
UNIVERSITÀ DEGLI STUDI DI CATANIA

DIPARTIMENTO DI INGEGNERIA ELETTRICA ELETTRONICA
E INFORMATICA

DOTTORATO DI RICERCA IN INGEGNERIA DEI SISTEMI
ENERGETICA, INFORMATICA E DELLE

TELECOMUNICAZIONI

Learning NP-hard problems on networks using
Geometric Deep Learning

Ph.D. Thesis

Ph.D. Candidate:
Marco Grassia

Advisor:
Prof. Giuseppe Mangioni

XXXIV CYCLE

There is a theory which states that if ever anyone discovers exactly what the
Universe is for and why it is here, it will instantly disappear and be replaced
by something even more bizarre and inexplicable.
There is another theory which states that this has already happened.

— Douglas Adams, The Restaurant at the End of the Universe

To my parents,
who encouraged me to take the leap and supported me through these years.

Acknowledgements

I would first like to express my sincere gratitude to my supervisor, Professor Giuseppe
Mangioni, for his invaluable advice and feedback, for the inspiring ideas and stimulating
discussions, for his support, and, maybe most importantly, for his perseverance.

I would like to thank Professor Paolo Pietro Arena, Ph.D. Coordinator, for his guidance
during my Ph.D.

I would also like to thank Professor Vincenza Carchiolo and Professor Michele Malgeri
for their support.

I would like to offer my special thanks to Dr. Manlio De Domenico for his advice and for
the interesting research questions.

I would like to thank Dr. Carlo Cannistraci for the internship opportunity in his lab.
I would like to extend my sincere thanks to Dr. Alessandra Sala, my former manager

during my Bell Labs internship, for believing in me and for her precious advice that helped
me during my Ph.D.

I am grateful to my parents, mamma Giovanna e papà Enzo, for everything they have
done for me to help me achieve this goal, to my brother Stefano and to my grandma, nonna
Maria, for supporting me and for cheering after every achievement. You are always there for
me. Thank you.

Last but not least, I would also deeply thank Alessia, Egle and Luigi for all the time spent
together, for all the hugs and for all the happy distractions. You endured this long path with
me, always offering support and love, and made the hard moments easier.

Abstract

Many systems from a wide range of domains can be modeled as networks, i.e., a set
of nodes that represent the entities of the system and a set of links between nodes that
represent relations among them. For instance, social networks can be used to describe how
people interact with each other, computer networks can represent communication channels
(physical mediums, logical connections, etc.), trophic networks show how animals feed,
and so on. The underlying complexity of the modeled systems translates into non-trivial
patterns in the networks, and, thus, they are often called complex networks. The increasing
importance of networks in many domains (e.g., social, technological, biological, etc.) and
the need of methodologies and tools to study complex networks led to the rise of Network
Science, the field that studies networks and their applications. However, many problems
on networks remain hard to define formally and even harder to solve exactly (for instance
for computational constraints), requiring sub-optimal heuristics. In this work we show
how Geometric Deep Learning, the generalization of Deep Learning to non-Euclidean
domains like graphs, can aid the computation of NP-hard problems and learn heuristics
from the data. Specifically, we define a framework, namely GDM, to learn how to solve the
Network Dismantling and Link Building problems on the optimal solutions computed on small
synthetic graphs, and then generalize to large real-world networks. For both problems, the
state-of-the-art heuristics are outperformed significantly. This result can be achieved thanks
to the generalization performance of the Graph Neural Network (GNN) layers employed.
We also define mGNN, a framework to generalize any GNN to Multilayer Networks, and
wsGAT, a new GNN extending the Graph Attention Network (GAT) layers to handle signed
and weighted networks.

Publications

In this section are listed the publications made during my three-year Ph.D. program.
The ones covered in this thesis are marked with a *.
Some publications are still under review and reported as "Submitted to ...".

* Grassia, M., De Domenico, M. & Mangioni, G. Machine learning dismantling
and early-warning signals of disintegration in complex systems. Nature Com-
munications 12, 5190 (2021). URL https://doi.org/10.1038/s41467-021-25485-8

* Grassia, M. & Mangioni, G. Weighted and signed graph attention networks.
Submitted to the 10th International Conference on Complex Networks and their
Applications (COMPLEX NETWORKS 2021) (2021)

* Grassia, M., De Domenico, M. & Mangioni, G. mGNN: Generalizing the
Graph Neural Networks to the Multilayer Case. Submitted to IEEE Transactions
on Neural Networks and Learning Systems (2021)

* Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Efficient
node rank improvement via link building using geometric deep learning. Submit-
ted to IEEE Transactions on Knowledge and Data Engineering (2021)

Grassia, M., Mangioni, G., Schiavo, S. & Traverso, S. International food trade
and vulnerability to shocks: insights from network-based simulations. Submitted
to Environmental Research Letters (2021)

Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Food
recommendation in a worksite canteen. In COMPLEXIS, 117–124 (2021)

https://doi.org/10.1038/s41467-021-25485-8

vii

Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. A network-
based analysis of a worksite canteen dataset. Big Data and Cognitive Computing
5, 11 (2021)

Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Analysis
of the co-authorship sub-networks of italian academic researchers. Submitted to
the 2021 IEEE/ACM International Conference on Advances in Social Network
Analysis and Mining (ASONAM) (2021)

Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Pre-
liminary characterization of italian academic scholars by their bibliometrics.
Submitted to 14th International Symposium on Intelligent Distributed Comput-
ing (IDC 2021) (2021)

Grassia, M., Mangioni, G., Schiavo, S. & Traverso, S. (unintended) conse-
quences of export restrictions on medical goods during the covid-19 pandemic.
arXiv preprint arXiv:2007.11941 (2020)

Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Group
cohesion assessment in networks. In Complex Networks XI, 16–25 (Springer,
Cham, 2020)

Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. A network-
based analysis to understand food-habits of a multi-company canteen’s customers.
In Proceedings of the 22nd International Conference on Information Integration
and Web-based Applications & Services, 352–356 (2020)

Lauri, J., Dutta, S., Grassia, M. & Ajwani, D. Learning fine-grained search space
pruning and heuristics for combinatorial optimization (2020). 2001.01230

Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Network
robustness improvement via long-range links. Computational Social Networks
6, 1–16 (2019)

2001.01230

viii

Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. A pagerank
inspired approach to measure network cohesiveness. In International Confer-
ence on Internet and Distributed Computing Systems, 349–356 (Springer, Cham,
2019)

Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Strategies
comparison in link building problem. In International Symposium on Intelligent
and Distributed Computing, 197–202 (Springer, Cham, 2019)

Grassia, M., Lauri, J., Dutta, S. & Ajwani, D. Learning multi-stage sparsification
for maximum clique enumeration. arXiv preprint arXiv:1910.00517 (2019)

Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Exploiting
long distance connections to strengthen network robustness. In International
Conference on Internet and Distributed Computing Systems, 270–277 (Springer,
Cham, 2018)

Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Long
distance in-links for ranking enhancement. In International Symposium on Intel-
ligent and Distributed Computing, 3–10 (Springer, Cham, 2018)

Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Climbing
ranking position via long-distance backlinks. In International Conference on
Internet and Distributed Computing Systems, 100–108 (Springer, Cham, 2018)

Table of contents

1 Introduction to Network Science and Machine Learning 1
1.1 Network Science . 1

1.1.1 Networks . 2
1.1.1.1 Different types of networks 3

Directed networks . 3
Weighted networks . 3
Signed networks . 3
Feature-rich networks . 3

1.1.1.2 Adjacency matrix . 3
1.1.2 Network analysis . 3

1.1.2.1 Structural analysis . 4
Degree, average degree and degree distribution 4
Strength, average strength and strength distribution 4
Network diameter . 5
Link density and reciprocity 5
Clustering coefficients . 5
Assortativity . 6
Connected components . 6

1.1.2.2 Centrality measures . 7
Degree centrality . 7
Betweenness centrality . 7
Eigenvector centrality . 7
PageRank . 8

1.1.2.3 Community analysis . 8
1.1.3 Network generation . 10

1.1.3.1 Erdös-Rényi (ER) . 10
1.1.3.2 Barabási-Albert (BA) 10

Table of contents x

1.1.4 Network robustness . 11
1.1.4.1 Static effects . 11
1.1.4.2 Dynamical effects . 12

1.1.5 Network dynamics . 12
1.1.5.1 Diffusion and spreading phenomena 12

Epidemic diffusion. 12
1.1.6 Multilayer Networks . 13

1.1.6.1 Definition and types . 14
1.1.6.2 How to study multilayer networks 14
1.1.6.3 A new mathematical framework 15
1.1.6.4 Application scenarios 15

1.2 Machine Learning . 17
1.2.1 What is Machine Learning? . 17
1.2.2 Applications . 17
1.2.3 Learning machines? . 18

1.2.3.1 Training methodologies and tasks 18
Supervised learning . 18
Unsupervised learning . 19
Semi-supervised learning 19
Reinforcement learning . 19

1.2.3.2 Loss functions . 19
1.2.3.3 Parameters optimization 20

Stochastic Gradient Descent (SGD) 21
1.2.3.4 Back-propagation algorithm 22
1.2.3.5 Performance evaluation 22

Classification tasks . 22
Regression tasks . 23

1.2.3.6 Dataset splits . 24
Cross-validation . 25

1.2.4 Models . 25
1.2.4.1 Artificial Neural Networks 26
1.2.4.2 Activation functions . 26

1.2.5 From Machine to Deep Learning 27
1.2.5.1 Convolutional Neural Networks 28

Pooling . 28
1.2.5.2 Recurrent Neural Networks 29

Table of contents xi

2 Geometric Deep Learning 30
2.1 What is Geometric Deep Learning? . 30
2.2 Applications . 31
2.3 Graph Representation Learning . 32
2.4 Learning graph representations . 32

2.4.1 A bit of history: shallow embeddings 33
Idea. 33
Laplacian eigenmaps . 34
Inner-product methods . 34
Random-walk based methods 34
Multilayer extension . 34
Limitations . 35

2.4.2 Deep embedding: Graph Neural Networks (GNNs) 35
2.4.2.1 The message passing architecture detailed 36
2.4.2.2 Message passing with self-loops 38

2.4.3 Generic model architecture . 38
2.4.4 Pooling layers . 39
2.4.5 Graph embedding . 41
2.4.6 Link embedding . 41
2.4.7 Some examples of GNN layers . 41

2.4.7.1 Graph Convolutional Networks (GCN) 41
2.4.7.2 GraphSAGE . 42
2.4.7.3 Graph Attention Networks (GAT) 43
2.4.7.4 Simple Graph Convolution (SGC) 43
2.4.7.5 GCN via Initial residual and Identity mapping (GCNII) . 44
2.4.7.6 SignedGCN . 45
2.4.7.7 Temporal Graph Neural Networks (TGN) 46

How do TGN work? . 46
2.4.8 Training methodology . 48

2.5 Explaining the GNNs . 48
2.5.1 GNNExplainer . 49

2.6 Software libraries . 50

3 Learning Network Dismantling 51
3.1 Introduction . 51
3.2 Proposed framework . 52

3.2.1 Model architecture . 52

Table of contents xii

3.2.2 Training . 54
3.2.3 Node features . 55
3.2.4 Parameters . 55

3.3 Dismantling synthetic and real-world systems 56
3.3.1 Dismantling empirical systems . 57
3.3.2 Dismantling large empirical systems 61
3.3.3 Dismantling synthetic systems . 63
3.3.4 Enhancement of node metric based heuristics 65
3.3.5 Dismantling curves . 67

3.4 Early-warning signals of systemic collapse 74
3.4.1 Why do we need an Early Warning signal? 74
3.4.2 Tests on real-world systems . 76
3.4.3 More Early Warning Ω examples 77

3.5 Understanding the models . 80
3.5.1 Models’ behavior . 80
3.5.2 Explaining the GNN models . 81
3.5.3 Dismantling of configuration model rewired networks 96

3.6 Computational complexity . 98
3.7 Discussion . 98
3.8 Dataset . 99
3.9 Test environment . 101
3.10 Appendix: Network Dismantling exploiting network geometry 101

3.10.1 Introduction . 101
3.10.2 Formulation and Preliminary results 102

4 Learning the Link Building Problem 104
4.1 Introduction . 104
4.2 Related Works . 106
4.3 Background and formulation . 108

4.3.1 PageRank . 108
4.3.2 The link building problem . 110
4.3.3 State-of-the-art heuristics . 111

4.3.3.1 Problem-agnostic strategies 111
4.3.3.2 Problem-aware strategies 111

4.4 LB–GDM . 113
4.4.1 Model architecture and complexity 113
4.4.2 Training and Generalization . 115

Table of contents xiii

4.5 Experiments . 117
4.5.1 Test networks . 117
4.5.2 Results . 117

4.6 Model parameters . 122
4.7 Discussion . 122

5 mGNN: Generalizing the Graph Neural Networks to the Multilayer Case 123
5.1 Introduction . 123
5.2 Related Works . 124
5.3 Proposed Framework . 125
5.4 Experiments . 129

5.4.1 Malaria genes classification . 129
5.4.2 Link prediction . 130
5.4.3 Superdiffusion prediction . 131

5.5 Training and model parameters . 132
5.5.1 Malaria genes classification . 132
5.5.2 Link prediction . 132
5.5.3 Superdiffusion prediction . 132

5.6 Discussion . 132

6 Weighted and Signed Graph Attention Networks 134
6.1 Introduction . 134
6.2 Formulation . 135
6.3 Experiments . 136

6.3.1 Dataset . 136
6.3.2 Sign prediction . 137
6.3.3 Weight prediction . 138
6.3.4 Signed weight prediction . 139
6.3.5 Code availability . 139

7 Conclusive remarks and future research directions 140

References 142

List of figures 168

List of tables 172

Chapter 1

Introduction to Network Science and
Machine Learning

In this Chapter we introduce the motivations and some fundamentals of Network Science
and of Machine Learning, the two fields at the core of this thesis, and that should help the
Reader understand Geometric Deep Learning and the problems addressed in the following
chapters.

1.1 Network Science

Fig. 1.1 Example of a technological complex
network.

In the “century of complexity” [21] and
in the time of the new challenges offered by
the large availability of real-world data and
by computational capabilities of the modern
hardware, there is a growing interest in the
study of complex systems — i.e., systems
with many interacting entities — and in the
study of their emergent properties — i.e.,
those properties of the system that its indi-
vidual components do not have —. We could
say that complex systems are everywhere:
examples are social networks, the Internet
network, cities, trophic relations, the human
body, etc. While such systems are widely
represented as networks (graphs) [22], hence

1.1 Network Science 2

the name complex networks, graph theory alone does not provide the right tools to study
them, as its main focus is on “providing rigorous proofs for graph properties” [23], often on
tractable graphs like random or smaller ones. In this scenario, Network Science was born
in the recent past as an interdisciplinary attempt of applying tools from various fields like
mathematics, physics, statistics and computer science, to study the network representations of
real-world complex systems with the final goal being understanding them and their emergent
properties, either structural or dynamics-related. However, it should be noted that Network
Science has quite a long history, and that it has strong roots in social psychology, sociology,
and anthropology [24]. In the past, there have been many attempts to formally define Network
Science, one of the first was made in 2005 by the U.S. National Research Council [25],
which defined it as “the study of network representations of physical, biological, and social
phenomena leading to predictive models of these phenomena”.

In the following, we introduce the Network Science concepts and terminology needed to
understand the problems addressed in this thesis. Specifically, after an introduction to the
concept of network and to some network types, we give an overlook of some typical analysis
tools used, then we introduce some problems on networks, and multilayer networks. For
more details, we refer the Reader to other works and surveys [26, 27].

1.1.1 Networks

Formally, a network can be represented as a graph G = (V,E), where V is the set of the
nodes (or vertices), the components of the system, and E us the set of links (or edges) that
represent interactions between them.

The generic definition of nodes and links allows a range of applicability so wide that
networks are often defined ubiquitous: nodes can be computers, people, cities, proteins,
animal species, neurons, machines, etc. and links can encode social relationships, commu-
nication channels, regulatory interactions, predator-prey interactions, synaptic connections,
events, etc. Just to mention a few applications, networks have been employed in biology [28],
ecology [29], neuroscience [30], economy [31], finance [32], engineering [33], physics [34],
social [35, 36] and computer science [37]. In fact, one of the advantages of the network
modelling is that the networks are independent of the domain of the system. That is, networks
are domain-agnostic [38] and two systems from very different domains can have similar or
even the same network representation. This allows researchers to use the same Network
Science tools to solve problems in any domain, even without domain-specific knowledge.

1.1 Network Science 3

1.1.1.1 Different types of networks

To model a wide variety of systems and data, various types of networks have been defined.
In the following, we mention the most important ones.

Directed networks Links can be directed [39], meaning that the interaction ei, j between
two nodes u and v is asymmetric as it originates from node i and targets node j. On the other
hand, in undirected networks a link has no direction and ei j = e ji.

Weighted networks Each link from node i to node j in the network could have a different
weight [40], denoted with wi j. In this case, the network is said to be weighted. On the
other hand, in unweighted (or binary) networks we have that wi j = 1 ∀i, j. The meaning of
link weights depends on the system. For instance, weights can represent the strength of a
relationship, the costs of an interaction, the estimated trip time, the distance between the two
nodes, etc.

Signed networks Signed networks [41] are sub-type of weighted networks where link
weights wi j can also be negative. This is the case, for instance, of correlation networks where
each link is the correlation among the nodes [42, 43], or the case of trust networks [44–46]
where trust scores between users can also be negative (e.g., to represent mistrust).

Feature-rich networks Networks can also come with some kind of information associated
to the entire graph, to the nodes or to the links. For instance, in social networks nodes may
include personal information like birthday date, hair color, height, etc., and links can include
the date two nodes first met, and so on.

1.1.1.2 Adjacency matrix

A common way to represent a network is though its adjacency matrix [47], usually
denoted with A, a square matrix of order N, where N is the number of nodes in the network.
Each element of A, ai j, is either 1 if there is a [directed] link from node i to j or 0 otherwise.
Note that aii = 1 means that node i has a self-loop, i.e., an incoming link from itself. The
meaning of self-loops depends on the modelled system.

1.1.2 Network analysis

Due to the large size of real-world networks, a thorough analysis is not feasible. Instead,
networks are often studied from a statistical perspective (e.g., by looking at degree and

1.1 Network Science 4

strength distribution, assortativity, clustering coefficients, etc.) and by looking at some other
properties that are meaningful for the specific domain. In the following, we introduce some
of these tools and properties.

1.1.2.1 Structural analysis

Degree, average degree and degree distribution The degree ki of a node i is the number
of its links.

ki =
N

∑
j

ai j =
N

∑
j

a ji (1.1)

In directed networks, we distinguish between the number of incoming links (in-links), called
in-degree kin

i , and the number of outgoing links (out-links), called out-degree kout
i .

kin
i =

N

∑
j

a ji (1.2)

kout
i =

N

∑
j

ai j (1.3)

(1.4)

Of course, it follows that the (total) degree is ktotal
i = kin

i + kout
i . The average [in|out] degree

of a network, usually denoted as ⟨k⟩, is the average [in|out] degree of the network’s nodes.
However, the average value does not tell much about the degree. For this reason, it is common
to visualize and analyze the degree distribution P(k) of the network, i.e., the normalized
probability that a node has degree k.

Strength, average strength and strength distribution In the case of weighted networks,
another interesting measure is the strength of the nodes, i.e., the sum of the weight of its
links.

si =
N

∑
j

ai jwi j =
N

∑
j

a jiw ji (1.5)

1.1 Network Science 5

Like in the case of the degree, if the network is also directed, one can compute the in-strength
and the out-strength, i.e., the strength of the incoming and outgoing links of that node.

sin
i =

N

∑
j

a jiw ji (1.6)

sout
i =

N

∑
j

ai jwi j (1.7)

(1.8)

The total strength can be computed as stotal
i = sin

i + sout
i . Again, one can also consider the

average value ⟨s⟩, and the strength distribution P(s).

Network diameter The [directed] diameter of a network is the length of the longest
shortest path between any two nodes in the network.

Link density and reciprocity The density of links is the ratio of links in the network to
the theoretically possible maximum.

The reciprocity of links in a directed network is the ratio of links reciprocated in the other
direction. That is, a link ei j is reciprocated if the link e ji also exists in the network.

Clustering coefficients The local clustering coefficient Ci is a local measure of the cliquish-
ness of the neighborhood of node i [48], used to describe the ‘small-world’ effect. That is, it
quantifies the probability that two of i’s neighbors are also connected (i.e., the local ratio of
closed triplets that form a triangle, where a triplet is three nodes that connected by two or
three links). For an undirected graph, it can be computed as [48]

Ci =
2|{e jk : n j,nk ∈ Ni,e jk ∈ E}|

ki(ki −1)
(1.9)

where Ni is the neighborhood of node i, n j and nk are its neighbors and e jk is the edge
between them, and ki is the degree of node i. Note that this measure is defined between
0 ≤Ci ≤ 1 as ki(ki−1)

2 is the maximum number of possible links between the neighbors of
node i. The local clustering coefficient can also be computed for directed and/or weighted
graphs, but we do not cover these extensions here.

It is also common to consider the average clustering coefficient C, i.e., the average Ci

value for a network:

C =
1
N

N

∑
i

Ci (1.10)

1.1 Network Science 6

The global clustering coefficient T [22], also known as transitivity, is another measure
of clustering, however it is a global defined for the entire network as:

T = 3
number of triangles
number of triplets

(1.11)

Assortativity The assortativity coefficient r of a network quantifies the tendency of nodes
to connect with nodes with similar characteristics [49]. r is a value between −1 ≤ r ≤ 1
defined as [49]

r =
∑i eii −∑i aibi

1−∑i aibi
(1.12)

where ai = ∑ j ei j and bi = ∑i ei j, and ei j is the fraction of links that connect nodes of type i
to nodes of type j. Note that ai = bi in undirected networks and that ∑i j ei j = 1. If r = 0, we
say that there is no assortativity and if r < 0 we talk about disassortativity.

However, it is common to compute the scalar assortativity of the node’s degree to
measure if nodes preferentially connect to nodes with similar degree. The scalar assortativity
is defined similarly as before, the main difference being that it does not consider node types
but values associated to the nodes (e.g., the degree). Specifically, it is the following Pearson
correlation coefficient [49]:

r =
∑xy xy(exy −axby)

σaσb
(1.13)

where ax = ∑y exy and by = ∑x exy, exy is the fraction of links that connect nodes with value x
to nodes with value y, σa and σb are the standard deviations of the ax and by distributions
respectively.

Another form of assortativity is the node-level Pearson’s correlation coefficient between
the degree and the Average Nearest Neighbor Degree (ANND) [50], or between the strength
and the Average Nearest Neighbor Strength (ANNS) [51]. In particular, the ANNS is defined
as:

ANNSα/β

i =
∑

N α
i

j sβ

j

kα
i

(1.14)

where N α
i is the α neighborhood of i, and α,β ∈ [in,out]. That is, it can be computed

consider the different in-out link directions. The aggregated ANNS quantity can be defined
if α = β = tot and the in and out neighbors are aggregated. For the ANND case, instead of
the strength sβ

j one should consider the degree dβ

j of nodes.

Connected components A connected component is a sub-network such that there is at
least a path between every pair of nodes. The largest of these components in a network is

1.1 Network Science 7

often referred to as Largest Connected Component (LCC) or Giant Connected Component
(GCC).

In the case of directed networks, a strongly connected component is defined as the sub-
network such that there is at least a directed path between every pair of nodes. If directionality
is ignored instead, we talk about weakly connected components to avoid confusion.

1.1.2.2 Centrality measures

One of the main topics of Network Science has always been trying to understand and
quantify what makes a node important, often to rank the nodes in a network. However,
considering that there is no unique definition of importance — and that the definition may be
domain-dependent —, many centrality measures have been proposed, each with their own
application.

In the following, we briefly introduce some of the most important centrality measures.

Degree centrality A simple centrality measure is the degree centrality. As the name
suggests, it is degree-based and the importance of a node depends on its [in | out] degree.
The rationale is that, for instance, in the network of the who-follows-who of online social
networks like Twitter, the in-degree captures how many users follow another: the higher the
in-degree, the more "important" that node is. Nodes with a large degree (w.r.t. the other
nodes in the network) are often called hubs.

Betweenness centrality The betweenness centrality [52] is a measure based on shortest
paths. Specifically, for each node i, it is the fraction of the shortest paths between any pair of
nodes that pass through node i. Formally, a for node i it is defined as [53]

bi = ∑
s ̸=t ̸=i∈V

σ(s, t|i)
σ(s, t)

(1.15)

where σ(s, t) is the number of the shortest paths from nodes s to t, and σ(s, t|i) is the number
of the shortest paths from s to t that pass thorough i.

The betweenness centrality can also be defined for links.

Eigenvector centrality The eigenvector centrality [54], also known as eigencentrality, is
a spectral centrality measure that not only accounts for the number of connections but also
for their quality, i.e., two nodes with the same number of connections will have different
centrality values if their neighbors have different centrality values [55]. Formally, for a node

1.1 Network Science 8

i it can be defined as [55, 56]

λei =
N in

i

∑
j

e j = ∑
j

A ji · e j = (A⊤e)i (1.16)

where N in
i is the in-neighborhood of node i, and A is the adjacency matrix of the network.

That is, the eigenvector centrality of node i is corresponding component of the eigenvector of
the transpose of the adjacency matrix with the largest eigenvalue λ [55].

PageRank The PageRank centrality [57] was introduced in 1998 by Google’s founders
Page and Brin (and their coauthors) to assess the importance of web pages [58].

It is a centrality measure based on random-walks — i.e., on an agent that walks in the
network by choosing, at every node, a random out-link to follow —, used to model the
behavior of a random user surfing the Web. To avoid that the random-walker could get stuck
in a sink node (i.e., a node without out-links), a damping factor probability q, usually set to a
small value (typically 0.15), can make the random-walker jump (teleport) to a random node
in the network. The teleport operation simulates the user moving to another Web page, e.g.,
by clicking on a bookmark. As in the eigenvector centrality, nodes with many "important"
neighbors are more important than other nodes with the same in-degree but less important
neighbors [55].

The PageRank of a node i can be described as follows [55]

pi =
q
N
+(1−q)

N in
i

∑
j

p j

kout
j

(1.17)

where q is the damping factor, N in
i is the in-neighborhood of node i, N is the number of

nodes in the network, kout
j is the out-degree of node j. In practice, it is computed iteratively

using the power method.
For more about the PageRank centrality, we refer the Reader to the dedicated Sec-

tion 4.3.1.

1.1.2.3 Community analysis

Community analysis has been proposed in the social sciences [59, 26] and consists in
finding communities, i.e., sub-sets of nodes such that connections between the nodes in
the same community are denser than with nodes in the other communities [60]. Moreover,

1.1 Network Science 9

one might be interested in finding overlapping communities, where a node might belong to
multiple communities with different belonging factor.

While finding optimal communities is a hard task — it is a combinatorial problem and the
number of communities may not be known a priori —, many algorithms have been proposed.
For instance:

• Girvan and Newman [61] compute edge-betweenness iteratively to find and remove
edges that lie between communities (the rationale being that edges with high between-
ness bridge many nodes) and analyze the connected components after every removal
until no edge remains. The output of the algorithm is a dendrogram (a hierarchical
tree) with the complete community structure of the network;

• Blondel et al. [62] propose a modularity maximization algorithm, known as Louvain
method. In particular, while modularity Q was already proposed by Newman [63] to
evaluate the quality of partitions in weighted networks as

Q =
1

2m ∑
i j

[︃
Ai j −

kik j

2m

]︃
δ (ci,c j) (1.18)

where m = |E| is the number of links, kx and cx are the strength and the community
of node x respectively, and δ = 1 if ci = c j, Blondel et al. optimize this quantity
with two phases repeated iteratively. Specifically, they begin by placing each node
in its own community. Then, the first phase consists in considering the modularity
gain obtained by moving each node in the neighboring communities. The node is
placed in the one that provides the maximum positive gain, if any, or is left in its
community otherwise. In the second phase, they aggregate the communities found in
the previous step and generate a new network where each community is a node and
edges are assigned a weight that corresponds to the sum of weights between the two
communities. Self-loops account for internal links instead. In their work, Nicosia et
al. [64] extend the definition of modularity to overlapping communities;

• Peixoto [65, 66] employs Bayesian inference, a method of statistical inference, to fit
the parameters of generative models like the Stochastic Block Model proposed by
Holland et al. [67] and its variants, and find the ones that most likely have generated
the network (and its community structure).

1.1 Network Science 10

1.1.3 Network generation

In many applications, the generation of synthetic/random data with some given properties
can be useful, for instance to benchmark an algorithm or to create a null model — i.e., an
ensemble of random graphs with given characteristics (like degree distribution, etc.) that is
taken as a term of comparison for other structural properties, in order to verify if the results
obtained on the analyzed data are meaningful or not —, like in community detection.

In the following, we briefly discuss some of the most popular generative models.

1.1.3.1 Erdös-Rényi (ER)

The Erdös-Rényi (ER) models, proposed by Erdös and Rényi [68], can be defined using
two static models, meaning that the set of nodes does not change over time [26]. The first
model, denoted with G ER

N,K [26], generates a random network with N nodes and K (randomly)
placed links by staring with a disconnected network and connecting K random node pairs.
The second model, denoted with G ER

N,p [26], instead of focusing on the number of links,
generates a network where each pair of nodes is connected a given with probability p. In
both cases, each link is present (or absent) with equal probability. Therefore, the degree
distribution is binomial [26].

1.1.3.2 Barabási-Albert (BA)

Barabási and Albert [34] proposed a generative model, called Barabási-Albert (BA), that
mimics the dynamic growth of many observed real-world networks, like the World Wide
Web [69]. The model, denoted with G BA

N,m,m0
, is based on two mechanisms [26]:

• Growth: new nodes are added during the network generation until the desired number
of nodes N is reached, i.e., the resulting networks are the result of a growth process;

• Preferential attachment: new nodes tend to link to nodes with higher degree. This
process was inspired by the observations of new web-sites in the World Wide Web
network [69] that link to the most popular ones.

In detail, the Barabási–Albert algorithm starts with a network with m0 isolated nodes. New
nodes are created one at a time, and each is connected to m ≤ m0 other nodes. The probability
that the new node is connected to an existing node u is pu =

ku
∑ j k j

.
It has been proven that, for N →+∞, the output degree distribution follows a power-law

P(k) ∝ k−γ with γ = 3 [26].
The model can be extended to directed networks by generating the inlink and the outlink

distribution separately.

1.1 Network Science 11

Some variants of the BA model have been proposed, like the Bianconi-Barabási model,
where the preferential attachment is also influenced by a static value called fitness. In this
model, nodes with higher fitness value are more likely to attract links than other nodes [70].

1.1.4 Network robustness

Robustness is the ability of a network to withstand failures in its structure, which can
be the result of random failures or targeted attacks. Considering the importance of many
real-world networks (e.g., infrastructure, social, biological, brain), the analysis of robustness
has been a topic of broad and current interest since the seminal work by Albert et al. [71].
In particular, there are two types of robustness [26] that can be studied as nodes (or edges)
are removed: static robustness, i.e., how the topology and/or some properties of the network
change, and dynamic robustness, i.e., how the flow of some quantity (e.g., information, power,
etc.) changes. In the following, we briefly introduce the Reader to the topic and refer to
Chapter 3 for more insights and references.

1.1.4.1 Static effects

The study of static robustness refers to the study of the change in network topology (or
some of its properties) as some of its components are removed from the network. Specifically,
we often refer to site percolation for the removal of nodes, and to bond percolation for the
removal of links.

The seminal works in this direction is the one by Albert et al. [71] that study the robustness
of synthetic Erdös-Rényi (ER) and Scale-Free (SF) networks, and also the robustness of
the sub-network of the Internet and of the World-Wide Web. In their work, they employ
the size of the Largest Connected Component (LCC) as a function of the removed nodes
to evaluate the health of the system. The rationale is that, since most networks require
the existence of a giant component to work properly, if the LCC is small enough the other
components are even smaller, the system is expected to malfunction. Some examples are the
Internet network, where being unable to reach another user in the network is considered a
malfunction, and the power-grid system, where a component (e.g., a district) without power
is not desirable. One of the most interesting results from their experiments is that, due to their
uniform degree distribution, Erdös-Rényi networks are more robust to random failures (e.g.,
random hardware malfunction of servers) than networks with fat-tailed degree distributions,
while real-world networks are more vulnerable to target attacks (e.g., to hubs).

1.1 Network Science 12

1.1.4.2 Dynamical effects

If the nodes or the links of the network can tolerate at most a certain flow before failing,
the removal of nodes or links may lead to consequent failures due to the redistribution of
flows. That is, there might be dynamical effects that cannot be evaluated with a static analysis.
This is the case, for instance, of power-transmission grid networks where each link can
deliver at most a certain power and gets damaged in case of overload. Of course, each of
these consequent failures may trigger more failures, and so on, and even a small initial shock
may lead to an avalanche that is called cascading failure [72]. Popular examples of cascading
failures are the North American and Italian blackouts that happened in 2003. For more about
cascading failures and their modeling, we refer the Reader to other works [26, 73, 72, 74].

1.1.5 Network dynamics

In the previous sections we gave an overview on how the structure of complex systems
can be analyzed using networks and the Network Science tools. However, another topic of
great interest is the analysis of the network dynamics, i.e., how the structure and the state of
the network (or of its nodes and links) changes over time. An example are cascading failures,
already introduced in the previous section, but also other phenomena like spreading/diffusion
and synchronization have been widely analyzed in the literature [25, 38, 73]. While out of
the scope of this thesis, in the following we briefly introduce spreading phenomena to further
motivate Network Science and the importance of networks.

1.1.5.1 Diffusion and spreading phenomena

One of the applications of Network Science is the study of the dynamics of spreading
phenomena across different network topologies [25, 38, 73, 75]. In fact, being networks
an agnostic representation of a system, links can model various mean of propagation (flow,
contact, transfer, face-to-face interactions, etc.), and networks offer a common framework
to study different phenomena. For instance, the spread of ideas and rumors can be studied
on (online) social networks, the spread of malware can be analyzed on computer networks,
contact networks can be used for the spread of pathogens, etc. [73].

Epidemic diffusion. Epidemic diffusion is one of the first and most widely analyzed
diffusive phenomena [38] due to its importance for society, for instance, for the study
immunization techniques (e.g., vaccinations) and how they affect the spread of diseases.

The simplest models used in epidemiology to forecast epidemics are the Susceptible-
Infected-Susceptible (SIS) and the Susceptible-Infected-Recovered (SIR). These two models

1.1 Network Science 13

are compartmental, i.e., each individual is assigned to a compartment that defines its status
and that can change over time. For instance, in the SIS and SIR models, each individual can
be classified as:

• Susceptible (S) if they have not contracted the pathogen yet;

• Infectious (I) if they are contagious;

• Recovered (R) if they recovered and have become immune to the disease.

These models have two parameters: the transmission rate, i.e., the probability that an in-
fectious neighbor infects a node and that commonly denoted with λ , and the recovery rate,
commonly denoted with µ , i.e., the probability that a node recovers from the disease (or
dies). It is also common to define the ratio σ = λ/µ and to try to find the critical value σc,
called epidemic transition, such that if σ > σc the spreading may cause an epidemic [26, 73].
While the key difference between SIS and SIR models is that in the second, after recov-
ering, individuals become immune to the disease, the associated dynamics are completely
different [26]. For instance, in the SIR model any epidemic will eventually end if no new
individuals join the network, because soon or later everybody will get immune, while in the
SIS model individuals can get infected again.

For more details, we refer the Reader to [26, 73] and to the literature.

1.1.6 Multilayer Networks

While the classical definition of network allows two nodes to be connected by a link,
in real-world systems entities can interact in multiple ways. For instance, in transportation
networks, two nodes (areas) can be connected by multiple means (e.g., road, rail, tube, bus,
etc.) [76, 77], two individuals may have different kinds of relationships (e.g., friendship,
business, family, co-workers, business, sport, etc.) [78], or connect on multiple online social
networks (Facebook, Twitter, etc.) where, in each, can interact in the various ways allowed
by the platform (e.g., friendship, follow, share, like, mention, etc.).

The answer to this limitation are multilayer networks, where each type of connection is
encoded in a different layer, i.e., a network with its own set of nodes and connections, called
intra-layer links. For instance, the multilayer representation of the transportation network
of a country could have a "roads" layer, where nodes are intersections and links represent
the roads, an "air" layer, where nodes are airports and links model flights, a "bus" layer,
where nodes are bus stations and links are bus rides, etc. However, in many scenarios the
entities that belong to two different layers may interact, too. Such connections are called

1.1 Network Science 14

inter-layer links. In the transportation network example, airports (nodes in the "air" layer)
and bus stations may be connected by, e.g., taxis.

In the following, we briefly introduce the Reader to multilayer networks. For more
thorough reviews about multilayer and interdependent systems and other examples of appli-
cations, we refer the Reader to [73, 79–89, 76] and references therein.

1.1.6.1 Definition and types

A multilayer network M is an ordered pair M =(G ,C) where G = {Gα ,∀α ∈{1, . . . ,L}}
is a set of L networks, called layers of M , and C is the set of interconnections, each called
crossed layers, between the nodes of two different layers [73]. The links between two nodes
in the same network are called intra-layer connections, while the links between nodes in
different networks are called inter-layer connections. Of course, the meaning of each layer
and of the inter- and intra- layer connection depend on the domain of the modeled system.

Multilayer networks are the generalization of various mathematical objects [73] that can
be considered sub-types. For instance:

• Multiplex networks [90], also known as edge-colored graphs, share the same set of
nodes V in all layers. These networks are useful to model systems that have different
kinds of connections among nodes, but no inter-layer connectivity can be inferred
from data, like in online social networks (where users can connect through Twitter,
Facebook, etc.), or where links have different physical meaning (e.g., co-activation at
different frequencies, etc.);

• Temporal networks, where each layer is the representation of the system at a different
time t, with t being an integer. Inter-layer connections are allowed only between
contiguous layers for temporal contiguity. In other words, only nodes in layers t and
t +1 can be connected.

1.1.6.2 How to study multilayer networks

A simple way to study systems characterized by multiple relationships is to consider
a single network (or monoplex) that is the result of the aggregation of the different kinds
of relations. While this approach has often been used in the past, it has multiple serious
issues and received a lot of criticism, since it is inherently affected by loss of potentially
essential information about the structure of the system and, consequently, about its function.
For example, some open questions are: how to aggregate the layers?, and, is it correct to
do so?. The answer to the first question requires the definition of an aggregation function

1.1 Network Science 15

(sum, average, min–max, etc.) and a proper scaling of the weights associated to each kind of
relation. The second question poses an even more important problem: does it conceptually
make sense to aggregate? The answer, in general, is negative, since often relations encode
different contexts that cannot be simply mixed together without altering the structure or the
function of the system under investigation [90, 91, 76, 92, 93, 82, 94, 95].

