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ABSTRACT

The rapid urbanization process in the last century has deeply changed the way we live
and interact with each other. As most people now live in urban areas, cities are expe-
riencing growing demands for more efficient and sustainable public services that may
improve the perceived quality of life, specially with the anticipated impacts of climatic
changes. In this already complex scenario with increasingly overcrowded urban areas,
different types of emergency situations may happen anywhere and anytime, with un-
predictable costs in human lives and economic losses. In order to cope with unexpected
and potentially dangerous emergencies, smart cities initiatives have been developed in
different cities, addressing multiple aspects of emergencies detection, alerting, and mit-
igation.

In this thesis, three main issues relating to environmental and health risk manage-
ment in smart cities were addressed. The first topic focuses on the possibility of using
drone-femtocell systems to locate devices under rubble in post-earthquake scenarios by
devising location algorithms with very low error and very high drone energy efficiency.

The second topic addresses detection and classification of rainfall levels using different
types of signals (audio, video, radio) and deep learning techniques. Classifying rainfall
intensity precisely and in real-time would mean providing smart cities with a system
that predicts and manages hydrogeological risk conditions (landslides, floods and inun-
dations) in cities. And thus, it provides information in terms of road safety and much
more; such as, aspects related to the management of mobile radio connections in order
to maintain good radio signal quality during heavy rainfall situations.

The third topic concerns healthcare management within smart cities, in particular,
the possibility of defining innovative algorithms for the detection and classification (in
very short times and with high precision) of heart disease using ECG and PCG signals
in conjunction with deep learning techniques.

Keywords: Risk Management, Health Management, IoT devices, Localization Algo-

rithm, Deep Learning, Rainfall Estimation, Heart Disease Classification.
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Chapter 1

Introduction

The development of new communication technologies, data processing algorithms,
and cyber physical systems has not only transformed the way we gather infor-
mation and interact with each other, but also how cities have evolved in the last
decade [1, 2]. Affordable high-bandwidth communication networks and minia-
turized hardware components with increasing processing power have become a
reality, with deep but sometimes imperceptible impacts on the way we compre-
hend and handle different urban environments [3, 4]. For an increasing number
of cities, smarter has become common sense [5].

The availability of new technological resources is expected to be a breakthrough
for the development of sustainable, resilient, and smarter cities [6]. By exploit-
ing huge amounts of heterogeneous data, it is possible to better understand the
multiple complexities of the urban environments, eventually leading to the im-
plementation of “smart services” [7, 8]. Among them, emergencies management
is expected to be a fundamental service in modern cities, with direct impact on
urban safety and the perceived quality of life.

Generally speaking, emergencies have been an old and recurrent problem in
cities, although their impact and influences have changed as cities grew larger [9].
The spatial distribution of the cities and their geography through the centuries,
as well as inherent characteristics such as poor sanitation, low mobility efficiency,
dominance of wooden buildings, and the absence of rescue and emergency teams,
have made cities highly susceptible to catastrophes resulted from emergency sit-
uations. With the industrialization process and the further adoption of motor
vehicles and telephone networks, emergencies management in modern cities im-
proved, but actions were still dependent on emergency calls and non automated
dispatching of response vehicles [10]. Currently, considering the new technolo-
gies available, more efficient solutions have been sought in order to minimize the
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Figure 1.1: Urban areas: a crisis-prone environment.

negative impacts of emergencies.
Emergencies can be better detected and managed with the use of electronic

sensors, smartphones, personal gadgets, vehicles, drones, robots, social media
networks, web servers, and could based services. Usually, cyber-physical systems
will be created to manage emergencies, processing data ows to provide one or
more services in a city.

In fact, such emergencies management systems will operate processing multi-
ple types of data in a urban scale, which indeed is one of the fundamentals of
the so-called smart cities paradigm [6]. This is the conceptual background from
where modern emergencies management systems have ourished. Therefore, in or-
der to make cities safer and more resilient, emergencies management systems have
embraced different technologies to provide detection, alerting, and mitigation ser-
vices in a city, automatizing different steps of the emergencies management cycle.
However, since solutions have been developed following different approaches and
premises, there is no consensus when addressing this problem, which may impair
research and developments efforts in this area. Thus, a better understanding of
this subject is desired. Figure 1.1 depicts a general schema of an emergencies man-
agement system in a smart city with multiple detected emergencies, highlighting
different sources of data [11].

This thesis focuses on two main themes:environment related risks and health
risks. In particular, this work addresses 3 important issues:

i. Risk management in post-earthquake scenarios: a drone-femtocell system
was proposed in order to locate the devices under the rubble. This system
comes together through the study, design and implementation of various
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localization algorithms and optimization of the drone’s energy efficiency. In
particular, the idea is to send one or more drones with femtocells on board
to the monitoring area hit by a catastrophe. These systems provide radio-
mobile coverage in the relevant area allowing us the possibility to apply
all the localization algorithms in existance and / or those created ad hoc
for the scenario in question. The goal is to find the devices in the shortest
possible time and with a very low localization error (1-3 meters) despite
the complexity of the scenario, due to the presence of rubble with different
density and level attenuation. Several simulation tools, using software such
as python and C#, were employed in order to create tools for: data collec-
tion, algorithm evaluation (localization error estimation and drone energy
efficiency) and simulation of monitoring areas (with presence or less than
rubble of different density and level attenuation);

ii. Risk management in scenarios affected by hydrogeological instability: a mul-
timodal rain gauge based on audio, video and radio recording (collection of
radio parameters relating to LTE technology) was built for real-time de-
tection of the intensity of rain in a specific area. The data is collected in
a database which is subsequently fed as input to a neural network. After
a training phase of the network, a phase of testing and real-time inference
follows. This system (multimodal rain gauge and neural network) will be
able to detect the intensity of the rain and possibly send alerts when it is
constantly increasing (or at very high levels). This will make it easier to
prevent landslides and floods and ensure road safety. In the case of using
the radio parameters of the LTE signal, the possibility of understanding the
various levels of intensity of the rain was studied. In addition to estimat-
ing the intensity levels and intervening in anticipation of the formation of
hydrogeological instability, it led to the birth of a new study. This study pro-
poses algorithms to solve the problem of radio channel fluctuations caused
by the presence of rain, since the trend of some radio parameters negatively
affects the performance of the network;

iii. Health risk management: among the various issues that fall within the man-
agement of health in the context of smart cities, in this thesis, greater at-
tention will be given to the field of cardiology. In particular, heart disease
has been a major cause of death among the population in recent years.
Providing tools and algorithms, within smart cities, capable of preventing
illness problems due to a heart disease is a topic of great interest. In this
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Figure 1.2: Thesis’s Structure.

thesis, a series of recognition and classification algorithms of various cardiac
pathologies have been proposed through the use of ECG and PCG signals
and deep learning techniques. The main objective is to recognize the pres-
ence of any cardiovascular diseases in the shortest time (2-60 seconds) and
with high accuracy. This allows medical support (through wearable devices,
for example smart fitness wristbands, smart-watches, pacemakers, subcuta-
neous monitors and such ) to be provided quickly and preventively at any
time and in any place.
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This thesis work is structured as shown in Figure 1.2.
Chapter 2 will provide an overview of the new services and technologies that

smart cities offer to the population; in view of this, the state of the art on emer-
gency management systems (environmental, urban and health) will be examined
for ideas that seem viable as a possible service to be provided in the definition of
smart cities.

Chapter 3 will focus on the management of a particular type of risk: post-
earthquake scenarios. In particular, the chapter will be dedicated to the descrip-
tion of the various device localization techniques in post-earthquake scenarios
developed in the PhD period. In this scenario, a drone-femtocell system and vari-
ous localisation algorithms were proposed in order to optimize the level of energy
efficiency (flight and processing time) of the drones and the localisation error of
each device. Chapter 4 will focus on the management of hydrogeological risks
in smart cities. In particular, the chapter will be dedicated to the description
of various techniques for the detection and classification of rainfall levels using
deep learning techniques and different types of signals (audio, video and radio),
studied in the PhD period. In this scenario, a multi-modal rain gauge was built
and different algorithms based on audio, video and radio parameters of the LTE
system were implemented in order to classify rain intensity levels.

Chapter 5 will focus on health-related risk management. In particular, the chap-
ter will be devoted to describing the various techniques for detecting and classi-
fying cardiac pathologies by means of deep learning techniques and ECG/PCG
signals (obtained from public databases), studied during the PhD period.

Finally, in Chapter 6 the conclusions of this thesis will be drawn.
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Chapter 2

Risk and healthcare management in
Smart Cities

The term “smart cities” generally refers to the use of technology based solutions
to enhance the quality of life for citizens, improve interaction with government
and promote sustainable development. A city can be described as smart where
social, environmental and economic development factors are balanced and linked
via devolved processes to more efficiently manage key assets, resources and urban
flows for real-time processes. Smart cities are designed around an ICT based
infrastructure with IoT enabled sensor technology to support social and urban
inter-connectivity through greater citizen interaction and government efficiency.

The benefits of developing smart cities will be huge and will benefit every sphere
of life. Smart cities will produce smart citizens, smart living, smart administra-
tion, automated homes, smart mobility, smart waste disposal system, smart sur-
roundings, smart economy, and much more. Smart cities will add luxury to the
lives of people. To make the concept of smart cities anactuality, effective tools
and technologies must be implemented. The IoT will play a significant role in the
development of smart cities [11, 12].

The IoT refers to a network in which all the physical devices, vehicles, build-
ings, and various electronics and electrical devices which we use daily are inter-
connected to each other over the Internet so that they may gather and share
data amongst themselves. The collected data from various devices may further
be analyzed and processed for better management and monitoring of traffic and
transport systems, pure drinking water supply and sanitation, proper disposal of
waste, power plants, air and water pollution, better healthcare, effective video
surveillance systems, a better hydrogeological and seismic risk management in
post-disaster scenarios, etc.
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When considering the development of research works within the context of smart
cities, some concerns may arise due to the nature of such environments. In recent
years, smart cities initiatives have been proposed and implemented, embracing
new technologies to enhance the citizens’ quality of life, potentially making the
urban living easier and bringing better management of its resources. Although
such objectives seem to be clear, the number and types of complexities that
emerge from smart cities initiatives are considerable, raising concerns that may
echo and reach the development of emergencies management systems.

Much research efforts have been devoted to transform cities into smart cities
[13, 14]. Since this is inherently a multidisciplinary area, researchers have tried
to define best practices and engineering procedures to provide smart services in
a city, taking into consideration development issues such as sustainability, social
responsibility, and energy consumption [15]. As a result, the literature in this area
is diverse and potentially huge, covering different subjects comprising multiple
views of the same urban environment.

In a typical smart city, several initiatives are devised to make citizens’ life bet-
ter and easier, improving several services such as public transportation, traffic
management,water and energy supply, among others. In this sense, emergencies
management systems arise as one of the possible services to be provided when
defining smart cities, which may even coexist with other parallel services.

The basic function of emergencies management systems in a smart city is the
processing of conceptual emergencies along the time in response to detected crit-
ical situations. Such emergencies will typically be associated to the causes that
created them, influencing the way how emergencies will be alerted and mitigated.
Particularly, it is reasonable to say that emergencies will be associated to one or
more causes (hazards), as well as to a group of additional information (metadata)
that will give more details to support emergencies processing.

In a urban environment, a hazard is any source of potential damage that may
harm people or incur in economic losses when it becomes an emergency. Usually,
a hazard is perceived as an emergency when it is a current threatening condition,
and it ceases to exist when it represents no more risks.

The proper modelling of the hazards is then of paramount importance for this
type of applications. The most usual approach to model and process hazards is
to monitor a particular variable along the time. Actually, such approach is easier
to implement and may produce very quick responses when employing electronic
sensor devices or active data sources. Differently, hazards may be also processed
as more complex variables, for example employing cameras [16] or artificial intel-
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Figure 2.1: Classification and some common hazards in modern cities [11].

ligence algorithms [17] to detect hazards that could not be easily identified using
individual sensors, generating different types of emergencies. As an example, a
re event could be identified processing still images or processing public posts on
social media, potentially providing different types of metadata to support emer-
gencies mitigation actions. Whatever the case, each system will have a particular
configuration for hazards monitoring and emergencies detection, according to the
characteristics of the target city.

Since the nature of a hazard will dictate how an emergency will be eventually
mitigated in a urban environment [18, 19], city-related hazards may be classified
into three different groups: Environmental, Urban and Health. Environmental
hazards are those resulted from natural conditions that may affect a city, such as
heavy rain, hurricanes, earthquakes, volcano eruptions, among others.

The other two types of hazards, Urban and Health, are both causes of human
induced disasters. Can be subdivide them into two different groups due to the
expected relevance that outbreaks surveillance and detection systems should as-
sume in the development of smart cities. This way, Urban hazards will be related
to the way we live in cities, with increasing overpopulated areas and crowded
mobility systems, resulting in hazards related to traffic accidents, house ring, gas
explosion, building collapsing, terrorist attacks, violent protests, robbery, etc. Fi-
nally, Health hazards will not only be associated to individual health emergencies,
such as heart attacks, but collective threats due to the spread of infectious dis-
eases. Figure 2.1 presents a comprehensive organization of the expected hazards
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in urban areas.
Human-induced disasters may result in infrastructural damages, injuries and

deaths. Although there is not a straight line between the frequency of Urban and
Health hazards and the urbanization process, the urban sprawl in this century
will result in more large and mega cities around the world, with potential for
higher number of disasters [20]. In parallel, climate changes are strengthening the
destructive power of natural disasters, putting additional pressure on emergencies
management systems. As a result, the last decades have seen an increasing in
the number of emergencies detection approaches, focusing on different types of
hazards.

2.1 Disaster Risk Monitoring and Management

System in Smart Cities

In general, many scientific studies have focused on providing new solutions to
identify and manage hazards induced by human and nature in the context of smart
cities. In recent years, UAVs have helped manage disasters such as floods, fires,
earthquakes, etc. Knowledge about the disaster-hit areas through aerial images,
or other audio/radio sensors, gained by UAVs helps emergency evacuations and
rescue missions by finding a safe route to make help reach where it is needed.

For the earthquake scenarios, most of the disaster-related studies are focused on
the post-disaster phase only and use conventional and learning-based algorithms
with applications to localize victims and optimize paths. Regarding the UAV
communication network (UAVCN), the key challenges are communication issues,
resource allocation, UAV deployment, defining UAV trajectory, and content secu-
rity. UAV path planning’s key barriers are path optimization, path completeness,
optimality, efficiency, and achieving robustness [21].

The localization approach of victims is not limited only using UAVs system.
When some of the infrastructures are down on account of a disaster, the effects it
have on localization accuracy has been modeled in [22]. They used the Pedestrian
Dead Reckoning and Wi-Fi RSSI fingerprinting models to simulate indoor local-
ization. A hybrid algorithm has been proposed to provide location information of
victims to rescue workers using time-of-arrival and received power of GSM net-
work [23]. They simulated and showed the trade-offs between location error and
path-loss exponent. A similar work with real deployment has been presented in
[24]. In this work, a local GSM base station was deployed and directional antennas
were used to locate victim’s mobile phone. A camera based victim localization
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model is proposed in [25], where the localization error is not specified explicitly. In
[26], an android app is used to detect several victims trapped under the WLAN
network of a building by using Euclidean Distance (ED) algorithm. In recent
times, building information modeling (BIM) has gain significant consideration
in industry as a central repository of building information. In [27] a BIM-based
Indoor Location (BIMIL) protocol is designed for automated data extraction and
transformation of BIM emergency-related data for public safety purposes. This
approach can help to localize crucial portions of a disastrous construction site
with indoor positioning data to support emergency responses. Availability of an
up-to-date layout of a building is crucial for faster rescue management. After lo-
calization, access to an optimized path to the victim plays a significant role for
emergency support. Often due to structural and interior changes inside a build-
ing it is difficult to maintain a synchronic layout. One probable approach is to
reconstruct the 3D models of the building after any renovation in an automatic
approach. In [28], a complete workflow is introduced that generate 3D models
from point clouds of a building to support sophisticated path planning for dis-
aster management. However, this study does not anyhow facilitate localizing the
victims. The study in [29] proposed a WSN based support for emergency re-
sponders or rescuers. It proposed a joint routing and localizing algorithm based
on pre-deployed Wi-Fi network. The study in [30] proposed an inertial sensor
based technique to localize first-responders in disaster scenario. For inertial sen-
sors such as, accelerometer, gyroscope, and magnetometer to work, a centralized
system needs to know the starting position of the first-responder. Moreover, con-
tinuous sensing is required. In [31] the authors contributed to develop a prototype
for victim localization (VLoc) that is not dependent on any pre-installed infras-
tructure, and exploits pervasive devices and networks, such as smartphones and
Wi-Fi. In particular, during a post disaster situation, a text message (SMS) is
sent to victims’ phone number from a number registered for emergency purposes.
An app installed in the victim’s smartphone intercepts this text mes-sage and
switches on the Wi-Fi hotspot. Operating victims’ phones in this mode is crucial
for locating one or more victims’ with their approximate locations in the disaster
site. Once an approximate location is identified, rescuers leverage trilateration or
multilateration techniques on the RSSI from the Wi-Fi signal of victims’ phones.
VLoc estimates the current location of a victim from three or four reference points
in trilateration or multilateration. The reference points are the rescuers and VLoc
provides the distance in meters to the victim from all rescuers.

Smartphone devices, therefore, play a fundamental role in emergency scenarios
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thanks to their pervasiveness and the ability to convey the emergency requests
of the people involved to the rescue teams. At the same time, effective use of
such devices in critical scenarios with limited mobile Internet access is challeng-
ing. Alternatively, several recent research studies have proposed an Emergency
Communication System (ECS) based on short-range Device-to-Device (D2D) so-
lutions available on Commercial Off The Shelf (COTS) devices (e.g. Wi-Fi Di-
rect); however, the target of these solutions is small internal areas, as scaling
over large environments is often a problem. In [32] authors propose a distributed
algorithm aimed to build a connected graph over a phone-network, by properly
setting the role of each device as client, relay or Group Owner (GO). In [33], the
authors propose SENSE-ME, a phone-based infrastructure less ECS providing
multi-hop connectivity (via Wi-Fi Direct), sensing data sharing (via information
centric networking), and distributed data processing for emergency detection (via
consensus algorithms). Beside the communication technology, another key issue
of phone-based network is the strategy used to disseminate data among devices
when considering the intermittent connectivity and the likely presence of network
partitions. In [34] an integrated platform for smartphone connectivity in disaster
recovery is described; the proposed system, called Team-Phone, supports both
the creation of energy-efficient spontaneous groups among survivors, and a multi-
hop messaging system between survivors and rescue teams, integrating AODV
and opportunistic routing mechanisms. In [35], authors proposed a phone-based
Emergency Communication System (ECS) enabling long range communication
among survivors and rescue teams over critical environments where 3/4G cellular
connectivity is not available and the traditional geo-localization technologies (e.g.
the GPS) provide only partial coverage of the environment. The proposed system
consists of a mobile application connected to a LoRa transceiver via Bluetooth
Low Energy (BLE); through the app, users can send emergency requests that are
re-broadcasted by other peers until reaching a rescue personnel who is able to
handle the emergency.

Seismic scenarios are not the only calamitous events that incur in smart cities.
Due to climate change caused by global warming in recent years, hydrogeolog-
ical disasters (river floods, landslides, etc.) are increasingly on the rise. In this
context, risk management process for identifying flood situations and taking the
coordinative steps for its treatment plays a great role in planning and decision
making in smart city.

Several studies, for an example, concern on urban construction of urban rain
flood sponges. Authors in [36] provided a lateral study emphasizing the rain flood
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management process in the developing countries and summarize the foreign rain
flood management system periodically. The process of development and evolution,
the governance model of comprehensive, space features of regional convergence,
and deep form of urban development system analyzes the reason for combining
this study with the practical situation of China’s cities. They also presented the
future urban rain flood management method, which can lead to the development
in the direction of thinking and can use the history of exploration to assist the
future multi-scale hydrological conditions in the rain flood damage. Authors in
[37] analyze the generally-used at the rain flood management measures, and sum-
marize its advantages and disadvantages in China to put forward the background
of “sponge city”. In [38],the authors contributed to putting forward the suitability
for sponge key design strategy of city constructions, the total content and regula-
tory rules in the content integration, combining the characteristics of all kinds of
the new city district. The study propose a planned and feasible urban rain flood
ecosystem is designed to promote the construction of sponge city, improve the
water environment, control urban waterlogging, reduce runoff pollution, improve
river and lake water quality, recycle rainwater resources, replenish groundwater,
etc. The traditional regulation and sponge city construction are reconstructed
and integrated into this work to provide a feasible urban rain flood ecosystem in
the industrial and smart city scenario.

Other studies, on this topic, regard the rainfall estimation and monitoring using
several type of signal (audio, radio, images), in order to detect previously, the flood
insurgent. Smart cities around the world are supported by high-capacity wireless
communication networks, which are based on millimeter-waves links. The prop-
agating waves are sensitive to hydrometeors, and their signal level is attenuated
by rain. Recently, wireless telecommunication links have gained attention as a
promising rainfall measurement method because the power of received signals,
which is extremely sensitive to rainfall in microwave and millimetric frequency
bands, can be measured everywhere for communications. With the roll-out of
5G wireless networks, relevant research has indicated that densely distributed
terrestrial links can measure rainfall in urban areas either as a primary or supple-
mentary precipitation monitoring method [39]. Many studies have also shown that
dense commercial earth-space links are potential global high resolution rainfall
monitoring systems [40, 41]. In [42] authors demonstrate, using actual measure-
ments from the city of Rehovot, Israel, how high-resolution rain maps can be
generated from the received signal level measurements collected by these links.
They first propose a method for reducing the errors in converting signal attenu-
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ation to rainfall estimates in short, in-city links. The proposed method requires
calibration of model parameters using side information from either a rain gauge
or a long link in the vicinity of the network. The results of the calibrating method
was analyzed empirically using either auxiliary measurements and show that the
performance is satisfactory for both. Then, was applied a spatial interpolation
method on the rainfall resulting estimates, and demonstrated the construction of
an high-resolution 2-D map of the accumulated rain in a city. In [43], authors in-
vestigated rainfall monitoring results from experimental measurements and deep
learning approaches such as artificial neural networks and long short-term mem-
ory. The experimental setups were in South Korea over terrestrial and satellite
links, and in Ethiopia over terrestrial link for different frequency bands and link
distances. The received signal power data were used to derive the rainfall rate
distribution and compared to actual rainfall measurements over the same time
periods. Results demonstrate that the proposed deep learning-based models gen-
erally have a good t with the measured rainfall rates. The rainfall rate generated
from terrestrial links was a better to the actual rainfall rate data than that gen-
erated from satellite links.

Smart cities, in addition to being equipped with high-capacity wireless com-
munication networks, are equipped with video surveillance systems capable of
recording and transmitting real-time audio and video data to the cloud of the
network. In this context, it is possible to record and classify the audio obtained
from the rain in order to detect its intensity. In [44] authors used smartphones to
collect the sound of raindrops hitting umbrellas for rainfall measurement. Study
in [45] designed an Arduino-based acoustic sensor composed of a microphone and
tipping bucket for rainfall monitoring and warning. Moreover, authors in [46] used
a set of acoustic features to build a decision tree to classify non-rain and heavy
rain events in environmental audio recordings. Study [47], for an example, using
surveillance audio as input and an automatic rainfall level classification system
was built. Three 2-D baseline CNNs were proposed as the classifiers. In view
of the classifier training and testing, a new dataset named Rainfall Audio_XZ
(RA_XZ) was generated based on the surveillance audio data. The experimen-
tal results demonstrate that the proposed CNN (7-stack CNN) achieves 81.67%
accuracy in rainfall level classification in the RA_XZ dataset. Furthermore, au-
dio aggregation strategies that facilitate the representation and classification of
rainfall events are investigated, which has important implications for audio and
speech classification systems.

