motivation

In the contemporary landscape of healthcare, the integration of Artificial Intelligence
(AI) emerged as a transformative paradigm, offering unprecedented potential to
change the provision of medical services. AI-based solutions received significant
attention due to their capacity to enhance diagnostic accuracy, remote monitoring,
and personalized patient care.

The frontiers of technological progress in this area are continually expanding and
are now reaching domains that were previously deemed accessible only to human
experts. This expansion is notably attributable to the widespread availability of
wearable sensors and devices which can be leveraged for the collection of physical
signals serving as data sources for AI algorithms. In addition to the historically em-
ployed chemical, physiological, or electrical inputs, vocal signals, acquired through
the recording of spoken tasks by individuals, are gaining importance as machine
learning-based voice analysis progresses and researchers explore the effects of var-
ious pathologies on voice characteristics. Beyond the potential of vocal samples
to reveal physio-pathological information, such an approach offers non-invasive,
real-time, and cost-effective assessments, which could be of crucial importance in
various stages of diseases’study.

Voice production, defined as the process of translating thoughts into audible
sound, involves several stages. These latter encompass a conceptual stage, where
the idea to be expressed is identified in an abstract form; a syntactic stage, where a
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specific structure for expressing the idea is selected; a lexical stage, where speech
units are chosen and organized; a phonological stage, where abstract information
is transformed into a speech-like form; and a phonetic stage, where the selected
sentence is ultimately converted into vocal emissions through a series of instructions
sent to dedicated anatomical regions [1, 2]. The execution of this process involves
the interaction of numerous systems and sub-systems (e.g., lungs, glottis, oral cavity,
nasal cavity, trachea), all governed by brain activity. In this burgeoning field, vocal
analysis harnesses the computational capabilities of AI to analyze and interpret vocal
patterns, providing comprehensive insights into various aspects of an individual’s
health conditions.

In this context, this dissertation represented a comprehensive investigation into
multifaceted applications of vocal analysis within the healthcare domain. These
applications encompassed a spectrum that includes the early detection and monitoring
of neurological disorders, specifically Parkinson’s disease (PD), along with the
assessment of conditions such as Gastro-Esophageal Reflux (GERD) and Obesity. In
addition, the analysis of temporary fluctuations in overall health status arising from
factors like poor sleep quality or alcohol intoxication were also studied.

1.2 Objectives and Significance of The Study

The primary objective of this dissertations was to develop robust and effective
methodologies for the analysis of vocal signals, with the ultimate goal of creating
models that can assist both medical professionals and patients in diagnosing and
monitoring various medical conditions.

The core of this research focused on applications related to PD, where AI-based
speech analysis proved exceptionally effective, given that nearly 90% of affected
individuals presents significant alterations in speech production. Furthermore, it is
essential to note that PD exhibits a prodromal phase characterized by ongoing neu-
rodegeneration, that can arise up to 10 years earlier than cardinal motor manifestation.
Within this context, the studies here described encompassed the entire pipeline of
vocal analysis, from data collection to the development of automated analysis models.
Comparative analysis between professional recording equipment and cost-effective
alternatives like microphones embedded in smartphones were performed together
with the exploration of unsupervised data collection environments. The analysis also
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involved the investigation of different speech tasks employed solo or fused together,
including sustained phonation, isolated words, sentence, or text reading. Additional
crucial objectives involved the identification of relevant biomarkers for PD speech
analysis, the examination of the influence of external co-factors, and the development
of robust methodologies to support clinical practice in the realms of PD diagnosis,
monitoring, and follow-up.

A significant portion of the study was dedicated to the analysis of acoustic
parameters. This involved an extensive literature review to identify the most effective
acoustic features, comparisons of algorithms used for parameter extraction, and the
exploration of new acoustic measures and analysis techniques. The research also
investigated the dependency of these parameters on speaker characteristics, such as
language and the severity of the condition, as well as the recording setup. Throughout
these analyses, statistical techniques and automatic classification algorithms were
tested and compared to provide valuable insights into algorithm effectiveness and
propose novel pipelines for the analysis of speech samples of patients with PD (PDP).

Beyond PD, this dissertation also investigated the effects of concurring patholo-
gies on the intricate process of speech production. Specifically, the study examined
GERD and obesity, analyzing both the effects of the two isolated diseases on the
vocal signal and those arising from their concurrent presence. Indeed, given the
complexity of the speech production process, involving various anatomical regions,
the simultaneous presence of two or more alterations may lead to distinct and non-
linear characteristics of the generated signals. These latter, if properly studied, can
contribute to a more precise assessment of the patient’s health condition.

With a similar objective, preliminary findings demonstrating a potential corre-
lation between speech and poor sleep quality are presented to shed light on how
temporary conditions may alter the speech alterations typically associated to more
persistent diseases.

In its final sections, this dissertation examined the impact of temporary alterations
stemming from alcohol consumption on speech signals. In-depth analyses were
also conducted in order to test the feasibility of the automatic identification of the
altered state through a model which is at the same time independent from subject’s
characteristics and the specific task performed. Also, due to the increased numerosity
of the dataset employed for this latter task, significant attention was dedicated to
exploring the efficacy of a deep learning architecture, aiming to a more resilient
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and adaptable model, capable of handling the increased complexity and variability
present in the dataset. This investigation lays the foundation for assessments of
psychological changes, particularly to be used in-car contexts, where monitoring
such alterations is of paramount importance.
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Chapter 2

Speech

2.1 Biological Foundations of Speech Production

The process of speech production is a complex and highly organized physiological
phenomenon that relies on a continuous and precise interactions among several
biological structures within the vocal tract and the central nervous system.

Although the detailed analysis of the anatomy of the sound-producing apparatus
goes beyond the scope of this dissertation, it is worth providing a brief overview of
its primary aspects, to offer a more complete vision of the intricate mechanism that
underlies the process of speech production.

2.1.1 Anatomy of the Speech Apparatus

The anatomy of the speech apparatus consists of a remarkable set of structures
responsible for human voice production. From a macroscopic perspective, it can be
divided into three main functional units: the generation of air pressure, the regulation
of vibration, and the control of resonators [3].

The essential airflow required for speech results from the functions of the respira-
tory systems that regulates the lung air pressure during a prolonged expiration phase
and a short inhalation through the synergistic action of diaphragm and intercostal
muscles.
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Fig. 2.1 Overview of the speech apparatus, sourced from[3]

The larynx is the central component of the phonatory system. It houses the vocal
folds, which are made up of layers of muscle and connective tissue. Observing the
larynx anatomy from an anterolateral perspective, the entire skeleton of the vocal
duct is composed by cartilages, that ensure to the organ robustness and pliability. The
cartilages are in turn interconnected by ligaments, that provide the elastic component.
The overall structure is then completed by muscles that act on the movable cartilages
to perform the various larynx tasks. These muscles are grouped in antagonistic pairs
and can be divided into two classes: those controlling the glottis opening, and those
regulating the tension of the vocal bands. The sectional view of the larynx reveals
the vocal cords at the top of the trachea. They are composed of twin folds of mucous
membrane placed horizontally across the larynx. Their outer edges are bounded to
the laryngeal tube, whereas the inner margins are free to move [4]. Figure 2.2 reports
a schematic of the vocal folds anatomy and their phases of vibration.

The actual resonant cavity is represented by a series of concamerations located
above the vocal cords, namely the laryngeal vestibule, the upper portion of the
pharynx, the mouth and the nasal cavities, all in all refereed as the articulatory system.
The articulatory system includes various structures such as the tongue, lips, teeth,
palate, and jaw that collaborate to shape the vocal tract into different configurations,
thereby producing distinct speech sounds, whose single unit is referred to as phoneme.
The positions and movements of these articulators are controlled by intricate neural
networks.
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Fig. 2.2 Coronal sections of the vocal folds and their pattern of vibration, sourced from [5]

2.1.2 Neural Control of the Speech Apparatus

The central nervous system, primarily comprising the brain and the spinal cord plays
a fundamental role in converting abstract linguistic concepts into articulate sentences
through an intricate control of the speech apparatus.

Central to this process is the motor cortex, a region located in the frontal lobe of
the brain mainly devoted to planning and executing complex sequences of muscle
movements. During speech production, this area operates in close coordination with
other brain regions to ensure the execution of motor programs required for vocal
production [6].

At a cellular level, motor neurons located within the motor cortex are instrumental
in the transmission of neural signals to the muscles involved in speech production.
These neurons form synapses with the muscle fibers of various muscle groups,
including those responsible of controlling the articulatory and phonatory systems.
Through a finely tuned interplay of excitatory and inhibitory signals, these motor
neurons thus control the contraction and relaxation of specific muscle groups and
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allow for the precise and coordinated movements required to produce specific speech
sounds.

In the realm of language production, Broca’s area, situated in the dominant
hemisphere of the brain, takes also center stage [7]. This region is mainly associated
with higher-level speech planning and syntactic processing and serves a linguistic
control center, ensuring that sentences are constructed with grammatical precision
and syntactical coherence. Broca’s area plays a crucial role in assembling the
selected lexical items and syntactic structures into well-formed sentences, ultimately
facilitating the fluency and intelligibility of speech.

2.2 The Speech Production Mechanism

2.2.1 Phonatory Mechanism

The term Phonation generally refers to the voice production process that occurs
during the passage of air through the vocal cords, causing them to vibrate and
produce sounds [8].

According to the classical theory of voice production, the respiratory pattern
that is typically employed during quiet breathing undergoes a transformation during
speech. This transformation involves a lengthened expiratory phase and a shortened
inspiratory phase. Consequently, this alteration results in an airflow stream passing
through the vocal apparatus, which serves as the driving force for speech execution.

The anatomy of the vocal folds placed into the larynx is then responsible for the
actual voice production: their excitation, generally refereed to as glottal excitation
[9], is indeed the fundamental element of vocal production, and can be voiced,
unvoiced, or a mixture of both [10]. In the first case, the sound is produced by
forcing air through the vocal folds, which vibrate and generate a quasi-periodic
signal. In the second case, there is no vibration of the vocal folds, and the airflow
arrives unaltered to the articulating elements

In further detail, when the underneath pressure originated from the lungs in-
creases, if the vocal folds are abducted, they are forced to separate in order to let air
flow; the high velocity immediately produces a lowered pressure due to the Bernoulli
effect, which brings the vocal cords in the original position [11]. As a result of this
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passage, the membranes start to vibrate generating sounds. The vocal fold vibrations
repeats four phases within a cycle: closed phase, opening phase, opened phase, and
closing phase. The frequency of the oscillation and the volume of the passing airflow
are determined by the stiffness and mass of the vocal folds, the width of the glottal
area, and the pressure difference across the larynx [3].

On the other hand, in case vocal folds remains in the closed phase for the
entire duration of intended sound production, a turbulent flow characterized by a
non-periodic behaviour is generated.

2.2.2 Articulatory Mechanism

The term Articulation generally refers to the precise movements of the articulatory
structures to shape the vocal tract and generates phonemes, syllables, and words
sequences.

The excitation source generated from the passage of air from the larynx propa-
gates through the upper part of the vocal apparatus prior the emission of the final
sound from the oral cavity. Depending on the reciprocal positions of the articulators
the vocal apparatus presents different resonant properties that modulates the airflow
thus leading to the production of different sounds [3, 11].

The tongue is the most important articulator organ characterized by intrinsic and
extrinsic muscles that can deformate their shape and, as a consequence, the airflow
prior to its emission. Deformation of the whole tongue determines the vowel quality
and produces palatal and velar consonants. Moreover, depending on the reciprocal
position between the tongue apex and the teeth, dental or alveolar consonants can
be differentiated [3]. Similarly, based on the reciprocal position of the tongue with
the upper jaw, dental, alveolar, and palatal consonants can be distringuished.

The lips and the velum also plays a pivotal role in speech sounds production.
Under the influence of several muscles and other connected articulators, the lips
can undergo three different deformation that eventually shape the vocal signal:
opening/closing, rounding/spreading, protrusion/retraction. As for the velum, or soft
palate, it controls opening and closing of the velopharingeal porta, thus allowing for
the distinction between nasal and oral sounds [3, 11].
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2.3 The Speech Signal

The acoustic pressure waveform constituting the human vocal signal is the result of
the joint action of phonatory and articulatory mechanism. In this process, according
to the classical source-filter theory [12], the lungs and the larynx act as a source
generator, while the upper region of the vocal tract plays the role of an acoustic filter
that modulates the source sounds and emits it through the lips.

For voiced sounds, the excitation source is a quasi-periodic train of airs pulses
generated by the rapid oscillations of the vocal folds. Their frequency of vibration,
typically referred as fundamental frequency (F0), is the lowest harmonic component
of the vocal signal. It is characteristic of the single speaker, although it can be
modified by an alteration in the tension of the vocal cords. Indeed, depending on the
amount of energy imposed and on the air pressure generated underneath, the pulse
frequency of the cords and their force of collision can vary, resulting in different
intensities of the generated sound. Moreover, it is also the result of some anatomical
characteristics which are dependent on the speaker’s sex and age. The possible range
of F0 in adult speakers is about 80–400 Hz for male speakers and 120-800 Hz for
female speakers [3, 13]. As for unvoiced sounds, due to the static position of the
vocal folds during their production, the associated produced signals is characterized
by a non-periodic signal with a noise-like behaviour.

The supra-laryngeal tract acts as a time-varying filter for the excitation source
with the articulators that continuously change their reciprocal position while speaking
and thus resulting in time-varying resonant properties of the vocal tract. During this
process, the different vocal tract shape let more acoustic energies through a set of
formant frequencies, while attenuating others. Conventionally, F1 refers to the first
formant, F2 to the second, and F3 to the third one [13].



Chapter 3

Automated Health Assessment
Through Vocal Analysis

3.1 Rationale Behind Vocal Analysis

Speech production is a multifaceted process, reliant upon an intricate interplay of
several articulatory and phonatory mechanisms (Section 2.1). Thereafter, any pathol-
ogy that afflicts the vocal apparatus directly or through indirect system influences,
can manifest as alterations in the generated speech signals. In the realm of clinical
practice, these modifications can be measured, analyzed, and employed for diag-
nostic and monitoring support purposes through integration into machine learning
algorithms (ML).

The fields of application are diverse and encompass the monitoring of various
conditions, such as neurodegeneration [14–16], psychiatric and psychological dis-
orders [17], cardiovascular problems [18], and vocal tract diseases [19] among the
others. Recent evidence also suggests potential associations between eating disorders
and voice alterations [20, 21] .

Neurological alterations can give rise to difficulties both in speech ideation and
production, depending on the impaired area. In the former case, which is often more
readily studied by asking the patient to engage in spontaneous speech, alterations
may become perceivable as altered timing of vocal production that can manifest as
an abnormal number of pauses and hesitations. Alterations in semantics may be also
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possible, with recent studies showing that individuals affected by specific diseases
tend to avoid terms related to their disability, such as PDPs avoiding verbs associated
with movement [22] .

In cases where language ideation remains intact but the issue pertains to the
execution of the required movements, the nature of the alterations varies depending
on the affected region. As for muscular impairments, they can lead to issues related
to both articulation and phonation, depending on the sub-districts involved. In the
case of respiratory alterations, they result into reduced airflow generation, with
consequences for intensity, sustainable vocal endurance, sub-glottal pressure, and
glottal source control. Reduced or asymmetrical regulation of vocal fold vibrations
can give rise to irregular and repetitive patterns; incomplete vocal fold closure can
increase turbulent airflow, leading to additional noise within the produced sound.

Additionally, although certain diseases do not constitute explicit obstacle to
overall language production, they can impede the execution of fine and precise
movements. The lack of coordination mainly seen in various neurological diseases
can give rise to phenomena like voicing leakage [23, 24]. In this case, patients
with impaired glottal control face difficulties in interrupting vocal fold movements
after the production of a voiced sound, resulting in partial vibrations, in lieu of an
interruption of the phonation.

Another consequence is the spirantization, a speech impediment occurring due
to incomplete vocal fold closure, causing air to escape during what should be a silent
interval. This leads to noticeable distortions in unvoiced consonants, such as a /t/
sounding more like an /s/ [25]. In these cases, a comprehensive understanding of the
complex interplay of neurological and physiological factors is crucial for assessing
and managing vocal pathologies effectively.

Regardless the specific dimension being investigated, this innovative fusion of
medicine and technology can provide clinicians valuable tools, facilitating the assess-
ment and diagnosis of several pathologies. Furthermore, the technical advantages of
vocal analysis are manifold: it is non-invasive, operator-independent, and necessitates
minimal setup and little expensive instrumentation. Voice recordings can be made
with diverse equipment, ranging from professional microphones and recorders to
readily accessible devices such as smartphones or laptops. This flexibility enhances
the accessibility of vocal analysis and its potential be employed for widespread
remote-monitoring. This gives rise to a plethora of further benefits. Foremost among
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these is the potential to increase the frequency of clinical assessments, which, at
present, often occur once or twice a year, limiting the comprehensiveness of the
clinical picture. Moreover, sporadic, in-person clinical evaluations frequently do not
adequately account for the psychological aspect and emotional state of the patient,
which can influence the assessment both negatively and positively. In this context,
the increased monitoring frequency would enable more precise access to the patient’s
daily conditions, in a home environment and in the absence of external factors.
Indeed, the accumulation of multiple measurements can minimize the influence of
sporadic events, such as poor sleep quality, which, in the case of a single visit, could
significantly impact the overall evaluation. Finally, if suitable biomarkers measuring
vocal impairment are assessed, it is also possible to precisely quantify the source and
level of alteration, allowing for a more accurate assessment of the patient’s condition,
a reduction in operator dependency, and increased precision from visit to visit.

3.2 Speech Analysis

From an engineering perspective, a speech signal is a complex waveform that carries
information about the phonatory and articulatory settings of the vocal apparatus.
Consequently, tracking the time-varying nature of the frequency content of the speech
pressure waveform and deriving patterns that describe the type of variations is of
pivotal importance in the field of speech research [11].

Within this context, several methods have been proposed to study the speech
signal and extract objective features to quantify the information it contains. These
methods encompass time-domain representation, spectrographic analysis, and cep-
stral analysis among the others. In this section, a detailed description of the principal
techniques currently employed in the field of vocal analysis is provided, as well as
the biomarkers typically extracted.

3.2.1 Periodicity Analysis

Speech signal is often characterized by its periodic nature. This periodicity is
associated with the Fundamental Frequency (F0), often referred to as pitch (i.e., its
perceptual counterpart). F0 represents the vibration of the vocal folds and can be
therefore computed only for voiced sounds.
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Short-term amplitude and temporal variation of F0, namely Shimmer and Jit-
ter are generally employed to gather information about irregularites of periodic
behaviour that may stem from a combination of factors, including biomechanical
influences (such as vocal fold asymmetry), neurogenic alterations (involuntary ac-
tions of laryngeal muscles), and aerodynamic impairments (fluctuations in airflow
and subglottal pressure) [3].

Shimmer is employed to detect changes in waveform amplitude within a period.
According to [26], four different measures of this parameter have been largely applied
in voice impairment detection: Local Shimmer, Absolute Shimmer, APQ3 (three-point
Amplitude Perturbation Quotient), and APQ5 (five-point Amplitude Perturbation
Quotient). Denoting as Ai the amplitude of the ith frame and N the total number of
frames (i.e., a section of the signal having length equal to a period), the first three
parameters can be evaluated according to Equations 3.1, 3.2 and 3.3, respectively.

Shimmer(dB) =
1

N−1

N−1

∑
i=1
|20log(Ai+1/Ai)| (3.1)

Shimmer(relative) =
1

N−1 ∑
N−1
i=1 |(Ai+1−Ai)|

1
N ∑

N
i=1 Ai

(3.2)

APQ3 =
1

N−2 ∑
N−1
i=2 |0.5(Ai−1 +Ai+1)−Ai|

1
N ∑

N
i=1 Ai

(3.3)

APQ5 is computed similarly to APQ3 but takes into account the four closest
neighbors.

Similarly, Jitter quantifies the variation of F0 among subsequent frames. Three
different measures of Jitter are generally evaluated according to Equations 3.4,
3.5, and 3.6, representing Absolute Jitter, Relative Jitter, and the Relative Average
Perturbation (RAP), respectively. The variable Ti in the formulas corresponds to
the inverse of F0, whereas N is the total number of frames. Similar to the case of
Shimmer, the Five-point Period Perturbation Quotient (PPQ5) can be calculated as
the RAP while considering the influence of the four nearest neighbors.

Jitter(absolute) =
1

N−1

N−1

∑
i=1
|(Ti−Ti+1)| (3.4)
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Jitter(relative) =
1

N−1 ∑
N−1
i=1 |(Ti+1−Ti)|
1
N ∑

N
i=1 Ti

(3.5)

RAP =
1

N−2 ∑
N−1
i=2 |0.5(Ti−1 +Ti+1)−Ti|

1
N ∑

N
i=1 Ti

(3.6)

Moreover, to gather more insights into the temporal variation of F0, classical
statistical moments are generally employed. Among these, the standard deviation
of F0, namely Monopitch, is typically computed to quantify the speaker’s ability
to maintain a consistent frequency of vocal fold vibration throughout sustained
phonation. This measure is particularly relevant in various pathologies, such as PD,
where vocal fatigue often leads to difficulties in mantaining a steady phonation.

3.2.2 Noise Analysis

Noise analysis in speech processing is a critical aspect of understanding and quanti-
fying the voice quality of the speakers, as it is mainly due to incomplete closure of
the vocal folds [24].

While the computation of noise components can be challenging due to the
complex nature of real-world signals which often lack clear separation between
speech constituent units, several features have proven effective in characterizing
non-normophonic speakers.

Harmonic to Noise ratio (HNR) is a measure based on the assumption that a
speech signal consists of a periodic component and additive noise. It calculates the
ratio between the energy of the periodic structure and the energy of the additive noise,
which is influenced by voice impairments. Similarly, Glottal to Noise Excitation
Ratio (GNE) quantifies the ratio between excitation originating from the vocal folds
and excitation caused by turbulence in the speech signal. Normalized Noise Energy
(NNE) computes the noise energy within each F0 period and estimates the overall
contributions as the sum of non-harmonic portions of the voice spectrum [27].

Voice Turbulence Index (VTI) and Soft Phonation Index (SPI) involve predefined
bandwidths. VTI measures the average ratio of energy in the 2800-5800Hz and 70-
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4500Hz frequency bands, providing information about turbulence due to incomplete
vocal fold closure. SPI measures the average energy ratio in the 70-1600Hz and
16000-4500Hz bands, capturing information about the closing phase of the vocal
folds [24].

3.2.3 Spectral Analysis

Spectral analysis plays a crucial role in the field of speech analysis for characterizing
phonation and articulation in both normophonic and non-normophonic speakers.

Primarily, researchers have extensively examined the speech spectrum using
measures of Formant Frequencies. These latter represent the resonance frequencies
of the oropharyngeal tract and provide valuable insights into the positions of the
tongue, jaw, and lips during speech production [8]. Generally, the first three formants
together with their bandwidths are employed.

Furthermore, classical parameters, including mean, variance, skewness, kurtosis,
crest, flux, and roll-off point among the others, are usually employed to synthesize
the overall behavior of the speech signal in the spectral representation. For instance,
the more the spectrum exhibits a flat trend, the more the speech signal can be likened
to white noise. Consequently lower values of spectral flatness may suggest increased
noise due to incomplete closure of the vocal folds.

Energy measures are frequently utilized in speech analysis, often in the form of
Short Time Energy (STE), which is employed to capture fluctuations in the energy
contour of a speech signal over time. Additionally, energy ratios between voiced
and unvoiced regions are employed to quantify the accuracy of vocal fold vibrations
when a task with a predefined prompt is presented.

3.2.4 Cepstral Analysis

Cepstral Analysis is a widely employed techniques that allow separation of the
effects of the vocal tract and excitation in speech processing [11]. The method is
based on the fundamental assumption of the source-filter, which views speech as
the result of convolving an excitation source with the vocal tract filter. It relies on
two key mathematical properties: the convolution in the time domain corresponds
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to multiplication in the frequency domain, and the sum of the logarithms of two
numbers is equal to the logarithm of their product.

To apply cepstral analysis, the speech signal is first Fourier-transformed, which
inherently involves two convolved signals, then the logarithm is applied. Transform-
ing back to the time domain allows for the separation of the signal into its excitation
and vocal tract components (Equation 3.7-3.11) [11].

y(t) = x(t)∗h(t) (3.7)

Y ( f ) = X( f ) ·H( f ) (3.8)

log(Y ( f )) = log(X( f ) ·H( f )) (3.9)

log(Y ( f )) = log(X( f ))+ log(H( f )) (3.10)

F−1{log(Y ( f ))}= F−1{log(X( f ))}+F−1{log(H( f ))} (3.11)

The prominence of the main peak in the cepstrum, namely Cepstral Peak Promi-
nence (CPP), has proven effective in characterizing both normophonic and non-
normophonic speakers. CPP quantifies the prominence of the primary harmonic,
corresponding to F0. Higher CPP values indicate a more distinct peak in the cepstrum,
which can be associated with clearer and more stable pitch information.

In the specific case of vocal signal, an additional transformation is introduced to
enhance the machine capability to deal with non-linearities, as in the human auditory
system. This is achieved by mapping the power spectrum onto the Mel scale using a
filter bank composed of overlapping triangular windows. The center frequencies and
bandwidths of these windows are determined by a constant Mel-frequency interval
[28].

This new frequency scale, known as the Mel scale, exhibits linear dependence
from the traditional frequency scale when values are below the 1 kHz threshold
and logarithmic dependence otherwise (Equation 3.12). This transformation aims
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to replicate the behavior of the human cochlear region, where the perception of
pitch is not linearly related to physical frequency. Indeed, the Mel is a unit of pitch
defined such that pairs of sounds that are equally spaced in the perceived frequency
domain are separated by an equal number of Mels. This transformation enhances
the representation of speech features in a way that aligns more closely with human
auditory perception.

fMel =

 f if f ≤ 1 kHz

2595 · log
(

1+ f
700

)
if f > 1 kHz

(3.12)

Indeed, as stated in the Weber-Fechner law (Equation 3.13), in human systems
the perceived intensity from a stimulus is not linearly proportional to the actual
intensity generated. Instead, the ratio between these two quantities gives rise to a
statistical parameter known as the Weber proportionality term (K). The concrete
evidence supporting this physical formulation lies in the observation that loudness
perception is not constant. Humans exhibit greater sensitivity to lower-frequency
regions due to the fact that frequency resolution decreases as frequency increases.

∆Rperc = K ·R (3.13)

In this context, the Mel-frequency cepstral coefficients (MFCC) are defined as the
discrete cosine transform (DCT) of the log of the Mel spectrum. These coefficients,
which enhance the machine capability to mimic effectively the behaviour of the
human ear, provide a compact representation of the short-term spectrum and have
been demonstrated to be effective in modeling irregular movements within the
vocal tract [24]. Typically, the feature vectors used for analysis include the original
MFCCs, their delta coefficients, and delta-delta coefficients concatenated together.
Indeed, first-order derivatives, or ∆MFCCs, offer insights into the speed of spectral
features, capturing short-term variations in the signal. On the other hand, second-
order derivatives, or ∆∆MFCCs, delve into the acceleration of spectral features,
providing information about higher-level dynamics.
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3.2.5 Linear Prediction Analysis

Linear prediction analysis of speech samples is a widely employed technique in
the field of speech processing and analysis [11]. This approach is based on the
premise that a speech signal can be effectively represented as a linear combination
of its past values and can be conceptualized as the outcome of applying a filter
to the excitation source. The coefficients of these filters, referred to as Linear
Prediction Coding Coefficients (LPC), are designed to emulate the behavior of the
vocal tract. Consequently, they can serve as valuable tools for achieving a precise
characterization of the entire vocal apparatus [24, 11, 29].

Given the set of LPC coefficients, it is possible to further improve the represen-
tation by applying the Cepstrum transformation. This latter allows to incorporate
information about the human auditory system response to sound, yielding what are
known as Linear Prediction Cepstral Coefficients (LPCC) [24].

Furthermore, if a proper adequate compression and a smoothing step are applied
to the speech signal, Perceptual Linear Prediction Coefficients (PLP) are obtained.
Similarly to MFCC, these coefficients are designed to model the perception of sound
by the human auditory system [24, 29].

One noteworthy variant of PLP is Relative Spectral Transform - Perceptual Linear
Prediction (RASTA-PLP). RASTA-PLPs are specifically engineered to enhance
the robustness of PLP features, particularly in the presence of noise or adverse
acoustic conditions. Its core innovation lies in the application of RASTA (Relative
Spectral Transform) filtering to the PLP feature vectors. RASTA filtering employs
a straightforward temporal filtering operation that effectively smooths the PLP
coefficients within each frame independently. The term relative in RASTA-PLP
denotes that this filtering operation subtracts the mean value of each PLP coefficient
within a frame from the coefficient itself [30, 24].

3.2.6 Complexity Analysis

The presence of non-linear phenomena during voice production, primarily stemming
from pressure flow in the glottis, stress-strain characteristics of vocal fold tissues,
and vocal fold collision is a typical aspect of physiological and pathological speech.
However, these complexities may be further exacerbated by compensatory move-
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ments commonly observed in patients affected by speech disorders, who, conscious
of their condition, try to hidden their motor dysfunctions. To analyze these non-
linear phenomena and quantify related speech impairments, vocal signals are often
represented in the state space and parameterized by means of specific features able
to measure the complexity of the system.

The reconstruction of the speech signal in the state space is typically performed
by means of an embedding procedure. The embedding theory proposed by Takens
et al. in [31] represents the set of diffeomorphic attractors in the state space by the
Equation 3.14, which is the solution of a system of nonlinear differential equations
that define the speech production process.

X(k) = x(k),x(k+ τ), ...(x(k+(θ −1)τ) (3.14)

In Equation 3.14, the variable X represents a collection of points within the
attractors, denoted as X(k). The signal x(k) corresponds to the original time signal,
while τ is the time delay, which is estimated to ensure minimal correlation among
state variables. Additionally, θ stands for the dimension of the embedding space [32].
The determination of the optimal τ value, suited for reconstructing the vocal signal
effectively, is typically achieved through a method relying on mutual information.
This method defines the time delay as the point where the mutual information
function exhibits its first minimum [32, 24].

Among the most common features employed to quantify the complexity and
the non-linearity of the vocal signal starting from the reconstructed attractors in
n dimensions, we mention: (i) Correlation Dimension (D2), Largest Lyapunov
exponent (LLE), (iii) Hurst Exponent (H), (iv) Recurrence Period Density Entropy
(RPDE), and (v) Detrended Fluctuation Analysis (DFA).

D2 quantifies the system complexity by assessing the self-similarity of an em-
bedded attractor. In chaotic systems, D2 tends to be higher, indicating a larger-
dimensional subset of the system state space related to the speech signal [33, 24].

LLE provides insights into a system sensitivity to initial conditions by calculating
the average divergence rate of neighboring trajectories. Chaotic systems typically
exhibit positive Lyapunov exponents, whereas non-chaotic systems often have zero
or negative exponents [33, 24].
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H measures long-term dependencies in a time series, reflecting how past values
influence future ones. Values of H > 0.5 indicate strong long-term dependencies,
while H < 0.5 suggests reduced persistence of signal characteristics. H = 0.5 signifies
a complete lack of correlation between past and present values, as in the case of
Brownian motion [33, 24].

RPDE assesses signal irregularity and changes in vocal fold oscillation periodicity.
It examines the density distribution of recurrence periods, with higher RPDE values
indicating more complex and less regular trajectories in the state space, characteristic
of chaotic and less predictable systems [34, 33, 24].

DFA is employed to analyze the stochastic and fractal properties of a signal,
helping to understand the underlying dynamics of complex systems. In vocal anal-
ysis, DFA can reveal deviations from periodicity and the influence of stochastic
components, such as aspiration noise. DFA = 0.5 corresponds to highly chaotic and
random systems, while DFA values smaller or greater than 0.5 indicate correlations
and strong self-similarities, respectively [34, 33, 24].

3.2.7 Timing Analysis

Timing Analysis of complex speech tasks such as monologue and sentence reading,
plays a crucial role in distinguishing between normophonic and non-normophonic
speakers. Indeed, rhythmic organization contributes significantly to speech fluency
and smoothness with deviations from typical rhythmic patterns denoting underlying
speech disorders or neurological conditions.

To effectively characterize speech, particularly when tasks with predefined
prompts are employed, various ease-to-compute metrics have been proposed. Among
these, spectral moments (e.g., mean, median) extracted from voiced and unvoiced
intervals lengths within a long text can quickly provide insights into abnormal speech
patterns [35, 36]. Additionally, the Rate of Speech Timing (RST), which quantifies
the rate of voiced, unvoiced, and paused intervals, is also a valuable metric. It is
calculated as the slope of the regression line of total interval count over time and
can help quantify reduced intervals due to impaired muscle control within the vocal
apparatus [37].

As for sustained phonation tasks, strong correlation to vocal fold impairment is
yielded byMaximum Phonation Time (MPT), which measures the total duration of
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sustained phonation and can reveal airflow insufficiency if speakers are instructed to
sustain the task as long as possible [36].

In addition to analyzing voiced and unvoiced regions, the Duration of Pause
Intervals (DPI) is very important in speech characterization. Prolonged initial pauses
may indicate difficulties in initiating speech, while frequent pauses, especially in
free speech, can suggest challenges in speech conceptualization or vocal fatigue due
to complex speech impairments.

3.3 Tools for Speech Analysis

To offer a comprehensive overview of the most common approaches used for evalu-
ating acoustic features from speech samples, the following section provides a brief
description of the available libraries and software tools. Additional, more detailed
information can be found in the associated original papers.

• Praat. It is a C-based software package designed for speech analysis, enabling
the extraction of diverse metrics. It is possible to integrate this software into
Python using the Parselmouth library [38], [39].

• Dysarthria Analyser. It is a system that conducts automated acoustic analysis
of different dysarthric speech patterns, employing specific algorithms to detect
features extracted from tasks such as sustained phonation, syllables, and
connected speech [35, 40].

• pyAudioAnalysis library. It is a comprehensive Python library designed for
both feature extraction and the creation of classifiers, as well as facilitating
automatic segmentation [41].

• DARTH Voice Analysis Toolbox (DARTH-VAT). It is a toolbox operating within
MATLAB which has been primarily validated in settings involving the sus-
tained vowel /a/. It predominantly comprises features related to F0, Jitter,
Shimmer, MFCC, RPDE, DFA, and glottal modeling [42–44].

• BioMetR©Tools. It is a graphical user interface (GUI)-based toolbox used for
extracting high-level glottal features through the modeling of speech signals
[45].



3.4 Challenges and Limitations 25

• Voice Sauce. It is a MATLAB toolbox designed for extracting frequency and,
more notably, harmonic-related content from audio signal [46, 47].

• OpenSmile. It is a comprehensive software developed by Audeering, enabling
the extraction of over 6000 parameters according to custom configuration
files[48–50].

• Neurospeech. It is a software platform specifically designed for conducting
speech analysis on individuals with neurodegenerative disorders, with a par-
ticular focus on Parkinson’s Disease. It calculates various measures to assess
phonation, articulation, prosody, and intelligibility [51].

• APARAT Toolbox. It is a software package designed for use within the MAT-
LAB environment. It incorporates glottal inverse filtering and multiple time-
based parameters of the voice source, all presented through a user-friendly
graphical interface [52].

• Analysis of dysphonia in speech and voice (ADSV). It is a software designed
to extract dysphonia-related spectral and cepstral features from various speech
tasks, such as sustained phonation, sentences, or syllables.

3.4 Challenges and Limitations

Properly validated speech-based AI tools hold promise in mitigating potential sub-
jectivity biases and providing insights into the speaker’s health status. However, the
analysis and parameterization of speech samples, as complex signals, are not without
limitations.

3.4.1 Variability in Vocal Characteristics

The primary limitation to consider pertains to the variability of the vocal signal. As
discussed in the previous sections (Sections 2.1, 3.1), vocal production is the result
of the intricate coordinated activity of various anatomical regions. While the analysis
of this complexity allows for the extraction of objective parameters related to specific
pathologies, it also embeds the influence of individual-specific characteristics on the
produced signal as well as time changes within a single-speaker.
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Notably, a critical factor is the speaker’s gender, as vocal mechanics are directly
dependent on vocal cord size and length, resulting in distinct acoustic features
between genders, typically characterized by higher frequencies in females compared
to their male counterparts. Similarly, speaker’s age significantly affects the produced
signal. Consequently, although the use of highly-dimensional datasets can potentially
mitigate these factors, the typically limited size of biomedical corpora requires
careful consideration of these aspects or appropriate stratification.

In addition to physiological characteristics, further confounding factors arise
from the co-occurrence of multiple pathologies, whose impact on the vocal signal
may vary depending on the specific region being analyzed. Consequently, while
research studies usually focus on carefully selected participant populations by ex-
cluding individuals with concurrent pathologies that could potentially impact the
collected data, this approach is commonly restricted to specific categories of dis-
orders, often overlooking individuals with less severe conditions. On the contrary,
recent studies have shown that even pathologies with a minor impact on the overall
health status (e.g., gastro-esophageal reflux, obesity...) or even temporary alterations
(e.g., emotions fluctuations, sleep quality disturbances..) can exert a noticeable
influence on the produced signal. Thereafter, it is of crucial importance the necessity
of thoroughly analyzing the nature of the alterations or developing algorithms that
can account for such variability.

Finally, though the influence is limited to the analysis of more complex language
production tasks, the educational level of the subjects also warrants consideration.
Differing levels of linguistic vocabulary can indeed lead to the production of texts
with varying degrees of complexity, which are independent of the subject’s health
status.

It is also worth noting that, conversely to other biomedical signals used in con-
junction with AI techniques, information derived from vocal samples are profoundly
influenced by the speaker’s language. Despite this limitation is partially mitigated
when the analysis focuses on sustained vowels or speech timing, it becomes of
fundamental importance when the focus of analysis revolves around specific sounds
or linguistic phenomena unique to certain languages.

In the pursuit of robust vocal signal analysis, some key guidelines should be
adhered to during the data collection process in order to reduce as far as possible the
beforementioned criticalities. To address the intricate variability inherent in vocal
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production, it is of paramount importance to ensure a diverse and representative
participant pool that encompasses various demographics such as age, gender, and
educational backgrounds. Longitudinal data collection strategies should be employed
to capture temporal changes within individual speakers, allowing for a comprehen-
sive understanding of vocal variability over time.
As for the impact of concurring pathologies, a more inclusive approach should in-
volve incorporating participants with varying severity levels of conditions, enabling
a comprehensive perspective on the impact of health-related factors on vocal signals.
Moreover, while extracting language-neutral features could help minimize biases
related to linguistic phenomena specific to certain languages and enhance the general-
izability of findings, the analysis of language-specific sound should not be neglected.
Within this context, the collaboration with linguists and language experts becomes
paramount to gain insights into these aspects and align the analysis framework with
linguistic nuances.
To conclude, it is crucial to emphasize that, while all the mentioned approches can
contribute to an effective data collection process, investing in significantly larger
biomedical corpora remains the most effective technique to minimize potential biases
and contribute to better statistical power and reliability.

3.4.2 Influence of Recording Conditions

The influence of background noise and, more generally, the recording conditions is
of crucial importance to derive significant and robust evidence from the analyses
of vocal signals. Although it is possible to mitigate the extent of the influence by
employing uni-directional microphones, which are capable of effectively capturing
the speaker’s voice while minimizing ambient noise, a significant portion of the
literature in vocal signal analysis aims to leverage the ease of remote, low-cost, and
unsupervised data collection. In such contexts, there is a strong increase in the likeli-
hood of inappropriate microphone placement, continuous or sporadic background
noise capture, and related issues. Moreover, smartphones and laptops typically em-
bed omni-directional microphones, which are more likely to include also unwanted
information.

To address these concerns, it is essential to educate users about proper recording
procedures and develop applications capable of guiding subjects during data collec-
tion. Subsequently, during the data analysis and utilization phase, it is necessary to
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apply appropriate pre-processing techniques and select parameters that are minimally
influenced by background noise and recording conditions, while being aware that
any pre-processing applied to the signal could potentially alter its characteristics and
the extracted information.