1.1.6.3 A new mathematical framework

De Domenico et al. [80] developed a new ad hoc mathematical framework to study such
networks. In particular, they represent a multilayer network as a higher-order adjacency
matrix, specifically a rank-4 tensor, where each entry Miα

jβ represents a link from node i
in layer α to node j in layer β . That is, if α = β the link is intra-layer α , and inter-layer
otherwise. Thanks to this framework and by exploiting tensorial algebra, many classical
network descriptors can be generalized, from centrality measures to community detection.
It should be noted that multiplex networks require a rank-3 tensor for their mathematical
representation [96, 92], since Miα

jβ = 0 ∀α ̸= β .
In practical applications, it is common to flatten the M into lower-rank tensors, named

supra-matrices [88, 80], via matricization [97]. This operation consists in mapping the
tensor M ∈ RRRN×L×N×L to a rank-2 tensor in AM ∈ RRRNL×NL where diagonal blocks encode
single-layer connectivity, while off-diagonal blocks encode cross-layer relationships.

1.1.6.4 Application scenarios

Just like classic networks ones, multi-layer ones find application in many scenarios. For
instance:

• In neuroscience: De Domenico et al. [98] employ multiplex networks to identify
schizophrenic patients. In particular, for each patient they build a multiplex brain
functional network — i.e., a multiplex network where nodes are special brain regions
that play a fundamental role in the brain functional connectivity, the links represent the
connectivity strength estimated by inter-regional correlations calculated on processed
fMRI (functional magnetic resonance imaging) signals, and each layer corresponds to
a different frequency band [98] — and then use the multi-layer PageRank centrality to
distinguish between healthy and schizophrenic patients;

• To study international trade systems, as they can be characterized by the presence of
several kinds of relationships among countries, depending on the commodities they
trade [99, 100];

1.1 Network Science 16

• In computational biology, as multiple types of relationship among their constituents,
such, for instance, in the Homo Sapiens proteome, where protein–protein relations can
be of two types, physical and genetic, such as interactions, chemical associations or
post-translational modifications [101–103];

• To model multiple types of transportation systems, e.g., each commercial airline can
be mapped to a different layer [104];

• In epidemiology [105], e.g., to model multiple spreading pathogens or to study the
dynamics of coupled processes.

1.2 Machine Learning 17

1.2 Machine Learning

In this Section, we introduce some Machine Learning fundamentals that can help the
Reader understand the motivations and techniques of Geometric Deep Learning, and also
the applications proposed in this thesis. In particular, we introduce some terminology
and applications, the most popular models, and Deep Learning along with its training
methodologies and algorithms.

1.2.1 What is Machine Learning?

Machine Learning (ML) is the study of algorithms that extract information (learn) from
data to improve their performance [106]. While the idea of a learning machine can be
attributed to Touring [107] and the first neural networks and learning algorithms date back to
the 1950s [108], the explosion in popularity of Machine Learning over the last decade is due
to the rise of Deep Learning, a family of algorithms that outperform classical ones in many
tasks, and to the large availability of data to learn from along to the computational power
provided by modern hardware, allowing its processing. Another strong point of Machine
Learning is that it is suitable for those tasks that are intuitive but too hard to be described in a
formal way, like identifying and classifying objects in images, etc.

1.2.2 Applications

Machine Learning has been successfully employed in many applications, for instance:

• To build recommender systems, i.e., systems that predict the preferences of users. An
example is the one built by Netflix [109];

• In Natural Language Processing (NLP), i.e., the branch that processes text or voice
inputs trying to understand and answer. Examples are translators and virtual assistants;

• In computational biology, e.g., to predict protein fold structure with the AlphaFold [110]
and AlphaFold2 [111] algorithms from DeepMind;

• To learn to play games, like chess and go (AlphaZero [112]), but also classic arcade
games [113];

• To upscale images in games in real-time with NVIDIA DLSS (Deep Learning Super
Sampling) [114];

• In many domains, to predict future events/values by learning trends on past ones;

1.2 Machine Learning 18

• To approach various NP-hard combinatorial problems, like the maximum clique enu-
meration [115];

• To classify images, audio, video, text, etc.;

• For decision-making under uncertainty [116];

• For pattern recognition;

• To generate images, videos, audio, text, etc.;

• For anomaly detection.

1.2.3 Learning machines?

A formal definition of "learning" was provided by Mitchell [106], according to whom
a computer program learns if its performance improves through experience with respect to
some class of tasks and performance measure. Specifically, the training of an algorithm
is meant to optimize its parameters (also called weights), and the output algorithm (along
with its parameters) is called a model [117]. That is, each algorithm is a family of functions,
and different models can be defined by different sets of parameters. It should be noted that
algorithm’s learnable parameters should not be confused with the hyper-parameters, the
configuration provided by the user and that cannot be learned from data.

The data used to train the models is organized as a set of examples (or observations) with
some attributes, called features. The set of the examples is called dataset, and it is usually
represented in matrix form, where each row is an example and each column a feature.

It is worth mentioning that the main difference between Machine Learning and optimiza-
tion is that the first aims at generalization performance, not only minimizing the loss function
on the training data [117]. If the model does not generalize well to new observations, i.e., its
performance is poor on previously unseen data, we say it is over-fit. If the model performs
poorly even on the train data, we say it is under-fit.

1.2.3.1 Training methodologies and tasks

There are three main ways an algorithm can obtain experience from the dataset during
the learning process [117]:

Supervised learning In supervised learning, each observation in the dataset comes with
the correct label (i.e., the value or class). That is, our dataset has the form of a set of features

1.2 Machine Learning 19

with labels: {(xi,yi)}. The objective of the training is to teach (supervised) the model to
predict the correct label.

The most common tasks associated to supervised learning are:

• Classification, given an input and a fixed number n of classes, the model has to predict
which class or classes the input belongs to. Binary classification is classification refers
to classify between two classes;

• Regression: given an input, the model has to predict a real value;

Unsupervised learning In unsupervised learning, there are no labels associated to the
examples, and the model has to, e.g., find and exploit patterns in the data. Of course, the
performance evaluation of the model less trivial than the previous case. This kind of learning
is suitable for various tasks, for instance:

• Clustering: given a set of inputs, clustering is about dividing observations into groups
that share some property;

• Pattern discovery: find common patterns in the data;

• Anomaly detection: detect anomalies in the data (e.g., in intrusion detection systems,
etc.).

Semi-supervised learning Semi-supervised learning is a hybrid methodology that falls
between supervised and unsupervised learning. In fact, just a part of the dataset is labeled,
and the model is trained both in a supervised and in an unsupervised way.

Reinforcement learning In reinforcement learning, there is no fixed dataset. Instead, the
model is used to drive the behavior of a software agent that interacts with some (simulated)
environment. The model is then trained by feedback: after an action (or a sequence of), it
will be given a positive or negative reward.

1.2.3.2 Loss functions

According to the definition by Mitchell, the Machine Learning algorithms improve
their performance with respect to some performance measure, that is optimized during the
training phase [106]. This performance measure is called loss function (or objective/error
function [117]). The loss functions are task-dependent, but, in general, the aim of the training

1.2 Machine Learning 20

is to reduce their value, as this reduction translates in a reduction of the error of the model
(commonly called loss).

Some of the most common loss functions include:

• The Mean Squared Error (MSE) function, used in regression tasks. It is formally
defined as:

LMSE = ||yi − xi||2 (1.19)

It should be noted that the square of the error reduces smaller errors while assigns
larger weights to larger ones;

• The Cross Entropy, used in classification tasks, formally defined as [118]:

LCE =− 1
N

N

∑
i

M

∑
c=1

yi,c log(pi,c) (1.20)

where M is the number of classes, yi,c is the binary indicator (0,1) if the predicted
class is correct, and pi,c is the predicted probability that observation i belongs to class
c.

In binary classification tasks this becomes:

LBCE =−(y log(p))+(1− y) log(1− p) (1.21)

also called Binary Cross Entropy.

It is also common to add to the loss a regularization term R that accounts for the magnitude
of the model’s parameters to avoid over-fitting [117].

Loss = Losstask +λR(W) (1.22)

where λ is the regularization parameter (or weight decay) and W are the model parameters.
The most common R functions areg [117]:

• The L1 norm: Rabsolute(W) = ||W ||1 = ∑i |wi|;

• The L2 norm: Rsquare(W) = ||W ||2 =
√︁

∑i |wi|2.

1.2.3.3 Parameters optimization

As previously discussed, the optimization of the parameters of a Machine Learning
algorithm is meant to improve its performance. However, a thorough exploration of all the

1.2 Machine Learning 21

parameter combinations is not feasible even for simple algorithms, as the parameters are
real values. One way to tackle this problem relies on specific algorithms that change the
parameters iteratively. Unfortunately, the main drawback is that the loss function may not
reach the global minimum but some local one.

The most common family of optimization algorithms is the one of the Gradient De-
scent [117]. The basic idea of Gradient Descent algorithms is to change the parameters
iteratively moving in the direction of the negative gradient of the loss, since the gradient is
the direction of the maximum increase in the function, one can use the negative gradient to
approach some minimum. Specifically, the parameters are first initialized randomly (many
initialization techniques exist, but we do not cover them here for simplicity), and then the
algorithm’s parameters are updated to follow the slope of the negative gradient of the loss,
aiming for the global minimum. An iteration over the entire dataset is called epoch.

Stochastic Gradient Descent (SGD) The Stochastic Gradient Descent (SGD) is the sim-
plest version of the algorithm, and generates the updated parameters W̃ after each training
example as follows [117]:

W̃ = W− ε∆W (1.23)

∆W = ∇WL(f (xi,W),yi) (1.24)

where W are the model parameters, ε is the learning rate, L is the loss function, f is
the model, xi is the training example and yi its label (assuming that a supervised task is
being optimized). Note that the learning rate plays a key role, and many more advanced
optimization algorithms adjust it with the epochs to improve performance.

While Stochastic Gradient Descent updates the algorithm’s parameters after each obser-
vation, which may be inefficient and cause instabilities in the parameters, multiple variants
have been proposed to improve performance and to mitigate its issues.

Batch Gradient Descent In Batch Gradient Descent, the gradient of the loss is com-
puted for all the training examples and is averaged before updating the parameters. This
reduces instabilities but also slows the learning process. Formally, the ∆W is defined as:

∆W =
1
N
·∇W

N

∑
i

L(f (xi,W),yi) (1.25)

where N is the number of examples in the training set (i.e., only one update per epoch).

1.2 Machine Learning 22

Mini-batch Gradient Descent Mini-batch Gradient Descent is the middle ground
between Stochastic Gradient Descent and Batch Gradient Descent as the training examples
are divided in mini-batches (i.e., sub-sets), and the algorithm’s parameters are updated with
the average of the loss of each one. The number of updates per epoch is N mod B, where B
is the number of examples in each mini-batch. Formally, ∆W is defined as:

∆W =
1
B
·∇W

B

∑
i

L(f (xi,W),yi) (1.26)

Momentum-based variants Other variants consider, for instance, the momentum of
the parameters updates to converge faster. Specifically, the ∆W is computed as the weighted
sum of the previous step and the new gradient.

1.2.3.4 Back-propagation algorithm

An extremely important ingredient in the training of Machine Learning algorithms is the
back-propagation algorithm, as it allows to efficiently compute the gradient of the loss in a
feed-forward network [117]. However, being this topic out of the scope of this thesis, we
refer the Reader to [117] for the details about its rationale and about how it works.

1.2.3.5 Performance evaluation

The loss function used during the training phase can be hardly understood by humans
when evaluating the model, and does not give any information about the generalization
performance. There are many possible choices for the performance measure, and it should
be stressed that the right one is task specific as some outcomes may be more desirable
than others [119] in certain domains, as not all errors made by the model have the same
consequences. This is the case, for instance, of medical applications, where, e.g., a false
negative COVID-19 test might lead to many infected people, while a false positive test just
leads to a second test and quarantine for a single person.

Here, we report some of the most common performance measures. Note that, while
these definitions are for single-label or single-class tasks, it is easy to generalize them to
multi-class ones. For example, the final average score can be computed as the average of the
score of each label.

Classification tasks Accuracy score is used for measuring the raw number of correct
predictions. This score is suitable for tasks where all errors have the same severity. For

1.2 Machine Learning 23

binary classification tasks, accuracy is defined as:

accuracy =
TP+TN

TP+FN+TN+FP
(1.27)

Precision is a measure of how many correct positive predictions have been made.

precision =
TP

TP+FP
(1.28)

Recall (also known as sensitivity, hit-rate or True Positive Rate (TPR)) is a measure of
how many correct positive predictions have been made, over all the positive cases.

recall =
TP

TP+FN
(1.29)

Specificity is a measure of how many correct negative predictions have been made, over
all the negative cases.

specificity =
TN

TN+FP
(1.30)

Fall-out (or False Positive Rate (FPR)) is a measure of how many wrong positive predic-
tions have been made, over all the positive cases.

fallout =
FP

FN+TP
(1.31)

F1-score is a measure that combines both precision and recall in their harmonic mean.
Both scores account equally and must be high for F1 to be high.

F1 =
2 ·precision · recall
precision+ recall

(1.32)

Area Under the Receiver Operating Characteristic Curve (AUC ROC) is the area under
the sensitivity vs. fall-out curve at various discriminatory threshold levels. The AUC is a
value between 0 and 1. Specifically, if AUC = 1, the classifier is perfectly distinguishing
between the true positive and true negatives; if AUC = 0.5, the classifier is making random
predictions. Example ROC curves are shown in Figure 1.2.

Regression tasks If small errors account just as large ones, Mean Absolute Error (MAE),
defined as:

MAE = ∑
i
|yi − pi| (1.33)

1.2 Machine Learning 24

Ran
do

m cla
ssi

fie
r

Bett
er

Fig. 1.2 Example of ROC curves. Each curve is obtained by changing the discrimination
threshold on the same predictions. The larger the area, the better.

If large errors should account more, Mean Square Error (MSE)

MSE = ∑
i
(yi − pi)

2 (1.34)

1.2.3.6 Dataset splits

In Machine Learning the focus is on generalization performance, i.e., in evaluating the
trained model on previously unseen data to verify if it is over-fit or if it has really learned the
task. This requires at least two sub-sets of the full dataset:

• A training set with the observation used to train the model (often about 70−90% of
the full dataset);

• A test set, with the observation used to validate the generalization performance (often
about 30−10% of the full dataset).

However, to try to actively counter the over-fit phenomenon, it is also common practice to
create a third sub-set, called validation set, used during the training phase as "test-set" to
stop the training and choose the best model parameters without biasing the test phase. In
other words, while no training is performed on this set, it is used to select the parameters that
generalize better and avoid over-fit.

1.2 Machine Learning 25

Train set Test set

Dataset

1 2

Static
splits

4 53

1 2 4 53

1 2 4 53

1 2 4 53

1 2 4 53

5-fold
splits

Training set

Testing set

1

2

3

4

5

K-
fo

ld
 it

er
at

io
n

Fig. 1.3 K-fold vs static split. Representation of the K-fold splits (with k = 5) of a dataset
and comparison with a static split. In the k-fold setting, k models are trained and the results
on the test set are averaged.

Cross-validation While the static training/test set splits work for many tasks, in the case
of smaller datasets one might be interested in maximizing the data efficiency. One technique
for this purpose is Cross-Validation (CV). In its basic form, called k-fold Cross-Validation,
the dataset is split in k sub-sets (called folds): the algorithm is trained on k−1 sub-sets and
the remaining one is used as test-set; the procedure is repeated k times picking a different test
sub-set every time and the results are averaged. Of course, this is computationally expensive
but should give more informative scores. Taking k-fold CV to the extreme, we can also define
the Leave One Out (LOO) cross-validation, where the number of splits is equal to the number
of observations, i.e., k = N. Stratified cross validation makes sure that all the folds have the
same percentage of samples of each class.

We show a visual comparison of K-fold and static splitting in Figure 1.3.

1.2.4 Models

Many Machine Learning algorithms have been proposed and used to solve various tasks.
Examples are linear regression, decision trees, Support Vector Machines (SVMs), random
forests and Artificial Neural Networks, and so on. Here, we briefly introduce the Reader
to Artificial Neural Networks as they are now the most commonly used in many tasks like
Computer Vision ones, and are also employed in the applications proposed in this thesis.

1.2 Machine Learning 26

1.2.4.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are Machine Learning models inspired by the biologi-
cal neural networks.

Specifically, biological neurons receive an input from other neurons via the dendrites
and, if the input is strong enough, activate creating an output signal that is propagated via the
axon. Artificial neurons are an approximation of such biological neurons that were first used
to study the learning process in the brain [117]: they perform a weighted sum of the input,
add a bias and apply a non-linearity, called activation function, that simulates the activation
of the biological neuron. Formally, an artificial neuron performs the following operation:

y(x) = ϕ(wT x+b) (1.35)

where x and y are the input and output respectively, w are the parameters and b is the bias,
ϕ is the activation function. That is, each neuron represents a linear sum plus an activation
function, and has the same equation of a Support Vector Machine. Different artificial neurons
can be defined using different activation functions. For instance, the first artificial neuron
proposed is the Perceptron, where ϕ is the sign function (or some other binary function that
produces an output according to a threshold), and the sigmoid neuron where the sigmoid
function σ is used [120].

Artificial Neural Networks, called Neural Networks for simplicity, are networks of
artificial neurons organized in layers. If the connections between neurons are acyclic,
the network is said to be feed-forward, recurrent otherwise. A common Neural Network
architecture is the Multi-Layer Perceptron, where all the neurons in a layer are connected to
all the neurons in the next one. In such neural networks, the first and last layers are called
input and output layers respectively, while the ones in the middle are called hidden layers.

1.2.4.2 Activation functions

In general any differentiable non-linear function can be used as an activation function,
but some have shown better performance in different tasks. Each activation function comes
with their pros and cons that, e.g., come from their derivative (computed during the back-
propagation steps). Some examples are:

• The sigmoid (σ), that yields a value between 0 and 1, which is useful, e.g., to predict
probabilities.

σ(x) =
1

1+ e−x (1.36)

1.2 Machine Learning 27

• The tanh, that returns a value between −1
2 and 1

2 , useful, e.g., to predict zero-centered
values.

tanh(x) =
ex − e−x

ex + e−x (1.37)

• The softmax, is a normalized exponential function that, given an input with N real
numbers, returns an output with the same size where each value is proportional to the
normalized exponential of the corresponding input. That is, it returns a probability
distribution that can be used, for instance, when one needs to predict the probability of
each of N classes.

softmax(x)i =
exi

∑
N
j ex j

(1.38)

• The Exponential Linear Unit (ELU):

ELU(x) =

{︄
α · (ez −1) x ≤ 0,

αx otherwise
(1.39)

• The Rectified Linear Unit (ReLU):

ReLU(x) = max(x,0) (1.40)

• The Leaky Rectified Linear Unit (LeakyReLU), a variant of the ReLU, parametrized
by α .

LeakyReLU(x) =

{︄
x if x > 0,

αx otherwise
(1.41)

• The sign function:

sign(x) =

{︄
1 if x > 0,

−1 otherwise
(1.42)

1.2.5 From Machine to Deep Learning

Deep Learning is a class of Machine Learning algorithms that have many layers, hence
the name deep neural networks, to learn representations. Specifically, with representation
learning we refer to learning a representation of the input data [121, 117] that is suitable
for the task. This is a completely different paradigm from classical Machine Learning,

1.2 Machine Learning 28

where hand-crafted features are designed with effort by, e.g., feature engineers. The strong
advantage of deep neural networks is that they learn hierarchical representations [117]: each
layer is able to combine the (output) features of the previous layer to build increasingly
complex, higher-level features [122]. For instance, Lee et al. [122] show that, in a three
layers deep neural network, the first layer learns to spot low-level features in images (e.g.,
oriented edges), the second layer uses such features as bases and combines them to form
object parts, while the third layer leans task-specific objects (e.g., cars, faces, etc.).

1.2.5.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are neural networks with convolutional layers
that are used to process data with grid-like topology, like images [117]. Convolutional Neural
Networks were designed in the context of computer vision with the intuition of employing
the convolution operator to process the images, and have become extremely popular thanks
to their performances in many scenarios.

The convolution operator between an input array I and a learnable array K, called kernel
or convolutional filter, produces an output array where each position x,y (assuming the input
data and the kernel have two dimensions) is the sum of the dot product of local receptive field
— i.e., that portion of the input that overlaps with the kernel when it is centered at x,y — with
the kernel’s parameters. This operator has many desirable properties, for instance [117]: 1. It
allows parameter sharing, as the same kernel parameters are used for every input position;
2. It has sparse interactions since each position is computed via a few operations as the kernel
is usually small with respect to the image. That is, the convolution is efficient and scales well
to large images; 3. It is equivariant to translation (but not to some other transformations);
4. It processes image patches, thus it can handle inputs of variable size.

Pooling When performing multiple convolution steps in a deep model with many con-
volutional layers, it is common to shrink the output of the hidden layers to improve the
computational time. It was shown that this operation does not degrade performance, thanks
to the hierarchical representation learning. In fact, in the case of images, while the inputs are
just arrays of pixels, as we get deeper in the network the values become high-level features.
In particular, pooling layers produce new images by dividing the input image in (disjoint)
image patches and by applying a (deterministic) function that returns a single pixel for each
patch [117]. Common pooling functions are the max and the mean.

1.2 Machine Learning 29

1.2.5.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are particular feed-forward neural networks with
feedback connections [117], used to process sequential data, i.e., when the output should be
affected not only by the current input but also by the previous ones and by their order. This
is achieved introducing some internal state to capture information about the sequence that is
being fed to the network.

Usually, models only have one recurrent layer. However, considering that its internal state
is updated after each input, the actual number of layers is larger and equal to the sequence
length, because of the cyclic connections that can be unfolded by applying the definition
iteratively. It is important to note that the unfolded layers share the same parameters [117],
which affects the training phase.

Recurrent Neural Networks are affected by various issues that make their training hard.
For instance, the vanishing gradient, i.e. the gradient associated to some input becomes
smaller and smaller after each iteration. In other words, after some time-steps, the network
looses some context information about previous inputs, that will not be able to affect the
output. Various RNN layers have been proposed to improve performance and address these
issues [120], like e.g., Long Short-Term Memory (LSTM) [123] and Gated Recurrent Unit
(GRU) [124], and most automatically learn whether to remember or forget some information
in the internal state.

Chapter 2

Geometric Deep Learning

In this Chapter we introduce Geometric Deep Learning and its state-of-the-art. In
particular, we focus on learning on graphs, the main topic of this thesis, and after a brief
overview of historical (and outdated) approaches, we detail the intuition behind the Graph
Neural Networks (GNNs) and their message passing architecture, overview some state-of-
the-art GNN layers, and show some example applications. For more about Geometric Deep
Learning, we refer the Reader to [125, 126] and the references therein.

Please note that, to avoid confusion between neural networks and networks (graphs), in
this paper we will refer to the first as "neural networks" and to the latter as networks/graphs,
and to avoid confusion between model layers and network layers, we will refer to each by
specifying the context.

2.1 What is Geometric Deep Learning?

Geometric Deep Learning is a recent sub-field of Machine Learning that attempts to
generalize Deep Learning models to non-Euclidean domains like graphs and manifolds [127,
128]. In fact, while classic Deep Learning algorithms are suitable for Euclidean data — i.e.,
data that can be mapped to Euclidean spaces (or to grids), like images, audio and vectors
in general —, there is no way to employ such algorithms for data without an underlying
Euclidean structure due to the lack of many properties (like a common system of coordinates
and shift-invariance), and any non-natural mapping to a Euclidean space would lead to loss of
information. However, as discussed in the previous Chapter, many interesting research fields
and applications involve non-Euclidean data like graphs, and the lack of suitable algorithms
led Machine Learning researchers to define new ways to process and learn on such data.

It is also worth mentioning that Hamilton tracks Geometric Deep Learning’s roots to
two more concepts, developed independently [125]: to a differentiable variant of belief

2.2 Applications 31

propagation [129], and to the Weisfeiler-Lehman (WL) algorithms for graph isomorphism
test [130].

2.2 Applications

Geometric Deep Learning algorithms offer new ways to approach many problems on
graphs, including Network Science and computationally hard ones. In particular, while most
of the tasks that can be performed are the same as in the Euclidean case (e.g., classification,
regression, clustering, etc.), different applications require different levels of granularity (i.e.,
node, link or graph-level). That is, one may need to classify a node, a graph or a link, cluster
them, and so on. These tasks find application in a wide range of domains, as proven by the
huge number of publications that employ Geometric Deep Learning to solve theoretical and
real-world problems. Just to mention a few, Geometric Deep Learning has been successfully
used:

• For drug discovery and development by Gaudelet et al. [131];

• To predict poly-pharmacy side effects by Zitnik et al. [132];

• To build recommender systems, like PinSage, deployed at Pinterest, by Ying et
al. [133];

• To improve the robustness of networks [134];

• To detect fake news on social media by Monti et al. [135];

• For chip placement by Mirhoseini et al. in [136] and [137].

• For community detection, by Chen et al. [138];

• For quantum physics, e.g., for particle track reconstruction [139], and for quantum
chemistry [140];

• To generate new graphs with learned characteristics [141–143];

• To predict traffic for Google Maps, by DeepMind [144];

• To approach various NP-hard problems [145, 146];

• For link prediction, even on temporal graphs [147]

2.3 Graph Representation Learning 32

• To simulate a various challenging physical domains, involving fluids, rigid solids, and
deformable materials interacting with one another [148], and to learn mesh-based
simulations and improve the efficiency of complex modeling tasks [149], like the pre-
diction of the dynamics of a wide range of physical systems, including aerodynamics,
structural mechanics, and cloth.

2.3 Graph Representation Learning

Geometric Deep Learning is often referred to as “Graph Representation Learning” [125].
The rationale behind this name is that, like their Euclidean counterpart, these algorithms aim
to automatically learn from the data what better represents nodes, links or graphs for a given
task, instead of requiring hand-engineered features. In fact, even with expert knowledge to
design and pick the most relevant ones, the feature engineering process is hard and time-
consuming, and may even not capture the best characteristics for the specific task. For
instance, given a social network, what are the best features that characterize a user or one of
its relations? The answer may not be trivial, especially in a complex network with billions of
nodes and connections. Furthermore, the best features are often task and/or domain specific
and may not generalize well. These limitations translate into long design time and high costs,
and often poor performance.

2.4 Learning graph representations

The preferred way of most works in the literature to learn representations on graphs is to
learn node embeddings using an encoder-decoder architecture.

In Deep Learning, an embedding is a learned and continuous low-dimensional vector that
represents some entity [150, 117]. Specifically, it is a projection into a d-dimensional latent
space, where the embedding of entities (the latent variables) should be closer together, if the
entities are similar [151, 125, 117] with respect to a given task. While embeddings may not be
directly interpretable, when learned correctly, they are sufficient to describe the original data,
i.e., they are meaningful representation of that data. Embeddings are commonly used in Deep
Learning, for instance, when dealing with words in Natural Language Processing [152, 153],
with discrete variables, with high-dimensional vectors, etc.

In the context of graphs, the objective of Geometric Deep Learning is to map each node
to a vector with d-dimensions — its embedding into a Euclidean space — that encodes
some desirable properties [125]. It should be noted that, being the embedding a point in a

2.4 Learning graph representations 33

Euclidean space, it can now be fed to classic Machine and Deep Learning models to perform
many tasks like regression or classification.

Most of the proposed approaches in the literature are a form of an encoder-decoder
architecture, whose components are [125]:

1. An encoder ENC(u) that maps nodes to embeddings. The encoder’s parameters are
trained to preserve some similarity in the embedding space;

2. A decoder DEC(u) that reconstructs some task-related information about the nodes
from their embedding. In many works, a pairwise decoder DECpairwise(ENC(u),ENC(v))
is used, which takes as input a pair of node embeddings to reconstruct some relation
between the two;

3. A loss function to quantify the error on the decoded embeddings and train the model
parameters.

The main difference between the various approaches is in the way they define those
components.

2.4.1 A bit of history: shallow embeddings

Shallow embeddings are one of the most rudimentary attempts at learning on graphs.
While they are important for historical reasons, these approaches have intrinsic limitations
and are now considered obsolete.

Idea. The idea of shallow embeddings is to learn a matrix Z ∈ R|V |×d , where each row
Z[u] is the embedding of node u and |V | is the number of nodes in the network, to minimize
the reconstruction loss over some similarity function [125].

Specifically, Z is optimized using an encoder-decoder architecture [125], where:

• The encoder ENC(u) is just a lookup based on the node ID, i.e. ENC(u) = Z[u];

• The decoder DEC(u) is a deterministic function that decompresses some information
about the node from the learned embeddings.

As an example, in the case of pair-wise decoders, the shallow-embedding architecture
can be optimized to minimize the reconstruction loss function so that:

DECpairwise(ENC(u),ENC(v))≈ S[u,v] (2.1)

2.4 Learning graph representations 34

where S[u,v] is some similarity function between the nodes u and v. For instance, a pairwise
decoder can learn to reconstruct the topology of the graph by predicting the existence of links
between each pair of nodes.

DEClink : Rd ×Rd →{0,1} (2.2)

DEClink(ENC(u),ENC(v)) = A[u,v] (2.3)

Laplacian eigenmaps Laplacian eigenmaps [154] have been proposed by Belkin et al.
in 2001. In particular, they define a pairwise decoder as the L2 distance between the
node embeddings DEC(u,v) = ||zu − zv||22 and a loss function (for each pair of nodes u,v)
Lu,v = DEC(u,v) ·S[u,v] that penalizes similar nodes with distant embeddings [125].

Inner-product methods A common class of shallow embedding methods defines the
decoder as the inner-product between the learned embeddings [125]. That is, the decoder
has form DEC(u,v) = z⊤u zv: the larger the dot product between the two embeddings, the
more similar the two nodes are. Various methods differ in the similarity measure learned,
and most use the Mean Square Error (MSE) as loss function. For example, GraRep [155]
defines the similarity using powers of the adjacency matrix, while High-Order Proximity
preserved Embedding (HOPE) [156] relies on general similarity measures (e.g. dice).

Random-walk based methods A more efficient class of shallow embedding methods
relies on random walks to learn the embeddings [125]. For instance, node2vec [157], while
still using the inner product decoder, combines Breadth-first Sampling (BFS) with Depth-first
Sampling (DFS) in a flexible way in the encoder, using biased random walks to capture both
local and higher-order properties of the network nodes.

Multilayer extension A possible generalization of shallow embeddings to multilayer
networks is OhmNet [158]. OhmNet applies the node2vec algorithm discussed above to
encode the neighborhood of nodes, and then encodes any dependency between the layers in a
hierarchical way, where the hierarchy is represented using a directed tree M .

Specifically, OhmNet tries to solve the following maximum likelihood problem:

max
f1,..., fM

∑
l∈L

Ωl −λ ∑
j∈M

C j (2.4)

where L is the set of layers, and the two components are:

2.4 Learning graph representations 35

• Per-layer task-related objectives Ωl , independent of each other, which estimate the
node embedding in each layer l and make similar nodes in the same layer close together
in the embedding space. This is achieved using the node2vec algorithm;

• Hierarchical dependency objectives C j, which make nodes in nearby layers close
together in the embedding space. This is achieved using a regularization term computed
for each node u ∈ Mi where Mi is the set of the layers that belong to the sub-hierarchy
rooted at i. Specifically, the regularization term, which is used to make sure the
representation of the node u in each element of the hierarchy is similar to the parent’s,
has form:

ci(u) =
1
2
|| fi(u)− fπ(i)(u)||22 (2.5)

where π is the parent-child mapping of the hierarchy, such that π(i) is the parent of i.

C j is just the sum of ci for every level of M:

C j(u) = ∑
u∈Mi

ci(u) (2.6)

Limitations Shallow embedding techniques have serious limitations rooted at their very
design [125], as they learn a vector for each node by directly optimizing the matrix Z, which
makes the approach computationally inefficient as there is no parameter-sharing and the
number of parameters grows linearly with the number of nodes (O(d · |V |)). This leads
to another drawback as the approach is inherently transductive, i.e., does not support any
kind of generalization to new nodes or networks. Moreover, feature-rich networks are not
supported since the encoder only maps nodes to vectors from the matrix, without any way to
provide node or edge features.

2.4.2 Deep embedding: Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs), often called graph convolutional networks for their
similarity with Convolutional Neural Networks, are another class of algorithms that aim
to learn on graphs and that is becoming increasingly popular thanks to its properties and
performance in many tasks.

The name and the idea of GNNs dates back to 2008 with the seminal work by Scarselli et
al. [159], who proposed an information diffusion based model that extended the Recurrent
Neural Networks to support generic graphs (i.e., cyclic, directed and undirected, whereas
RNNs’ input is limited to acyclic directed graphs only), and also extended the random walk

2.4 Learning graph representations 36

models. Such model produced an output for each node by aggregating the local information
(node and edge features, and the output at the previous processing step) from its neighborhood
using functions with learnable parameters. After many years being unnoticed, GNNs have
been lately re-discovered, and the local-neighborhood aggregation idea at their core, which
is somehow similar to the one of CNNs, became the generic framework that inspires most of
the works proposed in the literature.

In particular, by Graph Neural Networks we now mean a generic neural message passing
architecture where each layer of the model performs a message passing iteration. Graph
Neural Networks are often considered a generalization of the convolution operator, used by
Convolutional Neural Networks (CNNs) and that made the success of Deep Learning, to
graph-structured data [127]. In fact, while the CNNs are well-defined for Euclidean data
(images are grids of pixels), the convolution needs a new formulation for non-Euclidean
domains like graphs and manifolds. Such convolution operator for graphs should be used
to define more complex encoder functions that leverage both the topology of the graph and
also the node features. Specifically, like in the Euclidean convolutional models where, in
each convolutional layer, a kernel (i.e., a learned tensor) is used to multiply and aggregate
the neighborhood of each pixel, the graph convolution operator aggregates the features of
the local neighbors of each node using some learned function. The output values provided
by the aggregation are higher-level features that will be fed to the next layer of the model,
producing a hierarchical representation.

In the last years, many GNN layers have been proposed by researchers and the interest in
the field keeps growing thanks to the large availability of graph structured data and to the many
interesting applications. For instance, GNNs have been used to perform node classification
or regression — e.g., classifying entities like users or assigning them a score —, but also to
perform graph classification or regression (by aggregating all the node embeddings together)
and even to perform link prediction — i.e., the prediction of whether a link (modeling a
relation, interaction, etc.) exists between two nodes (e.g., users, molecules, etc.).

In the following, we formalize and detail GNNs, their usage and their applications.

2.4.2.1 The message passing architecture detailed

Formally, the (k+1)-th Graph Neural Network layer computes the embedding h(k+1)
u of

node u as [125]:

hu
(0) = xu (2.7)

hu
(k+1) = UPDATE(k)(h(k)

u , AGGREGATE(k)({h(k)
v ,∀v ∈ Nu)}) (2.8)

2.4 Learning graph representations 37

where xu are the input node features, Nu is the local neighborhood of node u, and UPDATE(k)

and AGGREGATE(k) are two arbitrary learnable and differentiable functions. In other words,
the features of the target node u are updated with a learnable function that accounts for
the current features and for the (learnable) aggregation of the ones of its neighbors. As an
example, we illustrate a single propagation step in Figure 2.1b.

G

H

F

E
D C

A B I
X

B
A

C
D
E
F
G
H
I

(a) A toy-example rich-network with the input node features tensor X0.

A

AGG

UPD

A

DCB

A

A

B C D

AGG

UPD

x x

(b) Embedding computation.

A

AGGA

DB C

A

A

x x

(c) Embedding computation with self-loops.

Fig. 2.1 GNN message passing example. Simple toy-example to show a propagation step
performed by a single GNN layer.

It should be noted that this formulation produces node embeddings that depend both on
the input node features xu and on the topology of the graph.

Graph Neural Networks share many desirable properties with their Euclidean ancestors.
For instance, the locality of the convolutional operator ensures low computational complexity;
the parameter sharing (i.e., all nodes are processed by the same Neural Networks) makes
them spatially efficient and allows them to generalize to previously unseen nodes and graphs
(inductive capability); they are permutation invariant. In comparison, shallow embedding
methods lack these properties (plus the leveraging of node features), which explains why the
GNN approach has become so popular.

2.4 Learning graph representations 38

2.4.2.2 Message passing with self-loops

A simplification of the GNN framework in equation 2.8, used by many layers in the
literature, consists in removing the UPDATE by considering each node as its own neighbor
(i.e., by adding self-loops). The generic GNN layer then becomes [125]:

h(k+1)
u = AGGREGATE(k)({h(k)

v ,∀v ∈ Nu ∪{u}}) (2.9)

While equation 2.9 has the advantage of simplifying the training and reduce over-
fitting [125], it has the main drawback of not being able to distinguish between the incoming
features from the neighbors and the node itself. As an example, we illustrate a single
propagation step in a GNN with self-loops in Figure 2.1c.

2.4.3 Generic model architecture

So far we have defined the generic Graph Neural Network layer and their advantages
over shallow embeddings. Let’s see how they are used in a generic Geometric Deep Learning
model.

Monoplex Geometric Deep Learning Model

1

. . . K

Node
classification

EmbeddingGNN layers

. . .

Graph
classification

Link
prediction

. . .H(1)

ApplicationApplication

H(K)

. . .

. . .

Input

+

X

Fig. 2.2 A Geometric Deep Learning model example. K is the number of convolutional
layers, X are the input node features. The node embeddings H(K), can be used in various
applications.

As shown in Figure 2.2, the generic Geometric Deep Learning model takes as input the
graph plus the features of its nodes (X) and, depending on the GNN layers used, also link
weights or features.

The first processing of the graph happens in the GNN layers, where the topology is
used to propagate and combine the node (and the edge) features. After K GNN layers,
each followed by an activation function, the output node embeddings (that are high-level

2.4 Learning graph representations 39

AGG

AGG

DB C

A

A

AGGAGG

G HA I A A E F

Fig. 2.3 Example of computational tree of a model with two GNN layers (K = 2) in the
network shown in Figure 2.1a. For simplicity’s sake, we consider layers without the UPDATE
function.

node features learned hierarchically) can be used for any task and fed, for instance, to a
Multi-Layer Perceptron to perform node classification or regression.

From a graph perspective, the computation of node u’s embedding h(K)
u is the propagation

of the node features in a bottom-up fashion in a tree where the root is the node u itself and
the nodes at each layer k are u’s k-hops neighbors. After K iterations, h(K)

u are the (final)
node embedding of node u. This means that the more GNN layers are stacked together, the
farther the node features will propagate in the graph, building higher level node features
hierarchically that capture some high-order pattern; for comparison, in the CNN case lines
are combined to find angles, which are combined to find shapes, etc. That is, a model with K
GNN layers is able to capture and aggregate the whole K-hop neighborhood of each node u.

As an example, in Figure 2.3 we show the propagation tree of a model with two GNN
layers that use self-loops.

2.4.4 Pooling layers

Like in the case of Euclidean convolutional models, pooling layers that aggregate the
embeddings of nodes have been defined. There are two motivations for aggregating nodes
via pooling layers:

• Learning the embedding of the entire graph, as discussed in Section 2.4.5;

2.4 Learning graph representations 40

• Coarsening the input graph to learn hierarchical representations, like in CNNs. The
next GNN layer in the model will take as input a coarsened graph where each node
(and its features) is the aggregation of a cluster of nodes.