Accordingly, managing disasters such as floods, fires, earthquakes, in the smart
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city is really important for people’s safety. For this reason, two main topic were
explored during the PhD period:

• Localization of mobile devices in post-earthquake scenarios, through the
introduction of different algorithms, simulation tools and testbed;

• Classification of the rainfall intensity through audio / video / radio signals
and techniques of ML and DL in order to monitor and predict the insurgent
of floods and / or landslides.

2.2 Healthcare Monitoring and Management Sys-

tem in Smart Cities

The concept of smart city healthcare is one that many traditional cities aim to
emulate by setting up conventional devices and equipment for integrating health-
care resources with smart solutions. Smart solutions and ICT play a crucial role
in ensuring smart cities’ success in providing citizens with quality healthcare
services. The smart city’s vital goals include making provision for high quality
living, conserving healthcare service quality, and promoting more conducive qual-
ity conditions for citizens. Sensors, monitoring, and control are required to make
healthcare cities smarter. These sensors’ feedback values help healthcare providers
carry out monitoring and control through a series of automation. The IoT, wire-
less sensor networks, deep learning, and other technologies can be used success-
fully to accomplish these goals. Smart cities can quickly attend to many people’s
healthcare needs at once by having access to real-time information. Healthcare
providers can make quick decisions that yield positive results. IoTs, AI, and com-
puting technology have changed the face of healthcare. Sensors can be implanted
in the body or worn on the body’s surface, such as smartwatches [48].

In general, so, the idea of continuously monitoring a patient’s health using
wearable and implanted devices has recently been gaining widespread adoption.
A detailed account of the same was presented in [49], which reports a survey of
the advances in Wireless Body Area Network (WBAN) systems and integrated
technologies. This paper discusses several low-power wireless technologies that
can be deployed. These sensor nodes can continuously monitor patients’ health
and collect vital data. The authors have detailed the usage of Bluetooth Low
Energy (BLE) IEEE 802.15.4 and ZigBee, classic Bluetooth, ANT, RuBee, Sen-
sium, and Zarlink among other low power consumption technologies. The authors
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also talk about intra body communication technologies that use wirelessly inter-
connected implanted devices. The importance of communication protocols is also
highlighted. The utility of m-Health applications built on smartphones that help
monitor patient parameters like temperature, pulse rate, and breathing rate is also
shown. In the paper [50], the authors described the utility of IoT architectures for
enhanced living environments and healthcare systems. They discussed at length
open-source platforms like Kaa and Thingsboard, protocols like MQTT, smart-
phones, wearables serving as sensors, healthcare applications like the SPHERE
project, and Home Health Hub IoT, as well as issues like Quality of Service, secu-
rity, availability, compatibility, reliability, and future prospects. In the paper [51],
the authors specifically addressed the issue of an enhanced monitoring scheme for
patients admitted in critical condition. A framework using low-cost, low-power
wearable sensors connected to the internet and using the open communication
protocol oneM2M was outlined. Here, the wearables were used as Application
Dedicated Nodes (ADN) that communicate with an infrastructure node contain-
ing the common services entity. Furthermore, openEHR has been used in the
higher layers for providing functionality, namely data semantics, storage, and
monitoring. The experiments report a latency of 20–50 ms, and a 30–50 h sensor
autonomy. They also discussed the design of efficient M2M-capable sensors that
could provide the benefit of low cost, and energy requirements through ESP8266
Wi-Fi modules. A multilayer fusion of Convolutional Neural Networks (CNNs)
was proposed to detect Electroencephalogram (EEG)-based pathology detection
in [52]. The fusion was done using a multilayer perceptron or an autoencoder. The
experiments were performed in a smart healthcare framework. Around 90% ac-
curacy and 97% specificity were obtained by the proposed system. Several papers
have talked about an important concern related to the advancement of Wireless
Body Area Network (WBAN) technology, which is the energy consumption of
wearable and implanted sensor nodes. In [53], the authors proposed a solution to
the joint scheduling and admission control problem to optimize the energy con-
sumption by the gateway node and WBAN sensor node. The authors used the
constrained Markov decision process in their approach and the Lagrange multi-
plier to arrive at a solution. Through simulation, the method gave rise to a 100%
throughput improvement and reduced the power consumption by nearly 5.5-fold.
With an enormous amount of data being generated, it has become challenging to
store, access, and analyze the data in a time-bound manner to stimulate prompt
actions that can preserve patient health and also reduce the cost of treatment.
It is known that IoT devices have limited storage and computational capabili-
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ties. For the same, deep learning-based solution [54] may prove to be of immense
significance.

In [55], the authors illustrated the possibility of making preliminary diagnoses
of diseases from home. This achievement is due to the integration of telemedicine
and new artificial intelligence techniques which are more effective and less complex
in nature. In particular, one of the most important health monitoring concerns is
heart disease, which, to date, is the leading cause of mortality [56].

Another topic studied in the literature of smart Healthcare in smart city is the
automatic recognition of heart disease [57–63]. Cardiovascular disease refers to
various malfunctions of the heart or blood vessels. The main ways to ascertain
the proper functioning of the heart or detect certain cardiac diseases are: cardiac
auscultation using the stethoscope and PCG, ECG by applying electrodes to
certain points of the body and recording the electrical impulses generated by the
heartbeat.

Several researchers have conducted multiple studies employing segmentation
and classification algorithms of PCG [64–67] and ECG [68, 69] signals to recognize
cardiac pathologies.

Monitoring and management of health risks in smart cities is another goal for
successful smart cities. In this PhD period, more attention has been given to
the recognition and management of heart disease using ECG/PCG signals and
machine learning and deep learning techniques.
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Chapter 3

Identification of missing persons in
natural disasters based on
drone-femtocell systems

In recent years advanced methods and alternatives to traditional ones have grown
in public interest, for the identification of missing people in situations of catas-
trophic phenomena of considerable importance such as: earthquakes, landslides
and collapses of structures frequented by people, floods, etc. [70–72]. In these
scenarios, although civil protection agencies play a key role for those who have
been affected by these disasters, often their intervention is ineffective. In these
circumstances it is important to have innovative techniques and tools able to
carry out an effective, precise and fast search for missing persons [73–75].

For this purpose, several algorithms for locating devices under rubble using a
Femtocell-UAVs system were presented during the PhD activity. In general, the
proposed algorithms involve two phase:

1. Classification of the internal/external terminals in the monitoring area;

2. Localization of the terminal within the monitoring area.

In the first phase, the focus is on discriminating the mobile terminals inside
or outside the considered monitoring area. This is characterized by one or more
devices under the rubble, so it is probably represented by an area of collapsed
buildings. The proposed technique involves modeling the monitoring area, for sim-
plicity, incorporated within a three-dimensional parallelepiped, of a given height
h, thickness y, and depth x. The x and y parameters represent the dimensions of
the area to be monitored, while with h, the rubble height is indicated within the
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monitoring area, or the minimum height of the floor above the monitoring area
to which the drone can fly without encountering obstacles.

In the second phase, the focus is to locate the devices that were classified within
the monitoring area in the first phase, in the shortest time and with high accuracy
(error of about 1-3 meters).

The following sub-sections will illustrate the different localization techniques
studied during the PhD period. In particular, sub-section 3.1 briey summarizes
the main localization and positioning techniques followed by sub-section 3.2 which
illustrates the radio mobile signal propagation and material attenuation; sub-
section 3.3 describes the propounded smart femtocell-UAV data sensing system.
Sub-section 3.4 describes an initial technique for classifying devices inside or out-
side the monitoring area. A scenario with non-ideal attenuation (no free space) is
considered, where the non-ideality is due to the presence of the soil, to the height
of the TX and RX antennas, multipath, positioning of the smartphone and the
femtocell. In addition, the monitoring area is represented as a parallelepiped
within which are the terminals to be located. Classification performance is evalu-
ated by performing a series of simulations by varying the values of height, width
and depth of the monitoring area, height of the drone and height of the terminals
inside and outside the monitoring area. Sub-section 3.5 describes an first tech-
nique for locating devices within the monitoring area. The scenario considered
is the same as that introduced in sub-section 3.4. The proposed technique incor-
porates several localization algorithms that are, subsequently, applied in a real
scenario. Real power data are, in fact, collected and mapped onto a “power wall”
and the device localization error is evaluated based on the introduced algorithms.
Sub-section 3.6 describes the evolution of the first classification technique, con-
sidering a non-ideal propagation scenario with non-uniform material attenuation
and non-uniform distribution, within the monitoring area. A series of simulations
are launched in order to evaluate the classification accuracy of devices inside or
outside the monitoring area by varying different parameters: material density,
additional material attenuation, signal transmitting power, etc. Sub-section 3.7
describes the phase following the classification phase introduced in 3.6. Through
two main localization algorithms: Proximity Method and Cluster-based Method,
the localization error is evaluated varying some parameters. Sub-section 3.8 intro-
duces a localization method that makes use of GT to optimize drone flight time,
energy, and trajectory for each localized device. Also in this study, several simu-
lations and experimental tests are carried out in order to optimize the efficiency
of the femtocell-UAV system.
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3.1 State of the Art on Localization Techniques

Figure 3.1 shows the current wireless localization techniques in the scale/reso-
lution plan [76]. The area of the graph with the resolution of a meter and in
an outdoor staircase (including rural and remote) is not currently managed and
covered by any technique.

Some main radiolocalization methods are distinguished:

• Signal strength based (SSoA);

• AoA (/DoA/DF) (Angle of Arrival/Direction of Arrival/Direction Finding);

• ToA (Time of Arrival);

• TDoA (Time Difference of Arrival);

• Hybrid techniques (a combination of two or more of the previous ones).

The localization of a mobile terminal by RF signal is a topic often addressed in
the literature [77–79]. In fact, there are several studies that deal with localizing
terminals which are found in disaster areas or more generally in the presence of
obstacles, through the analysis and measurement of radio signals. In [80], some
different types of attenuation of RF signal were studied. The attenuation of the
signal due to the presence of rubble and, therefore, of different types of materials
is estimated, considering a signal at 1.8 GHz. The results of this study show, that
in a post-earthquake disaster scenario, the losses, compared to free space, are 13
dB greater than the losses that occur in an indoor environment, which are equal
to about 5 dB. In [81], the frequency response of the radio channel is studied on
different frequency ranges, and the signal attenuation is measured for two types
of material: ceramic and brick. First, the 1.8 GHz attenuation is about 4.5 dB
more than 900 MHz in the case where the obstacles are arranged evenly around
the receiving antenna, and 17.5 dB more when the obstacles are arranged in a
less uniform way around the antenna. This implies that a higher frequency signal
suffers more attenuation and that the obstacles placed in an irregular manner
induce even more attenuation, compared to the case in which they are arranged
in a more uniform manner.

Thanks to the features of high mobility and easy deployment, many studies
use drones as a means of making on-demand communication services provision
possible [82, 83].

More recently, the growing need to connect and cover areas affected by natural
disasters has led to the commissioning of multiple studies concerning the use of
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Figure 3.1: Currently existing wireless localization techniques.

drone-femtocell systems as an alternative to the classic radio base stations when
these are out of service [75, 84–87].

In [88], the optimal altitude of the UAV-based base station was analyzed for
maximal communication coverage.

In [89], an efcient UAV 3D placement with the purpose of maximizing the
covered users based on the optimal altitude was proposed. In [90], the authors
studied a novel 3D UAV placement with the objective of maximizing the number
of covered users according to different requirements of QoS.

3.2 Radio Mobile Signal Propagation and Mate-

rial Attenuation

The transmission of signals in the mobile radio environment is obtained by means
of a transmitting antenna, which emits the signal, and a receiving antenna, which
receives it.

The mobile terminal, therefore, provides service within the coverage range of a
base radio station to which it is docked. In general, the signal can be shielded from
the environment, physical obstacles or artefacts limiting the diffusion/propagation
of electromagnetic waves.

In particular, three totally different circumstances must be distinguished:

• Signal propagation in a vacuum;
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• Signal propagation within the Earth’s atmosphere;

• Signal propagation within the Earth’s atmosphere and in the presence of
materials.

3.2.1 Signal Propagation in a Vacuum

The femtocell generates an electromagnetic wave which in free space presupposes
the following properties:

• Isotropic and homogeneous medium;

• Medium without losses;

• Transmission without obstacles or reflections.

In this case the only attenuation of the signal is that due to free space, and is
expressed in (3.1):

A0 =

(
4πd

λ

)2

(3.1)

while the transmission power is given by the Friis’s formula (3.2):

PT = PRGTGR

(
λ

4πd

)2

(3.2)

where:

• PT is the power transmitted by the femtocell;

• PR is the power received from the mobile terminal;

• GT , GR are the antenna gains, respectively, in transmission and reception;

• λ is the wavelength of the electromagnetic signal;

• d is the distance between antenna in TX (transmitter) and RX (receiver).

Formula (3.2) is not applicable to real cases where there is a non-isotropic
medium that attenuates the signal.
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3.2.2 Signal Propagation within the Earth’s Atmosphere

In this case, the situation is much more complex. Since the air we breathe is nei-
ther an isotropic nor a homogeneous medium, and since there are other obstacles
(hills, palaces, trees, rain, fog, snow etc.) that shield an electromagnetic radio-
mobile signal, the connection is often rendered possible only through reflections
and diffraction.

Given that propagation conditions in the atmosphere strongly depend on the
type of environment, it is very difficult to find an equation of the trafficking for
mobile radio systems since, these waves, are continuously subject to attenuation,
dispersion, reflection, refraction and diffraction.

3.2.3 Signal Propagation within the Earth’s Atmosphere

and in Presences of Materials

In this case, the scenario becomes much more complex, as the propagation takes
place in the terrestrial atmosphere, where Friis’s formula (3.2) is no longer valid,
and through obstacles made of different types of materials, different shapes and
densities.

The study of the signal attenuation effect in presence of different materials has
been the subject of numerous scientific publications.

For example, [79], presents a study of the attenuation that a WiFi radio signal

Table 3.1: Attenuation for different obstacle.

Obstacle Attenuation [dB]
Human Body 3

Cubicles 3 ÷ 5
Window, Brick Wall 2

Brick Wall next to a Metal Door 3
Glass Window 2
Office Window 3

Plasterboard Wall 3
Marble 5

Glass wall with metal frame 6
Dry Wall 4

Office Wall 6
Brick Wall 2 ÷ 8

Concrete Wall 15 ÷ 20
Metal Door 6

Metal Door in brick wall 12 ÷ 13
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undergoes when it crosses various obstacles (panels) of different materials, placed
at various distances. It was found that the losses depend on the distance between
the transmitter and the panel, as well as the number of panels and panel material.

This dependence has a non-linear character and, therefore, it is difficult to
describe it with existing methods of modelling the propagation of radio waves
within a transmission medium.

Instead, an overview of the attenuation of some materials that can compose a
building is provided in [91]. Also, in this study, the frequency in question is that
of the 2.4 GHz WiFi signal. Table 3.1 demonstrates the attenuation presented by
some types of materials.

3.3 A smart Femtocell-UAV Data sensing System

The elements of the data sensing system proposed in this studies are integrated
as shown in Figure 3.2.

The system includes a drone with a femtocell aboard and a Raspberry Pi board
to locally perform an intelligent analysis of the data, which are subsequently
sent to a client (e.g. a tablet) to allow for visual analysis by an operator who
determines the coordinates relative to the presence of a mobile terminal.

Considering the power supply and payload this system is fully sustainable, as:

• The drone allows a total payload of 2.5 kg, and a fully programmable control
unit;

• The load on the drone is made up of the femtocell (550 g), a power bank
to power it (550 g) and a processing unit (100 g), so the total weight of the
load is 1.2 kg;

• The drone [92] supports the autonomy of 40 minutes with a load of 1.55kg
and the amperage 7.67 Ah per battery (it requires 2 batteries);

• In the instance of multiple terminals or larger monitoring areas it is nec-
essary to replace the batteries or organize multiple flights with multiple
drones.

Considering the functionality of the system, the femtocell receives the power
value RSRP measured by the terminal, in a common control channel. The power
data, relative to each individual terminal connected, is sent to a single board
computer (e.g. Raspberry Pi) via an Ethernet cable connected to the LAN port
of the femtocell and to the Ethernet port of the Raspberry.
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Figure 3.2: Connection/communication scheme of the proposed data sensing sys-
tem.

To obtain information about the points of the area with preset GPS coordinates
the drone must reach to make power measurements, it is necessary to connect the
Raspberry to the drone’s GPS coordinate system via network interface.

This is how it is possible to associate the position assumed by the drone with the
power value that the femtocell receives at that particular point. The data collected
at the end of the process are analyzed, the classification algorithm is applied to
them, and, subsequently, geolocation is carried out. The analyzed information is
subsequently sent to a client via a wireless network generated by the WiFi module
inserted in the Raspberry Pi, which also acts as an access point for the clients.

3.4 Classification Algorithm Supposed 3D Moni-

toring Area in no Free Space

As studied in [93], in a generic scenario characterized by multiple monitoring
areas, the first step is to verify the possible presence and the number of mo-
bile terminals for each monitoring area, so as to select the areas of interest and
immediately conduct the search by civil protection bodies.
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Figure 3.3: Polar diagram of the measured power relative to the i− th monitoring
area.

Assuming an ideal scenario, in the presence of free space, the proposed classifi-
cation technique involves having the drone-femtocell system go around the entire
perimeter of the i− th monitoring area, measuring on the femtocell, with a step
chosen a priori, the value of RSRP power received from the terminal. Figure 3.3
shows an example of a polar graph of the power levels obtained in the hypothesis
of an internal terminal (yellow curve) and an external one (green curve) to the
monitoring area.

The circumference in red represents the value of the discrimination thresh-
old to distinguish whether the related terminal is external or internal to the
monitoring area. In particular, the threshold is calculated considering the mean
RSRPThreshold of the power measurements obtained by the drone-femtocell sys-
tem that runs along the entire perimeter of the monitoring area, with respect to
a mobile terminal placed in a corner of the monitoring area.

Given a mobile terminal, the relative average power on the perimeter of the
monitoring area can be calculated, where the classification criterion is based on
the following relation:

• For RSRPAV G
t < RSRPThreshold the device is classified as OUT;

• For RSRPAV G
t ≥ RSRPThreshold the device is classified as IN.

The algorithm is applied to all the terminals that can engage the femtocell,
keeping in mind that this allows determining their unique identification iteratively
from the monitoring area n = 0 to the area n = N . It is important to point out
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that the power calculation refers to values obtained through the Friis’s formula
(3.2)

To verify the reliability of this technique it is necessary to apply it in real
scenarios, in which the terminals (of all the monitoring areas) are subject to the
non ideal conditions of the system even when they are in free space, and even
worse when they are covered by rubble with more or less density. To analyze this
more complex scenario, several hypotheses have been formulated.

The possible cases to be studied are the following:

• Attenuation from non-ideal free space: the non-ideality is due to the pres-
ence of the soil, to the height of the TX and RX antennas, multipath, posi-
tioning of the smartphone and the femtocell;

• Uniform attenuation due to a single type of material;

• Not Uniform attenuation due to a single type of material;

• Uniform attenuation (various materials).

In this sub-section, the first case is taken into consideration, analyzing the results
even when they vary:

• The height, width and depth of the monitoring area;

• The height of the drone;

• The height of the terminals inside and outside the monitoring area.

Considering the complexity of the analysis to be performed, certain hypotheses
have been introduced:

• The path followed by the drone, with the femtocell on board, is along the
perimeter of the surface of the parallelepiped (which represents the area to
be monitored) in steps of one meter;

• It is assumed that the femtocell has an isotropic propagation and an infinite
coverage radius, thus allowing the coupling of all the internal and external
terminals to the monitoring area;

• The height of the drone, in meters, is equal to:

HD = HR + 0.5, (3.3)

where HD is the height of the drone with the femtocell on board; HR is the
maximum height level of the rubble.
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In an initial phase, we used exclusively the average power measured for terminal
discrimination, which is calculated in (3.4):

AV G =
1

N

N∑
i=0

PRi
, (3.4)

where N is the number of measurement points taken on the perimeter of the
monitoring area and PRi

is the simulated power value or the one obtained from
field tests. In order to simulate the power value of PRi

of the i− th measurement
point, the Friis’s formula (3.2) is used.

The choice to use only the power average parameter makes the system not
very stable to the attenuation and multipath effects, for this reason two other
parameters have been added:

• Normalized variance;

• First autocorrelation coefficient.

For the calculation of the first parameter a preliminary step is carried out. It
works by taking the lowest power value (remember that the power in dBm has
a negative sign), calling it PRmin

and normalizing the other power values with
respect to this, in (3.5):

NV AR =
1

N

N−1∑
i=0

(Pnormi
− AV G)2 , (3.5)

where Pnormi
is:

Pnormi
=

PR

Prmin

, (3.6)

the calculation of the second parameter, first autocorrelation coefficient, is given
by (3.7):

ρ =
CORR1

CORR0

, (3.7)

where:

CORRk =
N−1∑
k=0

{
1

N

N−k−1∑
t=0

[
(Prt − AV G)

(
Prt+k

− AV G
)]}

, (3.8)

to take into account the type of femtocell and the coverage levels offered, the
algorithm is based on a Friis’s formula “Compensated”. The compensation lies in
adapting the value of the variance obtained from the measurements in the field
with that of the measurements obtained from the simulator that uses the Friis
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formula in free space. The balanced Friis formula, therefore, derives from (3.9):

PComp
r = αPr + (1− α) P̄r, (3.9)

where α = 0.52 (the value was chosen based on the measurements made in the
field); PR is the power of Friis’s formula, while P̄r is the average of the values
given by the Friis formula.

To this compensated formula is added an error with Gaussian distribution,
which represents the non-ideality of the system (in particular the not perfectly
isotropic propagation and the measurement error). The procedure underlying the
generation of the Gaussian error is the following:

• A test of real measurements is considered, in which there are four terminals:
two inside and two outside the monitoring area. The four terminals measure
a power value (RSRP), respectively, as the femtocell position changes along
the perimeter of the monitoring area;

• In the same conditions the measurements are generated, by the simulator,
for each terminal;

• The difference is made between the values generated and those measured
for each terminal (obviously with the same position in the monitoring area);

• The standard deviation of the differences is calculated;

• An average of the four calculated standard deviations is calculated;

• The resulting value corresponds to the range of the Gaussian error (Eg),
which in our tests goes from [-1.39,1.39].

The final formula for generating power values, in non-ideal conditions, in the
simulator derives by (3.10):

P f
R = PComp

r + Eg, (3.10)

Sub-section 3.4.1 describes the classification algorithm that uses a single thresh-
old, called the critical threshold, calculated by assuming the terminal in a corner
of the perimeter, and, moreover, the performances are evaluated by varying some
parameters.

Similarly, in sub-section 3.4.2 the algorithm is described using two thresholds,
one positioned in the corner of the monitoring area, i.e. the critical threshold,
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and the other positioned in the center of the monitoring area, the latter being
defined as “threshold centroid”.

In sub-section 3.4.3 we modify this hypothesis and we consider that the femtocell
is placed on a mobile robot and that the height that can be reached varies from
one to two meters.

3.4.1 Single Threshold Method

In the first phase, the threshold was considered assuming a mobile terminal placed
on the ground (0 meters), in correspondence with an edge of the monitoring area.
The parameters used for the implementation of the classification algorithm are:

• Power average;

• Normalized variance;

• First autocorrelation coefficient.