Chapter 4

Application I: Parkinson’s Disease

4.1 Parkinson’s Disease

4.1.1 Incidence and Prevalence

Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder,
which affects approximately 1% of individuals over the age of 60 [53]. The incidence
of PD increases with age, being rare before the age of 50 and more common in men
than in women [54, 55]. The global prevalence of PD is expected to rise significantly
due to the overall aging population, increasing from 6.9 million cases in 2015 to an
estimated 12 million cases by 2040 [56]. However, even when age-related factors
are taken into account, PD’s incidence is still projected to increase [57], indicating a
more complex and as yet not fully understood scenario.

4.1.2 Pathophysiology

After the onset of PD, patients experience a progressive decline in their ability
to perform Activities of Daily Living (ADL). This progressive disability is the
result of a complex interplay of factors, including the aggregation of aberrant α-
synuclein, dysfunction of cellular components like mitochondria, lysosomes, and
vesicle transport, problems with synaptic transmission, and neuroinflammation [57].
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The primary pathological characteristic of PD is the gradual loss of dopaminergic
neurons in the substantia nigra pars compacta region of the midbrain. Clinical-
pathological correlation studies have indicated that this ongoing degeneration is
likely responsible for motor symptoms like bradykinesia, tremor, and rigidity, which
are observed in both early and mid-advanced stage patients [58]. Although the exact
cause of this neurodegeneration remains unclear, it is known to involve the formation
of Lewy pathology, a result of abnormal aggregation of α-synuclein proteins. Indeed,
in their misfolded state, α-synuclein becomes insoluble and forms intracellular
inclusions within cell bodies [58]. Consequently, these aggregations can disrupt
the normal functioning of the brain, ultimately causing dysfunction and death of
particular neuronal groups [10, 58].

4.1.3 Etiology

The etiology of PD is still a matter of debate, however two main factors are acknowl-
edged as relevant for PD onset: genetics and environment [57].

Genetic factors are estimated to contribute approximately 25% to the overall
risk of developing PD and mostly interests mutations of the genes SNCA, LRRK2,
PRKN, PINK, and GBA [59, 57, 58]. Despite PD presentation and progression is
acknowledged to present a marked heterogeneity, it is still possible to identify some
clusters based on the type of genetic alteration. SNCA mutations usually imply
earlier age of disease onset and faster progression of both motor and non-motor
symptoms. LRKK2 mutations accounts for the majority of familial PD cases but are
also observed in non-genetic patients, thus increasing the complexity of a precise
diagnosis. PRKN and PINK mutations are mainly responsible for juvenile PD
and early non-motor symptoms with a generally slow progression which is rarely
characterized by dementia. On the contrary, GBA-linked PD presents a more severe
course with a rapid cognitive decline [57].

As for Environmental factors, they mainly include pesticide exposure, head
injuries, rural living, beta-blocker use, and agricultural occupation. Additionally,
despite the underline associations are still elusive, tobacco smoking, coffee drinking,
non-steroidal anti-inflammatory drug use, alcohol consumption, and calcium channel
blocker use were found to have a negative correlation with PD arising [58].
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4.1.4 Symptoms

After PD arising, patients usually face a broad variety of symptoms that significantly
impacts their ADLs. The cardinal and more evident manifestations include motor
symptoms such as rigidity, tremor at rest, bradykinesia, and postural instability
[60]. However, the clinical spectrum also contains many less visible components,
including non-motor features, such as olfactory impairment, orthostatic hypotension,
constipation, sleep disturbances, and vocal impairment. Behavioral problems, depres-
sion, and anxiety frequently occur, and dementia is quite common in the advanced
stages of the disease [58]. In the following a list of the most frequent PD symptoms
is reported.

• Bradykinesia refers to the slowness of movement and is considered to be the
most characteristic clinical feature of PD. It involves challenges related to plan-
ning and executing movements, as well as difficulties with carrying out tasks
sequentially or simultaneously. Other manifestations include reduced reaction
times, difficulties in performing fine movements, and loss of spontaneous
gesturing [60, 57, 61].

• Tremor in PD refers to involuntary muscle contractions. The most common
and easily identifiable form is rest tremor, which typically involves shaking in
the hands, lips, chin, jaw, and legs. This tremor is often unilateral, affecting
one side of the body, and it usually occurs at frequencies between 4 and 6 Hz.
Some PDPs may also experience postural tremor, which typically emerges
when an individual assumes an outstretched horizontal position [60, 57, 61].

• Rigidity refers to an increased resistance to passive movements, which hinders
the range of motion in terms of flexion, extension, or rotations. This rigidity
can manifest proximally, affecting areas like the neck and shoulders, or distally,
involving the wrists and ankles. Muscle rigidity in PD is often characterized
by the emergence of pain, making it one of the most common and recognizable
features of the condition, even though it can be challenging to perform an
accurate differential diagnosis [60, 57, 61].

• Postural deformities are primarily linked to rigidity and encompass atypical
axial postures that tend to develop in the advanced stages of PD. They may
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involve conditions like scoliosis, alterations in the trunk (such as Pisa Syn-
drome), and deformities affecting the limbs due to the involvement of the
striatum [60].

• Freezing is a type of akinesia, and along with postural instability, it is one of
the primary factors contributing to falls in PDPs. This phenomenon typically
occurs when initiating walking or during specific actions like making a turn or
passing through narrow passages, resulting in a sudden and temporary inability
to move [60].

• Cognitive and neurobehavioural abnormalities are believed to affect a signif-
icant proportion of PDPs and may manifests as cognitive decline, dementia,
depression, or other neuropsychiatric comorbities. Furthermore, despite the
inherent mechanism is not well understood, PDPs may exhibit features of
obsessive-compulsive and impulsive behavior, which have been linked to the
development of dopamine dysregulation syndrome due to the use of dopamin-
ergic drugs [60].

• Sleep alterations can manifest in various forms, with REM Sleep Behavior
Disorder (RBD) being the most common. RBD presents as a parasomnia
characterised by lack of physiological muscle atonia during REM Sleep [62];
it is estimated to affect approximately 2% of the elderly population globally
[63]. Recent research suggests that sleep disturbances are among the earliest
prodromal symptoms of α-synucleinopathies, with RBD having a remarkable
90% conversion rate when observed over a 14-year follow-up period [64].

• Speech alterations in PD are often categorized as hypokinetic dysarthria and
are primarily characterized by difficulties in articulation and breathing, along
with a voice quality often described as trembly and unstable. Approximately
90% of PDPs experience these symptoms, with the first manifestations that
can manifest up to a decade earlier than the cardinal motor symptoms of PD,
making it one of the early prodromal signs of the condition [65–67].

4.1.5 Diagnosis and Complicating Factors

With the exception of genetic tests for individuals with a family history of PD, a
definitive diagnosis of the disease can only be confirmed post-mortem through the
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identification of neuropathological changes in the brain [57]. Nevertheless, clinical
practice universally recognizes and applies a diagnosis based on a comprehensive
neurological assessment, a thorough review of the patient’s medical history, and a
clinical evaluation of both motor and non-motor symptoms [68]. Positron Emission
Tomography (PET) and Single Photon Emission Computed Tomography (SPECT)
can also be employed to quantify the dopaminergic reduction in the substantia
nigra pars compacta region of the midbrain [58]. However, the dopamine imaging
approaches may not be sufficient for an accurate diagnosis since they do not allow
for a reliable differentiation between PD and other parkinsonian syndromes [58].

The diagnostic process for PD typically begins with the observation of symptoms,
and a confirmed diagnosis is usually only made after neuropathological examina-
tions. This process can be complex due to the similarities and overlaps in signs and
symptoms among different conditions with diverse underlying causes. Thereafter,
in addition to assessing the classic motor symptoms, clinicians also consider po-
tential clinical markers to better understand the patient’s condition. These markers
can encompass the presence of olfactory impairment, RBD alterations, as well as
behavioral and vocal changes reported by the patient or observed by their caregivers
[58]

PD monitoring and follow-up visits are typically conducted during scheduled
medical visits, occurring every 6 to 9 months [69]. However, these periodic visits
make it challenging for neurologists to detect short-term changes in a patient’s
condition. Additionally, despite validated protocols are employed, the subjective
nature of clinical examinations can introduce bias into the assessment [70, 71]. These
limitations make it difficult to implement appropriate therapeutic adjustments and
can reduce the overall effectiveness of therapy [72].

4.1.6 Clinical Scales

The Unified Parkinson’s Disease Rating Scale (UPDRS) [73] is the most widely used
scale for diagnosis and monitoring of PD. It employs a structured scoring system
that ranges from 0 (indicating no impairment) to 4 (representing severe impairment),
with intermediate scores reflecting various degrees of severity. Its revised form, the
Movement Disorder Society-sponsored UPDRS (MDS-UPDRS), is a comprehensive
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clinical tool designed to evaluate the severity and progression of Parkinson’s disease.
It consists of four parts, each addressing different aspects of the condition.

• Part I - Non-Motor Aspects of Daily Living. This initial section is dedicated to
evaluating the impact of PD on everyday activities that are not directly linked
to movement. It encompasses assessments of cognitive function, behavior,
mood, and ADLs.

• Part II -Motor Aspects of Daily Living. In this section, the focus shifts to
assessing how PD impacts motor functions during daily activities. It involves
evaluating elements such as speech, swallowing, handwriting, cutting food,
dressing, personal hygiene, turning in bed, walking, and other routine tasks.

• Part III -Motor Examination. The third section guides trained clinicians
to systematically evaluate the patient’s motor function in this section. It
encompasses various subdomains, including tremor, rigidity, bradykinesia,
gait, posture, and other motor features.

• Part IV -Motor Complications. The last section places its focus on assessing
motor complications that arise due to treatment, including dyskinesias (invol-
untary movements) and fluctuations in medication response. It evaluates the
presence and impact of these complications on the patient’s ADLs providing
valuable information for treatment optimization.

The Hoen and Yahr (H&R) clinical scale [74] provides a simplified and practical
assessment of PD progression, focusing primarly on motor symptoms and functional
disability. It categorizes patients into five stages based on their motor symptoms and
functional disability.

• Stage 1. In the initial stage, the patient exhibits unilateral involvement only.
The symptoms are typically mild, encompassing features like tremor, rigidity,
and bradykinesia; the patient’s posture and balance remain unaffected.

• Stage 2. In stage 2, the disease affects both sides of the body. However, the
patient can still maintain an upright posture and balance. Although symptoms
become more pronounced, the patient can generally perform daily activities
without significant impairment.
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• Stage 3. At this stage, the disease further progresses, resulting in moderate to
severe motor impairments. The patient experiences bilateral involvement and
postural instability. Balance is compromised, and falls may occur, necessitating
assistance. Despite these challenges, some independence in performing daily
activities is retained.

• Stage 4. In stage 4, the symptoms becomes severe, significantly limiting the
patient’s mobility. Assistance or assistive devices may be required for walking,
and independent living is no longer possible. However, the patient can still
stand or walk without assistance.

• Stage 5. The final stage represents the most advanced and debilitating phase of
PD. The patient is typically either wheelchair-bound, necessitating full-time
support. Symptoms are extremely severe, and the patients may experience
substantial fluctuations in their response to medication.

4.1.7 Treatment

Currently, there is no cure for PD, and the approach to treatment involves a multi-
modal strategy aimed at mitigating symptoms, preserving residual motor function,
and improving the patient’s quality of life. This comprehensive approach typi-
cally encompasses pharmacological treatment, possibly surgical interventions, and
supportive therapies.

In terms of pharmacological treatment, the primary class of medications used
includes dopaminergic agents. These medications are designed to supplement or
replicate the diminished dopamine levels in the brain. Notably, drugs like Levodopa
(L-Dopa) and dopamine agonists are considered the most effective treatments for
alleviating the symptoms of PD [61, 75]. These medications are particularly effective
in managing motor symptoms, especially in the early stages of the disease. However,
it is important to note that they do not interrupt the process of neurodegeneration,
disease progression, or the development of disability [76]. Furthermore, it is worth
mentioning that prolonged use of these medications is related to motor complications,
such as dyskinesias [77]. To manage specific symptoms or enhance the efficacy of L-
Dopa, adjunctive medications like anticholinergics and catechol-O-methyltransferase
inhibitors may be prescribed [78, 79].
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Among surgical interventions, deep brain stimulation (DBS) is the most used
surgical approach and it considered when medication alone prove insufficient in
managing PD symptoms or when motor complications become problematic. The
procedure involves implanting electrodes into specific brain structures, like the sub-
thalamic nucleus or the globus pallidus internus, tailored to the patient’s characteris-
tics and symptoms [80]. Advanced imaging techniques guide electrode placement;
thereafter, once correctly positioned, they are connected to a pulse generator [81].
This generator delivers controlled electrical impulses to the brain, normalizing neu-
ral activity. Healthcare professionals fine-tune stimulation parameters to optimize
symptom control. DBS significantly improves motor symptoms, reduces medication
needs, and enhances overall quality of life. Some studies suggest it might even have
a neuroprotective effect, potentially slowing disease progression [80, 81].

In addition to medication and surgery, supportive therapies play a crucial role
in managing PD. Physical therapy aims to improve mobility, gait, balance, and
overall physical function. Occupational therapy focuses on enhancing the patient’s
ability to perform ADLs and maintain independence. Speech and swallowing therapy
is designed to address challenges in speech production and swallowing function,
which are frequently encountered in PD. Additionally, exercise programs have shown
beneficial effects in maintaining motor function and improving overall well-being
[58].

4.2 Related Literature

The investigation of vocal changes associated with PD has gained growing interest
in recent decades. Notably, various types of algorithms, ranging from simple to
complex pipelines, have been proposed with excellent results for the automatic
assessment of the presence of the disease and its staging.

In the realm of acoustic features analysis, several recent reviews studies investi-
gated the current panorama of relevant parameters. Among these, the authors in [82]
conducted a comprehensive investigation of computational approaches within the
neurodegenerative spectrum, encompassing both motor and non-motor symptoms in
PD. They underscored the complexity in selecting the optimal set of features due to
diverse potential applications, including disease assessment and progression monitor-
ing, along with the different dimensions of speech, such as phonation, articulation, or
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prosody. Nevertheless, they identified a list of common features, including time and
frequency measures. Gómez-García et al. in [83] reviewed prevalent measures used
in automatic vocal analysis tools and summarized routines for their extraction in a
freely available toolbox, namely AVCA. They highlighted amplitude perturbation,
frequency perturbation, and noise measures as the most common features. Similar
findings were reported in [84] and [85]. The former study delved into phonatory
and prosodic changes in PD, exploring the pathophysiology behind vocal alterations
and the features used to describe them. The authors reported that voice disturbances
often resulted from larynx asymmetric rigidity and incomplete glottic closure, which
was confirmed through laryngoscopy and stroboscopic investigations. Commonly
used features included HNR, jitter, shimmer, intensity, and F0. In their review of
86 articles on the acoustic analysis of PD, Brabenec et al. [85] focused on early
diagnosis, monitoring, functional imaging studies, and the impact of dopaminergic
medication and brain stimulation. While conventional features like jitter, shimmer,
and F0 remained prominent, it was noted that these features, while interpretable,
may not be sufficient for complex mechanisms or advanced analysis. More extensive
techniques such as DFA, D2, RPDE have proven effective. More recently, Moro-
Velazquez et al. in [86] conducted an extensive analysis comparing articulatory
and phonatory aspects. Evidence from 192 reviewed papers emphasized the signifi-
cance of articulatory analysis, with commonly adopted features such as amplitude
and frequency perturbation values, noise, complexity, timing features, and sets of
coefficients like MFCC and LPC.

Regarding the speech tasks typically employed, the literature review revealed
a predominant focus on phonation, particularly using the sustained phonation of
the vowel /a/ , which is employed to assesses the ability to control the airflow
from the lungs and the glottal source vibration [24, 87]. While sustained phonation
is reliable, it lacks the complexity of natural speech. Some studies suggest that
analyzing the articulatory process occurring during running speech, reading, or word
repetitions can provide more comprehensive insights, with classification accuracy
ranging from 80% to 95% [88? –90]. In addition to phonation and articulation,
prosody impairments are also observed, affecting speech rate, pauses, and intonation
[24]. However, these analyses may be influenced by external factors such as anxiety
and alertness, which can impact PD symptoms, making recordings less reflective
of real-life vocal changes [91]. The strong discriminatory potential of articulation
and prosodic analysis comes at the expense of high complexity due to language-
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dependent variations in phoneme pronunciation, with a universal set of phonemes
strongly correlated with the disease yet to be established [92, 88].

Indeed, several studies explored the effectiveness of the different phonemes in
specific languages. Among these, [? ] demonstrated the potential of fricatives
sounds parameterized by means of duration, intensity, and spectral moments to
model the co-articulation capability and the ability of the patient to perform a com-
plex sequencing of movements, which are typically impaired in PDPs [93]. In [94],
the authors explored the use of occlusive consonants for early PD identification
employing temporal and spectral parameters from voice-onset-time segments. Using
a dataset of Spanish speakers, they achieved a classification accuracy of 94.4% in
leave-one-out Cross Validation (CV), with the consonant /k/ exhibiting the highest
discrimination capability. The importance of fricatives and occlusive were eventually
confirmed in [23], in which the authors performed preliminary cross-language exper-
iments employing Czech and Spanish participants yielding accuracy ranging from
72% to 94%. In a subsequent work [88], the authors introduced features extracted
from relevant articulation moments, such as bursts, transitions between vowel and
consonants, or the beginning and end of the glottal activity and demonstrated the
importance of studying the transition between specific phonemes.

While many articles explored speech analysis in PD with participants from vari-
ous nationalities, only a few works directly addressed the influence of the language
of the speakers on the proposed models. Among these, in [95], the authors examined
continuous speech samples from five nationalities (Czech, English, German, French,
and Italian), identifying changes in voice quality, articulation, and speech speed.
More recently, [96] conducted an analysis involving five datasets in five different
languages (Italian, Hebrew, English, Czech, and Spanish). In this study the authors
performed cross-language experiments achieving a 75% classification accuracy using
an Extreme Gradient Boosting (XGB) classifier. However, the reported performance
was based on a 10-fold CV, and no additional tests were conducted on previously
unseen samples.

Beside language, an increasing number of works is currently studying the
panorama of external factors that can potentially influence the analysis of speech
samples, ranging from environmental factors to subjects-specific characteristics.
Among these, the effect of medication on speech production is still a matter of de-
bate, with results ranging from no effect at all [97] to a significant effect that however



4.3 Corpora for PD voice analysis 39

depends on the off-medication speech disfluency [98]. Some authors also referred
to differential alterations depending on the speech dimension and the phonemes
specifically investigated [99].

Recent works have also highlighted the potential impact of recording modalities
on the features extracted from collected speech samples. Indeed, several studies [100,
42, 101, 35] tested the feasibility of automatically assessing PD-related alterations
by means of samples collected via smartphones. These studies generally agree that
satisfactory results can be obtained even with low-quality recordings. However, only
a few of them directly compared the same signals simultaneously recorded using
both modalities. In this context, recent analyses also explored the influence of the
recording modality, whether under the supervision of an operator or completely
unsupervised, where participants record in their home environment. For instance,
Carron et. al in [102] compared the performance achieved using data acquired with
smartphones in supervised and unsupervised conditions. Their findings indicated that
recording conditions have a more significant impact than the recording equipment
itself, with unsupervised recordings leading to an overall performance decrease.
Furthermore, cross-corpus experiments revealed a partial improvement when the
algorithm is trained on the worst-quality dataset and then applied to the remaining
samples.

Lastly, an open debate regards the choice between shallow ML models and more
advanced approaches including deep-learning (DL) algorithms. As discussed in a
recent review study [103], the difference is mainly conceptual and revolves around
the differences in data-driven and model-driven nature. While DL has demonstrated
its effectiveness, the use of low-interpretability models may raise concerns among
clinicians who demand high-level evidence in clinical practice. This, in turn, can lead
to overfitting issues and a lack of generalization, especially in presence of corpus
with limited cardinality, which often characterize biomedical applications.

4.3 Corpora for PD voice analysis

In this section, an overview of the corpora utilized in this study is presented, both
private and freely available, encompassing voice samples from PDPs. Each dataset
is referred to by its original name as reported in the corresponding publication. In
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cases where the original name is not available, the denomination is based on the
name of the first author.

4.3.1 Italian Parkinson’s Voice and Speech Corpus

The Italian Parkinson’s Voice and Speech Corpus (IPVS) is a publicly accessible
dataset distributed under the Creative Commons Attribution License (CC BY 4.0),
as detailed in the work by Dimauro et al. [104]. This resource comprises vocal
recordings from 65 Italian native speakers, categorized into three groups: 15 young
Healthy Controls (HCs), 22 elderly HCs, and 28 PDPs. Importantly, none of the
HCs reported any vocal or language disorders, and all PDPs were under their usual
anti-parkinsonian treatment.

As for the disease severity, the majority of PDPs had a H&Y score below 4, with
only a few exceptions: one classified as stage 5 and two as stage 4. Additionally, the
MDS-UPDRS Part III (motor examination) scores were reported, with 11 patients
at stage 0, 9 at stage 1, 5 at stage 2, 1 at stage 3, and 2 at stage 4. For a more
comprehensive overview of participant demographics, please refer to Table 4.1.

Table 4.1 Demographic details of participants in the IPVS corpus. Measures are reported in
terms of mean ± standard deviation. HC: Healthy Controls; PDP: Patients with Parkinson’s
Disease

HC (young) HC (elderly) PDP

Age 20.8 ± 2.65 67.09 ± 5.16 67.21 ± 8.73
Gender 13M, 2F 10M, 12F 19M, 9F

All voice recordings were conducted under supervised conditions, employing
professional microphones (16 KHz with 16-bit resolution) placed at 15-25 cm from
the mouth in a quiet, echo-free environment. Participants were instructed to perform
a series of vocal tasks, encompassing: (i) reading of a phonetically balanced text, (ii)
articulation of the syllables /pa/ and /ta/, (iii) sustained phonation of the five vowels
in Italian language, (iv) reading of a list of phonetically balanced words, and (v)
reading of a list of phonetically balanced sentences. The chosen tasks were designed
to be challenging, requiring participants to breath with effort and featuring complex
phonetics in close proximity. For a comprehensive list of the speech exercises
conducted, along with their English translations, please consult Table 4.2.
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Table 4.2 List of tasks in the IPVS dataset with corresponding English translations

Prompt (IPA Translation) Translation to English

Text i:l ram"ar4o "dEl:a dZ"i:a.i:l pap"a

(’O: i:l babbo k"ome di’tSe i:l

pi’k:o:lo d"a:do) "Era sul "lEto.

so’to di lui, ak"kanto "al ’la:go,

sedE’va dZi’dZi, dEt:o tS"itS:o,

"kO:ko della "mam:a e: "e: della

"nOnna. vi’tSino "ad un "sats:o

tSi’ERA "una rO:za rOs:o ’vivo "e:

lO: "So:ko, veden’dola, la ’vOlle

per la "DZia. la "DZia lu’lU

tSer’kava dZan’dzare per il suo

rama’ro, ma dato kE "Era dZu’NNo

(’O: ’uljo nOn sO: ’bE:ne) nOn nE

tro’vava. tro’vO: in’vetS e ’una

’rana kE sal’tando da’la ’stra:da

fin’I ’nEl ’la:go kon ’un ’grande

’sprutso. saj kE ’fifa, la ’DZia! lO

’skitso baNN’O: il suo kom’plEto

’rO:za kE di’vEnne ’dZallo kO:me

’un ’taksi. pas’sava di li ’un

siN’O:re kozmo:po’lita di ’no:me

’sardanapalo nabukodo’noso:r kE

si innamo’ra: dElla ’DZia e: la

’pOrtO: kOn sE: ’in afga’ni:stan.

The aunt’s lizard. Dad (or daddy,
as little Dado says) was on the
bed. Under him, next to the lake,
sat Gigi, also known as Ciccio,
the darling of Mom and Grandma.
Near a stone, there was a bright
red rose, and the foolish one,
seeing it, wanted it for his aunt.
Aunt Lulù was looking for
mosquitoes for her lizard, but
since it was June (or maybe July,
I’m not sure), she couldn’t find
any. Instead, she found a frog
that, jumping from the road,
ended up in the lake with a big
splash. You know, the aunt was
scared! The splash wet her pink
suit, turning it yellow like a taxi.
A cosmopolitan gentleman
named Sardanapalo
Nabucodonosor passed by and
fell in love with the aunt, taking
her with him to Afghanistan.

"OdZ":i "E: "una b"Ella dZorn"ata

p"er Si"are.
Today is a beautiful day for
skiing.

v"oLo "una m"aLa d"i l"ana kol"or

"Okra

I want an ochre wool sweater.

Phrases

i"Elle mototSikl"ista at:ravers"O

"una str"ada str"et:a d"i mont"aNNa.

The motorcyclist crossed a
narrow mountain road.

patr"itsia "a prants"ato "a: k"aza d"i

f"abio.

Patrizia had lunch at Fabio’s
house.
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Table 4.2 continued

kw"esto "E "i:l t"uo kap:"Ello? Is this your hat?
d"opo vj"Eni ’a: k’aza? Are you coming home later?
l"a televizi"one fUntsi’ona? Is the television working?
n"on p"Osso ajUt"arti? Can’t I help you?
m"arko n"on "E: part"ito. Marco didn’t leave.
"i:l m"Ediko n"on "E: impeN"ato. The doctor is not busy.

Words p"ipa, buko, tOpo, dado, k"aza,

g"ato, f"ilo, v"azo, m"uro, n"Eve,

l"una, r"ete, dz"Ero, s"ia, tS"ao,

dZ"iro, s"ole, w"Omo, j"uta, N"Omo,

N"Elo, p"otso, br"Odo, pl"adZo,

tr"Eno, kl"ase, gr"idZo, fl"Ota,

kr"Eta, dr"ago, fr"ate, sp"eza,

st"ufa, sk"ala, zl"itsa, spl"Ende,

str"ada, skr"ive, spr"Utso, zgr"ido,

sfr"EdZo, zdr"aio, zbr"igo, pr"Ova,

kalend"ario, aUtobjograf"ia,

mon"Otono, perikol"Ozo,

montaN"ozo, prestidZ"Ozo

pipe, hole, mouse, nut, house, cat,
wire, vase, wall, snow, moon, net,
zero, wake, hello, lap, sun, man,
jute, gnome, him, well, broth,
plagiarism, train, class, gray, fleet,
clay, dragon, friar, shopping,
stove, ladder, sled, shines, road,
writes, spray, rudeness,
disfigurement, displeasure,
displeasure, test, calendar,
autobiography, monotonous,
dangerous, mountainous,
prestigious.

4.3.2 Anthea Parkinson’s Disease Speech Samples Corpus

The Anthea Parkinson’s Disease Speech Samples corpus (ANTHEA-PDSS) refers to
two private sub-datasets recorded by ourselves at the Anthea research group within
the Polytechnic of Turin. Participants were enrolled at A.O.U Città della Salute
e della Scienza di Torino and Associazione Amici Parkinsoniani Piemonte Onlus.
The inclusion criteria were a clinical diagnosis of PD exhibiting vocal signs and
symptoms, while lacking significant cognitive impairment or any other conditions
that might hinder task completion.

To evaluate the effectiveness of the proposed algorithms in real-world scenarios,
both corpora were recorded under sub-optimal conditions with low-cost equipment
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such as laptops and smartphones. In the following a detailed description of the two
sub-corpus included is reported .

• ANTHEA-PDSS1. This sub-dataset involves samples collected in a non-
supervised manner through the user’s personal computer or smartphone. A
tailored web application was employed to guide participants through the same
set of tasks included in the IPVS corpus (Table 4.2).

• ANTHEA-PDSS2. The second dataset consists of samples recorded in a quiet
room under the supervision of an operator. Participants were instructed to sit
in a relaxed position with their backs and arms resting comfortably on the
back- and arm-rest. They were asked to perform sustained phonation of the
vowel /a/ at a comfortable volume, with a smartphone and a high-definition
equipment positioned approximately 5 cm from their mouths. An iPhone 12
was employed together with an audio recorder (H4n Zoom, Zoom Corporation,
Tokyo, Japan) connected to a Shure WH20 Dynamic Headset Microphone
(Shure Incorporated, USA).

Both data collection processes adhered to ethical standards, following the princi-
ples outlined in the Declaration of Helsinki. The Ethics Committee of the A.O.U
Città della Salute e della Scienza di Torino approved these collections (approval
number 00384/2020). Participants were provided with comprehensive information
about the study objectives and procedures. Informed consent was obtained, and all
demographic and clinical data were recorded anonymously.

Further detail about the participants demographics characteristics are reported in
Table 4.3. It is worth noting that, despite all the enrolled patients received detailed
neurological examination by experts clinicians, no very recent information regarding
the progression and the level of the disease is available.

Table 4.3 Demographics of participants in the ANTHEA-PDSS corpora. Measures are
reported in terms of mean ± standard deviation. HC: Healthy Controls; PDP: Patients with
Parkinson’s Disease; C1: ANTHEA-PDSS1; C2: ANTHEA-PDSS2

HC (C1) PDP (C1) HC (C2) PDP (C2)

Age 63.62 ± 5.80 70.35 ± 7.23 59.93 ± 15.15 70.38 ± 7.7
Gender 8M, 5F 12M, 5F 11M, 4F 11M, 4F
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4.3.3 PC-GITA Corpus

The PC-GITA corpus is a private set of vocal recordings featuring 100 Colombian
Spanish speakers. It comprises 50 PDPs (UPDRS III: 29.2±9.11) and 50 HCs bal-
anced in age and gender [105]. All voice samples were recorded while patients
were in the ON-state (i.e., no more than 3 hours after taking their morning medica-
tion). None of the HC subject presented symptoms associated with PD or any other
neurological disease.

The recordings took place in controlled noise conditions employing high-quality
audio equipment, including a professional microphone and a Fast Track C400 sound
card. The sample rate is 44.1 kHz, with 12-bit resolution. Participants were instructed
to perform a series of vocal tasks encompassing: (i) reading of a phonetically
balanced dialogue, (ii) articulation of the syllables /pa/ and /ta/, (iii) sustained
phonation of the five Spanish vowels, (iv) reading of three list of phonetically
balanced words, (v) reading of a list of phonetically balanced sentences, and (vi)
performing a spontaneous speech monologue describing a day. The typical recording
protocol was designed in order to evaluate phonation, articulation, and prosody by
forcing the speaker to use specific muscles whose control is generally impaired in
PD. For a comprehensive list of the speech exercises conducted, along with their
English translations, please consult Table 4.5.

Additionally, to address the challenge of replicating optimal recording conditions
in real-life scenarios, the authors of PC-GITA provided a second dataset, herein
referred to as PC-GITA2 [105]. It includes 18 Spanish PDP and 19 Spanish HC
individuals. The recordings took place in a quiet room using regular headset and a
laptop (16 kHz with a 16-bit resolution) and participants were instructed to perform
the same series of speech exercises as in the PC-GITA.

All participants in the two corpora signed an informed consent which was revised
and approved by the Ethical Committee of the Research Institute in the Faculty of
Medicine at the University of Antioquia (approval 19-63-673). Detailed demograph-
ics characteristics about the participant are reported in Table 4.4. It is worth noting
that detailed information on the clinical scores of patients in the second corpus
is not available, however the samples were collected in such a way as to present
distributions similar to the main corpus.
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Table 4.4 Demographic information of participants in the PC GITA corpora. Measures are
reported in terms of mean ± standard deviation. HC: Healthy Controls; PDP: Patients with
Parkinson’s Disease; C1: PC-GITA; C2: PC-GITA2

HC (C1) PDP (C1) HC (C2) PDP (C2)

Age 60.90 ± 6.80 61.14 ± 7.78 53.5 ± 12.25 66.5 ± 8.25
Gender 50M, 50F 50M, 50F 9M, 10F 8M,10F

Table 4.5 List of tasks in the PC-GITA dataset with corresponding English translations

Prompt (IPA Translation) Translation to English

Text P: ajj"er fw"i "al m"e d"iko. D: k"e"

l"e p"asa? m"e preG"unto. P: Yo le

dije: Ay doctor! Donde pongo el

dedo me duele. D: J"o l"e d"ixe:

"aI dokt"or! d"onde p"oNgo "el

d"eDo m"e dw"ele. P: s"i. D: pw"es

J"a saB"emos k"e "es. d"exe s"u

tS"eke "a l"a sal"iDa.

P:Yesterday I went to the doctor.
D:What happened to you? He
asked me. P:I said him: ah
doctor! Where I put my finger it
pains me. D:Do you have the nail
broken? P:Yes. D:Then we now
know what is happening. Leave
your check at the exit.

b"iste l"as not"iTjas? J"o b"i gan"aR

l"a meD"aLa d"e pl"ata "en p"esas.

"ese mutS"atSo tj"ene m"utSa

fw"erTa!

Did you see the news? I saw to
win the silver medal in
Weightlifting. That boy is very
strong!

xw"an s"e RR"ompjo "una pj"eRna

kw"ando "iBa "en l"a m"oto.

Juan broke his leg when he was
driving his motorcycle

est"oI m"ujj tR"iste, ajj"eR b"i moR"i"

"a "un am"iGo

I am very sad, yesterday I saw a
friend die

est"oI mw"i pR,eokup"aDo, k"aDa

b"eT m"e "es m"as d,iffiT"il aBl"aR

I am very concerned, it is
increasingly more difficult to talk

Phrases

m"i k"asa tj"ene tR"es kw"aRtos. My house has three rooms.
om"aR, k"e b"iBe T"eRka, t""axo
mj"el.

Omar, who lives near, brought
honey

l"aURa s"uBe "al tR"en k"e p"asa. Laura gets on the passing train
l"os l"iBRos nw"eBos n"o k"aBen "en

l"a m"esa d"e l"a ,ofiT"ina.

The new books do not fit in the
office’s table
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Table 4.5 continued

RRos"ita n"in "o, k"e p"inta bj"en,

d"ono s"us kw"aDRos ajj"eR.

Rosita Nino, who paints well,
donated her paintings yesterday

lu"isa RR"eI k"ompRa "el k"oltSon

d"uRo k"e t"anto l"e G"usta.

Luisa Rey buys the hard mattress
that is so fond her

Words
pet"aka, boD"eGa, p"ato, "ap:to,

kamp"ana, pR"esa, pl"ato, bR"aTo,

bl"usa, tR"ato, atl"eta, dR"ama,

GR"ito, Gl"oBo, kR"ema, kl"aBo,

fR"uta, fl"etSa, bj"axe, Lu"eBe,

kaUtSo, RR"eIna, n"ame, k"oko,

G"ato

petaka, cellar, duck, suitable, bell,
dam, dish, arm, blouse, deal,
athlete, drama, cry, balloon,
cream, clove, fruit, arrow, trip,
rains, rubber, queen, yam,
coconut, cat

,akaRiTj"aR, aplaUD"iR, ,aGaRR"aR,

d,iBux"aR, p,atale"aR, p,isote"aR,

tRot"aR, sonr"eIR, sopl"aR,

m,astik"aR.

stroke, clap, grab, draw, stamp,
trample, jog, smile, blow, chew

b"aRko, b"oske, TjuD"ad, est"aBlo,

ospit"al, l"una, mont"ana, n"uBe,

pw"Ente, tRakt"oR.

ship, forest, city, stable, hospital,
moon, mountain, cloud, bridge,
tractor.

4.3.4 Hlavnicka Corpus

The Hlavnicka corpus is a publicly available dataset released under the Creative
Commons Attribution License (CC BY 4.0). This dataset involves a total of 83
Czech participants including 22 PDPs and 22 HCs. The remaining subjects presented
other pathologies which are outside the aim of this work, including Multiple System
Atrophy, and Progressive Supranuclear Palsy. As for PD, the disease duration
was estimated from self-reported first motor symptom occurrence. A neurologist
evaluated all patients and assessed their motor abilities using standardized scales.
The UPDRS III score was 15.9 ± 7.6, with a median disease duration of 9.3 ± 5.5.
All the PD participants were examined while on medication after at least 4 weeks
of stable medication. Detailed information aboout the subject’s demographics are
reported in Table 4.6
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Table 4.6 Demographics of participants in the Hlavnicka corpus. Measures are reported in
terms of mean ± standard deviation. HC: Healthy Controls; PDP: Patients with Parkinson’s
Disease

HC PDP

Age 63.6 ± 10.10 64.4 ± 9.6
Gender 11M, 11F 10M, 12F

During the data collection procedure, each participant received instructions from
a trained specialist to produce prolonged vowel sounds, specifically /a/ and /i/ as
long and steadily as possible. The recordings took place in a low-ambient-noise
room using a headset condenser microphone (Opus 55, Beyerdynamic, Heilbronn,
Germany) positioned approximately 5 cm from their lips. Recordings were digitized
at 16-bit resolution and a 48 kHz sampling frequency.

All participants provided written, informed consent. The study received ethical
approval from the Ethics Committee of the General University Hospital in Prague (ap-
proval number 67/14 Grant VES AZV 1.LFUK) and adhered to approved guidelines.
For further insights and detailed information, please refer to the source publication
[106].

4.3.5 Suppa Corpus

The Suppa corpus is a private dataset detailed in the publication by Suppa et al. in
2022 [107]. The dataset comprises a total of 115 Italian native speakers diagnosed
with PDPs and 108 age-matched HCs. Participants were recruited from the IRCCS
Neuromed Institute and the Department of Systems Medicine at Tor Vergata Uni-
versity in Rome, Italy. The inclusion criteria were being 18+ non-smokers, lacking
significant cognitive impairment, or any pathology affecting the vocal apparatus. The
clinical diagnosis of PD was performed by expert clinicians following established
clinical criteria, and using the H&Y and UPDRS-III scales.

The study cohort PDP was thoughtfully structured to encompass two distinct
subgroups of PDP, including Early and Mid-Advanced PDPs. The former consisted
of 57 individuals at an early stage of the disease (H&R score ≤ 2). Notably, these
patients had not yet been treated with L-Dopa for their condition at the time of the
study. The second group included 58 patients who had progressed to a mid-advanced
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stage of PD (H&R score ≥ 2). These patients were undergoing chronic treatment
with L-Dopa. Additionally, a subset of 31 out of the 58 mid-advanced-stage patients
were further assessed in ON and OFF therapy condition (i.e., after 12 hours from
the last medication intake and 1 to 2 hour after administration). Demographic and
clinical details of the participants can be found in Table 4.7. It is worth nothing
that despite the three subgroups features the same proportion of male and female
participants, the exact cardinality of the subgroups is not available.

The data collection procedure was conducted by instructing participants to per-
form specific vocal tasks using their usual voice intensity, pitch, and quality. These
tasks included the sustained phonation of the vowel /e/ for at least 5 seconds and the
utterance of two standardized Italian proverbs "a kaB"al don"ato n"on s"i Gw"aRDa "in

b"okka (i.e., Don’t look a gift horse in the mouth) and m"eGlio s"oli tS"e m"ale ,akkom-

paGn"ati (i.e., Better alone than in bad company). Voice recordings were captured
using a high-definition audio recorder (H4n Zoom, Zoom Corporation, Tokyo, Japan)
connected to a Shure WH20 Dynamic Headset Microphone (Shure Incorporated,
USA). The microphone was positioned approximately 5 cm from the participants’
mouths. Voice samples were recorded in linear PCM format (.wav) at a sampling rate
of 44.1 kHz, with a 16-bit sample size. Participants gave written informed consent,
which was approved by the institutional ethics committee (0026508/2019), according
to the Declaration of Helsinki.

Table 4.7 Demographics of participants in the Suppa corpus. Measures are reported in
terms of mean ± standard deviation. HC: Healthy Controls; PDP: Patients with Parkinson’s
Disease; n.r.: not reported

HC PDP-Early PDP Mid-Advanced

Age 68.2± 9.2 64.2 ± 8.6 72.1 ± 8.1
Gender n.r. n.r. n.r.

4.3.6 LUHS Corpus

The Lithuanian University of Health Sciences (LUHS) is a publicly accessible dataset
distributed under the Creative Commons Attribution License (CC BY 4.0), as detailed
in [108]. This resource comprises vocal recordings from 99 Lithuanian native
speakers, categorized into two groups: 64 PDPs and 35 HCs, with no symptoms
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associate to neurodegenerative disorders nor diseases that could affect the vocal
apparatus.