While the simplest pooling layer consists in considering the mean or the max of a sub-set
of node embeddings, more complex ones have been proposed.

For instance, Li et al. [160] define a graph-level representation that can be generalized as
in the following [161]:

ri =
Gi

∑
n

softmax
(︂

Θatt(H
(K)
i ∥Xi)

)︂
n
⊙Θnn(h

(K)
n ∥xn) (2.10)

where Gi is either the entire graph or a sub-graph, Hi and Xi are embedding of and the input
features of Gi, Θatt : RF → R is a neural network that provides a soft-attention score for the
node and decides what nodes are relevant for the task, while Θnn : RF → RF ′

is a generic
neural network.

In another work, Ying et al. propose DiffPool [162] to coarsen the graph with learned
cluster assignments. Specifically, they aggregate the graph as in the following:

H(k+1) = softmax(S(k))⊤ ·H(k) (2.11)

A(k+1) = softmax(S(k))⊤ ·A(k) · softmax(S(k)) (2.12)

where A is the adjacency matrix, H is the node embedding matrix and S ∈ RN(k)×C(k+1)
is the

learned cluster assignment. Note that N(k) is the number of nodes after layer k and C(k+1)

is the number of clusters, and that each ai j ∈ A(k+1) represents the connectivity strength
between clusters i and j. Regarding S, it is learned by adding the following two auxiliary loss
functions, meant to make the training of the coarsening matrix easier, to the loss of the task.

L
(k)

LP = ∥A(k)− softmax(S(k)) softmax(S(k))
⊤∥F (2.13)

L
(k)

E =
1

N(k)

N(k)

∑
n=1

H(S(k)
n) (2.14)

where H is the entropy function. While L
(k)

LP is the link prediction loss, L
(k)

E is used to
regularize the entropy of the clustering.

2.4 Learning graph representations 41

2.4.5 Graph embedding

The GNN framework discussed so far does not allow to compute a graph embedding
directly. However, many applications require graph-level information, for instance in the case
of graph classification or regression. The common approach to overcome this limitation is to
aggregate the embeddings of all the nodes in the graph via pooling layers. The motivation
is that, since the node embeddings capture some local characteristics of the graph, by
aggregating them one would get some global information about the graph itself.

2.4.6 Link embedding

The GNN framework does not provide an explicit way to compute the embedding of links.
The common approach in the literature is to apply some function to the embeddings of the
end nodes, like concatenation, sum, element-wise product or even a Multi-Layer Perceptron.
This can be motivated from a Network Science perspective with the fact that the link is a
relation between the two nodes, and as such it directly depends on the nodes themselves (and,
therefore, on their embedding).

As an example, if concatenation is applied, the embedding of the link euv from node u to
node v is h(K)

(u,v) = h(K)
u ∥h(K)

v .

2.4.7 Some examples of GNN layers

After defining the general framework, let’s have a look to some of the most common
GNN layers.

2.4.7.1 Graph Convolutional Networks (GCN)

One of the first layers defined after the re-emergence of GNNs is Graph Convolutional
Networks (GCN) by Kipf et al. [163]. GCNs use self-loops to remove the UPDATE function,
and only have one trainable matrix. The incoming embeddings from each neighboring node
is normalized by the (square root of the) product of the degrees (strengths) of the two nodes.

Formally, the GCN layer is defined as:

h(k+1)
u = W(k)

∑
∀v∈Nu∪{u}

ev,u√
susv

h(k)
v (2.15)

where W(k) is the trainable weight matrix, ev,u is the weight of the link from v to u (1 if the
graph is unweighted), and sv and su are the strengths of the nodes.

2.4 Learning graph representations 42

Equation. 2.15 can also be defined in matrix form as follows:

H(k+1) =
(︂

D̂−1/2ÂD̂−1/2
)︂

H(k)W(k) (2.16)

where H is the features’ tensor, Â = A+ I is the adjacency matrix with self-loops and D̂ is
the diagonal degree matrix of Â. Using Â instead of A is known as renormalization trick and
solves numerical instabilities and exploding/vanishing gradients in deep models.

Thus, time complexity of a GCN layer is:

O(GCN)≃ O(f (k) · f (k+1) · |V |+ f (k+1) · |E|) (2.17)

where f (k) is the number of (input) features at layer k and f (k+1) is the number of output
features, and |V | and |E| are the number of nodes and edges respectively.

2.4.7.2 GraphSAGE

In [130], Hamilton et al. propose GraphSAGE to process large graphs, thanks to the
sampling performed in each node neighborhood.

Formally, GraphSAGE layers are defined as:

h(k+1)
u = W(k) · [h(k)

u ∥AGGREGATE(k)({h(k)
v ,∀v ∈ N K

u })] (2.18)

where N K
u is the sampled neighborhood of node u and includes K nodes.

The aggregation function should be symmetric (i.e. invariant to input permutations),
which ensures that the model can be trained and applied to any isomorphism and produce the
same result. The authors define three variants based on three different aggregation functions:

• Mean aggregator, very similar to the base and GCN approach, it just computes the
mean between the features;

• Pooling aggregator, which returns the element-wise minimum or maximum;

• RNN aggregator, which uses a Long-Short Term Memory (LSTM) with randomly
permuted inputs, since LSTMs are non-symmetric per se.

The time complexity of a GraphSAGE layer is:

O(GraphSAGE)≃ O(r(k) · f (k) · f (k+1) · |V |) (2.19)

where f (k) is the number of (input) features at layer k, f (k+1) is the number of output features,
|V | is the number of nodes and r(k) is the number of sampled neighbors for each node.

2.4 Learning graph representations 43

2.4.7.3 Graph Attention Networks (GAT)

An important work by Veličković et al. [164] borrows the attention mechanism [165]
from the Natural Language Processing (NLP) field to assign importance weights to each
neighboring node and improve the aggregation function. Specifically, they compute an
attention coefficient αu,v for each neighboring node, used to scale its incoming embedding.
This definition resembles the one of transformers used in NLP, the main difference being
that the attention is computed only for the neighboring nodes and not for the full graph.

GAT do not define an UPDATE function, and the AGGREGATE is just the sum of the
features of its neighbors, scaled with their own attention coefficient.

Formally, the GAT layer is defined as:

h(k+1)
u = W(k)

∑
∀v∈Nu∪{u}

α
k
u,vW(k)h(k)

v (2.20)

where W(k) is the trainable parameters matrix,

α
(k)
u,v = softmax(LeakyReLU(e(k)u))v (2.21)

and
e(k)u,v = a⊤[W(k)h(k)

u ||W(k)h(k)
v] (2.22)

Graph Attention Networks also allow defining multiple attention heads. That is, each layer
can compute the embedding multiple times (one per head, each with their own independent
weights matrix) and then concatenate or sum them. This is meant to capture multiple patterns,
in a similar way to the multiple filters (3D kernels) applied in the CNNs.

The time complexity of a GAT layer is

O(GAT)≃ O(h(f (k) · f (k+1) · |V |+ f (k+1) · |E|)) (2.23)

where f (k) is the number of (input) features at layer k and f (k+1) is the number of output
features, h is the number of heads, and |V | and |E| are the number of nodes and links in the
network.

2.4.7.4 Simple Graph Convolution (SGC)

In their work, Li et al [166] show that GCNs, and in general convolutional-style layers,
are affected by the over-smoothing of the hidden representations of locally connected nodes.
Specifically, due to the feature propagation in the K-hops neighborhood, deep models tend to

2.4 Learning graph representations 44

lose the local neighborhood information and to produce similar embeddings for all nodes.
This is particularly true for layers that use the self-loop update mechanism, but also affects
any model where the weight assigned the neighbors’ features is larger than the one of the
node itself.

Wu et al. [167] address the problem of over-smoothing and try to relieve its effect by
defining the Simple Graph Convolution layer (SGC), a "possible predecessor" of GCNs
obtained removing most of their complexity. More in detail, they remove the non-linearity
between the GCN layers and collapse the resulting function in a single linear transformation.
In their experiments, the resulting model achieves the same or superior performance to the
GCNs in many tasks.

In matrix form, SGC can be expressed as

Y =
(︂

D̂−1/2ÂD̂−1/2
)︂K

XW(K) (2.24)

where Y is the output of the model, X is the node features matrix, W(k) is the trainable
parameters matrix, Â = A+ I is the adjacency matrix with self-loops and D̂ is the diagonal
degree matrix of Â. As in GNNs in equation 2.16, the renormalization trick is used. However,
the main difference with GNNs is that SGC process the K-hop neighborhood directly in a
single layer, producing the output for each from the input matrices. From this perspective,
eq. 2.24 can be re-written as:

S =
(︂

D̂−1/2ÂD̂−1/2
)︂

(2.25)

Y = SKX W(K) (2.26)

. The authors note that the first product of the equation corresponds to the feature extraction
phase, while the second corresponds to applying a fully connected layer, e.g., for classification
or regression tasks. In other word, the SGC do not perform message passing, which solves
the over-smoothing problem and improves the time complexity of the model.

2.4.7.5 GCN via Initial residual and Identity mapping (GCNII)

In their work, Chen et al. [168] propose Graph Convolutional Network via Initial residual
and Identity mapping (GCNII), a GNN layer that extends the Graph Convolutional Networks
(GCN) and addresses the over-smoothing problem in a different way than the SGC discussed
previously, the final goal being allowing the use of deep networks. Specifically, they propose
a layer with a residual connection to (a learned function of) the input node features and with

2.4 Learning graph representations 45

an identity mapping. Both have various empirical and theoretical motivations, and we refer
the Reader to their paper for the details.

Formally, the GCNII layers are defined as:

H(k+1) =
(︂
(1−α)SH(k)+αH(0)

)︂(︂
(1−β)I+βW(k)

)︂
(2.27)

β = log
(︃

θ

k
+1

)︃
(2.28)

where H(k) is the node embeddings in matrix form, H(0) is the (input) node features matrix
or its learned transformation (i.e., via fully-connected layers) to reduce/augment the number
of dimensions, W(k) is the trainable parameters matrix, S =

(︂
D̂−1/2ÂD̂−1/2

)︂
, Â = A+ I is

the adjacency matrix with self-loops and D̂ is its diagonal degree matrix (the renormalization
trick is used), α is the strength of the residual connection to the input node features and θ is
a hyperparameter used to compute the strength of the identity mapping. It should be noted
that, the deeper the layer (i.e., the higher k), the smaller the identity mapping will be.

The computational complexity of GCNII is the same as GCNs, i.e., it is:

O(GCNII)≃ O(f (k) · f (k+1) · |V |+ f (k+1) · |E|) (2.29)

where f (k) is the number of (input) features at layer k and f (k+1) is the number of output
features, and |V | and |E| are the number of nodes and edges respectively.

2.4.7.6 SignedGCN

SignedGCN (SGCN) [169], proposed by Derr et al., is a GNN layer designed to process
signed networks and has motivations based on balance theory. In particular, each SGCN layer
produces two representations for each node, one for the positive and one for the negative
neighbors. Formally, the first SGCN layer in a model with K layers is defined as [161]

h(1)
upos = W(0)

pos

[︄
1

|N +
u | ∑

v∈N +
u

xv,xu

]︄

h(1)
uneg = W(0)

neg

[︄
1

|N −
u | ∑

v∈N −
u

xv,xu

]︄ (2.30)

2.4 Learning graph representations 46

and the following ones as [161]

h(k+1)
upos = W(k)

pos

[︄
1

|N +
u | ∑

v∈N +
u

h(k)
vpos ,

1
|N −

u | ∑
v∈N −

u

h(k)
vneg,h

(k)
upos

]︄

h(k+1)
uneg = W(k)

neg

[︄
1

|N +
u | ∑

v∈N +
u

h(k)
vneg ,

1
|N −

u | ∑
v∈N −

u

h(k)
vpos ,h

(k)
uneg

]︄ (2.31)

where h(k)
upos and h(k)

uneg are respectively the positive and negative representations of node u after
k SGCN layers, and N +

u and N −
u are the neighbors of node u connected by positive and

negative links respectively. The output embedding h(K)
u is then computed as the concatenation

of the positive and negative representations:

h(K)
u = h(K)

upos ∥h(K)
uneg (2.32)

2.4.7.7 Temporal Graph Neural Networks (TGN)

The Graph Neural Network layers analyzed so far do not handle any temporal information
explicitly. However, real-world graphs are, in many cases, the result of a temporal dynamics.
For instance, acquaintance or friendship networks may gain new links when users meet new
people, or may even lose some of them in time. Thus, if the temporal dynamics has a role
in the target of the learning, ignoring it and learning on the static graph instead may lead to
wrong results. To overcome this limitation, some time-aware GNNs have been proposed.
While most attempts focus on Discrete-Time Dynamic Graphs (DTDG), i.e., the temporal
dynamics of the graph is represented by a list of graph snapshots, Temporal Graph Neural
networks (TGN) have been recently proposed by Rossi et al. [147] to deal with Continuous-
Time Dynamic Graphs (CTDG), i.e., the timestamp of the events is continuous. That is,
they can handle graphs where the timestamp events are not binned, and produce the node
embeddings at each timestamp. Specifically, TGN support node-wise and interaction events
(edges between source and target nodes), and also the addition and deletion of nodes and
interactions (edges).

How do TGN work? The key idea of Rossi et al. is to include a memory module that stores
the state for each node and that should encode the node’s history and long-term dependencies.
Specifically, when new nodes are seen for the first time, their memory entry is created and
initialized to a vector of zeros. The state of each node is then updated after each event
involving that node and is fed along with the input node features when node embeddings are
produced.

2.4 Learning graph representations 47

In order to process events, authors first transform them into messages using some (learn-
able) function that produces a message for each node involved. For instance, a node-wise
event is transformed into a single message for the node, whereas interaction-events are
transformed in a message for the source and one for the target nodes. Each event will be later
used to update the memory. For sake of simplicity, in their work they choose the identity
function to transform events into messages (i.e., no learning is performed at this stage). It
is worth mentioning that, during the training, Rossi et al. divide the events in batches to
improve the efficiency. In each batch the messages involving the same node are aggregated
using a message aggregator (e.g., by mean or by keeping only the most recent).

Regarding the embedding generation, they propose various embedding strategies. The
most interesting employs a slightly modified Temporal Graph Attention (TGAT) from
Xu [170], an extension of the Graph Attention Networks (GAT) for Discrete-Time Dynamic
Graphs. In particular, it generates embeddings at a generic timestamp t as follows:

h(k)
u (t) = MLP(k)(h(k−1)

u (t), h̃(k)
u (t)) (2.33)

h̃(k)
u (t) = MultiHeadAttention(k)(q(k)(t),K(k)(t),V(k)(t)) (2.34)

q(k)(t) = h(k−1)
u (t)∥φ(0) (2.35)

K(k)(t) = V(k)(t) = C(k)(t) (2.36)

C(k)(t) =
Nn

v=1

[︂
h(k−1)

v (t)∥ euv(tv)∥φ(t − tv)
]︂

(2.37)

h(0)
u (t) = su(t)+vu(t) (2.38)

where φ is a generic time encoding, su(t) and vu(t) are the memory entry and the features of
node u, and where each attention head of equation. 2.34 is computed as in [165]:

Attention(Q,K,V) = softmax
(︃

QK⊤
√

dk

)︃
V (2.39)

with Q, K and V being the query node, the keys and the values respectively and dk being the
number of dimensions of the keys K.

It should be noted that input node features in equation 2.38 are sum with the memory
entry of that node (i.e., the embedding of its history), so the spatial convolution also accounts
for the past events. Using a spatial convolutional network to generate the embeddings has the
advantage of countering the stale memory problem that occurs when the memory of a node
has not been updated in a long time. In fact, even if there is no recent event regarding that

2.5 Explaining the GNNs 48

node (i.e., its memory has not been updated recently), it is likely that one of its neighbors has
been involved in some event. Moreover, as shown in equation 2.37, each message-passing
iteration in the convolutional network also includes information about the edge (the event)
that links the two nodes, and its encoded time.

Authors test TGN in the node classification and link prediction tasks on various datasets,
including Twitter networks with temporal information about tweets, retweets, etc. and,
according to their results, they outperform any other static or DTDG convolutional network
tested.

For more information about the TGN and the TGAT, we refer the Reader to the respective
papers.

2.4.8 Training methodology

While the training methodologies of Geometric Deep Learning are the same of the
Euclidean counterpart (e.g., supervised, unsupervised, reinforcement), due to the graph-
structure of the data, a more precise definition of the generalization capabilities of a model to
new data is required. In fact, while in the case of Euclidean data the new observations are
independent of the others, in the case of nodes (or links) there is a relationship with the other
observations (e.g., a new node may be connected to others, a link connects two nodes, etc.).

To clarify the generalization capabilities of the model, the following terms are used to
define the methods [125]:

• Transductive: a model that is trained on the full graph, without computing the loss
on test nodes (i.e., without providing their label), and that is used to predict the label
of the test nodes. This implies that the entire structure of the graph is leveraged
during training, affecting also the embedding (thus, the predictions) on test nodes.
Considering that labeled and unlabeled data is used together during the training, the
training methodology is often called semi-supervised;

• Inductive: a model trained on a sub-graph without the test nodes and their edges, and
will later predict their labels on the full graph. That is, test nodes are completely
unobserved during training. The training methodology is, therefore, called supervised.

2.5 Explaining the GNNs

The good performance of Graph Neural Networks in many interesting and meaningful
applications gave rise to the following question: "why do GNN models work?" or, more

2.5 Explaining the GNNs 49

specifically: "What characteristics of the graph do they capture? And how?". Answering
these questions would not only open a window on these black-boxes, making them more
transparent, but would also offer insights about the problem resolution, that could help better
understand the problem itself. That is the case, for instance, of medical applications where it
might be hard to find a common pattern between patients by human inspection. Moreover,
understanding the GNNs could help in fixing the mistakes the model makes by improving
the model itself or with new data.

2.5.1 GNNExplainer

The first and most famous attempt to answer these questions is GNNExplainer [171].
Given the prediction on a node, GNNExplainer returns a sub-graph Gs of the input graph

G and the weight of each input feature such that the prediction error (w.r.t. the original
prediction) made on the sub-graph and the weighted features is reasonably small.

An advantage of GNNExplainer is that it considers the model as a black-box: it is model
agnostic as it acts only on the input graph and features. However, the initial formulation is
only suitable for classification tasks.

Formally, for each node, the sub-graph and the features mask are learned by maximizing
the mutual information following equation:

max
Gs,F

MI(Y,(Gs,XF
s)) = H(Y)−H(Y |G = Gs,X = XF

s) (2.40)

which is equivalent to minimizing the following conditional entropy, as the entropy is constant
for a trained model (i.e., predictions do not change):

min
Gs,F

H(Y |G = Gs,X = XF
s) (2.41)

where Y is the probability of the node belonging to each of the classes, G is the input graph
and Gs its explanation sub-graph, X is the matrix of input node features and XF

s the matrix of
the node features masked by F . That is, GNNExplainer attempts to learn what most affected
the prediction for a given node by maximizing the probability of the prediction, and does so
by minimizing the uncertainty of the model when the prediction is limited to Gs with features
matrix XF

s . Note that Gs ⊆ Gc, the computation sub-graph for that node, i.e., that sub-graph
of the node’s K-hop neighborhood in which a model with K GNN layers propagates the
features.

2.6 Software libraries 50

It is also worth mentioning that the above optimization is not directly tractable as the
possible number of Gs is exponential with the number of nodes in Gc, and the authors learn
an approximation that works well in practice.

While the computational complexity of GNNExplainer depends on the computation
graph of each node, authors note that the resulting explanation sub-graphs are connected and
smaller than the K-hop neighborhoods in which a model with K GNN layers propagates the
features, which allows GNNExplainer to operate even on large graphs.

Authors also propose a way to perform class-level explanations. For more details, we
refer the Reader to their paper.

2.6 Software libraries

One of the main issues of developing applications based on cutting-edge algorithms and
techniques is the lack of high quality implementations. However, that is not the case of
Geometric Deep Learning. In fact, despite it being a recent field, there are many frameworks
that provide stable and high performance implementations of the most popular algorithms in
the literature.

While the most popular (according to the stars and forks of the respective GitHub repos-
itories) is PyTorch Geometric [161], an open-source library built on-top of PyTorch [172]
that is actively developed and receives large community contributions, other libraries exist
and are gaining popularity. For instance, Deepmind released Graph Nets [173] in 2018 and
later Jraph [174] for JAX. Other libraries are Stellargraph [175] and Deep Graph Library
(DGL) [176].

Chapter 3

Learning Network Dismantling

3.1 Introduction

Several empirical systems consist of nonlinearly interacting units, whose structure and
dynamics can be suitably represented by complex networks [177]. Heterogeneous connectiv-
ity [178], mesoscale [179, 180], higher-order [181, 182] and hierarchical [183] organization,
efficiency in information exchange [184] and multiplexity [80, 81, 73, 87], are distinc-
tive features of biological molecules within the cell [185], connectomes [186], mutualistic
interactions among species [187], urban [188], trade [189] and social [190–192] systems.

However, the structure of complex networks can dramatically affect its proper function-
ing, with crucial effects on collective behavior and phenomena such as synchronization in
populations of coupled oscillators [193], the spreading of infectious diseases [194, 195]
and cascade failures [196], the emergence of misinformation [197, 198] and hate [199] in
socio-technical systems or the emergence of social conventions [200]. While heterogeneous
connectivity is known to make such complex networks more sensitive to shocks and other
perturbations occurring to hubs [71], a clear understanding of the topological factors —
and their interplay — responsible for a system’s vulnerability still remains elusive. For
this reason, the identification of the minimum set of units to target for driving a system
towards its collapse — a procedure known as network dismantling — attracted increasing
attention [201–205] for practical applications and their implications for policy-making. Dis-
mantling is efficient if such a set is small and, simultaneously, the system quickly breaks
down into smaller isolated clusters. The problem is, however, NP-hard and while percola-
tion theory provides the tools to understand large-scale transitions as units are randomly
disconnected [206, 207, 74, 208], a general theory of network dismantling is missing and
applications mostly rely on approximated theories or heuristics.

3.2 Proposed framework 52

Here, we develop a computationally efficient framework — named GDM (Graph Dis-
mantling with Machine learning) and conceptually described in Figure 3.1 – based on
machine learning, to provide a scalable solution, tackle the dismantling challenge, and gain
new insights about the latent features of the topological organization of complex networks.
Specifically, we employ Graph Neural Networks, overcoming the limitations of classic
(Euclidean) deep learning and operate on graph-structured data. These layers, inspired by the
convolutional layers that empower most of the deep learning models nowadays, aggregate
the features of each node with the ones found in its neighborhood by means of a learned
non-trivial function, producing high-level node features. While the machine is trained on
identifying the critical point from dismantling of relatively small systems — that can be easily
and optimally dismantled — we show that it exhibits remarkable inductive capabilities, being
able to generalize to previously unseen nodes and way larger networks after the learning
phase.

This work follows and combines two recent trends in Machine Learning: learning on
synthetic data and generalizing to real-world instances [209], and learning heuristics to
tackle/solve hard combinatorial problems on graphs [210, 13]. While the motivation behind
the latter is easy to understand, as — thanks to the increasing availability of data — graphs
are becoming larger and larger and many interesting applications would be unfeasible due
to computational constraints, the idea of learning on synthetic data can be motivated by the
unlimited availability of (easily) generated examples with training labels. Thanks to their
inductive capabilities and extensive training, Deep Learning models trained on synthetic
data are able to generalize to real-world instances, providing a useful tool to approach hard
problems in general.

3.2 Proposed framework

3.2.1 Model architecture

The machine learning framework proposed here consists of a (geometric) deep learning
model, composed of graph convolutional-style layers and a regressor (a multilayer percep-
tron), that is trained to predict attack strategies on small synthetic networks – that can be
easily and optimally dismantled – and then used to dismantle large networks, for which
the optimal solution cannot be found in reasonable time. To give an insight, the graph
convolutional-style layers aggregate the features of each node with the ones found in its
neighborhood by means of a learned non-trivial function, as they are inspired by the convolu-
tional layers that empower most of the (Euclidean) deep learning models nowadays. More

3.2 Proposed framework 53

Fig. 3.1 Training a machine to learn complex topological patterns for network disman-
tling. To build our training data, we generate and dismantle small networks optimally and
compute the node features. After the model is trained, it can be fed the target network (again,
with its nodes’ features) and it will assign each node n a value pn, the probability that it
belongs to the (sub-)optimal dismantling set. Nodes are then ranked and removed until the
dismantling target is reached. The machine learning architecture used consists of graph
convolutional-style layers (Graph Attention Network layers) coupled with linear layers —
that provide residual connections between consecutive layers — followed by a regressor (i.e.,
a Multilayer Perceptron) with a sigmoid activation function that constrains the pn value to
the [0,1] range.

3.2 Proposed framework 54

practically, the (higher-order) node features are propagated by the neural network when many
layers are stacked: deeper the architecture, i.e., the more convolutional layers, the farther the
features propagate, capturing the importance of the neighborhood of each node.

Specifically, we stack a variable number of state-of-the-art layers, namely Graph Attention
Networks (GAT) [164], discussed in Section 2.4.7.3, that are based on the self-attention
mechanism (also known as intra-attention) which was shown to improve the performance
in natural language processing tasks [211]. These layers are able to handle the whole
neighborhood of nodes without any sampling, which is one of the major limitations of other
popular convolutional-style layers (e.g., GraphSage [130]), and also to assign a relative
importance factor to the features of each neighboring node that depends on the node itself
thanks to the attention mechanism. The basic idea is somehow similar to the Collective
Influence approach, with the main differences being that the geometric deep learning model
learns a weighted sum function from the training data to aggregate many node features,
whereas the Collective Influence just sums the degrees, and also that the model aggregates
the whole L-hop neighborhood ball, not just its frontier. These high-level features, hL

n , are
then fed to a regressor that returns pn, a scalar value between zero and one that represents
the node’s structural importance indicator used in our work.

The actual implementation of our model relies on PyTorch Geometric library [161] on-top
of PyTorch [212], while the handling of the graphs (i.e., implementation of the data structures,
removal of the nodes and the computation of the connected components) is performed using
graph-tool [213].

3.2.2 Training

We train our models in a supervised manner. Our training data is composed of small syn-
thetic networks (25 nodes each) generated using the Barabási-Albert (BA), the Erdős-Rényi
(ER) and the Static Power law generational models that are implemented in iGraph [214]
and NetworkX [215]. Each synthetic network is dismantled optimally using brute-force and
nodes are assigned a numeric label (the learning target) that depends on their presence in the
optimal dismantling set(s). That is, we find all the minimum size solutions using brute-force
(i.e., we try all the combinations of nodes) that reduce the Largest Connected Component
(LCC) to a given target size, ∼ 18% in our tests; then, the label of each node is computed as
the number of optimal sets it belongs to, divided by the total number of optimal solutions.
For example, if there is only a set of optimal size, we assign a label value of 1 to the nodes in
that set and 0 to all other nodes; if there are two optimal solutions, we assign 1 to the nodes
that belong to both sets, 0.5 to the ones that belong to a single set and 0 to all the others. This

3.2 Proposed framework 55

is meant to teach the model that some nodes are more critical than others since they belong
to many optimal dismantling sets.

We stress that the training label is arbitrary and others may work better for other training
sets or targets. Moreover, while we train on a generic purpose dataset that includes both power
law and ER networks, the training networks can also be chosen to fit the target networks, e.g.,
by using networks from similar domains or with similar characteristics.

3.2.3 Node features

Considering that the model can process any features’ combination, one could just choose
to stuff every suitable node metrics that comes to their mind and, since it is proven that Deep
Neural Networks learn the feature importance, let them do the rest. On the other hand, it
could also be tempting to use no features at all (e.g, a constant value for every node) since
Kipf et al. [163] showed that their Graph Convolutional Network (GCN), a particular type of
convolutional-style graph neural networks, can learn to linearly separate the communities
based on the network structure alone and on minimal supervision (one labelled node per
community), meaning that convolutional-style neural networks can leverage the network
topology to assign a higher-level node feature that describes its role in the network.

We argue that, while the first idea could make sense for scenarios where training data is
abundant and the features are cheap to compute, and while the second shows worse (with
respect to models with simple features) but still interesting performance, it makes sense to
perform some feature selection a priori to keep the computational complexity of the attack
low and also to speed up the learning process. With that in mind, we pick node degree
(plus its chi-square value1 over the local neighborhood), k–coreness and local clustering
coefficient as node features.

3.2.4 Parameters

We run a grid search to test various combination of model parameters, which are reported
here, and select the models that better fit the dismantling target (i.e., lower area under the
curve or lower number of removals).

• Convolutional-style layers: Graph Attention Network layers.

– Number of layers: from 1 to 4;

1The chi-square value of the degree of node i is computed as χ2
i = (E[d]−σd)

2/E[d], where d is the degree
of neighboring nodes.

3.3 Dismantling synthetic and real-world systems 56

– Output channels for each layer: 5,10,20,30,40 or 50, sometimes with a decreas-
ing value between consecutive layers;

– Multi-head attentions: 1,5,10,15,20 or 30 concatenated heads;

– Dropout probability: fixed to 0.3;

– Leaky ReLU angle of the negative slope: fixed to 0.2;

– Each layer learns an additive bias;

– Each layer is coupled with a linear layer with the same number of input and
output channels;

– Activation function: Exponential Linear Unit (ELU). The input at each convolu-
tional layer is the sum between the output of the GAT and the linear layers;

• Regressor: Multi Layer Perceptron

– Number of layers: from 1 to 4;

– Number of neurons per layer: 20,30,40,50 or 100, sometimes with a decreasing
value between consecutive layers.

• Learning rate: fixed to 10−5;

• Epochs: we train each model for 50 epochs;

3.3 Dismantling synthetic and real-world systems

In our experiments, we dismantle empirical complex systems of high societal or strategic
relevance (e.g., biological, social, infrastructure, communication, trophic and technological
systems), our main goal being to learn an efficient attack strategy. To validate the goodness of
such a strategy, we compare against state-of-the-art dismantling methods, such as Generalized
Network Dismantling (GND) [205], Explosive Immunization (EI) [216], CoreHD [217], Min-
Sum (MS) [204] and Collective Influence (CI) [203], using local (node degree and its χ2

value), second-order (local clustering coefficient), and global (k–core value) node features as
input features.

To quantify the goodness of each method in dismantling the network, we consider the
Area Under the Curve (AUC) encoding changes in the Largest Connected Component (LCC)
size across the attacks. The LCC size is commonly used in the literature to quantify the
robustness of a network, because systems need the existence of a giant cluster to work

3.3 Dismantling synthetic and real-world systems 57

properly. The AUC indicator2 has the advantage of accounting for how quickly, overall, the
LCC is disintegrated: the lower the area under the curve, the more efficient is the network
dismantling.

As a representative example, we show in Figure 3.2a the result of the dismantling process
for the corruption network [218], built from 65 corruption scandals in Brazil, as a function
of the number of removed units. Results are shown for GDM and for the cutting-edge
algorithms mentioned above. In Figures 3.2b and 3.2c, instead, we show the structure before
and after dismantling, respectively. Our framework disintegrates the network faster than
other methods: to verify if this feature is general, we perform a thorough analysis of several
empirical systems.

GDM +R
GND +R

MS +R
CoreHD

CI 2

(a) Dismantling process. (b) Original network. (c) Attacked network.

Fig. 3.2 Dismantling the Brazilian corruption network. (a) GDM and state-of-the-art
algorithms with reinsertion of the nodes are compared. The network before (b) and after
(c) a GDM attack is shown. The color of the nodes represents (from dark red to white) the
attack order, while their size represents their betweenness value. In the attacked network,
darker nodes do not belong to the LCC, and their contour color represents the component
they belong to.

3.3.1 Dismantling empirical systems

Figure 4.2 shows the performance of each dismantling method on each empirical system
considered in this study, allowing for an overall comparison. On average, our approach
outperforms the others. For instance, Generalized Network Dismantling’s cumulative AUC
is ∼ 12% higher and the Min-Sum algorithm is outscored by a significant margin, which
is remarkable considering that our approach is static — i.e., predictions are made at the

2We compute the AUC value by integrating the LCC(x)/|N| values using Simpson’s rule.

3.3 Dismantling synthetic and real-world systems 58

beginning of the attack — while the other ones are dynamic — i.e., structural importance
of the nodes is (re)computed during the attacks. For a more extensive comparison with
these approaches, we also introduce a node reinsertion phase using a greedy algorithm
which reinserts, a posteriori, those nodes that belong to smaller components of the (virtually)
dismantled system and which removal is not actually needed in order to reach the desired
target [204]. Once again, our approach outperforms the other algorithms: even without
accounting for the reinsertion phase, GDM performs comparably with GND + reinsertion
and outscores the others, highlighting how it is able to identify the more critical nodes of a
network.

Heuristic GDM GND EGND Adaptive degree EI σ1 Pagerank Degree Betweenness MS EI σ2 GDM +R GND +R CoreHD MS +R CI ℓ−2
Network

ARK201012_LCC 100.0 99.7 100.1 103.3 128.4 103.1 104.9 123.3 130.9 3883.7 94.5 87.6 92.6 95.8 114.6
advogato 100.0 108.0 105.5 101.8 111.6 150.1 113.4 114.8 112.6 494.5 94.8 97.5 102.1 102.7 98.8
arenas-meta 100.0 129.0 141.9 103.6 120.4 114.8 116.4 142.4 120.5 579.3 90.8 92.5 95.5 94.9 96.9
cfinder-google 100.0 160.4 246.5 99.5 233.7 113.5 141.3 377.9 682.8 1609.3 67.5 105.6 101.0 166.9 114.0
corruption 100.0 99.3 126.9 157.3 236.3 147.5 400.1 166.7 864.8 1141.9 97.6 147.4 138.6 139.6 176.6
dblp-cite 100.0 113.3 121.7 113.5 111.7 114.7 131.6 119.0 139.8 533.5 103.9 108.5 132.3 132.5 117.1
dimacs10-celegansneural 100.0 85.0 95.9 103.1 105.7 116.4 120.8 125.1 117.5 182.2 94.2 103.8 111.6 110.3 99.7
dimacs10-polblogs 100.0 107.5 97.1 102.1 115.5 112.5 117.9 114.8 107.5 262.3 98.4 108.4 106.0 104.9 104.6
econ-wm1 100.0 130.3 114.4 109.8 128.0 131.0 129.4 132.7 107.7 309.3 99.6 109.4 106.0 105.9 126.3
ego-twitter 100.0 116.8 115.8 108.9 103.0 107.8 108.8 133.3 167.3 6017.4 98.8 98.2 114.4 111.7 103.9
eu-powergrid 100.0 75.9 89.1 138.8 73.8 180.1 163.5 174.5 290.9 3313.0 64.4 66.5 83.4 92.8 109.4
foodweb-baydry 100.0 104.5 99.5 98.1 103.0 120.5 122.3 109.4 104.4 125.2 97.8 98.0 101.2 99.3 110.6
foodweb-baywet 100.0 110.2 108.4 99.6 103.9 123.6 125.4 112.9 106.8 128.3 98.5 108.5 102.1 101.8 113.0
inf-USAir97 100.0 112.4 117.8 130.4 147.0 117.1 139.1 128.6 164.0 633.6 100.1 117.2 103.7 107.6 129.8
internet-topology 100.0 95.6 95.8 99.1 113.9 109.2 131.4 122.9 138.6 3879.9 94.8 84.7 100.2 101.7 103.0
librec-ciaodvd-trust 100.0 113.1 115.5 117.6 129.4 120.5 139.8 114.9 126.6 634.5 104.3 114.4 124.4 126.3 126.1
librec-filmtrust-trust 100.0 108.9 118.3 117.7 112.8 131.8 148.4 158.9 168.7 1308.2 89.7 95.5 106.8 98.6 98.0
linux 100.0 97.9 101.1 116.2 84.5 176.0 190.8 365.1 150.0 1035.2 78.3 71.4 74.1 80.1 92.1
loc-brightkite 100.0 100.2 100.3 98.6 97.7 104.3 110.9 122.1 106.7 593.9 89.5 99.7 92.1 92.4 93.0
maayan-Stelzl 100.0 144.1 133.0 102.5 114.3 113.4 127.7 137.0 111.7 1269.6 96.3 113.4 107.1 105.2 105.4
maayan-figeys 100.0 104.3 120.2 100.7 155.9 127.3 146.9 153.4 129.5 1656.6 98.0 100.1 123.7 123.4 99.5
maayan-foodweb 100.0 111.5 94.6 114.7 147.8 118.9 123.8 126.2 154.6 268.7 100.0 125.5 136.1 144.4 173.9
maayan-vidal 100.0 111.0 106.7 103.3 101.6 109.1 110.6 123.9 114.1 843.9 90.1 102.5 95.6 97.9 97.3
moreno_crime_projected 100.0 105.8 86.0 191.2 139.2 157.6 218.8 180.6 976.7 2103.3 82.7 88.8 100.3 104.1 126.2
moreno_propro 100.0 115.9 123.6 115.6 87.9 126.1 123.5 146.7 145.2 1985.3 90.7 94.6 92.2 93.1 96.3
moreno_train 100.0 104.9 104.9 107.1 124.0 149.5 156.0 134.7 176.9 408.8 100.0 109.7 115.6 120.3 211.6
munmun_digg_reply_LCC 100.0 116.3 108.6 98.5 109.4 106.5 108.3 117.5 98.9 556.8 95.6 104.0 99.0 98.4 98.5
opsahl-openflights 100.0 101.2 106.2 127.2 109.9 123.2 135.4 123.6 157.3 807.7 84.4 92.0 102.6 111.3 120.9
opsahl-powergrid 100.0 36.9 69.4 148.6 37.0 173.4 180.9 183.9 164.3 1508.1 43.1 42.1 51.4 52.5 65.6
opsahl-ucsocial 100.0 122.1 116.1 99.9 118.5 105.9 109.9 109.8 108.8 342.0 97.0 106.1 105.8 106.0 101.7
oregon2_010526 100.0 106.8 101.5 108.8 131.1 101.6 130.5 114.6 162.0 3247.5 90.0 80.5 113.0 112.8 95.1
p2p-Gnutella06 100.0 128.5 120.4 108.5 108.6 111.6 125.1 118.4 108.7 274.0 101.4 120.4 110.1 108.4 109.1
p2p-Gnutella31 100.0 133.6 NaN 109.1 112.7 110.3 123.1 129.5 109.2 474.4 102.3 121.6 110.4 108.8 109.8
pajek-erdos 100.0 112.2 107.5 103.3 119.9 103.3 104.6 106.7 122.8 2790.7 98.2 106.9 116.7 113.9 101.0
petster-hamster 100.0 92.5 90.9 122.7 103.8 135.1 127.2 123.8 166.7 402.6 91.5 93.3 96.2 96.5 98.6
power-eris1176 100.0 199.1 218.0 340.2 171.7 253.5 622.5 430.2 632.6 1957.4 86.6 154.8 161.3 157.8 153.7
route-views 100.0 99.3 99.1 101.8 133.2 103.5 103.5 112.3 131.5 4340.9 94.0 82.0 93.0 95.2 112.5
slashdot-threads 100.0 100.1 102.2 99.5 122.5 104.6 105.4 114.2 117.6 1495.8 96.1 95.8 115.7 115.1 97.9
slashdot-zoo 100.0 99.2 100.1 95.6 120.9 103.3 106.8 124.0 112.4 683.8 95.2 97.7 106.9 105.9 96.5
subelj_jdk 100.0 107.6 110.2 115.1 113.0 144.2 181.5 346.9 144.6 1275.7 80.9 84.7 84.8 81.0 103.4
subelj_jung-j 100.0 102.1 111.6 122.0 118.4 150.7 185.7 334.6 143.1 1295.0 80.1 88.5 82.9 72.2 101.5
web-EPA 100.0 148.4 157.6 102.2 141.1 104.9 109.7 137.7 158.1 1471.9 101.1 115.6 133.8 132.8 107.3
web-webbase-2001 100.0 127.6 130.0 165.0 196.6 216.3 165.4 207.7 3603.1 55066.4 64.7 50.1 76.6 82.6 80.9
wikipedia_link_kn 100.0 107.3 102.6 103.7 113.2 124.8 143.6 140.3 128.8 NaN 92.9 98.0 113.9 113.5 96.8
wikipedia_link_li 100.0 120.3 145.4 132.8 151.8 120.5 165.2 110.6 211.9 1049.4 107.2 151.0 177.5 174.5 157.8

Average 100.0 111.7 115.4 119.1 123.6 128.7 151.1 158.9 273.3 2596.4 91.5 100.8 106.9 108.7 112.1

Table 3.1 Per-method area under the curve (AUC) of real-world networks dismantling. The
lower the better. The dismantling target for each method is 10% of the network size. We
compute the AUC value by integrating the LCC(x)/|N| values using Simpson’s rule, and
each value is scaled to the one of our approach (GDM) for the same network. +R means that
the reinsertion phase is performed. CoreHD and CI are compared to other +R algorithms as
they include the reinsertion phase. EGND for p2p-Gnutella31 is missing as the computation
was killed after 10d.