The algorithm is defined by the combination of the three parameters described
above. If the classification parameters of the first terminal are smaller than the
second then the output to the logic chain will have a Boolean variable set to
TRUE, otherwise - to FALSE. The block diagram of the classification algorithm
is showed in Figure 3.4:

If the output of the AND gate is TRUE it means that the terminal is correctly
classified IN, otherwise, if the output is FALSE, the terminal is classified as OUT.

Performance evaluation takes place with the following parameters:

• Drone and rubble quota: please note that these two parameters are linked
by the formula (3.3) expressed above;

• Monitoring area size.

Figure 3.4: Block diagram of the critic threshold - based classification algorithm.
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Before proceeding with the performance evaluation, it is important to introduce
the definition of some terms:

• “Monitoring Area”, is the area in which it is necessary to check how many
terminals are inside and how many are outside;

• “Critic Zone”, is the area outside the monitoring area where it is possible
to find false positives, such as terminals that are classified as IN but which,
instead, are OUT;

• “Safe Zone”, represents a security zone around the monitoring area that is
assumed to have no terminals;

• “Rubble Level”, is the maximum level of the rubble in a disaster scenario;

Regarding the first point, the accuracy of the IN and OUT terminals is evaluated
by introducing a “Safe Zone” of 10% around the “Monitoring Area”, i.e. 10% of
the short side of the monitoring area. Furthermore, to take into account that the
radius of coverage of the femtocell, in the real case, is of finite value, we have
considered the possible presence of external terminals positioned up to 50 meters
from the monitoring area (Figure 3.5).

In terms of percentage accuracy of the terminals correctly classified as IN and
OUT it is clear that for the different dimensions of the monitoring area the
accuracy of the IN is 100%, i.e. all the terminals that are IN are classified as such.
Conversely, the accuracy of the OUTs, i.e. external terminals that are classified
as such, is very variable, and this depends both on the size of the monitoring area

Figure 3.5: Accuracy in classification of IN and OUT terminals as the amount of
rubble increases.
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and on the level of the rubble. The accuracy decreases quickly after a certain flight
height of the drone (or rubble) due to the greater visibility that the femtocell has
from the mobile terminals outside the monitoring area (3.6).

In general, both the performance related to the extension of the “Critic Zone”
and those relating to accuracy are very low, for this reason a second threshold
terminal is introduced, placed at the center of the monitoring area at drone height.
In this way, as we will see later, performance will improve.

Regarding the second point, as already indicated in (3.3), the hypothesis on the
drone’s flight height is that it exceeds the maximum height of the rubble level by
half a meter, so that the drone could move freely within the whole monitoring
area.

As it can see from this graph, the “Critical Zone” remains constant at 18 m and
30 m when the level of rubble varies, respectively for an area size of 48× 72 m2

and 96× 144 m2.
While, in the case of the area of 24 × 36 [m2], the “Critical Zone” shows a

sudden increase when the rubble exceeds 7 meters in height. This means that the
algorithm considers the mobile terminal as internal to the monitoring area, when
in reality it is positioned externally. These false positives lead to the increase of
the “Critical Zone” by about 40 meters, when the rubble level exceeds a certain
threshold (in this case seven meters).

Figure 3.6: Variation of the “Critical Zone” as the amount of rubble increases.
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3.4.2 Method with Hybrid Thresholds

This method has been implemented to increase accuracy performance. The classi-
fication algorithm performs the calculation of the classification parameters using
separately the thresholds deduced from the analysis of the data relating to the
two threshold terminals (critical and centroid) and, subsequently, applies a logi-
cal decision to establish whether the intercepted terminal is inside or outside the
monitoring area. Schematically we can represent the set of logical instructions in
Figure 3.7.

If at the end of the chain, the AND logic gate indicates TRUE the terminal will
be classified as IN, otherwise it will be classified OUT (see Algorithm 1).

The variables “MSAV G”, “MSNV AR”, “MSCORR” refer to the parameters of the
target terminal. The variables “CRITICAV G”, “CRITICNV AR”, “CRITICCORR”
refer to the threshold terminal at the critical point (the corner of the monitoring
area) while the variables “CENTRAV G”, “CENTRNV AR”, “CENTRCORR” refer
to the threshold terminal in the centroid.

With this method the performance of the classification algorithm is improved
compared to the previous method, however, there are still certain factors of non-
ideality that affect its accuracy.

It is now possible to evaluate the performance with the new method as the
parameters already described in the previous method vary and identify the dif-
ferences and improvements.

Figure 3.7: Block diagram of the hybrid threshold – based classification algorithm.
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Algorithm 1 Algorithm for classification of terminals IN or OUT the monitoring
area.

Input: MSAV G, CRITICAV G, CENTRAV G,MSNV AR

CRITICNV AR, CENTRNV AR,MSCORR, CRITICCORR, CENTRCORR

Output: IN , OUT

1: procedure
2: cAV G ← (MSAV G ≥ CRITICAV G) ∨ (MSAV G ≥ CENTRAV G)
3: cNAV G ← (MSNV AR ≥ CRITICNV AR) ∨ (MSNV AR ≥ CENTRNV AR)
4: cCORR ← (MSCORR ≥ CRITICCORR) ∨ (MSCORR ≥ CENTRCORR)
5: c← (cAV G ∧ cNV AR ∧ cCORR)
6: if c← TRUE then
7: MS is IN.
8: else
9: MS is OUT.

As can be seen from the graph in Figure 3.8, compared to the previous method,
the “Critic Zone” for each area appears to be smaller in size but grows slightly
as the height of the rubble (and therefore of the drone) increases. In general,
however, the performance improves, in fact, if the height of the rubble is 5 m and
the area considered is 24 × 36 m, the “Critic Zone” is about 7 m, while in the
previous case it is 11 m. Assuming the size of the monitoring area and the level
of the rubble is known, it is possible to determine the size of the “Critical Zone”
and therefore estimate a certain “Safe Zone”, which reduces the possibility of false
positive, i.e., mobile terminals incorrectly classified as IN.

When the femtocell is positioned at the height of the rubble (therefore depending

Figure 3.8: Variation of the “Critical Zone” to the increase of the femtocell alti-
tude.
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on the surrounding environment), the performance of the percentage accuracy
relative to the OUTs depends not only on the actual dimensions of the “Monitoring
Area” but also on the position in which the internal and external terminals are
positioned. As shown in the figure, the percentage accuracy of the IN is a straight
line with a slight slope (about 1% is lost every 10 m) and suffers little from the
influence on the femtocell share elevation. The situation is considerably different
with regard to the percentage accuracy of the OUTs which is significantly affected
by the difference in altitude. In this regard, it is necessary to make an important
clarification regarding what is meant by rubble quota:

• The rubble quota (indicated as HR) identifies the maximum height of the
rubble inside the “Monitoring Area”;

• The OUT rubble dimension identifies the maximum height of the rubble
surrounding the “Monitoring Zone” (i.e. those inside the “Critic Zone”).

Graph in Figure 3.9, the maximum amount of rubble of 4 m is considered within
the “Monitoring Area” while the area surrounding the “Critic Zone” has rubble
at a maximum height of 2 m, the percentage of accuracy IN will be identified in
the graph from the blue curve to the altitude 4 m, while the accuracy percentage
OUT will be identified in the graph from the red curve at 2 m altitude.

To increase the percentage accuracy of the OUTs, a “Safe Zone” of 10% can be
set up (calculated with respect to the short side of the “Monitoring Area”). In
this way a significant improvement can be identified in the accuracy performance
OUT (leaving unchanged those related to the classification of IN).

Figure 3.9: Accuracy in classification of IN and OUT terminals as the rubble level
increases.
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Figure 3.10: Accuracy in classification of IN and OUT terminals as the amount
of rubble level increases with “Safe Zone” by 10%.

Compared to the first case, the performance of the terminals classified as OUT,
for all the dimensions of the areas, turns out to be greatly improved. In fact, if
we are at a rubble quota of 5 m, for the 96× 144 m area, we have an accuracy of
about 70% compared to the previous case which is 40% (Figure 3.10).

3.4.3 Method with Hybrid Thresholds and Femtocell Height

at one Meter from the Ground

In the previous subsections an important hypothesis is that the femtocell is placed
above the drone, where the latter flies at a certain height, given by the formula
(3.3), along the perimeter of the surface of the monitoring area. In this subsection
we modify this hypothesis and we consider that the femtocell is placed on a mobile
robot and that the height that can be reached varies from one to two meters. The
path will be along the walls of the parallelepiped.

The following are the performance scenarios with the new hypothesis. When
the femtocell is positioned at a man’s height (by hypothesis 1 m), therefore in-
dependent of the surrounding environment, the performance of the percentage
accuracy depends on the geometry of the “Monitoring Area” and the amount of
rubble. However, in this case, the accuracy of OUT in percentage is increasing.
Considering also a “Safe Zone” of 10% the trend is showed in Figure 3.11.

Comparing the two detection methods (at the rubble level and at a height of
one meter) it can be observed that, with the same simulation parameters, the
femtocell method at a height of one meter is more efficient. The only clarification
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Figure 3.11: Accuracy in classification of IN and OUT terminals as the amount
of rubble increases and femtocell height at one meter from the ground.

to make regards the decreasing trend of the IN accuracy is visible on the curve
generated for a “Monitoring Area” of size 24×36 m. Furthermore, judging by the
slight slope visible on the other two curves, one can guess that a similar behavior
will be exhibited also for the “Monitoring Area” for larger rubble dimensions.

3.5 Localization Algorithm Supposed 3D Moni-

toring Area in No Free Space

As studied in [93], once the presence of one or more mobile terminals within a
monitoring area has been verified, the second phase aims to estimate the position
of the individual device. In fact the algorithm repeats the analysis for each ter-
minal, thanks to the possibility that the femtocell offers us to be able to measure
the power values unambiguously for each individual terminal.

A rectangular or cross-linked grid of uniformly distributed measurement points
is considered to be placed exactly above the surface of the parallelepiped enclosing
the monitoring area, where the drone, by moving, makes various measurements of
the received signal strength. An example is shown in Figure 3.12, in which there
is a 5× 11 meter grid and the real position of the terminal is represented by the
square in blue.

The power received by the terminal was subsequently mapped and interpolated,
creating what has been called a “power wall”. An example of the latter is shown
in Figure 3.13, which is the result of the power measured in the grid points in
Figure 3.12, interpolated and mapped. The terminal is in the position marked by
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Figure 3.12: Rectangular grid of measurement points.

Figure 3.13: “Power wall” of the values measured in the grid points.

the green cube.
Starting from the data of the power measurements contained in a “power wall”,

the proposed algorithm for estimating the position of the terminal was based on
an aggregation of the following three estimation methods:

• “Method of proximity” to the highest power value;

• “Weighted distance method”;

• “Center of gravity method”.

The first estimates the position of the terminal in the position in which it
has the highest power value. This algorithm is very efficient in scenarios where
the terminal is in free space or when the rubble has a uniform distribution and
attenuation over the entire area. In scenarios where the area does not have a
uniform type of attenuation, this algorithm appears to be poorly suited to the
context.

For this reason, the “weighted distance method” was introduced, which identifies
the relative minimum points of the power levels. In fact, for certain types of
material attenuation, the RF signal source points may be strongly attenuated,
but in their surroundings still radiate the signal and, therefore, define the so-
called “volcano mouths”, which, if recognized, allows for the mobile terminal that
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Figure 3.14: Flowchart 2D localization and classification technique.

is in the vicinity of these to be determined and not in the points where the power
level is the maximum.

Finally, if the “power wall” shows three peaks of maximum power and no relative
minimum, the “center of gravity method” is activated, which precisely estimates
the terminals at the point defined by the formula of the center of gravity, where the
three points that define the triangle are precisely the peak points of maximum
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power. The sub-section 3.5.1 describes the steps of the localization algorithm;
the sub-section 3.5.2 describes the distance criterion; the three algorithms will
be explained more specifically in sub-section 3.5.3, 3.5.4, 3.5.5. Finally, the test
bed scenario is illustrated in seb-section 3.5.6. In general, the algorithm can be
represented using the flow chart in Figure 3.14.

3.5.1 The Localization Algorithm Phases

Once the position of a mobile terminal has been classified as internal to the mon-
itoring area, the next step is to estimate the exact positioning of each individual
terminal within the selected area. In particular, three types of algorithms are il-
lustrated in this second phase. The algorithm, which is based only on the method
of proximity to the highest power value, as already mentioned, is not very efficient
in more complex real scenarios.

In fact, due to different attenuation of the various materials around the terminal
to be identified, it is likely that the mobile terminal receives more power along
a lateral, and not orthogonal, propagation direction of the RF signal from the
femtocell to the terminal, therefore, less power (and therefore greater attenuation)
is detected in the area above the device and greater power in areas distant from the
actual position of the mobile terminal. In this regard, an algorithm was designed
to evaluate the position of the terminal, taking into account the presence of
what we will call “mountains” and “lakes” that is, points where there are relative
maxima and minima in the RF signal power values.

The concept around the definitions of “mountain” and “lake” is therefore based
on the analysis of the monotony of isopotential surfaces extracted from the inter-
polated map of measured power levels. By grouping the surfaces and analyzing
the trend of the power (from the internal to the external surface), it is possible to
establish the direction of the power gradient. Depending on the direction taken,
we defined:

• “Lake” when the innermost isopotential surface showed a growing monotonous
tendency around a spatial position PLi

called the “peak of the i− th lake”;

• “Mountain” when the innermost isopotential surface showed a decreasing
monotonous tendency around a spatial position PMj

called the “peak of the
j − th mountain”.

Before describing the operation of the algorithm, we introduced a series of def-
initions and formulas necessary for calculating the terminal estimate:
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• Gmax is the maximum power value (dBm) detected in the entire matrix of
points;

• Gmin is the minimum power value (dBm) detected in the entire matrix of
points;

• T is defined as “Earth level”, and is obtained by (3.11):

T =
Gmax +Gmin

2
, (3.11)

• Mpeak is the power (dBm) related to the maximum peak of the mountain;

• Lpeak is the power (dBm) related to the lake’s peak;

• PM is the position of the mountain’s peak;

• PL is the position of the lake’s peak;

• δM is defined as “mountain weight” (i.e., the weight to be assigned to the
global maximum point with respect to the “Earth” plan). This is defined by
(3.12):

δM =
Mpeak − T

Gmin − Lpeak

, (3.12)

• dLM is the length of the segment that connects the peak of the “lake” with
the peak of the “mountain”;

• PNorm is the normalization power, and is obtained by (3.13):

PNorm = GMax −Gmin, (3.13)

• DNorm is the normalization distance, and is given by the diagonal of the
considered rectangular surface. The formula is showed in (3.14):

DNorm =
√
w2 + h2, (3.14)

where w and h are the width and the height of the surface, respectively.
The algorithm optionally involves the selection of mountains and lakes with

higher power levels. In particular, if the FLAG of the filter is active, we filter
“lakes” and “mountains” with a certain percentage, defined by the operator, with
respect to the maximum peak power of the “mountain” and the minimum of the
“lake”.
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• If the number of “mountains” is equal to zero, then the algorithm does not
provide any result;

• If the number of “mountains” is equal to one, then the following elements
must be evaluated:

– If there are no “lakes”, the position is estimated by employing the
proximity method;

– If only one “lake” is found, the position is estimated by using the
weighted distance method;

– If several “lakes” are found, the “lake” with the lowest Mn value is se-
lected (see (3.18)), then the terminal is estimated by using the weighted
distance method;

• If the number of “mountains” found is equal to two:

– If no “lakes” are found, the position is estimated from the midpoint of
the two “mountain” peaks;

– If only one “lake” is found, the position is estimated using the distance
criterion described below;

– If the number of selected “lakes” is greater than 1, the “lake” with the
lowest Mn value is selected (see (3.18)), then the terminal is estimated
using the distance criterion;

• If the number of “mountains” found is equal to three:

– If there are no “lakes” the position is estimated using the center of
gravity method;

– If the number of “lakes” found is equal to one, the position is estimated
using the distance criterion;

– If the number of “lakes” found is greater than one, the “lake” with the
lowest Mn value is selected (see (3.18)), then the terminal is estimated
using the distance criterion;

• If the number of “mountains” selected is greater than three, the three highest
“mountains” are selected and then instructions for the previous point are
followed.

Figure 3.15 shows the positioning algorithm’s flowchart.

42



Figure 3.15: Flowchart of the positioning algorithm.

3.5.2 Distance Criterion

When there are two (or three) “mountains” and one “lake”, a pre-selection phase
is activated through the distance criterion. Suppose further that the “mountain”
list is sorted in decreasing power, so that mountain0 is the highest power one.

• For a number of “mountains”, it is equal to three: if the selected “lake” is
at a shorter distance from mountain0 than in mountain1 and mountain2,
the method of weighted distance between the “lake” and the mountain0 is
used;

43



Figure 3.16: Flowchart of the distance criterion.

• If only one “mountain” (e.g., mountain1) is at a shorter distance from
mountain0, then PEstimated is given by the midpoint between mountain0 and
mountain1. If both “mountains” are at a shorter distance from mountain0,
then PEstimated is given by the “center of gravity method”.

Figure 3.16 show the distance method’s flowchart.

3.5.3 Proximity Method

In general, an estimate of the position based on the proximity method uses a
proximity sensor to detect the presence of nearby objects without any physical
contact. In particular, the proximity sensor in this paper is represented by the
femtocell, which measures the power levels received from a mobile terminal.

The proximity method consists in estimating the terminal at the position PM

where there is the highest peak of power called the “peak of the mountain”.
PE
x = PM

x

PE
y = PM

y ,

PE
z = PM

z

(3.15)
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PEstimated

(
PE
x , PE

y , PE
z

)
= PM

(
PM
m , PM

y , PM
z

)
. (3.16)

3.5.4 Weighted Distance Method

The weighted distance method is articulated in the following steps. Firstly, in
order to process the data, we must look for all of the “mountains” and “lakes” on
the surface. Then, we can select the highest “mountain” peak.

1. If no “mountain” is detected, no processing is possible and the routine is
aborted;

2. If no “lakes” are found, but there is at least one “mountain”, then the ter-
minal is estimated in the position where the highest “mountain” peak lies;

3. If only one “lake” is found, the position is estimated using (3.17):

PEstimated = δM · dLM · ⃗uLM . (3.17)

where ( ⃗uLM) is the directional versor that goes from the peak of the “lake”
to the peak of the “mountain”.

4. The more “lakes” are found, the less probable steps must be taken. To do
this, the distance between the peak of the “mountain” (i.e., the highest power
value) and the minimum point of each identified “lake” must be calculated
and the one with the lowest Mn value must be chosen, where Mn is given
by (3.18):

Mn = 0.5 ·
(
DLi−M

DNorm

)
+ 0.5 ·

(
DLpeak

PNorm

)
, (3.18)

where DLi−M
is the distance between the i− th “lake” and the selected peak

of the “mountain”, and is obtained by (3.19):

DLi−M
= ∥PLi

− PM∥ . (3.19)

Once a single “lake” is selected, proceed following the instructions outlined in
point 2.

3.5.5 Center of Gravity Method

This method is applied when only three “mountains” are found. In particular, this
consists of considering the three peaks of “mountain” as the three vertices of a
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triangle and calculating the center of gravity (3.20):
PE
x = P

M0
x +P

M1
x +P

M2
x

3

PE
y =

P
M0
y +P

M1
y +P

M2
y 3

,

PE
z = P

M0
z +P

M1
z +P

M2
z

3

(3.20)

3.5.6 The Test Bed Scenario

The following hardware and software tools were used for simulations and labora-
tory tests:

The hardware and software tools described in the Appendix A were used in the
testbed for simulations and laboratory tests; in addition part of the technologi-
cal center of the University of Catania was used during the algorithm validation
phase. The choice was dictated by the possibility of having a structure character-
ized by different types of material such as concrete blocks, glass windows, external
lava stone, wooden, and iron doors. Each material, as is known, has a different
attenuation coefficient, and therefore it has been possible to simulate situations
of isotropic and non-isotropic propagation, obtaining cases with mountains only
(power peaks), but also in cases with the presence of lakes (signal sources’ RF
that radiate laterally due to the high attenuation of the material along the di-
rection orthogonal to the position of the mobile terminal to be geolocalized). In
particular, for the geolocation tests, the mobile terminals were positioned inside
the laboratory rooms along an external edge of the structure. The measures were
carried out through a trestle adjustable in height where the femtocell was po-
sitioned, and considered a grid of 4 × 12 points equidistant to 1m to cover the
external walls. The data obtained from the power measurements were interpo-
lated by obtaining images representing the so-called power walls used as input to
the classification and geolocation algorithms described in the previous sections.
In order to evaluate the effectiveness of the algorithm, two adjacent walls of the
technological pole building of the University of Catania were considered (see Fig-
ure 3.17), and the terminal estimation algorithm was applied to the obtained data
(Figures 3.18 and 3.19).

It was decided to indicate the real position of the mobile terminal as a green
cube, its estimated position in white, the peak of the “lake” in red, and, finally,
the peak of a “mountain” in blue. This alternating choice of colors serves to
discriminate, in the image, the position of the peak of the “mountain” and the
peak of the “lake”. It is important to note that the alternating choice of colors
does not affect the color that indicates the highest and lowest power. In fact, in
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Figure 3.17: Technological pole building.

Figure 3.18: Power levels for wall 1 relative to the terminal located in the room
on the left at 1.5 m.

the image, the area in red indicates a higher received signal strength than the
blue zone.

Figure 3.18 shows the estimate of a “mountain” for wall 1. The terminal was at
a height of 1.5 m and is represented by a green cube. It is important to point
out that for all the tests conducted, the terminal was always placed in the same
position and the measurement was read using an app (TeamViewer), with screen
sharing on a PC desktop. This solution was introduced because the human body
near the mobile terminal could make oscillations and variations in the received

Figure 3.19: Power levels for wall 2 relative to the terminal located in the room
on the left at 1.5 m.
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power. The application of the terminal estimation algorithm, in this case, exploits
the proximity method to estimate the terminal in the peak of power characterized
by the “mountain”. The PEstimated was estimated to be 0.74 m away from the actual
position.

As for wall 2 ( Figure 3.19), only one “lake” was found and a maximum peak of
the “mountains”. In this case, the algorithm applied the weighted distance method
between the “lake” and the “mountain”. The PEstimated was estimated to be 0.94
m away from the actual position.

Excellent localization accuracy could be observed in both cases. Taking into
consideration the second wall, if an operator is present, who evaluates the power
wall derived from the values, the point where the terminal is likely to be is the
peak power point identified as the “mountain”. To improve the localization esti-
mate, therefore, it is possible to activate filters that allow, based on the assigned
percentage, to take into account, or not, additional “mountains” or “lakes”. In
particular, the percentage is set at 50% by default (i.e., it must exceed 50% of
height/depth with respect to the maximum/minimum peak).

If in this case, we apply a filter for the “lakes” of 70%, only a peak maximum
power will be found. Therefore, the “proximity method” will be applied and the
terminal will be estimated with an error of 0.78 m, with respect to the real position
of the terminal. This can be observed in Figure 3.20.

Figure 3.21 shows the overview of the two power walls relating to the terminal
located in the room to the left at 1.5 m.

The second test was carried out by putting the terminal inside the room to the
right (wall perspective 2) of the technological pole building, at a height of 1.4
m. Figure 3.22 graphically represents the power levels mapped on the two walls.
Additionally, in this case, the new algorithm was applied. These results show that
for wall 1, the algorithm used the proximity method and estimated the position

Figure 3.20: Power levels for wall 2 relative to the terminal located in the room
on the left at 1.5 m with the filter.
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Figure 3.21: Overview of the power levels for walls 1 and 2, room terminal on the
left at 1.5 m.