The audio samples were recorded using two channels simultaneously: an acoustic
cardioid microphone (AKG Perception 220) and a smartphone (Samsung Galaxy
Note 3). Both microphones were positioned approximately 10 cm from the mouth.
The audio format is mono PCM .wav (16-bit at a sampling frequency of 44.1 kHz).
During the data collection procedure, each participant was instructed to execute
the sustained phonation of the vowel /a/ as long as possible for three times and
to pronounce a phonetically balanced phrase in Lituanian languge. For a more
comprehensive overview of participant demographics, please refer to Table 4.8.

The dataset is distributed in the form of pre-extracted set of features computed
by means of different toolboxes, namely OpenSmile, Essentia, MPEG7AudioEnc,
jAudio, YAFEE, and DARTH. In Table 4.9 an overview of the extracted sets is
reported.

Table 4.8 Demographics of participants in the LUHS corpus. Measures are reported in terms
of mean ± standard deviation. HC: Healthy Controls; PDP: Patients with Parkinson’s Disease

HC PDP

Age 41.74 ± 17.11 64.95 ± 9.56
Gender 11M, 24F 30M, 34F

4.3.7 Additional Corpora

Despite not directly used within the experiments conducted in the present dissertation,
this section briefly reports additional corpora previously employed in similar studies
for the analysis of individuals with PD. The purpose is to offer readers comprehensive
insights into the available materials for future research.

References to the original papers, which provide detailed information about
these datasets, are included in order to allow readers to access more information.
As previously done, if a specific dataset lacks a designated name, the name of the
first author in the corresponding paper is used as a reference for the corpus. It
is important to note that the datasets from the Center for Machine Learning and
Intelligent Systems at the University of California Irvine (UCI) (Little, Sakar18,
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Table 4.9 Overview of the feature sets included in the LUHS corpus

No Feature set ID Toolbox

1 Avec2011 AV1 OpenSMILE toolkit [109]
2 Avec2013 AV2 OpenSMILE toolkit [109]
3 Emo_large EL OpenSMILE toolkit [109]
4 Emobase EM1 OpenSMILE toolkit [109]
5 Emobase2010 EM2 OpenSMILE toolkit [109]
6 Essentia_descriptors ED Essentia [110]
7 IS09_emotion IS1 OpenSMILE toolkit [109]
8 IS10_paraling IS2 OpenSMILE toolkit [109]
9 IS10_paraling_compat IS3 OpenSMILE toolkit [109]

10 IS11_speaker_state IS4 OpenSMILE toolkit [109]
11 IS12_speaker_trait IS5 OpenSMILE toolkit [109]
12 IS12_speaker_trait_compat IS6 OpenSMILE toolkit [109]
13 IS13_ComPare IS7 OpenSMILE toolkit [109]
14 jAudio_features JA jAudio [111]
15 MPEG7_descriptors MP MPEG7AudioEnc [112]
16 Tsanas TS Tsanas [44]
17 YAAFE_features YA YAAFE toolbox [113]

Sakar13, Naranjo, Tsanas) and the Vaiciukynas corpus are provided in the form of
pre-extracted feature vectors.

• Little. First introduced by Little et al. in 2009 [114], this corpus consists
of six recordings of sustained vowel phonation (/a/ ) from 23 individuals
with PD and 8 HCs. The recordings were captured using a head-mounted
microphone (AKG C420) placed approximately 8 cm from the speakers’ lips
within a controlled acoustic environment. The voice signals were directly
recorded onto a computer using the Computerized Speech Laboratory (CSL)
4300B hardware by Kay Elemetrics. Notably, this dataset does not provide
information regarding any therapy sessions or interventions.

• Sakar18. First introduced by Sakar et al. in 2019 [115], this corpus comprises
three recordings of sustained vowel phonation (/a/ ) from a total of 188 individ-
uals with PD and 64 HC. Unfortunately, this dataset does not provide details
regarding the type of microphones used for the recordings.
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• Sakar13. First introduced by Sakar et al. in 2013 [116], this dataset consists of
recordings of sustained vowel phonation (/a/ , /o/, /u/), utterances of numbers
from 1 to 10, short sentences, and single words. The dataset includes samples
from 34 individuals with PD and 34 HC. Recordings were made using a Trust
MC-1500 low-end computer microphone positioned 10 cm from the subjects.

• Naranjo First introduced by Naranjo et al. in 2016 [117], this dataset comprises
three recordings, collected weekly over a period of six months, of sustained
vowel phonation (/a/ ) from 40 individuals with PD and 40 HC. Unfortunately,
the microphone details used for the recordings are not provided in the available
information.

• Tsanas First introduced in Tsanas’ work in 2010 [42], this dataset comprises
multiple recordings from 42 individuals with PD).

These recordings were made over the course of a 6-month trial and involve
sustained vowel phonation (/a/ ). The data was collected using the Intel Corpo-
ration at-home testing device (AHTD), a telemonitoring system equipped with
various sensors, including a high-quality microphone headset.

• m-Power- Initially introduced in the works of Bot et al. in 2016 [118] and
Prince et al. in 2018 [119], this dataset consists of audio data sourced from
volunteers in English. The data was recorded using iPhones and specifically
focuses on the vowel /a/ .

4.4 Experimental Findings: Variability in Vocal Tasks

As evident from the analysis of the related literature (Section 4.2), various vocal
tasks have been employed over time to study vocal alterations in individuals with
PD. In this context, the effectiveness of sustained vowel analysis is well-established.
However, an increasing body of evidence suggests the need to complement this
analysis with a more comprehensive examination of the subject’s articulatory and
prosodic features to delve further into the complexity of vocal alterations. Within this
field, there is a wide variety of vocal tasks employed, including the rapid repetition
of specific phonemes, as well as the repetition of word sequences, phrases, or entire
texts. Without a proper selection, the diversity of exercises can be burdensome,
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leading to fatigue and excessive time required for data collection, which may reduce
patient’s compliance, especially in a home environment.

In this context, the initial experiments presented in this dissertations focus on
the comparison of various sets of vocal exercises to identify the vocal tasks that can
better capture vocal alterations in PDPs while minimizing the effort required to the
subjects. More specifically, the first study (Section 4.4.1) considers isolated words
and examines the advantages and disadvantages of different techniques for using
multiple words, both in terms of classification accuracy and computational efficiency.
Building on these findings, the second study (Section 4.4.2) systematically assesses
effective exercise sets, including vocalizations and sentence repetitions. To ensure
robust and widely applicable results, the study is conducted on diverse datasets from
various conditions and nationalities. The results are then compared to yield strong,
general conclusions. The experiments described in this sections are published in
[14, 120]

4.4.1 Analysis of Isolated Word Speech Task

This study aimed to assess the effectiveness of a classification model based on a single
vocal task, involving the utterance of multiple isolated words. A multi-level approach
was employed, where features were extracted from various segments of the vocal
signal, including the entire signal, voiced segments, and transition areas between
voiced and unvoiced regions. The goal was to study the effectiveness of different
types of acoustic parameters in modeling the subject’s articulatory capability.

In the proposed experiment, 25 vocal signals were employed for each subject,
with each sample corresponding to a different word. These vocal signals underwent
pre-processing and feature extraction steps. Subsequently, two distinct feature fusion
techniques, known as early-fusion and late-fusion, were explored and compared
to merge the extracted features. This procedure allowed to assess which fusion
approach was the most effective in terms of classification performance and the most
efficient in terms of computational requirements.
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Materials

In this work, the two distinct datasets provided by the GITA group were employed,
namely PC-GITA and PC-GITA2 (Section 4.3.3). For each corpus 25 samples per
subject corresponding to 25 phonetically balanced words were used (Table 4.5).

Data analysis was carried out in Matlab, leveraging customized pre-processing
and feature extraction routines based on Audio and Signal Processing Toolboxes.
Praat (by Paul Boersma and David Weenink, Phonetic Sciences, University of
Amsterdam) [121] was also employed during the pre-processing steps.

Methods

Pre-processing. The audio signals were initially low-pass filtered to reduce distor-
tion and eliminate background noise. To maintain minimal phase distortion within
the pass-band, a 10th-order zero-lag Butterworth low-pass filter with a cutoff fre-
quency of 3750 Hz was employed, as described in [122]. In addition, detrending
was applied to remove slow fluctuations in the signal that might be attributed to the
recording system.

The Praat software was used for the identification of voiced and unvoiced regions
within the audio data. Following signal labelling, voiced regions were merged and
each sample was segmented into 20 ms windows with 50% overlap, as in prior studies
involving the same task [123, 124]. Furthermore, to gain a deeper understanding of
transient-type sounds, which result from the abrupt release of previously blocked
airflow, particularly in occlusive consonants (as discussed in Section 4.2), windows
centered on the edges of each voiced region were identified and analyzed. Based on
previous research by Vasquez-Correa et al. [125], the window length was set to 160
ms.

Feature Extraction. In the process of vocal parameterization, a multi-level ap-
proach was adopted, incorporating a total of 126 features extracted from different
parts of the audio signal, namely the entire signal, voiced segments, and the on-
set/offset regions.

The feature set included widely recognized parameters for vocal analysis in
PD patients. This encompassed measures such as F0, HNR, Formant Bandwidths
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STE, and 10 spectral parameters (comprising flux, skewness, entropy, rest, latness,
slope, roll-off, spread, centroid, and kurtosis), along with DFA. Furthermore, to
capture articulatory dynamics, the set featured 13 MFCCs with their first and second
derivatives, which convey information about the velocity and acceleration of the
articulators. Additionally, 3 LPC coefficients, 25 Bark Band Energy (BBE) coef-
ficients, and 6 Instantaneous Energy Deviation Coefficients (IEDCC) proposed in
[123] were included to provide a comprehensive representation.

To better address the alterations at the onset and offset of voiced sound regions
and to model the phenomenon of voicing leakage which is often perceivable in PDPs
due to their difficulty in executing precise and rapid articulatory movements (as
discussed in Section 3.1), two novel features were introduced: the Pitch Transition
Slope (PTS) and Energy Transition Slope (ETS). These features were derived from
the evaluation of pitch and energy contours in the transitional regions of each word
using a first-order polynomial. The slope of the resulting curve served as a metric
to quantify vocal alterations. In pathological voices, this curve is expected to
flatten when there is a failure in the change of F0 and energy between voiced and
unvoiced regions. To ensure consistency and facilitate subsequent analyses, range
normalization was applied to the entire feature set.

For a more comprehensive view of the extracted features and their categorization,
please refer to Table 4.10. Specifically, the Table elucidates the region from which
each metric was computed. It is noteworthy to mention that distinct features were
extracted from various regions of the vocal signal to ensure the inclusion of adequate
parametrizaion techniques for both quasi-periodic and non-periodic segments of the
vocal signal.

Feature Selection. A customized feature selection process was employed on the
PC-GITA database to identify features that exhibited a strong correlation with the
class while ensuring they were non-redundant. Indeed, it was imperative to employ a
specific and meticulous feature selection procedure. Given the exploratory nature
of the experiment, which involved extracting a comprehensive set of parameters
to investigate potential correlations, minimizing the risk of the curse of dimension-
ality problem was crucial. This was especially challenging considering the size
of the dataset under examination. To avoid overfitting and ensure generalization
capability, the corpus was randomly divided into two subsets: 70% for training and
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Table 4.10 Overview of the extracted features, categorized by the domain of analysis

Region Feature Name Information retrieved

Entire signal
IEDCC(1–6) Vocal tract and vocal folds abnormalities
Zero crossing rate Voice activity

DFA Self-similarity of the voice

Voiced

Bandwidth Frequency range
HNR Ratio of signal over noise
F0 Periodicity alteration
Spectral features Spectrum shape information
LPC(1–3) Formants and resonances
STE Energy variation among frames
MFCC(1–13) Subtle changes in the motion of articulators

Transition

PTS Ability to control vocal fold vibration
ETS Ability to control vocal fold vibration
MFCC(1–13) Ability to control vocal fold vibration
BBE(1–25) Ability to control vocal fold vibration

validation and 30% for testing. Particular attention was devoted to maintain speaker
independence, hence all words from the same speaker were either in the training or
testing set. Additionally, to investigate potential gender-related variations in acoustic
features, the dataset was initially divided into male and female speakers, then the
pipeline was applied to the two distinct subsets of samples.

The first step involved calculating the absolute value of the Pearson’s correlation
coefficient (r) between the features and the target variable (r f0). The aim was to
identify features with a strong correlation with the target variable (i.e., r f0 greater
than a threshold denoted as th1). To determine the appropriate threshold, a tuning
procedure was carried out within the training data. This tuning process focused on
minimizing classification errors in a 10-fold CV setup using a quadratic Support
Vector Machine (SVM), which was employed due to its robust generalization capabil-
ities and its widespread use in classifying samples from PDPs [126, 123, 124, 127].
It is noteworthy to emphasize that, concerning the training-test divisions, the CV
procedure was executed based on subject-IDs. This approach ensured that sam-
ples from the same subject are not present simultaneously in both the training and
validation sets, enhancing the robustness and reliability of the model evaluation.
Specifically, th1 was tuned over a range from 0.3 to 0.6 with increments of 0.1. To
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eliminate redundant features, the correlation coefficient was computed between pairs
of features (r f f ) in order to remove those showing a correlation greater than th2

times the correlation with the target variable (r f o). The value of th2 was tuned from
0 to 50% with 5% increments, choosing the value that minimized the classification
error rate in a 10-fold CV.

Given that this study employed a speech task made up of 25 isolated words
per subject, two feature-fusion approaches were compared to determine the most
effective method for extracting information from multiple utterances by the same
subject. These fusion strategies were classified as early fusion and late fusion as
introduced in [128]. The late fusion approach involved two classification levels. In
the first level, 25 models were employed, each taking selected features from indi-
vidual words as input. The second level consisted of a single model that utilized the
outputs from the previous layer, which had been transformed into probability scores
using Platt’s method [128]. On the other hand, the early fusion approach entailed
the prior selection of the most informative words, followed by the concatenation
of the corresponding features. The identification of the most effective words was
determined based on the number of features selected for each word, denoted as fw.
For a word to be considered, fw had to exceed a predefined threshold, denoted as
th3, whose values was tuned over a range from 1 to 80 with 5-step increments. As in
the previous stages, the effectiveness of the two fusion approaches and the different
feature sets was assessed by comparing the classification accuracy through a 10-fold
CV on the training set, employing a quadratic SVM model.

The pseudocode for the proposed feature selection approach is outlined in Algo-
rithm 1, while in Figure 4.1 is reported a schematic of the two fusion approaches
applied.

Classification. Following the identification of the optimal fusion scheme, a com-
parative analysis of various classifiers was conducted to assess whether different
algorithms could potentially yield improved classification accuracy. Specifically, the
quadratic SVM was compared to other classifiers, including k-Nearest Neighbors
(KNN), Naive Bayes (NB), Decision Tree (DT), a bagged trees ensemble, and a
subspace discriminant (SD) ensemble.

To optimize the best-performing model, a grid-search approach was applied.
The procedure involved evaluating four different distance metrics (euclidean, city
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Algorithm 1 Feature selection pseudo-algorithm from [129]
Input: D: training dataset ▷ N subj., W words per subj., F feat. per word
Output: T: reduced training dataset ▷ N subj., F1 feat. per subj.

for each n ∈ N do
2: for each w ∈W do

for each f ∈ F do
4: r f o← crosscorr( f ,class);

if r f o ≥ th1 then
6: Fw.add( f ); ▷ Select most significant feat. per word

end if
8: end for

if Fw.count()≥ th3 then
10: Wf .add(w); ▷ Select words with the higher number of feat. selected

end if
12: end for

Feat← (Wf (Fw)).merge(); ▷ Merge feat. selected from words selected
14: for each f ∈ Feat do

r f f ← crosscorr( fi, f j);
16: if r f f ≤ th2 · r f o then

T.add( f ); ▷ Select feat. with lower inter-feat. corr.
18: end if

end for
20: end for

block, Minkowski, and Chebyshev) and varying the value of k from 2 to N/2, where
N represents the number of samples in the training set. In cases where multiple
hyperparameters resulted in the same optimal accuracy, preference was given to
lower k-values to reduce the computational workload of the model. Given the use
of random data splitting procedures, the average accuracy over five iterations was
considered as a robust metric for the optimization process.

Time Complexity. To assess the overall performance of the best pipeline, its time
complexity was assessed by measuring computational time under varying conditions.
The variables used were N (number of subjects), W (number of words per subject),
F (initial features per word), and F1 (final selected features).

Within the feature selection (Algorithm 1), selecting significant features and
identifying words with the most selected features was estimated to have a time
complexity of O(n f w). The process of choosing features with lower inter-feature
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Fig. 4.1 Workflows of early and late fusion approaches

correlation, which includes calculating Pearson correlation coefficients between
feature pairs, takes O(n f 2

1 ) time. In the worst-case scenario where all features
and words are selected, and if f1 equals fw, the feature selection algorithm time
complexity reaches O(n f 2w2). As for the classification algorithm used, the Matlab
implementation of the KNN classifier exhibits a time complexity of O(log(n)) [130].

To validate these findings, the overall pipeline was executed multiple times with
different inputs, features, and words. For brevity, the analysis is presented for the
female dataset, although the same process was applied also to the male’s one. All
experiments were conducted on a MacBook Pro with a 64-bit OS, a 2.7GHz Intel
Core i5 processor, and 8GB of RAM.

Results

Comparison Between Fusion Approaches. Figure 4.2 offers a comparison be-
tween the early and late fusion approaches applied to three distinct feature sets. This
evaluation measures accuracy within a 10-fold CV using a non-optimized quadratic
SVM model. For ease of comparison, the results achieved by combining all features
extracted from each word without any feature selection are also provided.
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Fig. 4.2 Performance outcomes of early and late fusion schemes, sourced from [129]

To provide an insight into the generalization capability of each best configuration,
the models were tested on the 30% of the PC-GITA dataset extracted from the
original corpus. While the late fusion results on the test set were not satisfactory,
the Case 3 - early fusion configuration demonstrated an accuracy of 82% (averaged
over 5 iterations for both male and female groups). Regarding the pipeline execution
time, which encompasses the time from feature selection to classification, the most
effective models resulted in 3.37 s, 4.19 s, and 6.23 s for the three late fusion
cases, respectively. In contrast, the only model employing an early fusion approach
achieved a considerably shorter time of 0.065 s.

Classification. Table 4.11 displays the results for different classifiers, reporting
the average accuracy from 5 iterations using non-optimized algorithms. The optimal
threshold values for feature selection were determined to be th1 = 0.5, th2 = 0.1,
and th3=10 for males and th1 = 0.5, th2 = 0.1, and th3 = 30 for females. For the
two best-performing models (KNN), grid-search optimization led to the selection
of cityblock distance with k = 3 for males and k = 6 for females. Moreover, Table
4.12 presents the most significant words and features identified for male and female
subgroups.

Given the limited dataset size, the influence of individual speaker characteristics
was assessed by running the thus optimized algorithms on random subsets of the
original dataset. Results from the 5 iterations are reported in Table 4.13. Additional
tests on PC-GITA2 corpus (Section 4.3.3) examined the impact of recording condi-
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Table 4.11 Comparative analysis of the six tested models. Results are reported as the average
classification accuracy over 10-fold CV from 5 iterations on randomly selected subsets

Male subset Female subset
10 fold CV Test set 10 fold CV Test set

SVM 0.96 ± 0.032 0.74 ± 0.019 0.90 ± 0.025 0.90 ± 0.071
DT 0.95 ± 0.044 0.64 ± 0.017 1 ± 0 0.65 ± 0.020
NB 0.73 ± 0.041 0.50 ± 0.028 92 ± 0.056 0.77 ± 0.022
kNN 0.96 ± 0.025 0.74 ± 0.016 0.99 ± 0.016 0.97 ± 0.034
Bagged Trees 0.92 ± 0.051 0.60 ± 0.02 0.96 ± 0.013 0.56 ± 0
SD 0.94 ± 0.053 0.71 ± 0.016 0.99 ± 0.013 0.96 ± 0.034

Table 4.12 List of the most significant words and features for male and female subsets

Words Features Region

Clavo, Crema, MFCC, BBE, ∆∆MFCC onset
Female
subset

Globo, Name Roll-off-point voiced

PTS, ETS, MFCC, BBE, ∆∆MFCC offset

Male
subset

Bodega, Braso, Globo,
Llueve,

MFCC, BBE, ∆∆MFCC onset

Name, Presa, Viaj MFCC, BBE, PTS off-set

tions on the model performance. Over 5 iterations, the average accuracy was 60%
for the male subgroup and 62% for the female subgroup.

To comprehensively evaluate the system performance and make a comparison
with similar studies that employed isolated words from the PC-GITA corpus, Table
4.14 is provided. This comparative analysis considers the best validation results from
three distinct studies: [131] (utilizing a 10-fold CV approach), [123] (using Leave
One Subject Out -LOSO- validation), and [132] (employing a 5-fold CV approach).

Time Complexity. Figure 4.3 present the results of the time complexity analysis.
To ensure robust findings, each experiment was conducted five times on randomly
selected subsets, and the average time value is reported. In Figure 4.3a, the execution
time is depicted in relation to the parameter N. It is worth noting that to provide a
realistic analysis despite the limited dataset size, the investigation was extended be-
yond the original range of 2 to 49. This extension involved additional measurements
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Table 4.13 Comparative performance analysis over five iterations for male and female groups.
N Iter.: Number of iteration; Acc: Accuracy; Sens.:Sensibility; Spec.:Specificity

10-fold CV Test set
N Iter. Acc. Sens. Spec. AUC Acc. Sens. Spec. AUC

Male
subset

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 0.94 1.00 0.87 0.94
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 0.97 1.00 0.94 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 0.94 0.87 1.00 0.94

mean 0.99 1.00 0.99 1.00 0.97 0.97 0.97 0.98

Female
subset

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 0.75 0.63 0.87 0.75
3 0.97 0.94 1.00 0.97 0.87 0.75 1.00 0.88
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 0.94 0.88 1.00 0.94

mean 0.99 0.99 1.00 0.99 0.91 0.85 0.97 0.91

Table 4.14 Comparison of results with the best outcomes from similar studies using the
PC-GITA corpus for isolated word repetition tasks. n.r. = not reported

Authors [131] [123] [132] Present study

Year 2015 2020 2020 2020
Model SVM SVM CNN kNN

Sensibility 0.94 n.r. n.r. 0.99
Specificity 0.90 n.r. n.r 0.99
Accuracy 0.92 0.91 0.77 0.99
F1-score n.r. 0.83 n.r. 0.99

on a simulated, larger dataset created by duplicating the same samples multiple times.
Figure 4.3b illustrates the execution time while varying the number of words from 1
to 25. In Figure 4.3c, it is evident a gradual reduction in the number of parameters
until the feature selection algorithm remains applicable. It is important to mention
that a significant reduction in the number of initial features for each word might lead
to an empty set of words that meet the threshold criteria.
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Fig. 4.3 Results from the analysis of time complexity, sourced from [129]

Discussion

Comparison Between Fusion Approaches. The analysis of Figure 4.2 reveals
a clear improvement in the model performance when expanding the feature set to
include more specific features like voiced segments and transition regions, especially
during cross-validation. Notably, the late fusion scheme maintains relatively consis-
tent and maximal performance across different feature sets, potentially indicating
overfitting. However, it’s evident that the most effective system configurations are
early fusion with the complete feature set and late fusion regardless of the chosen set.
Among these, early fusion setup demonstrated to be also computationally efficient,
standing out as the choice to be preferred.

Classification. In Table 4.11, the KNN algorithm demonstrated optimal perfor-
mance, being also characterized from a smaller standard deviation which indicates
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more consistent results across random data splits. The computational time for the
final pipeline was calculated, resulting in an average of 0.047 seconds for both male
and female subjects, confirming the efficiency of the KNN algorithm. Optimized
model parameters included the use of the city block distance and setting k to 6 for
males and 3 for females.

Regarding the optimized models, results in Table 4.13 indicate that the model
achieved an optimal correct classification rate in both the validation and test sets.
However, it is important to note that the choice of different inputs significantly
influenced algorithm performance. This effect is particularly pronounced in the
male group, where classification accuracy varies from 75% to 100%. In contrast,
the classification accuracy in the female group remains stable at 100% in 3 out of
the 5 sets analyzed. Given the higher standard deviation and lower performance
observed in the male population with most of the tested models, the variation in
performance may be attributed to the dataset composition. Additionally, a general
decrease in performance in the additional dataset, especially in the male group is
observable. While overfitting was not significant in the test set, this reduction can be
primarily attributed to the distinct recording conditions in the new dataset. As for the
comparison with similar studies, evidence in Table 4.14 suggests that the proposed
algorithm performance metrics outperform those of the studies in the comparison.
However, it is important to acknowledge that this study does not encompass a large
cohort of PD patients.

As for the feature selected, most of them originate from the transition regions
(Table 4.12), emphasizing the effectiveness of these areas in the analysis of speech
patterns related to PD. PTS and ETS were chosen for both the female and male
groups, suggesting their potential as distinctive markers of the pathological condition.

Time Complexity. The results from the time complexity analysis reported in Fig-
ure 4.3a indicate that the number of selected features remains relatively consistent,
regardless of the value of N. However, when the number of training samples de-
creases significantly (<6 per subject) a larger number of features is selected due
to the inherent limitation of a feature selection procedure based on the correlation
coefficient. Limiting the considerations to the region where the model exhibits
stability, i.e., with more than 6 subjects per group, the regression line of the curve
follows the expected linear trend (R2 = 0.9516).
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Regarding Figures 4.3b and 4.3c, they clearly show that computational time
generally rises with increasing W (r = 0.77,P < 0.001) and F (r = 0.88,P = 0.020).
However, the exact nature of this relationship may not be easily discernible. This is
because the specific execution time values are also influenced by F1, which, in turn,
is highly dependent on the selection of words and features used in a given iteration.

4.4.2 Comparative Analysis of Multiple Vocal Tasks

This second study aimed to assess the effectiveness of various vocal tasks and their
combinations in capturing vocal changes associated with the presence of PD while
minimizing the subject’s effort.

The experiment was conducted in two sequential steps. First, a preliminary
analysis was performed to determine if different versions of the same vocal tasks
(e.g., different vowels for sustained vowel phonation or different phrases for sentence
repetition) demonstrated varying effectiveness in discriminating between PD and
HCs. If such variations were observed, the aim was to ascertain whether this phe-
nomenon was consistent across multiple corpora, indipendently from the language
spoken by the speakers or the data-collection method employed. Subsequently, an
investigation was conducted to assess whether different vocal tasks or their combi-
nations could yield improved performance in automating the distinction between
PDP and HC. Comprehensive statistical analyses were carried out across multiple
datasets to investigate the robustness of the results and study the potential impact of
participant demographics and data collection variables on the findings.

Materials

This study utilized four diverse datasets, comprising a total of 279 subjects, with
139 individuals having PD and 140 HCs. The datasets included the IPVS (Section
4.3.1), PC-GITA (Section 4.3.3), ANTHEA-PDSS1 (Section 4.3.2), and a subset
of the Suppa dataset, which included 46 PDPs (33 males) and 56 HCs (15 males)
(Section 4.3.5).

Data analysis was carried out in Python employing Praat for pre-processing and
feature extraction. The Parselmouth library served as an interface to access Praat
internal code.
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Methods

Pre-processing. To ensure data uniformity, the recordings from the four datasets,
which had different sampling rates, were initially down-sampled to 16 kHz. Ad-
ditionally, signal amplitudes were normalized within the [0, 1] range to minimize
the potential impact of speaker-microphone distances on subsequent analyses. To
enhance data quality, initial and final silence regions were manually removed, elimi-
nating the need for additional preparatory steps.

For the analysis of the phrase repetition task, the start and end points of voiced
regions were detected using Praat software. Subsequently, these regions were merged,
and each signal was segmented into 40 ms windows with a 20 ms overlap.

Feature Extraction. A comprehensive set of features was extracted from each
vocal samples, encompassing periodicity measures, which included F0, the first
three formants along with their bandwidths, as well as noise measures such as HNR,
CPP, and GNE. Furthermore, spectral (i.e., flux, skewness, entropy, crest, flatness,
slope, roll-off, spread, centroid, kurtosis) and cepstral features (MFCC 1-13), along
with their first and second derivatives, were extracted, which have demonstrated
effectiveness in the analysis of vocal related to PD [87]. Intensity, DFA, STE, and
PLP (1-13) along with their first and second derivatives completed the extracted set
of features.

Following feature extraction, these diverse features were organized into a unified
vector. For each feature, five key statistics were computed, comprising the mean
value, median value, standard deviation, kurtosis, and skewness. Notably, jitter
and shimmer variants were evaluated across the entire signal since their definitions
inherently involve comparisons among contiguous frames. To ensure feature compa-
rability, a min-max normalization procedure was applied to standardize them within
a consistent range.

Feature Selection. To achieve the objective of evaluating the effectiveness of
various vocal tasks and their combinations, the /a/ and /e/ vowels from the IPVS and
PC-GITA datasets were compared; similarly a set of phonetically balanced phrases
from the IPVS, ANTHEA-PDSS, PC-GITA, and Suppa datasets was utilized to
identify potential differences between different sentences. It is important to note that
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the IPVS and ANTHEA-PDSS1 datasets included the utterance of the same set of
sentences; hence, after comparing the two vowels, a merging procedure was applied
to combine them into a single corpus. Due to differences in the data collection proce-
dure, a stratified fusion approach was employed to maintain a consistent proportion
of both datasets in any subsequent split.

The best-performing vowels and phrases resulting from this analysis were further
compared to assess whether a single task or their combination could more effectively
distinguish between HCs and PDPs. The combination of these two tasks was achieved
through an early fusion of the associated features. Also in this case, the results from
different datasets were considered to test the robustness of the findings. It is worth
noting that the Suppa dataset exclusively contained the phonation of a single vowel
(/e/), automatically making it the most significant for the corpus.

Given the balanced distribution of the datasets used in this study, the effectiveness
of each vocal task was compared based on the accuracy achieved by a binary classifi-
cation model trained with features extracted from the specific task. The pipeline used
for this analysis included a feature selection step that utilized the boruta algorithm
[133] and a subsequent classification step involving several classic ML models.

Classification. As for the binary classification between PDP and HC, ten different
algorithms were compared, including KNN, SVM, Gaussian Process (GP), DT,
Random Forest (RF), Artificial Neural Network (ANN), NB, Linear Discriminant
Analysis (LDA), AdaBoost (ADA), and XGB. To ensure a fair comparison between
vocal tasks and minimize the impact of the classification model choice, the average
performance of these algorithms was employed for comparative analysis.

To avoid overfitting and ensure robust model performance, a two-phase approach
was employed. In the first phase, feature selection and model training were carried
out using 70% of the original dataset, leaving the remaining 30% unaltered for
testing purposes. Moreover, to assess the model generalization capability, a 10-fold
CV technique was applied during the training phase, while the remaining 30% of
subjects were employed to test the performance of the model on previously unseen
samples. The vocal task yielding the best performance was assessed through the
accuracy metric. F1-score, Sensibility, Specificity, and Area Under the Curve (AUC)
were also computed for comparison purposes.

Figure 4.4 illustrates the workflow of the experiment.
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Fig. 4.4 Workflow of the methodology employed for comparing task effectiveness

Results

Comparison Between Vocal Tasks. In Figures 4.5a and 4.5b, the results of the
initial comparison between different vocal tasks are presented. These figures display
the classification accuracy for two separate experiments: one focused on vowel
comparisons and the other on phrase comparisons. Moving on to Figure 4.5c,
the results of the comparison among the best-performing vocal tasks and their
combination are provided.

Classification. As for the classification step, the comparison between the different
models tested revealed that the top-performing models were KNN and GP, both
achieving an average accuracy of 91% on validation sets. These two models under-
went the computation of a comprehensive set of metrics on both validation and test
sets, in order to evaluate their ability to classify new and previously unseen samples.
The detailed results can be found in Table 4.15.

Discussion

Comparison Between Vocal Tasks. The findings across the three datasets strongly
support using a combined approach involving sustained vowel phonation and pho-
netically balanced phrase repetition to characterize PD-related vocal changes. This
approach significantly improved performance, up to 13.6% compared to single vowel
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Fig. 4.5 Results from the comparison of effectiveness across various tasks, adapted from
[120]

phonation and up to 5.08% compared to single phrase repetition, as shown in Figure
4.5c. Moreover, despite the complex nature of the articulatory process, the evidence
clearly indicated that the use of multiple sentences did not enhance the distinction
between HCs and PDPs.
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Table 4.15 Classification performance of the top two classifiers

10 fold CV Test set
Accuracy Accuracy Specificity Sensitivity AUC F1-score

PC-GITA
KNN 0.90 0.73 0.71 0.77 0.74 0.71
GP 0.90 0.73 0.65 0.85 0.75 0.73

Suppa
KNN 0.92 0.81 0.78 0.82 0.81 0.82
GP 0.94 0.74 0.71 0.76 0.74 0.76

IPVS & ANTHEA-PDSS1
KNN 0.91 0.88 1.0 0.79 0.89 0.88
GP 0.89 0.88 0.90 0.86 0.88 0.89

Table 4.16 Features selected for each binary classification

IPVS-ANTHEA-PDSS1
Phrase Shimmer; DFA; HNR; Spectral features: center of gravity, skewness,

kurtosis; 1st Formant; MFCC: 2, 13; ∆∆MFCC: 5; PLP: 0; ∆PLP: 4, 6.
Vowel ∆∆MFCC: 1, 6, 12; ∆ PLP: 0; ∆∆PLP: 0

PC GITA
Phrase GNE; Spectral features: roll-off, center of gravity; MFCC: 3; PLP: 3;

∆PLP: 3, 5; ∆∆PLP: 1, 3, 6.
Vowel PLP: 6, 9.

Suppa
Phrase Spectral features: center of gravity, decrease, slope; 1st Formant; 3rd

Formant; MFCC: 4, 7; ∆∆MFCC: 3, 5; PLP: 2, 10; ∆ PLP: 2.
Vowel STE; Spectral features: roll-off, flux; PLP: 3; ∆PLP: 9

In specific tasks, vowel /a/ consistently outperformed /e/, as seen in Figure 4.5a,
both in the IPVS and PC GITA datasets. Notably, when the ANTHEA-PDSS1 dataset
was included in the IPVS corpus, a performance drop associated with single vowel
phonation was observable, emphasizing the need for larger datasets to ensure statis-
tically robust results. These findings also underscore the impact of data collection
methodology, consistent with prior research in [134] and [14].

Regarding the analysis of the most effective phrases (Fig. 4.5b), phrase 3:
Patrizia ha pranzato a casa da Fabio performed best in the IPVS and ANTHEA-
PDSS1 datasets, while phrase 8: Marco non è partito was associated to the worst
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performance. This underscores the need for more complex tasks to effectively
capture vocal alterations and emphasized the importance of incorporating occlusive
and fricative sounds, as in previous studies [14, 135]. Similarly, the comparison
between phrase 1: Omar, que vive cerca, trajo miel and phrase 3: Los libros nuevos
no caben en la mesa de la oficina in the PC GITA dataset, confirmed than better
performance is achieved with sentences containing complex, articulated sounds and
occlusive consonants.

Classification & Feature Selection. The classification performance results, ob-
tained by combining the best-performing vowel and sentence (Table 4.15), revealed
KNN and GP algorithms as the top classification models, achieving classification
accuracy ranging from 88.7% to 94.5% in a 10-fold CV. Notably, there was no
significant degradation in performance when transitioning to test set, indicating
strong generalization capabilities. Furthermore, the models exhibited consistent
performance across three different datasets, demonstrating their robustness.

Regarding the selected features, the boruta algorithm returned distinct feature
sets for the three datasets (Table 5.6), with a notable prevalence of phrase-derived
features. A comparison among these three subsets highlights the effectiveness of
features such as spectral center of gravity, MFCC, and PLP coefficients.

4.5 Experimental Findings: Acoustic Features Effec-
tiveness

As emerging from the related literature (Section 4.2) several approaches have been
proposed to parameterize vocal samples by means of acoustic features related to
phonatory, articulatory, and prosodic dimensions. In this context, several recent
review studies have undertaken comprehensive analyses to outline the landscape of
interpretable features proposed over the years; however, most of them emphasize the
absence of a validated acoustic model [82, 83, 86]. Furthermore, while numerous
authors concur on the impact of language on vocal analysis models, only a limited
number of studies have examined parametrization techniques applied to vocal sam-
ples from native Italian speakers, thus raising questions about the generalizability of
the proposed models within this specific population.



4.5 Experimental Findings: Acoustic Features Effectiveness 71

Within this context, the experiments conducted in this section were primarly
devoted to perform an in-depth review of the features proposed thus far for charac-
terizing vocal impairment in PD subjects. The goal was to explore the effectiveness
demonstrated in different studies and identify areas of consensus or divergence
among them. Additionally, novel acoustic approaches were introduced to capture
additional facets of vocal alterations in individuals with PD. These analyses placed
particular emphasis on Italian native speakers, seeking to shed light on specific
phonetic alterations and validate previous findings within this language.

4.5.1 Review of Acoustic Features in PD Classification

This study aimed to fill the absence of evidence regarding the effectiveness of
acoustic features, as emerging from the literature review performed (Section 4.2).
Therefore, this section presents the results of a comprehensive review of ML and
statistical-based voice analysis models that were used to address vocal alterations
associated with PD. The primary objective was to offer valuable insights into the
current state of research in vocal analysis related to PD, making it a valuable resource
for both researchers and clinicians in this field.

Going into further detail, to establish a baseline understanding, the state-of-the-
art was explored by analyzing and discussing a total of 102 research papers selected
from the principal electronic databases. A statistical assessment was eventually
performed in order to identify the most commonly used features and those deemed
most effective from the results reported in the studies. Furthermore, an overview
of the algorithms employed was provided, along with information about the public
datasets, toolboxes, and general metadata that could potentially serve to enhance the
understanding of feature importance and their effectiveness under specific conditions.
The results of this work are published in [136].

Materials & Methods

The literature research was conducted in March 2022 employing four different
electronic databases, including IEEE Xplore, PubMed, Elsevier, and Web of Science.
The following search string was used: ((Parkinson OR Parkinson’s disease) AND
(speech OR voice OR vocal) AND (feature OR biomarker OR marker)).
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The initial database search produced a total of 1,190 articles. Following the
assessment of their relevance through the examination of titles, abstracts, and key-
words, the investigation focused on studies that addressed the automatic assessment
of vocal alterations in PDPs by analyzing interpretable acoustic features. Notably,
research that relied on deep feature-extraction techniques was excluded. Furthermore,
to uphold the review robustness, studies employing datasets with a limited sample
size (<25 subjects per class), were also omitted. The inclusion criteria encompassed
original, peer-reviewed journal articles, and reviews published between January 2017
and March 2022. Only journals published in English within the fields of medicine,
biomedical science, and engineering were taken into account, with conference papers,
books, book chapters, and letters being excluded. In order to ensure the dataset
quality and integrity, duplicate entries were subsequently eliminated. Ultimately, a
total of 102 articles were identified as suitable for the research scope, and from each
of these, the following information was tabulated: study ID (authorship and year),
aim of the work, recording modality (i.e., professional microphone or low-quality
equipment), dataset cardinality, participants’ demographic, set of features employed,
toolboxes used for feature extraction, model employed for classification step.

Results

Table 4.17 reports the tabulated information extracted from the 102 articles investi-
gated.

Table 4.17 Compilation of relevant information from reviewed papers. A1:PD vs HC;
A2:Staging; A3:RBD vs PD; A4:Others, HQ: Professional Microphones ; LQ:Smartphones
& Laptops n.r.: Not Reported; n.a: Not Applicable; c.r.; Custom Routines; T1: Vowel: T2:
DDK; T3; Reading; T4: Monologue

Ref. Aim Task Data Device Features Tools Model

[137] A1 T1 (1)[114]
(2)[115]

(1)HQ
(2)n.r.

DFA, EMD, F0, Form., GNE,
GQ, HNR, I, Jitt., MFCC,
NHR, PPE, RPDE, Shimmer,
TQWT, VFER

Praat,
VAT

SVM

[138] A1 T1 [117] n.r. DFA, GNE, HNR, Jitt.,
MFCC, NHR, PPE, RPDE,
Shimm.

n.r. BT
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Table 4.17 continued

[139] A1,
A2

T1,
T2,
T3,
T4

117PD,
41RBD,
98HC

HQ, LQ DPI, F0, I, Jitt., NHR, NP,
NSP, Rhythm, Shimm.