3.3 Dismantling synthetic and real-world systems 59

In Table 3.1 we report the same results in numerical form. The table also includes other
commonly used static attack approaches that remove the nodes in descending importance
order according to some node centrality metric. While many heuristics fall in this category,
we compare with the removal of nodes in descending degree [219], betweenness [219] and
PageRank [57]. Our approach outperforms all these static approaches with a significant
margin, even the ones with higher computational complexity (e.g., the betweenness-based
one).

For the full dismantling curves (i.e., LCC as a function of the removed nodes), we refer
the Reader to the Figures 3.7 and 3.8 of Section 3.3.5.

3.3 Dismantling synthetic and real-world systems 60

Fig. 3.3 Dismantling empirical complex systems. Per-method cumulative area under the
curve (AUC) of real-world networks dismantling. The lower the better. The dismantling
target for each method is 10% of the network size. Each value is scaled to the one of our
approach (GDM) for the same network. GND stands for Generalized Network Dismantling,
EGND for Ensemble approach for GND (in both GND and EGND, cost matrix W = I), MS
stands for Min-Sum, EI σ1 stands for Explosive Immunization (σ1) algorithm and CI for
Collective Influence. +R means that the reinsertion phase is performed. CoreHD and CI are
compared to other +R algorithms as they include the reinsertion phase. Also, note that some
values are clipped (limited) to 3x for the MS heuristic to improve visualization.

3.3 Dismantling synthetic and real-world systems 61

3.3.2 Dismantling large empirical systems

Fig. 3.4 Dismantling empirical complex large systems. Per-method cumulative area under
the curve (AUC) of real-world networks dismantling. The lower the better. The dismantling
target for each method is 10% of the network size. We compute the AUC value by integrating
the LCC(x)/|N| values using Simpson’s rule, and each value is scaled to the one of our
approach (GDM) for the same network. GND stands for Generalized Network Dismantling
(with cost matrix W = I) and MS stands for Min-Sum. +R means that the reinsertion phase is
performed. Also, note that some values are clipped (limited) to 3x for the MS heuristic to
improve visualization.

We extend the comparison against the more promising state-of-the-art algorithms (GND
and MS with and without reinsertion, and CoreHD) to 12 large networks with up to 1.8M
nodes and up to 2.8M edges. As shown in Figure 3.4, the results on smaller empirical
networks are confirmed even for the large ones, although with smaller margins (i.e., ∼ 5.6%
and ∼ 5.6% against GND, respectively with and without the reinsertion phases) This is
still impressive as the proposed approach is static while the others recompute the nodes’
structural importance during the dismantling process, which involves many removals for
these networks (e.g., 70K on hyves network) and changes the network topology drastically,
confirming the validity of our approach.

3.3 Dismantling synthetic and real-world systems 62

Heuristic GDM GND MS GDM +R GND +R MS +R CoreHD
Network

citeseer 100.0 102.2 111.2 92.8 91.3 95.0 94.3
com-dblp 100.0 109.6 184.5 91.5 108.3 92.4 91.2
digg-friends 100.0 100.9 140.5 97.0 103.6 120.7 121.2
douban 100.0 120.8 132.7 102.6 129.3 131.6 132.9
email-EuAll 100.0 97.0 192.1 100.0 100.0 147.4 148.5
hyves 100.0 109.3 133.6 101.6 109.6 131.9 133.6
loc-gowalla 100.0 103.2 105.4 89.7 91.9 91.0 90.5
munmun_twitter_social 100.0 105.2 140.5 100.2 112.4 138.5 137.3
petster-catdog-household 100.0 100.7 164.7 95.4 98.0 143.4 144.7
tech-RL-caida 100.0 104.8 147.2 86.9 94.3 82.8 80.2
twitter_LCC 100.0 93.6 98.8 85.3 81.4 83.0 84.7
wordnet-words 100.0 120.4 234.5 100.0 110.8 111.0 109.7

Average 100.0 105.6 148.8 95.3 102.6 114.1 114.1

Table 3.2 Per-method area under the curve (AUC) of real-world large networks dismantling.
The lower the better. The dismantling target for each method is 10% of the network size.
We compute the AUC value by integrating the LCC(x)/|N| values using Simpson’s rule, and
each value is scaled to the one of our approach (GDM) for the same network. +R means that
the reinsertion phase is performed. CoreHD and CI are compared to other +R algorithms as
they include the reinsertion phase.

In Table 3.3, we also report the prediction (if any) and dismantling time of each of
the above-mentioned methods to give a better idea on what their different computational
complexities mean and translate into.

3.3 Dismantling synthetic and real-world systems 63

Prediction time Dismantle time

Heuristic GDM CoreHD GDM GND MS
Network

citeseer 00:00:03.4 00:00:22.9 01:30:17.1 03:43:51.6 01:26:21.5
com-dblp 00:00:02.9 00:00:14.9 00:22:30.7 04:57:25.6 00:59:38.4
digg-friends 00:00:02.8 00:00:19.9 00:08:01.9 00:30:55.5 01:11:37.4
douban 00:00:01.3 00:00:06.1 00:01:10.1 00:03:34.8 00:11:40.4
email-EuAll 00:00:02.4 00:00:07.8 00:00:10.7 00:01:14.9 00:09:49.0
hyves 00:00:13.5 00:00:36.6 03:08:02.7 08:21:22.8 02:03:26.9
loc-gowalla 00:00:02.0 00:00:15.9 00:17:22.3 01:27:28.0 00:46:15.0
munmun_twitter_social 00:00:04.3 00:00:14.3 00:00:53.5 00:07:53.4 00:29:13.9
petster-catdog-household 00:00:03.9 00:00:40.6 00:44:20.5 03:58:17.1 02:16:02.8
tech-RL-caida 00:00:01.8 00:00:12.1 00:07:23.7 04:14:34.1 00:29:30.8
twitter_LCC 00:00:04.4 00:00:13.0 00:32:01.0 05:33:36.3 00:19:18.8
wordnet-words 00:00:01.4 00:00:12.1 00:03:34.0 01:23:52.1 00:22:28.5

Table 3.3 Real-world large networks dismantling timings. The lower the better. Time
format is HH:MM:SS.s. MS and GND do not have prediction time as they refresh the
predictions during the dismantling, while there is no CoreHD dismantling column as we use
our dismantler.

3.3.3 Dismantling synthetic systems

We also validate the approach on synthetic networks. Specifically, we test on Erdős-Rényi
(ER) networks (average degree kavg = 4), on Configuration Model networks (CM) with power
law distribution (γ = 2.5 and kavg = 4) and on Stochastic Block Model (SBM) networks
(group size fixed to 100, pintra = 0.1 and pinter =

5
|N|). We generate 10 realizations with 1K,

10K and 100K nodes each and average the results.
As reported in Figure 3.5 and Table 3.4, this time the best approach is Min-Sum, scoring

6% and 3% lower AUC than GDM and GDM+R, respectively.
The reason behind this slightly lower GDM performance can be found in our training

set and on what the models learn. Specifically, we train on networks generated using three
different models, which teaches the models to look for patterns that turn out to be sub-
optimal in the long term (as no re-computation is made during the process) when it comes to
specific synthetic networks. It should also be noted that GND — the second best-performing
algorithm on real-world networks — is the worst of the tested algorithms on synthetic
networks.

3.3 Dismantling synthetic and real-world systems 64

Fig. 3.5 Dismantling synthetic complex systems. Per method cumulative area under the
curve (AUC) of the dismantling of synthetic networks. The lower the better. Each value is
the average on 10 different instances, and is scaled to the AUC of our approach (GDM) for
the same network type. CM stands for Configuration Model, ER stands for Erdős-Rényi, and
SBM stands for Stochastic Block Model.

3.3 Dismantling synthetic and real-world systems 65

Heuristic GDM EI σ1 GND MS GDM +R CoreHD GND +R MS +R
Network

CM (100K) 100.0 97.3 114.5 92.6 94.5 93.2 106.0 92.3
CM (10K) 100.0 96.7 126.1 93.9 95.5 94.5 109.5 93.6
CM (1K) 100.0 96.9 118.2 95.1 96.6 95.6 107.5 94.8
ER (100K) 100.0 95.5 109.7 93.9 96.6 95.4 107.2 93.8
ER (10K) 100.0 95.3 109.5 93.9 96.6 95.6 106.9 93.7
ER (1K) 100.0 95.5 107.3 94.5 96.6 95.8 105.4 94.2
SBM (100K) 100.0 95.0 96.9 94.5 96.7 95.2 96.0 94.1
SBM (10K) 100.0 94.8 94.0 94.5 96.7 95.3 94.4 94.1
SBM (1K) 100.0 95.2 91.9 94.9 96.9 95.4 93.5 94.4

Average 100.0 95.8 107.6 94.2 96.3 95.1 102.9 93.9

Table 3.4 Synthetic network results table. Per method area under the curve (AUC) of the
dismantling of synthetic networks. The lower the better. Each value is the average on 10
different instances, which is scaled to the AUC of our approach (GDM) for the same network
type.

3.3.4 Enhancement of node metric based heuristics

An interesting feature of our framework is that it can enhance existing heuristics based
on node descriptors, by employing the same measure as the only node feature, as shown in
Fig. 3.6.

Specifically, in order to better understand how our framework is able to outperform
cutting-edge algorithms, we compare existing node metric-based heuristics (e.g., removal
of nodes in degree order) against GDM models that employ the corresponding node metric
as the only node feature. As an example, in Figure 3.6 we display the enhancement of the
degree and the betweenness based heuristics in the left and right columns respectively. These
GDM-enhanced heuristics effectively outperform the vanilla ones, highlighting the fact that
the model is able to capture the importance of the nodes thanks to the feature propagation
discussed before. This also gives an important insight as the model seems to learn correlations
between node features.

3.3 Dismantling synthetic and real-world systems 66

(a) arenas-meta degree (b) arenas-meta betweenness

(c) foodweb-baywet degree (d) foodweb-baywet betweenness

(e) inf-USAir97 degree (f) inf-USAir97 betweenness

Fig. 3.6 Heuristics enhancement. Comparison of degree and betweenness vanilla heuristics
with their GDM-enhanced versions on the arenas-meta, foodweb-baywet and inf-USAir97
networks.

3.3 Dismantling synthetic and real-world systems 67

3.3.5 Dismantling curves

In Figure 3.7, we display the dismantling of most of our test networks and compare with
the state-of-the-art algorithms and with the heuristics introduced in the previous paragraph.
As previously mentioned, one of the advantages of our approach is that we can choose the
best model to reach a given objective. As an example, we show the models that lower the
area under the curve (GDM AUC) and the removals number (GDM #Removals), which may
overlap for some networks. We also show the dismantling performing the reinsertion phase
and compare with state-of-the-art algorithms in Figure 3.8.

3.3 Dismantling synthetic and real-world systems 68

(a) arenas-meta (b) corruption

(c) douban (d) econ-wm1

(e) foodweb-baywet (f) hyves

3.3 Dismantling synthetic and real-world systems 69

(g) inf-USAir97 (h) librec-ciaodvd-trust

(i) maayan-foodweb (j) maayan-Stelzl

(k) moreno-crime-projected (l) opsahl-openflights

3.3 Dismantling synthetic and real-world systems 70

(m) p2p-Gnutella06 (n) petster-hamster

(o) power-eris1176 (p) tech-RL-caida

(q) twitter_LCC (r) wordnet-words

Fig. 3.7 Dismantling curves without reinsertion phase. Dismantling of some networks in
our test set. We compare against the algorithms without reinsertion in Tables 3.1 and 3.2 and
show both the models with lower area under the curve (GDM AUC) and with lower number
of removals (GDM #Removals), which may overlap for some networks.

3.3 Dismantling synthetic and real-world systems 71

(a) arenas-meta (b) corruption

(c) douban (d) econ-wm1

(e) foodweb-baywet (f) hyves

3.3 Dismantling synthetic and real-world systems 72

(g) inf-USAir97 (h) librec-ciaodvd-trust

(i) maayan-foodweb (j) maayan-Stelzl

(k) moreno-crime-projected (l) opsahl-openflights

3.3 Dismantling synthetic and real-world systems 73

(m) p2p-Gnutella06 (n) petster-hamster

(o) power-eris1176 (p) tech-RL-caida

(q) twitter_LCC (r) wordnet-words

Fig. 3.8 Dismantling curves with reinsertion phase. Dismantling of some networks in our
test set. We compare against the algorithms with reinsertion phase in Tables 3.1 and 3.2
and show both the models with lower area under the curve (GDM +R AUC) and with lower
number of removals (GDM +R #Removals), which may overlap for some networks.

3.4 Early-warning signals of systemic collapse 74

3.4 Early-warning signals of systemic collapse

Another relevant output of our method is the calculation of a damage score that can
be used to predict the impact of future attacks to the system. Accordingly, we introduce
an estimator of early warning that can be used for inform policy and decision making in
applications where complex interconnected systems – such as water management systems,
power grids, communication systems and public transportation networks – are subject to
potential failures or targeted attacks. We define Ω, namely Early Warning, as a value between
0 and 1, calculated as follows. We first simulate the dismantling of the target network using
our approach and call So the set of virtually removed nodes that cause the percolation of the
network. Then, we sum the pn values predicted by our model for each node n ∈ So and define

Ωm = ∑
n∈So

pn. (3.1)

The value of the Early Warning Ω for the network after the removal of a generic set S of
nodes is given by

Ω =

⎧⎨⎩Ωs/Ωm if Ωs ≤ Ωm

1 otherwise
(3.2)

where Ωs = ∑
n∈S

pn.

The rationale behind this definition is that the system will tolerate a certain amount of
damage before it collapses: this value is captured by Ωm. Ω will quickly reach values close
to 1 when nodes with key-role in the integrity of the system are removed. Of course, the
system could be heavily harmed by removing many less relevant nodes (e.g., the peripheral
ones) with an attack that causes a small decrease in LCC size over time, and probably get a
low value of Ω. However, this kind of attacks does not need an early-warning signal since
they do not cause an abrupt disruption of the system and can be easily detected.

3.4.1 Why do we need an Early Warning signal?

One may wonder why do we need an Early Warning signal, since it is common to evaluate
the structural integrity using, for instance, the Largest Connected Component of the system.

In this Section we try to answer with a simple toy-example shown in Figure 3.9.
Specifically, the toy-example network in Figure 3.9a is composed of two cliques (fully

connected sub-networks) connected by a few border nodes (bridges) that also belong to the
respective cliques. Many dismantling approaches (like the degree and betweenness-based
heuristics, or even ours) would remove those bridge nodes first, meaning that the network

3.4 Early-warning signals of systemic collapse 75

would eventually break in two, as shown in Figure 3.9b. Now, when most of the bridge nodes
are removed (e.g., after 16 removals), the LCC is still quite large as it includes more than
80% of the nodes, but it takes just a few more removals of the bridges to break the network in
two. While Ω is able to capture the imminent system disruption (i.e., the Ω value gets closer
to 1 very fast), the LCC size is not, and one would notice when it is too late. Moreover, the
LCC curve during the initial part of the attack is exactly the same as the one in Figure 3.9c,
showing the removal of nodes in inverse degree (or betweenness) order, which does not cause
the percolation of the system. Again, Ω captures this difference and does not grow, meaning
that a slow degradation should be expected.

(a) Toy-example network composed of two cliques connected by 10 bridges. The size of the nodes
represents their betweenness value and the color (from dark red to white) represents their importance
to the system’s health according to our method.

(b) Degree or betweenness based attack. (c) Inverse degree or betweenness based attack.

Fig. 3.9 Toy-example meant to explain why the LCC is not sufficient to evaluate the
state of the system. The LCC decreases at the same rate during the initial part of both the
attacks shown. Instead, Ω values do not and reach warning levels before the system suddenly
collapses.

3.4 Early-warning signals of systemic collapse 76

3.4.2 Tests on real-world systems

We test our method on key infrastructure networks and predict the collapse of the system
under various attack strategies (see Fig. 3.10 for details). Remarkably, while the LCC size
decreases slowly without providing a clear alarm signal until the system is heavily damaged
and collapses, Ω grows faster when critical nodes are successfully attacked, reaching warning
levels way before the system is disrupted, as highlighted by the First Response Time, defined
as the time occurring between system’s collapse and an early-warning signal of 50% (i.e.,
Ω = 0.5). Moreover, the first order derivative Ω′

s tracks the importance of nodes that are
being attacked, providing a measure of the attack intensity over time.

Fig. 3.10 Early warning due to network dismantling of real infrastructures. Three
empirical systems, namely the European power grid (left), the North-American power grid
(middle) and the London public transport (right), are repeatedly attacked using a degree-based
heuristics, i.e., hubs are damaged first. A fraction of the most vulnerable stations is shown
for the original systems and some representative damaged states (i.e., before and after the
critical point for system’s collapse), in the top of the figure. The plots show the behavior of
the largest (LCC) and second-largest (SLCC) connected components, as well as the behavior
of Ω, the Early Warning descriptor introduced in this study and the pn value of each removed
node (PI). Transitions between green and red areas indicate the percolation point of the
corresponding systems, found through the SLCC peak. We also show the first response
time in arbitrary units (AU), to highlight how our framework allows to anticipate system’s
collapse, allowing for timely emergency response.

3.4 Early-warning signals of systemic collapse 77

3.4.3 More Early Warning Ω examples

In addition to the example applications of Ω illustrated above, we also test if it can
detect the collapse of other systems. Specifically, we show the SciKit European power-grid
(eu-powergrid) under random failures, degree or Min-Sum + Reinsertion phase attacks in
Figure 3.11, and also various American roads under Generalized Network Dismantling +
Reinsertion phase attacks in Figure 3.12. In all these scenarios, Ω is able to detect the system
damage and reaches warning levels before the system collapse actually happens, even in case
of multiple large connected components detaching from the larger one as the attack goes on.

(a) Random (b) Degree

(c) MS + R

Fig. 3.11 Early Warning values for the SciKit European powergrid under random failures
and targeted attacks.

3.4 Early-warning signals of systemic collapse 78

(a) California Roads (b) North-America roads

(c) San Francisco roads

Fig. 3.12 Ω values for three different American road networks under GND +R attacks
(with cost matrix W = I).

3.4 Early-warning signals of systemic collapse 79

(a) Internet topology (tech-RL-caida)
(b) University of Notre Dame website hyperlinks
network

(c) Stanford University website hyperlinks network

Fig. 3.13 Ω values for three different internet networks under GND +R attacks (with cost
matrix W = I).

3.5 Understanding the models 80

3.5 Understanding the models

After validating the dismantling performance of our approach, an investigation of what
the models are actually learning and how they are making the long-term predictions is needed
to open the black box of Deep Learning and use the resulting insights to improve the state-of-
the-art algorithms. Our investigation, detailed in the following Sections, is twofold: we first
attack some toy-examples to understand the model’s behavior in particular situations, and
then we use GNNExplainer, introduced in Section 2.5.1, to understand what sub-structures
and features are captured by the models. Finally, we investigate if correlations among node
features are exploited for the task.

3.5.1 Models’ behavior

The first part of our analysis consists in investigating the behavior of our approach by
dismantling some toy-example networks. To this aim, we employ the same low computational
complexity node features described before.

The first toy example, shown in Figure 3.14a, is a network built from three ego-networks
joined by a bridge. The betweenness based heuristics3, and also our common sense, would
suggest removing the bridge first, reducing the LCC size to one third of the initial value,
and then remove the nodes at the center of the unconnected ego networks left, for a total of
four removals. Instead, our model predicts a different strategy and removes only the cores
of the ego sub-networks, reaching the same LCC size with just three removals, as shown in
Figure 3.15a.

At this point, we want to probe if the model is just learning to remove the nodes in
descending degree order as the previous example would suggest. If that is the case, in our
second toy example network, composed of a clique with an appended tail as illustrated in
Figure 3.14b, the model would remove the nodes in the clique first, given their high degree.
Instead, the tail is detached first, meaning that the predicted strategy differs from the degree
based one, and both the degree and betweenness-based heuristics are outperformed, as shown
in Figure 3.15b.

3The removal of nodes by descending betweenness centrality order. The node betweenness is a node
centrality measure that captures the importance of the node to the shortest paths through the network.

3.5 Understanding the models 81

(a) Three bridged ego networks.

(b) Tailed clique

Fig. 3.14 Toy examples. The color of the nodes represents (from dark red to white) the
removal order of predicted strategy, while their size represents their betweenness value.

(a) Three bridged ego networks. (b) Tailed clique

Fig. 3.15 Dismantling the toy example networks using our approach, GDM, and the degree
and betweenness based heuristics as comparison.

3.5.2 Explaining the GNN models

The second part of the analysis consists in a deeper analysis of the models obtained by
extracting the sub-structure of the graphs (and of their features) that are relevant to produce
the output for each node. For this purpose, we employ GNNExplainer [171], the novel
framework for explaining Graph convolutional-style networks, to extract the explanation
sub-graphs (the sub-sets of nodes and edges) that most account for the value predicted by the
model for each node.

In order to compute the explanation sub-graphs, we extend the Pytorch Geometric’s
implementation of GNNExplainer to support regression tasks by using a Meean Square Error

3.5 Understanding the models 82

(MSE) loss function. We train the GNNExplainer [171] model for 600 epochs with a 0.01
learning rate, and mask out the edges with weight w lower than E[w]+1.5 ·σw.

What we find in the analysis of the explanation sub-graphs of the networks in our test-set
is that, as in the case of the Brazilian corruption network shown in Fig. 3.16, the model is
removing the nodes that bridge multiple clusters, discovered by combining the input features
and by looking to other bridges in their K-hop neighborhood, which confirms the insight
provided by the toy-examples discussed the previous Section. The identification of this
kind of bridges is achieved thanks to the local and second-order features combined with the
propagation performed by the model. In fact, while Lauri et al. [13] show that the degree, its
χ2 value and the local clustering coefficient can be used to estimate the likelihood a node
belongs to a clique via classical Deep Learning tools, our Geometric Deep Learning model
improves the idea by extending the feature propagation in a K-hop radius and the result is
improved further by the k–core value that helps to filter the nodes at the core of the network.
Although some of the targeted nodes are not the direct cause of large damage to the network,
they are needed to drive the network in a vulnerable state where the removal of other nodes
disrupts it. In other words, the models seem to predict a long-term strategy that aims not
only to remove the Articulation Points (AP, also known as Cut Vertices, are nodes that, when
removed, cause the creation of a new connected component) but also create new ones with
the removal of other non-AP nodes.

This insight led us to investigate further in this direction with an analysis of the Articula-
tion Points as the nodes are removed. Specifically, we compute, removal after removal, the
number of APs in the network and how many of them are in the removal list (R) predicted by
the model.

As shown in Figures 3.17a and 3.17b for the linux and internet-topology networks, the
number of APs increases as nodes are removed, and so do the ones in the removal list, until
there is a natural decay due to the decreasing size of the removal list itself. This trend is
confirmed for most of our the 45 real-world test networks, as shown in Figure 3.19.

Considering the high dismantling performance discussed in the previous sections, this
proves that not only the model is effectively learning to target the nodes that cause the
network collapse when removed together, but also that does so more efficiently than other
algorithms. Note that a strategy barely based on AP removal would not be effective, since an
AP can be one node whose removal separates a giant connected component from a component
consisting of a negligible number of nodes (e.g., only one node). Instead, we demonstrate that
our model is learning to identify the most effective AP for disintegrating the target system:
elegantly, these turn out to be bridges between large clusters, not between one large and one
small cluster.

3.5 Understanding the models 83

Moreover, if we analyze the number of APs in the removal list (|AP∩R|) as a function of
the total number of APs (|AP|), we find that the two are related by a kind of deterministic
dynamics, resembling the one which characterizes chaotic systems and, specifically, chaotic
maps such as the logistic map or the Hénon map, where parabolic attractors emerge when
the state of the system at the n+1-th step is plotted against the state at the n-th step. In our
case, the n-th step coincides with the removal of the n-th node in the removal list. The shape
of the resulting attractor provides a strong characterization of the system and its robustness:
we show an example for each type in Figures 3.17c and 3.17d. More examples can be found
in Figure 3.20. That is, in the first case, the model drives the network in a state where the
nodes in the removal list become Articulation Points, in the latter it mainly removes nodes
that are already APs.

After understanding what the model is learning, we analyze how features account in
the computation of the output values to get an insight on how the model selects the nodes.
While there is no prevailing feature for all the networks — e.g., sometimes the degree is
the key feature, others the K–core value, etc. — an interesting result is that the feature
weight also changes with the score of the nodes. For instance, while the clustering coefficient
is the main feature, scoring up to the 60% of the relative importance, in the first 250
removals of the subelj-jdk network (Figure 3.17f), all the features gain equal weight after that
removal. In the Brazilian corruption network, instead, the node degree is the most important
feature to identify the first nodes to remove, but other features gain more importance to
identify less important nodes, needed to reach the dismantling target. These results confirm
that the definition of new algorithms based on these insights is extremely hard, as the
weight of each feature is adapted by the model to the topology and to the patterns in the
network. At this point, it is plausible to assess that our framework learns correlations among
node features. To probe this hypothesis, in Section 3.5.3 and in Fig. 3.21, we analyze
the configuration models of the same networks analyzed so far: those models keep the
observed connectivity distribution while destroying topological correlations. We observe
that dismantling performance drop on these models, confirming that the existing topological
correlations are learned and, consequently, exploited by the machine. For more details, we
refer the Reader to the dedicated Section 3.5.3.

3.5
U

nderstanding
the

m
odels

84

Fig. 3.16 Explanation sub-graphs for the first four nodes of the Brazilian corruption network. The model is targeting nodes that act
as bridge between multiple clusters and the choice is also based on neighboring nodes that are bridges themselves.

3.5 Understanding the models 85

|AP | |AP ∩R| Created APs

(a) linux: AP trend. (b) internet-topology: AP trend.

(c) linux: AP and R relation. (d) internet-topology: AP and R relation.
Clustering Coefficient Degree Degree χ2 K-Core

(e) corruption: features importance trend. (f) subelj-jdk: features importance trend.

Fig. 3.17 Understanding our models. The analysis of the Articulation Points of the net-
works (AP) and how many of them are in the removal list (R) shows that the models are
learning a long-term strategy that aims to create new articulation points and remove the
ones that deal most damage to the network. This is achieved using the input node features
discussed above, that allow the identification of clusters and bridges.

3.5 Understanding the models 86

3.5 Understanding the models 87

Fig. 3.18 Features’ importance trend. Relative features’ importance in the computation of
each pn value, provided by GNNExplainer, in removal order.

3.5 Understanding the models 88

3.5 Understanding the models 89

3.5 Understanding the models 90

3.5 Understanding the models 91

Fig. 3.19 Articulation Point trend. We compute, removal after removal, the number of APs
in the network (|AP|), the number of APs in the removal list (|AP∩R|) and the number of
created APs.

3.5 Understanding the models 92

3.5 Understanding the models 93

3.5 Understanding the models 94

3.5 Understanding the models 95

Fig. 3.20 Relation between the number of APs and the number of APs in the removal
list. The two are related by a kind of deterministic dynamics, resembling the one which
characterizes chaotic systems and, specifically, chaotic maps such as the logistic map or the
Hénon map, where parabolic attractors emerge when the state of the system at the n+1-th
step is plotted against the state at the n-th step. In our case, the n-th step coincides with the
removal of the n-th node in the removal list. The shape of the resulting attractor provides a
strong characterization of the system and its robustness.

3.5 Understanding the models 96

3.5.3 Dismantling of configuration model rewired networks

We investigate further if the model is learning correlations among node features by
dismantling the configuration model rewirings4 of the networks in our test set. If that is the
case, the dismantling power of our approach on the rewirings should be heavily affected.
In Figure 3.21 we show, for each network, the dismantling of 1000 configuration models
and also the original instance as comparison. In all the tested networks, there is a severe
performance drop. For instance, in Figures 3.21b it takes just ∼ 35 removals to dismantle the
original instance of the Moreno crime network, while the LCC size of the rewired networks
after the same number of removals is still very large (i.e., ∼ 95%). This result confirms our
insight. That is, existing topological correlations are learned and, consequently, exploited by
the machine.

4The configuration model of a network keeps the observed connectivity distribution while destroying
topological correlations, meaning that feature correlations are lost.

3.5 Understanding the models 97

(a) arenas-meta network (b) Moreno crime network

(c) opsahl-openflights network (d) route-views network

Fig. 3.21 Dismantling of configuration model rewirings (light blue, 1000 per network)
and of the original networks (dark blue).

3.6 Computational complexity 98

3.6 Computational complexity

The computational complexity of our approach mainly depends on two elements: 1) the
computational complexity of the node features used and 2) the computational complexity of
the convolutional-style layers in the model. In particular, the convolutional-style layers that
we employ, i.e., the Graph Attention Networks, scale as O(N +E) where N is the number of
nodes and E is the number of edges in the network. Considering that real-world networks are
usually sparse, we assume that O(E)≈ O(N), so O(N +E)≈ O(N), and the computational
complexity of our approach is the maximum between this and the computational complexity
of the features. Given that, the most expensive feature we compute in our experiments is
the k–coreness, that is O(N +E), so the computational complexity of the approach detailed
above is O(N). For what concerns the computational complexity of the brute-force performed
during the training set generation, it is irrelevant as it is a highly parallelizable one-time task
that is performed on very small networks. Moreover, since the neural models can generalize,
there is no need to train them for each dismantling, and the actual time spent training is
negligible.

3.7 Discussion

Our results show that using machine learning to learn network dismantling comes with a
series of advantages. While the ultimate theoretical framework is still missing, our framework
allows one to learn directly from the data, at variance with traditional approaches which rely
on the definition of new heuristics, metrics or algorithms. An important advantage of our
method, typical of data-driven modeling, is that it can be further improved by simply retuning
the parameters of the underlying model and training again: conversely, existing approaches
require the (re)definition of heuristics and algorithms which are more demanding in terms
of human efforts. Remarkably, the computational complexity of dismantling networks with
our framework is considerably low: just O(N +E), where N is system’s size and E the
number of connections — which drops to O(N) for sparse networks (for more information
about the computational complexity, see Section 3.6). This feature allows for applications
to systems consisting of millions of nodes while keeping excellent performance in terms
of computing time and accuracy. We also provide deep-insights about the models that
should help to understand the power of Geometric Deep Learning. Last but not least, from a
methodological perspective, it is worth remarking that our framework is general enough to
be adapted and applied to other interesting NP-hard problems on networks, opening the door

3.8 Dataset 99

for new opportunities and promising research directions in complexity science, together with
very recent results employing machine learning, for instance, to predict extreme events [220].

The impact of our results is broad. On the one hand, we provide a framework5 which
disintegrates real systems more efficiently and faster than state-of-the-art approaches: for
instance, applications to covert networks might allow to hinder communications and infor-
mation exchange between harmful individuals. On the other hand, we provide a quantitative
descriptor of damage which is more predictive than existing ones, such as the size of the
largest connected component: our measure allows to estimate the potential system’s collapse
due to subsequent damages, providing policy and decision makers with a quantitative early-
warning signal for triggering a timely response to systemic emergencies in water management
systems, power grids, communication and public transportation networks.

3.8 Dataset

In Table 3.5 we list the test networks used in our experiments with their category and size
(number of nodes and edges). Those networks model systems from various domains (e.g.,
biological, infrastructure and social data and so on), and range from a few hundred of nodes
to more than one million. For more about each network, we refer the Reader to the original
source.

5The code of our framework is available on GitHub at https://github.com/NetworkScienceLab/GDM and on
Zenodo at https://doi.org/10.5281/zenodo.5105911 [221]

3.8 Dataset 100

Network Name Category |N| |E| References

ARK201012_LCC CAIDA ARK (Dec 2010) (LCC) Infrastructure 29.3K 78.1K [222]
advogato Advogato trust network Social 6.5K 43.3K [223, 224]
arenas-meta C. elegans Metabolic 453 2.0K [225, 226]
cfinder-google Google.com internal Hyperlink 15.8K 149.5K [227, 228]
citeseer CiteSeer Citation 384.4K 1.7M [229, 230]
com-dblp DBLP co-authorship Coauthorship 317.1K 1.0M [231, 232]
corruption Corruption Scandals Social 309 3.3K [218]
dblp-cite DBLP citation Citation 12.6K 49.6K [233, 234]
digg-friends Digg friends Social 279.6K 1.5M [235, 236]
dimacs10-celegansneural C. elegans (neural) Neural 297 2.1K [237, 48, 238]
dimacs10-polblogs Political blogs (LCC) Hyperlink 1.2K 16.7K [239, 240]
douban Douban social network Social 154.9K 327.2K [241, 242]
econ-wm1 Economic network WM1 Economic 260 2.6K [243]
ego-twitter Twitter lists Social 23.4K 32.8K [244, 245]
email-EuAll EU institution email Communication 265.2K 365.6K [246, 247]
eu-powergrid SciGRID Power Europe Power 1.5K 1.8K [248]
foodweb-baydry Florida ecosystem dry Trophic 128 2.1K [249, 250]
foodweb-baywet Florida ecosystem wet Trophic 128 2.1K [251, 250]
gridkit-eupowergrid GridKit Power Europe Power 13.8K 17.3K [252]
gridkit-north_america GridKit Power North-America Power 16.2K 20.2K [252]
hyves Hyves social network Social 1.4M 2.8M [253, 242]
inf-USAir97 US Air lines (1997) Infrastructure 332 2.1K [254, 243, 255]
internet-topology Internet (AS) topology Infrastructure 34.8K 107.7K [256, 257]
librec-ciaodvd-trust CiaoDVD trust network Social 4.7K 33.1K [258, 259]
librec-filmtrust-trust FilmTrust trust network Social 874 1.3K [260, 261]
linux Linux source code files Software 30.8K 213.7K [262]
loc-brightkite Brightkite friendships Social 58.2K 214.1K [263, 264]
loc-gowalla Gowalla friendships Social 196.6K 950.3K [265, 264]
london_transport_multiplex_aggr Aggregated London Transportation network Transport 369 430 [266]
maayan-Stelzl Human protein (Stelzl) Metabolic 1.7K 3.2K [267, 268]
maayan-figeys Human protein (Figeys) Metabolic 2.2K 6.4K [269, 270]
maayan-foodweb Little Rock Lake food web Trophic 183 2.5K [271, 272]
maayan-vidal Human protein (Vidal) Metabolic 3.1K 6.7K [273, 274]
moreno_crime_projected Crime (projection) Social 754 2.1K [275]
moreno_propro Protein Metabolic 1.9K 2.3K [276–279]
moreno_train Train bombing terrorist contacts Human contact 64 243 [280, 281]
munmun_digg_reply_LCC Digg social network replies (LCC) Communication 29.7K 84.8K [282, 283]
munmun_twitter_social Twitter follows (ICWSM) Social 465.0K 833.5K [284, 285]
opsahl-openflights OpenFlights Infrastructure 2.9K 15.7K [286, 287]
opsahl-powergrid US power grid Infrastructure 4.9K 6.6K [288, 48]
opsahl-ucsocial UC Irvine messages Communication 1.9K 13.8K [289, 290]
oregon2_010526 Autonomous systems Oregon-2 Infrastructure 11.5K 32.7K [291]
p2p-Gnutella06 Gnutella P2P, August 8 2002 Computer 8.7K 31.5K [292, 293]
p2p-Gnutella31 Gnutella P2P, August 31 2002 Computer 62.6K 147.9K [294, 292]
pajek-erdos Erdős co-authorship network Coauthorship 6.9K 11.8K [295, 255]
petster-catdog-household Catster/Dogster familylinks (LCC) Social 324.9K 2.6M [296]
petster-hamster Hamsterster full Social 2.4K 16.6K [297]
power-eris1176 Power network problem Power 1.2K 9.9K [243]
roads-california California Road Network Infrastructure 21.0K 21.7K [298]
roads-northamerica North-America Road Network Infrastructure 175.8K 179.1K [299]
roads-sanfrancisco San Francisco Road Network Infrastructure 175.0K 221.8K [300]
route-views Autonomous systems AS-733 Infrastructure 6.5K 13.9K [301, 247]
slashdot-threads Slashdot threads Communication 51.1K 117.4K [302, 303]
slashdot-zoo Slashdot Zoo Social 79.1K 467.7K [304, 305]
subelj_jdk JDK dependency network Software 6.4K 53.7K [306]
subelj_jung-j JUNG and Javax dependency network Software 6.1K 50.3K [307, 308]
tech-RL-caida Internet router network Infrastructure 190.9K 607.6K [243]
twitter_LCC Twitter users (LCC) Social 532.3K 694.6K [202]
web-EPA Pages linking to epa.gov Hyperlink 4.3K 8.9K [309, 243]
web-NotreDame Notre Dame web pages Hyperlink 325.7K 1.1M [310, 69]
web-Stanford Stanford University web pages Hyperlink 281.9K 2M [311, 312]
web-webbase-2001 Web network Hyperlink 16.1K 25.6K [313, 314, 243]
wikipedia_link_kn Wikipedia links (KN) Hyperlink 29.5K 278.7K [315]
wikipedia_link_li Wikipedia links (LI) Hyperlink 49.1K 294.3K [316]
wordnet-words WordNet lexical network Lexical 146.0K 657.0K [317, 318]

Table 3.5 The networks used to evaluate our approach. For each network, we report the name,
the number of nodes and edges, the category it belongs to and some references.