Figure 3.22: Power level for wall 1 related to the terminal located in the room to
the right at 1.4 m.

Figure 3.23: Power level for wall 2 related to the terminal located in the room to
the right at 1.4 m.

of the device at the peak of the “mountain” at 1.6 m from the real position. Thus,
a “lake” was found.

As for wall 2 (Figure 3.23), two “mountains” and no “lakes” were detected. The
algorithm used the distance criterion, estimating the terminal at 0.98 m away
from the actual position.

In general, even the fourth test calls for excellent precision concerning the es-
timate of the terminal position. Figure 3.24 shows an overview of the two power
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Figure 3.24: Overview of power levels for walls 1 and 2, room terminal to the
right at 1.4 m.

walls relating to the terminal located in the room to the right at 1.4 m.
The proposed geolocation algorithm identified a mobile terminal through a 2D

analysis of a power wall, but of course, it is possible to combine and aggregate the
data to obtain a 3D geolocation that under certain circumstances can be decisive
for the geolocation of a missing person.

3.6 Classification Algorithm considering 3D Mon-

itoring Area in No Free Space - No Isotropic

Attenuation

As studied in [94], the first step in identifying missing persons under the rubble
is to classify the terminals within the selected monitoring area.

It is therefore assumed that the area in which the collapse occurred was incorpo-
rated into a parallelepiped of AX , AY , HR (length, width and height). Figure 3.12
shows the supposed monitoring area. The hypotheses underlying the classification
algorithm are the following:

1. The size of the monitoring area is AX , AY , HR, meters, the monitoring area
is formed by S = AX ·AY ·HR

27
under areas of size 3× 3× 3 m3;

2. The flight of the drone takes place at height HR, equal to the height of the
rubble;

3. The drone takes different positions, which we will indicate with the term
“DPosition

k ”. The k − th positions are defined at the center of each sub-area
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S at height Hr with k = 1, ..., (AX

3
· AY

3
);

4. The mobile terminals, defined as MSi for i = 1, ..., S, are positioned at the
points Ci = (CX

i , CY
i , C

Z
i ), or in the centroid of the i− th sub area Si;

5. For each k − th position of the drone, power received by the i − th MS is
given by (3.21):

PT = PR +GT +GR − A0(di−k)−Dr · di−k · Ar − ri−k, (3.21)

where di−k [m] is the distance between the position of each terminal and the
k − th position of the femtocell; A0 is the attenuation in dB in free space
(3.1); Dr is the density of the material in the interval [0, 1] (expressed in per-
centage in the graphs); Ar is the material attenuation coefficient [dB/m];
ri−k is a random value in dB to simulate an additional non-isotropic at-
tenuation between the the terminal position and drone position; given by
formula in (3.22):

ri−k = rand[0, (di−k · Ar ·W · (0.1 + 0.9 ·Dr)], (3.22)

where W is a default weight set to 0.5 (50%).

6. The terminals that will be hooked by the femtocell will be those whose
power value will be above a certain threshold, hereinafter referred to as
Pth = −120[dBm]. The connected terminals will therefore be all terminals
whose power is greater than Pth: if Pi−k ≥ Pth then Pi−k ∈ Phoocked.

Once the working hypotheses have been defined and the terminals are gener-
ated, it is possible to introduce the classification algorithm. We define the set of
terminals hooked Phooked, without repetition and for each position taken by the
drone within the monitoring area, such as {A}.

Some terminals are hooked by the femtocell but are not internal to the moni-
toring area, so these terminals represent the “false positive” value. So to reduce
false positives it was thought to turn the femtocell around the perimeter of the
monitoring area with a distance from the perimeter equal to its coverage radius.
This further enables hooking all the terminals present outside the monitoring
area, creating the set {E}, that is the set of terminals outside the monitoring
area.

In the set {E} there will be terminals that are also present in the set {A}.
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Thus the intersection of the two sets creates the set {X}. This set is therefore
formed by (3.23):

X = A ∩ E (3.23)

The set {X} must be subtracted from the set {A} to have the set of terminals
considered as internal to the monitoring area. Therefore, the set {I} is given by
(3.24):

I = A−X (3.24)

Once the terminals inside the monitoring area have been defined, it is possible to
proceed to the localization phase.

To better understand the classification phase and related performance it is pos-
sible to evaluate the performance’s accuracy to vary some parameters. The hy-
potheses made for the performance simulation are:

• Area Size: 30× 30 m2;

• Weight (W) of 5%;

• Transmission power PT of -57 dBm;

• Power threshold Pth of -120 dBm;

• Sub area resolution of 3 m3.

The Figures 3.25a, 3.25b and 3.25c represent the accuracy of the classification
as the level of the rubble increases and change respectively Ar, PT e Dr.

In this graph the density of the material Dr is assumed to be at a value equal
to 50% and the curves are shown relatively to the different levels of additional
attenuation of the material Ar. It may be noticed that as the quantity of rubble
increases the accuracy visibly decreases, especially, in cases where there is an
attenuation due to the material greater than 5 dB/m.

In this graph, obtained by assuming Ar = 20dB/m and the density of the
material at 50%,represents the curves relating to the different transmission power
levels Pt. Also in this case it is clear that accuracy decreases with the increase of
rubble, and, in particular, that the curve defined by a transmission power level of
-30 dBm decreases more than that relative to the transmission power level equal
to - 10 dBm.

In this graph, obtained by considering Ar = 20dB/m, the curves are represented
as the density of the material Dr changes. Also in this last case the accuracy
decreases as the rubble increases, and, particularly, where the density of the
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(a)

(b)

(c)

Figure 3.25: Accuracy versus rubble level: (a) Varying Ar and Dr = 50%, (b)
Varying Pt and Dr = 50%, (c) Varying Dr and Ar = 20dB/m.

material is higher the accuracy will be very low, compared to the case in which the
material has lower density. This is because with the same transmission power, with
more material, there is more additional attenuation and, therefore, the number
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(a)

(b)

(c)

Figure 3.26: Average classification accuracy varying several parameter: (a) Ac-
curacy versus power level (Ar = 20dB/m,Dr = 50%), (b) Accuracy ver-
sus power level (Ar = 20dB/m,Dr = 50%), (c) Accuracy versus power level
(HR = 20dB/m,Ar = 20dB/m).

of terminals hooked up will be lower.
The Figure 3.26a, 3.26b and 3.26c represent the accuracy of the classification as
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Figure 3.27: Accuracy versus material density (HR = 15m).

the level of the transmission signal’s strength increases PT and varies according
to HR, Ar e Dr.

Graph in Figure 3.26a is obtained by assuming a material density of 50% and
a Ar = 20dB/m, the curves are shown relative to the different heights of the
rubble. It may be noticed how as the signal power level increases in transmission,
the level accuracy grows visibly. In particular, for a drone height of 3 and 6
meters accuracy is 100%. This means that the femtocell manages to hook all the
terminals present in the monitoring area and classify them as “IN”.

Graph in Figure 3.26b is obtained by assuming the density of the material to be
at 50% and the height of the drone Az at 15 m, the curves for the different levels
of additional attenuation are represented Ar. Also in this case, it is clear that the
accuracy increases with the increase in power, and, in particular, that the curve
defined by an attenuation level of 10 dB/m leads to a much higher accuracy than
that relative to Ar = 30dB/m.

Finally, graph in Figure 3.26c is obtained with the hypothesis of Ar = 20dB/m

and HR at 15 m, the curves are represented as the density of the material changes
Dr. Also in this last case the accuracy increases with the increase of the power
level. In particular, where the density of the material is higher, the accuracy will
be very low, compared to the case in which the density of the material is lower,
thus, allowing more terminals to be hooked.

Figure 3.27 below represents the accuracy of the classification as the density of
the material increases Dr and to vary the Ar.

From the graph it can be seen that by presuming the drone’s flight height to
be at 15 m, accuracy decreases as the density of the material increases and, also,
the additional attenuation increases.
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3.7 Localization Algorithm Supposed 3D Moni-

toring Area in No Free Space - No Isotropic

Attenuation

As studied in [94], the localization phase can be implemented using two different
algorithms:

1. Proximity algorithm (sub-section 3.7.1);

2. Cluster-based fast proximity algorithm (sub-section 3.7.2).

3.7.1 Proximity Algorithm

The localization algorithm is based on the hypotheses made previously, in the
classification phase. The localization phase involves estimating the position of
the MSi terminal in the MSEstimated

i point, on the Z plane (in 2D), where this
terminal has greater power.

In fact, after defining the terminals classified as IN, having memorized, in the
first phase, the Pi−k power measurements for each DPosition

k it is possible to obtain
a power grid in the surface of the monitoring area for each terminal, with which
it is possible to estimate the position of the terminal at the grid point where
maximum power is obtained for that terminal.

The localization error is expressed in meters and is estimated by calculating
the distance between the two vertical axes passing through the positions of MSi

and DPosition
k in which the drone measures the maximum power received by the

mobile terminal MSi, then assuming that the error along the Z axis is zero. The
error is based on (3.25):

∈= dvert
[
MSi, D

Position
k

]
(3.25)

where dvert (Pointi, Pointk) represents the distance between the vertical lines
passing through Pointi and Pointk.

To better understand the “Proximity Algorithm” and related performance it is
possible to evaluate the average error of the estimated position.

In Figure 3.28a, 3.28b and 3.28c the average error is represented by varying
one of the 3 parameters HR, PT and Ar. In Figure 3.28a the additional atten-
uation is assumed at 20 dB/m and the density of the material at 50% and the
curves relating to different values of PT are represented. In this case, the average
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(a)

(b)

(c)

Figure 3.28: Average error varying several parameter: (a) Average error versus
rubble level (Ar = 20dB/m,Dr = 50%), (b) Average error versus rubble level
and density level (Ar = 20dB/m), (c) Average error versus transmission power
(Ar = 20dB/m,Dr = 50%).

localization error increases with increasing rubble and, more importantly, with
increasing transmission power.
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Figure 3.29: Average error versus transmission power and Dr (Ar =
20dB/m,HR = 15m).

This occurs because as PT increases, more terminals are hooked on which the
localization algorithm must then be performed, so having more terminals, in the
presence of attenuation and 50% material density, an error will occur at a higher
location, but still between 0 and 1.3m.

In Figure 3.28b, a material with an attenuation coefficient of 20 dB/m is as-
sumed, and the curves relating to the different levels of material density are
represented. Again, in this case, the average error increases as the rubble grows
and the material density decreases. The average error decreases as the density
of the material increases, because this increase leads to a situation of isotropic
attenuation, and, therefore, reduces the localization error.

Figure 3.28c shows the average error as both the transmission power and the
Hr increase, assuming an Ar attenuation of 20 dB/m and the density of the ma-
terial at 50%. As can be seen from the figure, when we are at the height of the
rubble at 3m, by varying the transmission power, it is possible to make zero
error. As the height of the rubble increases, for transmission powers between
[−60dBm,−50dBm] there is an error from 40 to 50 cm. For the remaining power
values, the average error increases more when we are at different heights. The in-
crease in error as transmission power increases is due to the fact that the femtocell
hooks up more terminals, i.e. those deeper down.

Finally, in Figure 3.29, as in the previous one, the average error is evaluated as
the transmission power increases. In particular, the level of the rubble is assumed
to be at 15m and the additional attenuation at 20 dB/m and the curves relating
to the different levels of material density are represented.

The average error, in this case, again, increases as the transmitted power in-
creases and the density of the material decreases.
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3.7.2 Cluster-based Fast Proximity Algorithm

In the real post-earthquake scenarios of a lost person localization times are very
important. It is of fundamental importance to be fast in the rescue times to
minimize the drone’s energy consumption [95, 96] and that of the mobile devices.

The reduction in flight time and energy consumption has been studied by several
researchers. In [97], the propulsion energy consumption model of the fixed-wing
UAV was derived and an efficient trajectory maximizing the UAV’s energy effi-
ciency was designed.

In addition, energy efficient schemes have attracted wide attention due to the
battery technology limitation of mobile devices and UAVs. The authors in [98],
studied the minimization problem of the weighted sum energy consumption of the
UAV and users. The computation resource scheduling, the bandwidth allocation
and the trajectory of the UAV were optimized in the minimization problem.

In this paper the proposed method to reduce energy consumption is based on the
optimization of the drone flight. It will be positioned on certain points according
to the algorithm that will be hereinafter illustrated.

It is supposed that terminals are not distributed in a non-uniform way within
the monitoring area. There will be an area with higher density of terminals un-
like another area with lower density. For this reason it is possible to apply the
“Cluster-based Fast Proximity Algorithm” to select one sub-area, rather than an-
other, where larger quantities of terminals with greater power are detected. The
algorithm includes the following steps:

1. Determination of the minimum resolution of the location error to be ob-
tained (1 m, 2 m, 3 m, etc.);

2. Estimation of the monitoring area so that it can be divided into 4 quadrants
for each phase;

3. Selection of 9 grid positions where the drone is stationed. 4 of these positions
are represented by the vertices of the monitoring area and another 4 by the
median positions of each side, finally the last position is represented by the
centroid. From the second phase on wards, the points are reduced to 5 (the
middle 4 of the sides of the subarea and the relative centroid).

4. Identification of the number of terminals for each sub-area. This is done by
evaluating which terminals, at the different points defined above, have the
highest power value;
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5. Once the number of terminals identified in the various sub-areas has been
defined, it is possible to intervene in the point with several terminals and
therefore the whole procedure is repeated, starting from point 2, for the
sub-area in question;

6. The phases are F and depend on the size of the monitoring area.

The algorithm uses the subdivision in phases for the optimization of the trajec-
tory of the drone, which is defined as “2” or “serpentine”. In particular, hypotheses
are made for simplicity:

• The grid must be an M ×M matrix in which:

M = 2n + 1, n = 2, 3, ..., N (3.26)

• The matrix must not be 2×2 or 3×3, since there would be no optimization
of the trajectory and therefore no energy/time saving;

• The number of iteration phases of the algorithm must be given by (3.27):

F = M − 1 (3.27)

From this formula it can be understood that n = F .

Once the initial hypotheses are defined, it is possible to provide a series of
definitions:

• ENO
tot is the total energy not optimized;

• EO
tot is the total energy optimized;

• TNO
P−tot is the total non-optimized point processing time;

• TO
P−tot is the optimized total point processing time;

• TNO
V−tot is the total flight time of the non-optimized drone;

• TO
V−tot is the total flight time of the non-optimized drone;

• P it is the power used by the drone to stay in flight;

• tp it is the processing time, i.e. the time required by the mobile terminal to
detect the power received by the;
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Figure 3.30: Optimized drone rout.

• δt is the time it takes the drone to fly from one point on the grid to another;

It is now possible to define the non-optimized total energy as:

ENO
tot = P ·

(
TNO
P−tot + TNO

V−tot

)
(3.28)

where:
TNO
P−tot = tp ·M2

TNO
V−tot = δt ·

(
M2 − 1

) (3.29)

While the total optimized energy can be expressed in the following way:

EO
tot = P ·

(
TO
P−tot + TO

V−tot

)
(3.30)

where:
TO
P−tot = tp · (5 · F + 4)

TO
V−tot = δt ·

[
2F ·

(
4 +

Fmax∑
F=2

2

2F−2

)]
(3.31)

The flight and total processing time depend on the route iteration phases and
on the size of the matrix (also linked with the number of phases). Moreover,
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to define the previous formulas, we adopted the worst scenario, in which the
selected quadrant (in which the terminal is present) is on the opposite side to the
last position taken by the drone. Figure 3.30 represents an example of the process
of iteration and path optimization.

To better understand the “Cluster-based Fast Proximity Algorithm” and re-

(a)

(b)

(c)

Figure 3.31: Comparison between the curve defined by: (a) TO
P−tot and TNO

P−tot, (b)
TO
V−tot and TNO

V−tot, (c) EO
tot and ENO

tot .
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Table 3.2: Percentage energy optimization.

M Reduction to [%] Reduction [%]
5 70.70 29.29
9 38.70 61.30
17 19.05 80.95
33 5.53 94.47

lated performance it is possible to evaluate optimized/non-optimized flight time,
processing time and compare each other.

Placing ourselves in the conditions described in the previous section, in which
this algorithm is introduced and illustrated, we show graphs that relate the op-
timized and non-optimized flight time and to processing time, and therefore also
the optimized and non-optimized energy expenditure, to vary of the size of the
monitoring area.

Figure 3.31a, 3.31b and 3.31c show that this trajectory optimization algorithm
provides considerable energy saving. Table 3.2 shows, as the size of the matrix
varies, the “reduction to” and the “reduction in”, in percentage, of energy.

This method could be extended considering the use of two or more cooperating
drones, optimizing flight time and areas to be covered. This mechanism leads to
a reduction in the energy consumed by drones and also in rescue times. There-
fore, by using multiple drone-femtocell systems, the need arises to remodel the
algorithm for optimizing the drone flight time, in order to intelligently cover each
sub-area of the monitoring area. To this end, once the optimization algorithm is
applied, the graphs relating to processing times, flight times and energy expen-
diture are obtained as the number of drones used and the size of the matrix that
defines the monitoring area vary. To apply the algorithm, the following constraints
were introduced:

• Coverage radius of the femtocell on board the drone equal to half the diag-
onal of the starting grid;

• The terminals hook onto the first femtocell they detect;

• The drones depart from the edges of the grid with a time lag of one minute,
to prevent them from passing through the same point at the same time;

• Uneven distribution of terminals.

Processing time, flight time and energy, in the case of two and four drones are
given by (3.32) and (3.33), respectively:
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(a)

(b)

(c)

Figure 3.32: Comparison between 1, 2, 4 drones when matrix size varying: (a)
Processing time, (b) Flight time, (c) Energy.

TO
P−tot = tp · (5 · Fmax + 1)

TO
V−tot = δt ·

[
20 + 2Fmax ·

(
Fmax∑
F=2

3

2F−2

)]
EO

tot = P ·
(
TO
P−tot + TO

V−tot

) (3.32)
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TO
P−tot = tp ·

[
5 ·
(
Fmax + 1

2

)
+ 4

]
TO
V−tot = δt ·

[
2Fmax ·

(
2 +

3

2Fmax−2

)]
EO

tot = P ·
(
TO
P−tot + TO

V−tot

)
(3.33)

Using (3.31)(3.30), (3.32) and (3.33) it is possible compare the trend of the curves
relating to processing time, flight and energy consumption, based on the use of
1, 2 or 4 drones.

Figures 3.32a, 3.32b and 3.32c represent, respectively, the trend of the curves.
These graphs confirm what has been said for a 9 × 9 matrix. In fact, as regards
the processing time, the greatest reduction is obtained by passing from 1 to 4
drones. In terms of flight time and energy, there is a sharper decrease from 2 to 4
drones. Once the number of drones has been fixed, processing times, flight times
and energy increase hand in hand with the increase in the size of the matrix,
but with a different trend. The processing time increases linearly, while the flight
time and energy grow according to an exponential trend.

3.8 Localization Algorithm Used Game Theory Al-

gorithm

The use of UAV-Femtocell systems for the geolocation of mobile terminals has
recently been introduced in the literature as an alternative and effective method
in civil protection scenarios and applications. In this context, one of the impor-
tant aspects concerns the optimization of geolocation times, bearing in mind the
limited duration of the flight time of drones. This sub-section proposes a game
theory-based approach to geolocation using UAV-Femtocell systems.

Over the past few years, GT has played a considerable role in different applica-
tion contexts within the telecommunication system [99, 100].

In [99], two main aspects of GT are used to control the power of mobile termi-
nals.

In [100], the authors seek the optimal placement of two UAVs providing back-
bone communications to a community of mobile terminals by applying the GT
technique. Drones are seen as the “players” and the set of possible positions they
can take are the “strategies”.

Also in [100], the authors suggest the use of GT methods where the drones (i.e.
the “players”) exhibit non-cooperative behavior in order to optimize the position
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of the UAVs.
As studies in [101, 102] in this sub-section we want to apply the concepts of

GT in an application scenario different from those described above. In fact, the
application scenario corresponds to an earthquake zone with missing people who
must be located under the rubble via their mobile terminals by applying UAV-
Femtocell systems, or a system equivalent to a BS of a mobile radio network that is
not fixed, but can move around the territory by approaching the mobile terminals
which, on the other hand, in this particular scenario are in fixed positions.

In this sub-section it’s propose a localization technique based on the use of
two UAV-Femtocell systems and GT techniques in order to define the optimal
position in which the drones must move in order to save flight time, reduce energy
and locate the largest number of mobile terminals that connect. The results of
the optimized flight time and energy is compared with the “Serpentine” method
studied in [94], and described in sub-section 3.7.2.

In this study is introducing a number of improvements to the GT algorithms
and extending the performance and comparative analysis to a scenario closer to
the real one. In particular, the main features introduced in this work are:

• N number of mobile terminals distributed over the monitoring area;

• Device position generation within the monitoring area occurs randomly;

• Different dimensions of the monitoring area have been evaluated in order
to provide a more complete analysis of the performance in the simulation
phase. The number of mobile devices within the area, in this case, is pro-
portional to the size of the monitoring area;

• During the game, in each “round”, instead of performing a single iteration,
i=10000 iterations are performed in order to provide greater statistical
significance of the results and to verify the robustness ensuring greater
guarantee of achieving the Nash equilibrium;

• Evaluation of the work through a series of simulations aimed at assessing
time and energy gain according to the variation in different parameters, i.e.
size of the monitoring area, number of mobile devices generated, different
data processing and drone flight speeds;

• Three Utility Functions (UFs) have been introduced to allow obtaining the
Nash equilibrium at all times. A performance comparison of the three UFs

has been made;
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• The study introduces a mechanism for unlocking the game if Nash equilib-
rium is not achieved;

• A series of simulations have been introduced:

– Comparison of UFs with respect to time (flight + processing) and
energy gain according to the number of mobile terminals N generated
and the size of the monitoring area;

– Calculation of the percentage of times Nash equilibrium does not occur
for each of the three UFs as the number of devices and the size of the
monitoring area vary;

– Evaluation of the entire game simulation times as UFs vary;

– Having determined the monitoring area, the best utility function and
the number of devices, a performance comparison at different data
processing and drone flight speeds has been made.

• Finally, in order to account for the different effects on the power attenuation
of rubble related to the collapse of a structure in a realistic post-earthquake
scenario, tests were carried out assuming a non-isotropic propagation of
electromagnetic waves within the monitoring area according to the formula
presented in [94]. This formula introduces the existing Friis attenuation
on a random additive component considering the type and density of the
material present in the rubble in post-earthquake disaster scenarios.

3.8.1 Game Strategy

In this sub-section is illustrated the geolocation method and UAV energy effi-
ciency method using GT; the main concept of the GT is illustrated in Appendix
B. Figure 3.33 shows an example of a rectangular-shaped monitoring area over
which D = 2 drones intervene. In this study, as in [101], the “players” are repre-
sented by drones, while the movements along the grid points of the monitoring
area represent the possible “strategies”.

The initial position of the drones is defined from the two centroids that char-
acterize two equal partitions of the monitoring area. Conversely, the mobile M
devices are randomly distributed. Unlike the “Serpentine” method in which drones
move from one lattice point to the adjacent one, in the present study the drones
start moving from the center of a macro-cell consisting of four basic cells towards
its four vertices, which represent possible strategies. At the beginning of each
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Figure 3.33: Example of simulated scenario.

stage of the game, the drones, based on their position, identify the mobile ter-
minals with the highest power and proceed with several game rounds until the
terminals are located. At the end of every round the winning strategy is deter-
mined (i.e. the vertex on which the drone will have to move) calculating the UFs

and, therefore, the Nash equilibrium. By defining the first drone as D1 and the
second drone as D2, we can define the set of possible strategies of the two drones,
according to (3.34). The UFs of the two drones will be defined in the Cartesian
product AD1 × AD2 , so each of them can take 16 values.