Praat,
c.r.

SVM

[140] A1 T1 [115] n.r. DFA, EMD, F0, Form., GNE,
GQ, HNR, I, Jitt., MFCC,
NHR, PPE, RPDE, Shimm.,
TQWT, VFER, WT

Praat,
VAT

SVM

[141] A1,
A2

T1,
T2,
T3,
T4

149PD,
150RBD,
149HC

HQ HNR, DDK, DPI, F0, I, NSR,
VOT

c.r. n.a.

[142] A1 T1 [118] LQ A, DFA, Entropy, F0, GQC,
GQO, HNR, Jitt., MFCC,
OQ, RPDE, Shimm.

c.r. n.a.

[143] A1,
A2

T1,
T2,
T3,
T4

48PD,
48HC

HQ CPP, DDK, DPI, F0, HNR, I,
MPT, RFA, RLR, VOT

c.r. n.a.

[144] A1,
A2,
A3

T1,
T3,
T4

90PD,
60RBD,
60HC

HQ CPP, CPPS c.r. n.a.

[145] A1,
A4

T1 80PD,
40HC

HQ Autocorr., F0, HNR, Jitt.,
MPT, NHR, Pulse, Shimm.,
Voicing

Praat SVM

[146] A4 T1 51PD,
11HC

HQ CPP, GFCC, HNR, Jitt., LPC,
MS Area, RPDE, Shimm.,
SRMR

Praat,
Darth,
c.r.

n.a.

[102] A1 T1 (1)30PD,
30HC
(2)[118]

LQ CPP, D2, Entropy, GNE, GQ,
GQC, GQO, HNR, Hurst,
Jitt., LZ-2, MFCC, MFSW,
PPE, Shimm., ZCR

c.r. SVM,
ANN

[147] A1 T4 262PD,
464HC

DFA, F0, HNR, Jitt., MFCC,
PPE, RPDE, Shimm.

Praat,
c.r.

XGB
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Table 4.17 continued

[148] A1 T1 [118] LQ Chroma Feat., Energy, En-
tropy of En, MFCC, Spect.
Feat., ZCR

c.r. XGB

[149] A1,
A2

T1,
T2,
T3

100PD,
100HC

HQ CPP, DDK, DPI, F0, HNR, I,
NSR, PSI, RFA, VOT

c.r. n.a.

[150] A1 T1 1078PD,
5453HC

LQ DFA, EMD, F0, GNE, GQ,
HNR, Jitt., MFCC, NHR,
PPE, RPDE, Shimm., VFER,
WT

Darth SVM

[151] A1 T1 54PD,
HC
n.r.

LQ D2, DFA, F0, HNR, Jitt.,
NHR, PPE, RPDE, Shimm.,
Spread

c.r. KNN

[152] A1,
A2

T1 100PD,
101HC

HQ DUV, F0, Jitt., MP, NHR,
PFR, Shimm., SPI, VTI

c.r. n.a.

[153] A1 T3 45PD,
45HC

HQ Gini index, SHP, Spect. Feat. n.r. SVM

[14] A1 T3 (1)IPVS
(2)26PD
18HC

(1)HQ
(2)LQ

DFA, DR, ET, I diff., MFCC,
RASTA-PLP, Spect. Feat.

n.r. SVM

[154] A1,
A3

T1 335PD,
112RBD,
92HC

LQ DFA, EMD, F0, GNE, GQ,
HNR, Jitt., MFCC, NHR,
PPE, RPDE, Shimm., VFER,
WT

Darth RF

[155] A1,
A3

T1,
T2,
T3

30PD,
30RBD,
30HC

HQ, LQ DDK, DPI, F0, HNR, I, Jitt.,
RFA, RST, Shimm., VOT

Praat,
c.r.

n.a.

[156] A1 T1 [115] n.r. DFA, EMD, F0, For, GNE,
GQ, HNR, I, Jitt., MFCC,
NHR, PPE, RPDE, Shimm.,
TQWT, VFER, WT

Praat,
VAT

SVM

[157] A1 T1,
T2

54PD,
HCn.r.

LQ DDK, Energy, F0, FCR, FTA,
Jitt., NTA, PTA, Shimm., TrB,
VF, VSA

Bio
MetR
Tools

n.a.
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Table 4.17 continued

[158] A1,
A3,
A2

T3 (1)35PD,
32HC
(2)50PD,
50HC
(3)8PD,
7HC

(1),
(2)HQ
(3)n.r.

F2i/F2u, FCR, VAI, VSA c.r. n.a.

[159] A1 T1 [115] n.r. DFA, EMD, F0, Form., GNE,
GQ, HNR, I, Jitt., MFCC,
NHR, PPE, RPDE, Shimm.,
TQWT, VFER, WT

Praat,
Darth

NN

[160] A1 T1 [115] n.r. DFA, EMD, F0, Form., GNE,
GQ, HNR, I, Jitt., MFCC,
NHR, PPE, RPDE, Shimm.,
TQWT, VFER, WT

Praat,
Darth

CNN

[161] A1 T1 37PD,
35HC

LQ MFCC c.r. Elastic
net

[162] A1 T1 [116] HQ Autocorr., F0, HNR, Jitt.,
NHR, Pulse, Shimm., Voic-
ing

Praat NN

[163] A1 T1 (1)110P,
93HC
(2)50PD,
50HC

HQ LFCC, MFCC c.r. SVM

[164] A1 T1,
T3

30PD,
15HC

LQ BBE, MFCC Neuro
speech

Bi-
LSTM

[165] A1 T1 [115] n.r. DFA, EMD, F0, Form., GNE,
GQ, HNR, I, Jitt., MFCC,
NHR, PPE, RPDE, Shimm.,
TQWT, VFER, WT

Praat,
Darth

SVM

[166] A4 T3 38PD,
37oth-
ers

n.r. MFCC, PLP c.r. n.a.
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Table 4.17 continued

[167] A2 T1 (1)86
PD
(2)[42]

(1)n.r.
(2)LQ

CPP, DFA, EMD, En., F0,
Form., GNE, GQ, HNR, I,
Jitt., MFCC, NHR, PPE,
RPDE, Shimm., SoE, TQWT,
VFER, WT

Praat,
Darth,
Voice
Sauce

XGB

[168] A1 T1 (1)[116]
(2)31
PD

HQ Autocorr., F0, HNR, Jitt.,
NHR, Pulse, Shimm., Voic-
ing

Praat SVM

[169] A1,
A2

T1 (1)[116]
(2)[42]

HQ Autocorr., DFA, EMD, F0,
GNE, GQ, HNR, Jitt., MFCC,
NHR, NHR, PPE, Pulse,
RPDE, Shimm., VFER, Voic-
ing, WT

Praat,
c.r.

Various

[170] A2 T1 36 PD LQ, HQ CPP, D2, MFCC, RPDE n.r. n.a.
[171] A1 T2,

T3
34 PD,
25HC

n.r. DDK, F0, Form., I, Loudness,
SPIR

Praat,
c.r.

n.a.

[172] A1 T1 [115] n.r. DFA, EMD, F0, Form., GNE,
GQ, HNR, I, Jitt., MFCC,
NHR, PPE, RPDE, Shimm.,
TQWT, VFER, WT

Praat,
Darth

SVM

[173] A1 T1 [115] n.r. DFA, EMD, F0, Form., GNE,
GQ, HNR, I, Jitt., MFCC,
NHR, PPE, RPDE, Shimm.,
TQWT, VFER, WT

Praat,
Darth

Various

[174] A1,
A4

T1 (1)[116]
(2)[114]
(3)90PD

HQ Autocorr., D2, DFA, F0,
HNR, Jitt., NHR, PPE, Pulse,
RPDE, Shimm., Spread, Voic-
ing

Praat,
c.r.

SVM,
RD,
XLM

[175] A1 T1,
T3

(1)50PD,
50HC
(2)20PD,
20HC

HQ DFA, Form., GNE, GQC,
HNR, IEDCC, IMFCC, Jitt.,
MFCC, NHR, PPE, RPDE,
Shimm., VFER

n.r. SVM
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Table 4.17 continued

[176] A1 T1 [118] LQ BE, Energy, FER, F0, Form.,
HI, Harmonicity, HNR, Jitt.,
I, MFCC, Shimm., Spect.
Feat., Voicing, ZCR

OS GB

[177] A1 T2 50PD
50HC

HQ EMD n.r. SVM

[178] A1,
A2

T1,
T4

(1)[114]
(2)[42]

HQ F0, D2, DFA, HNR, Jitt.,
NHR, PPE, RPDE, Shimm.,
Spread

Praat,
c.r.

GP

[179] A1 T1 (1)[115]
(2)[116]
(3)[117]

(1)n.r.
(2)HQ
(3)n.r.

DFA, EMD, F0, Form., GNE,
GQ, HNR, I, Jitt., MFCC,
NHR, PPE, RPDE, Shimm.,
TQWT, VFER, WT

Praat,
Darth,
n.r.

DT

[180] A1 T1 [115] n.r. DFA, EMD, F0, Form., GNE,
GQ, HNR, I, Jitt., MFCC,
NHR, PPE, RPDE, Shimm.,
TQWT, VFER, WT

Praat,
Darth

XGB

[181] A1 T1,
T3

(1)50PD,
50HC
(2)20
PD,
20HC

HQ Entropy, GNE, GQ, HNR,
Jitt., MFCC, NHR, NMF,
Shimm., NMF, VFER

c.r. SVM

[182] A1 T3,
T4

40PD,
40HC

HQ BBE, DPI, DUV, DR, DVI,
ET, F0, GFCC, Jitt., MFCC,
NVS, Posterior probabilities

c.r. SVM

[183] A1 T1 [115] n.r. DFA, EMD, F0, Form., GNE,
GQ, HNR, I, Jitt., MFCC,
NHR, PPE, RPDE, Shimm.,
TQWT, VFER, WT

Praat,
Darth

LDA

[184] A1 T1,
T3

(1)50PD,
50HC
(2)20
PD,
20HC

HQ HCC, VMD c.r. MLP,
RF,
SVM
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Table 4.17 continued

[185] A1 T1 (1)160
PD,
100HC
(2)[116]

(1)LQ
(2)HQ

MFCC n.r. SVM

[186] A4 T1,
T4

50PD HQ F0, I, Jitt., MPT, NHR,
Shimm., Voicing

Praat n.a.

[187] A1,
A4

T3 80PD,
140
HC,
others

HQ Form., MBE, MFCC Praat CNN

[188] A1 T1,
T2,
T3,
T4

50PD,
50HC

HQ AQ, BBE, ClQ, Energy, F0,
Form., Harmonicity, HRF,
Jitt., MFCC, NAQ, OQ, PSP,
QOQ, Shimm., SQ

Neuro
speech,
APARAT

SVM

[189] A1 T1 (1)28PD,
25HC
(2)40HC,
40PD.

HQ EMD c.r. SVM,
RF

[190] A1 T1 (1)[115]
(2)[116]

(1)n.r.
(2)HQ

Autocorr., DFA, EMD,
F0, Form., GNE, GQ,
HNR,I, Jitt., MFCC, NHR,
PPE,Pulse, RPDE, Shimm.,
TQWT, VFER, Voicing, WT

Praat,
Darth,
n.r.

LDA

[191] A1 T1 [117] n.r. DFA, GNE, HNR, Jitt.,
MFCC, NHR, PPE, RPDE,
Shimm.

n.r. GB

[192] A1 T1 [117] n.r. DFA, GNE, HNR, Jitt.,
MFCC, NHR, PPE, RPDE,
Shimm.

n.r. KNN

[193] A1,
A4

T1 50PD,
100HC

HQ CHNR, FCR, Form., GNE,
HNR, Jitt., MFCC, NNE,
Shimm., VSA

n.r. SVM
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Table 4.17 continued

[194] A1,
A4

T1 50PD,
50HC,
others

HQ Entropy, D2, DFA, Entropy,
Hurst, LLE, LZ-2, RPDE

c.r. SVM

[195] A1,
A4

T1 30PD,
20other

LQ Autocorr., F0, Form., HNR,
I, Jitt., MFCC, NHR, Pulse,
RASTA-PLP, Shimm., Voic-
ing

Praat KNN

[196] A1,
A2

T1 (1)[42]
(2)[114]

(1)LQ
(2)HQ

DFA, HNR, Jitt., NHR, PPE,
RPDE, Shimm., Spread

Praat,
c.r.

SVM

[197] A1 T1 [117] n.r. DFA, GNE, HNR, Jitt.,
MFCC, NHR, PPE, RPDE,
Shimm.

n.r. LR,
SVM,
KNN

[198] A1,
A2

T1 55HC,
320PD

LQ DFA, F0, GQ, HNR, Jitt.,
NHR, PPE, RPDE, Shimm.

Darth SD

[199] A2 T1 [42] LQ DFA, HNR, Jitt., NHR, PPE,
RPDE, Shimm., Spread

Praat,
c.r.

LR

[200] A1,
A3

T3,
T4

80PD
50
RBD.

HQ AST, DPI, DUF, DUS, DVI,
EST, GBIV, LRE, PIR, RLR,
RSR, RST

c.r. n.a.

[201] A1 T1 94 PD,
8HC

HQ Form. n.r. n.a.

[202] A1 T1 (1)[114]
(2)[116]

HQ Autocorr., F0, HNR, Jitt.,
NHR, Pulse, Shimm., Voic-
ing

n.r. KNN

[203] A1,
A2

T1 40PD,
15HC

HQ Entropy, WT c.r. ELM

[? ] A1 T2 50PD,
50HC

HQ D2, Entropy, Hurst, LLE, PE,
RPDE

n.r. SVM

[94] A1 T2 27PD,
27HC

HQ VOT c.r. SVM

[204] A1 T1 [115] n.r. TQWT Praat,
Darth

KNN
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Table 4.17 continued

[156] A1 T1 [115] n.r. DFA, EMD, F0, Form., GNE,
GQ, HNR, I, Jitt., MFCC,
NHR, PPE, RPDE, Shimm.,
TQWT, VFER, WT

Praat,
Darth

KNN,
SVM,
DT

[129] A1 T3 (1)50PD,
50HC
(2)20PD,
20HC

HQ BBE, ET, F0, MFCC, PTS,
Spect. Feat., ZCR

n.r. SVM

[205] A1 T1 205PD,
74HC

HQ HNR, NHR c.r. n.a.

[206] A1 n.r. 44PD,
HCn.r.

n.r. F0, D2, DFA, HNR, Jitt.,
NHR, Spread PPE, PPQ,
RPDE, Shimm.

n.r. Various

[207] A1,
A2

T1 (1)[114]
(2)[42]
(3)48PD,
20HC
(4)4PD

n.r. F0, D2, DFA, HNR, Jitt.,
NHR, PPE, RPDE, Shimm.

SVM,
LR,
MLP

[208] A1 T1 1483PD,
8300HC

LQ DFA, EMD, F0, GQ, GNE,
HNR, Jitt., MFCC, NHR,
PPE, RPDE, Shimm., VFER,
WT

c.r. n.a.

[? ] A1 T1,
T2,
T3

86PD,
50HC

HQ BBE, DR, DTW, DUV,
DVI, FLUF, F0, Form.,
Jitt., MFCC, NU, NV,
RatioDurV/Sig, Shimm., WA

c.r. Regr.

[209] A1 T1 [118] LQ MFCC c.r. SVM
[210] A1 T1 [118] LQ DFA, F0, HNR, Jitt., MFCC,

PPE, RPDE, Shimm.
Darth LR,

RF,
CNN

[211] A1,
A4

T1 40PD,
40HC,
200other

HQ AT, FT c.r. n.a.
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Table 4.17 continued

[212] A1 T3 50PD
50HC

HQ Energy, MFCC n.r. GMM

[213] A1 T1 234PD,
50HC

n.r. Amplitude, AT, F0, FT Praat n.a.

[214] A1 T1 35PD,
45HC

n.r. Autocorr., HNR, Jitt., MFCC,
Shimm.

n.r. SVM

[215] A1 T1 45PD,
45HC

HQ MFCC, PLP n.r. ANN

[216] A1 T1 27PD,
446HC

n.r. DFA, GQ, HNR, Jitt., MFCC,
NHR, PPE, RPDE, Shimm.

Darth,
c.r.

SVM,
RF

[217] A1 T1,
T3

32PD,
10HC

HQ CPP ADSV n.a.

[218] A1 T1 30PD,
20HC

HQ Amplitude, AT, F0, FT n.r. n.a.

[219] A1 T1,
T3

30PD,
32HC

HQ F0, FER n.r. n.a.

[220] A1,
A2

T1 320PD,
55HC

n.r. MFCC, PLP n.r. n.a.

[221] A1,
A2

T1 51PD HQ BE, FER, F0, FLUF, Form.,
GNE, HNR, Jitt., NNE,
Shimm.

n.r. XGB

[222] A1 T1 147PD,
48HC

n.r. F0, Jitt., PPQ, Shimm., HNR,
NHR, RPDE, DFA, D2, PPE,
Spread

n.r. Various

[223] A1 T1,
T2,
T3

(1)50PD,
50HC
(2)164HC

HQ LPC, MFCC, RASTA-PLP n.r. GMM,
GPLDA

[224] A1 T1 (1)[116]
(2)28PD

(1)HQ
(2)n.r.

F0, Autocorr., HNR, Jitt.,
NHR, Pulse, Shimm.

n.r. SVM

[225] A1 T1 45PD,
45HC

n.r. Autocorr., En., HNR, Jitt.,
NHR, Shimm.

n.r. Regr.,
NN

[226] A1 T1 40PD,
40HC

LQ GNE, HNR, NHR Praat,
c.r.

n.a.
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Table 4.17 continued

[227] A1,
A3

T3 80PD,
50HC

HQ AST, DPI, DUF, DUS, DVI,
EST, GBIV, LRE, PIPR,
RLR, RSR, RST

n.r. SVM

[228] A1 T1 50PD,
50HC

n.r. Form. n.r. n.a.

[229] A1 T2 38PD,
38HC

n.r. DDK, Jitt., Shimm. n.r. LR

[230] A1 T1 147PD,
48HC

HQ D2, DFA, F0, HNR, Jitt.,
NHR, PPE, RPDE, Shimm.,
Spread

n.r. SVM

[214] A1 T1 54PD,
45HC

HQ MFCC n.r. RBFN

[231] A1 T1,
T3

115PD,
108HC

HQ BE, Energy, F0, Harmonicity,
HNR, Jitt., I, MFCC, RASTA-
PLP, Shimm., Spect. Feat.,
Voicing, ZCR

OS SVM

In Figure 4.6, a comparison between the frequency of features (i.e., the number
of articles that utilized these features) and their effectiveness (i.e., the number of
articles in which these features were reported as effective) is presented. To maintain
conciseness, only features that were employed in at least 10% of the papers are
included. It is noteworthy that 27 articles did not report this particular information.

Discussion

The primary findings of the literature review revealed that the majority of the analyzed
papers focused predominantly on phonatory and articulatory features. Notably,
studies by [193] and [232] concurred that the inclusion of the latter, i.e., articulatory
features, enhances the system capacity to capture vocal abnormalities in PDPs.

Figure 4.6 compared frequency and effectiveness of the features identified in
the review. As expected, the most frequently employed features encompass Jitter,
Shimmer, F0, MFCC, HNR, and NHR, which are standard metrics in vocal analysis.
Furthermore, alternative processing techniques like DFA and entropy-related features
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Fig. 4.6 Comparison of features frequency and effectiveness based on literature review

(e.g., RPDE) are prevalent, followed by parametric methods related to phonatory and
glottal aspects.

As for feature effectiveness, noise analysis in speech, particularly HNR, demon-
strated to be crucial for PD vocal analysis, being closely linked to voice hoarseness, a
well-documented trait among PD patients (Section 2.1). In addition to noise-related
measures, features related to F0 play a significant role in modeling complex aspects
of the phonatory system, especially hoarseness and voice tremor. Furthermore,
Jitter and Shimmer are commonly examined, although this review unveiled varying
evidence regarding their effectiveness. Indeed, while many authors have demon-
strated their efficacy (e.g., [193, 198, 226]) others have found them to be inconsistent
indicators [102, 178].

Moreover, non-linear features (e.g., RPDE, DFA, D2) have gained increasing
attention in PD vocal parametrization ( [102], [14], [194], [196], [? ], [207]).
Nevertheless, while these non-linear features, particularly RPDE, have proven highly
effective, two studies [194, 207] concur on the necessity of incorporating them into
a wider set of features drawn from diverse domains.
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Interestingly, MFCC features emerged as the most effective, distinguishing
between HC and PDPs, as well as for UPDRS scoring. Notably, the Cepstral domain
has been widely adopted to characterize PD-related vocal alterations, even in the
context of complex and noisy audio data. Intriguingly, in studies involving the
mPower dataset [118, 119], which comprises data from over 6000 subjects recorded
under suboptimal and unsupervised conditions, MFCCs consistently surfaced as a
relevant feature group through various feature selection procedures.

Going into further detail among the investigated studies, 57 of them made use
of databases recorded with high-quality equipment, often featuring professional
condenser microphones equipped with a cardioid polar pattern. In contrast, 25 studies
employed databases collected in sub-optimal conditions, such as recordings from
smartphones (using omnidirectional electret microphones), laptops, or telephone
recordings, taken in both supervised and unsupervised settings. Apart from the
evidence reporting MFCC as effective in both type of studies, additional evidence on
the influence of the recording modalities were investigated, however, only a small
subset of the studies reported clear results on the differences. Among them, Jeancolas
et al. [139] observed that there were no significant decrease in performance when
transitioning from professional microphones to low-cost equipment. In contrast,
[102] reported a marked reduction in performance when utilizing recordings in
unsupervised conditions.

Furthermore, studies described in [233, 108, 234] involved comparing features
extracted using multiple available toolboxes and different types of recordings, in-
cluding both smartphone and professional microphone data from the LUHS dataset.
Interestingly, despite utilizing the same dataset, these studies do not reach a consensus
on the optimal set of parameters to use. However, they all concur on the effectiveness
of the YAAFEE toolbox in consistently yielding good classification performance.
Additionally, they highlight the necessity of employing distinct sets of features when
transitioning from professional microphones to smartphone recordings.

Besides evidence on the impact of recording conditions and routines employed
for the extraction, several studies investigated the influence of the participants de-
mographics. Notably, numerous works emphasized the substantial influence of
gender on voice production [139, 185, 151, 186? , 219]. However, some research
works suggested the presence of features that are less susceptible to gender-related
effects, such as monopitch [149], Frequency Tremor (FT), and Amplitude Tremor
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(AT) [213]. Interestingly, a statistical analysis conducted in [149] revealed that
de-novo patients exhibit fewer gender-related differences in PD-related voice char-
acteristics. To integrate this type of meta-information into ML models without
the need of extensive stratification, several authors have proposed incorporating
non-speech covariates into the feature sets as correction factors. In this context,
[102, 235, 167, 236, 237, 192, 197, 148, 238, 207] have all demonstrated the effec-
tiveness of these strategies in mitigating the influence of gender and age, respectively.

It is important to mention that, even though the analysis of UPDRS score, years
from diagnosis, and other participant characteristics was carried out for each study,
the final results are not reported in this dissertation due to the lack of specific
information in the majority of the works. Indeed, since a substantial portion of these
studies did not adequately report the required information, statistical analyses were
not applied. Nevertheless, the list of available information is provided in detail in
[136]

4.5.2 Investigation of Voiced to Unvoiced Transient Regions

This study primarily aimed to assess the effectiveness of an acoustic analysis based
on the transient regions (TR) between voiced and unvoiced segments. As discussed
in Section 3.1, the lack of coordination of the glottal source, which is typical in
PD patients, can lead to difficulties in executing precise and rapid movements.
Consequently, a detailed articulatory analysis of this phenomenon may unveil hidden
aspects of vocal alterations. Furthermore, given its high specificity, if properly
validated, this approach may reveal markers of the alteration that are less susceptible
to variations due to the patient’s emotional state.

While such a specific parametrization holds potential for articulatory analysis,
the pronunciation of specific phonemes varies depending on the language consid-
ered. For this reason, this study specifically focused on samples from Italian native
speakers, recorded in both optimal and sub-optimal conditions. Subsequently, the
work investigated which phonemes in the Italian language are mostly affected by
hypokinetic dysarthria and which features are most the suitable for characterizing
them. Besides its applicability to PD classification, if properly validated, evidence
regarding phonetic misarticulation can offer substantial support to speech therapists
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in developing personalized rehabilitation therapy for individual patients, as well as
during the follow-up stage.

In Figure 4.7, two pairs of vocal signals are presented, comparing individuals
with PD to age and gender-matched HCs. These figures reveal two distinct vocal
abnormalities evident in PDPs during the transition between voiceless and voiced
speech segments. To delve into further detail, Figures 4.7a and 4.7b showcase a
voiceless segment (/s/) occurring after a voiced segment (/e/). It is evident that PDP
exhibit substantial difficulty in interrupting vocal cord vibration. This difficulty is
manifested in the presence of periodicity, which contrasts with the absence of such
periodicity observed in the corresponding HC. Similarly, the second comparison
highlights a pronounced diversity between a HC and a corresponding PDP during
the pronunciation of the Italian word sciare (skiing, /Siare/). In particular, a notable
distinction is observed during the transition from the voiceless /S/ segment to the
subsequent vowel.

These findings underscore significant vocal irregularities in individuals with
PD, particularly in their ability to modulate vocal cord vibrations during speech
production, which clearly distinguish them from their healthy counterparts. The
results from this study are published in [14].

Materials

This study utilized two diverse corpora, namely the IPVS (Section 4.3.1) and the
ANTHEA-PDSS1 (Section 4.3.2). Specifically, samples from sentence pronouncia-
tion were employed.

Data analysis was performed using Python, where Praat was utilized for pre-
processing and feature extraction. The Parselmouth library acted as an interface for
accessing Praat internal code.

Methods

Pre-processing. The dataset initially contained recordings with varying sampling
rates, which were standardized by down-sampling to 16 kHz to ensure consistent
spectral conditions. A de-noising filter with Praat default parameters was then
applied to each signal, and amplitudes were normalized to a range between 0 and
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(a) /es/: PDP (b) /es/: HC

(c) /Siare/: PDP (d) /Siare/: HC

Fig. 4.7 Alterations in transient regions between voiced and unvoiced segments

1 to mitigate any potential influence of speaker-microphone distances on model
performance.

The voiced regions in the recordings were manually labeled following their
detection using Praat Software. For the analysis of TRs between unvoiced consonants
and adjacent voiced segments, manual identification was chosen over automatic
segmentation to avoid potential external sources of error. As in Section 4.4.1, TRs
were defined as 160 ms long windows centered on the edge of each chunk. The
analysis of set of sentences revealed a total of 43 phonetic groups, among which
28 were correctly pronounced by all the individuals. These encompassed various
unvoiced consonants in the Italian language, including 13 dental occlusives, 5 velar
occlusives, 4 labial occlusives, 2 alveolar sibilants, 1 palatal sibilant, 2 alveolar
affricates, and 1 labio- dental fricative.

Feature Extraction. Following the initial pre-processing steps, each TR was fur-
ther divided into 15 ms frames, with 50% overlap, as outlined in [23]. Subsequently,
a comprehensive set of parameters was extracted, incorporating both conventional
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phonetic analysis features and innovative parameters capable of capturing variations
within the TRs. This set comprised 13 RASTA-PLP coefficients, including their first
and second derivatives, which were instrumental in identifying articulatory anomalies
associated with specific phonemes. Moreover, the first four spectral moments (mean,
standard deviation, skewness, and kurtosis) were employed to model the capacity to
rapidly initiate or cease vocal fold vibration. Additionally, 13 MFCC were utilized to
detect subtle alterations in articulator motion. The duration ratio (DR) and intensity
difference (ID) were used to measure variations between unvoiced consonants and
subsequent voiced regions. Lastly, DFA was included to capture increased turbulence
due to the lack of control and coordination in vocal fold motion. It is worth nothing
that, although DFA is typically applied only to quasi-periodic signals and sentences
do not belong to this class, this work focuses on portions of sentences that do not
share the same characteristics of the whole signal. In particular, the analysis deals
with the TRs, which represent the transition between voiced and unvoiced segments.
In addition, the thesis underlying the entire work is the inability of PDPs to promptly
start/stop the movements of the vocal folds, implying a perceivable distortion of
unvoiced consonants. For this reason, it was dediced to specifically introduce this
feature to model the altered periodicity of the vocal signal in PDPs. To complement
this feature set, EST feature, as detailed in Section 4.4.1, was introduced to provide
a more comprehensive characterization of spectral differences within the TRs.

Feature Selection and Statistical Analysis. After feature extraction, the boruta al-
gorithm [133] was applied to each phonetic group identified during the pre-processing
stage. Subsequently, the Pearson correlation coefficient was calculated between the
selected features and the class of membership to assess the discriminatory potential
of the acoustic parameters. Furthermore, a thorough analysis of the most frequently
selected phonetic regions was conducted with the objective of identifying any mean-
ingful pattern among the phonemes that exhibited the highest capacity of describing
vocal alterations in PD.

Classification. Leveraging the diversity of phonemes pronounced by the same
subjects, the classifier input was created by performing an early fusion of the features
extracted from all examined segments into a single vector (Section 4.4.1). Subse-
quently, seven classifiers were compared, including NB, KNN, SVM, RF, as well as
ensemble methods such as GB, BAG, and ADA models. The classification accuracy
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was used to compare the classifier performance. Given the inherent randomness
introduced by the validation process random splitting procedure, each experiment
was repeated 20 times on 20 randomly selected subsets. The average accuracy
served as the primary metric for classifier comparison. Following the selection of
the optimal classifier and fine-tuning of its hyperparameters, the model stability was
further assessed by evaluating accuracy, F1 score, precision, and recall as averages
over 20 iterations.

It is worth noting that a dual experiment was conducted to assess the impact of
data collection modalities on the results. In the first iteration, the entire pipeline,
which encompassed feature extraction, statistical analysis, and classification, was
applied to a dataset consisting solely of samples from the IPVS dataset, which were
recorded under optimal conditions. In the second iteration, the analysis was extended
to include samples from the ANTHEA-PDSS1 dataset, recorded under suboptimal
conditions. To ensure the robust generalization of the model in both experiments,
the databases were split into two subsets: one for training and validation (80%) and
another for testing (20%). It is important to emphasize that for both the IPVS and
ANTHEA-PDSS1 datasets, a balanced splitting strategy was applied, ensuring an
equal representation of the two datasets in both the training and testing subsets.

Results

Feature Effectiveness and Phonetic Groups Examination. Figure 4.8 provides
an overview of the count of phonemes that exhibited statistically significant features,
as identified by their selection through the boruta algorithm and their correlation
with the class (p < 0.001). Within the IPVS corpus, 28 phonetic segments presented
at least two features that correlate with the membership class (0.51 < |r| < 0.86).
Notably, the DFA coefficient extracted from the transition between the occlusive
sound /p/ and the vowel /e/, as well as the fifth MFCC from the region between the
sibilant /S/ and the vowel /i/, exhibited the highest correlation (r = 0.85, p < 0.001).
As for the combined corpora, a reduction in overall performance is observable, with
correlation coefficients ranging from 0.37 to 0.62 (absolute values). Nevertheless,
several features still maintain significant correlations with the membership class.
Among these, the DFA derived from the transition between the occlusive consonant
/t/ and the vowel /a/ yielded the highest correlation coefficient of 0.62 (p < 0.001).
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Figure 4.9 depicts the count of features chosen for each phoneme class, presented
in absolute values (on the left axis) and as a percentage (on the right axis) relative to
the total number of features specific to the given segment type.

DF
A

Sp
ec

tra
l m

ea
n

M
FC

C5
 m

ea
n

M
FC

C2
 m

ea
n

In
te

ns
ity

 ra
tio

M
CC

3 
m

ea
n

DD
M

FC
C1

 st
d

PL
P4

 st
d

M
FC

C4
 m

ea
n

DM
FC

C1
 st

d
DP

LP
4_

st
d

du
ra

tio
n

M
EC

C1
 m

ea
n

M
FC

C1
 ku

rt
M

FC
C4

 sk
ew

M
FC

C7
 m

ea
n

DM
FC

C3
 st

d
DM

FC
C6

 st
d

DM
FC

C8
 st

d
DD

M
FC

C3
 st

d
DD

M
FC

C8
 st

d
DD

M
FC

C1
1 s

td
PL

P1
 st

d
PL

P2
 st

d
PL

P2
 sk

ew
PL

P4
 m

ea
n

PL
P4

 ku
rt

PL
P5

 st
d

PL
P5

 ku
rt

PL
P6

 m
ea

n
PL

P6
 st

d
PL

P7
 ku

rt
PL

P8
 st

d
PL

P1
0 

m
ea

n
PL

P1
2 

sk
ew

DP
LP

1 m
ea

n
DP

LP
2 

st
d

DP
LP

2 
ku

rt
DP

LP
4 

m
ea

n
DP

LP
5 

st
d

DD
PL

P2
 st

d
DD

PL
P4

 st
d

DD
PL

P4
 ku

rt
DD

PL
P6

 ku
rt

DD
PL

P8
 st

d

Features

0

5

10

15

20

25

Nu
m

be
r o

f p
ho

ne
m

es

27

10 10
9

6 6
5

3
2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

IPVS
IPVS + ANTHEA PDSS1

Fig. 4.8 Analysis of feature effectiveness within different phonemes. The reported features
were selected via the boruta algorithms and exhibited a significant correlation with the
membership class (p < 0.001)

Classification. Table 4.18 presents a comparison of classification accuracy of the
seven models tested. During the hyperparameter optimization phase, the C parameter
was fine-tuned within the range of [10, 100, 1000], while the gamma parameter
underwent variations at 0.1, 0.001, and 0.0001. Additionally, the performance of
SVMs were analyzed using linear, polynomial, and RBF kernels. Finally, the most
effective configuration was identified as SVM with C = 10, gamma = 0.001, and the
RBF kernel. The performance results of this optimized SVM on both the validation
and test sets can be found in Table 4.19. Furthermore, details regarding the phonetic
groups employed and the selected feature types are provided for reference.

In the second experiment, which involved merging the two distinct corpora, Table
4.20 compares the classification accuracy of the seven tested models. These values
result from 10-fold CV, averaging over 20 iterations. Following classifier selection,
grid-search hyperparameter optimization was performed within the training set,
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Fig. 4.9 Analysis of phonemes effectiveness within various features. The figures reports the
number of features for each phoneme that were selected via boruta algoritm and exhibited
significant correlation with the membership class (p < 0.001)

Table 4.18 Comparison of classification accuracy among seven classifiers using a 10-fold
cross-validation on the IPVS corpus

Model Accuracy Precision Recall Specificity F1-score AUC

NB 0.92±0.03 0.95±0.02 0.94±0.03 0.91±0.04 0.93±0.03 0.98±0.02
KNN 0.96±0.02 0.95±0.03 1.00±0.00 0.92±0.06 0.97±0.02 0.99±0.00
SVM 0.98±0.01 0.98±0.02 1.00±0.00 0.97±0.02 0.98±0.01 1.00±0.00
ADA 0.88±0.05 0.90±0.05 0.92±0.04 0.83±0.08 0.89±0.04 0.92±0.04
GB 0.87±0.03 0.89±0.03 0.93±0.04 0.82±0.07 0.88±0.03 0.90±0.05
BAG 0.97±0.02 0.96±0.03 1.00±0.00 0.93±0.05 0.98±0.02 0.99±0.01
RF 0.96±0.02 0.96±0.02 0.98±0.02 0.93±0.03 0.96±0.02 0.99±0.05

revealing the most effective configuration as SVM with C = 100, gamma = 0.001,
and an RBF kernel. The results of the optimized model are provided in Table 4.21.
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Table 4.19 Performance details of the optimized SVM model on the IPVS corpus. Results
are expressed as an average over 20 iterations.

Metric Validation set Test set Phonetic groups Type of features

Accuracy 0.98 ± 0.01 0.97 ± 0.06
dental occlusive,
labial occlusive,
palatal sibilant,
velar occlusive

DFA,
spectral mean,

MFCC2,
MFCC5

Precision 0.98 ± 0.02 0.96 ± 0.07
Recall 0.99 ± 0.02 1.00 ± 0.00
Specificity 0.97 ± 0.02 0.93 ± 0.14
F1 score 0.98 ± 0.01 0.98 ± 0.04
AUC 1.00 ± 0.00 0.96 ± 0.01

Table 4.20 Comparison of classification accuracy among seven classifiers using a 10-fold
cross-validation in the IPVS and ANTEA PDSS1 corpora

Model Accuracy Precision Recall Specificity F1-score AUC

NB 0.83±0.02 0.89±0.03 0.82±0.04 0.85±0.04 0.84±0.02 0.89±0.03
KNN 0.84±0.03 0.87±0.04 0.85±0.03 0.82±0.04 0.85±0.03 0.92±0.02
SVM 0.86±0.03 0.90±0.03 0.87±0.03 0.86±0.04 0.87±0.02 0.94±0.02
ADA 0.84±0.04 0.88±0.04 0.85±0.03 0.83±0.05 0.85±0.03 0.91±0.04
GB 0.76±0.04 0.82±0.04 0.77±0.04 0.75±0.06 0.77±0.04 0.83±0.03
BAG 0.84±0.03 0.88±0.03 0.85±0.03 0.83±0.04 0.85±0.02 0.93±0.02
RF 0.83±0.03 0.87±0.03 0.84±0.03 0.82±0.03 0.84±0.03 0.93±0.02

Table 4.21 Performance details of the optimized SVM model in the IPVS and ANTEA
PDSS1 corpora. Results are expressed as an average over 20 iterations

Metric Validation set Test set Phonetic groups Type of features

Accuracy 0.88 ± 0.03 0.90 ± 0.07 labiodental
fricative;

dental, labial,
and velar

occlusives;
affricate and

sibilants
alveolars;

palatal
sibilants

DFA,
spectral mean,

MFCC4,
∆MFCC1,

∆∆MFCC3,
PLP3,
PLP5,
PLP11
∆PLP3,
∆∆PLP1

Precision 0.93 ± 0.03 0.95 ± 0.05

Recall 0.87 ± 0.03 0.88 ± 0.10

F1-score 0.89 ± 0.03 0.91 ± 0.06

Specificity 0.89 ± 0.04 0.93 ± 0.07

AUC 0.94 ± 0.02 0.91 ± 0.06

Discussion

Feature Effectiveness and Phonetic Groups Examination. Figure 4.8 empha-
sizes the potential of TRs between unvoiced consonants and adjacent sound segments.
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Notably, 28 phonetic segments displayed significant correlations with the member-
ship class, ranging from 0.52 to 0.85 (absolute values). The DFA coefficient from
the transition between the occlusive sound /p/ and the vowel /e/ and the fifth MFCC
from the TR between the sibilant sound /S/ and the vowel /i/ demonstrated high
effectiveness. When merging the ANTHEA-PDSS1 corpus, a slight performance
reduction was observed. Nevertheless, several features remained significantly cor-
related with the class. Notably, the DFA derived from the transition between the
occlusive consonant /t/ and the vowel /a/ exhibited the highest correlation with the
class.

As for the specific types of features chosen, besides DFA, the analysis demon-
strated the importance of MFCC2, MFCC3, MFCC5, intensity ratio, and spectral
mean, which displayed a strong correlation with the class across several selected
phonetic groups, particularly when considering signals recorded in optimal con-
ditions. The inclusion of the second corpus lead to a reduction in the number of
significant features. As evident from Figure 4.8, the RASTA-PLP coefficients are
the most frequently selected parameters, thus suggesting an enhanced ability to
discern differences between PDPs and HCs, even when dealing with recordings of
sub-optimal quality.

Figure 4.9 displays the results of the analysis evaluating the effectiveness of
different phonetic groups. Consistent with prior research [24], the most significant
pronunciation impairments are associated with occlusive consonants, which may
be due to the intricate articulatory movements necessary to produce such sounds.
Indeed, unlike other consonants that do not involve a complete closure of the vocal
tract, occlusive consonants are generated when airflow from the lungs encounters
an obstruction resulting from a sudden change in the position of the articulatory
organs. The complexity of executing precise and rapid movements is challenging for
individuals with PDP when articulating these sounds.