3.9 Test environment 101

3.9 Test environment

Here we detail the environment where our experiments were performed and the tools
used.

All experiments ran on a shared machine equipped with two Intel Xenon E5-2620 CPUs,
128GB RAM and a two core nVidia Tesla K80 (with 12GB VRAM each). More details about
the drivers used and the full package dependency list of our code can be found in the code
package.

Concerning the other algorithms used in our comparison (i.e., GND, EGND MS, CoreHD
and EI), we use authors’ official code with default parameters. Specifically, we use identity
weight input matrix for both GND and EGND (and the relative fine-tuning algorithm), 1K
trials for the EGND.

3.10 Appendix: Network Dismantling exploiting network
geometry

In this Section we briefly introduce the preliminary research conducted during my remote
internship at the Center for Complex Network Intelligence (CCNI) at Tsinghua University,
Beijing, China, with the additional supervision of Dr. Carlo Vittorio Cannistraci, the Director
of the Center.

3.10.1 Introduction

In the previous Sections we outlined how Geometric Deep Learning can be used to
learn the problem of dismantling complex systems. In particular, after demonstrating the
dismantling performance on empirical complex systems, we showed in Section 3.5 that the
models are first identifying as high-priority targets those nodes that bridge between clusters.
That is, removing particular bridge nodes is a viable strategy to deal high damage to the
target system.

During my internship, we aimed at exploiting this insight to design a non-learnable
algorithm to identify such nodes. Specifically, the idea is to leverage the Repulsion-Attraction
(RA) algorithms [319], that assign an edge weight using the local information about its
adjacent nodes, to produce node scores based on network geometry and to remove nodes
according to such score.

3.10 Appendix: Network Dismantling exploiting network geometry 102

3.10.2 Formulation and Preliminary results

We employ a variant of the Repulsion-Attraction (RA1) score, formally defined as in
equation 3.3 [319], that has motivations rooted in the theory of navigability [320] and uses
local topological information about the adjacent node’s neighborhoods to assign a weight
RA1

L2 to each edge. More in detail, the RA1
L2(i, j) of edge between nodes i and j accounts

for the number of external nodes (i.e., those nodes that do not belong to the common
neighborhood of the adjacent nodes), and for the common neighbors. The former contribute
to the repulsion term, and the latter to the attraction one.

RA1
L2(i, j) =

1+ eRA1L2(i, j)
1+ |CN2i j|

(3.3)

where eRA1L2(i, j) = |E2i j|+ |E2 ji| with E2i j = Ni −CN2i j, CN2i j being the external
neighborhood of i with j.

The RA values are then aggregated at node-level using two different functions (sum and
max) to get a score that can be used to rank the nodes, and define:

RA1
L2Sum(i) =

Ni

∑
j

RA1
L2(i, j) (3.4)

RA1
L2Max(i) =

Nimax
j

RA1
L2(i, j) (3.5)

In addition, we also extend the RA formulation to consider the L3 (2-hop) neighborhood
of each node.

We validate these heuristics on 23 of the networks used to benchmark GDM and detailed
in Section 3.8, and report the preliminary results in Table 3.6. More in detail, while, on
average, the RAs do not outperform GDM, it is interesting to note that some formulations do
with a significant margin in some networks (e.g., RA1 L3 Sum scores almost ∼ 10% less
AUC in the librec-filmtrust-trust network). These promising results suggest that there is a
margin of improvement, for instance by attacking the k–core of the network or by removing
only nodes that belong to the Largest Connected Component of the network.

3.10 Appendix: Network Dismantling exploiting network geometry 103

Heuristic GDM RA1 L2 Sum (D) RA1 L3 Sum (D) RA1 L2 Max (D) RA1 L3 Max (D)

arenas-meta 100 102.2 204.2 122.1 208.8
corruption 100 141.8 497.8 626.9 785.7
de-powergrid 100 150.4 119.9 152.8 175.1
dimacs10-celegansneural 100 99.2 105.3 122.9 125.6
dimacs10-polblogs 100 98.7 94.5 111.6 110.3
econ-wm1 100 104.4 105.7 115.8 115.7
eu-powergrid 100 154.1 125.2 140.1 158.8
foodweb-baydry 100 97.7 99.2 118.1 118.9
foodweb-baywet 100 98.9 101.2 121.1 122.2
inf-USAir97 100 113.1 107.6 111.8 125.5
librec-filmtrust-trust 100 92.5 90.7 128.8 125.9
london_transport_multiplex_aggr 100 109.1 106.2 140.6 141.1
maayan-foodweb 100 113.3 113.3 206.7 170.8
maayan-vidal 100 108.8 96.3 161.4 116.3
moreno_crime_projected 100 137.4 134.4 272.8 325.4
moreno_propro 100 109.3 105.6 135.4 124.3
moreno_train 100 107.7 99.1 157.4 158.4
opsahl-openflights 100 122.1 104.2 134.4 119.7
opsahl-powergrid 100 130.6 129.8 157.6 167.3
opsahl-ucsocial 100 98.1 95.4 108.3 120
petster-hamster 100 90.1 110.1 105.4 133.9
power-eris1176 100 150.9 472 370.9 349.6
web-EPA 100 101.2 97.9 115.5 115.1

Average 100 114.4 144.2 171.2 183.2

Table 3.6 Preliminary Repulsion-Attraction (RA) results. The Table shows the preliminary
results on a sub-set of 23 real-world networks.

Chapter 4

Learning the Link Building Problem

4.1 Introduction

The increased computational capabilities opened new frontiers to the study of large
scale phenomena and also allows researchers to adopt a different point of view to analyze
traditional problems. From this perspective, the use of network representation to model
interactions among several entities has quickly grown [321], and helps in understanding and
managing different types of network-based phenomena, as in computer communications,
transport infrastructures, online social systems, metabolic reactions, financial markets and
many others [322].

In many of these application scenarios, an important question is how to assess the
importance of a node or, in other words, how to define a measure of its centrality. The
definition of centrality measures is an important topic in the field of network research due to
its various theoretical and practical implications. There are different measures of centrality
depending on the point of view, the context and the meaning of importance that we want
to attribute to a node [323]. For instance, if we are looking for brokers then betweenness
centrality [52, 324] could be the best metric, whereas if the target is prestige the in-degree
can be used, while out-degree is a good metric for activity. The eigenvector-based approach
PageRank [57] is a widely used metric for powerful collaborative partners centrality [325].

In general, all the centrality measures try to answer to the following basic question: how
to rank the nodes (whatever the node represents) according to their position in the network?
When rank is used, regardless of the reason, the improvement of the position is also a topic
of large interest. In fact, a better positioning of the node in the network, with respect to a
specific centrality metric, corresponds to a greater importance of the node in the modeled
system, which translates, in many real-world contexts, into some form of advantage over the
other nodes.

4.1 Introduction 105

For example, Google used to rank the web pages via the PageRank metric to determine
the order in which the results of a search were displayed. In a social context, the centrality of
a node can be used to determine the ability of a person to influence others with their own
opinions. In the international trade exchanges, a country that is more central than others
plays a role of strategic importance in the market. It is therefore natural that in some contexts
a node (i.e., the entity behind that it models) wants to increase its rank.

In general, rank improvement strongly depends on the metric behind the ranking and
usually comes with a significant cost (e.g., time spent, money, etc.) that depends on many
factors, so the question of what strategy a node should use to improve its rank arises. For
example, in a social network, one might think of improving the rank of a given person by
establishing new relationships (links) with other people (nodes). But then, two other questions
would follow: "who is it better to establish new relationships with?" and "how many new
relationships are needed to reach a given (target) rank?". The answer to these questions is
not trivial and requires the formulation of a solution that involves cost optimization, which is,
in some cases, computationally expensive.

Several studies [326–331] focused on the improvement of the PageRank value of nodes
when it is employed for the ranking, which is common in the trust context, by creating new
incoming links.

Such problem, also known as Link Building problem or Back-link problem, has been
initially formulated by Olsen in [331]. Informally, given a node x and a rank goal t, it consists
in finding the minimum set S of nodes of the network such that if we establish new links from
these nodes to x its rank improves to the t-th position. A brute force approach that evaluates
all the possible subsets of network’s nodes and selects the smaller one is computationally
expensive and practically unfeasible even for small networks (as will be detailed later). In
fact, it has been show in [330] that the link building problem is NP–hard.

To tackle this problem, several heuristics that exploit domain knowledge to produce
sub-optimal but acceptable solutions have been proposed. However, there is still plenty of
room for improvement as most of them are far from optimal and still are computationally
expensive. We refer the Reader to [326] for a survey.

In this work, we present a novel approach named LB–GDM (Link Building solution based
on GDM) that is based on Machine Learning — specifically on Geometric Deep Learning,
the new research area that bridges Deep Learning and non-Euclidean data [332] — and that
is inspired to the GDM framework, proposed in [1] to solve the network dismantling problem
and discussed in Chapter 3. In particular, we employ the Graph Attention Network [164]
layers, whose capabilities have been extensively demonstrated in the literature [333]. One of

4.2 Related Works 106

the most important advantages of our method is that it scales well even to large networks
thanks to its very low computational complexity.

The contribution of this work is not limited to a novel solution for the link building
problem, as the proposed methodology can be easily extended to other similar problems,
such as those involving other centrality metrics.

To validate our proposal, we tested it to 19 real-world networks and analyzed the results
in terms of performance, finding that our approach performs significantly better than the
state-of-the-art heuristics while its computational complexity is comparable or even lower.

The following sections are organized as in the following. Section 4.2 discusses the state-
of-the-art concerning the link building problem, while Section 4.3 formally introduces the
problem. We describe our proposed method, how it works and its computational complexity
in Section 4.4, whereas Section 4.5 illustrates the real-world networks used as test sets, the
experiments carried out with such datasets, and the results.

4.2 Related Works

The basic idea of in-linking dates back to the PageRank algorithm [57], introduced in
1998 by Google’s founders Larry Page and Sergey Brin to assess the relevance P of a web
page by exploiting links towards it coming from other pages, and still inspiring Google
search engine [58]. Google itself describes the algorithm in [334] as follows: PageRank
works by counting the number and quality of links to a page to determine a rough estimate of
how important the website is. The underlying assumption is that more important websites
are likely to receive more links from other websites.

Many studies on PageRank exist, dealing with its computational issues or limitations [335–
339] or aiming at introducing variations (optimizations or extensions) to the original for-
mula [340–342, 327]. PageRank is still an important metrics that is currently applied in
various areas related to document search, such as:

• In web search, to display pages that are relevant to a query issued by users [343];

• In the implementation of the Who to follow service in Twitter [344], based on shared
interests and common connections;

• In E-learning scenarios, to select useful resources in specific topics [345, 346];

• In cars and humans traffic prediction, through public streets and places ranking [347];

• In a recommendation network, to suggest reliable entities to interact with [348, 349].

4.2 Related Works 107

In [350], authors discuss other several domains — from chemistry to sports, literature,
neuroscience and others — where PageRank is employed.

Avrachenkov and Litvak [351] study the effect of PageRank when a given page establishes
one or more links to other pages and propose a strategy for an optimal linking acquisition.
They also discuss the impact of back-links modification in some real application such as the
Google ranking of Web pages.

Olsen and other [331, 352] formalize the problem of link building process, study its
complexity and discuss the impact of the topology of the graph on the choice of potential new
back-links. Specifically they find that link building is W[1]-hard. Furthermore, they show
that this problem is in the class of NP optimization problems that allow polynomial-time
approximation algorithms with approximation ratio bounded by a constant. In [330] the
authors highlight that the problem is NP-hard if k is part of the input and present some
algorithms for simple cases.

In a preliminary work [353], we introduce the problem for a new node to achieve the
highest rank possible first establishing the desired rank value and assigning a budget to limit
the cost while increasing the rank. The process involves two stages: first the node establishes
a certain number of trust links with other existing nodes in order to get trusted (therefore
improving its rank), then it tries to increase the rank keeping the cost below the budget as
low as possible. However, a couple of questions arise:

• Which new nodes should it connect to?

• Should it preserve existing trust links or not?

• What are costs associated with these actions?

In [353, 354] some heuristics to solve back-link problem are discussed and a solution whose
complexity is O(|V | · log |V |) is proposed (where |V | is the number of nodes in a network).
Furthermore, the paper presents some results from simulation on random and scale-free
networks which highlight that better rank improvement comes by acquiring long distance
in-links whilst human intuition would suggest selecting neighbors.

In [327] several heuristics to address the back-link are proposed and compared performing
simulations on Scale-Free and Erdős-Rényi networks. The results underline that the long-
distance link approach achieves the best trade-off between cost and increase of rank.

4.3 Background and formulation 108

4.3 Background and formulation

In this section we first recall the PageRank formulation, then we formalize the link-
building problem, and finally we briefly describe some heuristics and their computational
complexity.

4.3.1 PageRank

In this section we outline the basics of PageRank algorithm [57].
In general, PageRank can be considered a centrality measure used to score entities in a

network. It assumes that a network is described as a graph [338, 355, 356] where the nodes
model entities (e.g., agents, people, devices, resources and so on) and the directed links
represent relationships between nodes (e.g., trustworthiness in a social network, or hyperlink
in the web). To assign a score to each network’s node, the PageRank employs a random
walker that represents a web surfer. The surfer moves from a page to another by selecting one
of its out-going links randomly: each link of a web page (the node) has the same probability
1/kout of being followed, where kout is the out-degree (the number of out-going links of the
node). That is, the probability distribution is uniform. However, to cope with the problem of
the so-called sink nodes [57] — i.e. those nodes with no out-going links that would trap the
random walker — at each step the random walker also has a chance of jumping to a random
node (that is, it does not follow any out-link).

To formalize such behavior, let us consider a network represented as a graph G = (V,E)
where V is the set of nodes (or vertices) and E are the directed links (edges) among nodes.
The number of nodes in the graph is n = |V | while the number of links is e = |E|. A link ei j

from a node i to a node j is represented by an ordered couple (i, j) ∈ E.
A common and useful way to represent a graph is through its adjacency matrix A (of

n×n size), where each Ai j is 1 if there is a link going from node i to node j and 0 otherwise.
We also identify with N in

i the in–neighborhood of the node i, i.e. the set of nodes
N in

i = { j ∈V : ∃(j, i) ∈ E}, and with N out
i the out–neighborhood of i, i.e. the set of nodes

N out
i = { j ∈V : ∃(i, j) ∈ E}. In the following we indicate with kin

i and kout
i respectively the

input and out degree of a generic node i, i.e. the number of links incoming/outgoing to/from
i.

Formally:
kin

i = ∑
j∈N in

i

A ji kout
i = ∑

j∈N out
i

Ai j (4.1)

4.3 Background and formulation 109

Let us introduce the link matrix L (n×n) defined as:

Li j =

⎧⎨⎩1/kout
i if Ai j ̸= 0

0 otherwise
(4.2)

The sink vector H (n×1) is defined as:

Hi =

⎧⎨⎩1 if kout
i = 0

0 otherwise
(4.3)

K is the personalization vector of size 1×n. While this vector can be arbitrarily chosen
as long as it is stochastic, a common choice is to make its values all equal to N−1. T = 1n×1

is the teleportation vector, where each element is 1.
As described in [57], the transition matrix M, used in the associated random walker

problem, is derived from the link matrix, the sinks vector, the teleportation vector and the
personalization vector defined above:

M = d(L+HK)+(1−d)T K (4.4)

where d ∈ [0,1] is called damping factor and, in the original implementation [57], it is set to
0.85.

The random surfer model of the PageRank can be mapped to a Markov chain in which
the states are the networks’ nodes and the transitions are the links between nodes. As we
know from the Markov chain theory, the random walk probability vector at step n can be
calculated as:

Pn = M⊤Pn−1 (4.5)

the related random walker problem can be calculated as:

P =
(︂

lim
n→∞

Mn
)︂⊤

P0 = lim
n→∞

(M⊤)nP0 = M⊤
∞ P0 (4.6)

Each element P(i) of the probability vector is the PageRank value of a node i, whose
interpretation is ’the probability for the random surfer of being at a node at any given point
in time during the walk’.

The semantics is that the PageRank algorithm will assign high PageRank values to nodes
that would appear more often in a random surfer walk, i.e. nodes with high PageRank are

4.3 Background and formulation 110

relevant nodes that will be more visited by surfers and this ranking came from the link
structure of the graph.

Finally, in the following we assign the nodes a rank according to the decreasing value of
PageRank, so that the node with the highest value of PageRank in graph G is the first in the
rank. We indicate with R(i)

G the position of the node i in such a list (e.g. R(i)
G = 1 if node i has

the highest value of PageRank in the graph G).

4.3.2 The link building problem

The PageRank value of a node in a network depends on the nodes it is connected to.
This means that a node x joining the network G can firstly choose its rank t by appropriately
selecting the set of nodes in the network to be pointed by (i.e. its in-neighborhood N in

x).
As discussed in the previous sections, each link comes with a cost and ideally the in-
neighborhood of x should be the minimum necessary to reach the rank t in order to keep the
cost as low as possible.

The link building (or best in–attachment) problem can be formulated as the problem of
finding the minimum set of nodes S — also called optimal in-attachment set — such that the
R(x)

G ′ = t if we connect nodes in S to x. G ′ = (V ∪{x},E ∪ (S×{x})) is the graph obtained
by adding the set of s = |S| directed links from nodes in S to the node x.

Essentially, we establish s new links from the nodes in S in order to have x’s rank value
equal to t. More formally S is the minimum set such that:

S ⊆V : R(x)
G ′ = t (4.7)

The link building is an NP-hard problem [329], and, in general, it is computationally
challenging to explore all the possible combinations of nodes in order to find the minimum
set S. In fact, to compute the best rank of x with s nodes, we need to explore

(︁n
s

)︁
combinations.

Note that for each combination we need: 1) to compute the PageRank values of all network’s
nodes and 2) to sort nodes according to the decreasing value of PageRank. Moreover, given a
target rank t, we don’t know a-priori the minimum number of in-neighborhood nodes (i.e.
the cardinality s of S) so that x rank R(x)

G ′ = t. For this reason it may be necessary to explore
2n combinations in the worst case, which makes the computation of the optimal solution in
real-life scenarios unfeasible. For instance, a network with only 100 nodes needs more than
1030 computations of the PageRank in the worst case. Due to these computational issues, it
is necessary to find an approximation algorithm to choose a solution acceptably close to the
optimum in a polynomial time.

4.3 Background and formulation 111

4.3.3 State-of-the-art heuristics

In this sub-section we provide an overview of the state-of-the-art heuristics in the litera-
ture [357, 358, 327, 353]. We also report the computational complexity of these heuristics,
which often depends on the number of attachments s needed to reach the desired target. For
a more in-depth analysis, we refer the Reader to the original works referenced.

The link-building heuristics can be divided in problem-agnostic and problem-aware
strategies.

4.3.3.1 Problem-agnostic strategies

Heuristics that do not exploit any problem-specific knowledge belong to this category,
for instance:

• Random. Randomly choose the nodes to get in-links from. This approach is, of course,
computationally inexpensive and its computational complexity only depends on the
number of steps s needed to converge, i.e., it is (O(s)).

• Degree based. Nodes are chosen according to their in-degree (In Degree) or out-degree
(Out Degree), or even a combination of the two. This family of strategies is O(|E|),
where |E| is the number of edges in the network.

• Long-distance based. Nodes farther from the newcomer x are chosen first [327]. If
classic Dijkstra’s algorithm with Fibonacci heap is used, this approach is:

O(|V | · log(|V |) + |E|)

where |V | is the number of nodes in the network.

4.3.3.2 Problem-aware strategies

These heuristics exploit specific information, e.g., focusing on the node metric used
for ranking; while these strategies tend to achieve better results, they usually have higher
computational complexity. For instance, the classical link building problem using PageRank
has a final computational complexity with a multiplicative factor of O(PR), where:

O(PR) = O(|V |3)

4.3 Background and formulation 112

if the exact Gauss method is used, or, using the approximated power method:

O(PR) = m |E|

where m is the number of iterations needed to get a good approximation.
The problem-aware strategies are introduced in the following.

• Anticipated Value. This static strategy computes the value of the PageRank used for the
ranking at the beginning of the link-building process and picks nodes with higher value
first. The PageRank values are not recomputed during the process. Its computational
complexity is:

O(AnticipatedValue) = O(PR)

• Current Rank. Dynamic version of the Anticipated Value heuristic. That is, predictions
are computed before any attachment. The computational complexity is:

O(CurrentRank) = O(s) ·O(AnticipatedValue)

• Anticipated Out-degree. Similar to the Anticipated Value but the ratio between the
node centrality metric and the out-degree is used. This heuristic is tailored for the
PageRank algorithm as nodes with higher rank value and lower degree are supposed to
transfer most of the centrality value. Its computational complexity is:

O(AnticipatedOutDegree) = O(s) ·O(PR)

• Future Rank. This strategy moves across local maxima by picking at each attachment
step the node that provides the target node x with the maximum PageRank value. The
computational complexity of this algorithm is:

O(FutureRank) = O(s) ·O(|V |) ·O(PR)

which makes this heuristic feasible for small networks only.

Table 4.1 summarizes the previously discussed heuristics and their complexity.

4.4 LB–GDM 113

Strategy Name Complexity

Problem-agnostic
Random O(s)
Degree based (In- & Out-) O(|E|)
Long distance O(|V | · log(|V |) + |E|)

Problem-aware

Anticipated Value O(PR)
Current Rank O(s) ·O(PR)
Anticipated Out-degree O(s) ·O(PR)
Future Rank O(s) ·O(|V |) ·O(PR)

Table 4.1 Summary of heuristics and their computational complexity.

4.4 LB–GDM

In this section we describe our method, how it works, its computational complexity, the
model architecture, the node features used, and the training data.

4.4.1 Model architecture and complexity

In this work we adopt the same architecture as the one proposed for GDM [1] in Chapter 3.
Specifically, the proposed architecture, summarized in Fig. 4.1a, is a stack of a variable
number of graph convolutional layers — specifically Graph Attention Network (GAT) [164]
layers — and a Multi-Layer Perceptron (MLP) that performs regression and outputs the
prediction value pn for each node n. Each convolutional layer is coupled with a linear layer
that works as a residual connection (i.e., the input to the layer is fed to both and then outputs
are sum together) and the Exponential Linear Unit (ELU) activation function is applied to
the output. After the regression phase we use a sigmoid activation function so that the pn

values are in the [0,1] range. The model parameters can be found in Section 4.6.
As already discussed for GDM in Section 3.2.1, the choice of the Graph Attention

Network layers comes with a number of advantages:

• They process the whole neighborhood of each node, effectively aggregating the local
information using the so-called heads, while many graph convolutional layers perform
sampling;

• They learn and assign a relative-importance value to each neighboring node thanks to
the attention mechanism borrowed from Natural Language Processing area and used
to scale the features incoming from that node;

4.4 LB–GDM 114

• Like the multiple filters in the classical convolution network, the aggregation phase
can be performed multiple times and the results are concatenated or sum together;

• They scale well, considering their low computational complexity — O(GAT) =
O(h(|V |+ |E|)) where |V | and |E| are the number of nodes and links in the net-
work and h is the number of heads —, because the number of operations carried out by
the convolution operator depends on the number of links in the network.

Regarding the node features, we employ computationally cheap node features for each
node as we extend the ones used in GDM [1] to the case of directed networks, and do not
recompute the features or the predictions during the link-building process. Specifically, we
use the in- and out- degree, K–Core and local-clustering coefficient. These features are both
local (the degrees), second-order (the clustering coefficient) and global (the k-coreness), and
provide useful information when propagated to the L-hops neighbors. More in detail, for
each node i ∈V , we compute each feature as follows:

• The in- and out- degree of i, kin
i and kout

i , are computed as in the equation 4.1;

• The local-cluster coefficient of i is computed by using the definition given in [22]:

Ci =
number of triangles connected to vertex i

number of triples centered on vertex i

informally it quantifies how close is the neighborhood of i to being a clique (i.e. a
complete sub-graph);

• Given a graph G , a k–core is a maximal connected sub-graph of G in which all vertices
have degree at least k [359], the k–coreness of a vertex i is k if it belongs to a k–core
but not to a (k+1)–core.

The computational complexity of our approach depends on the graph-convolutional
network layers used and on the input features computed during the pre-processing phase:

O(LB-GDM)≈ max{O(GAT), O(Features)}

The node features are:

O(Features)≈ max{O(Features)}= O(K−Core) (4.8)

where

O(K-Core) = O(|V |+ |E|) (4.9)

4.4 LB–GDM 115

Summing up, the total time complexity of LB–GDM is:

O(LB-GDM)≈ O(h(|V |+ |E|))

which can be approximated to O(|E|) or to O(|V |) for sparse networks, considering the low
number of heads h used.

4.4.2 Training and Generalization

The graph convolutional network layers show remarkable inductive capabilities, can
learn from very small networks (e.g. tens of nodes) and generalize to way larger ones (even
millions of nodes) [146]. For this reason, we build the training set from small synthetic
networks generated using the Static Power law model. More in detail, we generate 100
networks of 20 nodes and 100 links each, with different in- and out- degree distribution
combinations (2.0 ≤ γ in,γout ≤ 3.0) [360]. In Fig. 4.1b the train set generation and the
training phases are shown.

In particular, nodes in the train networks are assigned a learning target value that depends
on their belonging to any optimal set S for that network, i.e., to the sets of minimum
cardinality that grant the target rank t = 1. Specifically, each node i of the train networks
has a label value yi = Si/St , where St and Si are, respectively, the total number of optimal
sets and the number of those sets i belongs to. That is, yi ∈ [0,1]. This training target aims at
teaching the model what nodes are more relevant to reach the top rank position.

After training the model, it can generalize to new networks providing a score for each
node. In detail, given a network, the link-building process with our approach, depicted in
Fig. 4.1c, consists of getting the node predictions pi (i.e., computing the node features and
feeding the network plus the features to the model), sorting the nodes in descending pi order
and creating a link from the nodes on the top to the target node x until the in-attachment
target rank is reached.

4.4 LB–GDM 116

(a) LB-GDM’s model architecture. Our Geometric Deep Learning model architecture as K graph
convolutional layers (specifically, Graph Attention Network, GAT) coupled with a linear layer each
— used as residual connections, not shown in the figure for sake of simplicity — followed by a
Multi-layer Perceptron (MLP) and a sigmoid activation function that perform regression on the nodes
and return, for each, a value between 0 and 1. The model takes as input the network and its node
features (X), while H(k) is the tensor of nodes’ embedding for each convolutional layer k.

(b) Dataset generation and training phase. The models are trained on small synthetic networks,
where exploring all the solutions to find the optimal one(s) is feasible in reasonable time. In particular,
for the training target, we find the optimal solutions — i.e., the smallest S set(s) — that provide the
first position to a newcomer node, and assign to each node i a score pi equal to the ratio of optimal
solutions i belongs to.

(c) Generalization to new networks. After training the model, it can generalize to (previously
unseen) networks and provide a score for each node, used to rank them and build the attachment set S.

Fig. 4.1 Overview of our approach. The proposed approach consists into two phases:
dataset generation and training phase, and the generalization phase.

4.5 Experiments 117

Network Name Category |V | |E| References

advogato Advogato trust network Social 5K 47.1K [223, 224]
as-caida20040105 Internet AS Computer 16.3K 65.9K
cfinder-google Google.com internal Hyperlink 15.8K 170.3K [227, 228]
cit-HepPh arXiv hep-ph Citation 34.4K 421.4K [361, 247]
cit-HepTh arXiv hep-th Citation 27.4K 352.5K [362, 247]
dblp-cite DBLP Citation 12.5K 49.7K [233, 234]
ego-gplus Google+ (NIPS) Social 23.6K 39.2K [363, 245]
foldoc FOLDOC Hyperlink 13.4K 120.2K [364, 365]
friendfeed FriendFeed Social 5.5K 31.9K [366, 367]
moreno_blogs Political blogs Hyperlink 1.2K 19K [368, 240]
moreno_health Adolescent friendships Friendship 2.5K 13K [369, 370]
openflights OpenFlights (Patokallio) Infrastructure 3.4K 37.5K [371]
p2p-Gnutella31 Gnutella hosts (31 Aug 2002) Computer 62.6K 147.9K [294, 292]
physician_friend Physicians trust Trust 110 228 [372, 373]
soc-Epinions1 Epinions Trust 75.9K 508.8K [374, 375]
soc-sign-bitcoinotc Bitcoin OTC Trust 5.9K 35.6K [376, 377]
subelj_cora Cora Citation 23.2K 91.5K [378, 379]
twitter Twitter Social 5.6K 42.3K [366, 367]
wiki-Vote Wikipedia elections Vote 7.1K 103.7K [380, 381]

Table 4.2 Real-world test networks table.

4.5 Experiments

4.5.1 Test networks

As mentioned in the introduction, we test our proposal on 19 real-world directed networks
covering a wide spectrum of domains as social, hyperlink, citation, vote and technological
networks with up to 76K nodes and 510K edges. We provide detailed information about the
networks as name, category, number of nodes (|V |), edges (|E|), and references in Table 4.2.

4.5.2 Results

To evaluate the performance of our approach to the link-building problem, we choose the
Area Under the Curve (AUC) as it accounts for how well an heuristic performs during the
entire process, and allows for an extensive comparison on large test sets. For each heuristic
and network, we calculate the AUC value using Simpson’s rule on the y(l) = R(i)

G (l)/|V |
curve, where R(i)

G (l) is node i’s rank in function of the number of in-links created l; the lower
AUC the better (average) ranking during the in-attachment.

We test our approach on the datasets described above and stop the in-attachment when
the newcomer node x reaches the first position. The cumulative results, i.e., the sum of

4.5 Experiments 118

the AUC values of all the networks (the lower, the better), for each heuristic are shown in
Fig. 4.2 in increasing cumulative AUC order, and a subset of the attachment curves is shown
in Fig. 4.3. We also report the full results in tabular form in Table 4.3, where, in order to
facilitate the comparison, values must be interpreted as the percentage of the AUC value
scored by LB–GDM for the same network (i.e., values greater than 100 mean that LB–GDM
outperforms the heuristic and vice-versa).

Our results show that not only LB–GDM performs significantly better than the state-of-
the-art heuristics, reaching the first position with fewer links (smaller S) and achieving better
rank during the whole process, but also that its computational complexity is comparable or
even lower, as discussed in the previous sections.

According to these results, the closer heuristics are Anticipated Value and its dynamic
version Current Rank. Both score an AUC value 80% higher while requiring the computation
of the PageRank.

Regarding the Future Rank heuristic, its very high computational complexity allows only
evaluation on a subset of smaller test networks where it finishes in a reasonable time.

The comparison, available in Table 4.3, shows that LB–GDM is able to match its perfor-
mance or provide similar AUC values in many networks, and that, on average, its AUC is
just 7.0% higher, which is remarkable considering its extremely lower computational time
complexity.

The implementation of our models relies on PyTorch Geometric library [161] on-top of
PyTorch [382]. The graph data structures and their plots, the link creation algorithms and the
PageRank computation are implemented using the graph-tool [213] library.

4.5 Experiments 119

LB-GDM

Anticip
ated Value

Current Rank

In Degree

Long Dista
nce

Random

Anticip
ated Out Degree

Out Degree

Heuristic

advogato
as-caida20040105
cfinder-google
cit-HepPh
cit-HepTh
dblp-cite
ego-gplus
foldoc
friendfeed
moreno_blogs
moreno_health
openflights
p2p-Gnutella31
physician_friend
soc-Epinions1
soc-sign-bitcoinotc
subelj_cora
twitter
wiki-Vote

Fig. 4.2 Link-building in real-world networks. Per-method cumulative area under the
curve (AUC) of link-building in real-world networks. The lower, the better. The target rank
is the first position. Each value is scaled to the one of our approach (LB–GDM) for the same
network. Note that some values are clipped to 3x to improve visualization.

4.5 Experiments 120

Heuristic LB–GDM
Future

PageRank
Anticipated

Value
Current
Rank In Degree

Long
Distance Random

Anticipated
Out Degree Out Degree

Network

advogato 100.0 100.0 141.9 142.0 142.2 306.0 626.5 3438.1 3438.1
as-caida20040105 100.0 - 110.9 110.6 112.7 129.2 131.3 130.4 112.7
cfinder-google 100.0 95.8 106.3 107.5 165.6 179.5 1466.0 369.7 4079.7
cit-HepPh 100.0 99.9 99.9 99.9 100.5 248.0 498.2 1869.2 15981.1
cit-HepTh 100.0 99.4 100.3 100.2 129.9 326.8 1075.6 2530.0 13451.3
dblp-cite 100.0 100.0 100.1 100.1 100.0 208.2 128.7 712.9 2757.2
ego-gplus 100.0 100.0 100.0 100.0 100.0 216.1 100.0 1120.6 1121.4
foldoc 100.0 99.2 117.5 117.6 118.6 889.7 2377.7 1756.2 884.5
friendfeed 100.0 86.5 103.7 102.7 134.4 356.9 1150.0 1687.8 1688.3
moreno_blogs 100.0 99.5 344.6 352.7 309.0 307.3 1480.1 5188.2 4934.4
moreno_health 100.0 99.6 244.5 244.0 285.6 297.1 998.4 1140.8 1140.8
openflights 100.0 43.2 241.9 241.6 293.1 102.5 173.6 293.4 293.4
p2p-Gnutella31 100.0 100.0 100.8 100.8 100.6 170.7 127.9 473.9 2600.8
physician_friend 100.0 100.0 143.7 141.1 198.0 415.9 539.7 617.9 584.8
soc-Epinions1 100.0 - 166.7 166.8 146.9 151.8 991.8 1502.4 2864.0
soc-sign-bitcoinotc 100.0 77.1 835.3 835.6 808.2 243.5 718.2 1162.7 1152.4
subelj_cora 100.0 99.9 100.4 100.4 100.7 428.0 1011.9 676.6 5814.9
twitter 100.0 87.0 117.4 118.0 401.2 379.1 768.6 3455.7 3455.7
wiki-Vote 100.0 99.9 147.1 147.1 162.8 166.1 443.3 9011.9 8925.8

Average 100.0 93.4 180.2 180.5 205.8 290.6 779.4 1954.6 3962.2

Table 4.3 Full results table. To improve readability, for each network and method, we report
the result as the percentage of the value scored by LB–GDM for the same network. That
is, if the value is greater than 100 LB–GDM outperforms the method, and is outperformed
otherwise. Regarding the Future PageRank heuristic, two networks are omitted as the
heuristic would not complete in reasonable time (i.e., less than a week on our server-grade
hardware).

4.5 Experiments 121

(a) advogato (b) as-caida20040105

(c) cfinder-google (d) foldoc

(e) friendfeed (f) soc-Epinions

Fig. 4.3 Link-building in real-world networks. Attachment curves of the networks in our
test set. The y-axis value is the rank of the target node as a function of the number of in-links
added. LB–GDM performs better than the cutting-edge heuristics as not only it provides
better AUC (i.e., the rank is — on average — lower with the same number of new links), but
also requires fewer links to reach the target in many cases.

4.6 Model parameters 122

4.6 Model parameters

We perform a grid search to test various combination of model parameters, reported here,
and select the models that better fit the attachment target.

• Convolutional layers: Graph Attention Networks (GAT):

– Number of layers: from 1 to 4;

– Output channels for each layer: 5, 10, 20, 30, 40 or 50, sometimes with a
decreasing value between consecutive layers;

– Multi-head attentions: 1, 5, 10, 15, 20 or 30 with concatenation. Last layer’s
heads are sum together;

– Dropout probability: fixed to 0.3;

– Leaky ReLU angle of the negative slope: fixed to 0.2;

– Each layer learns an additive bias;

– Each layer is coupled with a linear layer with the same number of input and
output channels in order to create residual connections from one layer to the one
below;

– Activation function: Exponential Linear Unit (ELU). The input at each convolu-
tional layer is the sum between the output of the GAT and the linear layers;

• Regressor: Multi Layer Perceptron:

– Number of layers: from 1 to 4;

– Number of neurons per layer: 20, 30, 40, 50 or 100, sometimes with a decreasing
value between consecutive layers.

• Learning rate: fixed to 10−5;

• Epochs: we train each model for 50 epochs;

4.7 Discussion

In this work we proposed a solution to the link building problem based on Geometric
Deep Learning. Tests conducted on several real-world networks show that our low computa-
tional complexity approach outperforms the state-of-the-art algorithms, proving its validity.
Moreover, the methodology proposed is general and can be applied to other similar problems,
e.g., the ones that involve other centrality measures.

Chapter 5

mGNN: Generalizing the Graph Neural
Networks to the Multilayer Case

5.1 Introduction

Multi-layer networks are pervasive in many fields, since many empirical systems exhibit
multiple types of interactions or relationships simultaneously. This introduces a new level
of complexity and topological correlations [84] which required the development of an ad
hoc mathematical framework [80]. Moreover, as in the monoplex case, many problems on
multi-layer networks are hard to define or computationally hard to solve. But, unlike in
the case of monoplex networks, there are no Geometric Deep Learning algorithms suitable
for multi-layer networks, a significant knowledge gap in the literature considering that, as
already discussed in Section 1.1.6.2, aggregating the layers of multi-layer networks is not an
option.

In this work we propose mGNN an extension of Graph Neural Networks to deal with
multi-layer networks. Specifically, we propose a framework able to manage both the intra-
and inter–layer relations of these networks by using any kind of GNN layers. To validate
our framework, we show its application to solve three real–world problems on multi-layer
networks: nodes (genes) classification in a genetic multi-layer network related to malaria,
link prediction in a multiplex social network (FriendFeed, Twitter and YouTube users) and
multi-layer network classification in a super-diffusion [88, 383] prediction problem.

5.2 Related Works 124

5.2 Related Works

While, as discussed in the introduction, GNN layers have been widely used to solve many
important problems, they are meant to work with monoplex networks and cannot be used to
process multi-layer networks directly. Considering the importance of multi-layer networks
and ubiquity, further work is needed to overcome this limitation. In fact, in the literature there
are two prevalent ways to approach multi-layer networks with GNNs: 1. An aggregate-all
layers approach (i.e., compressing the multi-layer network in a single graph that can be feed
to a GNN). This leads to the loss of useful information of the inter-layer connections and
of the different meaning/dynamics of each layer; 2. Tailoring the approach to the specific
problem addressed, with the main limitation being the need of defining new methodology
that cannot generalize well to other problems and that does not answer the general question
of how to use GNNs in the setting of multi-layer networks.

However, some attempts in generalizing GNNs to the multi-layer case have been made,
and here we analyze the most promising ones and their limitations:

• Multi-Layered Network Embedding (MANE) by Li et al. [384]. In their work, in order
to get the multi-layer node embeddings, they optimize an objective function that is the
difference of two terms: an intra-layer term, where they optimize the embeddings of
nodes in each layer so that neighboring nodes are close to each other (that is, no input
node feature is supported) and an inter-layer term, meant to make the embeddings
of nodes in different layers close to each other if these layers depend on each other,
according to the user-defined dependencies. The main limitations of this approach are:
1. trained models do not generalize to unseen networks; 2. it does not support input node
features and the output embeddings are topology-based only; 3. the need of a custom
weight to balance the intra- and inter- layer contribution to the objective function;
4. the need of defining layer-layer dependencies; 5. the high computational complexity
(#iters ·O(N2), where #iters is the number of iterations needed for convergence).