AD1 = {s1, s2, s3, s4},

AD2 = {t1, t2, t3, t4}.
(3.34)

Next, we will generalize the proposed method to a generic number of devices, i.e.
mobile terminals, within the monitoring area and the newly introduced UFs: let
Mm be the m-th mobile terminal present in the monitoring area, with m = 1, ...
M, where M represents the total number of mobile terminals to be geolocated. In
(3.35), Mm1 and Mm2 are defined as the terminals for which the drones measure
the maximum power at the s and t points, respectively:

Mm1 = m : PMm
D1

(s) = Max,

Mm2 = m : PMm
D2

(t) = Max,
(3.35)

where the powers PMm
D1

and PMm
D2

are those of the terminal m-th measured by the
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drone D1 and D2, respectively. The proposed UFs have been structured to be
maximized in situations where the drone is approaching the reference terminal
to be geolocated. For convenience we will denote “UF1” (Utility Functions 1) the
‘UFs” that have been formulated to be maximized when the power measured
by the relative drone increases (indicating that the drone is approaching the
terminal to be geolocated) and, at the same time, when the power difference
from that measured by the second drone increases (with the aim of minimizing
the overall movements of the drones and, therefore, reducing geolocation times
and decreasing the overall duration of the flight); “UF2” (Utility Functions 2) the
utility functions related to the power ratio of the mobile terminals measured by
the two UAV-Femtocell systems; “UF3” (Utility Functions 3) the utility functions
related to the power differences of the mobile terminals measured by the two
UAV-Femtocell systems. The three types of UFs are expressed respectively as
(3.36) and (3.37), (3.38) and (3.39), (3.40) and (3.41).

• UF1:
u1(si, tk) = P

Mm1
D1

(si) ∗ [P
Mm1
D1

(si)− P
Mm1
D2

(tk)], (3.36)

u2(si, tk) = P
Mm2
D2

(tk) ∗ [P
Mm2
D2

(tk)− P
Mm2
D1

(si)]; (3.37)

• UF2:

u1(si, tk) =
P

Mm1
D1

(si)

P
Mm1
D2

(tk)
, (3.38)

u2(si, tk) =
P

Mm2
D2

(tk)

P
Mm2
D1

(si)
; (3.39)

• UF3:
u1(si, tk) = P

Mm1
D1

(si)− P
Mm1
D2

(tk), (3.40)

u2(si, tk) = P
Mm2
D2

(tk)− P
Mm2
D1

(si),

i, k = 1, .., 4.
(3.41)

A stage of the game ends when the drone measures less power than in the
previous round, according to the criterion described in sub-section 3.8.2. Once
the two terminals are located, the game resumes. The drone that geolocalizes
a terminal first, waits for the completion of the localization phase of the other
drone, in order to synchronize the beginning of the next stage. If only one mobile
device remains, the drone that detects the greatest power will proceed to its
localization.

The proposed geolocalization technique does not foresee that two drones can
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compete for the same terminal as only in the initial set-up phase of the localization
procedure a single drone is associated with the mobile terminal with greater
power. In this phase, shall a drone see more terminals with the same power,
a random association is carried out. On the other hand, if the two drones see
the same terminal Mmk

with the same power, the maximum powers of the two
successive mobile terminals PMmx

D1
(s) are compared and P

Mmy

D2
(s) measured by the

two drones. At this point, the terminal Mmk
is associated with the drone D1 if it

measures a power on the second minor terminal, that is, if PMmx
D1

(s) < P
Mmy

D2
(s). In

the final phase, the management of the geolocalization of the last mobile terminal
to be geolocated is performed by the same drone it is associated with, the second
drone eventually moving to a different monitoring area.

3.8.2 Game Theory-based Geolocation

The present section will describe the localization phase of mobile terminals. In
particular, an example of the geolocalization of two terminals in a certain number
of rounds is illustrated in Figure 3.34. Not knowing a priori the positions of the
mobile terminals, the starting positions of the UAV-Femtocell systems coincide
with the centroids of a partition with D = 2 zones of rectangular shape.
RD1 and RD2 denote the rounds in which the drones D1 and D2 locate the

terminals M1 e M2, respectively. rD1 − th and rD2 − th stand for the rounds
that the drones must perform in order to locate the mobile devices. Each of
the drones D1 and D2 performs three movements with the three respective new
power measures P1(rD1), P2(rD1), P3(rD1) and P1(rD2), P2(rD2), P3(rD2). So, the
geolocation conditions in round rD1 of terminal M1 carried out by D1 and round
rD2 of terminal M2 carried out by D2 are as follows:

1. if the UAV-Femtocell system has not dropped the terminal with respect to
the previous round;

2. if

D1 :


P1(rD1) < PMAX(rD1 − 1)

P2(rD1) < PMAX(rD1 − 1)

P3(rD1) < PMAX(rD1 − 1)

D2 :


P1(rD2) < PMAX(rD2 − 1)

P2(rD2) < PMAX(rD2 − 1)

P3(rD2) < PMAX(rD2 − 1)

(3.42)

where PMAX(rD1 − 1) and PMAX(rD2 − 1) represents the maximum value of the
power measured in the previous round by D1 and D2, respectively. The round
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Figure 3.34: Geolocation of two terminals in a certain number of rounds.

rD1 = RD1 for which the previous conditions occur is the one in which the geolo-
cation of M1 occurs, the same condition is true for the localization of the terminal
M2 performed by D2.

In the proposed example, taking into account the previously established condi-
tions, terminal M1 is geolocated in RD1 = 4 represents by the square (highlighted
in the figure by a red box) characterized by the two opposite vertices with the
last two maximum power values. Similarly M2, as shown in Figure 3.34, is ge-
olocated in RD1 = 3 rounds. The definite conclusion of the procedure is defined
by the round in which the last mobile terminal is connected. The end of the
geolocalization procedure is therefore determined by the location of all mobile
terminals.

3.8.3 Unlocking Mechanism in the Case of Non-Existing

Nash Equilibrium

This section is devoted to the description of a mechanism for unlocking the game
in case Nash equilibrium is not reached. Section II described the concept of GT
and Nash equilibrium. The theory tells us that in a discrete game where the
solutions are finite, Nash equilibrium cannot be always guaranteed. Keeping in
mind that for the utility function introduced in [101] there might be cases Nash
equilibrium is not reached, as a solution to a possible implementation of the
proposed technique in a real application scenario, the present section proposes

71



an unblocking mechanism that allows the game to continue until the affected
terminals are located.

The mechanism is shown to be transparent as the results indicate that it has a
negligible effect on the performance. The operation of the unlocking mechanism
is examined by using the drone D1, as a reference, and bearing in mind that the
established criterion also applies to the drone D2.

As described in the previous section, the drone moves to the 4 vertices of the
square (game strategies: s1, s2, s3 and s4, as can be seen in Figure 3.33) following
the perimeter of the unit square in the clockwise direction. For each game strategy,
the power values received by the terminals M1 and M2 are measured, and, based
on the proposed UFs, the Nash equilibrium is calculated.

The result obtained from the Nash equilibrium is the position (one of the vertices
of the square) to be taken up by the drone. If the Nash equilibrium cannot be
found, the drone will position itself in the strategy (vertex of the square) that
requires the least waste of energy and time, i.e. the fourth strategy s4 (last vertex
of the square). In this way, the drone D1 does not have to move from the last
position where it made the last power evaluation. Following the round in which
both drones D1 and D2, are assigned the positions s4 and t4, respectively, the
game continues until the terminals are located without interruptions caused by
non-equilibrium.

The experimental results section will establish numerically (in percentage) the
lack of Nash equilibrium out of 10000 iterations performed for each utility func-
tion.

3.8.4 Time and Energy Evaluation

In this section, we will describe how the flight time, processing time, and total
energy used by drones to search for mobile terminals is estimated. The flight
time, δf , expressed in seconds, is the time it takes the drone to move along one
side of a basic cell. The processing time, δp, is the time it takes the drone to
acquire a stable power value. These values, which depend on the Femtocell UAV
technology employed, were chosen to be 10 and 30 seconds, respectively, according
to the experimental evidence and technology adopted in the previous study [101].

In order to obtain the total flight time for the entire game, it is necessary to
add, for each device to be located, the flight and processing time taken by the
drone in each round. For each round, the optimal path for the measurement of
the powers at the four vertices of a macro-cell starting from the center is given
by the semi-diagonal path from the center to a vertex and the other three sides
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(see Figure 3.33).
Then we must add the path to reach the vertex VN identified by the Nash

equilibrium, and, therefore, a path that can take three different values: the null
value (if the last vertex coincides with VN), equal to one side (if VN is an adjacent
vertex) or the diagonal (if the vertex VN is the opposite one).

The TGT
tot is, therefore, given by the sum of the total flight and processing time,

according to the equation below (3.43):

TGT
tot =

M∑
m=1

[
[
√
2 + 2(Ns − 1) + J ]δf +Nsδp

]
Rm,

J = 0, 2, 2
√
2,

(3.43)

where Rm represents the number of rounds needed to localize the m-th device,
NS is the number of strategies (i.e., the four positions that each drone can take
in a single round), Jδf corresponds to the time needed for the final displacement
that the drone makes in one round to reach the vertex of the macro-cell that
maximizes the Nash equilibrium. From the total time we can derive the total
energy consumed by the drone by (3.44):

EGT
tot = Pd

TGT
tot

3600
[Wh], (3.44)

where Pd is the power employed by the drone and is equal to about 700 Watts
[W], as can be inferred from technical datasheets related to UAVs used in similar
application scenarios.

The times and energy employed by the “Serpentine” method used for comparison
in this study, were derived from the formulas found in [94].

3.8.5 Simulation Results

This section discusses the main results obtained from the simulations. Particu-
larly, a series of simulations related to scenarios with isotropic propagation (illus-
trated in sub-section 3.8.5) and anisotropic propagation (illustrated in sub-section
3.8.5) were carried out. The achieved results are expressed in terms of time gain,
energy gain, and percentage of times Nash equilibrium does not occur. Time
and energy gains, in terms of savings, were expressed through (3.45) and (3.46),
respectively:

Gtime = 1− TGT
tot

T Serp
tot

, (3.45)
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Genergy = 1− EGT
tot

ESerp
tot

. (3.46)

Isotropic Signal Attenuation

This section shows the results of a series of simulations first considering an
isotropic attenuation in an empty space within the monitoring area. The tests
performed are as follows:

i. Time and energy gain evaluation varying the three UFs described and the
number of terminal N = 10, 20, 30, 40, 50;

ii. Time and energy gain evaluation varying the three UFs described and the
size of the monitoring area. In [101] the monitoring area size was 24 × 24

meters, now the authors introduced a several performance test considering
other two size: 12×12 meters and 48×48 meters. In this case, for simplicity
reasons, the number of devices generated for each monitoring area was fixed
to constant density: 4, 16, 64 devices for 12 × 12, 24 × 24, 48 × 48 areas,
respectively;

iii. The calculation of the percentage of times Nash equilibrium does not occur
was performed separately for each of the three UFs as the number of devices
and the size of the monitoring area vary;

iv. Once fixed monitoring area size and utility function: evaluation of the total
time and energy used by the drone to operate over the monitoring area;
comparison of total time and energy between the proposed method and the

(a) (b)

Figure 3.35: Isotropic Attenuation: Time (a) and Energy (b) gain comparison
between differents UFs and varying number of terminals.
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(a) (b)

Figure 3.36: Isotropic Attenuation: Time (a) and Energy (b) gain comparison
between differents UFs and varying monitoring area size.

Table 3.3: Isotropic Attenuation: UFs compared - energy and time gain when
varying the number of devices and size of monitoring area.

Area Size [m]: 12× 12 Area Size [m]: 24× 24 Area Size [m]: 48× 48
N°

Devices
UFs

Compared
Time/Energy

Gain [%]
UFs

Compared
Time/Energy

Gain [%]
UFs

Compared
Time/Energy

Gain [%]

10
UF1 >UF2 1.3 ± 15.9 UF2 >UF1 0.6 ± 17.9 UF2 >UF1 5.8 ± 21.3
UF1 >UF3 1.2 ± 15.8 UF3 >UF1 0.6 ± 17.8 UF3 >UF1 5.6 ± 21.5
UF3 >UF2 0.7 ± 11.6 UF3 >UF2 1.6 ± 17.8 UF3 >UF2 1.5 ± 19.4

20
UF1 >UF2 3.2 ± 12.1 UF1 >UF2 1.6 ± 13.3 UF2 >UF1 3.9 ± 15.2
UF1 >UF3 3.2 ± 12.1 UF1 >UF3 1.4 ± 13.4 UF3 >UF1 4.3 ± 14.8
UF3 >UF2 0.5 ± 9.4 UF3 >UF2 1.0 ± 13.7 UF3 >UF2 1.3 ± 13.4

30
UF1 >UF2 5.6 ± 10.2 UF1 >UF2 2.8 ± 11.3 UF2 >UF1 2.4 ± 12.1
UF1 >UF3 5.6 ± 10.2 UF1 >UF3 2.6 ± 11.2 UF3 >UF1 2.6 ± 12.4
UF3 >UF2 0.3 ± 8.3 UF3 >UF2 0.9 ± 11.9 UF3 >UF2 0.8 ± 11.0

40
UF1 >UF2 7.0 ± 9.2 UF1 >UF2 3.7 ± 10.1 UF2 >UF1 2.1 ± 10.1
UF1 >UF3 7.1 ± 9.2 UF1 >UF3 3.7 ± 9.9 UF3 >UF1 2.4 ± 10.6
UF3 >UF2 0.2 ± 7.3 UF3 >UF2 0.6 ± 10.8 UF3 >UF2 0.7 ± 9.6

50
UF1 >UF2 8.2 ± 8.5 UF1 >UF2 4.5 ± 9.1 UF2 >UF1 2.3 ± 9.7
UF1 >UF3 8.2 ± 8.5 UF1 >UF3 4.2 ± 9.0 UF3 >UF1 2.2 ± 9.7
UF3 >UF2 0.3 ± 6.7 UF3 >UF2 0.8 ± 10.2 UF3 >UF2 0.3 ± 8.8

“serpentine” method is described; evaluation of the gain, intended as time
and energy savings, between the two methods at the variation of the number
of devices, flight time and processing.

Regarding points (i.) and (ii.), the graphs in Figure 3.35 and Figure 3.36 show,
respectively, the trends of time and energy gain as the number of devices and the
size of the monitoring area vary in relation to the three UFs described in this
study.

The images outline that there are no major differences in time and energy gain
among the three UFs; in fact, there is a percentage difference between about
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Table 3.4: Isotropic Attenuation: Percentage of non-existing Nash Equilibrium
varying number of devices and monitoring area size.

N° Devices
Non-Existing Nash Equilibrium [%]
Area Size [m]: 12× 12 Area Size [m]: 24× 24 Area Size [m]: 48× 48
UF1 UF2 UF3 UF1 UF2 UF3 UF1 UF2 UF3

10 1.08 0 0 0.88 0 0 0.3 0 0
20 1.99 0 0 1.67 0 0 0.35 0 0
30 2.65 0 0 2.39 0 0 0.7 0 0
40 3.16 0 0 3.91 0 0 0.78 0 0
50 3.55 0 0 5.21 0 0 0.78 0 0

1% and 8%. To process these differences more analytically, Table 3.3 highlights
the difference (in percentage) between the UFs in terms of time and energy gain
as the number of devices and the size of the monitoring area vary. Regarding
point (iii.), Table 3.4 shows the percentage of times that Nash equilibrium does
not occur as the number of devices and monitoring area vary, for each utility
function.

Having fixed the size of the monitoring area to 24 × 24 meters, point (iv.), a
comparison of total time and energy between the proposed method (using UF3)
and the “Serpentine” method is shown in Figure 3.37a and Figure 3.37b. In ad-
dition to the average reduction in the values of the proposed method by up to
41%, the comparison, highlights strong reduction in the variability of the time
and energy values around the average, compared to the “Serpentine” method (to
process the data analytically, including utility functions UF1 e UF2, see Table
3.5).

(a) (b)

Figure 3.37: Isotropic Attenuation: Comparison between GT (UF3) and “Serpen-
tine” method. (a) Total Time in minute. (b) Energy in Wh.
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Table 3.5: Isotropic Attenuation: Time and energy gain - GT VS Serpentine
method.

N° Devices Time and Energy Gain [%]
UF1 UF2 UF3

10 26.0 ± 26.1 26.3 ± 25.8 26.0 ± 25.5
20 42.1 ± 19.1 40.5 ± 20.0 40.6 ± 20.1
30 46.9 ± 17.5 45.4 ± 18.1 45.1 ± 18.3
40 49.3 ± 16.6 46.7 ± 17.6 47.3 ± 17.5
50 50.4 ± 16.2 48.1 ± 17.1 48.5 ± 17.1

Table 3.6: Isotropic Attenuation: Time and energy gain varying δf and δp (M = 50
devices) - UF3.

δp[s]
δf [s]

5 10 15 20
10 57.4±14.1% 62.7±11.8% 67.7±11.4% 66.7±13.6%
20 38.0±16.7% 52.9±14.3% 59.7±16.0% 65.9±12.9%
30 28.2±20.1% 41.4±14.4% 48.5±17.1% 58.6±13.7%
40 25.6±20.3% 33.0±19.3% 45.0±14.0% 50.8±15.7%

Finally, using UF3, Table 3.6 illustrates differences in the gain when δf and δp

are varied in the case of M = 50 devices. Moreover, the table shows that the
gain increases significantly by using the proposed method as the processing time
decreases, especially for low time-of-flight values.

Non-isotropic Signal Attenuation

This section will repeat some of the simulations conducted and illustrated in the
previous sub-section, considering an attenuation of the non-isotropic type within
the monitoring area. The tests performed are as follows:

i. Time and energy gain evaluation varying the three UFs described and the
number of terminals N = 10, 20, 30, 40, 50;

ii. Time and energy gain evaluation varying the three UFs described and the
size of the monitoring area. The monitoring area size was 24 × 24 meters,
but the authors have additionally introduced several performance tests con-
sidering other two monitoring area sizes: 12×12 meters and 48×48 meters;

iii. The calculation of the percentage of times Nash equilibrium does not occur
was performed separately for each of the three UFs as the number of devices
and the size of the monitoring area vary;
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(a) (b)

Figure 3.38: Non-isotropic Attenuation: Time (a) and Energy (b) gain comparison
between differents UFs and varying number of devices.

(a) (b)

Figure 3.39: Non-isotropic Attenuation: Time (a) and Energy (b) gain comparison
between differents UFs and varying monitoring area size.

iv. Once fixed monitoring area size and utility function was fixed, the evalu-
ation of the total time and energy used by the drone to operate over the
monitoring area was performed; comparison of total time and energy be-
tween the proposed method and the “Serpentine” method was described.

Regarding the points (i.) and (ii.), the graphs in Figure 3.38 and Figure 3.39
show, respectively, the trends of time and energy gain as the number of devices
and the size of the monitoring area vary in relation to the three UFs described
in this study. Similarly to the previous case (isotropic attenuation), the images
outline that there are no major differences in time and energy gain among the
three UFs (between 1% and 7%). To process these differences more analytically,
Table 3.7 shows the difference (in percentage) between the UFs in terms of time
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Table 3.7: Non-isotropic Attenuation - UFs compared: Energy and time gain
when varying the number of devices and size of monitoring area.

Area Size [m]: 12× 12 Area Size [m]: 24× 24 Area Size [m]: 48× 48
N° Devices UFs Compared Time/Energy Gain [%] UFs Compared Time/Energy Gain [%] UFs Compared Time/Energy Gain [%]

10
UF2 >UF1 0.1 ± 3.7 UF2 >UF1 6.4 ± 35.3 UF2 >UF1 4.9 ± 38.6
UF3 >UF1 0.1 ± 4.5 UF3 >UF1 6.1 ± 35.1 UF3 >UF1 5.7 ± 38.3
UF3 >UF2 0.0 ± 2.8 UF3 >UF2 5.1 ± 34.9 UF3 >UF2 7.6 ± 39.9

20
UF1≈UF2≈UF3 0 UF2 >UF1 1.9 ± 20.5 UF2 >UF1 2.3 ± 23.3
UF1≈UF2≈UF3 0 UF3 >UF1 1.8 ± 20.6 UF3 >UF1 2.1 ± 23.6
UF1≈UF2≈UF3 0 UF3 >UF2 2.0 ± 20.6 UF3 >UF2 2.4 ± 23.9

30
UF1≈UF2≈UF3 0 UF2 >UF1 0.9 ± 14.6 UF2 >UF1 1.0 ± 16.8
UF1≈UF2≈UF3 0 UF3 >UF1 1.0 ± 14.5 UF3 >UF1 0.4 ± 15.8
UF1≈UF2≈UF3 0 UF3 >UF2 1.2 ± 14.6 UF3 >UF2 0.9 ± 16.6

40
UF1≈UF2≈UF3 0 UF2 >UF1 0.7 ± 11.2 UF2 >UF1 1.8 ± 13.6
UF1≈UF2≈UF3 0 UF3 >UF1 0.6 ± 11.2 UF3 >UF1 1.7 ± 13.5
UF1≈UF2≈UF3 0 UF3 >UF2 0.5 ± 11.0 UF3 >UF2 0.8 ± 13.6

50
UF1≈UF2≈UF3 0 UF2 >UF1 0.5 ± 9.0 UF2 >UF1 1.0 ± 11.3
UF1≈UF2≈UF3 0 UF3 >UF1 0.5 ± 9.0 UF3 >UF1 0.4 ± 11.1
UF1≈UF2≈UF3 0 UF3 >UF2 0.5 ± 9.1 UF3 >UF2 0.1 ± 11.2

(a) (b)

Figure 3.40: Non-isotropic Attenuation: Comparison between GT (UF3) and “Ser-
pentine” method. (a) Total Time in minute. (b) Energy in Wh.

and energy gain as the number of devices and the size of the monitoring area
vary. Regarding point (iii.), the simulations show that all three UFs always have
Nash equlibrium.

Having fixed the monitoring area size to 24 × 24 meters, a comparison of the
total time and energy between the proposed method (UF3) and the “Serpentine”
method is shown in Figure 3.40a and Figure 3.40b. In addition to an average
reduction in the values of the proposed method by up to 46%, the comparison
highlights strong reduction in the variability of the time and energy values around
the mean, compared to the “Serpentine” method (to process the data analytically,
including for the utility functions UF1 and UF2, see Table 3.8).
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Table 3.8: Non-isotropic Attenuation: Time and Energy gain - GT VS Serpentine
method.

N° Devices Time and Energy Gain [%]
UF1 UF2 UF3

10 32.5 ± 27.3 33.2 ± 26.9 33.2 ± 26.6
20 44.6 ± 19.5 44.8 ± 19.6 44.8 ± 19.6
30 49.6 ± 17.0 49.2 ± 17.2 49.4 ± 17.1
40 52.0 ± 15.9 51.9 ± 15.8 51.8 ± 16.0
50 53.8 ± 15.1 53.6 ± 15.1 53.6 ± 15.2

3.8.6 Discussion and Conclusion

Analyzing the results obtained from the simulations based on different assump-
tions in this study, the following considerations can be made:

• GT is confirmed to be a suitable technique for drone energy and flight
time optimization in terminal geolocalization scenarios for civil protection
purposes;

• The introduction of new UFs allows for a better identification of the utility
function with greater robustness rather than reaching 100% Nash equilibria
due to the fact that the percentage of times the Nash equilibrium is not
reached is so low that there is no effect on performance;

• The percentage of cases in which Nash equilibrium of the UF1 utility func-
tion does not exist varies from about 1% to 5% as the size of the monitoring
area increases. The impact of the release mechanism on the performance of
UF1 is, in general, negligible.