As for the place of articulation, velar occlusive consonants appeared to present
the highest discriminative power among native Italian speakers, possibly due to
the required withdrawing of the tongue towards the soft palate. Upon merging the
two corpora, features related to occlusive consonants remains frequently selected.
However, an important role is also played by parameters associated with fricative
labiodental sounds, which, in the current database, are represented by the syllable
/fa/.
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Classification. As evident from Table 4.18, the SVM classifier yielded the highest
performance, achieving an accuracy of 98%. Notably, this classifier not only provided
the highest accuracy but also displayed the lowest standard deviation, indicating a
high level of model stability.

Following the hyperparameter optimization, the model was tested on an indepen-
dent test set. As can be derived from Table 4.19, the model performance remains
consistent when transitioning from the validation data to entirely new samples. This
suggests that overfitting is absent, and the selected model exhibits strong generaliza-
tion capabilities. As for the phonetic groups, the results align with those reported
in Figure 4.8 on the single phonemes and underscore the significance of occlusive
consonants and palatal sibilants.

Although the lack of entirely comparable work in the state of art, the comparison
with the most similar study employing TRs [88] revealed the high potential of the
proposed algorithm. Indeed, in the mentioned work the authors achieved 94% ± 1
accuracy (AUC = 0.99, Sens = 0.9, Spec = 1) in a 11-fold CV and 82% ± 13 (AUC =
0.95, Sens = 1, Spec = 0.57) in the cross corpora experiments employing a GMM-
UBM classifier, PLP as features and the DDK speech task. Moreover, the accuracy
reported when addressing the same task considered in this work (i.e. text dependent
utterance) is 89% ± 7 (AUC = 0.93, Sens = 0.91, Spec = 0.91) in a 11-fold CV.

Regarding phonetic groups, the results emphasize occlusive and sibilant conso-
nants. While many features overlap between Experiments 1 and 2, the latter includes
a broader feature set, adapting well to unsupervised recordings. Also in this second
case, the performance remains stable when moving from validation to the test set,
although the standard deviation slightly increases in the latter case. These findings
indicate that the inclusion of non-supervised recordings leads to good performance.
However, the models yielding the best performance also exhibited substantial dif-
ferences both in terms of the selected hyperparameters and most effective features.
This indicates that, although the classification task can be performed regardless of
recording conditions, it is imperative to develope tailored models capable of handling
the existing differences between acquisition modalities.
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4.5.3 Investigation of Time Evolution of Speech Attractors

Both normophonic and non-normophonic speakers often experience non-linear phe-
nomena during voice production, primarily resulting from factors like pressure flow
in the glottis, stress-strain properties of vocal fold tissues, and vocal fold collision
(Section 3.2.6). These are further complicated by compensatory movements often
observed in PDP, which are intended to mitigate their motor dysfunctions.

Building on these assumptions, several studies in the related literature have
employed non-linear metrics to quantify these impairments (Section 4.2). However,
none has specifically delved into the temporal evolution of vocal trajectories within
the reconstructed phase space as a method for identifying PD hallmarks. This section
introduces a model based on three-dimensional geometry and its time-dependent
changes with the aim of extracting information related to the speaker’s health status.

As in the previous study (Section 4.5.2), the analysis is conducted on Italian
native speakers, with the goal of augmenting the body of evidence related to this
specific language. Furthermore, a dataset including both early-drug naive individuals
(referred to as de-novo) and those in mid-advanced stages of PD is employed to
explore significant correlations between the extracted features and the stage of the
patient’s disease. The results from this study are published in [239].

Materials

A subset of the Suppa corpus including 100 PD patients (54 mid-advanced and 46
de-novo) and 113 age- and gender-matched HCs was employed for this study.

Python libraries were used for data analysis. More specifically, the Topolog-
ical Signal Processing library (Teaspoon) was employed to determine the most
suitable parameters for the voice embedding procedure. Additionally, the αshape
and Trimesh libraries were introduced for the calculation and parameterization of
α-geometries derived from the reconstructed vocal attractors.

Methods

Embedding Approach. As previously described in Section 3.2.6, nonlinear aspects
within vocal samples can be investigated through a representation of vocal signals
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in state space. In this study, considerable attention was dedicated to preserving
the ability to visualize the reconstructed signal, hence the embedding dimension,
denoted as θ , was empirically set to 3. This choice allowed to maintain a manageable
level of system complexity while exploring the nature and quality of the information
extracted from a 3-dimensional representation of the vocal signal. It is worth noting
that, in order to minimize the impact of noise on the reconstructed trajectories, a 50-
sample moving average was systematically applied to each point within the attractor
set.

Subsequently, the reconstructed ensemble of trajectories was characterized
through the utilization of α-shapes corresponding to each set. Indeed, these repre-
sentations have found versatile applications across diverse domains, including the
approximation of bounding polytopes around a set of data points [240, 241]. Accord-
ing to the initial definition introduced by Edelsbrunner et al. in [32], the α-shape of
a given set of points, represented as S, can be conceptualized as a graph composed of
linear segments. Within this graph, the vertices correspond to the α-extreme points,
while the edges connect these vertices to their respective α-neighbors. An α-extreme
point within the set S is distinguished by the existence of a closed disk having a
radius of 1/α , which encompasses all points within S. Similarly, two α-extreme
points are regarded as α-neighbors if there exists a closed disk with a radius of 1/α
that includes both points on its boundary while encompassing all other points within
S.

Building upon these principles, an α-shape can be constructed in such a way that
its boundaries include all the points within the reconstructed attractors. This approach
effectively defines the smallest volume within the phase space that contains the set of
trajectories. It is noteworthy that the geometric representation of α-shapes typically
consists of an assembly of triangles. The overall morphology of these shapes can
described by the collection of their edges and vertices. This representation, involving
triangular meshes, can facilitate the examination of vocal signals within the phase
space by employing efficient and lightweight algorithms. In the context of this
study, the α-shape solid for each of the reconstructed attractors was generated by
empirically setting the value of α to 30.

Feature Extraction. As a consequence of the underlying computational attractors
theory, it becomes evident that in presence of more regular voice production systems,
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there is a greater tendency for trajectories to overlap and converge towardss a
predetermined pattern. Consequently, the volume occupied by the points within the
reconstructed phase space retains pivotal information concerning the original signal
[24, 136]. Furthermore, to further focus on the temporal evolution, measurements of
volume in adjacent vocal frames were incorporated into the present analysis. After
removing initial and final periods of silence, two 1-second frames were selected from
the original signal. The first frame, referred to as Volume01, encompasses the initial
transient regions, while the latter captures a more stable phase labeled as Volume12.
To ensure the robustness of the analysis and avoid potential bias from the final decay
of phonation, only recordings longer than 3 seconds were retained.

It is noteworthy that the first window encompassed the attack phase of the voice
signal, a period that often exhibits more chaotic behavior even in normo-phonic
speakers. Subsequently, as the initial transient phase ends, the signal typically
shows more predictable behavior, and the reconstructed trajectories evolve towards
a predetermined pattern. In order to capture these subtle changes and explore their
correlation with PD-related alterations, two metrics were employed: the volume
variation between adjacent windows (∆Volume) and the distance between two consec-
utive α-shape triangular meshes. This latter metric contains information regarding
changes in the overall geometry. This distance was computed by aligning the two
consecutive triangular meshes using the principal axes of inertia as an initial refer-
ence and subsequently measuring the average square distance per point included on
the surface of the 3-D object.

Finally, a binary feature, denoted as Watertight (WT), was introduced to describe
whether the 3-D geometry is represented by a closed surface devoid of holes. Indeed,
such holes may be associated with more chaotic structures or lower recurrence
periods, with attractor points accumulating at the center.

Feature Analysis. The effectiveness of the employed features underwent evalua-
tion in two sequential steps. Initially, with regard to volume and distance measure-
ments, feature distributions and trends were examined using violin plots. Subse-
quently, a Kruskal-Wallis statistical test was employed to determine whether the
features could differentiate between the various classes. For a more deep under-
standing of the physical significance of each feature, additional statistical tests were
conducted between paired groups: (i) comparison between HCs and PDPs (both in
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early and mid-advanced stages) to assess the effectiveness of the approach in model-
ing vocal alterations; (ii) comparison between HC and early-stage PDPs to assess the
model capability to identify early markers for neurodegeneration; (iii) comparison
between early-stage and mid-advanced PD patients to evaluate the capability to
differentiate between different stages of the disease.

As for WT, given its categorical and binary nature, the number of occurrences
of watertight solids for each window and each class was evaluated. Thereafter, the
cardinalities for each class were compared to investigate the presence of recurring
3-D geometries. It is worth noting that prior to conducting the feature importance
analysis, an outlier removal step was performed, retaining only those instances falling
within the 20th and 80th percentiles of the data distribution.

Results

In Figure 4.10, the violin plots illustrate the features examined in this study. Figure
4.10a specifically presents the distinction between Volume01 and Volume12, with
the comparison presented for each class. Figure 4.10b illustrates the percentage
variation in α-Shape volumes, while Figure 4.10c reports the distances between
α-Shape geometries in the first and the second window. As for the count of α-Shape
geometries presenting a watertight structure, the results indicated 59%, 55%, and
88% watertights solids for Mid-Advanced PD, HC, and Early PD, respectively. To
maintain conciseness, results are reported solely for the second investigated window,
as no significant variations related to this feature were noted when changing the
analyzed time window.

In Table 4.22 the results of the Kruskal Wallis test conducted to assess the
presence of statistically significant differences among HCs, early-stage PDs, and
mid-advanced PDs are reported.

Discussion

The results of this study confirmed the effectiveness of an approach based on re-
constructed vocal attractor analysis to investigate vocal alterations related to PD.
As illustrated in Figure 4.10, the analysis of feature distributions highlights signif-
icant increases in attractor volumes among PD patients. This finding aligns with
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(a) Volume0−1andVolume1−2 (b) ∆Volume

(c) Distance between α-Shapes in the two temporal
windows analyzed

Fig. 4.10 Distribution of features derived from the reconstructed attractors

previous research and emphasizes that a disrupted voice production process leads to
the formation of highly chaotic attractors, which do not tend to converge towardss
predictable patterns.

Moreover, although preliminary, the evidence showed a correlation between
altered temporal evolution of attractors and PD arising. It is important to note that
this phenomenon appears to impact individuals in the early stages of the disease
differently of those in the mid-advanced stages. Indeed, in the case of the former
group, higher volumes were observed in the first window, followed by a significant
reduction in the adjacent segment. In contrast, mid-advanced patients presented
lower volumes in the initial windows that remained relatively stable throughout the
entire signal. As for HC, the analyses conducted revealed, as expected, a minimal
volume variation, probably due to the rapid accumulation of points along the same
trajectories, with no significant alterations in the overall 3D geometry. Intriguingly,
early-stage patients took an intermediate stance between HC and Advanced PD,
displaying a higher capability to rapidly overcome the effects of the attack phase,
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Table 4.22 Statistical results obtained from the Kruskal Wallis test

Kruskal-Wallis test results
Feature
name p-value

HC vs Early PD vs Mid-Advanced PD

Volume01 <0.001
Volume12 <0.001
#Volume <0.001
Cost <0.001

HC vs PD (Early PD and Mid-Advanced PD)

Volume01 <0.001
Volume12 <0.001
∆Volume 0.63
Cost 0.0018

HC vs Early PD

Volume01 <0.001
Volume12 <0.001
∆Volume <0.001
Cost <0.001

HC vs Mid-Advanced PD

Volume01 0.064
Volume12 0.0012
∆Volume <0.001
Cost 0.86

Early PD vs Mid-Advanced PD

Volume01 <0.001
Volume12 0.29
∆Volume <0.001
Cost <0.001

much like HC. This dynamic contrasts with advanced patients, who exhibited a nearly
stable, chaotic behavior without the capacity of rapid adjustment. In contrast, for
individuals with PD, both subclasses displayed increased volumes in each analyzed
time window. However, early-stage PD subjects tended to rapidly exhaust the effects
of the attack phase, akin to HC subjects. This attack phase is not observed in advanced
PD patients, who instead exhibited nearly stable chaotic behavior throughout the
duration of the signal.

Regarding the 3-D geometry of the α-shape, a significant trend is evident among
early PD patients in producing non-watertight solids. From a physical perspective,
this outcome implies that the set of points within the attractors linked to the vocal of
early drug-naive PD patients describes broader trajectories.
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The results of the Kruskal-Wallis test, as summarized in Table 4.22, underscored
substantial distinctions among HCs, early-stage PD, and mid-advanced PD groups
for both punctual and differential volume characteristics, as well as the cost metric.
Punctual volume metrics generally demonstrated high effectiveness, with particular
efficacy observed when considering the initial attack phase for distinguishing be-
tween various disease stages. Conversely, differential volume metrics consistently
exhibited statistically significant results (p < 0.001), especially in comparisons be-
tween HC and mid-advanced PD individuals. As for the cost metric, the statistical
analysis revealed significant differences among the compared populations (p < 0.001),
except in the case of HC and mid-advanced PD (p = 0.86).

4.6 Experimental Findings: Influence of External Fac-
tors

As evident from the analysis of the literature related to general vocal analysis (Sec-
tion 4.2), as well in the specific field of PD (Section 4.5.1), the process of vocal
parametrization requires to consider the complex mechanics underlying signal pro-
duction. Indeed, this complexity introduces several speaker-specific factors (such
as gender, age, or concurrent medical conditions) that affect the produced signal.
Additionally, as previously discussed (Section 4.5.2), while simple phonation can
be considered almost independent of the subject’s language, the influence of the
speaker’s nationality becomes relevant when more complex analyses are conducted.
These factors collectively lead to limited generalizability of results obtained from a
specific dataset. Moreover, while the majority of studies tend to adopt a consistent
data collection method, typically involving the placement of a microphone a few cen-
timeters from the speaker’s mouth in a quiet environment, it’s crucial to acknowledge
the potential substantial variability across cases due to additional external factors.
This variability needs careful consideration to ensure the generalizability of results.

In this context, the experiments included in this section aim to evaluate the influ-
ence of external factors on the extracted acoustic parameters to validate previously
obtained results and provide evidence for future studies. Specifically, the conducted
analyses have primarily focused on assessing the robustness of acoustic features
with respect to the subjects’ demographic characteristics and the general recording
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conditions. In addition, preliminary analyses aimed at evaluating the influence of
medication (L-dopa) on the produced vocal signal have also been conducted. The
results from this section are published in [120]

4.6.1 Assessment of Acoustic Features Robustness

This section provides a detailed description of the experiments undertaken to assess
the impact of external factors, such as gender, language, and recording modality, on
acoustic features, and to evaluate their reliability in distinguishing between HC and
PD samples.

The process was carried out in two distinct stages. First, a statistical analysis
was executed to identify features that exhibited consistent behavior across diverse
datasets. These datasets included participants from various nationalities, each with
distinct characteristics, and were recorded using a diverse range of equipment.
Subsequently, a separate investigation was conducted to examine the feasibility of
binary classification between HC and PD using a heterogeneous dataset.

Materials

Five diverse corpora, encompassing a total of 279 subjects (139 with PD and 140
HCs) from three different nationalities, were utilized in this study. These corpora
included the IPVS (Section 4.3.1), PC-GITA (Section 4.3.3), ANTHEA-PDSS1 and
ANTHEA-PDSS2 (Section 4.3.2), and the Hlavnicka corpus (Section 4.3.4). To
ensure the model robustness and control for potential sources of complexity, vocal
samples associated to the sustained phonation of the vowel /a/ were selected from all
the included corpora.

Data analysis was carried out in Python employing Praat for pre-processing and
feature extraction. The Parselmouth library served as an interface to access Praat
internal code.

Methods

Pre-processing. To maintain data consistency across the corpora, which originally
had different sampling rates, a down-sampling process was first applied to standardize
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them to 16 kHz. Moreover, signal amplitudes were normalized within the [0, 1]
range to reduce the potential impact of variations in speaker-microphone distances
on subsequent analyses. To further improve data quality, initial and final silence
regions were manually removed, eliminating the necessity for additional preparatory
procedures.

Feature Extraction. A comprehensive set of vocal features was extracted from
each vocal sample, encompassing both periodicity measures (such as F0, the first
three formants, and their respective bandwidths) and noise-related measures (in-
cluding HNR, CPP, and GNE). Furthermore, spectral characteristics, comprising
features like flux, skewness, entropy, crest, flatness, slope, roll-off, spread, centroid,
and kurtosis, were computed. Cepstral features consisted of MFCC from 1 to 13,
including their first and second derivatives. Intensity, DFA, STE, PLP from 1 to 13,
along with their derivatives, completed the feature set. Thereafter, for each feature,
five essential statistics were calculated, which included the mean, median, standard
deviation, kurtosis, and skewness. It is worth noting that jitter and shimmer variants
were computed across the entire signal since their definitions inherently involve
comparisons among contiguous frames. To ensure feature consistency, a min-max
normalization procedure was applied to standardize them within a uniform range.

Statistical Analysis. The U Mann-Whitney test was initially utilized to identify
features that exhibited a statistically significant distinction (p < 0.05) between indi-
viduals with PD and HC in a minimum of three datasets. Indeed, if this evidence
occurs, it is possible to assume that the acoustic parameter presents robustness versus
different datasets, the subject’s characteristics, and the recording modalities. There-
after, a unified dataset was constructed by merging all the corpora employed, and
the same test was reiterated to investigate the impact of dataset heterogeneity on the
identified features.

Subsequent to this, a Kruskal-Wallis test was carried out to ascertain the presence
of statistically significant variations (p < 0.05) in the distribution of features attributed
to external factors such as gender, language, and the modality of data collection.
To mitigate potential bias arising from differences between the HC and PD groups,
the test was independently applied to each subgroup. A feature was considered
significantly different only if the null hypothesis was rejected in both populations.
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Following the outcomes of these statistical analyses, a robust and effective subset of
features underwent subsequent steps in feature selection and classification.

Feature Selection and Classification. After conducting feature extraction, the
boruta algorithm was implemented on the unified dataset. The selected features were
then fed into ten different classifiers, including KNN, SVM, GP, DT, RF, ANN, NB,
LDA, ADA, and XGB, with the aim of performing an analysis minimally influenced
by the model characteristics. To mitigate the potential risk of overfitting and ensure
the robustness of the models, a two-phase methodology was adopted. In the initial
phase, feature selection and model training were performed using 70% of the original
dataset while the remaining 30% of subjects were exclusively employed for testing,
with no further optimization or training applied to them. Moreover, a 10-fold
CV technique was employed during the training phase to assess the generalization
performance.

Results

Table 4.23 summarizes the statistical test results, focusing on features that showed
both statistical significance and robustness against language, gender, and dataset
variations. As for the binary classification, Table 4.24 presents the classification
accuracy of the best models using two feature sets. The first set comprises features
selected by the boruta algorithm in at least three corpora or in the unified dataset
and minimally affected by external factors. The second feature set included external
covariates (i.e., gender, language, data collection modality) integrated before feature
selection, aiming to enhance generalization as noted in [87].
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Table 4.24 Results of the classification step performed on the unified dataset

10 fold CV Test set
Accuracy Accuracy Specificity Sensitivity AUC F1-score

XGB
71.8 64.9 70.2 60 65.13 64

Jitter (Lab); Spectral center of gravity (mean); 1st Formant (std);
∆∆ MFCC: 7 (median); PLP: 6 (median)

RF
70.2 70.1 75.8 65.9 70.8 71.6

Spectral center of gravity (mean, std); 1st Formant (std);

Discussion

Statistical Analysis. Table 4.23 and Table 4.24 provide the results of the feature
statistical analysis and subsequent classification procedure. According to the findings,
MFCCs proved to be effective in distinguishing between individuals with PDP and
HC, even when dealing with diverse datasets. Notably, they exhibited no statistically
significant associations with language, gender, or dataset characteristics. Similarly,
while the F0 itself lacks robustness against external factors, the associated Jitter
features, which capture differential amplitude measures, seems to assume a pivotal
role in discriminating between the two groups, being minimally affected by language
and dataset variations.

Feature Selection and Classification. In the classification phase, XGB and RF
demonstrated superior performance compared to the other classification models
considered. Moreover, incorporating external factors like language and gender
before the feature selection process, as previously noted in [87], led to improved
generalization capabilities probably due to an overall model that better account for
population-specific characteristics. Importantly, the transition from the validation to
the test set did not result in a significant drop in performance.

The performance achieved confirm the feasibility of training a classification
algorithm on a heterogeneous dataset. This evidence can be of crucial importance
for future studies. Indeed, it is widely acknowledged that the size of the database is a
primary challenge in developing automatic tools for assessing vocal pathology, as it
can lead to overfitting of feature selection and classification outcomes to the specific
population under investigation, as noted by Gomez-Vilda [242]. Moreover, although
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highly homogeneous datasets may yield better results, replicating identical conditions
can be challenging, limiting practical applicability in real-world scenarios. In this
context, the conducted statistical tests, while not exhaustive, offer important insights
into the impact of external factors on acoustic features, aiding in the identification of
aspects necessitating stratification and those can be managed through algorithmic
solutions (e.g., introducing covariates before feature selection).

Although there are no studies in the related literature encompassing an identical
approach, the obtained classification results were compared with those reported
in [96]. To the best of our knowledge, this represents the sole comparable study
conducted to date. In their research, the authors achieved a 75% classification
accuracy in a 10-fold CV performed on a heterogeneous dataset consisting of 241
PDPs and 265 HC individuals. However, additional analyses on a separate test set
were not conducted.

4.6.2 Evaluation of Medication and Disease Progression Impact

Establishing consistent thresholds for categorizing PD stages in clinical contexts is a
continuous challenge, often relying on partially exhaustive indicators such as UPDRS.
Furthermore, the impact of medication intake on vocal samples remains poorly
understood (as discussed in Section 4.5.1). Within this context, this section outlines
the experiments conducted to explore the feasibility of automatically identifying
various stages of PD progression and assessing medication status from vocal samples.

In this study, several binary classifications involving different disease stages and
medication conditions were performed. Additionally, a dedicated post-hoc analysis
of the acoustic features affected and the models achieving the best performance
was carried out to uncover patterns and similarities among various tasks. It is
worth mentioning that this study was conducted under the supervision of researchers
affiliated with the University of Rome Tor Vergata, Rome, Italy, and is published in
[243].

Materials

In this study a super-set of the Suppa corpus (Section 4.3.5) was employed, encom-
passing a total of 72 Early PDP (66.67% Male, 64.85 ± 8.36 years) and 88 Advanced
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PDP (68.18% Male, 70.75 ± 8.87). Among these latter, 52 were recorded both in ON
(i.e., within 1–2 h of the last administration.) and OFF (i.e., at least 12 h after the
last medication intake) L-dopa status, whereas samples from the remaining subgroup
were collected outside of the medication effect. Early PD subjects did not receive
any medication due to their recent diagnosis. Additionally, 266 age- and gender-
matched HCs were included as the normo-speaker counterpart.

Regarding the data collection procedure, vocal samples were recorded using
either a Y6S Honor smartphone (manufactured by Huawei, Guangdong, China) or
the professional equipment described in Section 4.3.5. Smartphone recordings were
acquired through a dedicated application that ensured no compression or filtering
and maintained the same sampling frequency as the professional microphones. For
the purpose of this study, vocal samples associated to the sustained phonation of the
vowel /e/ were used.

Signal processing, data analysis, and model training were conducted using Python
3.8, MATLAB R2022b (MathWorks, Natick, MA, USA), and Praat.

Methods

Pre-processing. Given the non-homogeneous data collection procedure performed
through smartphones or professional microphones, a preliminary pre-processing was
applied aiming at minimizing the differences between the two modalities.

Specifically, a noise reduction was applied through an algorithm based on spectral
subtraction, which individually adapted to the noise profile of each audio record-
ing. Moreover, to address the frequency response, a pre-emphasis process was
employed to mimic the declared response of the Shure WH20 microphone, whereas
the response of an omnidirectional MEMS microphone can be approximated as flat
[244]. Additionally, a further low-pass filtering at 12 KHz was used, considering
that smartphone responses decline in that frequency range, and the quantity of rele-
vant information in voice signals is minimal. For this purpose, a 30-tap FIR filter
implemented in MATLAB was utilized.

Feature Extraction. A total of 453 vocal features were selected for assessing voice
disorders associated with PD. Among them, 339 features were derived applying
the Voice Analysis Toolbox (Section 3.3), including acoustic parameters related to
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F0, Jitter, Shimmer, HNR, MFCC, as well as various non-linear features like pitch
period entropy and glottal-to-noise excitation. Additionally, 18 features related to
low-frequency vocal tremor were extracted using a Praat script originally proposed in
[245]. The final set of 96 features pertaining to vocal formants and their energy was
extracted through Parselmouth coupled with custom routines. Five vocal formants
were extracted from each vocal sample and subsequently the Teager-Kaiser energy
operator (TKEO) was applied to estimate their instantaneous energy. From each
formant and its energy, eight numerical parameters were eventually derived, including
mean, standard deviation, range, percentile, and slope.

Feature Selection and Classification. In order to obtain robust results, minimally
influenced by the characteristics of the pipeline employed, three distinct feature se-
lection methods were implemented and compared, namely the Information Gain (IG),
the Correlation Feature Selection (CFS), and the Minimum Redundancy Maximum
Relevancy (mRMR). As for the latter, a variant of the classic algorithm, originally
introduced by Tsanas et al. [246] and using the Spearman coefficient (mRMRS),
was used

Within this task, three different classification models were employed, namely
KNN, NB, and SVM. These algorithms were chosen for their simplicity and com-
putational efficiency, enhancing the obtainment of interpretable and robust results
in the presence of datasets with limited numerosity. Also, previous results from
similar experiments and literature reviews generally demonstrated their satisfactory
performance achieving resilience to overfitting (Section 4.4.1, Section 4.4.2, Section
4.5.1)

A 10-fold CV was then used to compare the performance using statistical metrics
including accuracy, sensitivity, specificity, F1-score and AUC. It is important to
highlight that the dataset utilized in the current experiment featured only one sample
per subject. This inherently ensures speaker independence throughout the training-
validation-test splitting procedures. A Bayesian optimization procedure aimed at
minimizing the miss-classification error was eventually applied to the model to
identify the best hyper parameters for each classifier.

Given the main objective of this study (i.e., exploring the effect of medication
intake and disease progression on vocal samples), four different comparisons were
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investigated: (i) HC vs Mid-Advanced PD, (ii) Early PD vs HC, (iii) Mid-Advanced
PD vs Early PD, (iv) Mid-Advanced PD ON vs Mid-Advanced PD OFF.

Results

Table 4.25 displays the results derived from the Bayesian hyperparameter optimiza-
tion process applied to the three distinct feature selection methods, namely CFS,
IG, and mRMRS. For each binary classification, as well as each feature selection
algorithm, the best combination of the number of features and classification model,
resulting in the highest classification accuracy, is reported.

Table 4.25 Comparison across three feature selection algorithms employed. For each method,
the number of features and the model that enhances the best performance is reported. The
results are expressed in terms of 10-fold cross-validation accuracy

Feature Selection N Features Model Accuracy

Advanced PD
vs

HC

CFS 12 KNN 0.80±0.01
IG 100 SVM 0.74±0.04
mRMRS 50 SVM 0.77±0.01

Early PD
vs

HC

CFS 17 NB 0.82±0.01
IG 30 SVM 0.78±0.16
mRMRS 70 SVM 0.83±0.02

Advanced PD
vs

Early PD

CFS 17 KNN 0.85±0.02
IG 30 NB 0.79±0.02
mRMRS 10 NB 0.78±0.01

Advanced PD-ON
vs

Advanced PD-OFF

CFS 10 KNN 0.79±0.01
IG 10 NB 0.66±0.03
mRMRS 10 NB 0.69±0.02

To provide a more comprehensive evaluation of the efficacy of each feature
selection algorithm, Table 4.26 presents the classification accuracy for each method
averaged over the three classifiers. The internal hyperparameters were configured as
outlined in Table 4.25.

In Table 4.27 the feature selected from the three algorithm employed for each
binary and multiclass classification carried out in the current study are reported.
For the sake of brevity, only the 5 top-ranked parameters for each feature selection
method are included.
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Table 4.26 Classification accuracy with respect to each feature selection algorithm employed

CFS IG mRMRS

1. Adv. PD vs HC 0.78±0.09 0.73±0.04 0.75±0.05
2. Early PD vs HC 0.80±0.05 0.74±0.02 0.78±0.04
3. Adv. PD vs Early PD 0.84±0.01 0.75±0.02 0.75±0.02
4. Adv. PD-ON vs -OFF 0.72±0.05 0.56±0.1 0.63±0.06
Average 0.78±0.05 0.70±0.09 0.73±0.07

Table 4.27 Identification of the top five features resulting from the feature selection procedures

1. Advanced PD vs HC

CFS mRMRS IG

std 8∆ ∆ std 8∆∆ std 10∆∆

std 11∆ det TKEO mean 1 mean 5∆∆

std MFCC 1st mean ∆∆ LogEn std 8∆ ∆

VFER SNR TKEO Shim F0 abs dif std 8∆

std MFCC 10th GNE std mean 6∆

2. Early PD vs HC

CFS mRMRS IG

std 4∆ app En log 2 ATrPS
app LT En log 9 mean MFCC 4th Ed2 1
IMF NSR En det LT TKEO mean 3 app En log 6
FTrCIP det En Sh. 1 app LT En Sh. 1
std 1∆∆ std MFCC 3rd det LT En Sh. 1

3. Advanced PD vs Early PD

CFS mRMRS IG

std 10∆ std 10∆ std 8∆

std 10∆∆ mean 7∆∆ std 10∆

std MFCC 10th GNE std std 10∆∆

GNE std Shim F0 PQ3 Sch. app LT TKEO mean 3
std MFCC 7th F0 slopeLinFit std 9∆
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Table 4.27 continued

4. Advanced PD-ON vs Advanced PD-OFF

CFS mRMRS IG

Jitt F0 PQ5 Baken mean MFCC 6 app LT TKEO std 6
F1 TKEO mean F0 slopeLinFit AMoN
F5 rangePerc F5 TKEO perc95 std 11∆

det LT En Sh. 2 std 2∆ F4 perc5
mean MFCC 6 F1 perc5 Jitt F0 PQ11

Discussion

Classification. The results derived from this study demonstrated the efficacy of
shallow ML methods in discriminating between the vocal samples of individuals
with PD and HC. Notably, this discrimination remains effective even in the early
stages of the disease. Furthermore, the analysis reveals the ability to distinguish the
voices of mid-advanced stage patients before and after therapy administration.

As for the feature selection algorithms, the choice of different methods have
been demonstrated to substantially impact on classification accuracy, as highlighted
in Table 4.25. This is particularly evident in the classification between Advanced
PDPs in ON and OFF states, with a difference of almost 10% between the best and
worst-performing algorithms. Moreover, when assessing the average performance
across different classifiers (as presented in Table 4.26), the CFS method consistently
outperforms IG, mRMRS ranking second.

Among the classification algorithms employed, KNN tends out to be the most
effective option for the given tasks, despite its simplicity. Diving deeper into the
performance achieved, the binary classification between Advanced PD and HCs
consistently yielded optimal results with an average accuracy of 80% in a 10-fold
CV setting. Similar performance was observed in binary classifications between
different disease stages (e.g., Early vs. Advanced) or early diagnosis (Early vs. HC).
Interestingly, the automatic evaluation of medication intake also delivered satisfac-
tory results (accuracy 79%), indicating the feasibility of automatically recognizing
medication status, albeit with increased complexity.
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Feature Analysis. A post-hoc analysis of the feature selected by the different
algorithms was performed to investigate which parameters demonstrate high ef-
fectiveness in both disease assessment and staging. Furthermore, considering the
divergent findings within the existing literature that lack consensus regarding the
impact of medication intake on vocal samples, special attention was dedicated to
studying evidence from the comparison between Advanced PD OFF and Advanced
PD ON. The objective was to validate and reinforce prior evidence on this specific
aspect (Section 4.5.1).

The investigation performed revealed that the top-ranked features generated by
CFS and mRMRS demonstrate considerable overlap, highlighting the robustness
of the results. Notably, the features identified by CFS/mRMRS predominantly
pertain to perceptual characteristics such as F0, shimmer, formants (e.g., F1, F5), and
glottal model-based macroscopic indicators (e.g., VFER). This evidence confirms the
relevance of pitch-related and prosodic features in the detection and staging of PD in
voice. In contrast, IG frequently identifies distinct, less perceptually interpretable
features.

Additionally, MFCCS and their derivatives were frequently selected, especially
for mid-advanced PD patients, suggesting their utility in characterizing disease
progression. Additionally, a significant number of features related to F0, shimmer,
and jitter, commonly employed in voice analysis, were identified when comparing
vocal samples from ON and OFF L-Dopa PD patients, suggesting a significant
improvement in the periodicity of the produced signal after the medication intake, as
suggested from earlier findings [99, 247].

4.6.3 Analysis of the Role of Recording Devices

The studies presented so far in this thesis have primarily focused on data recorded
using professional microphones, occasionally introducing supplementary samples
recorded under sub-optimal conditions (Sections 4.4.1, 4.4.2, 4.5.2, 4.6.1, 4.6.2).
These suboptimal conditions may have involved lower-quality recording equipment,
altered environmental noise levels, or a lack of supervision during the recording
process, or a combination of these factors. However, given that this project forth-
coming aim is to develop a light-weight and easy-to-use tool for remote monitoring,



114 Application I: Parkinson’s Disease

where ideal conditions are often challenging to replicate, an additional analysis was
conducted to specifically delve into the influence of recording conditions.

Within this context, the present study aims to study this aspect by conducting a
detailed comparison among samples simultaneously recorded with two devices and
evaluating the influence of recording modalities on the extracted acoustic parameters.

Materials

In this study, two different datasets encompassing recordings collected simultane-
ously with different devices were employed, namely the LUHS corpus (Section
4.3.6) and the ANTHEA-PDSS2 corpus (Section 4.3.2). Given the objectives of
this study and to minimize additional sources of complexity arising from speakers’
diverse nationalities, recordings of to sustained vowel phonation were exclusively
employed.

Data analysis was carried out in Python; OpenSmile was used during the feature
extraction procedure.

Methods

Pre-processing and Feature extraction. As described in Section 4.3.6, the LUHS
corpus is distributed with pre-extracted features, hence no preprocessing or feature
extraction procedures were applied to it.

As for the ANTHEA-PDSS2 corpus, a preliminary preprocessing step was
implemented to remove initial and final silent regions. Afterward, the OpenSmile
toolbox was employed to extract the CompaE2016 set of features. This step was
taken to enable a direct comparison between the two corpora. Notably, the selected
set of features is also part of the LUHS toolbox collection, representing a superset
of many other included sets. By utilizing a predefined routine, it was possible to
ensure that the extraction process remained consistent between the two corpora, thus
avoiding discrepancies arising from the extraction procedure. Z-score standardization
was then applied to reduce all the features to the same range.

Feature Selection and Classification. Given the primary objective of this study,
which is to assess the impact of different recording modalities on the model ability
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to differentiate between HCs and PDPs, a three-step pipeline was implemented for
each subset of the LUHS dataset. This approach was adopted to mitigate potential
biases stemming from variations in feature extraction toolboxes, feature extraction
algorithms, and classification models.

In order to enable a fair comparison between the two recording modalities, each
feature set in the LUHS dataset underwent three distinct feature selection methods
(ANOVA, boruta, and correlation-Based), and the resulting subsets were input into
four different classification models (SVM, KNN, GNB, GB). Moreover, an extra
optimization step was introduced to fine-tune the hyperparameters associated with
feature selection. This adjustment aimed to enhance the performance of the most
effective feature selection-classifier combination.

The correlation-based approach is a customized algorithm, adapted from that
presented in Section 4.4.1, which aims to select the most relevant features exhibiting
a strong correlation with the class variable while ensuring non-redundancy (low cross-
correlation). The internal algorithm involved calculating the Pearson coefficient
(r) for each feature with respect to the class variable (r f 0) and considering its
absolute value. Consequently, only features with the highest significance (i.e.,
r > 0.3, p < 0.05) were retained. Subsequently, intra-feature correlations (r f f )
were calculated, and for feature pairs where the inter-correlation exceeded the intra-
correlation (i.e., r f f > r f 0), the feature with lower correlation with the class variable
was removed [129]. During the optimization process, the correlation threshold with
the class variable was tuned from 0.3 to 0.4 with steps of 0.01. As for ANOVA, the
initial value of k (i.e., the number of features returned by the model) was initially set
to 10 and then fine-tuned from 5 to 50 with a step of 5. For boruta, the percentage of
false positive values was tuned from 90 to 100 with steps of 1.

For each classifier, all accuracy values obtained through k-fold CV were recorded,
and their mean value was calculated. The best-performing classifier, i.e., that with
the highest mean value among the three considered feature selection methods, was
selected based on the highest mean accuracy. Subsequently, the three most effective
feature selection-classifier pairs were identified, and that with the highest validation
accuracy was retained for the final optimization.

To ensure unbiased results, the original dataset was initially divided into an
80% portion for training and validation and a 20% portion for test set, without
further optimization. Additionally, a 10-fold CV procedure was employed during the
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pipeline selection and optimization, using the accuracy metric. Figure 4.11 provides
a block diagram of the process applied to each feature set within the LUHS corpus,
for both high- and low-quality recording equipment (i.e., 17 subsets x 2 recording
modalities = 34 subsets).
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Fig. 4.11 Overview of the pipeline selection process applied to the LUHS dataset

Cross-device Validation. To delve further into the influence of recording condi-
tions on classification performance, the best-performing pipeline from each subset
of the LUHS corpus was subject to an additional cross-device validation.

In this analysis, the model trained on data recorded with the microphone was
tested on data recorded with the smartphone (and vice versa). To ensure impartial
results, the dataset was initially divided into training and test sets. Subject IDs were
randomly assigned to either the training or test group, and the respective recordings
were used either for model training or testing. An illustrative diagram of this process
is provided in Figure 4.12.

Statistical Analysis. To investigate the impact of recording modality on the ex-
tracted features, the Wilcoxon signed-rank test was applied to each set of features
within the LUHS dataset. This test provided a p-value for each feature, which was
then sorted in ascending and descending order. Among them, the top 20 features
that exhibited statistically significant differences (p < 0.05) between high-quality
and low-quality acquisitions and the top 20 features that did not show statistically
significant distinctions (p > 0.05) were selected.
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Fig. 4.12 Overview of the cross-validation process applied to the LUHS corpus

Subsequently, and in-depth analyses was conducted to identify which feature
families demonstrated statistically similar values between the two recording modes
thus proving invariant with respect to the recording technique. In more detail, after
identifying the features with the maximum and minimum differences for each dataset
within the LUHS corpus, a cross-toolbox analysis was carried out. This analysis
assumed that, despite variations, the LUHS datasets evaluated similar sets of features.
It is important to note that, due to discrepancies among various toolboxes, the analysis
was simplified by comparing feature families that were created by grouping different
features referring to the same aspect. For instance, diverse toolboxes compute distinct
statistical parameters derived from the F0. Performing a one-to-one comparison
of these features would be impractical. Nevertheless, grouping these statistical
parameters into domains allows for a more feasible high-level study, enabling the
assessment of similarities across different studies within a specific domain.
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Within this approach, the term F0 related encompasses all statistical parameters
associated to the fundamental frequency, while Jitter and Shimmer group together
various Jitter and Shimmer variants (e.g., APQ5, AP3, and so on). In the case of
different spectral statistics and cepstral parameters, including MFCCs and CPP, they
are collectively referred to as Spectral and Cepstral, respectively. The Noise category
includes all parameters related to noise characterization in voice, as discussed in
Section 3.2.2, such as HNR and GNE, among others. Energy in specific bands
encompasses features that are directly linked to energy in given spectral bands (as
regions in the acoustic signal spectrum measures from those bands). Probability of
voiced includes all features related to the alternation between voiced and unvoiced
segments. Loudness encompasses all measures related to the sound intensity of the
acoustic signal, while Envelope Descriptors includes all descriptors of the signal en-
velope. Finally, Area of moments groups together measures related to the distribution
of energy in the acoustic signal, although only one toolbox employed this type of
feature.

Despite its limitations, this analysis provided insight into how individual features
are influenced by the recording technique, regardless of the specific algorithm used
for their calculation. Indeed, different toolboxes often employ diverse algorithms to
evaluate the same feature.