• Semi-supervised Classification in Multi-layer Graphs with Graph Convolutional Net-
works (MGCN): in this work, Ghorbani et al. [385], propose a semi-supervised multi-
layer node embedding framework. Specifically, they employ Graph Convolutional
Networks (GCN) by Kipf et al. to process layers individually (i.e., a GCN per layer that
does not account for inter-layer connections) and get the node embeddings, which are
trained by optimizing a custom loss function composed of two parts: an unsupervised
part, used to train the GCNs by reconstructing both the intra- and the inter-layer con-
nections, and a supervised part that trains the GCNs on node classification task using
node-labels for a sub-set of nodes. The authors compare against MANE, showing

5.3 Proposed Framework 125

better performance. The most important limitations of this approach are: 1. the need of
training the GCNs to reconstruct the network, which is not useful in many tasks and
creates an overhead; 2. the node embeddings are computed on each layer independently,
thus the feature propagation happens only in the intra-layer; 3. it needs a custom loss
function for each task and to choose a custom weight to sum the two terms of the loss.

• Multi-GCN: Graph Convolutional Networks for Multi-View Networks, with Applica-
tions to Global Poverty by Raza Khan et al. [386], who focus on multiplex (multi-view)
networks by proposing a method to "fuse the multiple views of a graph". In particular,
their approach consists of three steps: they first employ sub-space analysis to merge
the layers of the network, then they identify the most informative sub-components
via a manifold ranking procedure and, finally, they feed the resulting matrix to a
Convolutional Neural Network (CNN) adapted to graph-structured data. The main
limitations are: 1. the focus on multiplex networks; 2. the large overhead to fuse the
layers and feed the result to an adapted CNN; 3. the extremely high computational
complexity (O(N3)); 4. the small performance margin over mono-plex GNNs.

5.3 Proposed Framework

In this work we propose a novel framework to generalize existing Graph Neural Networks
(GNNs) to the case of multi-layer networks. In fact, while the GNN layers have been used
successfully to tackle various network science problems, extending their application to the
multi-layer and multiplex networks is still an open research question.

Multilayer Geometric Deep Learning Model

1

Node
classification

EmbeddingMulti-layer GNN layers

. . . Graph
classification

Link
prediction

. . .

Application

Intra

...

Inter

...

K

Intra

...

AG
G

Inter

...

H(1)

Input

X1

XL

...

A
G
G

. . .
H(K)

. . .

Fig. 5.1 A Multilayer Geometric Deep Learning model example. K is the number of
convolutional layers, Xα are the input node features of layer α . The node embeddings H(K),
can be used, like in the monoplex case, in various applications.

5.3 Proposed Framework 126

Fig. 5.2 Example multilayer (multiplex) network.

Layer 1

n1,1

n2,1

n3,1

n4,1

n5,1

n6,1

Layer 2

n1,2

n2,2

n3,2

n4,2

n5,2

n6,2

Layer 3

n1,3

n2,3

n3,3

n4,3

n5,3

n6,3

Interlayer

n1,1

n2,1

n3,1

n4,1

n5,1

n6,1

n1,2

n2,2

n3,2

n4,2

n5,2

n6,2

n1,3

n2,3

n3,3

n4,3

n5,3

n6,3

(a) Step 1: (virtually) explode the network in Fig. 5.2 into layers and interlayer links. These sub-
networks will be fed to the layers along with the multilayer node features.

The framework we propose basically replaces each GNN layer with a supra-layer that
propagates the node features both in the intra-layer and in the inter-layer neighborhoods

5.3 Proposed Framework 127

(b) Step 2: Computation of multilayer node embeddings. As an example, we show the computation
of h(k+1)

11 (the embedding of node 1 of layer 1) after k+1 multiplex-convolutional layers. The intra-
and inter- graph convolutional layers work as in the monoplex case (i.e., they propagate the features
from the node’s neighborhood), but are provided the multilayer node features as input and the output
of the two is aggregated using a generic function, producing the new multilayer node embedding.

Fig. 5.3 mGNN example. How the multilayer convolutional layers work to produce the
multilayer node embeddings.

independently — using at least two different GNN layers — and then aggregates the two
output features to get the embedding of each node.

Merging the notation of the monoplex GNNs, introduced in Section 2.4.2, and the notation
of the multi-layer networks, introduced in Section 1.1.6, we indicate a node i of network layer
α with a tuple iα . Like in the monoplex GNNs, and using such notation, the supra-GNN
layer has the following form:

h(k+1)
iα = AGGk+1(h

(intra−k)
iα ,h(inter−k)

iα) (5.1)

h(0)
iα = xiα (5.2)

where h(intra−k)
iα and h(inter−k)

iα are computed independently using two different GNN model
instances, AGGk+1 is some aggregation function (e.g., sum, average, a multi-layer perceptron,
etc.) and xiα are the input features of the node i of layer α .

To illustrate the propagation performed by a Graph Neural Network extended to the
multilayer case with our framework, we show one of the steps (performed iteratively) of
node n1,1 of the network in Fig. 5.2. Specifically, a multi-layer network with L layers is first
(virtually) exploded into L+ 1 graphs — where the first L are the layers and the L+ 1-th

5.3 Proposed Framework 128

is the inter-layer network, which connects the nodes of different layers in the multi-layer
network and depends on the network type itself —. For instance, if the network is a multiplex,
the inter-layer is a network where all the replicas of a node (i.e., the niα ∀α) are connected
in a clique (i.e., the sub-graph is fully-connected), or, if the network is a multi-layer, the
inter-layer connections are the natural connections among the nodes. After exploding the
network and building the (arbitrary) inter-layer graph, node n1,1’s embedding after k+ 1
multi-convolutional layers, h(k+1)

1,1 , are computed as the aggregation (performed by a generic

and, possibly, learned AGG function), of its intra- and inter-layer embeddings, h(intra−k)
1,1 and

h(inter−k)
1,1 respectively, which are, in turn, computed using two different GNN layers that

work independently but that use h(k)
1,1, the multi-layer features from the layer k.

The node embeddings H(k) produced by the supra-layers of the proposed framework
(i.e., the features of nodes/replicas) can be then used as common in the monoplex case. For
instance, they can be fed to a Multi-Layer Perceptron (MLP) for regression or classification,
or to a pooling layer to perform layer or graph classification. As an example, if one is
interested in node classification in a multiplex setting, the embedding of the replicas can be
aggregated using some generic function ReplicaAGG as follows:

rn = ReplicaAGG({h(k)
nα , ∀ α ∈ L}) (5.3)

rn is now the node embedding (i.e., it accounts for all the replicas of node n) and can be
used for classifying the node.

Such framework has the advantage of decoupling the inter- and intra- layer propagation
by learning two sets of GNN parameters, enabling the model to learn the different importance
of the two propagation "directions", but also allowing the use of different types of GNN
layers, which is useful, for instance, to provide intra-layer weights while keeping the inter-
layer unweighted (or with default weights). This overcomes the major limitation of an
aggregate-all-layers approach and lets the aggregation weights emerge from the training
data. Moreover, there is no computational complexity overhead as it is the one of the GNN
employed (i.e., O(L ·GNNintra+GNNinter)). In comparison with other multiplex approaches,
this framework: 1. is not problem-specific and can work with any multi-layer network (not
just multiplexes); 2. supports any type of training (supervised, unsupervised, reinforcement);
3. does not need to train the GNNs to reconstruct the network or to define custom loss
functions; 4. supports input node features and propagates them both in the intra- and in
the inter- layer independently; 5. it allows stacking multiple GNN layers to capture the
information in a K-hops neighborhood.

5.4 Experiments 129

We stress that the main advantage of this framework is that already existing graph
convolutional networks can be used and extended to the multi-layer case with very little
effort. In addition, while we use two identical convolutional layers for each supra-layer, the
configuration of the layers is arbitrary, allowing the user to choose different layer parameters
or types depending on the specific domain knowledge or application (e.g., the intra-layer is
weighted but the inter-layer is not). This also means that more than a single intra-GNN layer
can be used. That is, each supra-layer could include up to one intra-layer GNNs per network
layer, if needed to learn different parameters and capture different information or dynamics.

5.4 Experiments

To show the validity and generality of the framework proposed in this work, we test it
into three different tasks:

• Node classification: classification of var genes of the human malaria parasite Plasmod-
ium falciparum;

• Link prediction: prediction of (intra-) layer links given a multi-platform social multi-
plex network, where nodes correspond to users and layers to different social networks;

• Network classification: prediction of super-diffusion in multiplex networks.

We implement our framework on top of the PyTorch Geometric [161] library and manip-
ulate the networks using graph-tool [213].

5.4.1 Malaria genes classification

In this section, we show how our framework can be used to perform node classification
on a biological multiplex network. Specifically, we use the networks from the work by
Larremore et al. [387], where they analyze 307 amino acid sequences from the DBLα

domain of the var genes of seven Plasmodium falciparum isolates. Two nodes (genes) are
connected if they exhibit a pattern of recombination, and authors find nine Highly Variable
Regions (HVRs), producing an unweighted and undirected network for each. Considering
that these HVRs share the same set of nodes, we build a multiplex network by using them as
layers. Authors also provide classification of the sequences (nodes) into six classes, based on
the number of cysteine residues present in HVR-6, and we use this information to test our
framework in a classification task. Taking into account that in a multiplex network a node
appears in all the layers, we reflect this relation in the inter-layer network by connecting all

5.4 Experiments 130

the replicas of each node in a clique. Regarding the model employed, each of the supra-layers
includes a Graph Attention Network [164] layer that processes all the intra-layers and another
one for the inter-layer. The output embeddings of the replicas are transformed into the node
embedding as shown in Equation 5.3, where ReplicaAGG is a Multi-layer Perceptron. We
train in a supervised manner and test on 20% of nodes, selected using stratified sampling.
That is, the test set contains the same distribution of classes as the full dataset. Considering
that the dataset comes without any node feature, we do not use any as input and assign
xi = 1 for replica node i. The final classification accuracy is 83.9%, which is remarkable
considering the small size of the network, the fact that the classes are strongly unbalanced and
that the model is able to classify the nodes using the topology alone without input features.

5.4.2 Link prediction

In this section, we demonstrate how models built according to our framework can be
used in the multi-layer link prediction setting.

For this purpose, we build a multi-layer model with Graph Attention Network [164] layers
(one for all the intra-layers and one for the inter-layer, which output are aggregated with a
linear layer). However, compared to the previous example, we replace the node classificator
with a link predictor, i.e., a Multi-Layer Perceptron that — given the embedding of two nodes
— predicts the probability that the two nodes are connected. Without loss of generality, we
perform intra-layer link prediction. Of course, inter-layer link prediction is still possible.

We test this model on a multiplex social network where nodes, representing users, can
interact on three different social networks (FriendFeed, Twitter and YouTube) [366, 367].
More details about the FF-TW-YT network layers can be found in Table 5.1. In particular, we
train the model to predict the existence of links in one of the layers given the full multiplex
network. We perform the training phase by randomly removing 20% of links from the test
layer and by feeding the remaining ones in that layer as positive examples. The removed links
will be used during the test phase to evaluate the performance of the model. The negative
examples are picked randomly in the same quantity among the non-existing ones, both for
the train and test phases. We train and test the models without any input node feature (i.e.,
xi = 1) on the Twitter and FriendFeed layers. The test accuracy is 83.3% on the Twitter layer
(AUC score 0.829, F1 score 0.833) and 81.9% on the FriendFeed layer (AUC score 0.811,
F1 score 0.819), proving that the model is effectively learning to predict the existence of
links.

5.4 Experiments 131

Layer |N| |E| Type

FriendFeed 6.4K 32.0K Directed
Twitter 6.4K 42.3K Directed
YouTube 6.4K 0.6K Undirected

Table 5.1 FF-TW-YT network layers.

5.4.3 Superdiffusion prediction

Super-diffusion is a property of certain multiplex networks where the diffusion process is
faster than the diffusion on the separate layers [388], which happens if the second eigenvalue
of the supra-Laplacian is greater than the maximum of the ones of the layers.

In this section we demonstrate how our framework can be used to reproduce the results
from V.M. Leli et al. [389], who predict whether a multiplex network exhibits super-diffusion
or not, and do so with a classical Deep Learning model employing CNNs (convolutional
neural networks) on the supra-adjacency matrix. The main limitations of their work are that
the models, once trained, are not able to generalize to networks with different number of
nodes and layers, and that the models require a lot of training examples.

Predicting whether a multiplex network exhibits the super-diffusion property can be
formulated as a network classification task. For this purpose, use the Graph Attention
Network [164] layers (again, one for all the intra-layers and one for the inter-layer, aggregated
with a linear layer) plus a Global Soft Attention pooling layer [160] that first transforms the
node embeddings into layer embeddings (via a learned linear transformation) and then sums
them to compute the network prediction.

As in the work from Leli et al., we generate the networks with two layers and 50 nodes
per layer. The layers are Erdős-Rényi (ER) networks with pi for each layer i such that

0 < p1 ≤ p2 < 1

. We increment the p1 and p2 values in 0.01 steps and for each combination we generate 5
networks for the train set and 10 for the test set. As a result, we train on ∼ 5K networks (we
balance the dataset taking all the positive examples and randomly selecting the same number
of negative ones), and test on ∼ 50K networks. The final test accuracy is 89.2% (AUC score
0.911), with the main advantages of exploiting the graph structure and the need of way less
networks required to learn and generalize.

5.5 Training and model parameters 132

5.5 Training and model parameters

5.5.1 Malaria genes classification

The model we use to classify the nodes has 6 supra-layers with identical sub-layers (i.e.,
GAT layers with 60 output features and 5 heads each, negative slope 0.2), followed by a
Multi-Layer Perceptron with 6 outputs (the classifier) that takes as input the features of the
replicas of each node and predicts its class. The model is trained for 2500 epochs (with 100
epochs patience) with learning rate 5 ·10−4, weight decay 10−3 and 0.3 dropout probability.
We use the Cross Entropy loss function with a rescaling weight to account for the different
distribution of classes.

5.5.2 Link prediction

The model we use to perform link prediction has 3 identical supra-layers (i.e., GAT
sub-layers with 30 output features and 5 heads each, negative slope 0.2). We train the model
for 2500 epochs (with 400 epochs patience) with learning rate 10−3, weight decay 10−5 and
0.3 dropout probability.

5.5.3 Superdiffusion prediction

The model we use for this task includes 4 supra-layers with identical sub-layers (i.e.,
GAT layers with 10 output features and 5 heads each, negative slope 0.2) and is trained using
the Mean Square Error loss function for 100 epochs with learning rate 5 ·10−3, weight decay
10−5 and 0.3 dropout probability. The node embeddings are aggregated using a weighted
sum function learned during the training.

5.6 Discussion

In this work we present an innovative way of employing existing Graph Convolutional
Networks on multi-layer networks. Compared to other works, our proposal is problem
agnostic and works for any multi-layer network. Moreover, it is transparent to the training
(i.e., any type of training is supported), the node feature propagation happens in both the intra-
and inter- layer independently and multiple layers can be stacked to capture information from
the topology and the features farther in the network.

We validate our proposal on three different tasks: multiplex node-classification, intra-
layer link prediction and network classification. The results show that the approach is general

5.6 Discussion 133

and performs well in different settings, without any computational over-head which allows
the application of the method to large multi-layer networks.

Chapter 6

Weighted and Signed Graph Attention
Networks

6.1 Introduction

Signed networks [41] are a class of networks, where links can be positive or negative.
They are especially used to model good or bad relations among nodes. A notable example
are trust networks [44–46], where nodes are users and positive/negative links among them
are used to model trust/distrust relations. In general, signed networks can also be weighted,
so relations can be positive or negative and with a given strength. Considering again trust
networks, each link can express more or less strong relationships of trust or distrust. Weighted
and signed networks are also commonly used to represent correlations networks [42, 43],
where links among entities express the level of correlation that, in general, can be a positive
or negative real number.

To solve many (hard) problems on networks, deep learn techniques have recently been
used [145, 146, 17, 1]. In particular, Graph Neural Networks (GNNs) [159] have been em-
ployed to learn representations on graphs by abstracting from the specific application domain.
GNNs are powerful tools and their applicability have been successfully demonstrated even
to solve very complex problems. Among different GNN layer model, the Graph Attention
Networks (GATs) [164] are one of the most promising, both in terms of performance and
flexibility in solving problems in different domains. However, the original GAT formulation,
discussed in Section 2.4.7.3 only takes into account undirected and unweighted networks.

In this work we propose wsGAT, an extension of the GAT to cope with signed and
weighted networks. We show wsGAT applicability to real-world signed and weighted
networks by solving the link prediction task. We compare wsGAT performance by solving

6.2 Formulation 135

the same task with GCNII [168] and SGCN [169] models, respectively used to perform
weighted and signed link prediction. Our results show that models with wsGAT layers
outperform the ones with GCNII and SGCN layers.

6.2 Formulation

In this work, we extend the Graph Attention Networks (GAT) [164] by modifying the
computation of the attention coefficient to also account for the (signed) link weight.

As common in the literature, we indicate with h(k)
n ∈ RFk the node embedding of node i

after the k-th GNN layer, where Fk is the number of features. According to this notation, h(0)
n

are the node’s input features xn.
In the original GAT formulation, the authors borrow the attention mechanism [165],

defined to handle variable length sequences and used successfully in the Natural Language
Processing (NLP) field, to assign a (relative) importance score to each of the neighbors of
the target node. Specifically, they compute the attention coefficient αi j of a node i for each
neighboring node j as in Equation 6.1.

α
k
i j = softmax(LeakyReLU(ek

i)) j (6.1)

ek
i j = a⊺k (W

khi ∥Wkh j) (6.2)

where Wk ∈ RFk×Fk+1 is a learned weight matrix, a⊺k ∈ R2·Fk+1 is a learned weight vector
and ∥ is the concatenation operator.

The attention coefficient is then used to scale the incoming node embedding of the
neighbors as in Equation 6.3.

h(k+1)
i = f (∑

j∈Ni∪{i}
α

k
i jh

(k)
j) (6.3)

where f is an activation function, Ni is the neighborhood of node i, and may include the
node i itself if self-loops are added to the network.

The main limitation of this formulation is that the same weight matrix Wk is applied
independently to both of the embeddings of the target and neighboring nodes, i.e., they are
combined linearly. To achieve better attention scores, other approaches that use Multi-Layer
Perceptrons have been proposed [125].

We follow this trend and also account for the (signed) link weight wi j in the attention
computation. In detail, we first modify the computation of ek

i j as follows:

6.3 Experiments 136

ek
i j = MLPk(h(k)

i ∥h(k)
j ∥wi j) (6.4)

where MLPk is a Multi-Layer Perceptron with the only requirement that the last layer can
also produce negative values (e.g., a zero-centred activation function is used) and wi j is the
weight of the link.

The attention coefficients are then computed as:

α
k
i j = sign(ei j) · softmax(abs(ek

i)) j (6.5)

That is, in our formulation αi j ∈ [−1,1], meaning that the contribution of each neighbor-
ing node to Equation 6.3 can be positive or negative.

The choice of a Multi-Layer Perceptron allows the network to learn the relative impor-
tance of the features of the neighboring nodes j, with respect to the ones of the target node i,
and is also affected by the weight and sign of the link between them.

As in the original GAT formulation, wsGAT also support multi-head attention, meaning
that multiple embeddings for a node can be computed — each using a different set of
parameters — and concatenated/sum together.

6.3 Experiments

To validate the proposed wsGAT layer, we test it in the link and weight prediction task on
real-world trust networks.

Since, to the best of our knowledge, no other GNN layer can handle both signed and
weighted links, we first decompose the final task of signed and weighted link prediction in
two sub-tasks and compare our proposal against the state-of-the-art layers. Specifically, we
first compare on the link sign prediction with Signed Graph Convolutional (SGCN), and on
the (unsigned) link weight prediction with GCNII (Graph Convolutional Network via Initial
residual and Identity mapping).

6.3.1 Dataset

We test our proposal on 4 real-world trust networks. More in detail, we test on the
who-trusts-whom networks from the Advogato online community, where trust 4 trust levels
can be assigned (corresponding weights are from 0.4 to 1.0 with 0.2 step), from the Bitcoin
Alpha and OTC platforms, where scores are on a scale of -10 (total distrust) to +10 (total

6.3 Experiments 137

trust), and from the Epinions.com community, where users can assign a positive or negative
trust score to each other. We summarize the networks used for the experiments in Table 6.1.

Network |V| |E| Positive Links Min. Link Weight Max. Link Weight Refs

advogato 6,541 51,127 100% 0 1 [390]
bitcoin-alpha 3,783 24,186 89.98% -10 10 [391]
bitcoin-otc 5,881 35,592 93.64% -10 10 [391]
epinions 131,828 841,372 85.29% -1 1 [392]

Table 6.1 Dataset. Details about the networks used in this work.

6.3.2 Sign prediction

In the first sub-task, we perform sign prediction — i.e. prediction of the kind of rela-
tionship (positive or negative) between two nodes in trust networks — and compare against
SGCN [169].

The SGCN layer, to the best of our knowledge, is the only one able to handle signed links.
In particular, they use balance theory and compute two feature sets for each node by splitting
the node neighborhood into two sub-neighborhoods (i.e., one with all the positive links and
the other with all the negative ones). That is, each node has a positive and a negative feature
sets. This is a limitation from a Network Science perspective, as the two sub-networks may
have different characteristics w.r.t. the original network, or disconnected components may
emerge (e.g., in the case of unbalanced link signs). However, authors mitigate this issue by
influencing each feature set with the other: when computing the positive node features, they
also sum a function of the negative ones, and vice-versa. Another limitation of SGCNs is that
they do not support link weights, which is useful in many contexts, like the trust one.

For a fair comparison with this approach, we use the same input spectral features and the
same train methodology proposed in their paper. In detail, we provide the Signed Spectral
Embedding (SSE) from [393] as input node features, and use a node classifier that predicts
whether, given a pair of node embeddings, the link between the two nodes is positive, negative
or non-existent. During the training phase, we provide 80% of existing links as train examples
(and remove the remaining ones from the network), plus the same number of non-existing
ones sampled randomly. However, by analogy with their methodology, we predict only the
sign of existent links during testing.

We employ the Area Under the Curve (AUC) of the Receiver Operating Characteristic
(ROC) curve and the F1-scores to evaluate the prediction performance. According to sign
prediction results, shown in Table 6.2, wsGAT outperform the best SGCN algorithm on

6.3 Experiments 138

the three signed networks in our dataset. It is worth noting that the SGCN results for the
epinions network differ from the ones reported by the authors in their paper as we do not
filter low-degree nodes from the graph.

GNN Layer bitcoin-alpha bitcoin-trust epinions

SGCN2 0.796 0.917 0.823 0.925 0.842 0.946
wsGAT 0.832 0.967 0.845 0.953 0.839 0.949

Table 6.2 Sign prediction results (ROC AUC | F1).

6.3.3 Weight prediction

In the second sub-task, we perform link weight prediction – i.e., predict the (unsigned)
strength of the relationship between two nodes —. Here, we compare against GCNII [168]
that were proposed to simplify and improve the Graph Convolutional Networks (GCN) by
Kipf et al. [394]. For both wsGAT and GCNII we employ the same model architecture:
after the GNN layers we use two Multi-Layer Perceptrons; while both take a pair of node
embeddings as input, one is trained to predict if the existence of the link between the input
nodes, the other is trained to predict the weight. Both MLPs in our tests have fixed number
of layers (3) and neurons (100 neurons per layer, 1 output).

Regarding the training, we split the network links into training links (80%) and test links
(20%, removed before the training). In addition, for each set we sample the same number of
non-existing links to provide the negative examples, and assign a 0 weight to them.

This time we use the ROC AUC and the F1 scores to evaluate the link prediction
performance, and we measure the error on the weight prediction (only for existing links) with
the Mean Absolute Error (MAE). The weight prediction results are reported in Table 6.3.
wsGAT outperform the GCNII not only in the link prediction task, but also predict more
accurate link weights.

GNN Layer advogato bitcoin-alpha bitcoin-trust

GCNII 0.880 0.824 0.158 0.912 0.841 0.1470 0.909 0.830 0.179
wsGAT 0.910 0.839 0.142 0.923 0.851 0.130 0.929 0.860 0.154

Table 6.3 Absolute weight prediction results (ROC AUC | F1 | MAE). Note that while the
higher the AUC and F1 scores the better, MAE is an error score and lower values represent
smaller errors.

6.3 Experiments 139

6.3.4 Signed weight prediction

Finally, we merge the two sub-tasks discussed previously and predict the existence of
links and of their signed weight.

As in the weight prediction sub-task, we use the AUC and the F1 to measure the link
prediction performance, and the MAE to measure the error on the weight prediction.

The results on the signed and weighted Bitcoin networks, reported in Table 6.4, show
that the link prediction performance is almost the same as the unsigned case, and the mean
absolute error (now on a scale from -10 to +10) drops significantly.

GNN Layer bitcoin-alpha bitcoin-trust

wsGAT 0.922 0.839 0.069 0.921 0.852 0.079

Table 6.4 Signed weight prediction results (ROC AUC | F1 | MAE). Note that while the
higher the AUC and F1 scores the better, MAE is an error score and lower values represent
smaller errors.

6.3.5 Code availability

wsGAT were implemented on top of PyTorch Geometric [161] v1.6.3. Code will be
publicly available after the publication of the paper at the following URL
https://github.com/NetworkScienceLab/wsGAT.

Chapter 7

Conclusive remarks and future research
directions

The works discussed in this thesis bring two major contributions: an improvement of the
state-of-the-art in two Network Science problems, and new ways to handle multi-layer and
signed networks.

Specifically, we presented the GDM framework to approach various computationally
hard Network Science problems and showed its application to the Network Dismantling and
to the Link Building problems. In both applications, the performance of the GDM-based
heuristics outperform the state-of-the-art algorithms significantly, as shown by extensive tests
on empirical systems, and also have lower computational complexity. Moreover, the insights
gained by explaining the models should improve the understanding of the problem and help
the community. Future research directions may include extending the framework to other
problems and pushing the performance by improving the datasets (e.g., by increasing the
number of nodes, of networks and of generative models used), or by refining the algorithms
(e.g., in the case of network dismantling, by attacking the k–core of the network).

We also presented mGNN to address the lack of GNN layers for multi-layer networks,
and wsGAT, an extension of the GAT layers, to handle signed networks. Our experiments
show the validity of the two proposals, and future research directions may involve the use of
wsGAT layers combined via mGNN to approach problems on, e.g., brain or international-
trade networks, as they usually involve multi-layer representations of the systems. It is
worth mentioning that further work should be done to provide explanation tools for models
built for multi-layer and temporal networks. In fact, the insights gained could help to better
understand the dynamics of processes, neuroscience problems, etc.

141

In addition, we give a contribution to the Open Source community as we have publicly
released the code of the GDM framework, along with the training networks and models,
under the GPLv3 license.

References

[1] Grassia, M., De Domenico, M. & Mangioni, G. Machine learning dismantling and
early-warning signals of disintegration in complex systems. Nature Communications
12, 5190 (2021). URL https://doi.org/10.1038/s41467-021-25485-8.

[2] Grassia, M. & Mangioni, G. Weighted and signed graph attention networks. Submitted
to the 10th International Conference on Complex Networks and their Applications
(COMPLEX NETWORKS 2021) (2021).

[3] Grassia, M., De Domenico, M. & Mangioni, G. mGNN: Generalizing the Graph
Neural Networks to the Multilayer Case. Submitted to IEEE Transactions on Neural
Networks and Learning Systems (2021).

[4] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Efficient node
rank improvement via link building using geometric deep learning. Submitted to IEEE
Transactions on Knowledge and Data Engineering (2021).

[5] Grassia, M., Mangioni, G., Schiavo, S. & Traverso, S. International food trade
and vulnerability to shocks: insights from network-based simulations. Submitted to
Environmental Research Letters (2021).

[6] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Food recom-
mendation in a worksite canteen. In COMPLEXIS, 117–124 (2021).

[7] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. A network-
based analysis of a worksite canteen dataset. Big Data and Cognitive Computing 5, 11
(2021).

[8] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Analysis of the
co-authorship sub-networks of italian academic researchers. Submitted to the 2021
IEEE/ACM International Conference on Advances in Social Network Analysis and
Mining (ASONAM) (2021).

[9] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Preliminary
characterization of italian academic scholars by their bibliometrics. Submitted to 14th
International Symposium on Intelligent Distributed Computing (IDC 2021) (2021).

[10] Grassia, M., Mangioni, G., Schiavo, S. & Traverso, S. (unintended) consequences of
export restrictions on medical goods during the covid-19 pandemic. arXiv preprint
arXiv:2007.11941 (2020).

https://doi.org/10.1038/s41467-021-25485-8

References 143

[11] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Group cohesion
assessment in networks. In Complex Networks XI, 16–25 (Springer, Cham, 2020).

[12] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. A network-
based analysis to understand food-habits of a multi-company canteen’s customers. In
Proceedings of the 22nd International Conference on Information Integration and
Web-based Applications & Services, 352–356 (2020).

[13] Lauri, J., Dutta, S., Grassia, M. & Ajwani, D. Learning fine-grained search space
pruning and heuristics for combinatorial optimization (2020). 2001.01230.

[14] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Network
robustness improvement via long-range links. Computational Social Networks 6, 1–16
(2019).

[15] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. A pagerank
inspired approach to measure network cohesiveness. In International Conference on
Internet and Distributed Computing Systems, 349–356 (Springer, Cham, 2019).

[16] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Strategies
comparison in link building problem. In International Symposium on Intelligent and
Distributed Computing, 197–202 (Springer, Cham, 2019).

[17] Grassia, M., Lauri, J., Dutta, S. & Ajwani, D. Learning multi-stage sparsification for
maximum clique enumeration. arXiv preprint arXiv:1910.00517 (2019).

[18] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Exploiting long
distance connections to strengthen network robustness. In International Conference
on Internet and Distributed Computing Systems, 270–277 (Springer, Cham, 2018).

[19] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Long distance
in-links for ranking enhancement. In International Symposium on Intelligent and
Distributed Computing, 3–10 (Springer, Cham, 2018).

[20] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Climbing
ranking position via long-distance backlinks. In International Conference on Internet
and Distributed Computing Systems, 100–108 (Springer, Cham, 2018).

[21] De Domenico, M. et al. Complexity explained (2019).

[22] Newman, M. E. J. The structure and function of complex networks. SIAM review 45,
167–256 (2003).

[23] Iñiguez, G., Battiston, F. & Karsai, M. Bridging the gap between graphs and networks.
Communications Physics 3 (2020). URL http://dx.doi.org/10.1038/s42005-020-0359-
6.

[24] Brandes, U., Robins, G., McCranie, A. & Wasserman, S. What is network science?
Network Science 1 (2013).

[25] National Research Council. Network Science (The National Academies Press, 2005).

2001.01230
http://dx.doi.org/10.1038/s42005-020-0359-6
http://dx.doi.org/10.1038/s42005-020-0359-6

References 144

[26] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks:
Structure and dynamics. Physics Reports 424, 175–308 (2006).

[27] da F. Costa, L. et al. Analyzing and modeling real-world phenomena with complex
networks: A survey of applications. Advances in Physics 60, 329–412 (2011).

[28] Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A.-L. The large-scale
organization of metabolic networks. Nature 407, 651–654 (2000).

[29] Williams, R. J., Berlow, E. L., Dunne, J. A., Barabási, A.-L. & Martinez, N. D. Two
degrees of separation in complex food webs. Proceedings of the National Academy of
Sciences 99, 12913–12916 (2002).

[30] Varela, F., Lachaux, J.-P., Rodriguez, E. & Martinerie, J. The brainweb: phase
synchronization and large-scale integration. Nature reviews neuroscience 2, 229–239
(2001).

[31] Schweitzer, F. et al. Economic networks: The new challenges. science 325, 422–425
(2009).

[32] Allen, F. & Babus, A. Networks in finance. The network challenge: strategy, profit,
and risk in an interlinked world 367 (2009).

[33] Cardillo, A., Scellato, S., Latora, V. & Porta, S. Structural properties of planar graphs
of urban street patterns. Physical Review E 73, 066107 (2006).

[34] Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002). URL https://link.aps.org/doi/10.1103/RevModPhys.74.47.

[35] Vega-Redondo, F. Complex social networks. 44 (Cambridge University Press, 2007).

[36] Borgatti, S. P., Everett, M. G. & Johnson, J. C. Analyzing social networks (Sage,
2018).

[37] Faloutsos, M., Faloutsos, P. & Faloutsos, C. On power-law relationships of the internet
topology. In The Structure and Dynamics of Networks, 195–206 (Princeton University
Press, 2011).

[38] Barabási, A.-L. Network Science (Cambridge University Press, 2016).

[39] Bang-Jensen, J. & Gutin, G. Z. Digraphs: theory, algorithms and applications
(Springer Science & Business Media, 2008).

[40] Newman, M. E. Analysis of weighted networks. Physical review E 70, 056131 (2004).

[41] Leskovec, J., Huttenlocher, D. & Kleinberg, J. Signed networks in social media.
In Proceedings of the SIGCHI conference on human factors in computing systems,
1361–1370 (2010).

[42] Mizuno, T., Takayasu, H. & Takayasu, M. Correlation networks among currencies.
Physica A: Statistical Mechanics and its Applications 364, 336–342 (2006).

https://link.aps.org/doi/10.1103/RevModPhys.74.47

References 145

[43] Chen, Z. J., He, Y., Rosa-Neto, P., Germann, J. & Evans, A. C. Revealing modular
architecture of human brain structural networks by using cortical thickness from mri.
Cerebral cortex 18, 2374–2381 (2008).

[44] Bachi, G., Coscia, M., Monreale, A. & Giannotti, F. Classifying trust/distrust rela-
tionships in online social networks. In 2012 International Conference on Privacy,
Security, Risk and Trust and 2012 International Confernece on Social Computing,
552–557 (IEEE, 2012).

[45] Carchiolo, V., Longheu, A., Malgeri, M. & Mangioni, G. Trust assessment: a person-
alized, distributed, and secure approach. Concurrency and Computation: Practice
and Experience 24, 605–617 (2012).

[46] Carchiolo, V., Longheu, A., Malgeri, M. & Mangioni, G. Users’ attachment in trust
networks: reputation vs. effort. International Journal of Bio-Inspired Computation 5,
199–209 (2013).

[47] Newman, M. Networks: an introduction (Oxford University Press, 2010).

[48] Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. nature
393, 440–442 (1998).

[49] Newman, M. E. J. Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003). URL
https://link.aps.org/doi/10.1103/PhysRevE.67.026126.

[50] Squartini, T., Fagiolo, G. & Garlaschelli, D. Randomizing world trade. I. A binary
network analysis. Physical Review E 84 (2011). URL http://dx.doi.org/10.1103/
PhysRevE.84.046117.

[51] Squartini, T., Fagiolo, G. & Garlaschelli, D. Randomizing world trade. II. A weighted
network analysis. Physical Review E 84 (2011). URL http://dx.doi.org/10.1103/
PhysRevE.84.046118.

[52] Freeman, L. C. A set of measures of centrality based on betweenness. Sociometry 40,
35–41 (1977).

[53] Brandes, U. On variants of shortest-path betweenness centrality and their generic
computation. Social Networks 30, 136–145 (2008). URL https://www.sciencedirect.
com/science/article/pii/S0378873307000731.

[54] Bonacich, P. Power and centrality: A family of measures. American journal of
sociology 92, 1170–1182 (1987).

[55] Newman, M. E. J. Mathematics of Networks, 1–8 (Palgrave Macmillan UK, London,
2016). URL https://doi.org/10.1057/978-1-349-95121-5_2565-1.

[56] Perra, N. & Fortunato, S. Spectral centrality measures in complex networks. Physical
Review E 78, 036107 (2008).

[57] Page, L., Brin, S., Motwani, R. & Winograd, T. The pagerank citation ranking:
Bringing order to the web. Tech. Rep., Stanford InfoLab (1999).

https://link.aps.org/doi/10.1103/PhysRevE.67.026126
http://dx.doi.org/10.1103/PhysRevE.84.046117
http://dx.doi.org/10.1103/PhysRevE.84.046117
http://dx.doi.org/10.1103/PhysRevE.84.046118
http://dx.doi.org/10.1103/PhysRevE.84.046118
https://www.sciencedirect.com/science/article/pii/S0378873307000731
https://www.sciencedirect.com/science/article/pii/S0378873307000731
https://doi.org/10.1057/978-1-349-95121-5_2565-1

References 146

[58] Brin, S. & Page, L. The anatomy of a large-scale hypertextual web search en-
gine. Computer Networks and ISDN Systems 30, 107–117 (1998). URL http:
//www.sciencedirect.com/science/article/pii/S016975529800110X. Proceedings of the
Seventh International World Wide Web Conference.

[59] Wasserman, S., Faust, K. et al. Social network analysis: Methods and applications
(1994).

[60] Radicchi, F., Castellano, C., Cecconi, F., Loreto, V. & Parisi, D. Defining and
identifying communities in networks. Proceedings of the National Academy of
Sciences 101, 2658–2663 (2004). URL https://www.pnas.org/content/101/9/2658.
https://www.pnas.org/content/101/9/2658.full.pdf.

[61] Girvan, M. & Newman, M. E. J. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences 99, 7821–7826 (2002).
URL https://www.pnas.org/content/99/12/7821. https://www.pnas.org/content/99/12/
7821.full.pdf.

[62] Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment 2008, P10008 (2008). URL https://doi.org/10.1088/1742-5468/2008/10/
p10008.

[63] Newman, M. E. J. Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004).
URL https://link.aps.org/doi/10.1103/PhysRevE.70.056131.

[64] Nicosia, V., Mangioni, G., Carchiolo, V. & Malgeri, M. Extending the definition of
modularity to directed graphs with overlapping communities. Journal of Statistical
Mechanics: Theory and Experiment 2009, P03024 (2009). URL https://doi.org/10.
1088/1742-5468/2009/03/p03024.

[65] Peixoto, T. P. Bayesian stochastic blockmodeling. Advances in Network Clustering and
Blockmodeling 289–332 (2019). URL http://dx.doi.org/10.1002/9781119483298.ch11.

[66] Peixoto, T. P. Nonparametric bayesian inference of the microcanonical stochastic
block model. Physical Review E 95 (2017). URL http://dx.doi.org/10.1103/PhysRevE.
95.012317.

[67] Holland, P., Laskey, K. B. & Leinhardt, S. Stochastic blockmodels: First steps. Social
Networks 5, 109–137 (1983).

[68] Erdös, P. & Rényi, A. On random graphs i. Publicationes Mathematicae Debrecen 6,
290–297 (1959).

[69] Albert, R., Jeong, H. & Barabási, A.-L. Diameter of the world-wide web. Nature 401,
130–131 (1999).

[70] Bianconi, G. & Barabasi, A.-L. Competition and multiscaling in evolving networks.
EPL (Europhysics Letters) 54, 436 (2001).