• The introduction of scenarios with non-isotropic propagation assumptions
actually confirms the results of the ideal scenario characterized and modeled
with the simple Friis Transmission equation of isotropic propagation;

• In particular, while in an isotropic propagation scenario utility function UF1

performs better in smaller areas, in real cases of non-isotropic propagation
UF3 performs better, it is especially true in cases of reduced number of
devices to be geolocated;

• Slightly larger gain in the non-isotropic case is due to the smaller number
of rounds (in general, the observed reduction was 10%) required for geolo-
calization, given the unavoidable larger error that the non-isotropic case
presents;
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• The small differences between the three UFs that emerge from this study
may suggest the possibility of applying dynamic fitting methods, which
would certainly result in superior performance.

• In a more realistic scenario, such as that of mobile terminals attenuated by
post-earthquake rubble, characterized by radio-frequency signals propagat-
ing in a non-isotropic manner, GT always finds the Nash equilibrium and
increases the energy savings and, thus, the duration of the flight by about
10%, at the expense of a consequent slight increase in geolocalization error.
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Chapter 4

Multimodal rainfall classification
systems based on Convolutional
Neural Networks

The sudden climate change, which has taken place in recent years, has gener-
ated calamitous phenomena linked to hydrogeological instability in many areas
of the world. The main existing rainfall level measurement methods employ rain
gauges, weather radars and satellites [103–105]. The rain gauge is probably the
most common rainfall measurement device, as it is able to provide an average
accurate estimate of the rainfall with a precise temporal resolution; in fact, rain
gauges continuously record the level of precipitation even within short time inter-
vals. Modern tilt rain gauges consist of a plastic manifold balanced on a pin. When
it tips, it actuates a switch which is then electronically recorded or transmitted
to a remote collection station. Unfortunately, tipping buckets tend to underesti-
mate the amount of rainfall, particularly in snowfall and heavy rainfall events.
Moreover, they are also sensitive to the inclination of the receiver and different
types of dirt that may clog the water collection point.

Many studies have been carried out regarding the classification of rainfall levels
using alternative methods, parameters, and signals such as video, audio, and radio
signals [106–108].

This study propose a wider set of rain levels, including the “No rain” class and
adding the “Shower” and “Cloudburst” rain classes. In places without a power
grid (e.g., agriculture and smart roads), this system can be powered by a low-
power photovoltaic panel, enabling recording at a rate proportional to the rain
level, thus preserving the average lifetime of the electronic and microphone sensor
components. Statistics on the average weather that characterizes a rainfall event
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in the territory allow us to state that the reliability and average duration of an
audio rain gauge is comparable to that of a UE. The operating temperatures
of an acoustic rain gauge, in fact, are the same as those of a UE. Furthermore,
the microphones are designed for large temperature and humidity levels. The
introduction of an acoustic rain gauge is, thus, justified, particularly, in contexts
where it may be necessary to reduce the risks caused by sudden “showers” or
“cloudbursts” with low operational investment, management and maintenance
costs. Some application contexts concern smart cities for which is foreseen the
integration of an audio sensor inside street lamp, precision agriculture [109], with
the advantage of being able to adapt the irrigation flows in a complementary
way to different rain levels, as well as highway safety, by minimizing the risks of
aquaplaning [110, 111].

In particular, during the PhD period, new algorithms for classifying rainfall
levels using different types of signal and new deep learning were studied. The
results related to rainfall classification and detection, obtained from such studies,
are promising and quite accurate. In sub-section 4.1, the study [112, 113] related to
rainfall classification using audio signal and deep learning techniques is illustrated.
This study has evolved to a real-time embedded implementation [114] (see sub-
section 4.2). In sub-section 4.3 is related to the use of video recordings of rain
as an input signal for the identification and classification of rainfall levels [115].
Finally, sub-section 4.4 proposes a first study on rain intensity classification using
LTE signal radio parameters and deep learning techniques [116].

4.1 Classification of Rainfall Estimation Using Au-

dio Signal

The possibility to classify rain using systems based on the classification of the
audio signal could be especially useful in the context of smart cities or in precision
agriculture [109] and highway safety [110, 111].

In this sub-section, studies conducted on this topic during the PhD period will
be described. The sub-section is organized as follows: sub-section 4.1.1 briefly
summarizes the main studies regarding the rainfall classification based on audio
signal, followed by sub-section 4.1.2 that described the dataset created for this
study; sub-section 4.1.3 described the proposed method to rainfall classification
using audio signal and CNN nentwork, including: acquisition system setup and
labeling algorithm; sub-section 4.1.4 shows the results obtained using the CNN
neural network; and, finally, there are the discussion and conclusions.
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4.1.1 Related Work

In [45], rain is estimated through acoustic sensors and Android smartphones. Us-
ing this system has several advantages: access to the data collected via the device’s
microphone or camera; data can be sent via radio functions (WI-FI, GSM, LTE,
etc.); and the cost-effectiveness of Android devices compared to high-precision
meteorological instruments. The audio data collected by the smartphone micro-
phone are then processed to extract the fundamental parameters to be compared
with the critical thresholds, and exceeding these thresholds, translates into send-
ing an “alarm”. In addition, historical data are stored on a web server allowing
remote access to information. From the audio sequence sampled at 22.05 KHz
the calculation of the signal strength (dB) is performed every 5 s. To verify the
validity of the results obtained with this method, measurements were carried out
simultaneously with the aid of a tilting rain gauge so that the data of the two
solutions can be compared.

The study carried out in [117], aims at the digital representation of rain scenes as
a function of the real sounds produced by the precipitation. The research is based
on the study of rainfall phenomena proposed by Marshall and Palmer, providing
the frame for describing the probability distribution of the number and size of
raindrops in a space of known volume, evaluating the intensity of the event, and
the fact that the speed of a water drop is only related to its size.

Based on these considerations, it is possible to extract parameters relating to
raindrops, useful for creating an animated digital scene. A rainy phenomenon can
be modelled according to the Marshall–Palmer distribution which allows deter-
mining the relationship between the number and size of the drops in a volume as
a function of the level of intensity (mm/h) obtainable from the audio recordings
of actual rainfall. These were obtained using a smartphone and employing the
same previously described procedure [45], but with sampling at a frequency of
44.10 KHz and, simultaneously, carrying out measurements using a rain gauge. In
order to extract the frequency characteristics, various rainfall recordings of differ-
ent intensity were taken and, for each, the Fourier transform was performed. One
of the most evident results is that the samples in the spectrum present a high
level of correlation and the high frequency components increase as the intensity
of the precipitation increases. This can be interpreted by the Marshall–Palmer
distribution, in fact, the number of occurring raindrops per unit of volume in-
creases as the intensity of the rain increases, the average landing time of the drop
is reduced and, consequently, the frequency of sounds increases.

The input sounds were taken from a data set, randomly selecting eight 1-s sound
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segments for each data, with 15 types of rainfall intensity. Once the level of rainfall
has been determined, it is possible to trace the following parameters: size of the
rain particles, number of drops, and falling speed.

Another technique used, was a machine learning approach of analysis and clas-
sification in which the sound classes to be analyzed are defined in advance [118].

Aiming to overcome some limitations present in traditional techniques to signal
classification, in [112] we proposed an acoustic rain gauge based on convolutional
neural network (CNN), in order to obtain accurate classification of rainfall levels.
The paper presents a classification algorithm for the acoustic timbre produced
by the rain in four intensities, i.e., “Weak rain”, “Moderate rain”, “Heavy rain”,
and “Very Heavy rain”; also the paper studies and compares the performance
of an acoustic rain gauge in four different types of materials used to cover the
microphone. In this study, the sound of rain was derived from the impact of water
drops on a material covering the microphone.

In [119] authors were able to subdivide precipitation detected by a series of
piezoelectric sensors into intensity classes through SVM, KNN and Naïve-Bayes
machine learning algorithms. The quantities involved in the study are sound pres-
sure and rainfall height.

4.1.2 Rainfall Audio Dataset

The database was created ad hoc using the acquisition system represented in Fig-
ure 4.1. This system consists of a microphone and a tilting rain gauge connected
to a processing unit. The processing unit houses an algorithm for labeling the
audio files that allows aggregating different audio sequences in the correspond-
ing class of precipitation intensity. Once the audio sequences are labeled in their
respective intensity classes, they are entered in the database. The acquisition
system, samples audio sequences at a frequency of 22.05 KHz at 16 bit (PCM
format). The database consists of seven precipitation intensity categories, defined
in Table 4.1; for each category there are 10 audio sequences each lasting 30 s.

The categories were decided upon by taking the national classification scales
[120] as a reference, and slightly modifying some ranges in order to obtain a
number of adequate and homogeneous examples corresponding to different classes.

The current database was created by recording the rain on five different days,
some of which were characterized by the presence of different wind and environ-
mental noise, taken at different locations, such as gardens, terraces, and country-
sides, obtaining examples of all seven rainfall level classes. This implies a certain
robustness of the system, since the obtained results take into account the addi-
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Figure 4.1: Block scheme of audio acquisition system.

Table 4.1: Classification and rainfall intensity range.

Classification Acronym Rainfall Intensity [mm/h]
No rain nr <0.5
Weak w [0.5 ÷ 2]

Moderate m [2 ÷ 6]
Heavy h [6 ÷ 10]

Very heavy vh [10 ÷ 18]
Shower s [18 ÷ 30]

Cloudburst c >30

tional external variable noise. Moreover, during the rain recording phase, contin-
uous checks were carried out so that no dirt was created in the pan rain gauge
used for labeling the rain level. Finally, through the simultaneous audio-video
recording, the database was verified and cleaned up by eliminating sequences
with wrong levels, through a repeated listening and contextual video verification
phase.

The audio sequences were provided, 10 for each class of seven different rainfall
levels. Subsequently, each audio sequence, lasting 30 s, is cut out, using the slide
window algorithm, for the creation of CNN input files.

In particular, the offset chosen is 100 milliseconds while the duration of the
time window is 3 s. Once the audio sequences are cropped, 16,746 one-second
sequences are obtained, corresponding to the seven levels of rain (including “No
rain” level).

Once the crop is obtained, 70% of these sequences are placed in the training set
and 30% in the test set. In this way the dataset contains 11,722 elements in the
training set and 5024 elements in the test set.
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Figure 4.2: Hardware components of the audio acquisition system.

Once the dataset is created, the audio signal is under-sampled at 22.05 kHz.
In this phase the signal is normalized with mean and standard deviation and is
fed as input to the CNN network. The percentage of probability corresponding
to each individual class will appear in the output.

4.1.3 Proposed Method

This sub-section is devoted to defining and describing the key elements of our
study, such as: labeling algorithm, and testing procedure.

Acquisition System Setup

The tests were conducted using mainly two instruments related to the measure-
ment of rainfall intensity: a microphone inserted into a rigid plastic shaker. The
signals related to the various timbres of the rain sounds are used as the input
variables of a pattern recognition system based on a CNN classifier. The scenario
is characterized by real rain which, for the total duration of the test, covered the
seven rainfall intensities shown in Table 4.1.

The system implemented and studied in this paper is characterized by a device
capable of detecting the rain audio data, when it falls on a plastic surface. In
particular, we are interested in obtaining a more efficient and faster classification
of the different levels of rainfall intensity. The acoustic rain gauge, see Figure 4.2,
is characterized by the following components:

• Microphone (a);

• Plastic shaker (b);

87



• Tipping bucket rain gauge (c);

• Raspberry Pi, used for data processing (d);

• 4G dongle for data transmission in the cloud (e).

The microphone sensor is connected via USB cable to the Raspberry Pi, where
a processing phase of the collected data is carried out. The processing unit, in
fact, implements the labeling algorithm described above, enabling the generation
of 30-s audio sequences, which correspond to a certain class of rainfall intensity.
The obtained data are sent via a cellular connection (4G dongle) to the cloud,
entered in the database and subsequently given as input to the neural network
for the training phase.

The rain gauge tray is therefore used for the algorithm that labels rainfall lev-
els allowing, in turn, to create the testing and training database for the neural
network. It is connected to the processing unit via an RJ11 cable and is managed
ad hoc through a software interface capable of detecting and counting the “inter-
ruptions” generated by the rain gauge tray every time a tilt occurs. Subsequently,
to obtain the estimate in mm/h, the acquired value was multiplied by a factor
dependent on the time span required in order to estimate the level of rainfall in
an hour, assuming constant rain distribution.

Every minute the obtained values are sent to an IoT platform, via the publish/-
subscribe protocol. The values taken from the tray are used to label the audio
signal at different rain intensities. The audio files labeled in such way define
the dataset for the training and test phase of the convolutional neural network,
specifically structured for this specific application context.

The general scheme of the proposed system is shown in Figure 4.3.

Labeling Algorithm

Once the structure and characteristics of the adopted database are defined, it is
possible to describe the labeling algorithm used for the recognition and classifi-
cation of the intensity of the rain. The preliminary requirements of the algorithm
are:

• Audio file recorded in steps of X seconds;

• Timestamp of the tip, of the tipping rain gauge, stored in the database.

The characteristic parameters of the algorithm are defined below:

• Ti is the final instant of the i− th time window of the audio signal;
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Figure 4.3: Conceptual scheme of the audio acquisition system.

• C is the capacity, in millimeters, of the tipping bucket rain gauge for water
collection;

• Rk is the instant of the k − th bucket rotation following Ti;

• R(k−1) is the instant of k − th− 1 bucket rotation, prior to Ti;

• Ts is the time interval between Rk and R(k−1);

• Th is the hour expressed in seconds, i.e., 3600 s.

The labeling algorithm is responsible for calculating the Ts and subsequently,
using (4.1), we obtain the estimate of the level of precipitated rain, expressed in
millimeters.

The first phase of the labeling algorithm is, therefore, the calculation of the Ts

which may be performed differently, based on different cases:

i. If Rk = 0 and R(k−1) = 0, we will have Ts = 0;

ii. If R(k−1) = 0 and Rk ̸= 0, we will have Ts = Rk−Ti
;

iii. If R(k−1) ̸= 0 and Rk ̸= 0, we will have Ts = Rk−R(k−1)
.

So, once Ts, is obtained, the labeling algorithm is as follows:
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i. If Ts > Th the minimum estimate in mm/h is equal to 0; and

ii. If Ts ≤ Th the estimate in mm/h is calculated with the following formula:

e = C · Th

Ts

(4.1)

The result of (4.1) is compared with the rain classes, defined in Table 4.1, for
the labeling of the audio files in the database.

4.1.4 Performance Evaluation

In this section we will analyze the results obtained by applying the machine
learning technique, with audio signals placed as input to the CNN (described in
Appendix C). The results obtained when we input the audio sequences in our
database (audio sequences concerning all rainfall categories) are visible in the
Figure 4.4.

Figure 4.4a shows the progress of the training losses (blue curve) and the test
losses (orange curve); both curves decrease with increasing epochs. Conversely,
Figure 4.4b shows that the trend of training accuracy and test accuracy increases
with increasing epochs. The two graphs are complementary, as accuracy increases,
the loss for training and testing decreases. This implies that the neural network
is performing an accurate classification.

For greater understanding of the results obtained by the neural network, see the
confusion matrix in Figure 4.5.

Figure 4.5 shows the confusion matrix obtained by processing the test audio se-
quences inputted to the CNN network. It is possible to observe good classification

(a) (b)

Figure 4.4: Rainfall audio - training and test phase: (a) training and test losses
trend. (b) training and test accuracy trend.
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Figure 4.5: Rainfall audio - confusion matrix.

of the seven levels of rainfall intensity with an average percentage of 75%, which
rises to 93% if the miss-classifications of the adjacent classes are not considered.
In particular, we have an excellent classification for “No rain” (100%), “Heavy”
(96%), “Very heavy” (95%), and “Cloudburst” (100%). The level of accuracy in
percentage can also be improved by inserting a post-processing block represented
for example by a median filter.

4.1.5 Discussion and Conclusion

This study presents a technique that allows classifying the different levels of
rainfall intensity accurately and fast. In particular, we have shown how it is
possible to classify the spectral and statistical parameters of an audio signal
by means of the machine learning technique known as the convolutional neural
networks (CNN).

Possible future studies to improve and extend the classification technique are
the following:

• Divide the “Cloudburst” level into further sub-categories and apply the same
analysis presented in this paper to have a good classification;

• As regarding spectral analysis, consider reducing the sampling frequency so
as to send a smaller number of parameters to the input of the CNN;
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• Add the spectral and/or statistical parameters to a DNN input, which is a
neural network more suited to manage a reduced set of audio parameters;

• Study the “signature” of rain sound based on patterns interpretation in
hidden CNN layers from spectrograms of the rain.

The paper proposes an innovative acoustic rain gauge based on CNN. An analy-
sis of the different statistical and spectral characteristics of the acoustics produced
by the rain at various rainfall levels is presented. In particular, the system is very
simple, being based on a plastic shaker, a microphone, and a low-cost/low-power
signal processing unit. The performance is very good in terms of accuracy and
ability to adapt to sudden changes in precipitation intensity. It should be borne
in mind that, especially in low rainfall, the peak rain indicator used to label the
database has a low temporal resolution. Thus, taking into account the typical
micro-variances of rainfall intensity, it is possible to consider an average accu-
racy of 93%, assuming that overall system performance does not include miss-
classification between adjacent classes. The new acoustic rain gauge exceeds the
limits of traditional ones, having no mechanical parts and requiring no mainte-
nance. In general, the proposed solution is adequate for precipitation level mon-
itoring service, with its major advantage being a totally electronic system that
can be easily integrated on existing platforms and systems.

4.2 Classification of Rainfall Estimation Using Au-

dio Signal: Implementation on Embedded Board

In this sub-section the precedent studies is extended in order to proposes a new
pipeline for the realization of a system for the classification of rain in real-time. In
particular, a different CNN [121] has been implemented in this pipeline providing
better accuracy than our previous study [112, 113] (see sub-section 4.1). Fur-
thermore, thanks to the use of the new pipeline, inference times are significantly
reduced. This is done by converting the Keras model into TensorFlow (TF) Lite
optimized specifically for execution in embedded devices.

4.2.1 Rainfall Classification in Real-time

The proposed study implements a new type of CNN that allows the introduction
of a real-time rain intensity classification system through the audio signal. The
audio signal is, in fact, generated by the acoustic effect that the rain generates
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Table 4.2: Classification and rainfall intensity range: 5 Classes

Classification Acronym Rainfall Intensity [mm/h]
No rain nr <0.5

Moderate m [0.5 ÷ 6]
Heavy h [6 ÷ 10]
Shower s [10 ÷ 30]

Cloudburst c >30

when it hits a hard plastic surface, under which a microphone connected to a
Raspberry Pi model 4 is located. With the same mechanism described in [113] we
created a dataset based on audio rainfall record (this time of two seconds with
a sample rate of 16KHz). This audio was previously recorded by a microphone
and a mechanic rain gauge in order to assign this label registered to mechanic
rain gauge to the relative audio signal (see sub-section ). Then we have trained
the CNN network described in “Rainfall Audio Classification with CNN in Keras
TensorFlow and TensorFlow Lite” sub-section and using TensorFlow Lite library
we transferred the model to Raspberry Pi in order to record two seconds of audio
record in loop and send it to the pretrained CNN in order to predict the rainfall
label.

Audio dataset and features

The recorderd clips, which are of different duration, are cut out, using the slide
window algorithm, for the creation of CNN input files, the same used in [113].

In particular, the offset chosen is 100 ms while the duration of the time window
this time is 2 seconds and a sample rate of 16KHz. Once the audio files are
cropped, 70915 one-second files are obtained, corresponding to the 5 levels of rain
(see Table 4.2)

The following files have been obtained:

• 39600 audio files belonging to nr classes;

• 22411 audio files belonging to m classes;

• 4976 audio files belonging to s classes;

• 3241 audio files belonging to h classes;

• 687 audio files belonging to c classes.
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Once the crop is obtained, 70% of these files are placed in the training set and
30% in the test set. With this process we have 70915 files belonging to 5 classes
and we are using 49641 files for training and 21274 files for validation.

Rainfall Audio Classification with CNN in Keras TensorFlow and Ten-
sorFlow Lite

Convolutional neural networks process data that have a well-known grid topol-
ogy. The data can be, for example, time-series data or image data that can be
represented, respectively, as a 1-D and 2-D grid [121]. In this paper we used the
CNN architecture shown in Figure 4.6 used in [121] for speaker recognition with
pre-processed audio with FFT.

As we can see in the following snippet of code.
This CNN is composed of the first layer with an input shape of (SamplingRate ·

RecDuration, Num_of_Channel) that in this case is (16000 · 2, 1).
Then there are 4 different layers of residual block defined from the following

code snippet, Figure 4.7.
Here the residual block is defined starting from input parameters that are:

• Input of residual block: x

• Number of filter inside the convolution;

• Number of convolution inside the residual block.

Once the network is defined, as Keras require we compile it with an Adam
optimizer and use sparse categorical crossentropy as loss function. In order to save

Figure 4.6: Audio classification CNN architecture - Code.
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Figure 4.7: Residual block of 1D audio classification CNN.

Figure 4.8: Callbacks to save the best model during training.

Figure 4.9: Model conversion snippet from Keras to Tensor Flow Lite.

only the best train epochs we define the following callbacks inserted in function
fit used for training in Keras, Figure 4.8:

Once the network is trained, we use TensorFlow Lite converter in order to
convert the Keras Model (.h5) into a TensorFlow Lite model (.tflite). The snippet,
in Figure 4.9, of code takes the model in .h5 format and loads it into a Keras
model and then converts this model into a Lite model. This operation is performed
in order to reduce the complexity representation of the model converted to the
Lite version.

As shown in the experimental result this improves the execution time as a
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Figure 4.10: Lite model loading into interpreter.

Figure 4.11: Lite model inference on data and time benchmark.

Figure 4.12: Lite model inference on data and time benchmark (part2).

benchmark of the real-time prediction system. Once the model is converted into
TF Lite version it is possible to transfer and run it into a Raspberry Pi. Installing
the module via [122] it is possible to run it via the following code snippet, Figure
4.10.

The module interpreter loads the previously trained tflote model and for every
2 seconds of recorded audio it makes the inference via invoke() method, Figure
4.11. Here there are the first top 5 network predictions so if we want to use the
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mode in real-time USB microphone has to be connected to Raspberry Pi. Once
device is connected we need to take 2 seconds of audio recording with a sample
rate of 16KHz via sound device python library. Then we add a new dimension
because the recorded audio has a shape (32000, 1) whereas network input requires
(None, 32000, 1). The script continues with the same line of snippet in Figure 4.12.

4.2.2 Test Bed Scenario

In this paper we propose two different types of testbed scenario. The first one is
based on a new training of a different CNN used than in [113].

The second scenario is based on the benchmark analysis of inference time using
the same model but first employing the original model and the second time - the
lite model. This experiment is done in order to establish performance quality for
IoT device, applied in the real-time rainfall classification context.

It’s implemented a temporal benchmark on the inference of the same architec-
ture (Audio Classification 1D CNN) but with two different models. Starting from
the Keras model trained as per scenario one, the latter has been converted into a
TensorFlow Lite model and executed in the same machine in order to compute the
results with the same computational resources (i7-9th gen, 32GB RAM, GeForce
GTX 1650).