Building on the results obtained from the LUHS dataset, a second corpus was
used to assess the generalizability of the findings on previously unseen samples
recorded in a different setting. Indeed, since the LUHS corpus came with pre-
extracted features that did not allow signal analysis and manipulation, a second
dataset, namely the ANTHEA-PDSS2, was recorded simultaneously using both
professional equipment and smartphones. All the samples in this second corpus
underwent pre-processing and feature extraction employing the ComPare set from
OpenSmile. From this set, the 20 features with the most significant differences
in the LUHS corpus, denoted by low p-values, were selected and investigated.
Subsequently, considering that the presence of background noise is one of the
primary challenges in recordings made with omnidirectional microphones, typically
found in smartphones, the spectral subtraction technique was applied to each signal.
The features were then extracted once again, and their distributions were recalculated
to investigate the impact of a targeted preprocessing technique aimed at mitigating
one of the primary sources of difference between the two recording modes.
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Results

Classification. In Figure 4.13 the results of the comparison between the classifiers
and feature selection algorithms are reported for the High-quality and Low-quality
sub-dataset included in the LUHS corpus. Performance are expressed in terms of
10-fold CV Accuracy. For the sake of brevity, only the best performing classifiers
are displayed. In Table 4.28 are reported the performance of the optimized models
for both high- and low-quality equipment.
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Fig. 4.13 Results of the comparison between classifiers and feature selection algorithms
for sub-datasets in the LUHS corpus. Performance are expressed in terms of 10-fold CV
Accuracy
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Cross-device Validation. In Table 4.29 the results from the cross-device experi-
ment conducted are reported. To maintain conciseness, these experiments were only
carried out for the LUHS subset that yielded the best performance. Specifically, the
first set of experiments pertains to high-quality equipment, while the eleventh set
pertains to low-quality equipment, as shown in Table 4.28.

Table 4.29 Results obtained from the cross-device experiment

High-quality equipment Low-quality equipment
LUHS subset leading
to highest performance 1 11

Classifier SVM SVM
Feature selection Corr (r=0.32) boruta (perc=100)
Train accuracy 0.86 0.96
Test accuracy 0.85 0.80
Cross-device test accuracy 0.75 0.70

Statistical Analysis. In Figure 4.14 the results of the Wilcoxon test are reported
for those features yielding the highest and the smallest difference between the
recording conditions. Furthermore, to conduct a more thorough investigation into the
cepstral class that is frequently selected in both categories, an in-depth analysis was
performed to determine whether differences also exist in the specific type of MFCC
coefficients selected. According to the findings, the lower coefficients, particularly
MFCC 1, is frequently associated to the most significant differences between the two
recording modalities.

Results on the ANTHEA-PDSS2 Dataset. In Figure 4.16 the results of the valida-
tion on the ANTHEA-PDSS2 corpus are reported. In particular, the figure reports the
distribution of the top 20 features exhibiting the most significant differences between
recording modalities. Boxplots allow the comparison between samples recorded
under high-quality conditions, low-quality conditions, and low-quality conditions
following a denoising procedure. For each feature the corresponding OpenSmile
notation is reported.
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Fig. 4.14 Results of the Wilcoxon test for features showing the smallest differences between
recording devices
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Fig. 4.16 Distribution of the top 20 features exhibiting the most significant differences
between recording modalities. This representation illustrates the data for samples recorded
under high-quality conditions (HQ), low-quality conditions (LQ), and low-quality conditions
following a denoising procedure (LQ Denoised)

Discussion

Classification. The classification step, performed on the 17 different feature sets
included in the LUHS corpus, demonstrated optimal performance for both high- and
low-quality recordings with no significant degradation between the two modalities
(Figures 4.13). Regarding the pipeline used, no consistent trend emerged from the
comparison of results across different feature sets. In fact, all feature selection and
classification algorithms proved effective for some feature sets, although SVM and
KNN were more frequently selected as the best performing classifiers.

Following the optimization of hyperparameters for feature selection, the best-
performing pipelines were tested on an independent set composed of previously
unseen samples. The results, shown in Table 4.28, confirmed similar performance
between the different recording techniques. Notably, boruta and Correlation-based
feature selection algorithms were among the most effective ones . In terms of
classification models, SVM and KNN consistently demonstrated their efficacy in
distinguishing between HCs and PDPs, even when dealing with a limited dataset.

One noticeable difference emerged among various models, with some of them
exhibiting a strong generalization capability, while others yielding variable perfor-
mance between the validation and test sets. It is important to note that all sets
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underwent the same model selection and optimization procedures, suggesting that
these outcomes may be attributed to inherent characteristics of the original dataset.
Furthermore, overlaying these findings with the comparison of recording modalities,
it is possible to observe that only five sets (2, 3, 11, 12, 15) consistently demonstrated
generalization capabilities regardless of the data acquisition equipment used, thus
suggesting the robustness of the features included versus the data recording modality.

Cross-device Validation. The results of the cross-device validation support and
reinforce the findings from previous analyses: it is feasible to classify between
controls and patients with PD using voice signals, recorded under either optimal or
sub-optimal conditions, as long as a specific pipeline is trained on similar signals
that closely resemble those the model will be applied to.

As demonstrated in Table 4.29, even though the two training sets are composed
of the same subjects, randomly selected and differing only in the data collection
technique, transitioning from one recording modality to another yields approximately
10% reduction in classification accuracy. This reduction occurs whether the model
is trained on higher-quality data and tested on lower-quality data or vice versa.
Considering the limited size of the dataset, it is reasonable to assume that a substantial
increase in sample size could reduce this effect.

Statistical Analysis. The comparison between features with the smallest differ-
ences and those with the highest differences (Figure 4.14) based on the data collection
modality revealed that statistical parameters extracted from F0 and Jitter-related
features are the most robust, regardless of the data collection modality. These fea-
tures were exclusively included within the group with the highest p-values and were
selected in 8 and 6 feature sets, respectively. Therefore, their robustness is likely
independent of the algorithm used for their computation. As for Shimmer-related
features, they also are included within the features with the lowest differences. How-
ever, there is less agreement among different datasets, indicating reduced robustness
in the results. Envelope descriptors, Wavelet-based features, and area of moments
were included only in a single feature set each, thus further validation of the results
is necessary.

Regarding spectral and cepstral features, a deeper analysis was deemed necessary
due to the large number of samples in both identified classes. The results indicated
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a remarkable difference in the occurrences of the statistical descriptors Variance
and Flatness. Variance exhibits a high dependence on the acquisition mode, while
Flatness exhibits low dependence. Similarly, an in-depth analysis of various MFCC
coefficients revealed that lower coefficients, particularly the first one, are more
prominently selected among the features that exhibit a higher dependency on the
classes. This phenomenon may be attributed to the increased presence of background
noise captured in recordings made with omnidirectional microphones, as is the case
with smartphones.

Results on the ANTHEA-PDSS2 Dataset. A further experiment was conducted
to assess the influence of applying a denoising filter on the extracted features. Indeed,
the results of binary classification and cross-device validation indicate that vocal
signals, whether acquired with professional or low-cost equipment, contain crucial
information about the patient’s health status. Furthermore the proposed automatic
classification models exhibited similar performance in both cases, suggesting that
the key constraint is related to parameter extraction and the development of models
tailored to the data collection mode. To validate this evidence without direct access
to the raw audio signals in the LUHS corpus, it was decided to use a second dataset
containing samples collected in similar conditions, to evaluate the influence of some
pre-processing steps aimed to reduce the difference between the recording modalities.

With this in mind, the 20 features that exhibited the highest differences between
the two recording modalities were computed from the new set of samples recorded
with professional microphones and smartphones. Additionally, features were also
extracted from smartphone-recorded samples after applying a pre-processing step
involving a denoising filter based on spectral subtraction. The results, as shown in
Figure 4.16, revealed that the application of the denoising step effectively reduced
the differences between the data collection modalities for Zero Crossing Rate (ZCR)
and Spectral features. However, the preprocessing step did not yield significant
improvement for more complex parameters such as MFCC.

4.7 Overall Conclusions and Future Works

In this dissertation, several experiments were conducted to explore various facets of
voice analysis in the context of PD. The primary objectives of these experiments were
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twofold: first, to demonstrate the effectiveness of automatic models in recognizing
vocal impairments associated with PD; second, to explore specific aspects of the
data collection and analysis procedures related to this study. The findings revealed
several key insights.

It has been shown that different vocal tasks exhibited variable performance, and
as expected, an effective and concise protocol for distinguishing between control
subjects and individuals with PD should encompass the use of a vowel, with the vowel
/a/ yielding superior results, along with the inclusion of a sentence. Interestingly,
when comparing various phonetically balanced sentences, no substantial differences
was revealed. Nevertheless, the use of occlusive sounds proved particularly effective.
In the context of the Italian language, occlusives and fricatives demonstrated a
superior capacity to capture the characteristic impairment associated to PD. In
scenarios involving multiple tasks, an early fusion of parameters within the feature
space should be preferred over a majority voting approach (late fusion). This evidence
was supported by improved performance, generalization capacity, and computational
efficiency.

Regarding acoustic parameters, MFCC coefficients seem to be the preferred
choice as they are included in most available toolboxes, have proven highly effective
in numerous studies, appear robust even under suboptimal recording conditions, and
can capture vocal alterations even in heterogeneous datasets with varying subject
demographics (e.g., language and gender). In addition to MFCC, commonly used
acoustic parameters include F0, Shimmer, Jitter, descriptive spectrum parameters
(e.g., center of gravity, flatness), HNR, PLP, DFA, and RPDE. Among these, F0,
Jitter, and Shimmer, as expected, exhibit a strong gender dependency that should
be considered in analysis. In general, it is a good practice to introduce cofactors
such as gender and age before feature selection to assist algorithms in selecting the
right feature subset, resulting in improved system performance. When it comes to
complexity parameters, the analyses conducted and the literature review demon-
strated their effectiveness, even though it is advisable to use them in conjunction with
other features. Parameters such as F0, Shimmer, and formants are also effective in
capturing vocal alterations following medication intake. These alterations primarily
manifest as changes in the periodic aspect of the signal.

Additionally, the inclusion of specific parameters designed to assess fine mo-
tor impairment through transition zone analysis showcased significant potential in
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distinguishing between HCs and individuals with PD. Another promising approach
involved the analysis of the temporal evolution of vocal signals reconstructed in
phase space, offering insights into differences between control subjects and those
with PD, as well as distinctions among patients in the early and advanced stages of
the disease.

In terms of the toolboxes employed, Praat emerged as the preferred choice, pri-
marily due to its widespread usage, which enables direct comparisons with other
studies. Praat also provided validated acoustic parameters, supported study repro-
ducibility, included routines for analyzing various tasks, and could be seamlessly
integrated into Python using the Parselmouth library. However, it is essential to note
that the included parameter set was not exhaustive, necessitating to be complemented
with routines from other libraries.

An experiment conducted on a heterogeneous dataset, albeit limited to the use
of the vowel /a/ , successfully demonstrated strong classification ability even when
data were recorded with different devices and included subjects with diverse de-
mographic characteristics. This finding holds promise, especially in the context of
biomedical signals, where data availability may be limited, potentially facilitating
the development of cross-lingual models.

The evidence of analyses conducted on the data collection modality, collectively
suggests that it is possible to classify individuals with PD from HCs using record-
ings made in unsupervised environments with low-quality microphones, as those
embedded in smartphones. Nevertheless, it was observed that recording in unsuper-
vised settings significantly impacted performance. In the case of recordings made
with smartphones in supervised environments, existing literature and conducted
experiments converged on the evidence that classification was attainable if a tailored
pipeline was constructed, utilizing features and algorithms suitable for recordings
different from those captured in ideal conditions. It was emphasized that, in general,
training models with data that reflected the intended use conditions was the best prac-
tice to be applied. However, in situations where this was not feasible, the application
of pre-processing techniques aimed at minimizing differences between recording
modalities could lead to improvements in certain parameters, while others, such as
MFCC, may exhibit no improvement or even impair, warranting careful attention.

Despite the promising results reported in this dissertation, one major limitation
was the frequent reliance on small sample sizes. Future research endeavors should
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prioritize the expansion of sample sizes to ensure more robust analyses. Furthermore,
future investigations should explore the simultaneous influence of multiple patholo-
gies on vocal signals, examine the feasibility of personalized patient rehabilitation
based on preliminary vocal analysis to identify the most impactful aspects, extend
the analysis of medication effects to develop support for physicians in administering
and dosing therapy, and assess the viability of a differential analysis.

While certain challenges and limitations were identified, the promising results
suggest that with the expansion of datasets, refinement of techniques, and sustained
research efforts, voice analysis can be a valuable asset in the management of this
complex neurological disorders.



Chapter 5

Application II: GERD and Obesity

5.1 Obesity

5.1.1 Incidence and Prevalence

Obesity is a complex and multifactorial chronic condition characterized by the
excessive accumulation of adipose tissue [248]. Over the last few decades, there has
been a consistent global increase in the incidence and prevalence of obesity, with
estimates indicating that it has more than doubled since 1980 [249]. This rise can be
attributed to various factors, including shifts in dietary habits, sedentary lifestyles,
and genetic predisposition.

According to the World Health Organization (WHO), as of 2022, the global
impact of obesity is significant, affecting over 640 million adults and 110 million
children and adolescents worldwide [248]. However, it is important to note that
the incidence and prevalence of obesity vary by region and country. High-income
nations, such as the United States, tend to report higher obesity rates compared to
low-income countries. Recent WHO studies have highlighted that North America,
Europe, and Oceania have a higher prevalence of obesity [248].

Furthermore, disparities in educational attainment have proven to be a determin-
ing factor, with higher rates of obesity observed among individuals with lower levels
of education [248].
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5.1.2 Pathophysiology

At cellular level, obesity is characterized by the hypertrophy and hyperplasia of
adipocytes. Increased caloric intake results in an accumulation of excess triglycerides
within adipocytes, setting off a chain of metabolic alterations and changes in the
secretion of adipokines—bioactive substances released by adipose tissue.

Going into more detail, the dysfunction of adipose tissue in obesity primarily
entails chronic low-grade inflammation and disruptions in adipokine production.
Adipokines play a pivotal role in the regulation of appetite, energy metabolism,
insulin sensitivity, and inflammation. Dysregulation in the production and release
of adipokines contributes to metabolic irregularities and low-grade systemic inflam-
mation [250]. Consequently, adipocytes release elevated levels of pro-inflammatory
cytokines, resulting in tissue inflammation and insulin resistance, often prevalent
in individuals with obesity [250]. Furthermore, the malfunctioning of adipose tis-
sue disrupts the balance of other hormones involved in appetite regulation, leading
to an altered perception of hunger and satiety. This disruption in appetite control
contributes to excessive calorie consumption and further weight gain.

Due to this series of underlying pathological changes, obesity extends its impact
beyond adipose tissue and affects multiple organs and systems. It must be regarded
as a risk factor for various diseases and conditions including among others, Type
2 diabetes mellitus, cardiovascular diseases, metabolic syndrome, GERD, chronic
kidney disease, hypertension, cancer, obstructive sleep apnea, and depression [249,
248]

5.1.3 Etiology

The pathogenesis of obesity is a complex interplay of genetic, environmental, and
behavioral factors leading to an imbalance between energy intake and expenditure.

As for Genetic factors, recent evidence suggests that the heritability of Body Mass
Index (BMI) ranges from 40% to 70%, underscoring the pivotal role of genetic factors
in the development of obesity [250]. Genomic studies have identified deficiencies in
leptin and melanocortin-4 receptors as the most common genetic causes of obesity.
These genes are predominantly expressed in the hypothalamus and play a crucial
role in the neural circuits that regulate energy homeostasis [250].
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Table 5.1 Classifications of adults based on Body Mass Index

Classification BMI Risk of comorbities

Underweight <18.5 Increased risk of other clinical problems)
Normal range 18.50 - 24.99 Average
Overweight ≥ 25.00
Preobese 25.00-29.99 Increased
Obese class I 30.00-34.99 Moderate
Obese class II 35.00-39.99 Severe
Obese class III ≥ 40.00 Very severe

Moreover, Environmental factors demonstrated to play a pivotal role. Indeed,
ongoing research indicates a multitude of factors that have contributed to a positive
energy balance and weight gain, particularly in high-income countries [248]. These
include increased availability and consumption of high-calorie foods, along with a
decline in occupational physical activity. Furthermore, the substitution of leisure-
time physical activities with sedentary pursuits such as television watching and
computer games has further exacerbated this trend. Finally, the growing use of drugs
that can cause weight gain as a collateral effect and inadequate sleep has also been
demonstrated to have a strong influence on the increased obesity incidence [250].

5.1.4 Diagnostic Criteria and Complicating Factors

The diagnostic criteria for obesity primarily rely on the assessment of BMI and
abdominal circumference. Despite the influence of sex, age, and race [251–253],
this measurement provides objective indicators of adiposity and aids in classifying
individuals into different weight categories. The classification of different subgroups,
in accordance with the WHO [254], is shown in Table 5.1.

It is important to ackowledge that BMI functions as a screening tool and does
not directly measure body fat percentage or consider variations in body composition.
Therefore, it is subject to limitations, particularly in individuals with high muscle
mass or variations in bone density. In these cases, clinical judgment and additional
evaluations may be necessary to complement the BMI assessment and provide a
comprehensive diagnosis [254].
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5.1.5 Treatment

The treatment of obesity involves a comprehensive approach designed to achieve
weight loss, improve overall health, and mitigate obesity-related complications.
This approach encompasses lifestyle modifications, dietary interventions, increased
physical activity, behavioral therapy, pharmacotherapy, and, in severe cases, bariatric
surgery.

• Lifestyle modification. The primary method for managing weight is to reduce
caloric balance through dietary adjustments and increased physical activity.
Behavioral counseling, along with the use of applications delivered via smart-
phone or computer, is often employed to provide daily support to patients
and address emotional and behavioral factors contributing to overeating and
sedentary habits [250]. Additionally, collaborative counseling techniques are
used to enhance adherence to lifestyle modifications and prevent weight regain.

• Pharmacotheraphy. Pharmacological options may be considered for individ-
uals with a BMI ≥ 30 or a 27 ≤ BMI ≤ 29 with at least one weight-related
coexisting condition [250]. These individuals may not have achieved adequate
weight loss through lifestyle interventions alone. Medications may include
drugs that reduce appetite and nutrient absorption, such as orlistat, lorcaserin,
and liraglutide, or those that modify neurochemical pathways involved in ap-
petite regulation, like phentermine-topiramate and naltrexone-bupropion [250].
However, the use of pharmacotherapy is generally limited to severe cases due
to associated risk factors and common weight regain after the termination of
drug treatment [250].

• Bariatric surgery. Bariatric surgery may be considered for individuals with
a BMI ≥ 40 or ≥ 35 with serious obesity-related comorbidities who have
not achieved adequate weight loss through lifestyle interventions alone [255].
Currently, three main types of procedures are utilized, including adjustable
gastric banding, gastric sleeve, and gastric bypass [250]. Adjustable gastric
banding is considered the less invasive procedure and involves placing a
silicone band around the gastric fundus to create a pouch. The band can be
inflated with a saline solution to induce early satiety, contributing to moderate
weight reduction. It can be adjusted by adding or removing saline solution to
achieve tailored control. In sleeve gastrectomy, a large portion of the stomach
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is surgically removed, reducing food intake. Lastly, gastric bypass (Roux-en-Y
gastric bypass) restricts food consumption by creating a small pouch at the top
of the stomach. The small intestine is then rearranged to connect to the newly
created pouch, bypassing a portion of the stomach and the upper part of the
intestine. In this case, too, food intake is reduced, leading to weight loss and
improvements in metabolic parameters [256].

5.2 Gastroesophageal Reflux Disorder

5.2.1 Incidence and Prevalence

Gastroesophageal reflux disorder (GERD) is a chronic condition characterized by
recurrent and troublesome heartburn, marked by a burning sensation in the chest or
throat, and regurgitation. It is estimated to affect approximately 13% of the global
population [257]. A considerable geographic variation is however appreciable, with
higher rates, around 20%, in high-income countries like those in North America
and Europe [258, 259]. Interestingly, the prevalence of the disease has increased by
approximately 50% since the 1990s but has since stabilized [257].

The prevalence of GERD is influenced by various factors, including age, gender,
lifestyle habits, genetic predisposition, and the presence of comorbidities such as
obesity and hiatal hernia. GERD is more common in older adults, and there may be
variations in symptom presentation and severity between males and females [258].

5.2.2 Pathophysiology

GERD is a pathological condition characterized by a dysfunction at the level of the
esophagogastric junction barrier, resulting in increased regurgitation of acidic gastric
contents into the esophagus [258]. The pathophysiology of GERD is multifactorial
and involves a combination of mechanisms, including the reduced tone of the lower
esophageal sphincter (LES), the presence of a hiatal hernia, esophageal motility, and
delayed gastric emptying [259].

The LES is a circular band of muscle located at the junction between the esoph-
agus and the stomach, primarily responsible for preventing the reflux of stomach
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contents into the esophagus. In individuals with GERD, the LES may exhibit de-
creased resting tone or inappropriate relaxation, reducing its effectiveness. Factors
contributing to LES dysfunction include genetic factors, hormonal influences, im-
paired neural control, and the effects of substances such as alcohol, caffeine, and
tobacco. The presence of a hiatal hernia, where a portion of the stomach protrudes
through the diaphragm into the chest cavity, can further weaken the LES and impair
its proper function, making individuals more susceptible to GERD [259].

Reduced esophageal peristalsis can contribute to impaired esophageal clearance
by prolonging exposure to corrosive acid substances, increasing the likelihood of
tissue damage. Additionally, although the underlying mechanism is not entirely clear,
delayed gastric emptying can increase the volume and pressure of gastric contents,
promoting reflux into the esophagus [259].

5.2.3 Etiology

The primary cause of GERD remains unknown, but several risk factors have been
identified in its pathogenesis. Increasing BMI in obese individuals is associated with
a higher risk of developing GERD. This is primarily due to the reduction of lower
esophageal sphincter pressure, a higher incidence of hiatal hernia, and an increase
in intra-gastric pressure resulting from fat accumulation [260, 258, 257]. Similarly,
tobacco use and alcohol consumption have also been shown to exacerbate GERD
symptoms, although the extent of their effects is still a subject of debate [257, 258].

While the etiology of GERD appears to be primarily influenced by environmental
factors, genomic studies have revealed the possibility of heritability. However, no in-
dividual mutation has been found to be significantly associated with the development
of GERD, suggesting a polygenic scenario [257, 258].

5.2.4 Symptoms

The primary symptoms of GERD include heartburn and acid regurgitation, which
significantly impact ADLs [258, 257]. Most GERD patients report a burning sensa-
tion or discomfort in the chest, behind the breastbone, or in the throat. This heartburn
typically occurs after meals, especially when lying down or bending over. Moreover,
night-time episodes can also lead to sleep difficulties [258]. Acid regurgitation is a



138 Application II: GERD and Obesity

frequent symptom and can occur either along with or independently of heartburn.
Chest pain, which can be similar to cardiac pain, is also a common symptom that
may occur alone or in conjunction with heartburn and regurgitation [261].

The clinical spectrum of GERD patients can include less common symptoms,
such as dysphagia (difficulty swallowing), chronic cough, asthma, chronic laryngitis,
hoarseness, and teeth erosion due to frequent exposure to acidic and irritating liquids
[258].

5.2.5 Diagnostic Criteria and Complicating Factors

The diagnosis of GERD is a comprehensive process that involves a systematic
evaluation, including clinical assessment, an analysis of the cardinal symptoms, a
review of the patient’s medical history, and specific diagnostic tests.

The initial step always begins with a thorough analysis of the patient’s medical
history to assess the frequency and duration of common symptoms, such as heart-
burn and regurgitation. However, it is important to note that GERD symptoms are
non-specific and can overlap with those of other disorders, making the diagnosis
process more complex. In cases where the clinical presentation strongly indicates
the presence of GERD, guidelines recommend a short-term trial of Proton Pump
Inhibitors (PPI) or other acid-suppressing medications to assess the response of
symptoms. If there is no improvement in symptoms following this therapy but the
diagnosis still appears likely, more precise diagnostic tests, including endoscopy,
esophageal manometry, and pH monitoring, can be utilized [258].

5.2.6 Treatment

The treatment of GERD involves a multifaceted approach with the goal of allevi-
ating symptoms, healing esophageal inflammation, preventing complications, and
enhancing the patient’s quality of life.

Lifestyle interventions, accompanied by dedicated counseling, have proven to
be effective in managing GERD [258, 261]. Specifically, weight loss and smoking
cessation are crucial in reducing GERD symptoms. For individuals with noctur-
nal GERD, recommendations include elevating the head of the bed and avoiding
late-night meals. In terms of pharmacological treatment, PPIs such as omeprazole,
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lansoprazole, and pantoprazole are commonly prescribed to reduce gastric acid pro-
duction by inhibiting hydrogen-potassium ATPase in the parietal cells of the stomach
[258]. However, recent evidence, while not definitive, has suggested possible risks
of adverse effects associated with prolonged use of PPI therapy. Therefore, patients
who do not experience adequate relief after 4 to 8 weeks of treatment should undergo
further evaluation for a more accurate differential diagnosis and a more tailored
treatment plan [258].

In cases where medications and lifestyle modifications are ineffective or not
well-tolerated, surgical intervention may be considered. Potential options for GERD
patients include laparoscopic fundoplication or bariatric surgery, particularly when
obesity is the primary cause of reflux disease [258]. These procedures involve
wrapping the upper portion of the stomach around the LES to strengthen the barrier
and prevent reflux. However, the invasiveness of fundoplication as a treatment
option requires careful consideration in accordance with established guidelines. It
is typically reserved to selected patients who have undergone comprehensive and
objective assessments, especially if they are young and in good health. Recently,
there have been emerging endoscopic and less invasive surgical techniques that show
promise in reducing the reliance on long-term PPI and fundoplication. Nonetheless,
the long-term safety and efficacy of these approaches still require scientific validation
[258]

5.3 Effects of Obesity and GERD on Voice Production

GERD and obesity are complex and prevalent medical conditions that can have a
significant impact on an individual’s health and quality of life. GERD is characterized
by the backflow of stomach acid and irritants into the throat, often resulting in
inflammation of the vocal cords, which can manifest as hoarseness, voice changes,
or chronic laryngitis. In contrast, obesity, defined by excessive accumulation of
adipose tissue, is associated with various health challenges, including alterations in
respiratory patterns due to increased body weight, which can influence the process
of vocal production.

The assessment and diagnosis of GERD traditionally involve invasive techniques,
often relying on the subject’s response to pharmacological therapy, which may have
numerous side effects. Moreover, the co-occurrence of GERD and obesity is not
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well-understood, particularly regarding its impact on vocal production. This lack of
knowledge underscores the need for detailed investigations into how the concurrent
presence of these two conditions affects the overall health status and, in particular,
the vocal signals.

Within this context, this section provides an in-depth analysis of the influence of
GERD and obesity on vocal signals. Specifically, it explores whether the coexistence
of these conditions alters the produced vocal signal and, if so, the nature of these
alterations. Through the use of automatic models based on vocal analysis, this study
aims to shed light on the vocal characteristics associated with GERD and obesity,
ultimately contributing to a better understanding of these conditions and their effects
on voice. The results from this study are published in [262].

5.3.1 Related studies

A recent body of literature have initiated investigations into the relationship between
body weight and voice, particularly focusing on vocal alterations in obese patients
(OP) [20] due to the breathing compliance reduction, airflow resistance increase,
and respiratory muscle disorders that typically arise as body weight increases [263].
However, these studies have provided only limited insights into the impact of obesity
on vocal production [264–266]

A study conducted by Souza et al. [20] delved into the effects of obesity on
voice by analyzing data from 84 female participants. The study identified a negative
correlation between BMI and key vocal parameters, including the F0 and MPT.
Nevertheless, this analysis utilized a restricted set of vocal features and exclusively
included female subjects. Similarly, Fonseca et al. [21] examined the impact of
obesity on voice in a study involving 114 obese patients (52 before and 62 after
bariatric surgery) and 20 HCs. The study, however, suffered from limitations,
including the use of a narrow set of vocal features and an imbalanced distribution of
subjects among classes, potentially introducing bias.

Regarding GERD, Milani et al. [267] explored the feasibility of classifying
individuals into two groups: HC and patients with GERD (PR). Their approach
involved feeding a classifier with MFCCs derived from voice samples. The dataset
consisted of 30 voice samples from patients, equally distributed among hyperkinetic,
hypokinetic dysphonia, and left cricothyroid muscle diseases, along with 10 HC



5.3 Effects of Obesity and GERD on Voice Production 141

samples. While the dataset was substantial, the study solely reported classification
accuracy without presenting additional performance metrics. Nevertheless, the
reported average classification accuracy of 0.88 across the four classes suggests the
potential for assessing GERD through voice recordings.

5.3.2 Materials

The study involved the recruitment of a total of 92 participants, who were classified
into four groups: HC, PR,OP, and obese patients with concomitant GERD (OPR).
These participants, all aged geq 18 years, met the criteria for inclusion, which ex-
cluded any phonatory apparatus injuries such as vocal cord paralysis. The assessment
of obesity and GERD was performed by clinicians using BMI measurements and
symptom evaluation questionnaires, respectively.

The vocal samples were recorded under controlled conditions in a spacious,
soundproof environment to minimize external interference. Each participant was in-
dividually seated, instructed to maintain a posture with their back and arms supported
by the backrest and armrests of the chair, and asked to speak at a comfortable volume.
Microphones were positioned at a consistent distance of 5 cm from the participant’s
mouth to ensure standardized recording conditions. Vocal samples were captured
using a dynamic headset microphone (WH20) manufactured by Shure (USA), fea-
turing a male 3-pin XLR connector. The recordings were made using a H5 voice
recorder produced by Zoom (Tokyo, Japan), capturing the audio in a high-quality
uncompressed format (.wav) at 24-bit resolution and a 44.1 kHz sampling rate.

The experimental protocol was tailored for the Italian language and included
two specific vocal tasks. The first task involved sustained phonation of the vowel
/a/, while the second task required participants to repetitively articulate a designated
sentence, "a kaB"al don"ato n"on s"i Gw"aRDa "in b"okka (i.e., Don’t look a gift horse in
the mouth) (S1). This sentence was chosen to provide insights into the prosodic and
articulatory capabilities of the participants.

Of particular significance was the selection of sentence S1, which features
occlusive sounds. As previously discussed (Section 4.5.2), unlike other consonants,
occlusives are characterized by a sudden obstruction of airflow by the articulators.
Hence, they are highly dependent on precise airflow regulation and involve intricate
articulatory movements. For this reason, S1 was considered suitable for capturing
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vocal alterations in the various patient groups given that individuals with a higher
body fat percentage may experience respiratory system changes [263]. Moreover,
patients with GERD may encounter challenges related to laryngeal control and
structural changes in laryngeal tissue [268].

Data analysis was carried out in Python, with the primary tools being Praat,
which facilitated the pre-processing of audio recordings and the extraction of relevant
vocal features. This research adhered to the principles outlined in the Declaration
of Helsinki and was granted approval by the Ethics Committee of the Policlinico
di Tor Vergata under approval number 7/20. All participants provided written
informed consent for their involvement in the study, and all demographic and clinical
information was documented anonymously.

Table 5.2 provides a summary of the key characteristics of each group, offering a
clear overview of the study’s participant demographics and distribution.

Table 5.2 Demographic details of participants in the study. Results are reported in terms
of mean and standard deviation. GERD: Gastro-Esophageal Reflux Disorder; M: Male;
F:Female

Healthy Control GERD Obesity GERD & Obesity

Age 43 ± 15.8 45 ± 19.1 59 ± 9.2 55 ± 10.9
Gender 8M, 19F 6M, 15F 1M, 17F 11M, 15F
BMI 22.71 ± 2.0 22.6 ± 1.7 34 ± 4.6 37 ± 8.9

5.3.3 Methods

Pre-Processing

The initial preprocessing steps involved the normalization of recorded audio signals
to fall within the range of [-1, 1]. This normalization procedure was applied to
mitigate potential variations in the recorded signals caused by differences in the
speaker-microphone distance, thus ensuring a standardized input for subsequent
analysis.

Following normalization, the segments of initial and final silence were removed
from the audio recordings. Utilizing Praat software, the onset and offset points of
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voiced regions were detected within the audio signals. This step was essential for
isolating the regions of interest, where vocalization occurred.

It is noteworthy that, due to the use of professional recording equipment with high
signal quality, no denoising filters were applied to preserve all relevant information
within the recorded audio, as the application of denoising filters could potentially
result in the loss of significant acoustic details critical for subsequent analysis.

Feature Extraction

Given the distinct methodological approach taken in this study and the absence of a
predefined feature set with established high relevance to the specific application, an
empirical feature extraction process was undertaken, encompassing approximately
500 features for the vowel /a/ and 600 for the sentence S1, subsequently evaluated
for their efficacy.

Going into more detail, following the identification and merging of voiced
regions, each audio signal was segmented into 40 ms windows with a 50% overlap,
facilitating the extraction of features from each of these temporal segments. These
extracted features were then grouped together into a unified vector, upon which
five key statistical measures were computed, namely, the mean value, median value,
standard deviation, kurtosis, and skewness. This set of low-level features was
augmented with high-level features, computed over the entire duration of the signal,
which included measures such as Jitter, Shimmer, among the others.

To ensure uniform scaling of features and mitigate the influence of potential
outliers on model performance, a Z-score normalization was applied to the entire
feature set.

An overview of the selected features and their relevant information is provided
in Table 5.3.

Feature Selection

The feature selection procedure employed in this study was adapted from a similar
investigation focusing on individuals with PDP, previously discussed in Section 4.4.1.
This methodology leveraged a correlation-based approach, aimed at identifying
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Table 5.3 Features employed in the study together with the region they were applied to. V:
Vowel / a/, Vs: Voiced regions of S1 sentence

Feature Name Applied to

F0 V, Vs
1st , 2nd , 3rd Formants V, Vs
13 MFCC + ∆, ∆∆ V, Vs
Jitter (Lab, RAP, DDP, PPQ5) V
Shimmer (dB, APQ3, APQ5, APQ11) V
Intensity V, Vs
STE V
Noise: GNE, HNR, CPP V, Vs
Spectral features: mean, std, skew., kurt., roll-off, slope Vw, Vs
13 RASTA-PLP, + ∆, ∆∆ V, Vs
24 BBE V, Vs
DFA V

the most influential features, characterized by high feature-target correlation, while
simultaneously ensuring their non-redundancy.

The procedure unfolded in two primary stages. Firstly, an evaluation of the
absolute value of Pearson’s correlation coefficient (r) between the features and
the target variable (r f t) was carried out, and only the most substantial correlations
were preserved (r > th1, P < th2). Subsequently, intra-feature correlations (r f f )
were computed, and in cases where inter-correlation surpassed intra-correlation (i.e.,
r f f > r f t), the feature demonstrating weaker correlation with the target variable was
eliminated.

To determine the optimal threshold values tailored to the specific application at
hand, initial values of th1 = 0.3 and th2 = 0.05 were set. These threshold values
were then iteratively fine-tuned, ranging from 0.3 to 0.7 for th1 and from 0.03 to
0.07 for th2, with incremental steps of 0.1 and 0.01, respectively. The selection of
optimal threshold values was based on the evauation of the highest accuracy achieved
within a 5-fold CV.

Classification

Given the aim of this study (i.e., assess the influence of GERD and obesity of vocal
samples as well as investigate how the concurrent presence of these two conditions
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affects the signals generated) four different binary classifications were performed,
namely (i) HC vs PR; (ii) OP vs OPR; (iii) HC vs OP; (iv) PR vs OPR. Subjects
without GERD or obesity were categorized into the HC group, while individuals
with either reflux or obesity were placed in the PR and OP groups, respectively. The
OPR group consisted of patients with both reflux and obesity.

To prevent potential issues with model generalization, the dataset was randomly
divided into two subsets: 80% for training and validation, and the remaining 20%
for testing. Feature selection, model selection, and optimization were exclusively
performed on the training and validation set, while the testing set did not undergo
further optimization procedures.

Features extracted from / a/ and S1 were combined into a single vector through
an early fusion approach (Section 4.4.1) and used as input for the classifier. Four
different models were assessed: NB, KNN, RF, and SVM. The model exhibiting
the highest performance was selected for further refinement, which involved hyper-
parameter optimization using a Grid Search approach. The best accuracy achieved
in a 5-fold CV was used as the primary metric for model comparisons.

To evaluate the stability of the final model, given the random data splitting
procedure, performance metrics such as accuracy, F1-score, precision, sensitivity,
specificity, and AUC were calculated as averages over five iterations.

5.3.4 Results

Prior to feature selection, a comprehensive exploration was conducted to assess
the importance of the features. This evaluation was based on Pearson’s correlation
coefficients between each feature and the respective class. Table 5.5 presents the
three most correlated features along with their associated p-values for each class
under investigation. Subsequently, the feature selection process was executed. The
outcomes of this procedure are detailed in Table 5.6.

The reduced set of features was utilized as input for four distinct classifiers,
and the classifier achieving the highest classification accuracy was chosen. The
comparison of these classifiers are reported in Table 5.4.

The best models eventually underwent a grid-search optimization process. The
parameters considered for optimization included C values (1, 10, 100, 1000), gamma
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Table 5.4 Classification accuracy of the four models tested

HC vs PR OP vs OPR HC vs OP PR vs OPR

Model SVM NB NB SVM
Accuracy 0.95 0.86 0.84 0.94

Table 5.5 Importance of the top-three selected features from each binary classification
performed. S: Sentence, V: Vowel

Feature Task r P-value

H vs PR
∆PLP 5 skewness S -0.42 0.003
3 BBE skewness S 0.40 0.005
13 MFCC kurtosis V 0.40 0.005
6 PLP median V -0.50 0.001
11 MFCC kurtosis V -0.43 0.004

H vs OP
BBE8 median S -0.48 <0.001
GNE median S -0.47 <0.001
7 BBE mean S -0.46 0.001

PR vs OPR
12 ∆∆PLP skewness S -0.57 <0.001
1 ∆∆MFCC std S -0.52 0.001
1 BBE std S -0.50 0.001

values (0.1, 0.01, 0.001, 0.0001), and kernel options (linear, polynomial, Radial
Basis Function (RBF)) for SVM, as well as smoothing values (ranging from 1 to
1e−09 with steps of 1e−01) for NB. The best hyper-parameters identified were C = 1,
gamma = 0.01, kernel = RBF for SVM, and smoothing = 1.0 for NB.

The performance of the optimized models is reported in Table 5.8.

5.3.5 Discussion

The results obtained in this study confirmed the influence of GERD and obesity on
vocal production as well as the potential of utilizing ML analysis of vocal tests as a
non-invasive, cost-effective, and efficient tool for the detection of GERD.

The feature relevance analysis, as presented in Table 5.5, underscores the signif-
icance of features such as MFCCs, PLP, and BBE. These features are commonly
employed to model the vocal tract during articulation, capturing the resonance prop-
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Table 5.6 Features selected from sentence and vowel repetition tasks for each binary classifi-
cation performed

From Vowel From Phrase

HC vs PR CPP; MFCC: 8,13 MFCC ∆:
3,6,10; MFCC∆∆: 3,7; PLP: 11;
PLP∆∆

1st Formant; HNR; BBE: 1,3,4;
MFCC: 3; MFCC∆: 2,12;
MFCC∆∆: 1,12; PLP: 1,11,12;
PLP∆: 1,5,9,12; PLP∆∆: 2, 11

OP vs OPR 2nd Formant; Spectral Slope;
MFCC: 11; MFCC∆: 6,12,13;
MFCC∆∆: 11-13; PLP: 6;
PLP∆∆: 9

GNE; Spectral mean; BBE:
1-5,22;MFCC: 8; MFCC∆∆:
2; PLP: 2,5-7,10; PLP∆:
2,5;PLP∆∆: 5,12

HC vs OP MFCC∆: 4,7 GNE; BBE: 4,5,7-9,12; MFCC∆:
3,8; PLP: 5,7,12; PLP∆: 3;
PLP∆∆: 7,8,10

PR vs OPR 3rd Formants ; Spectral features:
flux, kurtosis, skewness, roll-
off pt; HNR; MFCC: 9,11,13;
MFCC∆: 12; MFCC∆∆: 1,12,13

Spectral features: mean, skew-
ness; BBE: 1,8,9,12,13; MFCC:
3; MFCC∆: 1; PLP: 0,2,4;
PLP∆: 0-2,11; PLP∆∆: 0,2

Table 5.7 Performance of the optimized models on the validation set.