[71] Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex
networks. nature 406, 378 (2000).

http://www.sciencedirect.com/science/article/pii/S016975529800110X
http://www.sciencedirect.com/science/article/pii/S016975529800110X
https://www.pnas.org/content/101/9/2658
https://www.pnas.org/content/101/9/2658.full.pdf
https://www.pnas.org/content/99/12/7821
https://www.pnas.org/content/99/12/7821.full.pdf
https://www.pnas.org/content/99/12/7821.full.pdf
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://link.aps.org/doi/10.1103/PhysRevE.70.056131
https://doi.org/10.1088/1742-5468/2009/03/p03024
https://doi.org/10.1088/1742-5468/2009/03/p03024
http://dx.doi.org/10.1002/9781119483298.ch11
http://dx.doi.org/10.1103/PhysRevE.95.012317
http://dx.doi.org/10.1103/PhysRevE.95.012317

References 147

[72] Crucitti, P., Latora, V. & Marchiori, M. Model for cascading failures in complex
networks. Physical Review E 69, 045104 (2004).

[73] Boccaletti, S. et al. The structure and dynamics of multilayer networks. Physics
Reports 544, 1–122 (2014).

[74] Radicchi, F. Percolation in real interdependent networks. Nature Physics 11, 597
(2015).

[75] Lamberson, P. Diffusion in networks. The Oxford Handbook of the Economics of
Networks (2016).

[76] De Domenico, M., Solé-Ribalta, A., Gómez, S. & Arenas, A. Navigability of inter-
connected networks under random failures. PNAS 111, 8351–8356 (2014).

[77] Aleta, A., Meloni, S. & Moreno, Y. A multilayer perspective for the analysis of urban
transportation systems. Scientific reports 7, 1–9 (2017).

[78] Dickison, M. E., Magnani, M. & Rossi, L. Multilayer social networks (Cambridge
University Press, 2016).

[79] Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. Community
structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878
(2010).

[80] De Domenico, M. et al. Mathematical formulation of multilayer networks. Physical
Review X 3, 041022 (2013).

[81] Kivelä, M. et al. Multilayer networks. Journal of complex networks 2, 203–271
(2014).

[82] De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S. & Arenas, A. Ranking in
interconnected multilayer networks reveals versatile nodes. Nature Communications
6, 6868 (2015).

[83] Bazzi, M. et al. Community detection in temporal multilayer networks, with an
application to correlation networks. Multiscale Modeling & Simulation 14, 1–41
(2016).

[84] Nicosia, V. & Latora, V. Measuring and modeling correlations in multiplex networks.
Physical Review E 92, 032805 (2015).

[85] Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interde-
pendent networks. Nature physics 8, 40–48 (2012).

[86] Wang, Z., Wang, L., Szolnoki, A. & Perc, M. Evolutionary games on multilayer
networks: a colloquium. The European physical journal B 88, 1–15 (2015).

[87] De Domenico, M., Granell, C., Porter, M. A. & Arenas, A. The physics of spreading
processes in multilayer networks. Nature Physics 12, 901–906 (2016).

[88] Gomez, S. et al. Diffusion dynamics on multiplex networks. Physical review letters
110, 028701 (2013).

References 148

[89] Masuda, N., Porter, M. A. & Lambiotte, R. Random walks and diffusion on networks.
Physics Reports (2017).

[90] Solá, L. et al. Eigenvector centrality of nodes in multiplex networks. Chaos: An
Interdisciplinary Journal of Nonlinear Science 23, 033131 (2013).

[91] Cardillo, A. et al. Modeling the multi-layer nature of the european air transport net-
work: Resilience and passengers re-scheduling under random failures. The European
Physical Journal Special Topics 215, 23–33 (2013).

[92] Battiston, F., Nicosia, V. & Latora, V. Structural measures for multiplex networks.
Physical Review E 89, 032804 (2014).

[93] Estrada, E. & Gómez-Gardeñes, J. Communicability reveals a transition to coordinated
behavior in multiplex networks. Physical Review E 89, 042819 (2014).

[94] De Domenico, M., Nicosia, V., Arenas, A. & Latora, V. Structural reducibility of
multilayer networks. Nature communications 6, 1–9 (2015).

[95] Ghavasieh, A. & De Domenico, M. Enhancing transport properties in interconnected
systems without altering their structure. Physical Review Research 2, 013155 (2020).

[96] Bianconi, G. Statistical mechanics of multiplex networks: entropy and overlap.
Physical Review E 87, 062806 (2013).

[97] Kolda, T. G. & Bader, B. W. Tensor decompositions and applications. SIAM Review
51, 455–500 (2009).

[98] De Domenico, M., Sasai, S. & Arenas, A. Mapping multiplex hubs in human
functional brain networks. Frontiers in Neuroscience 10, 326 (2016). URL
https://www.frontiersin.org/article/10.3389/fnins.2016.00326.

[99] Bhattacharya, K., Mukherjee, G., Saramäki, J., Kaski, K. & Manna, S. S. The
international trade network: weighted network analysis and modelling. Journal of
Statistical Mechanics: Theory and Experiment 2008, P02002 (2008).

[100] Barigozzi, M., Fagiolo, G. & Mangioni, G. Identifying the community structure
of the international-trade multi-network. Physica A: statistical mechanics and its
applications 390, 2051–2066 (2011).

[101] Mangioni, G., Jurman, G. & De Domenico, M. Multilayer flows in molecular networks
identify biological modules in the human proteome. IEEE Transactions on Network
Science and Engineering 7, 411–420 (2018).

[102] Choobdar, S. et al. Assessment of network module identification across complex
diseases. Nature methods 16, 843–852 (2019).

[103] Verstraete, N. et al. Covmulnet19, integrating proteins, diseases, drugs, and symptoms:
A network medicine approach to covid-19. Network and systems medicine 3, 130–141
(2020).

[104] Cardillo, A. et al. Emergence of network features from multiplexity. Scientific reports
3, 1–6 (2013).

https://www.frontiersin.org/article/10.3389/fnins.2016.00326

References 149

[105] Kinsley, A. C., Rossi, G., Silk, M. J. & VanderWaal, K. Multilayer and multiplex
networks: An introduction to their use in veterinary epidemiology. Frontiers in
veterinary science 7, 596 (2020).

[106] Mitchell, T. M. Machine Learning (McGraw-Hill, Inc., New York, NY, USA, 1997), 1
edn.

[107] TURING, A. M. I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind
LIX, 433–460 (1950). URL https://doi.org/10.1093/mind/LIX.236.433. https://
academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf.

[108] Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach (Prentice Hall
Press, USA, 2009), 3rd edn.

[109] Gomez-Uribe, C. A. & Hunt, N. The netflix recommender system: Algorithms,
business value, and innovation. ACM Trans. Manage. Inf. Syst. 6 (2016). URL
https://doi.org/10.1145/2843948.

[110] Yang, J. et al. Improved protein structure prediction using predicted interresidue
orientations. Proceedings of the National Academy of Sciences 117, 1496–1503 (2020).
URL https://www.pnas.org/content/117/3/1496. https://www.pnas.org/content/117/3/
1496.full.pdf.

[111] Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature
(2021). (Accelerated article preview).

[112] Silver, D. et al. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm (2017). 1712.01815.

[113] Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518,
529–533 (2015).

[114] Edelsten, A. NVIDIA DLSS: Control and Beyond (2019). URL https://www.nvidia.
com/en-us/geforce/news/dlss-control-and-beyond/.

[115] Lauri, J. & Dutta, S. Fine-grained search space classification for hard enumeration
variants of subset problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2314–2321 (2019).

[116] Murphy, K. P. Machine Learning: A Probabilistic Perspective (The MIT Press, 2012).

[117] Goodfellow, I., Bengio, Y. & Courville, A. Deep learning (2016). URL http://www.
deeplearningbook.org. Book in preparation for MIT Press.

[118] Pedregosa, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011).

[119] Provost, F. & Fawcett, T. Data Science for Business: What You Need to Know
about Data Mining and Data-Analytic Thinking (O’Reilly Media, 2013). URL https:
//books.google.ie/books?id=4ZctAAAAQBAJ.

[120] Nielsen, M. A. Neural networks and deep learning (2018). URL http://
neuralnetworksanddeeplearning.com/.

https://doi.org/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://doi.org/10.1145/2843948
https://www.pnas.org/content/117/3/1496
https://www.pnas.org/content/117/3/1496.full.pdf
https://www.pnas.org/content/117/3/1496.full.pdf
1712.01815
https://www.nvidia.com/en-us/geforce/news/dlss-control-and-beyond/
https://www.nvidia.com/en-us/geforce/news/dlss-control-and-beyond/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://books.google.ie/books?id=4ZctAAAAQBAJ
https://books.google.ie/books?id=4ZctAAAAQBAJ
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

References 150

[121] Bengio, Y., Courville, A. & Vincent, P. Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence 35,
1798–1828 (2013).

[122] Lee, H., Grosse, R., Ranganath, R. & Ng, A. Y. Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations. In Proceedings of
the 26th Annual International Conference on Machine Learning, ICML ’09, 609–616
(Association for Computing Machinery, New York, NY, USA, 2009). URL https:
//doi.org/10.1145/1553374.1553453.

[123] Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural Computation 9,
1735–1780 (1997). URL https://doi.org/10.1162/neco.1997.9.8.1735. https://direct.
mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf.

[124] Cho, K. et al. Learning phrase representations using rnn encoder-decoder for statistical
machine translation (2014). 1406.1078.

[125] Hamilton, W. L. Graph representation learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning 14, 1–159.

[126] Bronstein, M. M., Bruna, J., Cohen, T. & Veličković, P. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges (2021). 2104.13478.

[127] Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A. & Vandergheynst, P. Geometric
deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine 34,
18–42 (2017). URL http://dx.doi.org/10.1109/MSP.2017.2693418.

[128] Bruna, J., Zaremba, W., Szlam, A. & LeCun, Y. Spectral networks and locally
connected networks on graphs (2014). 1312.6203.

[129] Dai, H., Dai, B. & Song, L. Discriminative embeddings of latent variable models for
structured data (2020). 1603.05629.

[130] Hamilton, W. L., Ying, R. & Leskovec, J. Inductive representation learning on
large graphs. CoRR abs/1706.02216 (2017). URL http://arxiv.org/abs/1706.02216.
1706.02216.

[131] Gaudelet, T. et al. Utilising graph machine learning within drug discovery and
development (2021). 2012.05716.

[132] Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics 34, 457–466 (2018).

[133] Ying, R. et al. Graph convolutional neural networks for web-scale recommender sys-
tems. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (2018). URL http://dx.doi.org/10.1145/3219819.3219890.

[134] Darvariu, V.-A., Hailes, S. & Musolesi, M. Improving the robustness of graphs through
reinforcement learning and graph neural networks (2020). 2001.11279.

[135] Monti, F., Frasca, F., Eynard, D., Mannion, D. & Bronstein, M. M. Fake news
detection on social media using geometric deep learning (2019). 1902.06673.

https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
1406.1078
2104.13478
http://dx.doi.org/10.1109/MSP.2017.2693418
1312.6203
1603.05629
http://arxiv.org/abs/1706.02216
1706.02216
2012.05716
http://dx.doi.org/10.1145/3219819.3219890
2001.11279
1902.06673

References 151

[136] Mirhoseini, A. et al. Chip placement with deep reinforcement learning (2020). 2004.
10746.

[137] Mirhoseini, A. et al. A graph placement methodology for fast chip design. Nature
594, 207–212 (2021).

[138] Chen, Z., Li, X. & Bruna, J. Supervised community detection with line graph neural
networks (2020). 1705.08415.

[139] Farrell, S. et al. Novel deep learning methods for track reconstruction (2018). 1810.
06111.

[140] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message
passing for quantum chemistry. In Precup, D. & Teh, Y. W. (eds.) Proceedings of
the 34th International Conference on Machine Learning, vol. 70 of Proceedings of
Machine Learning Research, 1263–1272 (PMLR, 2017). URL https://proceedings.
mlr.press/v70/gilmer17a.html.

[141] Simonovsky, M. & Komodakis, N. Graphvae: Towards generation of small graphs us-
ing variational autoencoders. In International conference on artificial neural networks,
412–422 (Springer, 2018).

[142] You, J., Ying, R., Ren, X., Hamilton, W. & Leskovec, J. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In International conference on machine
learning, 5708–5717 (PMLR, 2018).

[143] Liao, R. et al. Efficient graph generation with graph recurrent attention networks
(2020). 1910.00760.

[144] Derrow-Pinion, A. et al. Eta prediction with graph neural networks in google maps
(2021). 2108.11482.

[145] Zhou, J. et al. Graph neural networks: A review of methods and applications. AI Open
1, 57–81 (2020).

[146] Wu, Z. et al. A comprehensive survey on graph neural networks. IEEE transactions
on neural networks and learning systems (2020).

[147] Rossi, E. et al. Temporal graph networks for deep learning on dynamic graphs (2020).
2006.10637.

[148] Sanchez-Gonzalez, A. et al. Learning to simulate complex physics with graph net-
works (2020). 2002.09405.

[149] Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A. & Battaglia, P. W. Learning mesh-
based simulation with graph networks (2021). 2010.03409.

[150] Bordes, A., Weston, J., Collobert, R. & Bengio, Y. Learning structured embeddings of
knowledge bases. In Twenty-Fifth AAAI Conference on Artificial Intelligence (2011).

[151] Hoff, P. D., Raftery, A. E. & Handcock, M. S. Latent space approaches to social
network analysis. Journal of the american Statistical association 97, 1090–1098
(2002).

2004.10746
2004.10746
1705.08415
1810.06111
1810.06111
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html
1910.00760
2108.11482
2006.10637
2002.09405
2010.03409

References 152

[152] Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word represen-
tations in vector space (2013). 1301.3781.

[153] Tang, D. et al. Learning sentiment-specific word embedding for twitter sentiment
classification. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 1555–1565 (2014).

[154] Belkin, M. & Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding
and clustering. In NIPS (2001).

[155] Cao, S., Lu, W. & Xu, Q. Grarep: Learning graph representations with global structural
information 891–900 (2015).

[156] Ou, M., Cui, P., Pei, J., Zhang, Z. & Zhu, W. Asymmetric transitivity preserving graph
embedding. In KDD (2016).

[157] Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks. CoRR
abs/1607.00653 (2016). URL http://arxiv.org/abs/1607.00653. 1607.00653.

[158] Zitnik, M. & Leskovec, J. Predicting multicellular function through multi-layer
tissue networks. CoRR abs/1707.04638 (2017). URL http://arxiv.org/abs/1707.04638.
1707.04638.

[159] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G. The graph
neural network model. IEEE transactions on neural networks 20, 61–80 (2008).

[160] Li, Y., Tarlow, D., Brockschmidt, M. & Zemel, R. Gated graph sequence neural
networks (2017). 1511.05493.

[161] Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds (2019).

[162] Ying, R. et al. Hierarchical graph representation learning with differentiable pooling
(2019). 1806.08804.

[163] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016).

[164] Veličković, P. et al. Graph attention networks (2018). URL https://openreview.net/
forum?id=rJXMpikCZ.

[165] Vaswani, A. et al. Attention is all you need (2017). 1706.03762.

[166] Li, Q., Han, Z. & Wu, X.-M. Deeper insights into graph convolutional networks for
semi-supervised learning (2018). 1801.07606.

[167] Wu, F. et al. Simplifying graph convolutional networks (2019). 1902.07153.

[168] Chen, M., Wei, Z., Huang, Z., Ding, B. & Li, Y. Simple and deep graph convolutional
networks (2020). 2007.02133.

[169] Derr, T., Ma, Y. & Tang, J. Signed graph convolutional network (2018). 1808.06354.

1301.3781
http://arxiv.org/abs/1607.00653
1607.00653
http://arxiv.org/abs/1707.04638
1707.04638
1511.05493
1806.08804
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
1706.03762
1801.07606
1902.07153
2007.02133
1808.06354

References 153

[170] Xu, D., Ruan, C., Korpeoglu, E., Kumar, S. & Achan, K. Inductive representation learn-
ing on temporal graphs (2020). URL https://openreview.net/forum?id=rJeW1yHYwH.
2002.07962.

[171] Ying, R., Bourgeois, D., You, J., Zitnik, M. & Leskovec, J. Gnnexplainer: Generating
explanations for graph neural networks (2019). 1903.03894.

[172] Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library.
In Wallach, H. et al. (eds.) Advances in Neural Information Processing Systems 32,
8024–8035 (Curran Associates, Inc., 2019). URL http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[173] Battaglia, P. W. et al. Relational inductive biases, deep learning, and graph networks
(2018). 1806.01261.

[174] Godwin*, J. et al. Jraph: A library for graph neural networks in jax. (2020). URL
http://github.com/deepmind/jraph.

[175] CSIRO’s Data61. Stellargraph machine learning library. https://github.com/
stellargraph/stellargraph (2018).

[176] Wang, M. et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315 (2019).

[177] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks:
Structure and dynamics. Physics reports 424, 175–308 (2006).

[178] Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. science 286,
509–512 (1999).

[179] Newman, M. E. Communities, modules and large-scale structure in networks. Nature
physics 8, 25–31 (2012).

[180] Fortunato, S. Community detection in graphs. Physics reports 486, 75–174 (2010).

[181] Benson, A. R., Gleich, D. F. & Leskovec, J. Higher-order organization of complex
networks. Science 353, 163–166 (2016).

[182] Lambiotte, R., Rosvall, M. & Scholtes, I. From networks to optimal higher-order
models of complex systems. Nature Physics 15, 313–320 (2019).

[183] Clauset, A., Moore, C. & Newman, M. E. Hierarchical structure and the prediction of
missing links in networks. Nature 453, 98 (2008).

[184] Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature
393, 440–442 (1998). URL http://dx.doi.org/10.1038/30918.

[185] Guimera, R. & Amaral, L. A. N. Functional cartography of complex metabolic
networks. nature 433, 895 (2005).

[186] Bassett, D. S. & Sporns, O. Network neuroscience. Nature neuroscience 20, 353
(2017).

https://openreview.net/forum?id=rJeW1yHYwH
2002.07962
1903.03894
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
1806.01261
http://github.com/deepmind/jraph
https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph
http://dx.doi.org/10.1038/30918

References 154

[187] Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and
dynamical properties of ecological mutualistic networks. Nature 500, 449 (2013).

[188] Barthelemy, M. The statistical physics of cities. Nature Reviews Physics 1, 406–415
(2019).

[189] Alves, L. G. A. et al. The nested structural organization of the worldwide trade multi-
layer network. Scientific Reports 9, 2866 (2019). URL https://doi.org/10.1038/s41598-
019-39340-w.

[190] Lazer, D. et al. Computational social science. Science 323, 721–723 (2009).

[191] Johnson, N. F. et al. New online ecology of adversarial aggregates: Isis and beyond.
Science 352, 1459–1463 (2016).

[192] Centola, D., Becker, J., Brackbill, D. & Baronchelli, A. Experimental evidence for
tipping points in social convention. Science 360, 1116–1119 (2018).

[193] Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in
complex networks. Physics reports 469, 93–153 (2008).

[194] Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic
processes in complex networks. Reviews of modern physics 87, 925 (2015).

[195] Matamalas, J. T., Arenas, A. & Gómez, S. Effective approach to epidemic containment
using link equations in complex networks. Science advances 4, eaau4212 (2018).

[196] Yang, Y., Nishikawa, T. & Motter, A. E. Small vulnerable sets determine large network
cascades in power grids. Science 358, eaan3184 (2017).

[197] Vosoughi, S., Roy, D. & Aral, S. The spread of true and false news online. Science
359, 1146–1151 (2018).

[198] Stella, M., Ferrara, E. & De Domenico, M. Bots increase exposure to negative and
inflammatory content in online social systems. Proceedings of the National Academy
of Sciences 115, 12435–12440 (2018).

[199] Johnson, N. et al. Hidden resilience and adaptive dynamics of the global online hate
ecology. Nature 573, 261–265 (2019).

[200] Baronchelli, A. The emergence of consensus: a primer. Royal Society open science 5,
172189 (2018).

[201] Kitsak, M. et al. Identification of influential spreaders in complex networks. Nature
physics 6, 888 (2010).

[202] Morone, F. & Makse, H. A. Influence maximization in complex networks through
optimal percolation. Nature 524, 65 (2015).

[203] Morone, F., Min, B., Bo, L., Mari, R. & Makse, H. A. Collective influence algorithm
to find influencers via optimal percolation in massively large social media. Scientific
reports 6, 30062 (2016).

https://doi.org/10.1038/s41598-019-39340-w
https://doi.org/10.1038/s41598-019-39340-w

References 155

[204] Braunstein, A., Dall’Asta, L., Semerjian, G. & Zdeborová, L. Network dismantling.
Proceedings of the National Academy of Sciences 113, 12368–12373 (2016). URL
http://dx.doi.org/10.1073/pnas.1605083113.

[205] Ren, X.-L., Gleinig, N., Helbing, D. & Antulov-Fantulin, N. Generalized network
dismantling. Proceedings of the National Academy of Sciences 116, 6554–6559
(2019).

[206] Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic
cascade of failures in interdependent networks. Nature 464, 1025 (2010).

[207] Bashan, A., Berezin, Y., Buldyrev, S. V. & Havlin, S. The extreme vulnerability of
interdependent spatially embedded networks. Nature Physics 9, 667 (2013).

[208] Osat, S., Faqeeh, A. & Radicchi, F. Optimal percolation on multiplex networks. Nature
communications 8, 1540 (2017).

[209] Tremblay, J. et al. Deep object pose estimation for semantic robotic grasping of
household objects. In Conference on Robot Learning (CoRL) (2018). URL https:
//arxiv.org/abs/1809.10790.

[210] Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B. & Song, L. Learning combinatorial opti-
mization algorithms over graphs. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, 6351–6361 (Curran Associates
Inc., Red Hook, NY, USA, 2017).

[211] Vaswani, A. et al. Attention is all you need. In Advances in neural information
processing systems, 5998–6008 (2017).

[212] Paszke, A. et al. Automatic differentiation in pytorch (2017).

[213] Peixoto, T. P. The graph-tool python library. figshare (2014). URL http://figshare.
com/articles/graph_tool/1164194.

[214] Csardi, G. & Nepusz, T. The igraph software package for complex network research.
InterJournal Complex Systems, 1695 (2006). URL http://igraph.sf.net.

[215] Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics,
and function using NetworkX. In Proceedings of the 7th Python in Science Conference
(SciPy2008), 11–15 (Pasadena, CA USA, 2008).

[216] Clusella, P., Grassberger, P., Pérez-Reche, F. J. & Politi, A. Immunization and targeted
destruction of networks using explosive percolation. Phys. Rev. Lett. 117, 208301
(2016). URL https://link.aps.org/doi/10.1103/PhysRevLett.117.208301.

[217] Zdeborová, L., Zhang, P. & Zhou, H.-J. Fast and simple decycling and dismantling of
networks. Scientific Reports 6 (2016). URL http://dx.doi.org/10.1038/srep37954.

[218] Ribeiro, H. V., Alves, L. G. A., Martins, A. F., Lenzi, E. K. & Perc, M. The dynamical
structure of political corruption networks. Journal of Complex Networks 6, 989–1003
(2018). URL https://doi.org/10.1093/comnet/cny002. http://oup.prod.sis.lan/comnet/
article-pdf/6/6/989/28007544/cny002.pdf.

http://dx.doi.org/10.1073/pnas.1605083113
https://arxiv.org/abs/1809.10790
https://arxiv.org/abs/1809.10790
http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194
http://igraph.sf.net
https://link.aps.org/doi/10.1103/PhysRevLett.117.208301
http://dx.doi.org/10.1038/srep37954
https://doi.org/10.1093/comnet/cny002
http://oup.prod.sis.lan/comnet/article-pdf/6/6/989/28007544/cny002.pdf
http://oup.prod.sis.lan/comnet/article-pdf/6/6/989/28007544/cny002.pdf

References 156

[219] Holme, P., Kim, B. J., Yoon, C. N. & Han, S. K. Attack vulnerability of complex
networks. Phys. Rev. E 65, 056109 (2002). URL https://link.aps.org/doi/10.1103/
PhysRevE.65.056109.

[220] Qi, D. & Majda, A. J. Using machine learning to predict extreme events in complex
systems. PNAS 117, 52–59 (2020).

[221] Grassia, M., De Domenico, M. & Mangioni, G. Machine learning dismantling
and early-warning signals of disintegration in complex systems (2021). URL https:
//doi.org/10.5281/zenodo.5105912.

[222] CAIDA. Ipv4 routed /24 as links dataset. URL http://www.caida.org/data/active/ipv4_
routed_topology_aslinks_dataset.xml.

[223] Advogato network dataset – KONECT (2017). URL http://konect.cc/networks/
advogato.

[224] Massa, P., Salvetti, M. & Tomasoni, D. Bowling alone and trust decline in social
network sites. In Proc. Int. Conf. Dependable, Autonomic and Secure Computing,
658–663 (2009).

[225] Caenorhabditis elegans network dataset – KONECT (2017). URL http://konect.cc/
networks/arenas-meta.

[226] Duch, J. & Arenas, A. Community detection in complex networks using extremal
optimization. Phys. Rev. E 72, 027104 (2005).

[227] Google.com internal network dataset – KONECT (2017). URL http://konect.cc/
networks/cfinder-google.

[228] Palla, G., Farkas, I. J., Pollner, P., Derényi, I. & Vicsek, T. Directed network modules.
New J. Phys. 9, 186 (2007).

[229] Citeseer network dataset – KONECT (2017). URL http://konect.cc/networks/citeseer.

[230] Bollacker, K., Lawrence, S. & Giles, C. L. CiteSeer: An autonomous Web agent for
automatic retrieval and identification of interesting publications. In Proc. Int. Conf. on
Autonomous Agents, 116–123 (1998).

[231] Dblp co-authorship network dataset – KONECT (2017). URL http://konect.cc/
networks/com-dblp.

[232] Yang, J. & Leskovec, J. Defining and evaluating network communities based on
ground-truth. In Proc. ACM SIGKDD Workshop on Mining Data Semantics, 3 (ACM,
2012).

[233] Dblp network dataset – KONECT (2017). URL http://konect.cc/networks/dblp-cite.

[234] Ley, M. The DBLP computer science bibliography: Evolution, research issues,
perspectives. In Proc. Int. Symposium on String Processing and Information Retrieval,
1–10 (2002).

https://link.aps.org/doi/10.1103/PhysRevE.65.056109
https://link.aps.org/doi/10.1103/PhysRevE.65.056109
https://doi.org/10.5281/zenodo.5105912
https://doi.org/10.5281/zenodo.5105912
http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml
http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml
http://konect.cc/networks/advogato
http://konect.cc/networks/advogato
http://konect.cc/networks/arenas-meta
http://konect.cc/networks/arenas-meta
http://konect.cc/networks/cfinder-google
http://konect.cc/networks/cfinder-google
http://konect.cc/networks/citeseer
http://konect.cc/networks/com-dblp
http://konect.cc/networks/com-dblp
http://konect.cc/networks/dblp-cite

References 157

[235] Digg friends network dataset – KONECT (2017). URL http://konect.cc/networks/digg-
friends.

[236] Hogg, T. & Lerman, K. Social dynamics of Digg. EPJ Data Science 1 (2012).

[237] Caenorhabditis elegans (neural) network dataset – KONECT (2018). URL http:
//konect.cc/networks/dimacs10-celegansneural.

[238] White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous
system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond 314, 1–340
(1986).

[239] Political blogs network dataset – KONECT (2018). URL http://konect.cc/networks/
dimacs10-polblogs.

[240] Adamic, L. A. & Glance, N. The political blogosphere and the 2004 US election:
Divided they blog. In Proc. Int. Workshop on Link Discov., 36–43 (2005).

[241] Douban network dataset – KONECT (2017). URL http://konect.cc/networks/douban.

[242] Zafarani, R. & Liu, H. Social computing data repository at ASU (2009). URL
http://socialcomputing.asu.edu.

[243] Rossi, R. A. & Ahmed, N. K. The network data repository with interactive graph
analytics and visualization. In AAAI (2015). URL http://networkrepository.com.

[244] Twitter lists network dataset – KONECT (2017). URL http://konect.cc/networks/ego-
twitter.

[245] McAuley, J. & Leskovec, J. Learning to discover social circles in ego networks. In
Advances in Neural Information Processing Systems, 548–556 (2012).

[246] Eu institution network dataset – KONECT (2017). URL http://konect.cc/networks/
email-EuAll.

[247] Leskovec, J., Kleinberg, J. & Faloutsos, C. Graph evolution: Densification and
shrinking diameters. ACM Trans. Knowledge Discovery from Data 1, 1–40 (2007).

[248] Matke, C., Medjroubi, W. & Kleinhans, D. SciGRID - An Open Source Reference
Model for the European Transmission Network (v0.2) (2016). URL http://www.
scigrid.de.

[249] Florida ecosystem dry network dataset – KONECT (2017). URL http://konect.cc/
networks/foodweb-baydry.

[250] Ulanowicz, R. E., Heymans, J. J. & Egnotovich, M. S. Network analysis of trophic
dynamics in South Florida ecosystems, FY 99: The graminoid ecosystem. Annual
Report to the United States Geological Service Biological Resources Division Ref.
No.[UMCES] CBL 00-0176, Chesapeake Biological Laboratory, University of Mary-
land (2000).

[251] Florida ecosystem wet network dataset – KONECT (2017). URL http://konect.cc/
networks/foodweb-baywet.

http://konect.cc/networks/digg-friends
http://konect.cc/networks/digg-friends
http://konect.cc/networks/dimacs10-celegansneural
http://konect.cc/networks/dimacs10-celegansneural
http://konect.cc/networks/dimacs10-polblogs
http://konect.cc/networks/dimacs10-polblogs
http://konect.cc/networks/douban
http://socialcomputing.asu.edu
http://networkrepository.com
http://konect.cc/networks/ego-twitter
http://konect.cc/networks/ego-twitter
http://konect.cc/networks/email-EuAll
http://konect.cc/networks/email-EuAll
http://www.scigrid.de
http://www.scigrid.de
http://konect.cc/networks/foodweb-baydry
http://konect.cc/networks/foodweb-baydry
http://konect.cc/networks/foodweb-baywet
http://konect.cc/networks/foodweb-baywet

References 158

[252] Wiegmans, B. Gridkit: European and north-american extracts (2016).

[253] Hyves network dataset – KONECT (2017). URL http://konect.cc/networks/hyves.

[254] Colizza, V., Pastor-Satorras, R. & Vespignani, A. Reaction–diffusion processes and
metapopulation models in heterogeneous networks. Nature Physics 3, 276–282 (2007).

[255] Batagelj, V. & Mrvar, A. Pajek datasets. URL http://vlado.fmf.uni-lj.si/pub/networks/
data/.

[256] Internet topology network dataset – KONECT (2017). URL http://konect.cc/networks/
topology.

[257] Zhang, B., Liu, R., Massey, D. & Zhang, L. Collecting the Internet AS-level topology.
SIGCOMM Computer Communication Review 35, 53–61 (2005).

[258] Ciaodvd trust network dataset – KONECT (2018). URL http://konect.cc/networks/
librec-ciaodvd-trust.

[259] Guo, G., Zhang, J., Thalmann, D. & Yorke-Smith, N. ETAF: An extended trust
antecedents framework for trust prediction. In Proc. Int. Conf. Adv. in Soc. Netw. Anal.
and Min., 540–547 (2014).

[260] Filmtrust trust network dataset – KONECT (2018). URL http://konect.cc/networks/
librec-filmtrust-trust.

[261] Guo, G., Zhang, J. & Yorke-Smith, N. A novel Bayesian similarity measure for
recommender systems. In Proc. Int. Joint Conf. on Artif. Intell., 2619–2625 (2013).

[262] Linux network dataset – KONECT (2017). URL http://konect.cc/networks/linux.

[263] Brightkite network dataset – KONECT (2017). URL http://konect.cc/networks/loc-
brightkite_edges.

[264] Cho, E., Myers, S. A. & Leskovec, J. Friendship and mobility: User movement in
location-based social networks. In Proc. Int. Conf. on Knowledge Discovery and Data
Mining, 1082–1090 (2011).

[265] Gowalla network dataset – KONECT (2017). URL http://konect.cc/networks/loc-
gowalla_edges.

[266] De Domenico, M., Solé-Ribalta, A., Gómez, S. & Arenas, A. Navigability of inter-
connected networks under random failures. Proceedings of the National Academy of
Sciences 111, 8351–8356 (2014). URL https://www.pnas.org/content/111/23/8351.
https://www.pnas.org/content/111/23/8351.full.pdf.

[267] Human protein (stelzl) network dataset – KONECT (2017). URL http://konect.cc/
networks/maayan-Stelzl.

[268] Stelzl, U. et al. A human protein–protein interaction network: A resource for annotat-
ing the proteome. Cell 122, 957–968 (2005).

http://konect.cc/networks/hyves
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://konect.cc/networks/topology
http://konect.cc/networks/topology
http://konect.cc/networks/librec-ciaodvd-trust
http://konect.cc/networks/librec-ciaodvd-trust
http://konect.cc/networks/librec-filmtrust-trust
http://konect.cc/networks/librec-filmtrust-trust
http://konect.cc/networks/linux
http://konect.cc/networks/loc-brightkite_edges
http://konect.cc/networks/loc-brightkite_edges
http://konect.cc/networks/loc-gowalla_edges
http://konect.cc/networks/loc-gowalla_edges
https://www.pnas.org/content/111/23/8351
https://www.pnas.org/content/111/23/8351.full.pdf
http://konect.cc/networks/maayan-Stelzl
http://konect.cc/networks/maayan-Stelzl

References 159

[269] Human protein (figeys) network dataset – KONECT (2017). URL http://konect.cc/
networks/maayan-figeys.

[270] Ewing, R. M. et al. Large-scale mapping of human protein–protein interactions by
mass spectrometry. Molecular Systems Biology 3 (2007).

[271] Little rock lake network dataset – KONECT (2017). URL http://konect.cc/networks/
maayan-foodweb.

[272] Martinez, N. D., Magnuson, J. J., Kratz, T. & Sierszen, M. Artifacts or attributes?
effects of resolution on the Little Rock Lake food web. Ecological Monographs 61,
367–392 (1991).

[273] Human protein (vidal) network dataset – KONECT (2017). URL http://konect.cc/
networks/maayan-vidal.

[274] Rual, J.-F. et al. Towards a proteome-scale map of the human protein–protein interac-
tion network. Nature 1173–1178 (2005).

[275] Crime network dataset – KONECT (2017). URL http://konect.cc/networks/moreno_
crime.

[276] Protein network dataset – KONECT (2017). URL http://konect.cc/networks/moreno_
propro.

[277] Coulomb, S., Bauer, M., Bernard, D. & Marsolier-Kergoat, M.-C. Gene essentiality
and the topology of protein interaction networks. Proceedings of the Royal Society B:
Biological Sciences 272, 1721–1725 (2005).

[278] Han, J.-D. J., Dupuy, D., Bertin, N., Cusick, M. E. & Vidal, M. Effect of sampling on
topology predictions of protein-protein interaction networks. Nature Biotechnology
23, 839–844 (2005).

[279] Stumpf, M. P., Wiuf, C. & May, R. M. Subnets of scale-free networks are not scale-
free: Sampling properties of networks. Proceedings of the National Academy of
Sciences of the United States of America 102, 4221–4224 (2005).

[280] Train bombing network dataset – KONECT (2017). URL http://konect.cc/networks/
moreno_train.

[281] Hayes, B. Connecting the dots. can the tools of graph theory and social-network
studies unravel the next big plot? American Scientist 94, 400–404 (2006).

[282] Digg network dataset – KONECT (2017). URL http://konect.cc/networks/munmun_
digg_reply.

[283] Choudhury, M. D., Sundaram, H., John, A. & Seligmann, D. D. Social synchrony:
Predicting mimicry of user actions in online social media. In Proc. Int. Conf. on
Comput. Science and Engineering, 151–158 (2009).

[284] Twitter (icwsm) network dataset – KONECT (2017). URL http://konect.cc/networks/
munmun_twitter_social.

http://konect.cc/networks/maayan-figeys
http://konect.cc/networks/maayan-figeys
http://konect.cc/networks/maayan-foodweb
http://konect.cc/networks/maayan-foodweb
http://konect.cc/networks/maayan-vidal
http://konect.cc/networks/maayan-vidal
http://konect.cc/networks/moreno_crime
http://konect.cc/networks/moreno_crime
http://konect.cc/networks/moreno_propro
http://konect.cc/networks/moreno_propro
http://konect.cc/networks/moreno_train
http://konect.cc/networks/moreno_train
http://konect.cc/networks/munmun_digg_reply
http://konect.cc/networks/munmun_digg_reply
http://konect.cc/networks/munmun_twitter_social
http://konect.cc/networks/munmun_twitter_social

References 160

[285] Choudhury, M. D. et al. How does the data sampling strategy impact the discovery of
information diffusion in social media? In ICWSM, 34–41 (2010).

[286] Openflights network dataset – KONECT (2017). URL http://konect.cc/networks/
opsahl-openflights.

[287] Opsahl, T., Agneessens, F. & Skvoretz, J. Node centrality in weighted networks:
Generalizing degree and shortest paths. Social Networks 3, 245–251 (2010).

[288] Us power grid network dataset – KONECT (2017). URL http://konect.cc/networks/
opsahl-powergrid.

[289] Uc irvine messages network dataset – KONECT (2017). URL http://konect.cc/
networks/opsahl-ucsocial.

[290] Opsahl, T. & Panzarasa, P. Clustering in weighted networks. Social Networks 31,
155–163 (2009).

[291] Leskovec, J., Kleinberg, J. & Faloutsos, C. Graphs over time: Densification laws,
shrinking diameters and possible explanations. In Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD
’05, 177–187 (Association for Computing Machinery, New York, NY, USA, 2005).
URL https://doi.org/10.1145/1081870.1081893.

[292] Ripeanu, M., Foster, I. & Iamnitchi, A. Mapping the Gnutella network: Properties of
large-scale peer-to-peer systems and implications for system design. IEEE Internet
Comput. J. 6 (2002).

[293] Leskovec, J. & Krevl, A. SNAP Datasets: Stanford large network dataset collection
(2014). URL http://snap.stanford.edu/data.

[294] Gnutella network dataset – KONECT (2017). URL http://konect.cc/networks/p2p-
Gnutella31.

[295] Erdős network dataset – KONECT (2018). URL http://konect.cc/networks/pajek-
erdos.

[296] Catster/dogster familylinks/friendships network dataset – KONECT (2017). URL
http://konect.cc/networks/petster-carnivore.

[297] Hamsterster full network dataset – KONECT (2017). URL http://konect.cc/networks/
petster-hamster.

[298] Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G. & Teng, S.-H. On trip planning
queries in spatial databases. In Bauzer Medeiros, C., Egenhofer, M. J. & Bertino,
E. (eds.) Advances in Spatial and Temporal Databases, 273–290 (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005).

[299] Penn State University Libraries. Digital chart of the world server (2006). URL
http://www.maproom.psu.edu/dcw/.