4.2.3 Performance Evaluation

In the first test bed scenario was trained the Audio Classification 1D CNN for
40 epochs. This training has led to a result that is better than that shown in the
previous work in [113].

On the training set the performances turn out to be about 95% leading to an
improvement of 2% compared to the previous CNN [113] performance which on
a dateset with plastic timbre had an accuracy of about 93%.

Table 4.3 provides a comparison in terms of accuracy in the training and testing
phase, the number of epochs and size of the dataset for the two networks.

As a result of the second scenario we noticed that the running time of an in-

Table 4.3: Performance comparison between two CNN networks.

Model
Architecture used

Training
Epochs

Best Train
Accuracy

Best Test
Accuracy

Test Set
Size

CNN in [113] 40 96% 93% 506
New CNN in [121] 40 98% 95% 21274
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ference for a Keras model is around 350 400ms for a single 2 seconds audio
recording example. Running the same architecture with the same weights but
with an optimized TensorFlow Lite model results in an inference time ranging
from 50 100ms. This experiment shows a drastic improvement in performance
with the same accuracy. This optimization also provides the possibility to have
different neural networks running in an IoT device of medium computational
power, such as Raspberry Pi 4.

Tests conducted on Raspberry Pi 4 show an inference time of around 100 120ms.
As can be seen, there are no performance differences compared to running a device
equipped with today’s GPU, thus suggesting the possibility of using more complex
networks or different approaches in these devices.

Table 4.4 shows the comparison between the inference times according to the
type of platform and device used, as previously mentioned.

One of these possibilities is to merge two CNNs in a multimodal way for the
classification of the same rain phenomenon but using audio and images to increase
the robustness of the system.

Table 4.4: Performance comparison between the inference times.

Platform Devices Inferences
Time

TensorFlow (Keras)
i7-9th gen,

32GB RAM,
GeForce GTX 1650

350 ∼400ms

2s audio

TensorFlow Lite
i7-9th gen,

32GB RAM,
GeForce GTX 1650

50 ∼100ms

TensorFlow (Keras)

RPI4B+: Quad core(ARM v8)
64-bit SoC@1.5GHz
4G LPDDR4-3200

SDRAM

400 ∼420 ms

TensorFlow Lite

RPI4B+: Quad core(ARM v8)
64-bit SoC@1.5GHz
4GB LPDDR4-3200

SDRAM

100 ∼120ms
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4.3 Classification of Rainfall Estimation Using Video

Signal

This sub-section presents studies conducted on rainfall intensity recognition using
deep learning techniques and images extracted from video recordings of rain. In
particular, sub-section 4.3.1 gives an overview of the state of the art related to
techniques for rain and rain intensity recognition using video and/or images. In
the subsections to follow, the study conducted during the PhD period on rain
intensity recognition and classification through video signal (and images) and
neural networks is explained step by step.

4.3.1 Related Work

This sub-section provides a general overview of new rainfall level estimation meth-
ods by analyzing videos recorded over the rain. The intensity of rain, in fact, can
undergo tremendous variations even for short distances, less than one kilometer.
It is therefore necessary to implement a prevention system especially in areas
with high hydrological risk. To obtain measurements with large spatial resolu-
tion, it is necessary to distribute a substantial number of instruments such as
rain gauges or weather stations, which may, nonetheless, have a major adverse
impact in economic terms.

A number of studies on the classification of rainfall levels have been conducted
by researchers employing various alternative methods and signals [108, 112, 113,
116, 118, 123–128]. These different approaches could represent a valid alternative
to the typical solutions used in current meteorology. Furthermore, these innovative
systems lead to improved performance in terms of time, flexibility and robustness.
In particular, there are numerous papers in which the possibility of classifying the
level of rainfall through the attenuation of the electromagnetic signal [108, 116,
123] and many others using the audio signal [108, 112, 113, 118] is studied. In
this sub-section, will focus on the use of the video signal as a tool for classifying
rainfall levels and therefore this section deal with previously conducted studies
in this regard.

In [126] the Electronics and Telecommunications Department of the Univer-
sity of Mumbai developed an algorithm that allows determining the intensity of
rainfall based on a single photo only. Data processing takes place implementing
a technique denominated ERAUIP, using a high-resolution slow-motion camera,
which acquires the image placed on a black background with a minimum speed
of 1200 FPS. The camera acquires a color image which, once filtered by noise

99



employing a clustering technique, is converted to gray scale. Subsequently, the
image is divided into rows and columns, and therefore further divided into even
and odd content. After which the conversion from the gray scale image to the bi-
nary image takes place and, finally, the size of the raindrops are measured thanks
to the use of a morphological filter. This technique allows to reach high precision
levels, even up to 90%. The performance will depend on the characteristics of
the camera used; a full-bodied database of excellent quality images and videos is
required in order to achieve better results.

A method for evaluating the raindrops present in images has been proposed
in [127]. In this case image processing is performed using the 2D dual density
Discrete Wavelet Transform, with the help of 2 cameras with advanced features,
so that the 2 captured images have the same central point. This allows obtaining
such information as the maximum and minimum size of the raindrop and the
number of raindrops from the given image.

In the automotive sector, more and more sophisticated driver assistance systems
are being developed to improve safety conditions behind the wheel, especially dur-
ing adverse rain conditions. An approach used to detect raindrops present on a
transparent screen has been developed in the context of research concerning the
ITS intelligent transport algorithm, as reported in [128]. This technique detects
the fuzzy raindrops that collect on the windshield, differentiating from the pre-
viously illustrated techniques as it is not necessary to adjust the focus on the
windshield on which the raindrops fall.

Classification of rain levels through the acquisition of images can also be achieved
by exploiting the learning abilities of a neural network [124]. In this case, a neu-
ral network was trained in order to obtain the detection of the glomerulus in the
segments of the renal tissue present in digitized slides, and a classification consid-
ering such parameters as heterogeneity, staining, composition within the kidney
composition etc. This is done by applying CNN in order to provide faster and
more reliable diagnoses. Nevertheless, enormous amount of computational power
is needed to train the network in an appropriate time frame.

The previously mentioned studies outline significant growth in interest concern-
ing the replacement of the classic measurement methods with new instruments
which can deliver better performance, guaranteeing a set of information that can
cover a large area of the territory.

In [125] the authors propose a method for remote detection of rain via fixed
cameras, using CNN. In particular, in the pre-processing phase the Sobel algo-
rithm is used for detecting the edges and subsequently DCT is applied to the
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Figure 4.13: Block scheme of video acquisition system.

obtained images for further experiments in order to improve the classification
scores. The classification results using the Sobel algorithm and the DCT are re-
spectively 91.97% and 79.89%. There are only 2 classes considered: “Rain” and
“No Rain”.

Unlike all the studies present in the state of the art, our method consists in de-
tecting and classifying, as accurately as possible, seven different levels of rainfall
intensity. The proposed technique, therefore, allows to set up a rainfall mea-
surement system with the advantage of not having mechanical parts subject to
breakdown, good accuracy and high temporal resolution.

4.3.2 Rainfall Video Dataset

The proposed system consists of a camera connected to a processing unit. The
labeling algorithm (described in sub-section 4.1.3) is located in the processing
unit. It is responsible for assigning the video sequences to the corresponding
intensity classes thanks to the labeling performed by a traditional tipping rain
gauge. After labeling, the video sequences are inserted into the database. Figure
4.13 shows the block scheme of the video acquisition system.

Video sequences are sampled with FPS equal to 30 frames of 640 × 480 pix-
els. Table 4.1 lists the intensity classes that make up the dataset. The database
was created by recording natural rain characterized by all seven rainfall levels
indicated in Table 4.1. Furthermore, during the rain recording phase, continuous
checks were carried out on the tipping rain gauge used for labeling, so as to pre-
serve it from dirt. An image processing phase, before inserting the input data to
the neural network, was applied to the video recordings: extraction of the frames
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Figure 4.14: Image processing flowchart.

with frame-rate equal to 30 FPS and offset equal to 1 frame; subtraction of the
resulting frames from each other. These frames will be referred to as “differential
images”.

Differential images are subjected to DCT on 16× 16 sub-blocks. The data ob-
tained from the application of the DCT are standardized and input data to the
neural network, described in Appendix D.

The tests were conducted using a camera inserted in a rigid plastic shaker with
a transparent lid. The differential frames, relating to the various categories of
precipitation, are used as input variables of a deep learning system based on a
CNN classifier.

Figure 4.14 shows the general “Best practices” for inserting standardized ma-
trices into the neural networks. The first block represents the original video, on
which the extraction of the frames takes place at a frame-rate of 30 FPS. Then,
the extracted frames are brought in grayscale and subsequently, differentiated by
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moving between one frame and the next with an offset of 1 frame.
The difference between two images is very simple to obtain, as we know that

the images are nothing more than matrices containing numerical values in the
RGB (or Black & White - BW) scale of size M ×N . In this regard, it is possible
to obtain what we define “differential images” by applying a subtraction between
two matrices of the same size. Therefore, since F1 = M ×N is the first extracted
frame and F2 = M ×N the second extracted frame, the first differential image is
given by (1).

From the matrix point of view, let f 1
ij be the elements of the matrix F1, f 2

ij the
elements of the matrix F2 and fd

ij the elements of the matrix F d
1 with i ∈ 1, · · · ,M

and j ∈ 1, · · · , N . fd
ij is obtained by (4.2).

fd
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f 2
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f 2
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(4.2)

By generalizing it to all frames, the differential images will be obtained from
(4.3).

F d
k = Fk − Fk−1, (4.3)

with k = 1, ... K, where K is the number of differential frames obtainable for each
level of intensity and is related to the length of the recorded videos, the amount
of FPS extracted from the video and the offset used.

In our method, in particular, we have adopted a function in Python language,
called “absdiff ”, which makes up the difference between two images also reducing
the noise that is obtained from a subtraction. In fact, a threshold is set at an
arbitrary value between 0 and 255 (threshold 127 was used in this study); all BW
pixels greater than 127 become 255; conversely, all BW pixels less than or equal
to 127 become 0.

Once the differential images have been transformed into DCT matrices, a di-
vision is performed before inserting all the data within the neural network: 70%
of these matrices are inserted in the training set and 30% in the test set. For
each input, the probability percentage corresponding to each individual class will
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appear in the output.
The validation dataset was created as the dataset used in training and testing

the neural network. In particular, the related videos are those that had not been
included in the dataset for training the neural network.

The same procedures applied to the dataset used for training and testing the
network are applied to the component frames of this dataset. The following chap-
ter will analyze the performance of the network when this validation dataset is
applied to the network input.

4.3.3 Proposed Method

Acquisition System Setup

The acquisition system is characterized by the following components, see Figure
4.15.

• Camera (a);

• Plastic shaker with a transparent cover (b);

• Tipping bucket rain gauge (c);

• Raspberry Pi (d);

• 4G dongle (e).

The webcam is connected via USB cable to the Raspberry Pi, where the pro-
cessing phase of the collected data is performed. The operation of the labeling
algorithm implemented within the Raspberry Pi, the connections between the

Figure 4.15: Hardware components of the video acquisition system.
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Figure 4.16: Conceptual scheme of the video acquisition system.

hardware devices in use and the categories of recording intensity are explained
in detail in [113]. The 4G modem key allows real-time data transmission [129].
Figure 4.16 shows the conceptual scheme of the proposed system. In general, the
processing unit implements the labeling algorithm that allows the generation of
30-second video sequences, divided by each class of rainfall intensity. The video
sequences recorded and classified using the labeling algorithm are stored in the
database and subsequently provided as input to the neural network for the train-
ing phase.

Analysis of Video Sequences

The present section deals with visual and statistical analysis of the obtained
video sequences in order to further discriminate between different precipitation
intensity levels. The video signal analysis tool, DiffImg, and the calculation tool,
Matlab, are used to externally analyse the differential images extracted from
the videos. In particular, DiffImg is a simple image comparison tool which takes
two RGB images with the same size as the input. Some statistics are computed,
and the positions at which pixels differ. With this tool, we are able to make a
comparison between different images, highlighting the differences. By analyzing
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Table 4.5: Standard Deviation for Each Precipitation Intensity

Rain Classification Standard Deviation AVG
nr 2.0 2.0 2.0 2.1 2.1 2.0 2.0
w 3.6 3.3 2.8 2.4 2.7 2.5 3.0
m 3.3 3.3 4.0 5.7 4.5 5.3 4.4
h 3.4 8.6 5.2 5.3 7.8 5.7 5.8
vh 6.2 5.1 4.1 8.4 6 5.4 6.3
s 4.0 8.3 9.6 10.0 8.2 9.3 8.1
c 17.3 7.4 10.7 15.4 8.5 11.4 11.9

the “differential images”, the authors can also view some interesting statistics,
including:

• Average error: indicates the difference between the two images in terms of
RGB scale value;

• Standard deviation: indicates how much the second image varies compared
to the first;

• Total of error pixels: indicates the total amount of different pixels between
the first image and the second image (from which the “differential image”
is obtained).

After a series of evaluations, it was observed that the most interesting feature to
achieve our goal is the standard deviation. To better evaluate the values assumed
by this parameter, it was decided to take into consideration 7 frames extracted
from the videos, for each level of precipitation, with an interval equal to 1 second.

Subsequently, the value assumed by the standard deviation of the differential
image obtained from the differences between consecutive frames was evaluated,
so as to obtain a total of six “differential images”. By evaluating the trend of the
parameter just mentioned, in particular the average of the standard deviation
values, it was observed that this value increases with the increase in the rain
level, as we can see in Table 4.5.

As can be seen from Table 4.5, there is a slight correlation between the standard
deviation and the intensity of precipitation. This is immediately clear if you think
that as the rate of rain increases, the number of raindrops and their size increases,
so the difference between two frames belonging to higher levels will be more
marked than the one between the images belonging to lower intensity levels.

To illustrate the concept discussed so far, a differential frame (taken from 9
“differential image”) for each rainfall level is represented in Figure 4.17. From
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Figure 4.17: Examples of “Differential Image” for each level of intensity.

Figure 4.17 it is possible to note that there is a visible difference between the
adjacent precipitation levels from the point of view of the raindrops represented
in the frame. For example, it is clear that if in “No rain” class the image is white,
in “Weak” the presence of a few raindrops is observed. The same concept may be
applied to subsequent levels.

Despite some positive results obtained with the methodologies described above,
some limits remain which do not allow the implementation of an autonomous
system capable of achieving a reliable classification.

The different problems encountered during the experimental phase could be
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solved by creating a system based on machine learning by carrying out the training
of a neural network through the use of more comprehensive and differentiated
databases.

4.3.4 Performance Evaluation

This section will show the results of the training and validation of the convolu-
tional neural network when the “differential images” are used as an input. The
application of the DCT to 16× 16 sub-blocks show an improvement in the clas-
sification performance. In fact, Figure 4.18a and Figure 4.18b respectively show
the progress of training and test losses and training and test accuracy.

Figure 4.19 shows the confusion matrix. In this case, the percentage of accuracy
of the average classification obtained by applying the DCT to 16× 16 sub-blocks
are approximately 49%, which can reach 75% if the adjacent miss-classifications
are not considered.

Once the performance has been defined, it is possible to compare our results
with those present in the state of the art, in particular with the study proposed in
[125]. The main differences from our study lie in the number of classes used, the
methods of image pre-processing and the image capture mode. In fact, in [125]
the Sobel algorithm is applied for the elimination of the edges; moreover, the
images of the rain are captured in an orthogonal direction to the rain itself. From
the performance point of view our study seems to deliver poorer performance,
but it is important to note that our method is based on a classification using
seven classes, that is, considering seven levels of intensity of precipitation which
are fundamental in the context of monitoring the hydrogeological risks.

The use of seven classes to classify the intensity of precipitation and the high

(a) (b)

Figure 4.18: Training and test phase: (a) Loss function trend with Sub-block 16
trend. (b) Accuracy function trend with Sub-block 16× 16.
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Figure 4.19: Confusion matrix with Sub-block 16× 16.

temporal resolution of the level of intensity of precipitation allow for a more
effective management of alerting mechanisms and therefore prevention and risk
management in case of natural disasters-related hydrogeological risk.

4.4 Classification of Rainfall Estimation Using LTE

Radio signal Parameter

Data regarding weather information are significantly increasing at a rapid pace.
Identifying and obtaining valuable information from large amounts of weather
data can be extremely beneficial in terms of agricultural development. Moreover,
analytic of the weather data can help inform people in advance or alert them about
possibly hazardous weather conditions (e.g. floods, extreme heat, droughts, and
so on).

For this reason, an accurate estimate of rainfall levels is fundamental in smart
city application scenarios.

The massive amount of data collected by low-cost sensors plus the recent data
analysis technologies help us greatly improve the modern rainfall classification
process. Big data analytics in cloud computing systems move from IoT to real-
time control for smart cities.

The main existing rainfall level measurement methods employ tilt rain gauges,
weather radars and satellites.

These traditional estimation techniques present a wide range of problems, for
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example:

• Tilt rain gauges tend to underestimate the amount of rainfall, particularly
in snowfall and heavy rainfall events and they are also sensitive to the
inclination of the receiver and different types of dirt that may clog the
water collection point. Moreover, rain gauges only record local information,
measuring the level of precipitation in the specific geographic location where
the gauge is installed. Information requests for any other point must be
obtained by interpolating the available data provided by nearby rain checks,
with the consequence that this information may be influenced by a higher
error;

• Weather radars have the advantage of being able to monitor a larger area,
compared to the rain gauge, and to determine the real distribution of rainfall
[103, 104], but they are very expensive;

• The satellite ensures greater spatial and temporal resolution, but the esti-
mate itself is less accurate [105, 130].

For all these reasons, these systems are not very fast and accurate and are
expensive to implement in smart cities. So, they cannot be used to estimate the
intensity of rain in smart cities.

Aiming to implement rainfall estimate systems in smart cities, our idea is to
use the already existing 4G/LTE network infrastructure. The innovative idea,
proposed for the first time in this study, concerns the possibility to determine
rainfall intensity based on the impact it has on the LTE radio channel parameters
adopted for the cell selection mechanism. In particular, the study highlights the
correlation between some parameters of the LTE system that measure the quality
of the radio channel, i.e. the handover mechanism that selects the best base radio
station for that particular UE. Compared to a previous study [112, 113], focused
on the measurement of a single parameter related to the signal strength, in this
study, the authors propose a new, larger set of parameters and use a wider class
set of rain levels, including the “No rain” class and adding the “Shower” and
“Cloudburst” classes. Therefore, the first part of the study involves analysing the
impact of different rain level statistics on the main parameters adopted by the
LTE radio-mobile system for the cell selection mechanism to hook to.

Finally, keeping in mind the recent spread of artificial intelligence and machine
learning techniques applied in many contexts, the second part of the study is
devoted to defining a pattern recognition technique based on the average and
variance of parameters that characterize the quality of the LTE radio channel
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and an MLP neural network, leaving out the use of the latest and most advanced
machine learning techniques for future work.

The studies is organized as follows: sub-section 4.4.1 briefly summarizes the
main studies regarding the rainfall classification based on a radio link, followed
by sub-section 4.4.3 that described the dataset created for this study; sub-section
4.4.4 described the proposed method to rainfall classification using LTE radio
parameter and MLP network, including: rainfall classification based on radio
signal quality parameters, testbed scenario and data analysis and results; sub-
section 4.4.5 shows the results obtained using the MLP neural network; and,
finally, there are the discussion and conclusions.

4.4.1 Related Work

Several past studies on this subject have only considered electromagnetic waves
with frequencies greater than 10 GHz [131–133] since the impact of precipitation
on the attenuation of electromagnetic waves, and therefore on the strength of
the signal receiver, is best visible at high frequencies. A very interesting scenario,
however, is represented by mobile radio systems that are widespread in the ter-
ritory. Hence, in recent years, similar studies have been conducted considering
frequencies used by cellular networks, therefore, less than 3 GHz, trying to an-
alyze the effect of the impact of rain on the parameters that characterize the
quality of the radio-mobile channel. In particular, in [134], the effect of rain on
the RSSI, i.e. the intensity of the signal received by the user, was studied.

Network analysis on 2G links was performed in two different geographies for
nine non-consecutive days. Measurements of the signal quality of each telephone
terminal were transferred to a computer at the end of the day, along with mea-
surements obtained by a rain gauge. The effect of rain on the intensity of the
cellular signal was studied by analyzing variations in RSSI values measured by
the smartphone. Tests showed an RSSI drop during rainfall in 8 out of 9 cases.
In general, however, the decline in RSSI did not lead to a clear and unambigu-
ous distinction between the various levels of rainfall, since the decrease in power
was insignificant. In [135], the measurements were taken for one year, using a
transmitter/receiver system consisting of conventional antennas at the operating
frequency of 2 GHz. The results showed reliable and accurate measurements for
amounts of rain less than 1 mm for periods of 5 minutes. In our previous paper
[107, 108], we proposed a study on the estimation of the rainfall level, based on
the intensity of the received signal in LTE systems, evaluating the parameters of
mean, variance and instant value of the RSSI calculated in a sliding time win-
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dow. These parameters were subsequently inserted into a Probabilistic Neural
Network, which resulted in a satisfactory classification performance. The study
deals with a first approach to using radio signal parameters for precipitation esti-
mation, using frequencies from LTE technology (1.8 MHz/2.4 GHz). It is the first
approach, as the distinction between rainfall levels (weak, moderate and strong)
was not clearly evident and easily defined by the RSSI values. Previous studies
suggest that it is particularly difficult to classify rainfall levels only by taking into
consideration signal strength received at frequencies below 3Ghz. For this reason,
in this paper we focus on the study and analysis of additional radio parameters,
other than the strength of the signal received, i.e. RSSI, defined by the LTE
technology, which are able to provide the most accurate estimate of the rainfall
level. In addition, we assess the effectiveness, in terms of classification, of all ra-
dio channel statistical parameters provided by the LTE technology, i.e. mean and
standard deviation. Finally, the obtained data are fed as input to a MLP neural
network [136] which differentiates between various levels of rainfall. The new rain
gauge system, studied in this paper, offers great spatial resolution inasmuch as
it is based on the impact of rain on radio routes between the UE and the base
radio station. Base stations, in fact, have a fairly even and wide distribution in
the territory and in cities. In smart cities of the future, characterized by intense
use of the 5G radio route, this factor will be amplified as 5G base radio stations
will have lower coverage radius and, therefore, much wider distribution in the
territory than ever before.

This distribution allows to potentially convert each base radio station into a
radio rain gauge. This technique comes with numerous advantages in terms of
greater accuracy, speed and geographic accuracy, i.e. it will be possible to estimate
the intensity of rain with high spatial precision.

At a functional level, even with the introduction of 5G technology, the proposed
method will remain valid, as it will still be possible to use all the radio parameters
to estimate the level of precipitation.

In perspective it is true that 5G uses higher frequencies offering a greater cor-
relation between rainfall intensity levels and the RSSI parameter, but it is also
true that 5G provides operating modes even at frequencies below 10 GHz. For
this reason, for a more correct and robust classification of rainfall levels, all radio
channel monitoring parameters proposed in this study are required to be used
also in 5G systems.
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4.4.2 Cell Selection Criteria In LTE Technology

The smart city paradigm is a vision for future cities centred around the concept of
connectivity. Indeed, connectivity is the core requirement for smart cities to exist,
enabling tight integration among citizens, devices and service providers. However,
it is also a means for interoperable access and interconnection among different
services. Studies have been conducted on the use of the LTE infrastructure to
implement different methodologies and scenarios that form smart cities [137–
139].