HC vs PR OP vs OPR HC vs OP PR vs OPR

Accuracy 0.8 ± 0.06 0.78 ± 0.06 0.82 ± 0.04 0.87 ± 0.04
Precision 0.96 ± 0.03 0.71 ± 0.06 0.87 ± 0.06 0.91 ± 0.06
F1 0.79 ± 0.092 0.77 ± 0.05 0.80 ± 0.05 0.84 ± 0.06
Sensibility 0.72 ± 0.12 0.89 ± 0.04 0.78 ± 0.04 0.81 ± 0.08
Specificity 0.97 ± 0.02 0.72 ± 0.10 0.86 ± 0.06 0.93 ± 0.04
AUC 0.94 ± 0.03 0.87 ± 0.05 0.92 ± 0.03 0.92 ± 0.03

Table 5.8 Performance of the optimized models on the test set.

HC vs PR OP vs OPR HC vs OP PR vs OPR

Accuracy 0.84 ± 0.08 0.71 ± 0.11 0.80 ± 0.15 0.75 ± 0.11
Precision 0.85 ± 0.12 0.68 ± 0.18 0.81 ± 0.16 0.81 ± 0.16
F1 0.78 ± 0.11 0.72 ± 0.09 0.76 ± 0.14 0.73 ± 0.12
Sensibility 0.75 ± 0.16 0.80 ± 0.10 0.72 ± 0.20 0.70 ± 0.19
Specificity 0.90 ± 0.08 0.64 ± 0.23 0.87 ± 0.12 0.80 ± 0.19
AUC 0.83 ± 0.09 0.72 ± 0.10 0.79 ± 0.15 0.75 ± 0.11
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erties of the supralaryngeal vocal tract and detecting kinematic changes in the vocal
apparatus, as noted in relevant literature [269]. The importance of MFCC for GERD
patients was also highlighted in a prior study [267]. The inclusion of noise-related
features supports the notion of altered noise levels in pathological voices, consistent
with findings in the literature [270, 268].

As for the vocal tasks employed, the evidence indicated S1 demonstrating higher
efficacy compared to / a/. This observation is further supported by the results of the
feature selection process, as detailed in Table 5.6. Indeed, features derived from S1
were more frequently selected.

In terms of classification outcomes, the model demonstrates robust performance,
with no significant decline observed when transitioning from the validation to the
test set, as presented in Table 5.8. This absence of over-fitting and the consistent
performance across iterations suggest excellent generalization capability.

An analysis of the four experiments conducted reveals that the model ability to
detect GERD outperforms its ability to detect obesity, indicating a potential interplay
between the two conditions. Notably, GERD detection in the presence of obesity
yields lower accuracy compared to cases without obesity, both in the validation and
testing phases. Similarly, the detection of obesity in the presence of GERD shows
slightly better performance during validation but exhibits a substantial reduction
when applied to the testing set, implying a reduced overall classification capability.
This suggests that the presence of GERD may induce more pronounced variations
than obesity alone, and the concurrent presence of the two conditions may lead to
distinct vocal changes compared to their individual presence.

5.3.6 Conclusion and Future Works

This study explored the feasibility of classifying patients with obesity and GERD
through an analysis of vocal tests. Despite the simplicity of the workflow, ML
models demonstrated efficiency, achieving accuracy ranging from 0.78 to 0.87 in
CV and from 0.71 to 0.84 in testing. The higher performance observed in GERD
detection may be attributed to its more pronounced impact on the vocal apparatus.
Furthermore, a mutual influence between GERD and obesity was evident, with the
presence of obesity associated with reduced model performance.
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Future research will address the current limitations stemming from dataset size
and composition. These limitations mainly include an unbalanced distribution of
gender and age, recognized for their influence on voice characteristics, as noted in
Section 4.7. Additionally, the assessment of obesity was based on BMI, without
considering the actual distribution of body fat, which will be taken into account in
future investigations.

Moreover, although the analyses conducted thus far have been focused on GERD
and obesity, the findings are potentially applicable to more impactful health con-
ditions, such as PD. In this context, future studies will extend the investigation
to simultaneously evaluate two co-existing conditions within this field, aiming to
validate how the concurrent presence of two diseases influences vocal analyses.



Chapter 6

Application IV: Sleep Quality

6.1 Sleep Quality

6.1.1 Statistics

Recent estimates reveal that sleep disorders impact a significant portion of the world
population, with approximately 50 to 70 million people affected in the United States
alone [271]. Among these, insomnia and sleep apnea are among the most common
alterations, with an increasing trend of incidence. [271]. Moreover, poor sleep
is intricately linked to a higher incidence of chronic health conditions, including
cardiovascular diseases, diabetes, obesity, and mental health issues [271].

According to the 2011-2014 report from the National Center for Health Statistics,
31.7% of US adults do not meet the National Sleep Foundation recommendation for
at least 7 hours of sleep per night [271]. This emerging trend is due to an array of
sociodemographic, social integration, and health behavior factors that play a role in
sleep quality and duration.

Among them, gender disparities are evident, with women more prone to sleep
problems and often experiencing shorter sleep durations compared to men. Ad-
ditionally, non-urban residence fosters improved sleep quality, potentially due to
reduced urban noise and pollution levels. The socioeconomic status exhibits mixed
associations, with some studies correlating low income and education with sleep
issues, while others fail to establish such a connection.
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Moreover, health behaviors such as insufficient physical exercise, smoking, and
excessive alcohol consumption can diminish sleep quality, though these associations
may vary across different populations [272].

6.1.2 Pathophysiology

Sleep is a dynamic and transitory state of altered consciousness that encompasses a
multifaceted array of functions. While it certainly plays a crucial role in promoting
restorative processes, it extends its significance beyond it. One of its pivotal con-
tributions lies in the active participation of the brain glymphatic system, which is
responsible for the efficient clearance of metabolic waste products from the central
nervous system (CNS) [273, 274].

The glymphatic system constitutes a complex and finely regulated neural waste
clearance mechanism which predominantly operates during non-rapid eye moment
(NREM) sleep, pronounced predominance during slow-wave sleep (SWS). In more
detail, during wakefulness, the interstitial space within the brain is limited, hin-
dered by the swelling of glial cells that support neuronal function. However, as
an individual transitions into NREM sleep, the glial cells, particularly astrocytes,
undergo a process of cell volume regulation. This causes a noticeable shrinkage of
these cells, effectively expanding the interstitial space. This facilitate the bulk flow
of cerebrospinal fluid (CSF) through the brain parenchyma. The CSF, laden with
essential nutrients and freshly oxygenated resources, enters the brain tissue through
the perivascular channels surrounding arteries. As it permeates the parenchyma,
it carries with it the accumulated metabolic waste products and cellular debris, in-
cluding soluble proteins such as beta-amyloids , which are known biomarkers in
neurodegenerative disorders like PD [273, 274].

Poor sleep quality may led to both short-term and long-term consequences on
physical, mental, and emotional well-being. As for the former, increased fatigue,
mood disturbances, and cognitive or physical impariment are among the most fre-
quent. As for long-term effects, persistent poor sleep quality is associated with
chronic health condition, cognitive decline, as well as menatl health disorders and
cognitive decline.
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6.1.3 Assessment Criteria and Complicating Factors

The evaluation of sleep quality encompasses a range of multidimensional criteria.
Key parameters include sleep latency, quantifying the time required to initiate sleep,
and sleep duration, reflecting the total duration of sleep achieved during the sleep
period. Additionally, sleep architecture, characterized by sleep stage distributions,
rapid eye movement (REM) sleep patterns, and non-REM sleep stages, plays a crucial
role in evaluating sleep quality. Moreover, the presence of repetitive patterns of sleep
disruption over weeks or months completes the diagnostic scenario in assessing sleep
quality [275].

Polysomnography (PSG) [276], a common method for assessing sleep, is an inva-
sive diagnostic test involving the recording of biosignals during sleep using numerous
electrodes. This comprehensive procedure includes electroencephalography (EEG)
for monitoring brain activity, electrooculography (EOG) to track eye movement,
and electromyography (EMG) for assessing muscle tone. Additional measurements
include respiratory parameters, such as airflow, thoracic and abdominal effort, and
blood oxygen levels, recorded through nasal pressure sensors, respiratory inductance
plethysmography, and pulse oximetry, respectively. Electrocardiography (ECG)
provides information about cardiac activity, while leg movement sensors detect any
periodic leg movements during sleep. However, despite its comprehensiveness, PSG
has several drawbacks, including its intrusive and costly nature, which often neces-
sitates an overnight stay in a sleep laboratory. The presence of numerous sensors
and electrodes may disrupt the natural sleep environment, potentially influencing
sleep quality. Moreover, the complexity and cost of polysomnography restrict its
widespread use and accessibility, thereby making alternative methods increasingly
attractive for assessing sleep quality.

To mitigate the limitations associated with these techniques, subjective assess-
ments through standardized questionnaires are frequently employed. The Pittsburgh
Sleep Quality Index (PSQI) [277] is one of the most renowned tools for capturing
individuals’ subjective perceptions of their sleep quality. However, evaluating sleep
quality through questionnaires may introduce biases based on individuals’ subjective
perceptions, hence additional objective tests are often necessary for a comprehensive
assessment.
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6.2 Automated Vocal Analysis for Sleep Quality As-
sessment

The study of sleep quality is an exceptionally vital field within medicine, considering
the prevalence of conditions arising from poor sleep quality. Furthermore, numerous
studies have already demonstrated how altered sleep patterns during various sleep
phases can represent the precursors to various neurodegenerative diseases, such as
PD (Section 4.1). However, the analysis of sleep quality presently relies on highly
invasive and complex methodologies, like PSG, involving the collection of biosignals
during sleep through a significant number of electrodes.

Within this context, this study aims to explore the possibility of utilizing vocal
signals to support sleep monitoring. This investigation is grounded in the concept
that poor sleep quality is often associated with an overall fatigue that manifests as
perceivable alterations in vocal production. In parallel, by examining the correlation
between sleep quality indices and vocal signals, the second objective of this study
is to assess whether and to what extent sleep rhythm disruptions may influence the
produced vocal signal. Beyond sleep analysis itself, insights in this regard could
be highly relevant in the periodic monitoring of various conditions through vocal
sample collection. As previously discussed (Section 4.1), in cases where vocal
sample collections occur sporadically, it is crucial to understand which cofactors
affect the produced signal and which alterations are characteristic of the examined
condition. In this context, comprehending the relationship between sleep quality and
vocal production may prove to be pivotal.

6.2.1 Related Literature

In recent years, an increasing body of literature have initiated investigated the
relationship between sleep quality and voice. Within this context, the study by Icht
et al. [278] presents compelling evidence of a degradation in voice quality under
stressful conditions, notably in the context of sleep deprivation. This investigation
involved the analysis of vocal samples from 47 healthy participants, which were
recorded using professional-grade equipment while the subjects performed various
vocal tasks. Notably, the results of this study unveiled a significant decline in HNR
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values following 24 hours of sleep deprivation, with the most pronounced effects
observed within the female subgroup.

In a related research endeavor undertaken by Kim et al. [279], the focus shifted
towards the potential of voice analysis in predicting Sleep Quality (SQ). In this study,
203 healthy native English speakers were enlisted to complete a series of question-
naires through mobile devices and provide voice samples encompassing free speech,
sentence articulation, and text reading. The evaluation of regression performance,
conducted through a 5-fold CV framework, centered on the Concordance Correlation
Coefficient (CCC) between the actual and predicted SQ scores. The study reported a
CCC value of 0.5 for the SQ index, indicative of promising outcomes.

Furthermore, in a study by Botelho et al. [280], an investigation into the detection
of Obstructive Sleep Apnea (OSA) was conducted, drawing upon speech samples
from 45 Portuguese subjects, comprising 25 individuals with OSA and 20 control
subjects. The participants engaged in both free monologue and text reading tasks.
Vocal features, including F0, HNR, and cepstral coefficients, were computed and
subsequently input into an ensemble model employing SVM, LDA, KNN. The
results of this study demonstrated a notable performance, yielding 88% True Positive
Rate (TPR) and 80% True Negative Rate (TNR) in the context of OSA detection.

6.2.2 Materials

Data collection for this study involved Italian speakers who accessed a user-friendly
web application (WA) accessible on both desktop and mobile web browsers. The WA
was meticulously designed to guide users through a voice test and two sleep-related
questionnaires. The voice test required participants to read a phonemically balanced
text, as proposed in [104] and previously reported in Section 4.3.1. This text was
selected for its ability to capture various aspects of altered voices, given its length,
intricate phonetics, and the need for expressive variation during reading.

Following the vocal task, participants were required to complete a questionnaire
assessing their sleep quality, in addition to a survey which inquired about their
daily habits and sleep-wake cycle. Furthermore, a section was included in which
participants provided their age, gender, and level of education.

In total, 135 anonymous volunteers took part in the study, of which 55 were
male. Among these, 70 subjects (37 males) completed all the tasks, including the
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recording and the sleep questionnaires. For the subsequent analysis, this subgroup
was the primary focus. Given the impact of gender on many of the extracted vocal
features, the dataset was divided into two groups (males and females), and the
same analysis workflow was applied to each cluster. Data collection adhered to
the principles outlined in the Declaration of Helsinki and received approval from
the Ethics Committee of the A.O.U Città della Salute e della Scienza di Torino
(number 00384/2020). Informed consent was obtained for the observational study,
with demographic and clinical data collected anonymously.

Table 6.1 provides an overview of the information gathered. Regarding age, the
values listed exclude 10 subjects (8 females) who did not input their age on the
online form. Given that this subset represents 14% of the entire group (and 23% of
the female subjects), for subsequent analysis the missing values were imputed with
the median age of the entire group, categorized by gender.

Data analysis and classification were conducted using Python, with Praat pre-
dominantly utilized for pre-processing and feature extraction.

Table 6.1 Demographics of the included subjects

Age
Education

Level
Remote
Working

sPSQI SLEEPS score

Female 41.4 ± 18.1

Middle:
3 (9%) 9

(27%)
6.38 ± 1.51 2.29 ± 1.04Secondary:

7 (21%)
Degree:

23 (70%)

Male 36.9 ± 14.5

Middle:
2 (5%) 12

(33%)
6.05 ± 1.88 2.39 ± 0.92Secondary:

10 (27%)
Degree:

25 (68%))
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6.2.3 Methods

Vocal Analysis

Signal pre-processing. To enhance the data quality and consistency, several pre-
processing procedures were applied. Firstly, the recordings were down-sampled to
16 kHz, facilitating uniformity across the dataset. Additionally, a de-noising filter
with default Praat hyperparameters was applied to each signal, effectively reducing
background noise interference. To ensure the model robustness and mitigate any
potential impact of variations in speaker-microphone distances, the signal amplitudes
were normalized within the range [0, 1]. Initial and final silence regions were
manually removed, obviating the need for further preparatory steps. Finally, the
Praat software was employed to identify the start and end points of voiced regions
within the vocal signals.

Feature extraction. Given that a well-defined set of features tailored explicitly for
this application was unavailable, it was opted to extract a comprehensive array of
96 vocal features, aiming to explore their efficacy. Two distinct groups of features
were derived, with the first group focusing on timing measures extracted from the
entire vocal signal. These features aimed to discern alterations in the rhythmic
characteristics of speech and encompassed the NP, the DPI, and the RST metrics.
The second group of features focused on periodicity measures, and included F0
and the first three formants, noise measures, such as HNR, CPP, GNE, as well
as amplitude-related features encompassing Intensity. Furthermore, spectral and
cepstral features, such as 12 MFCC and 13 PLP coefficients, were extracted. These
features had proven their effectiveness in similar studies, as documented in [279, 280]

Each signal was segmented into 25 ms windows with a 10 ms overlap after the
identification and merging of voiced regions. Features were then extracted from
each segment, unified into a feature vector, and subjected to the computation of
five essential statistics, namely the mean value, median value, standard deviation,
kurtosis, and skewness. Furthermore, Z-score normalization was applied to the entire
feature set, thereby ensuring consistent scaling across the features.
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Sleep Analysis

Sleep Quality Assessment. To evaluate the overall sleep quality of participants,
the shortened version of the Pittsburgh Sleep Quality Index (sPSQI) was selected,
being a well-validated 13-item survey adapted from the original PSQI. The sPSQI
provides a global score that distinguishes between individuals classified as having
either good or poor sleep quality. Unlike the standard PSQI, the sPSQI solely relies
on self-reported responses from participants. While PSG is considered the gold
standard for diagnosing sleep disorders, the PSQI is a reliable and commonly used
tool in both research and clinical practice.

The sPSQI evaluates sleep quality based on five components: Sleep Latency, Du-
ration, Efficiency, Disturbances, and Daytime Dysfunction. Among the 70 subjects
in the dataset, the sPSQI scores ranged from 0 to 10, with 10 indicating the most
severe sleep disturbances. The average sPSQI score was 6.21 ± 1.72, with a median
score of 6.0. Previous research has suggested a cutoff value of 4 for identifying
poor sleepers using the shortened PSQI. However, based on the dataset range and
distribution, a cutoff value of 5.0 was established, which classified 26 participants as
good sleepers and 44 as poor sleepers.

Sleep Features. A supplementary sleep survey, denoted as SLEEPS, was admin-
istered through the WA. This survey comprised 21 self-reported items designed to
offer insights into the sleep-wake schedules and habits of the participants, thereby
investigating potential correlations with their sleep quality.

One item in the SLEEPS survey assessed the SLEEPQ, a parameter often eval-
uated using sleep diaries in actigraphy studies and compared to the actual value.
Participants rated their sleep quality on a 5-point scale ranging from Excellent to
Very Poor. All items in the survey were scored on a Likert scale from 0 to 4, with 4
indicating the most negative response. This scoring method aligns with established
protocols as outlined in [277] and is consistent with the design of the sPSQI. Binary
or numerical responses were appropriately adjusted to this scale. The set of questions
within the SLEEPS questionnaire is reported in Table 6.2.
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Table 6.2 Items and scores of the SLEEPS questionnaire

Item Score

I. General Data

Covid-19 diagnosis Scale
OSA diagnosis Scale
Insomnia Scale
University Y/N
Work Y/N

II. Work and Study Habits

Remote Working/Learning Y/N
Hours of Screen Time Scale
End of use Time of Electronic Devices Numeric
Blue Light Filter Y/N

III. Leisure Time Habits

Time spent away from home during workdays Numeric
Time spent outside over the weekend Numeric
Excercise hours (outdoors, per week) Numeric
Excercise hours (indoors, per week) Numeric
Time spent working on a hobby (per week) Numeric

IV. Sleep Habits

Nocturnal awakenings Scale
Getting up at night Scale
Morning drowsiness Scale
Morning fatigue Scale
Fatigue, poor concentration and impaired performance Scale
Difficulty falling asleep Scale
Perceived sleep quality Scale

Feature selection

In order to implement an adequate feature integration, an early fusion procedure was
performed within the vocal and sleep parameters. Subsequently, a feature selection
workflow, adapted from a similar study previously described in Section 4.4.1, was
applied.

The feature selection process employed a correlation-based approach, aimed
at identifying the most significant features with respect to their association with
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the target variable (i.e., high feature-target correlation) while minimizing feature
redundancy (i.e., low inter-feature correlation). The Pearson correlation coefficient
r f o between individual features and the target variable was assessed. The absolute
value of this coefficient for each feature was calculated, and features demonstrating a
substantial correlation (i.e., r > 0.4) with a corresponding p below 0.02 were retained.
Subsequently, the intra-feature correlation (r f f ) was computed. For feature pairs in
which the inter-correlation surpassed the intra-correlation (i.e., r f f > r f o), the feature
demonstrating weaker correlation with the target variable was selectively removed.
This process ensured the preservation of the most pertinent and informative features
for subsequent analysis.

Classification

The study conducted automatic binary classification to distinguish subjects charac-
terized by either good or poor sleep quality. Labels were determined by applying a
common clinical practice approach, where a threshold on the continuous sPSQI score
was set to demarcate the two categories, as documented in clinical guidelines [281].
Specifically, the quality threshold was established at 5.0, as detailed in Section 6.2.3.
Subjects with a continuous sPSQI score above this threshold were categorized as
poor sleepers.

To ensure the model generalization capabilities and mitigate overfitting, the
corpus was randomly split into two subsets: 80% used for training and validation,
and the remaining 20% for testing. The process of feature selection, model selection,
and model optimization was exclusively carried out on the training and validation
set, leaving the 20% of subjects for testing purposes.

Seven different ML classifiers (i.e., NB, SVM, KNN, RF, ADA, GB, BAG)
were employed and compared, and the classifier achieving the highest F-1 score
was selected for further optimization. Given the imbalanced dataset, where the
count of poor sleepers outnumbered good sleepers, the F-1 score was preferred over
the classification accuracy for performance evaluation. Due to the random dataset
split, each experiment was conducted 10 times on 10 randomly drawn subsets, and
the performance metrics averaged to facilitate classifier comparison. Furthermore,
hyperparameter optimization employing a Grid Search approach was applied to the
best-performing model.
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6.2.4 Results

In this study, an examination of feature significance was conducted by assessing the
Pearson correlation coefficients between each feature and the class variable. For
the female population, the three most correlated acoustic features were identified
as ∆∆MFCC12 std (r : −0.70, p < 0.001), ∆MFCC12 std (r : −0.67, p < 0.001),
and ∆∆MFCC10 std (r : 0.60, p < 0.001). Similarly, among the male population,
significant features were ∆MFCC3 mean (r : 0.50, p < 0.001) and ∆∆ MFCC6
mean (r : −0.46, p < 0.004), along with the SLEEPQ parameter from the sleep
questionnaire (r :−0.56, p < 0.001).

A similar analysis was performed on the sleep scores obtained from the SLEEPS
questionnaires to identify potential significant factors contributing to reduced sleep
quality. Among the observed factors, a noteworthy connection was found with
COVID-19 positivity. In light of this, the sPSQI scores were analyzed, taking
into account the COVID-19 parameter, which distinguished subjects as having past
positivity, current positivity, or no prior diagnosis. Among males, those with a history
of COVID infection exhibited notably worse sPSQI scores, indicating poorer sleep
quality. Conversely, for individuals in the N-condition (never diagnosed), the scores
were more evenly distributed within the data range. In contrast, no similar trend was
observed in the female group. Furthermore, in male subset sPSQI and SLEEPQ, both
scores exhibited a degree of correlation. However, within the female group, some
subjects demonstrated a tendency to overrate their sleep quality. Specifically, 35% of
these individuals rated their sleep as Average, despite having sPSQI scores of 7.0 ±
1.53, and 32.4% assessed their sleep as Above Average with sPSQI scores of 6.0 ±
0.95—both indicating sleep quality below the average threshold. Lastly, the items
collected via the SLEEPS questionnaire were ranked based on their correlation with
the SLEEPQ parameter. As anticipated, factors such as the frequency of nocturnal
awakenings, the presence of insomnia, and the total hours of sleep exhibited a strong
correlation with perceived sleep quality. In contrast, no significant correlation was
identified with variables such as remote working (or learning) or the use of a blue
light filter. Instead, moderate correlations were observed with variables like the time
of electronic device usage cessation, morning drowsiness, and difficulties in falling
asleep.

As for the classification step on the female subgroup, among the seven different
models the top-performing classifiers were BAG (88% ± 3.4), KNN (87% ± 3.7),
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and SVM (86% ± 3.7). Given the absence of a definitively best-performing model,
the optimization process was carried out on all these three classifiers, and the models
with the highest performance following hyperparameter tuning were selected. For
SVM, the optimal configuration included parameters C = 10, gamma = 0.001, and a
RBF kernel. The same procedure was applied to the male subgroup, where BAG,
KNN, and SVM classifiers exhibited the best performance with F-1 scores of 77%
± 4.4, 77% ± 5.8, and 80% ± 4.6, respectively. Notably, a KNN model (k = 7,
Chebyshev distance metric) emerged as the most suitable configuration.

The final performance of the optimized models is presented in Table 6.3, while
an overview of the selected features resulting from the feature selection process for
both male and female subgroups is reported in Table 6.4.

Table 6.3 Classification performance of the optimized models, averaged over 10 iterations
employing a 5-fold cross-validation.

Female Male

Validation Test Validation Test

Accuracy 0.83 ± 0.044 0.86 ± 0.090 0.82 ± 0.060 0.84 ± 0.113
Precision 0.84 ± 0.034 0.85 ± 0.082 0.83 ± 0.046 0.88 ± 0.111
F1-score 0.88 ± 0.030 0.91 ± 0.058 0.85 ± 0.048 0.87 ± 0.091
Sens. 0.96 ± 0.034 0.98 ± 0.060 0.91 ± 0.052 0.88 ± 0.133
Specificity 0.60 ± 0.126 0.55 ± 0.267 0.69 ± 0.105 0.77 ± 0.213
AUC 0.92 ± 0.030 0.76 ± 0.140 0.84 ± 0.070 0.82 ± 0.120

Table 6.4 Overview of features selected in the final model

Female Male

12th MFCC; 10th 12th ∆MFCC 3rd Formant; 1st MFCC
5th, 6th, 10th-13th ∆∆ MFCC 3rd , 6th, 7th ∆MFCC
4th ∆PLP ; 5th, 8th ∆∆ PLP 1st PLP ; 1st ∆ PLP
Spectral Flux; Spectral Roll-off point 1st ∆∆ PLP

6.2.5 Discussion

The analysis of feature significance, carried out through Pearson correlation coeffi-
cients between acoustic features and the class variable, revealed notable associations
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between specific vocal features and sleep quality. Among the studied population,
the most influential parameters were identified as the MFCC, implying potential
alterations in the articulatory capability of subjects following poor sleep quality.
Moreover, the general high correlation observed between these acoustic features and
the validated clinical scores demonstrates the potential of vocal features in assessing
sleep quality.

Analysis of sleep scores obtained from the SLEEPS questionnaires provided
valuable insights into factors affecting sleep quality. A significant correlation was
identified with COVID-19 positivity. Males with a history of COVID-19 exhibited
considerably worse scores on the sPSQI, suggesting a potential impact of the virus on
sleep quality. Conversely, individuals with no prior COVID-19 diagnosis displayed
sPSQI scores more evenly distributed within the data range. This gender-specific
pattern was not observed in the female group. Furthermore, a noteworthy discrepancy
emerged between self-reported sleep quality (SLEEPQ) and sPSQI scores among
females, with some of them overestimating their sleep quality despite objective
measures indicating sub-optmial quality. Interestingly, variables like remote working
or the use of blue light filters exhibited no significant correlation with sleep quality.
In contrast, variables such as the cessation time of electronic device usage, morning
drowsiness, and difficulties falling asleep exhibited moderate correlations, suggesting
their potential influence with the application at hand.

Moving to the classification phase, the effectiveness in distinguishing between
poor and good sleepers, coupled with the absence of performance degradation when
transitioning from validation data to entirely new samples, indicates the feasibility
of an automated sleep quality evaluation and robust model generalization. It is worth
noting that the models exhibited relatively low classification specificity, primarily
attributed to class imbalances in the dataset. However, the good overall performance
suggests that this issue may be mitigated when training the algorithm on larger
datasets.

6.2.6 Conclusion and Future Works

This study introduced a systematic workflow for SQ classification based on vocal
analysis, integrating ML techniques. Vocal recordings were collected from personal
computers or smartphones. Despite the absence of professional-grade microphones
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and specific task-training the ML models employed demonstrated remarkable effi-
ciency, yielding F-1 scores of 88% for females and 85% for males. This disparity
in performance, with higher scores in the female subgroup, may be attributed to
the inherent anatomical and physiological differences in the female vocal appara-
tus, making it potentially more susceptible to vocal alterations induced by sleep
disturbances, as also observed in previous research [278].

This study is not without limitations. Firstly, the classification target was identi-
fied using the subjective sPSQI score, a clinically validated index that relies solely
on self-reported items. Future research endeavors will need to address this limita-
tion by incorporating objective parameters, such as actigraphy-derived measures
[282], into the analysis. Additionally, enhancing the model performance might be
achieved by expanding the dataset and conducting a stratified analysis based on vari-
ous factors, including age or specific physiological characteristics (e.g., consistent
sleep-wake routines, comorbidities, and other relevant physiological or demographic
parameters).



Chapter 7

Application III: Alcohol Intoxication

7.1 Alcohol Intoxication

7.1.1 Statistics

Alcohol intoxication refers to a physiological and behavioral state resulting from the
excessive consumption of alcoholic substances. This condition is recognized as a
significant risk factor contributing to mortality and disability, as indicated in studies
by Muller [78] and the WHO reports [283]. Additionally, alcohol consumption is
associated with an increased risk of drowning and injuries resulting from violence,
falls, and motor vehicle accidents, as documented by Taylor [284, 285] and Cherpitel
[286].

Various sociodemographic factors, including economic wealth and cultural habits,
exert a substantial influence on alcohol use. The highest percentages of alcohol
consumption are found in high-income countries in Western Europe, North and
South America, Australia, and New Zealand, as reported by the WHO [283]. Gender
also plays a significant role, with women more frequently being abstainers than men
and consuming less alcohol when they do drink.

As for age, the WHO report emphasizes that the drinking habits of young
individuals often mirror the overall population. There are lower prevalence rates of
current drinking among individuals (15-19 years). However, by the age of 20-24
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years, young people often exhibit equal or higher alcohol consumption than the
non-stratified population [287].

A notable indicator of alcohol consumption patterns is heavy episodic drinking
(HED), defined as the consumption of 60 or more grams of pure alcohol on a single
occasion at least once a month. This phenomenon is more prevalent in parts of
Eastern Europe and some sub-Saharan countries. Moreover, the prevalence of HED
is lower among adolescents aged 15-19 years compared to the overall population, but
it peaks at the age of 20-24 years. Current epidemiological data show that individuals
in this age range typically engage in heavy drinking sessions [287].

7.1.2 Pathophysiology

Upon the consumption of alcoholic beverages, the ethanol molecules they contain
are absorbed via the gastrointestinal tract. Less than 10% of this ethanol is excreted
by the kidneys, expelled through the lungs, or the skin, ultimately being identified
in urine, exhaled air, and sweat, as discussed in studies by Jones [288] and Hyun
[289]. The remaining 90-95% circulates throughout the body and eventually reaches
the liver via the portal vein. The liver, with its high levels of alcohol-metabolizing
enzymes, plays a central role in alcohol metabolism, involving a series of reactions
primarily mediated by alcohol dehydrogenase (ADH) and cytochrome P450 2E1
(CYP2E1). The primary pathway in ethanol metabolism is the oxidative process
in which ADH converts alcohol to acetaldehyde. Subsequently, aldehyde dehy-
drogenase (ALDH) promptly converts acetaldehyde into acetate, which is further
metabolized in peripheral tissues into carbon dioxide (CO2), fatty acids (FAs), and
water (H2O), as outlined in the work of Hyun [289] and Jones [288].

The mechanism involved in ethanol metabolism indicates a dose-dependent
pharmacokinetics. This is due to the saturation of the hepatic ADH enzyme with
substrate at Blood Alcohol Concentration (BAC) levels above 15–20 mg/100 mL.
Consequently, for lower rates of alcohol intake, ethanol absorption follows first-
order kinetics, where a constant proportion relative to the original concentration is
eliminated from the body over time. However, when BAC exceeds the threshold
(15–20 mg%), the BAC decreases at a constant rate over time, displaying zero-order
kinetics [288].
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7.1.3 Symptoms

Alcohol consumption exerts intricate effects on the human body, involving complex
interactions within various physiological systems. These effects can manifest as both
acute and long-term consequences.

The causal relationship between alcohol consumption and liver diseases is well-
established. Given the crucial role of the liver in ethanol metabolism, chronic alcohol
consumption can result in conditions such as steatosis (fatty liver), alcoholic hepatitis,
fibrosis, and ultimately cirrhosis, as detailed by Hyun [289] and WHO reports
[287]. Alcohol impact also extends to the cardiovascular system. Acute alcohol
consumption can lead to peripheral vasodilation, temporarily reducing blood pressure.
Moreover, numerous epidemiological studies have linked chronic and excessive
alcohol intake to conditions like hypertension, cardiomyopathy, arrhythmias, and an
increased risk of stroke, as reported by the WHO [287].

Furthermore, the WHO report highlights a causal connection between alcohol
use and the development of cancer in various regions of the body, including the
oropharynx, larynx, esophagus, liver, colon, rectum, and the female breast. Other
symptoms associated with alcohol consumption may encompass increased urine
production, dehydration, and irritation of the gastrointestinal tract, potentially leading
to gastritis, ulcers, and gastrointestinal bleeding. Prolonged and excessive alcohol
consumption can also result in neurotoxic effects, including neuronal damage and an
elevated susceptibility to neurodegenerative disorders [287].

In addition to the cardinal effects primarily associated with ethanol metabolism,
alcohol consumption can lead to intoxication, characterized by a loss of control
over actions or behavior due to the impact on various neural pathways and brain
regions, as explained in the WHO reports [287] and in Paprocki’s research [290]. The
process of ethanol-induced intoxication can be divided into three main stages: initial
absorption, peak intoxication, and the decay stage. During initial absorption, BAC
rapidly increases after ethanol ingestion, with peak intoxication typically occurring
within 30 to 60 minutes. Subsequently, peak BAC levels begin to decline, and
intoxication gradually subsides, with BAC returning to zero within six to eight hours
of initial consumption [290].

Recent evidence consistently suggests that when individuals consume small
doses of ethanol, resulting in blood BAC levels ranging from 30 to 50 mg/dL, they
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commonly experience increased talkativeness, reduced inhibitions, and a mild sense
of euphoria. However, as BAC levels rise further, entering the range 80-120 mg/dL,
noticeable signs of impairment become more pronounced, encompassing slower
reaction times, challenges in processing information, impaired motor coordination,
slurred speech and an unsteady gait.

It is worth noting that the effects of alcohol can vary based on individual factors
such as metabolism, genetic predisposition, overall health, gender, and patterns of
consumption. Understanding the intricate mechanisms underlying alcohol effects
on the body is vital for the development of preventive measures, interventions, and
treatment strategies aimed at mitigating the negative health consequences associated
with alcohol consumption, as highlighted in [287, 288, 290].

7.1.4 Assessment Criteria and Complicating Factors

BAC serves as a widely used metric for assessing the degree of alcohol intoxication,
typically expressed as a percentage that represents the ratio of alcohol to blood
volume. BAC is influenced by various factors, including the quantity and speed of
alcohol consumption, an individual body weight, metabolism, and the presence of
food in the stomach [288, 290].

In several scenarios, such as the need to evaluate alcohol impairment in individu-
als suspected of driving under the influence or other alcohol-related offenses, quicker
procedures are essential. In such contexts, Breath alcohol tests (BrAC), commonly
referred to as breathalyzer tests, are frequently employed to estimate an individual
BAC by analyzing the alcohol content in their exhaled breath [291]. These tests
leverage the quantifiable dose-effect relationship between an individual BAC and the
resulting effects. They operate on the principle of measuring the quantity of alcohol
vapor present in exhaled breath, which correlates with the alcohol concentration in
the bloodstream.

It is worth noting that breath alcohol tests provide an estimation of BAC and are
subject to certain limitations. Factors such as the calibration and accuracy of the
device and potential interfering substances (e.g., mouthwash or specific medications)
can affect the accuracy of the results. Consequently, for legal purposes, confirmatory
testing employing more precise methods such as blood tests may be necessary [290].
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Recent advancements have introduced techniques for estimating the level of
intoxication based on changes associated with common symptoms, offering the
advantage of truly measuring the effects of intoxication. Among these emerging
techniques, some propose algorithms relying on the photoplethysmography signal
[290], while others rely on in-vehicle cameras focused on the driver face, as seen in
the case of Volvo [290].

7.2 Automated Vocal Analysis for Alcohol Intoxica-
tion Assessment

Detecting a person state concerning possible alcohol inebriation holds paramount
importance for social safety and prevention. Inebriation is associated with a range
of effects, including reduced attention, increased drowsiness, impaired balance and
coordination, and slowed or slurred speech. These impairments pose substantial
risks, especially in contexts like driving, as outlined in the work of Davies [292].

According to the WHO Global status report on road safety in 2018 [293], alcohol
is a contributing factor in a significant percentage of road traffic fatalities worldwide,
ranging from 5% to 35%. In an effort to reduce traffic-related fatalities, EU Regula-
tion 2019/2144 mandates that newer vehicles, as of July 6, 2022, must be equipped
with a device that assesses the driver alcohol consumption and prevents the vehicle
from starting. [294].

Within this context, this section delves into the impact of alcohol consumption
on the process of speech production and assesses the feasibility of using speech-
based models to identify intoxication. In more detail, a comprehensive series of
statistical analyses was conducted to uncover significant patterns in acoustic features
that manifest after alcohol consumption. Furthermore, a specific investigation was
carried out to examine how various speaker characteristics, such as gender, age, and
drinking habits, may contribute to distinct trends.

7.2.1 Related Literature

Vocal analysis, particularly when coupled with AI and ML techniques, emerges as
a promising solution for the preliminary identification of an individual inebriation
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condition, given that altered speech production is one of the most important changes
observable after excessive alcohol consumption.

The 2011 INTERSPEECH Challenge [295] was primarily concerned with the
identification of intoxication or inebriation through speech analysis. The study made
use of a dataset called the Alcohol Language Corpus (ALC), which encompassed
audio recordings from 162 individuals under both sober and alcohol-influenced
conditions. In general, the results of this research indicated an increase in F0 in
subjects exhibiting signs of intoxication (with a blood alcohol concentration of
greater than or equal to 0.5%), with this effect being more pronounced in female
subjects [296].

However, an extensive review of the literature surrounding ALC-based studies,
including works by [296–309] unveiled a lack of consensus with respect to the
significance of other acoustic features or specific speech dimensions in the context
of intoxication detection.

As of the present, the highest documented performance in this particular domain
utilizing the ALC dataset was reported in Bone et al.’s research [298]. In their study,
a comprehensive model was introduced to enhance the task of identifying intoxica-
tion using speech data. This approach encompassed several techniques, such as the
implementation of hierarchical acoustic features, which were extracted at varying
temporal scales to capture moment-to-moment speech changes. Additionally, they
utilized iterative speaker normalization, a method aimed at repetitively normalizing
features to reduce inter-speaker variations while preserving discriminative informa-
tion. As a result, the model they developed effectively discriminated between sober
and inebriated subjects (with a BAC of 0.5% or higher). On the test set, this model
achieved a classification accuracy of 70.54%, thereby establishing a benchmark for
performance in this specific research domain.

7.2.2 Materials

The corpus utilized in the experiment is the ALC, which is accessible through the
Bavarian Archive for Speech Signals as mentioned in [310]. This dataset comprises
speech recordings of individuals in both sober and intoxicated states, encompassing
a diverse range of speaking styles. The type of vocal tasks performed include simple
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Table 7.1 Demographics of participants included in the study N: Numerosity.

N subjects Age (years) BMI

Tot 162 30.99 ± 9.49 22.82 ± 2.84
Male 55 29.05 ± 0.51 21.57 ± 2.75
Female 77 32.75 ± 9.88 23.95 ± 2.41

digit strings, sentence repetition, tongue twisters, specific prompts for application
commands, monologues, and natural conversational speech.

The ALC dataset encompasses speech samples from a total of 162 German speak-
ers, with ages ranging from 21 to 64 years. Extensive metadata for each individual,
including pertinent personal information, has been meticulously documented. Addi-
tionally, comprehensive data related to each recording session has been collected,
covering factors such as the presence of external noise and the emotional state of
the subjects. Detailed demographics of the participants involved in the study are
provided in Table 7.1.