[300] Brinkhoff, T. A framework for generating network-based moving objects. GeoInfor-
matica 6 (2000).

http://konect.cc/networks/opsahl-openflights
http://konect.cc/networks/opsahl-openflights
http://konect.cc/networks/opsahl-powergrid
http://konect.cc/networks/opsahl-powergrid
http://konect.cc/networks/opsahl-ucsocial
http://konect.cc/networks/opsahl-ucsocial
https://doi.org/10.1145/1081870.1081893
http://snap.stanford.edu/data
http://konect.cc/networks/p2p-Gnutella31
http://konect.cc/networks/p2p-Gnutella31
http://konect.cc/networks/pajek-erdos
http://konect.cc/networks/pajek-erdos
http://konect.cc/networks/petster-carnivore
http://konect.cc/networks/petster-hamster
http://konect.cc/networks/petster-hamster
http://www.maproom.psu.edu/dcw/

References 161

[301] Route views network dataset – KONECT (2017). URL http://konect.cc/networks/
as20000102.

[302] Slashdot threads network dataset – KONECT (2017). URL http://konect.cc/networks/
slashdot-threads.

[303] Gómez, V., Kaltenbrunner, A. & López, V. Statistical analysis of the social network
and discussion threads in Slashdot. In Proc. Int. World Wide Web Conf., 645–654
(2008).

[304] Slashdot zoo network dataset – KONECT (2017). URL http://konect.cc/networks/
slashdot-zoo.

[305] Kunegis, J., Lommatzsch, A. & Bauckhage, C. The Slashdot Zoo: Mining a social
network with negative edges. In Proc. Int. World Wide Web Conf., 741–750 (2009).
URL http://uni-koblenz.de/~kunegis/paper/kunegis-slashdot-zoo.pdf.

[306] Jdk dependency network dataset – KONECT (2016). URL http://konect.cc/networks/
subelj_jdk.

[307] Jung and javax dependency network dataset – KONECT (2017). URL http://konect.
cc/networks/subelj_jung-j.

[308] Šubelj, L. & Bajec, M. Software systems through complex networks science: Review,
analysis and applications. In Proc. Int. Workshop on Software Mining, 9–16 (2012).

[309] De Nooy, W., Mrvar, A. & Batagelj, V. Exploratory social network analysis with
Pajek, vol. 27 (Cambridge University Press, 2011).

[310] Notre dame network dataset – KONECT (2017). URL http://konect.cc/networks/web-
NotreDame.

[311] Stanford network dataset – KONECT (2017). URL http://konect.cc/networks/web-
Stanford.

[312] Leskovec, J., Lang, K., Dasgupta, A. & Mahoney, M. W. Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters.
Internet Mathematics 6, 29–123 (2009).

[313] Boldi, P., Codenotti, B., Santini, M. & Vigna, S. UbiCrawler: A scalable fully
distributed web crawler. Software: Practice & Experience 34, 711–726 (2004).

[314] Boldi, P., Rosa, M., Santini, M. & Vigna, S. Layered label propagation: A multireso-
lution coordinate-free ordering for compressing social networks. In WWW, 587–596
(2011).

[315] Wikipedia links (li) network dataset – KONECT (2018). URL http://konect.cc/
networks/wikipedia_link_li.

[316] Wikipedia links (kn) network dataset – KONECT (2018). URL http://konect.cc/
networks/wikipedia_link_kn.

http://konect.cc/networks/as20000102
http://konect.cc/networks/as20000102
http://konect.cc/networks/slashdot-threads
http://konect.cc/networks/slashdot-threads
http://konect.cc/networks/slashdot-zoo
http://konect.cc/networks/slashdot-zoo
http://uni-koblenz.de/~kunegis/paper/kunegis-slashdot-zoo.pdf
http://konect.cc/networks/subelj_jdk
http://konect.cc/networks/subelj_jdk
http://konect.cc/networks/subelj_jung-j
http://konect.cc/networks/subelj_jung-j
http://konect.cc/networks/web-NotreDame
http://konect.cc/networks/web-NotreDame
http://konect.cc/networks/web-Stanford
http://konect.cc/networks/web-Stanford
http://konect.cc/networks/wikipedia_link_li
http://konect.cc/networks/wikipedia_link_li
http://konect.cc/networks/wikipedia_link_kn
http://konect.cc/networks/wikipedia_link_kn

References 162

[317] Wordnet network dataset – KONECT (2017). URL http://konect.cc/networks/wordnet-
words.

[318] Fellbaum, C. (ed.) WordNet: an Electronic Lexical Database (MIT Press, 1998).

[319] Muscoloni, A., Thomas, J. M., Ciucci, S., Bianconi, G. & Cannistraci, C. V. Machine
learning meets complex networks via coalescent embedding in the hyperbolic space.
Nature communications 8, 1–19 (2017).

[320] Boguna, M., Krioukov, D. & Claffy, K. C. Navigability of complex networks. Nature
Physics 5, 74–80 (2009).

[321] da F. Costa, L., Rodrigues, F. A., Travieso, G. & Boas, P. R. V. Characterization of
complex networks: A survey of measurements. Advances in Physics 56, 167–242
(2007). URL https://doi.org/10.1080/00018730601170527. https://doi.org/10.1080/
00018730601170527.

[322] Latora, V., Nicosia, V. & Russo, G. Complex Networks: Principles, Methods and
Applications (Cambridge University Press, USA, 2017).

[323] Borgatti, S. P. & Everett, M. G. A graph-theoretic perspective on centrality. Social
Networks 28, 466–484 (2006). URL https://www.sciencedirect.com/science/article/
pii/S0378873305000833.

[324] Barrat, A., Barthélemy, M., Pastor-Satorras, R. & Vespignani, A. The architecture
of complex weighted networks. Proceedings of the National Academy of Sciences
101, 3747–3752 (2004). URL https://www.pnas.org/content/101/11/3747. https:
//www.pnas.org/content/101/11/3747.full.pdf.

[325] Das, K., Samanta, S. & Pal, M. Study on centrality measures in social networks: a
survey. Social Network Analysis and Mining 8 (2018).

[326] Carchiolo, V., Longheu, A., Malgeri, M. & Mangioni, G. The cost of trust in the
dynamics of best attachment. Computing & Informatics 34 (2015).

[327] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Climbing Rank-
ing Position via Long-Distance Backlinks: 11th International Conference, IDCS 2018,
Tokyo, Japan, October 11-13, 2018, Proceedings, 100–108 (Springer International
Publishing, 2018).

[328] Carchiolo, V., Longheu, A., Malgeri, M. & Mangioni, G. Gain the best reputation in
trust networks. In Brazier, F., Nieuwenhuis, K., Pavlin, G., Warnier, M. & Badica,
C. (eds.) Intelligent Distributed Computing V, vol. 382 of Studies in Computational
Intelligence, 213–218 (Springer Berlin Heidelberg, 2012). URL http://dx.doi.org/10.
1007/978-3-642-24013-3_21.

[329] Olsen, M. & Viglas, A. On the approximability of the link building problem. Theor.
Comput. Sci. 518, 96–116 (2014). URL http://dx.doi.org/10.1016/j.tcs.2013.08.003.

[330] Olsen, M. The computational complexity of link building. In Hu, X. & Wang, J.
(eds.) Computing and Combinatorics, 119–129 (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008).

http://konect.cc/networks/wordnet-words
http://konect.cc/networks/wordnet-words
https://doi.org/10.1080/00018730601170527
https://doi.org/10.1080/00018730601170527
https://doi.org/10.1080/00018730601170527
https://www.sciencedirect.com/science/article/pii/S0378873305000833
https://www.sciencedirect.com/science/article/pii/S0378873305000833
https://www.pnas.org/content/101/11/3747
https://www.pnas.org/content/101/11/3747.full.pdf
https://www.pnas.org/content/101/11/3747.full.pdf
http://dx.doi.org/10.1007/978-3-642-24013-3_21
http://dx.doi.org/10.1007/978-3-642-24013-3_21
http://dx.doi.org/10.1016/j.tcs.2013.08.003

References 163

[331] Olsen, M. Maximizing pagerank with new backlinks. In Calamoneri, T. & Diaz,
J. (eds.) Algorithms and Complexity, 37–48 (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010).

[332] Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A. & Vandergheynst, P. Geometric
deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine 34,
18–42 (2017).

[333] Lee, J. B., Rossi, R. A., Kim, S., Ahmed, N. K. & Koh, E. Attention models in graphs:
A survey. ACM Transactions on Knowledge Discovery from Data (TKDD) 13, 1–25
(2019).

[334] ©Google. Facts about google and competition. URL https://web.archive.org/web/
20111104131332/https://www.google.com/competition/howgooglesearchworks.
html.

[335] Richardson, M. & Domingos, P. The Intelligent Surfer: Probabilistic Combination
of Link and Content Information in PageRank. In Advances in Neural Information
Processing Systems 14 (MIT Press, 2002). URL http://citeseer.ist.psu.edu/460350.
html.

[336] Kamvar, S., Kamvar, A., Haveliwala, T. & Golub, G. Adaptive methods for the
computation of pagerank. Tech. Rep., Stanford University (2003).

[337] Bianchini, M., Gori, M. & Scarselli, F. Inside pagerank. ACM Trans. Internet Technol.
5, 92–128 (2005). URL http://doi.acm.org/10.1145/1052934.1052938.

[338] Berkhin, P. A survey on pagerank computing. Internet Mathematics 2, 73–120
(2005). URL http://www.projecteuclid.org/DPubS?verb=Display&version=1.0&
#38;service=UI&handle=euclid.im/1128530802&page=record.

[339] Buzzanca, M., Carchiolo, V., Longheu, A., Malgeri, M. & Mangioni, G. Black hole
metric: Overcoming the pagerank normalization problem. CoRR abs/1802.05453
(2018). URL http://arxiv.org/abs/1802.05453. 1802.05453.

[340] Csáji, B. C., Jungers, R. M. & Blondel, V. D. Pagerank optimization by edge selection.
CoRR abs/0911.2280 (2009).

[341] de Kerchove, C., Ninove, L. & Dooren, P. V. Maximizing pagerank via outlinks. CoRR
abs/0711.2867 (2007).

[342] Zhirov, A. O., Zhirov, O. V. & Shepelyansky, D. L. Two-dimensional ranking of
wikipedia articles. CoRR abs/1006.4270 (2010). URL http://arxiv.org/abs/1006.4270.

[343] Roa-Valverde, A. J. & Sicilia, M.-A. A survey of approaches for ranking on the web
of data. Inf. Retr. 17, 295–325 (2014). URL http://dx.doi.org/10.1007/s10791-014-
9240-0.

[344] Gupta, P. et al. Wtf: The who to follow service at twitter. In Proceedings of the 22Nd
International Conference on World Wide Web, WWW ’13, 505–514 (International
World Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
Switzerland, 2013). URL http://dl.acm.org/citation.cfm?id=2488388.2488433.

https://web.archive.org/web/20111104131332/https://www.google.com/competition/howgooglesearchworks.html
https://web.archive.org/web/20111104131332/https://www.google.com/competition/howgooglesearchworks.html
https://web.archive.org/web/20111104131332/https://www.google.com/competition/howgooglesearchworks.html
http://citeseer.ist.psu.edu/460350.html
http://citeseer.ist.psu.edu/460350.html
http://doi.acm.org/10.1145/1052934.1052938
http://www.projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.im/1128530802&page=record
http://www.projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.im/1128530802&page=record
http://arxiv.org/abs/1802.05453
1802.05453
http://arxiv.org/abs/1006.4270
http://dx.doi.org/10.1007/s10791-014-9240-0
http://dx.doi.org/10.1007/s10791-014-9240-0
http://dl.acm.org/citation.cfm?id=2488388.2488433

References 164

[345] Carchiolo, V., Longheu, A. & Malgeri, M. Reliable peers and useful resources:
Searching for the best personalised learning path in a trust- and recommendation-
aware environment. Information Sciences 180, 1893–1907 (2010). Special Issue on
Intelligent Distributed Information Systems.

[346] Serrano-Guerrero, J., Romero, F. & Olivas, J. Hiperion: A fuzzy approach for recom-
mending educational activities based on the acquisition of competences. Information
Sciences – (2013).

[347] Jiang, B., Zhao, S. & Yin, J. Self-organized natural roads for predicting traffic flow:
a sensitivity study. Journal of Statistical Mechanics: Theory and Experiment 2008,
P07008 (2008). URL http://dx.doi.org/10.1088/1742-5468/2008/07/P07008.

[348] Chen, L., Chen, G. & Wang, F. Recommender systems based on user reviews: The
state of the art. User Modeling and User-Adapted Interaction 25, 99–154 (2015).
URL http://dx.doi.org/10.1007/s11257-015-9155-5.

[349] Carchiolo, V., Longheu, A., Malgeri, M. & Mangioni, G. Searching for ex-
perts in a context-aware recommendation network. Computers in Human Behav-
ior 51, 1086–1091 (2015). URL http://www.sciencedirect.com/science/article/pii/
S0747563215002186. Computing for Human Learning, Behaviour and Collaboration
in the Social and Mobile Networks Era.

[350] Gleich, D. F. Pagerank beyond the web. CoRR abs/1407.5107 (2014). URL http:
//arxiv.org/abs/1407.5107. 1407.5107.

[351] Avrachenkov, K. & Litvak, N. The effect of new links on google pagerank. Stochastic
Models 22, 319–331 (2006). URL http://doc.utwente.nl/63648/.

[352] Olsen, M., Viglas, A. & Zvedeniouk, I. An approximation algorithm for the link
building problem. CoRR abs/1204.1369 (2012). URL http://arxiv.org/abs/1204.1369.

[353] Carchiolo, V., Longheu, A., Malgeri, M. & Mangioni, G. A heuristic to explore
trust networks dynamics. In Zavoral, F., Jung, J. J. & Badica, C. (eds.) Intelligent
Distributed Computing VII, 67–76 (Springer International Publishing, Cham, 2014).

[354] Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Long distance
in-links for ranking enhancement. In Del Ser, J. et al. (eds.) Intelligent Distributed
Computing XII, 3–10 (Springer International Publishing, Cham, 2018).

[355] Marsh, S. Formalising trust as a computational concept. Tech. Rep., University of
Stirling (1994). PhD thesis.

[356] Walter, F. E., Battiston, S. & Schweitzer, F. A model of a trust-based recommendation
system on a social network. JOURNAL OF AUTONOMOUS AGENTS AND MULTI-
AGENT SYSTEMS 16, 57 (2008). URL doi:10.1007/s10458-007-9021-x.

[357] Buzzanca, M., Carchiolo, V., Longheu, A., Malgeri, M. & Mangioni, G. Dealing
with the best attachment problem via heuristics. In Badica, C. e. a. (ed.) Intelligent
Distributed Computing X, vol. 678, 205–214 (Springer International Publishing, Cham,
2017).

http://dx.doi.org/10.1088/1742-5468/2008/07/P07008
http://dx.doi.org/10.1007/s11257-015-9155-5
http://www.sciencedirect.com/science/article/pii/S0747563215002186
http://www.sciencedirect.com/science/article/pii/S0747563215002186
http://arxiv.org/abs/1407.5107
http://arxiv.org/abs/1407.5107
1407.5107
http://doc.utwente.nl/63648/
http://arxiv.org/abs/1204.1369
doi:10.1007/s10458-007-9021-x

References 165

[358] Carchiolo, V., Longheu, A., Malgeri, M. & Mangioni, G. The effect of topology on
the attachment process in trust networks. In Intelligent Distributed Computing VIII,
377–382 (Springer, 2015).

[359] Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. k-core organization of complex
networks. Phys. Rev. Lett. 96, 040601 (2006).

[360] Goh, K.-I., Kahng, B. & Kim, D. Universal behavior of load distribution in scale-
free networks. Physical Review Letters 87 (2001). URL http://dx.doi.org/10.1103/
PhysRevLett.87.278701.

[361] arxiv hep-ph network dataset – KONECT (2017). URL http://konect.cc/networks/cit-
HepPh.

[362] arxiv hep-th network dataset – KONECT (2017). URL http://konect.cc/networks/cit-
HepTh.

[363] Google+ (nips) network dataset – KONECT (2017). URL http://konect.cc/networks/
ego-gplus.

[364] Foldoc network dataset – KONECT (2017). URL http://konect.cc/networks/foldoc.

[365] Batagelj, V., Mrvar, A. & ZaveÅ¡nik, M. Network analysis of texts. In Language
Technologies, 143–148 (2002).

[366] Celli, F., Lascio, F. M. L. D., Magnani, M., Pacelli, B. & Rossi, L. Social Network
Data and Practices: the case of Friendfeed. In International Conference on Social
Computing, Behavioral Modeling and Prediction, Lecture Notes in Computer Science
(Springer Berlin Heidelberg, 2010).

[367] Magnani, M. & Rossi, L. The ML-Model for Multi-layer Social Networks. In
ASONAM, 5–12 (IEEE Computer Society, 2011).

[368] Blogs network dataset – KONECT (2017). URL http://konect.cc/networks/moreno_
blogs.

[369] Adolescent health network dataset – KONECT (2017). URL http://konect.cc/networks/
moreno_health.

[370] Moody, J. Peer influence groups: Identifying dense clusters in large networks. Soc.
Netw. 23, 261–283 (2001).

[371] Openflights (patokallio) network dataset – KONECT (2017). URL http://konect.cc/
networks/openflights.

[372] Physicians network dataset – KONECT (2017). URL http://konect.cc/networks/
moreno_innovation.

[373] Coleman, J., Katz, E. & Menzel, H. The diffusion of an innovation among physicians.
Sociometry 253–270 (1957).

[374] Epinions network dataset – KONECT (2017). URL http://konect.cc/networks/soc-
Epinions1.

http://dx.doi.org/10.1103/PhysRevLett.87.278701
http://dx.doi.org/10.1103/PhysRevLett.87.278701
http://konect.cc/networks/cit-HepPh
http://konect.cc/networks/cit-HepPh
http://konect.cc/networks/cit-HepTh
http://konect.cc/networks/cit-HepTh
http://konect.cc/networks/ego-gplus
http://konect.cc/networks/ego-gplus
http://konect.cc/networks/foldoc
http://konect.cc/networks/moreno_blogs
http://konect.cc/networks/moreno_blogs
http://konect.cc/networks/moreno_health
http://konect.cc/networks/moreno_health
http://konect.cc/networks/openflights
http://konect.cc/networks/openflights
http://konect.cc/networks/moreno_innovation
http://konect.cc/networks/moreno_innovation
http://konect.cc/networks/soc-Epinions1
http://konect.cc/networks/soc-Epinions1

References 166

[375] Richardson, M., Agrawal, R. & Domingos, P. Trust management for the semantic web.
In Proc. Int. Semant. Web Conf., 351–368 (2003).

[376] Bitcoin otc network dataset – KONECT (2018). URL http://konect.cc/networks/soc-
sign-bitcoinotc.

[377] Kumar, S., Spezzano, F., Subrahmanian, V. S. & Faloutsos, C. Edge weight prediction
in weighted signed networks. In Proc. Int. Conf. Data Min., 221–230 (2016).

[378] Cora network dataset – KONECT (2017). URL http://konect.cc/networks/subelj_cora.

[379] Šubelj, L. & Bajec, M. Model of complex networks based on citation dynamics. In
Proc. of the WWW Workshop on Large Scale Network Analysis, 527–530 (2013).

[380] Wikipedia elections network dataset – KONECT (2017). URL http://konect.cc/
networks/elec.

[381] Leskovec, J., Huttenlocher, D. & Kleinberg, J. Governance in social media: A case
study of the Wikipedia promotion process. In Proc. Int. Conf. on Weblogs and Soc.
Media (2010).

[382] Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library.
In Wallach, H. et al. (eds.) Advances in Neural Information Processing Systems 32,
8024–8035 (Curran Associates, Inc., 2019). URL http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[383] Sole-Ribalta, A. et al. Spectral properties of the laplacian of multiplex networks.
Physical Review E 88, 032807 (2013).

[384] Li, J., Chen, C., Tong, H. & Liu, H. Multi-Layered Network Embedding, 684–692
(2018).

[385] Ghorbani, M., Baghshah, M. S. & Rabiee, H. R. Mgcn. Proceedings of the 2019
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (2019). URL http://dx.doi.org/10.1145/3341161.3342942.

[386] Khan, M. R. & Blumenstock, J. E. Multi-gcn: Graph convolutional networks for
multi-view networks, with applications to global poverty (2019). 1901.11213.

[387] Larremore, D. B., Clauset, A. & Buckee, C. O. A network approach to analyzing
highly recombinant malaria parasite genes. PLOS Computational Biology 9, 1–12
(2013). URL https://doi.org/10.1371/journal.pcbi.1003268.

[388] Gómez, S. et al. Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110,
028701 (2013). URL https://link.aps.org/doi/10.1103/PhysRevLett.110.028701.

[389] Leli, V. M., Osat, S., Tlyachev, T., Dylov, D. & Biamonte, J. Deep learning super-
diffusion in multiplex networks. Journal of Physics: Complexity (2021). URL
http://iopscience.iop.org/article/10.1088/2632-072X/abe6e9.

[390] Massa, P., Salvetti, M. & Tomasoni, D. Bowling alone and trust decline in social
network sites. 2009 Eighth IEEE International Conference on Dependable, Autonomic
and Secure Computing 658–663 (2009).

http://konect.cc/networks/soc-sign-bitcoinotc
http://konect.cc/networks/soc-sign-bitcoinotc
http://konect.cc/networks/subelj_cora
http://konect.cc/networks/elec
http://konect.cc/networks/elec
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dx.doi.org/10.1145/3341161.3342942
1901.11213
https://doi.org/10.1371/journal.pcbi.1003268
https://link.aps.org/doi/10.1103/PhysRevLett.110.028701
http://iopscience.iop.org/article/10.1088/2632-072X/abe6e9

References 167

[391] Kumar, S., Spezzano, F., Subrahmanian, V. S. & Faloutsos, C. Edge weight prediction
in weighted signed networks. In 2016 IEEE 16th International Conference on Data
Mining (ICDM), 221–230 (2016).

[392] Massa, P. & Avesani, P. Controversial users demand local trust metrics: an experimen-
tal study on epinions.com community. In Proc. American Association for Artif. Intell.
Conf., 121–126 (2005).

[393] Kunegis, J. et al. Spectral Analysis of Signed Graphs for Clustering, Prediction and Vi-
sualization, 559–570. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611972801.
49. https://epubs.siam.org/doi/pdf/10.1137/1.9781611972801.49.

[394] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional
networks (2017). 1609.02907.

https://epubs.siam.org/doi/abs/10.1137/1.9781611972801.49
https://epubs.siam.org/doi/abs/10.1137/1.9781611972801.49
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972801.49
1609.02907

List of figures

1.1 Example of a technological complex network. 1
1.2 Example of ROC curves. Each curve is obtained by changing the discrimi-

nation threshold on the same predictions. The larger the area, the better. . . 24
1.3 K-fold vs static split. Representation of the K-fold splits (with k = 5) of a

dataset and comparison with a static split. In the k-fold setting, k models are
trained and the results on the test set are averaged. 25

2.1 GNN message passing example. Simple toy-example to show a propagation
step performed by a single GNN layer. 37

2.2 A Geometric Deep Learning model example. K is the number of convolu-
tional layers, X are the input node features. The node embeddings H(K), can
be used in various applications. 38

2.3 Example of computational tree of a model with two GNN layers (K = 2)
in the network shown in Figure 2.1a. For simplicity’s sake, we consider
layers without the UPDATE function. 39

3.1 Training a machine to learn complex topological patterns for network
dismantling. To build our training data, we generate and dismantle small
networks optimally and compute the node features. After the model is
trained, it can be fed the target network (again, with its nodes’ features) and
it will assign each node n a value pn, the probability that it belongs to the
(sub-)optimal dismantling set. Nodes are then ranked and removed until
the dismantling target is reached. The machine learning architecture used
consists of graph convolutional-style layers (Graph Attention Network layers)
coupled with linear layers — that provide residual connections between
consecutive layers — followed by a regressor (i.e., a Multilayer Perceptron)
with a sigmoid activation function that constrains the pn value to the [0,1]
range. 53

3.2 Dismantling the Brazilian corruption network. (a) GDM and state-of-
the-art algorithms with reinsertion of the nodes are compared. The network
before (b) and after (c) a GDM attack is shown. The color of the nodes
represents (from dark red to white) the attack order, while their size represents
their betweenness value. In the attacked network, darker nodes do not belong
to the LCC, and their contour color represents the component they belong to. 57

List of figures 169

3.3 Dismantling empirical complex systems. Per-method cumulative area un-
der the curve (AUC) of real-world networks dismantling. The lower the
better. The dismantling target for each method is 10% of the network size.
Each value is scaled to the one of our approach (GDM) for the same network.
GND stands for Generalized Network Dismantling, EGND for Ensemble
approach for GND (in both GND and EGND, cost matrix W = I), MS stands
for Min-Sum, EI σ1 stands for Explosive Immunization (σ1) algorithm and
CI for Collective Influence. +R means that the reinsertion phase is performed.
CoreHD and CI are compared to other +R algorithms as they include the
reinsertion phase. Also, note that some values are clipped (limited) to 3x for
the MS heuristic to improve visualization. 60

3.4 Dismantling empirical complex large systems. Per-method cumulative
area under the curve (AUC) of real-world networks dismantling. The lower
the better. The dismantling target for each method is 10% of the network
size. We compute the AUC value by integrating the LCC(x)/|N| values using
Simpson’s rule, and each value is scaled to the one of our approach (GDM)
for the same network. GND stands for Generalized Network Dismantling
(with cost matrix W = I) and MS stands for Min-Sum. +R means that the
reinsertion phase is performed. Also, note that some values are clipped
(limited) to 3x for the MS heuristic to improve visualization. 61

3.5 Dismantling synthetic complex systems. Per method cumulative area un-
der the curve (AUC) of the dismantling of synthetic networks. The lower
the better. Each value is the average on 10 different instances, and is scaled
to the AUC of our approach (GDM) for the same network type. CM stands
for Configuration Model, ER stands for Erdős-Rényi, and SBM stands for
Stochastic Block Model. 64

3.6 Heuristics enhancement. Comparison of degree and betweenness vanilla
heuristics with their GDM-enhanced versions on the arenas-meta, foodweb-
baywet and inf-USAir97 networks. 66

3.7 Dismantling curves without reinsertion phase. Dismantling of some net-
works in our test set. We compare against the algorithms without reinsertion
in Tables 3.1 and 3.2 and show both the models with lower area under the
curve (GDM AUC) and with lower number of removals (GDM #Removals),
which may overlap for some networks. 70

3.8 Dismantling curves with reinsertion phase. Dismantling of some net-
works in our test set. We compare against the algorithms with reinsertion
phase in Tables 3.1 and 3.2 and show both the models with lower area under
the curve (GDM +R AUC) and with lower number of removals (GDM +R
#Removals), which may overlap for some networks. 73

3.9 Toy-example meant to explain why the LCC is not sufficient to evaluate
the state of the system. The LCC decreases at the same rate during the
initial part of both the attacks shown. Instead, Ω values do not and reach
warning levels before the system suddenly collapses. 75

List of figures 170

3.10 Early warning due to network dismantling of real infrastructures. Three
empirical systems, namely the European power grid (left), the North-American
power grid (middle) and the London public transport (right), are repeatedly
attacked using a degree-based heuristics, i.e., hubs are damaged first. A
fraction of the most vulnerable stations is shown for the original systems and
some representative damaged states (i.e., before and after the critical point
for system’s collapse), in the top of the figure. The plots show the behavior of
the largest (LCC) and second-largest (SLCC) connected components, as well
as the behavior of Ω, the Early Warning descriptor introduced in this study
and the pn value of each removed node (PI). Transitions between green and
red areas indicate the percolation point of the corresponding systems, found
through the SLCC peak. We also show the first response time in arbitrary
units (AU), to highlight how our framework allows to anticipate system’s
collapse, allowing for timely emergency response. 76

3.11 Early Warning values for the SciKit European powergrid under random
failures and targeted attacks. 77

3.12 Ω values for three different American road networks under GND +R
attacks (with cost matrix W = I). 78

3.13 Ω values for three different internet networks under GND +R attacks
(with cost matrix W = I). 79

3.14 Toy examples. The color of the nodes represents (from dark red to white)
the removal order of predicted strategy, while their size represents their
betweenness value. 81

3.15 Dismantling the toy example networks using our approach, GDM, and the
degree and betweenness based heuristics as comparison. 81

3.16 Explanation sub-graphs for the first four nodes of the Brazilian corruption
network. The model is targeting nodes that act as bridge between multiple
clusters and the choice is also based on neighboring nodes that are bridges
themselves. 84

3.17 Understanding our models. The analysis of the Articulation Points of the
networks (AP) and how many of them are in the removal list (R) shows
that the models are learning a long-term strategy that aims to create new
articulation points and remove the ones that deal most damage to the network.
This is achieved using the input node features discussed above, that allow
the identification of clusters and bridges. 85

3.18 Features’ importance trend. Relative features’ importance in the computa-
tion of each pn value, provided by GNNExplainer, in removal order. 87

3.19 Articulation Point trend. We compute, removal after removal, the number
of APs in the network (|AP|), the number of APs in the removal list (|AP∩R|)
and the number of created APs. 91

3.20 Relation between the number of APs and the number of APs in the
removal list. The two are related by a kind of deterministic dynamics,
resembling the one which characterizes chaotic systems and, specifically,
chaotic maps such as the logistic map or the Hénon map, where parabolic
attractors emerge when the state of the system at the n+1-th step is plotted
against the state at the n-th step. In our case, the n-th step coincides with
the removal of the n-th node in the removal list. The shape of the resulting
attractor provides a strong characterization of the system and its robustness. 95

List of figures 171

3.21 Dismantling of configuration model rewirings (light blue, 1000 per net-
work) and of the original networks (dark blue). 97

4.1 Overview of our approach. The proposed approach consists into two
phases: dataset generation and training phase, and the generalization phase. 116

4.2 Link-building in real-world networks. Per-method cumulative area under
the curve (AUC) of link-building in real-world networks. The lower, the
better. The target rank is the first position. Each value is scaled to the one of
our approach (LB–GDM) for the same network. Note that some values are
clipped to 3x to improve visualization. 119

4.3 Link-building in real-world networks. Attachment curves of the networks
in our test set. The y-axis value is the rank of the target node as a function
of the number of in-links added. LB–GDM performs better than the cutting-
edge heuristics as not only it provides better AUC (i.e., the rank is — on
average — lower with the same number of new links), but also requires fewer
links to reach the target in many cases. 121

5.1 A Multilayer Geometric Deep Learning model example. K is the number
of convolutional layers, Xα are the input node features of layer α . The
node embeddings H(K), can be used, like in the monoplex case, in various
applications. 125

5.2 Example multilayer (multiplex) network. 126
5.3 mGNN example. How the multilayer convolutional layers work to produce

the multilayer node embeddings. 127

List of tables

3.1 Per-method area under the curve (AUC) of real-world networks dismantling.
The lower the better. The dismantling target for each method is 10% of the
network size. We compute the AUC value by integrating the LCC(x)/|N|
values using Simpson’s rule, and each value is scaled to the one of our
approach (GDM) for the same network. +R means that the reinsertion phase
is performed. CoreHD and CI are compared to other +R algorithms as they
include the reinsertion phase. EGND for p2p-Gnutella31 is missing as the
computation was killed after 10d. 58

3.2 Per-method area under the curve (AUC) of real-world large networks dis-
mantling. The lower the better. The dismantling target for each method is
10% of the network size. We compute the AUC value by integrating the
LCC(x)/|N| values using Simpson’s rule, and each value is scaled to the one
of our approach (GDM) for the same network. +R means that the reinsertion
phase is performed. CoreHD and CI are compared to other +R algorithms as
they include the reinsertion phase. 62

3.3 Real-world large networks dismantling timings. The lower the better. Time
format is HH:MM:SS.s. MS and GND do not have prediction time as they
refresh the predictions during the dismantling, while there is no CoreHD
dismantling column as we use our dismantler. 63

3.4 Synthetic network results table. Per method area under the curve (AUC)
of the dismantling of synthetic networks. The lower the better. Each value
is the average on 10 different instances, which is scaled to the AUC of our
approach (GDM) for the same network type. 65

3.5 The networks used to evaluate our approach. For each network, we report the
name, the number of nodes and edges, the category it belongs to and some
references. 100

3.6 Preliminary Repulsion-Attraction (RA) results. The Table shows the prelimi-
nary results on a sub-set of 23 real-world networks. 103

4.1 Summary of heuristics and their computational complexity. 113
4.2 Real-world test networks table. 117
4.3 Full results table. To improve readability, for each network and method, we

report the result as the percentage of the value scored by LB–GDM for the
same network. That is, if the value is greater than 100 LB–GDM outperforms
the method, and is outperformed otherwise. Regarding the Future PageRank
heuristic, two networks are omitted as the heuristic would not complete in
reasonable time (i.e., less than a week on our server-grade hardware). . . . 120

List of tables 173

5.1 FF-TW-YT network layers. 131

6.1 Dataset. Details about the networks used in this work. 137
6.2 Sign prediction results (ROC AUC | F1). 138
6.3 Absolute weight prediction results (ROC AUC | F1 | MAE). Note that

while the higher the AUC and F1 scores the better, MAE is an error score
and lower values represent smaller errors. 138

6.4 Signed weight prediction results (ROC AUC | F1 | MAE). Note that while
the higher the AUC and F1 scores the better, MAE is an error score and
lower values represent smaller errors. 139

	Table of contents
	1 Introduction to Network Science and Machine Learning
	1.1 Network Science
	1.1.1 Networks
	1.1.1.1 Different types of networks
	Directed networks
	Weighted networks
	Signed networks
	Feature-rich networks

	1.1.1.2 Adjacency matrix

	1.1.2 Network analysis
	1.1.2.1 Structural analysis
	Degree, average degree and degree distribution
	Strength, average strength and strength distribution
	Network diameter
	Link density and reciprocity
	Clustering coefficients
	Assortativity
	Connected components

	1.1.2.2 Centrality measures
	Degree centrality
	Betweenness centrality
	Eigenvector centrality
	PageRank

	1.1.2.3 Community analysis

	1.1.3 Network generation
	1.1.3.1 Erdös-Rényi (ER)
	1.1.3.2 Barabási-Albert (BA)

	1.1.4 Network robustness
	1.1.4.1 Static effects
	1.1.4.2 Dynamical effects

	1.1.5 Network dynamics
	1.1.5.1 Diffusion and spreading phenomena
	Epidemic diffusion.

	1.1.6 Multilayer Networks
	1.1.6.1 Definition and types
	1.1.6.2 How to study multilayer networks
	1.1.6.3 A new mathematical framework
	1.1.6.4 Application scenarios

	1.2 Machine Learning
	1.2.1 What is Machine Learning?
	1.2.2 Applications
	1.2.3 Learning machines?
	1.2.3.1 Training methodologies and tasks
	Supervised learning
	Unsupervised learning
	Semi-supervised learning
	Reinforcement learning

	1.2.3.2 Loss functions
	1.2.3.3 Parameters optimization
	Stochastic Gradient Descent (SGD)

	1.2.3.4 Back-propagation algorithm
	1.2.3.5 Performance evaluation
	Classification tasks
	Regression tasks

	1.2.3.6 Dataset splits
	Cross-validation

	1.2.4 Models
	1.2.4.1 Artificial Neural Networks
	1.2.4.2 Activation functions

	1.2.5 From Machine to Deep Learning
	1.2.5.1 Convolutional Neural Networks
	Pooling

	1.2.5.2 Recurrent Neural Networks

	2 Geometric Deep Learning
	2.1 What is Geometric Deep Learning?
	2.2 Applications
	2.3 Graph Representation Learning
	2.4 Learning graph representations
	2.4.1 A bit of history: shallow embeddings
	Idea.
	Laplacian eigenmaps
	Inner-product methods
	Random-walk based methods
	Multilayer extension
	Limitations

	2.4.2 Deep embedding: Graph Neural Networks (GNNs)
	2.4.2.1 The message passing architecture detailed
	2.4.2.2 Message passing with self-loops

	2.4.3 Generic model architecture
	2.4.4 Pooling layers
	2.4.5 Graph embedding
	2.4.6 Link embedding
	2.4.7 Some examples of GNN layers
	2.4.7.1 Graph Convolutional Networks (GCN)
	2.4.7.2 GraphSAGE
	2.4.7.3 Graph Attention Networks (GAT)
	2.4.7.4 Simple Graph Convolution (SGC)
	2.4.7.5 GCN via Initial residual and Identity mapping (GCNII)
	2.4.7.6 SignedGCN
	2.4.7.7 Temporal Graph Neural Networks (TGN)
	How do TGN work?

	2.4.8 Training methodology

	2.5 Explaining the GNNs
	2.5.1 GNNExplainer

	2.6 Software libraries

	3 Learning Network Dismantling
	3.1 Introduction
	3.2 Proposed framework
	3.2.1 Model architecture
	3.2.2 Training
	3.2.3 Node features
	3.2.4 Parameters

	3.3 Dismantling synthetic and real-world systems
	3.3.1 Dismantling empirical systems
	3.3.2 Dismantling large empirical systems
	3.3.3 Dismantling synthetic systems
	3.3.4 Enhancement of node metric based heuristics
	3.3.5 Dismantling curves

	3.4 Early-warning signals of systemic collapse
	3.4.1 Why do we need an Early Warning signal?
	3.4.2 Tests on real-world systems
	3.4.3 More Early Warning Ω examples

	3.5 Understanding the models
	3.5.1 Models' behavior
	3.5.2 Explaining the GNN models
	3.5.3 Dismantling of configuration model rewired networks

	3.6 Computational complexity
	3.7 Discussion
	3.8 Dataset
	3.9 Test environment
	3.10 Appendix: Network Dismantling exploiting network geometry
	3.10.1 Introduction
	3.10.2 Formulation and Preliminary results

	4 Learning the Link Building Problem
	4.1 Introduction
	4.2 Related Works
	4.3 Background and formulation
	4.3.1 PageRank
	4.3.2 The link building problem
	4.3.3 State-of-the-art heuristics
	4.3.3.1 Problem-agnostic strategies
	4.3.3.2 Problem-aware strategies

	4.4 LB–GDM
	4.4.1 Model architecture and complexity
	4.4.2 Training and Generalization

	4.5 Experiments
	4.5.1 Test networks
	4.5.2 Results

	4.6 Model parameters
	4.7 Discussion

	5 mGNN: Generalizing the Graph Neural Networks to the Multilayer Case
	5.1 Introduction
	5.2 Related Works
	5.3 Proposed Framework
	5.4 Experiments
	5.4.1 Malaria genes classification
	5.4.2 Link prediction
	5.4.3 Superdiffusion prediction

	5.5 Training and model parameters
	5.5.1 Malaria genes classification
	5.5.2 Link prediction
	5.5.3 Superdiffusion prediction

	5.6 Discussion

	6 Weighted and Signed Graph Attention Networks
	6.1 Introduction
	6.2 Formulation
	6.3 Experiments
	6.3.1 Dataset
	6.3.2 Sign prediction
	6.3.3 Weight prediction
	6.3.4 Signed weight prediction
	6.3.5 Code availability

	7 Conclusive remarks and future research directions
	References
	List of figures
	List of tables