Additional participant characteristics that could potentially influence pronun-
ciation were also documented, including their educational level, profession, and
region of origin. Detailed information on the drinking habits of the participants was
collected. During the interviews, participants were required to describe the frequency
and quantity of their alcohol consumption. They were specifically asked about how
often they typically consumed alcohol (e.g., daily, more than once a week, once
a week, or less than once a week) and the quantity consumed in a single session
(measured in units, such as glasses of wine or beers). Based on their responses, the
researchers categorized both the amount of alcohol intake (categorized as sparse: 1-2
units of beer or wine, or plenty: more than 2 units) and the frequency of consumption
(classified as seldom: once a week or less, or often: more than once a week or
daily). Subsequently, participants’ drinking habits were classified as light (sparse
and seldom), moderate (sparse and often, or plenty and seldom), or heavy (often and
plenty). The results indicated that participants primarily reported light to moderate
alcohol consumption habits, with a preponderance of females in the light category
and males in the moderate one. Less than 10 subjects were eventually categorized as
heavy alcohol consumers, with only one female subject among them.

As for the data collection procedure, two distinct microphones were employed
for all recordings: a Beyerdynamic Opus54.16/3 headset microphone and an AKG
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Q400 mouse microphone positioned in the middle of the vehicle front ceiling. The
recordings were sampled at a rate of 44.1 kHz, utilizing a 16-bit PCM format. In
this specific study presented in this dissertation, an exclusive use of vocal samples
recorded with head-mounted microphones was employed. This approach aimed
to maintain a consistent and high-quality signal, thereby avoiding the introduction
of complexities associated with diminished signal quality. This choice aligns with
the practices of the majority of studies involving the ALC corpus, as documented
in works such as [296–309]. These studies also reported using samples acquired
through high-quality equipment, ensuring a fair and meaningful basis for comparison
between this work and similar investigations.

To investigate potential influences from the recording environment, samples were
either performed in a Volkswagen Passat Variant Diesel 134PS 2004 or in an Opel
Astra (GM) Astra Coupe 22 AUT 2001, which had varying interior sizes. For safety
reasons, the vehicle engine was turned off for approximately two-thirds of the speech
exercises during recording sessions. Notably, no recordings occurred while the
vehicle was in motion. Each test, conducted in both sober and intoxicated conditions,
was controlled by an operator who also assumed the role of the conversational partner
during the dialogues.

Before the test, each participant chose their target BAC for the intoxication test.
Subsequently, the necessary quantity of alcohol was determined using the Widmark
formula, denoted as in Equation 7.1.

c =
V
mr

(7.1)

where c represents the alcohol concentration, V stands for the quantity of alcohol
in grams (g), m refers to the individual body mass in kilograms (kg), and r is the
reduction factor that accounts for the specific characteristics of the subjects. The
calculation of this reduction factor is based on the Watson formula, as indicated by
Equation 7.2.

r =
ρbg
f m

(7.2)

In this context, ρb = 1.055 g
cm3 represents the density of blood, and f is the

fraction of water in blood, with a constant value of 0.8. The body water content g can
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be determined according to the formulas provided in 7.3 and 7.4, where t denotes
the age in years and h signifies the body height in centimeters (cm), as specified in
[310].

gmale = 2.447−0.09516t +0.1074h+0.3362m (7.3)

g f emale = 0.203−0.07t +0.1069h+0.2466m (7.4)

Following the determination of the required alcohol intake, all participants un-
derwent BAC, BRAC, and speech recordings. BAC measurements were conducted
using Head-Space Gas Chromatography, while BRAC was computed through the use
of the Drager Alcotest 7410 and Envitec Alcotest devices. Notably, comparable BAC
and BRAC distributions were achieved for both female (BAC: 0.086 ± 0.029, BRAC:
0.086 ± 0.032) and male (BAC: 0.091 ± 0.028, BRAC: 0.091 ± 0.030) participants.

Speech recordings were conducted immediately after the alcohol assessments,
involving a set of 30 speech exercises. Subsequently, each participant was required
to undergo a second recording session in a sober state, which included an expanded
set of 60 speech exercises, after a minimum of two weeks had passed.

All participants voluntarily took part in an intoxication test supervised by staff
from the Institute of Legal Medicine. Each participant who contributed to the ALC
dataset provided their informed consent, documented in a legal consent form. This
form granted permission for the scientific and technical use of their recorded speech,
with the assurance that the contents of the corpus would not be linked to their
personal data. The list of speech exercises performed in both the A (intoxicated) and
NA (sober) states, along with their corresponding English translations, can be found
in Table 7.2.

Table 7.2 List of tasks in the ALC dataset along with corresponding Englis translations

ID
NA

ID
A

Prompt (IPA Translation) Translation to English

1 1 Bitte lesen Sie die Telefon-
nummer: +491763582901

Please read the phone num-
ber: +491763582901
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Table 7.2 continued

8 8 Bitte lesen Sie die
Adresse: Sp"ORtplatsv,e:k

27, m"aRktGRaIts

Please read the address:
Sportplatzweg 27, Markt-
graitz

12 12 Bitte lesen: b"ak3,

m"u:z@(@)lm,an, m"EnS@(@)n,

m"as@(@)n, m"ORd3,

m"o:r@(@)n, m"Ut3,

m"A(A)nu:m,Ent@(@)nm,ax3

Please read: Baker, Musel-
mann, People, Masses,
Murderers, Moors, Mothers,
Manumentmakers

13 13 Bitte lesen Sie die Adresse:
18546 z"asnIts

Please read the address:
18546 Sassnitz

15 15 Bitte lesen: 06271 57390 Please read: 06271 57390
19 19 Bitte Adresse lesen: m"

adap,aka:-b @(@) t"e:GInd,Is-

StR"afl @(@) 77b

Please read address:
Madapaka-Betegindis-Stra e
77b

20 20 Bitte so schnell wie
möglich lesen: k"Ets3

kR"yçts3p,Etst@(@)n j"Etst

kl"E:klIç, l"EtstlIç pl"Œ(Œ)tslIç

l"aIçt sk"EptIS

Please read as soon as possi-
ble: Heretics are now com-
plaining, in the end suddenly
slightly skeptical.

23 7 Bitte so schnell wie möglich
lesen: Bemoost wächst
nächst dem Strom ein Stamm,
feststämmig stolz strebt sein
Geäst stromwärts, und weist
nach Ost und West.

Please read as fast as possi-
ble: Mossy grows next to the
stream a trunk, firmly proud
strives for its current, and
points to east and west.

24 17 Bitte lesen Sie die Adresse:
b@(@)m"o:st v"Ekst n"Eçst

d"e:m StR"o:m "aIn St"am,

f"EstSt,EmIç St"Olts StR"e:pt

z"aIn G@(@)"Est StR"OmvERts,

"Unt v"aIst n"A(A):x "Ost "Unt

v"Est.

Please read the address:
Sister-Hermenegildis-Street

26 6 Bitte Telefonnummer lesen:
0862359286

Please read the phone num-
ber: 0862359286



174 Application III: Alcohol Intoxication

Table 7.2 continued

29 9 Bitte lesen Sie die Kred-
itkartennummer: 1390 7516
0281 9357

Please read the credit card
number: 1390 7516 0281
9357

31 11 Bitte lesen Sie das Auto-
kennzeichen: STA-PB 2759

Please read the license plate:
STA-PB 2759

32 3 Bitte so schnell wie möglich
lesen: m"EsvEks@(@)l,

v"axsmask@(@),

v"axsmask@(@),

m"EsvEks@(@)l

Please read as fast as pos-
sible: Measurement change,
Wax mask, Wax mask, Mea-
surement change.

36 16 Bitte so schnell wie möglich
lesen: d"i: k"Œ(Œ)çIn m"It

d"e:m t"Upf@(@)nk,OpftUx

k"Oxt k"aRpf@(@)n "In d"e:m

k"Upf3k,OxtOpf

Please read as fast as possible:
The kitchen with the polka
dot headscarf cooks carp in
the copper saucepan.

41 21 Bitte Steuerbefehl lesen:
t,Empe:rat"u:R 23 °C

Please read the control com-
mand: Temperature 23°C

50 29 Bitte Steuerbefehl
lesen: "aUto:b,A(A):n@(@)n

m"aId@(@)n

Please read the control com-
mand: Avoid motorways

51 24 Bitte Steuerbefehl lesen:
fre:kv"Ents 92,2 MHz

Please read the control com-
mand: Frequency 92.2 MHz

59 23 Bitte Steuerbefehl lesen:
n"Eçst3 t"i:t@(@)l

Please read the control order:
next title

60 30 Bitte buchstabieren: M A R
K T G R A I T Z

Please spell: M A R K T G R
A I T Z

10 10 Sprechen Sie mit dem Ver-
suchsleiter über das Bild -
tat_3GF

Talk to the investigator about
the picture - tat_3GF

30 5 Erzählen Sie eine Geschichte
zum Bild - tat_13MF

Tell a story about the picture -
tat_13MF

34 2 Bitte sprechen Sie mit dem
Versuchsleiter: Erzählen Sie
von einem Ihrer Urlaube.

Please talk to the investigator:
Tell us about one of your va-
cations.



7.2 Automated Vocal Analysis for Alcohol Intoxication Assessment 175

Table 7.2 continued

42 22 Bitte stellen Sie sich vor, Sie
wollten den Radiosender auf
Speicherplatz FM3 einstellen.
Geben Sie dem Auto den Be-
fehl, dies zu tun.

Please imagine that you want
to tune the radio station to
storage space FM3. Give the
car the command to do this.

46 25 Bitte stellen Sie sich vor, sie
wollen ihre Sitzheizung auf
Stufe 2 schalten. Geben Sie
dem Auto den Befehl, dies zu
tun.

Please imagine that you want
to switch your seat heating to
level 2. Give the car the com-
mand to do this.

48 27 Sie wollen Ihre Klimaanlage
anschalten. Geben Sie Ihrem
Auto den Befehl, dies zu tun.

You want to turn on your air
conditioning. Give your car
the command to do this.

49 28 Sie möchten zum Hilton
Nürnberg und dafür Ihr
Navigationssystem benutzen.
Geben Sie Ihrem Auto den
entsprechenden Befehl.

You want to go to the Hilton
Nürnberg and use your navi-
gation system. Give your car
the appropriate command.

55 26 Sie wollen den 9. Titel auf der
6. CD Ihres CD-Wechslers
hören. Geben Sie Ihrem Auto
den Befehl dazu.

You want to listen to the 9th
track on the 6th CD of your
CD changer. Give your car
the command to do so.

14 14 Bitte beantworten Sie fol-
gende Frage: Was war bisher
das schönst Geschenk, das
Sie bekommen haben und
warum hat es Ihnen so
gefallen?

Please answer the following
question: What has been the
best gift you have received so
far and why did you like it so
much?

38 18 Erzählen Sie eine Geschichte
zum Bild - tat_12M

Tell a story about the picture -
tat_12M

4* 4* Bitte lesen Sie die Adresse:
Laurentiusbergstraße 27,
Tauberbischofsheim

Please read the address: Lau-
rentiusbergstraße 27, Tauber-
bischofsheim
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Table 7.2 continued

2 Bitte sprechen Sie mit dem
Versuchsleiter: Was halten
Sie von Weihnachten?

Please talk to the experi-
menter: What do you think
of Christmas?

3 Bitte so schnell wie möglich
lesen: Fischers frisch
frisierter Fritze frisst frisch
frittierte Frisch-Fisch-
Frikadellen.

Please read as soon as possi-
ble: Fischer’s freshly coiffed
Fritze eats freshly.

5 Erzählen Sie eine Geschichte
zum Bild - tat_18GF

Tell a story about the picture -
tat_18GF

6 Bitte Telefonnummer lesen:
073952863491

Please read the phone num-
ber: 073952863491

7 Bitte so schnell wie möglich
lesen:z"Onst n"Ist@(@)n

St"A(A):r@(@) St"e:ts "Im St"am,

d"Ox St"??m tsERSt"Œ(Œ)Rt@(@)

"ast "Um "ast, d"as l"ENst

tsERSt"o:p d"as

Please read as soon as possi-
ble: Otherwise starlings al-
ways nest in the trunk, but
a storm burst branch after
branch, which long ago de-
stroyed the starling nest.

9 Bitte lesen Sie die Kred-
itkartennummer: 1835 0117
2839 9602

Please read the credit card
number: 1835 0117 2839
9602

11 Bitte lesen Sie das Auto-
kennzeichen: BGL-KP 397

Please read the license plate:
BGL-KP 397

16 Bitte so schnell wie
möglich lesen: k"al@(@)

k"A(A):le:k,ats@(@)nGl,ats@(@)nkR,ats3

kR"atst k"A(A):l@(@)

k"ats@(@)nGl,ats@(@)n.

Please read as soon as pos-
sible: Kalle bald cat bald
scratcher scratches bald cat
bald heads.

17 Bitte Adresse lesen:
GR"u:Is’S"e:s G"Esç@(@)n 5

Please read the address:
Gruis’sches Gässchen 5

18 Erzählen Sie eine Geschichte
zum Bild - tat_5

Tell a story about the picture -
tat_5

21 Bitte lesen Sie die Telefon-
nummer: +491623792048

Please read the phone num-
ber: +491623792048
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Table 7.2 continued

22 Bitte sprechen Sie mit dem
Versuchsleiter: Sprechen Sie
über den Trinkversuch, an
dem Sie vor ein paar Wochen
teilgenommen haben.

Please talk to the investigator:
Talk about the drinking exper-
iment you took part in a few
weeks ago.

25 Sprechen Sie mit dem Ver-
suchsleiter über das Bild -
tat_19

Talk to the investigator about
the picture - tat_19

27 Bitte so schnell wie
möglich lesen: d"e:n

v"IntsIG@(@)n tsv"ERk

ts"Imp@(@)lp,Um tsv"Ikt

z"aIn@(@) ts"Ipf@(@)lm,yts@(@).

"ER ts"Upft, "ER ts"i:t, "Unt ts"ERt

tsu:l"Etst f"Ol ts"ORn z"i: "In d"i:

pf"yts@(@).

Please read as soon as pos-
sible: The tiny dwarf Zim-
pelpum pinches his pointed
cap. He plucks, he pulls, and
finally, full of anger, drags her
into the puddle.

28 Bitte lesen Sie die Adresse:
25557 h"A(A)ne:r,aU-

h"A(A)de:m,aRS@(@)n

Please read the ad-
dress: 25557 Hanerau-
Hademarschen

33 Bitte lesen Sie die Adresse:
Sv"A(A)r@(@)nbERGstR,A(A):s@(@)

2, Stuttgart

Please read the address:
Schwarenbergstraße 2,
Stuttgart

35 Bitte lesen: 81637 05249 Please read: 81637 05249
37 Bitte Adresse lesen: l"i:sl-

k"aRlstat-StR"A(A):s@(@)1a
Please read address: Liesl-
Karlstadt-Straße 1a

39 Bitte Adresse lesen:
t"Ip@(@)n-t"ap@(@)n-

t"ø:nç@(@)n, v,Up3t"A(A):l

Please read address: Tippen-
Tappen-Tönchen, Wuppertal
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Table 7.2 continued

40 Bitte so schnell wie möglich
lesen: tsv"IS@(@)n tsv"aI

tsvEtSG"EntsvaIG@(@)n

z"Its@(@)n tsv"aI

ts"Eç@(@)nSv,aRts@(@)

ts"EçIS tsv"ItSERnd@(@)

tsv"ERkSvalb@(@)n

Please read as soon as pos-
sible: Between two plum
branches sit two black Czech
chirping dwarf swallows.

43 Stellen Sie sich vor, sie
wollen mit Hilfe Ihres Navi-
gationssystems zum Tierpark
Hellabrunn. Geben Sie Ihrem
Auto den Befehl dazu.

Imagine you want to go to
Hellabrunn Zoo with the help
of your navigation system.
Give your car the command
to do so.

44 Bitte Steuerbefehl lesen:
fre:kv"Ents 87,7 MHz

Please read the control com-
mand: Frequency 87.7 MHz

45 Sie hören gerade Radio und
wollen auf CD wechseln.
Geben Sie Ihrem Auto den
Befehl, dies zu tun.

You are listening to the ra-
dio and want to switch to CD.
Give your car the command
to do this.

47 Sie wollen Ihr Tempomat
auf 120 km/h einstellen.
Geben Sie Ihrem Auto den
entsprechenden Befehl.

You want to set your cruise
control to 120 km/h. Give
your car the appropriate com-
mand.

52 Bitte Steuerbefehl lesen:
Sender als Preset speichern.

Please read the control com-
mand: Save the transmitter as
a preset.

53 Sie wollen den Repeat-
Modus Ihres CD-Spielers
aktivieren. Geben Sie Ihrem
Auto den Befehl dazu.

You want to activate the re-
peat mode of your CD player.
Give your car the command
to do so.

54 Sie wollen ihren Kollegen
Herbert Schuster anrufen.
Geben Sie Ihrem Auto den
Befehl dazu.

You want to call your col-
league Herbert Schuster.
Give your car the command
to do so.
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Table 7.2 continued

56 Bitte Steuerbefehl
lesen: t,Empo:m"A(A):t

d,e:akti:v"i:r@(@)n

Please read the control com-
mand: Deactivate cruise con-
trol

57 Bitte Steuerbefehl lesen:
k"aRt@(@) "In n"ORdRIçt,UN

Please read the control com-
mand: Map in northerly direc-
tion

58 Bitte Steuerbefehl lesen:
r,u:t@(@)nOptsj"o:n@(@)n

"End3n

Please read the control com-
mand: Change route options

7.2.3 Methods

Pre-processing and Feature Extraction

An acoustic examination of the speech samples within the ALC dataset revealed
the presence of initial and final silent regions in the recordings. Consequently,
a customized algorithm, based on the Praat Voice Activity Detector (VAT), was
implemented to eliminate non-relevant regions. Additionally, signal amplitudes
were normalized in the range [0,1] to mitigate the impact of speaker-to-microphone
distance.

Following the pre-processing procedures, a comprehensive set of features was
extracted from each speech signal using the OpenSmile toolkit and using the Com-
ParE2016 feature set with default hyperparameters. Furthermore, to delve into the
rhythmic aspects of speech, additional 12 parameters were computed using Praat-
based algorithms implemented in Python through the Parselmouth library. These
additional parameters encompassed DPI, Max Duration of pauses, Duration of Un-
voiced regions, Max Duration of Voiced regions, Percentage of pause intervals,
Percentage of unvoiced regions, Percentage of voiced regions, RST, Total Energy,
Total Duration of Voiced frames, and Mean absolute pitch slope. In total, the feature
set comprised 6385 distinct features. To ensure consistency and comparability, Z-
score standardization was applied to all features, thereby scaling them to a common
range.
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Experiment 1

In the first experiment, the primary objective was to evaluate the influence of alcohol
consumption on speech samples and investigate how various speaker characteristics,
including age, gender, and drinking habits, affected acoustic features. Additionally,
one of the main aims was to explore the feasibility of binary classification through
the automatic analysis of specific vocal samples. To streamline the analysis and
maintain a focus on the intended scope, the first experiment was conducted on a
single speech task, thus reducing the complexity of the investigation. Results from
prior studies suggested improved performance with tongue-twisters, as mentioned in
[307], hence this task was selected for analysis:

Kalle Kahlekatzenglatzen kratzer kratzt kahle Katzenglatzen.

A differential examination was conducted to identify potential trends in features
that exhibited similar changes across different subjects when transitioning from the
NA to the A status. This analysis involved calculating the percentage variation of
each feature between the two states and determining whether there was an increase
or decrease by applying the sign function. The signs of each feature were summed
across all subjects, and the absolute value was computed. A higher absolute value
of this sum indicated a more systematic variation in the feature. In other words, a
feature that consistently increased or decreased after inebriation would yield higher
values because there were numerous positive results of the sign function applied to
the percentage variation. The metric derived from this process was referred to as
Absolute Systematic Variation (ASV), as defined in Equation 7.5 and it is expressed
as a percentage of the total cardinality of the subgroup investigated.

ASVi =

∣∣∣∣∣ N

∑
j=1

sgn
(

fi j(y1)− fi j(y0)

fi j(y0)

)∣∣∣∣∣ (7.5)

In the equation, i identifies each feature and j identifies each instance, for a
total of N instances; fi j (y1) represents thus the i-th feature computed for the j-th
subject in the status/class 1 (in our case A), and fi j (y0) is the same feature for the
status/class 0 (NA).

A comprehensive analysis was conducted by repeating the procedure with differ-
ent stratifications. This approach allowed for the evaluation of the impact of external
factors on feature trends. These stratifications were established based on various
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covariates, with the condition that only groups comprising at least 28 subjects were
considered for analysis, ensuring the attainment of statistically significant results.

• Gender: female (F, 77 subjects) and male (M, 85 subjects);

• Age:18-40 years old range (139 subjects);

• BMI: normo-weight (116 subjects) and overweight to moderate obese (37
subjects) ranges (Table 5.1).

• BRAC: 0.5-0.79 (light: 162 NA, 49 A) and 0.8+ (moderate: 162 NA, 92 A).

Classification was conducted on the complete tongue-twister dataset, involving a
75-25 split between the training and test sets. Care was taken to ensure that different
individuals were present in each set to avoid data leakage. Additionally, a statistical
feature selection was implements through K-Best ANOVA, setting the value of K to
the square root of the number of data instances, which in our case amounted to 162 x
0.75 x 2, resulting in K = 16.

Three distinct classifiers, namely SVM, GB, and RF were testes. All statistical
and ML analyses were conducted using Python with the scikit-learn and scipy
libraries, employing default hyperparameters or sub-models.

Experiment 2

In this second phase of the study, the goal was to create a lightweight model ca-
pable of distinguishing between sober and intoxicated speakers, regardless of the
specific speech tasks and individual characteristics. To achieve this objective, a cus-
tomized classification model was utilized, based on the Discriminative Adversarial
Neural Network (DANN) framework. Figure 7.1 provides a representation of this
architecture.

DANNs are commonly employed to acquire a feature representation that is
domain-independent [311]. A typical DANN architecture consists of three key
components: an Encoder block, responsible for extracting relevant information from
input arrays; a Task block, used to classify instances into the desired categories (e.g.,
A or NA); and a Discriminator block, tasked with predicting the domains of instances.
In line with the approach [312], the adversarial block was customized to perform
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INPUT
(Nx6386) d = 0.5 N = 512

ENCODER

TASK

DISCRIMINATOR

CLASS
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DOMAIN LABEL

Dropout layer

Dense layer

Fig. 7.1 Schematic architecture of a Discriminative Adversarial Neural Network

subject ID classification, effectively reducing inter-speaker feature variability within
the overall model.

In this architecture, the Encoder plays a pivotal role in feature extraction, facilitat-
ing the learning of domain-invariant features. During the training phase, the network
encounters samples from various speakers, and through a gradient reversal-based
technique, the model weights are adjusted to enhance its ability to distinguish be-
tween the two relevant categories while reducing its capacity to differentiate between
different speakers, as described in [311]. To achieve this goal, the encoder loss is
computed at each iteration, as shown in Equation 7.6:

lossEnc = lossTask−λ ∗ lossDisc (7.6)

where λ is a stabilizing factor that is usually used to minimize unwanted oscilla-
tions due to complex domains classifications.

For this work, a customized model based on the Adapt Python library [313] was
employed. To prevent potential issues related to the model generalization capability,
the training process incorporated 75% of the original dataset, with performance
evaluation carried out on the remaining 25%, without further optimization. To ensure
speaker independence, the splitting procedure was applied based on the subjects’ IDs,
thereby including recordings from the same speakers in either the training or test sets.
Additionally, to minimize the influence of external factors such as age, gender, BMI,
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and alcohol consumption habits, a stratified train-test split was conducted, resulting
in balanced subsets.

It is essential to acknowledge that, due to the inherent data collection process,
the ALC dataset displayed an imbalanced distribution between sober (60 tasks per
subject) and intoxicated speakers (30 tasks per subject). As a result, following the
approach of similar studies [297–300, 296, 301–309], it was chosen to prioritize
balanced accuracy over the traditional accuracy metric to evaluate the performance
of the final classification models. Balanced accuracy, calculated as the average of
sensitivity and specificity, offers a fair assessment in scenarios of class imbalance.

Regarding the model architecture and its hyperparameters, an empirical trial-and-
error approach was employed to identify the optimal parameter set. The balanced
accuracy on a validation set, which constituted 10% of the original training set,
served as the guiding metric for assessing the model ability to predict new, unseen
samples. The determination of the optimal number of iterations and the need for
early stopping were made through a careful comparison of training and validation
curves.

7.2.4 Results

Experiment 1

In Table 7.3, the top 10 features with the highest ASV values are presented for the
entire dataset. The table also includes the ASV values for these features across
various stratifications. These results demonstrate the consistent increase or decrease
in specific features when comparing subjects in their NA and A states.

Table 7.4 provides an overview of the model performance on the test set for
binary classification, distinguishing between sober and intoxicated speakers using
tongue-twister speech samples. The table includes metrics such as balanced accuracy,
precision, F1 score, sensitivity, specificity, and AUC to facilitate a comprehensive
comparison among the various models that were tested. All classifiers were trained
on a subset of the original set of features derived from the applied feature selection
process. This subset encompasses the following features in OpenSmile nomenclature:

• audspecRasta_lengthL1norm_sma_upleveltime25
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• audspecRasta_lengthL1norm_sma_upleveltime50

• m f cc_sma[12]_minSegLen

• pcm_ f f tMag_spectralRollO f f 50.0_sma_de_minSegLen

• pcm_ f f tMag_spectralRollO f f 75.0_sma_de_minSegLen

• pcm_ f f tMag_spectralCentroid_sma_de_minSegLen

• pcm_ f f tMag_spectralVariance_sma_de_minSegLen

• audspecRasta_lengthL1norm_sma_linregc

• pcm_RMSenergy_sma_meanPeakDist

• audSpec_R f ilt_sma[7]_linregc2

• audSpec_R f ilt_sma[10]_peakMeanRel

• audspec_lengthL1norm_sma_de_meanPeakDist

• audSpec_R f ilt_sma_de[6]_ f latness

• audSpec_R f ilt_sma_de[7]_ f latnes

• audSpec_R f ilt_sma_de[8]_ f latness
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Table 7.4 Classification performance for three different classifiers, reported on the indepen-
dent test set.

Classifier Names
SVM GB RF

Balanced accuracy 0.707 0.682 0.682
Precision 0.718 0.692 0.674
F1 score 0.7 0.675 0.69
Sensitivity 0.683 0.658 0.707
Specificity 0.732 0.707 0.658

Experiment 2

This section provides a detailed description of the model architecture and hyperpa-
rameters resulting from the optimization process for the DANN model.

The Adam optimization algorithm was employed with a learning rate of 0.001,
and an exponential decay rate for the first moment β was set to 0.7 for the Encoder,
Task, and Decoder blocks. A maximum of 200 epochs was chosen as a result of an
early stopping procedure, which aimed to prevent excessive weight adaptation on
training samples.

The input layer was deployed in order to accepts data with a shape of (1, 6386),
where 6386 is the number of features in the dataset. The Encoder block starts with
a Dropout layer (dropout rate = 0.5) followed by two densely connected layers
with ReLU activation functions. The Task sub-network includes a Flatten layer to
prepare the features for classification. It is followed by five Dropout-Dense layer
pairs, each characterized by a dropout rate of 0.5 and ReLU activations. Given
the primary objective of this block (i.e., learning binary discrimination between
sober and intoxicated speakers), the last layer employs a sigmoid activation function.
Similarly, the Discriminator network comprises five densely connected layers with
ReLU activation functions, concluding with a softmax output layer to predict domain
labels for the distinct domains in the dataset (i.e., subjects’ IDs). Additionally, to
maintain stable gradients of the loss function during training and ensure faster and
more stable convergence, the weights of each fully connected layer were initialized
using the Xavier Uniform initializer.

In terms of the loss functions, a Binary Cross-Entropy loss was utilized for
binary classification in the task block, while a Sparse Categorical Cross-Entropy was
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employed for multiclass classification. The λ value used in the computation of the
Encoder loss was set to 0.01, in accordance with [313].

A schematic of the optimized DANN architecture is provided in Figure 7.2.

ENCODER

TASK

DISCRIMINATORINPUT

FEATURES

CLASS
LABEL

DOMAIN
LABEL

loss Ly

loss Ld

Back-propagation

Forward-propagation

Fig. 7.2 Schematic architecture of the optimized Discriminative Adversarial Neural Network

Table 7.5 presents the model performance on both the training and test sets in
the binary classification task of distinguishing between A and NA speakers. Due
to the imbalanced distribution between the two classes, the primary focus was on
evaluating the model effectiveness using balanced accuracy and AUC metrics. These
metrics offer a more reliable assessment of the model performance, especially in
scenarios where class imbalances could potentially introduce biases into the results.

Table 7.5 Performance of the Domain Adversarial Neural Network model on both train and
test sets.

Train set Test set

Balanced accuracy 0.981 0.709
F1 score 0.981 0.610
AUC 0.969 0.709

Table 7.6 offers a comparative analysis the present study and related research that
has tackled the binary classification task using the ALC dataset. The evaluation of
each approach is based on the balanced accuracy ,which was measured on a separate
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test set consisting of entirely new and unseen samples. This comparative examination
sheds light on the efficacy of the proposed model in relation with prior investigations
on the same dataset.

7.2.5 Discussions

This study had two primary objectives: first, to evaluate the potential for automatic
classification of individuals as either sober or intoxicated based on vocal samples,
and second, to propose a model that minimizes the impact of speech content and
individual speaker characteristics.

The results of the analysis on the effects of alcohol intake on speech parameters
are significant. The findings, as presented in Table 7.3, highlight that the impact
of alcohol on speech parameters is highly personalized, with only a small subset
of features exhibiting consistent trends in over 60% of the participants. Further
analyses stratified by factors like gender, age, and BMI demonstrate that individuals
with similar characteristics tend to display more consistent speech feature trends
after alcohol consumption. These results emphasize the importance of developing
algorithms that either take individual characteristics into account or are designed to
be minimally influenced by speaker diversity. Notably, the most effective feature
domains for discrimination were related to the RASTA-filtered auditory spectrum,
a perceptual representation of perceived loudness obtained through signal filtering.
Low-level spectral characteristics also proved to be significant in distinguishing
between sober and intoxicated speakers.

In the binary classification using tongue-twister speech samples, the SVM model
outperformed the others, achieving an accuracy of 70.7% on an independent test set.
The classifiers demonstrated to be robust, with consistent F1-scores, precision, and
recall in both A and NA classes. Nevertheless, it is important to note that this model
was trained on a single speech task and, therefore, on a limited set of samples, which
limits its real-world applicability.

Due to the limitations of the initial model and the insights gained from the
feature analysis, a second experiment was carried out with the aim of creating a
model minimally dependent on individual characteristics. Therefore, the DANN
architecture was deployed, seeking to develop a feature representation that is less
influenced by the subjects’ characteristics. To achieve this, the classifier was trained
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Table 7.6 Comparison of performance between the present study and similar studies involving
the ALC corpus. Results are expressed as balanced accuracy on the test set. N: numerosity

Study
ID

Accuracy Model characteristics N subjects

Present
study

0.709 OpenSmile and Praat features; DANN
classification model

162

[297] 0.67 OpenSmile features; Partial Least Square
(PLS) classification model

154

[298] 0.705 OpenSmile and Praat features; Gaussian
Mixture Model based on SVM

154

[299] 0.645 OpenSmile features; SVM embedding
classification model

154

[300] 0.675 OpenSmile features; Universal Back-
ground Model (UBM); Hidden Markov
Model (HMM)

154

[301] 0.688 OpenSmile features; Gaussian Mixture
Model based on SVM

154

[302] 0.676 OpenSmile features; SVM and LDA clas-
sification model

154

[304] 0.666 OpenSmile features; SVM classification
model

154

[305] 0.601 OpenSmile features; HMM classification
model

145

[306] 0.68 Spectrogram-based features; CNN classi-
fication model

162

[307] 0.683 WAV2LETTER and Deepspeech-based;
Recurrent Neural Network (RNN) classi-
fication model

154

[308] 0.666 OpenSmile features; SVM classification
model

162

[309] 0.677 OpenSmile features; SVM and ResNET
classification model

162
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on the entire set of speech samples in the ALC corpus, making the model independent
of the specific prompts spoken by the speakers. The DANN architecture yielded
promising results, achieving a classification accuracy of 70.91% (Table 7.5) on a
test set consisting of entirely new subjects. Although the results on the test set
indicate strong performance and robust classification capabilities, the reduction in
performance from training to testing suggests the need for an expanded sample size
to further assess the model generalization ability.

When comparing the results to existing literature (as shown in Table 7.6), it is
important to note that the examined studies primarily report balanced accuracy on the
test set, omitting details about the training phase. This absence makes comprehensive
comparisons of the model generalization capacity with other studies challenging.
Additionally, while the models in these studies were trained on similar datasets with
comparable features,the current study utilizes a slightly larger corpus compared to
the best-performing study by Bone et al. [298]. Indeed, the present corpus includes
additional 720 samples (8 subjects * 90 tasks), providing a more comprehensive
investigation of the problem.

The comparison with other articles addressing similar objectives using the ALC
dataset generally indicates performance levels below the 70% threshold, with only
one study by Bone et al. [298] surpassing this benchmark and being comparable to
the results presented in this study. The comparison between the two models reveals
the commonality of both to include a step to minimize inter-subject differences.
This finding, in line with the statistical analysis conducted in this study, suggests the
critical need to develop algorithms that are minimally influenced by individual subject
characteristics. Besides this, the approach presented in this dissertation presents
crucial differences from the methodology employed in [298]. Indeed the model here
proposed does not require intricate data-preparation techniques and it relies solely on
DANN, thus significantly reducing the complexity. Moreover, the proposed model
offers a key advantage by creating a prompt and subject-independent system, thus
showing a high generalization capability. In addition, while this work focused on a
specific aim, it showcases potential applicability across various domains. Indeed, it
provides a prospective solution to the dependence on speaker-specific characteristics
that often affects voice based models, holding promise for widespread applications.
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7.2.6 Conclusions and Future Works

The study presented demonstrated the feasibility of an automatic classification based
on vocal samples for the detection of intoxication, with the DANN architecture show-
ing potential in creating models that are independent of individual characteristics
and vocal prompts.

These encouraging results suggest the prospect of developing automatic devices
suitable for the automotive context. These devices could gather information from
any driver and dissuade them from starting the car if there is a potential risk of
intoxication. Nevertheless, it is crucial to underscore that further refinement and
validation of these findings are necessary. Firstly, expanding the dataset could
mitigate issues related to overfitting and enhance the model ability to generalize.
Indeed, intricate architectures such as DANN typically necessitate extensive, high-
dimensional datasets for effective training. Thus, expanding the dataset employed
in this study could lead to better and more generalized outcomes. Additionally,
delving into advanced techniques in deep learning and transfer learning may lead to
enhancements in classification performance.

Moreover, addressing the challenge of real-world applicability is of paramount
importance. Developing models capable of handling diverse and uncontrolled envi-
ronments, where speech patterns can vary considerably, is essential. Finally, research
efforts should prioritize refining the interpretability and explainability of the models
to facilitate their adoption in practical applications, particularly in safety-critical
contexts such as automotive environments.

Regarding the classification model, an innovative, speaker-neutral ML algorithm
was introduced. This model was specifically designed to overcome the inherent
challenges associated with individual characteristics, providing a more robust and
universally applicable approach to intoxication detection through speech analysis.
This research not only deepens the understanding of the effects of alcohol on speech
but also opens promising perspectives for the development of practical and widely
applicable intoxication detection systems.



Chapter 8

Final Remarks

This dissertation effectively demonstrated the potential of voice analysis across
diverse domains, encompassing the examination of neurodegenerative diseases and
transient conditions arising from altered sleep quality or alcohol intoxication. The
conducted experiments further delved into the impact of the simultaneous presence
of two or more pathologies, providing a deeper understanding of how comorbidities
may alter the vocal signal. Additionally, a series of investigations explored the
influence of individual-specific characteristics, including age, gender, and language,
among others.

In the experiments exploring Parkinson’s disease, the efficacy of specific vocal
tasks, emphasizing the importance of a concise protocol involving vowels, partic-
ularly /a/, and sentences, was revealed. Notably, occlusive sounds in the Italian
language demonstrated superior capacity for capturing PD-associated impairments.
The analysis of acoustic parameters, including MFCC coefficients, F0, Shimmer,
and Jitter, highlighted their robustness and effectiveness for the application at hand.
The promising outcomes, although based on limited sample sizes, suggested the
feasibility for cross-lingual models.

Similarly, investigations into obesity and GERD classification showcased the
efficiency of ML models, addressing limitations related to dataset size and gender-
age imbalances. The study’s applicability to more impactful health conditions, like
PD, discloses the option for simultaneous evaluations of co-existing conditions.

The exploration of sleep quality classification demonstrated remarkable effi-
ciency despite recording challenges, particularly for females. Limitations involving
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subjective sPSQI scores were identified, revealing the need for future incorporation
of objective parameters and expanded datasets for improved model performance.

In the context of alcohol intoxication, the study exhibited the potential of DANN
architecture for speaker-neutral models, emphasizing the need for refinement, ex-
panded datasets, and real-world applicability considerations.

While the experiments presented in this dissertation successfully demonstrated
the potential of voice analysis across diverse domains, it is crucial to acknowledge
certain limitations and offer critical insights to guide future research and applications.
Specifically, findings from the experiments conducted were promising but often
relied on limited sample sizes. To ensure the robustness of analyses, future research
endeavors should prioritize expanding datasets, allowing for more comprehensive
and reliable conclusions.

Moreover, despite extensive efforts to prioritize model interpretability through
the predominant use of shallow algorithms and post hoc analysis of extracted acoustic
parameters, it is crucial to note that these endeavors have inherent limitations. Indeed,
there exists an unavoidable absence of a direct correspondence between certain
specific features (e.g., MFCC(6)) and a particular aspect of vocal production. Future
studies could delve deeper into this aspect and, with the support of specialized
professionals, shed more light on aspects characterized by lower interpretability.

blackAs for sleep quality classification, while efficient, the experiment revealed
limitations related to subjective sPSQI scores. Incorporating objective parameters
and larger datasets could address these shortcomings, ensuring more reliable models.
Similary, the study on alcohol intoxication presented promising outcomes with
the DANN architecture. However, the call for refinement, expanded datasets, and
considerations for real-world applicability should guide future investigations.

The overall evidence highlighted the inherent variability in vocal samples due
to individual characteristics and the influence of recording modalities. While pro-
posed solutions, such as covariate inclusion and domain adversarial networks, show
promise, further research should delve into refining these techniques and expanding
their applicability across diverse clinical conditions.

For each of the experiments conducted and reported, a detailed literature analysis
was carried out, and comparisons with similar articles were presented. In these
comparisons, special attention was given to ensuring consistency and robust compa-
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rability by utilizing similar data and training conditions. However, the diversity of
experimental conditions, such as corpora and validation methods, precluded a precise
comparison that would allow for a comprehensive evaluation of the proposed model.
Hence, future research endeavors should consider incorporating publicly available
models or those with detailed descriptions to ensure reproducibility. Employing
identical data and training/testing conditions in these studies would facilitate a clear
and comprehensive comparison, eliminating potential biases that could lead to the
overestimation of performance.

In summary, the outcomes of this dissertation collectively advocated for the pos-
sibility of mitigating the influence of potentially confounding factors by constructing
specialized and highly tailored models for specific applications.

The findings underscored the significance of developing models that account for
the intricacies of individual conditions, enabling a more accurate and context-specific
analysis. This approach minimizes the impact of confounding variables, thereby
enhancing the reliability, applicability, and interpretability of the generated models.
Such an improved methodology not only contributes to the robustness of the results
obtained but also lays a solid foundation for a more effective implementation of
voice analysis techniques in various real-world scenarios.
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[141] Jan Rusz, Jan Hlavnička, Michal Novotný, Tereza Tykalová, Amelie Pelletier,
Jacques Montplaisir, Jean-Francois Gagnon, Petr Dušek, Andrea Galbiati, Sara
Marelli, Paul C. Timm, Luke N. Teigen, Annette Janzen, Mahboubeh Habibi,
Ambra Stefani, Evi Holzknecht, Klaus Seppi, Elisa Evangelista, Anna Laura



208 References

Rassu, Yves Dauvilliers, Birgit Högl, Wolfgang Oertel, Erik K. St. Louis,
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[211] Jan Hlavnička, Tereza Tykalová, Olga Ulmanová, Petr Dušek, Dana Horáková,
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