This section describes the main features of the LTE technology with particular
reference to the parameters that characterize the quality of the radio channel
between the UE and the base station, as well as the handover mechanism.

In an LTE cellular network, when a UE moves between cells or can no longer
have certain signal strength requirements from the cell it is connected up with,
it must perform the selection/re-selection operation of a base station. For such
an operation it is necessary to measure the strength and signal quality of the
neighbouring cells. In LTE, the E-UTRAN Node B, also known as Evolved Node
B (abbreviated as eNodeB or eNB), is the element in E-UTRA of LTE that is the
evolution of the element Node B in UTRA of UMTS. In LTE, a UE measures the
following two parameters of the reference signal, signalling them to the electronic
node: RSRP and RSRQ.

From these two indexes, the eNB returns the Received Signal Strength Indicator
(RSSI) parameter, which is the reference signal intensity indicator. The RSRP,
which typically ranges between -44 dBm and -140 dBm, is a good measure of the
power of a specific sector, excluding noise and interference from other sectors.
When the UE is near an LTE station, the average RSRP values are around -75
dBm, and around -120 dBm when the UE is near the edge of the cellular coverage
area [140].

After being turned on, the mobile device performs a low-level capture procedure
to identify nearby LTE cells and find out how they are configured. The acquisition
process is summarized in the following stages: The UE receives synchronization
signals from all nearby cells. From the Primary Synchronization Signal (PSS), the
UE reads the symbol timing and gathers information about the identity of the
physical cell; from the Secondary Synchronization signal (SSS), the UE derives the
frame timing, Physical Cell Identity (PCI), transmission mode (FDD or TDD),
and duration of the cyclical prefix (normal or extended). At this point, the UE
initiates the reception of cell-specific reference signals. These provide a reference
of amplitude and phase for the channel estimation process, so they are essential
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for the following steps. The UE is then assigned the physical transmission channel
and, subsequently, the UE reads the main block of information. The UE, after the
first and second synchronization signals, receives the control format indicators.

Finally, the UE initiates the reception of the Physical Downlink Control Channel
(PDCCH). This allows the UE to read the remaining blocks of system information
(SIB), which are sent on the Physical Shared Downlink Channel (PDSCH). It
captures all the remaining cell configuration data, such as the identities of the
networks to which it belongs. The UE then initiates the reception of reference
signals in the downlink channel [141]. Such signals are useful for the UE to:

• Provide an amplitude and a phase reference to be used in the estimation of
channels;

• Measure the strength of the received signal according to the frequency;

• Calculate the channel quality indicators.

These procedures are carried out while the terminal is in the “IDLE” state, i.e.
there is no active phone call or data transfer.

At this stage, the UE begins by performing the procedure of selecting the net-
work and cell, which involves two main steps. Firstly, the UE selects a Public
Land Mobile Network (PLMN) it will register with; secondly, it selects a cell that
belongs to the selected network. Cell selection can be done in two ways. Usually,
the UE has access to information stored on the potential frequencies and cells of
the LTE service operator, starting from the last turning on or network selection
procedure described above. If this information is not available, the device scans
all supported LTE carrier frequencies and identifies the most powerful cell on
each carrier on the selected network.

The selected cell is the one that meets several criteria, from release 9 onwards,
standardized by 3GPP [142]. The most important criterion is show in (4.4):

Squal > 0 (4.4)

During the initial network selection, the UE calculates Squal by (4.5):

Squal = Qqualmeas −Qqualmin (4.5)

In this equation, Qqualmeas [141] is the quality of the RSRQ measured, which
indicates the signal-interference ratio plus the noise ratio of cell-specific reference
signals. Qqualmin is the minimum value for the RSRQ, which the base station
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makes available in System Information Block 1 (SIB 1). This prevents a mobile
phone from selecting a cell on a carrier frequency that is subject to high levels of
interference.

For UEs in the “IDLE” state, cell re-selection management procedures have
two main goals: maximizing UE battery life and minimizing signalling load on
the network. From release 9 [143], a UE can also start taking measurements on
neighbouring cells if the quality of the RSRQ falls below a threshold (4.6):

Squal ≤ SIntraSearchQ (4.6)

where, SIntraSearchQ is another threshold made public by the base station in SIB 3.
Squal depends on the RSRQ of the service cell and is calculated using (4.5). After
finding and measuring the neighbouring cells, the UE calculates the classification
scores of the service cell and one of its neighbours. The UE then moves on to the
cell with the best score, provided that three conditions are met. Firstly, the UE
must have been connected up to the service cell for at least a second. Secondly,
the new cell must meet the criteria set out in “Cell Selection”. Finally, the new
cell must be better classified than the service cell for a certain period between 0
and 7 s.

4.4.3 Rainfall LTE Radio Parameters Dataset

The database is made with GMON for each terminal and comprises data from
LTE radio parameter measurements and CID. This data is sent at once as the
tipping bucket rain gauge is activated. Tips generated by the tipping bucket
rain gauge are sent to an IoT platform, using the publisher/subscriber protocol.
The values taken from the tray are used to label the radio signal with different
rain intensity. A labeling algorithm is applied to obtain the estimate in mm/h
(described in detail in sub-section 4.1.3). Once the labelling algorithm is executed,
the rainfall values, in mm/h, are compared and synchronized in time with the
data in the CSV file created by GMON. This process enables data labelling in
the CSV file. In fact, this allows obtaining files where the network parameters
are related to each classification level. The database consists of five categories of
precipitation intensity, defined in Table 4.6; for each category there is a CSV file
containing network parameters: RSRP , RSRQ, RSSI and SNR; date and time
from when the data was recorded; CID and LAC. The current database was
created by recording network parameters on different days and in different areas
of the territory during the precipitation (in various rain intensity conditions,
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Table 4.6: Rainfall classification using LTE radio parameter: Classification and
rainfall intensity range

Classification Acronym Rainfall Intensity [mm/h]
No rain nr <0.5

Moderate m [0.5 ÷ 6]
Heavy h [6 ÷ 10]
Shower s [10 ÷ 30]

Cloudburst c >30

including the “No rain” case). This implies a certain robustness of the system,
as the results obtained take into account the use of base stations in different
locations.

As already mentioned, data collected by GMON are stored, every second, in a
CSV file and this file is composed of records containing the data related to the
radio parameters indicated above. In particular, the number of records for each
level of rainfall is as follows:

• No rain: 124.210 records;

• Moderate rain: 378.584 records;

• Heavy rain: 18.667 records;

• Shower: 15.595 records;

• Cloudburst: 5.255 records

Initially, the first and second-order statistical parameters of the radio channel
quality parameters described in sub-section 4.4.4 were calculated.

The statistical analysis was conducted by considering a 180-second sliding win-
dow with 15 second off-sets. The first order statistical parameters, represented by
the averages of the values, are as follows:

• RXLAV G;

• RSRPAV G;

• RSRQAV G;

• SNRAV G.

The statistical parameters of the second order, represented by the variations,
are as follows:
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• RXLV AR;

• RSRPV AR;

• RSRQV AR;

• SNRV AR

The number of databases for each class is as follows:

• No rain: 686 records;

• Moderate rain: 2089 records;

• Heavy rain: 103 records;

• Shower: 86 records;

• Cloudburst: 29 records.

Due to the non-uniformity of the data in the dataset for each class, it was
decided to reduce the number of samples in the “No rain”, “Moderate rain”, “Heavy
rain” and “Shower” classes to 50 records each and to leave the “Cloudburst” class
unchanged.

The three cell change parameters were also analysed: CIDHOPS, CIDCSR and
CIDPERMANENCE. Subsequently, the degrees of linear separation were assessed
using the FDR, which allows measuring the degree of linear separation that the
given parameter has [144]. Finally, a MLP (described in Appendix E) was applied,
providing the parameters used for statistical analysis as an input, and the 5 classes
of rainfall levels as an output. After the training phase the neural network ranks
the contribution made by each parameter considering that the best match is the
one based on non-linear techniques. Finally, by analysing the confusion matrix,
the accuracy of the system is determined.

4.4.4 Proposed Method

Rainfall Classification Based on Radio Signal Quality Parameters

The new method for estimating rainfall levels, proposed in this paper, is based on
a nonlinear matching pattern recognition approach. As in previous studies carried
out in audio biometrics [145, 146], once the set of parameters that characterizes
the radio channel is extracted, they are analyzed on time windows by measuring
the statistical parameters of the first and second order. The parameter set is sent
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to a nonlinear matching block based on MLP. In particular, the radio parameters
used for analyzing and creating the dataset in input to the neural network were
measured in terms of average and variance, via the app GMON for each level of
rainfall. The following radio parameters were therefore obtained: RSRPAV G, the
average power of the RSRP signal received from the UE;

• RSRQAV G, the average signal power quality received from the UE;

• RXLAV G, the average instant power of the RXL signal received from the
UE;

• SNRAV G, the average signal-to-noise ratio received from the UE;

• RSRPV AR indicates variations in signal strength of the RSRP signal re-
ceived from the UE between two consecutive measurements;

• RSRQV AR indicates variations in received signal strength quality from the
UE between two consecutive measurements;

• RXLV AR indicates variations in instant power of the RXL signal received
from the UE between two consecutive measurements;

• SNRV AR indicates variations in the signal-to-noise ratio received from the
UE between two consecutive measurements.

In addition, with regard to the CID, i.e. the identification number of the LTE
cell the terminal is connected to, several parameters have been calculated:

• The “reference CID”, CIDCSR, the CID for which the terminal remains
connected to for longer;

• The CIDHOPS, the number of connections to other cells the UE makes;

• The CIDPERMANENCE that indicates how long the UE remains connected
to the reference cell;

• The CIDCSR indicates the number of times the UE disconnects from the
reference cell, and then returns to it.

These parameters are used for statistical analysis and as input to an MLP neural
network.
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Figure 4.20: Rainfall classification using LTE radio parameter: Testbed scenario.

The Testbed Scenario

In order to assess the impact of rain on the main parameters that characterize
cell selection phases, the scenario taken into account is that of an LTE UE in the
“IDLE” state, equipped with an application (e.g. GMON ) for the measurement
of the parameters used by the cell selection mechanisms (Figure 4.20). Nearby, a
classic tipping bucket rain gauge records rainfall levels in mm/h using a process-
ing, labelling and synchronizing board with radio-mobile channel data measured
by GMON. The UE, as described in the previous section, detects the power level
of the base radio stations nearby and hooks to the station with the greatest power.

In cases where atmospheric precipitation occurs, in an “IDLE” state the UE
may be affected by small changes in the radio signal. The UE, in fact, receiving
a lower power signal from the base station to which it is connected, could pick
up a higher power signal from another base station nearby. The impact of the
rain can, thus, lead to greater frequency of the re-selection phases of the base
station to which the device is connected. This data can have a major impact on
the classification of rainfall levels as the higher the level of rainfall the higher the
selection and re-selection procedures of one or more neighbouring cells may be.
The parameter used to describe this procedure is the CID, which distinguishes,
as already seen, the cell to which the UE is connected, the number of hops, i.e.
jumps that it makes from one reference cell to another, and the timespan of
continuous connection to a given reference cell; which is the one to which it is
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statistically connected to the longest. Following, in the next subsections, we will
describe the testbed and the database used to train the MLP neural network.

This section will describe RSRQ, RXL, SNR, RSRP , and CID (LTE defines it
as PCI) data collection procedure. The data employed for the creation of the radio
database, on which the analyses and tests were carried out, were collected through
an ad hoc implemented acquisition system consisting of: a tilting tub, a processing
unit and a 4G smartphone SIM inside a shaker. A dedicated application, called
GMON, is installed on the smartphone, able to export a full report for different
network and signal parameters such as RSSI, RSRP and RSRQ (illustrated in
sub-section 4.4.2) in CSV format.

As for the tipping bucket rain gauge, it acts as a rain indicator. It includes a
rain-gathering funnel, two triangular tubs mounted on a fulcrum and an electronic
switch.

The rain is channelled through the funnel to one of the trays. When the tub is
full, it loses balance and flips over, emptying into the outer shell of the meter, while
the other tub is lifted into place for later reading. The rain gauge is connected to
the processing unit via an RJ11 cable and is managed ad hoc through a software
interface that can detect and count the “interruptions” generated by the rain
gauge tray whenever a tilt occurs.

To process the proposed classification approach, a database was created by
recording the collected data. The database includes measurements of the param-
eters described above in five different weather conditions: “No rain”, “Moderate
rain”, “Heavy rain”, “Shower” and “Cloudburst”. The database framework is dis-
played in Table 4.6.

Data Analysis and Results

First, mean and variance of radio parameters are studied to determine if there is
a link between the values obtained from the statistical analysis of these param-
eters and the rainfall levels defined in Table 4.6. The statistics of the individual
parameter with the representation of mean, minimum and maximum, standard
deviation and typical distribution of values around the mean were represented for
each class of rainfall.

Figure 4.21, 4.22, and 4.23 show that there are no parameters clearly distinguish-
ing between classes, although some classes have low-overlapping value distribu-
tions with other classes (e.g. RSRPAV G and RXLAV G have “No Rain” class values
that overlap with those of the other classes). The same goes for the RSRQAV G

parameter that ensures a good separation between the “Shower” and “Cloudburst”
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Figure 4.21: Representation of radio parameter averages statistics: (a) average
RSRP , (b) average RSRQ, (c) average RXL, (d) average SNR.

Figure 4.22: Representation of radio parameter variance statistics: (a) RSRP
variance, (b) RSRQ variance, (c) RXL variance, (d) SNR variance.

classes. The same case applies to the variance of radio parameters (Figure 4.22).

121



Figure 4.23: Representation of CIDHOPS statistics.

Figure 4.23 shows the average jump that is made from one cell to another at
each level of rainfall. In this case, there is a clear distinction between “s” and “c”
classes. In general, it is noted that the data appears to be jagged and does not
give a clear distinction between precipitation levels according to linear analysis
criteria. A simple first and second level statistical analysis is therefore not enough
to establish clear classification of rainfall levels. For this reason, an analysis of the
FDR applied to radio parameters, presents the results of classification techniques
suitable for those cases with non-linear separation in order to define the parameter
that helps obtain better discrimination.
FDR value between two adjacent classes, relative to each parameter described

in the previous section, will be evaluated. As there are five levels of rainfall con-
sidered in this study, there will be five classes and, therefore, four FDR values,
for each radio parameter considered, for the classes: nr−m, m− h, h− s, s− c.
Figure 4.24 shows the total FDR values of all parameters for each pair of adjacent
classes. The parameters that have the highest degree of linear separation are:

• the RXLAV G and the RSRPAV G for classes nr to m (Figure 4.24a);

• The SNRAV G and RXLV AR for classes m through h (Figure 4.24b);

• The CIDCSR and CIDHOPS for classes h to s (Figure 4.24c);

• RSRQAV G and RSRQV AR for classes s through c (Figure 4.24d).

By analysing and calculating the degree of total linear separation (see Figure
4.25), i.e. applicable to all classes, we obtain the parameters with the highest
linear separation index: the RSRQAV G, the CIDCSR and the CIDHOPS. Starting
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(a) (b)

(c) (d)

Figure 4.24: Parameter FDR values between adjacent classes: (a) FDR between nr –
m, (b) FDR between m – h, (c) FDR between h – s, (d) FDR between s – c.

from these values, it was decided to carry out the Principal Component Analysis
( PCA) [36] of these parameters. PCA is a technique aimed at deriving a smaller
set of “artificial” orthogonal variables starting from a set of correlated numerical
variables. The reduced set of linear orthogonal projections (known as “principal
components”, “PC”) is obtained by appropriately combining the original variables
linearly.

Figure 4.26 outlines the results obtained by the PCA. As evidenced, individual
parameters contribute differently to the separability of the individual classes. To
find a solution to this problem, we implemented a MLP with multiple classes,
where the above parameters are used as input, while the output will comprise
the accuracy of the classification and the determination of parameters which are
more important than others to neural network training.
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Figure 4.25: Total FDR.

Figure 4.26: PCA analysis.

4.4.5 Performance Evaluation

Once the statistical analysis was completed and the FDR was calculated, as
noticeable from Figure 4.26, the separation of classes is not linear. For this reason,
the Perceptron neural network was applied to the dataset. The dataset used for
training and testing the Perceptron network has been described in Appendix D.

In particular, from the CSV files, containing the recordings of radio parameters
made by GMON, relating to each precipitation level, the statistical parameters
were extracted within a window of 180 seconds (data is recorded every second)
and a 15 second offset. The dataset is therefore divided as follows:
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Figure 4.27: Rainfall classification using LTE radio parameter: Confusion matrix.

• Fifty data samples for the “No rain” class;

• Fifty data samples for the “Moderate” class;

• Fifty data samples for the “Heavy” class;

• Fifty data samples for the “Shower” class;

• Twenty-nine data samples for the “Cloudburst” class.

The training data makes up 70% of the dataset, while the remaining 30% of the
dataset is used to the testing phase, once the neural network was trained. The
result of this phase is shown in Figure 4.27 with the confusion matrix. The sta-
tistical classification functions (described in Appendix E) are applied to evaluate
the proposed method, based on the results obtained from the confusion matrix.

The results obtained in terms of statistical parameters are shown in Table 4.7.
Table 4.7 suggests good performance of Accuracy (96.0%), Sensitivity/Recall
(96.0%), Fall – out (13.32%), precision (91.4%) and F1Score (93.6%).

Once these accuracy metrics are implemented and calculated, it is possible to
use an additional model validation tool, namely the one based on the ROC and
AUC ROC graphs to validate the model.

A perfect classifier would be located in the upper left corner of the graph, with
a true positive rate equal to 1 and a false positive rate equal to 0. Based on
the ROC curve, we can therefore calculate the area under the curve, AUC, to
characterize the performance of the classification model.
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Table 4.7: The overall values of accuracy, TPR, FPR, PRE and F1Score of rainfall
classification using LTE radio parameter.

Class TPR [%] FPR [%] PRE [%] F1Score [%]
nr 100 0 100 100
m 100 3.8 87 93
h 95 0 95 95
s 85 0 85 85
c 100 2.8 90 95

Total 96 13.32 91.4 93.6

Figure 4.28: Rainfall classification using LTE radio parameter: ROC curve.

Applying this concept to our classification method, in Figure 4.28 we observe
the resulting ROC curve which indicates that a certain degree of variance between
the various parts and the average ROC AUC lies between the perfect score (1.0)
and the diagonal (0.5).

Research on the performance of a classifier such as ROC AUC may provide
additional information on its performance compared to unbalanced samples. In
[147] Bradley demonstrated that ROC AUC and accuracy metrics generally agree
with each other.

The micro-average is calculated from the individual true positives, true neg-
atives, false positives and false negatives of the system. In our case the micro-
average of the precision score in a 5 (nr, m, h, s and c) class system can be
calculated by (4.7):

PREmicro =
TPnr + TPm + TPh + TPs + TPc

TPnr + · · ·+ TPc + FPnr + · · ·+ FPc

(4.7)
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Figure 4.29: Rainfall classification using LTE radio parameter: Level of impor-
tance features.

The macro-average is simply calculated as the average scores of the different
systems ((4.8)):

PREmacro =
PREnr + PREm + PREh + PREs + PREc

5
(4.8)

Micro-media is useful if we want to weigh each instance or forecast, while macro-
media weighs all classes equally to evaluate the overall performance of a classifier
compared to the labels given to the most frequent classes. The graph shows that
the area under the ROC curve is very large. This means that our model has
excellent performance. In general, tipping bucket rain gauge labelling does not
allow establishing typical variations in rain intensity. By means of the causal forest
technique, it is possible to gather useful information concerning the importance
that the network assigns to various input parameters. The graph in Figure 4.29
shows that the five features in the order of importance for the neural network
are: RXLAV G, RSRPAV G, SNRAV G, RSRQAV G and RSRPV AR.

4.4.6 Discussion and Conclusion

In this section the obtained results are discussed and compared with recent studies
in the state of the art.

Our five-class classifier (nr, m, h, s and c) has managed to obtain classification
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Table 4.8: Rainfall classification using LTE radio parameter: Comparison of rain-
fall classification methods.

Ref. Radio
Technogies Features Methods F1

Score [%]
Accuracy [%]

No rain Rain Rain levels
w m h s c

[148] GSM RSL SVM n.d. 82.84 84.79 75.78 n.d. 88.26 n.d. n.d.

[131] Commercial
Microwave link Signal attenuation KFD n.d. 96.74 80.18 26 n.d. n.d. n.d. n.d.

[108] 4G/LTE RSL (value, mean
and variance) PNN n.d. 100 n.d. 90 96.7 100 n.d. n.d.

[116] 4G/LTE

RSRP, RSRQ,
RXL, SNR
(mean and

variance), CID

Multiclass
MLP 93.6 100 95 n.d. 100 95 85 100

accuracy of 96.0% and an F1Score of 93.6%. Table 4.8 shows the comparison in
terms of radio technology in use, features, classification methods, classification
levels and achieved performance.

Based on research carried out on the current state of knowledge, the study
referenced in [108] and the one described in [148] are the only studies dealing
with the classification of precipitation levels by radio signals at frequencies below
10 GHz. In [148] GSM technology is used, and the RSL (Received Signal Strength)
parameter is considered as a feature. As for the classifier, a 3-class (nr, w, h) SVM
(Support Vector Machine) is used. Compared to the study [108], it can be seen
that overall it has lower performance, since in [108] we consider 4 rainfall levels
(nr, w, m, h).

In [131] commercial microwave link is used to analyze the radio signal atten-
uation caused by rain at frequencies about 20 Ghz. In this study the authors
adopted the KFD (Kernel Fisher Discriminant) method for intensity classifica-
tion into only 3 classes: dry (no rain), rain and sleet (i.e. melted snow/freezing
rain which, for simplicity, has been considered as weak rain).

It should be emphasized that the comparison proposed in Table 4.8 presents
a congruity of classes only for the two No rain/Rain columns, from which there
is already a clear performance improvement in the proposed method compared
to the existing solutions. As indicated, the classes of rain levels vary in number
and therefore it is not possible to make a direct comparison between the various
methods. It should also be noted that the datasets used are different.

However, comparing this study with the previous one [108], it can be said that in
this study several classification levels are proposed, adding the highest intensity
classes (Shower and Cloudburst) and using more parameters of 4G radio technol-
ogy to strengthen the system in the previous study [108] which exploits only the
mean and the variance of the RSL parameter. In fact, it is well known that the ra-
dio signal strength may undergo variations depending on the conditions of signal
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propagation and, therefore, on the surrounding environment. With regard to the
matching technique, this study exploits a very simple neural network with low
computational complexity, compared to the study proposed in [108], achieving,
however, overall good performances.

At high frequencies the impact of rain on attenuation is very big, resulting in
greater performance in terms of classification accuracy. In any case, for further
performance optimization, it is always useful to add the set of parameters pro-
posed in this study in addition to that of simple signal strength.

In conclusion the study proposes an innovative approach to rainfall classifica-
tion for smart city applications. The main idea is based on the impact that rain
has on a set of parameters that characterize the radio-mobile channel quality.
The paper highlights the link between rainfall levels and the trend of parameters
adopted for the cell selection phase in the LTE mobile network. In particular,
the system requires only the extraction of the parameters that a UE measure and
the subsequent comparison with a nonlinear matching system based on MLP net-
works. The performance is very good in terms of accuracy and spatial resolution.
Taking into account the typical micro-variances of rainfall intensity, it is possible
to consider an average accuracy of 96%. The new rain gauge exceeds the limits of
the traditional ones, as it has no mechanical parts and requires no maintenance.

4.5 Radio Packet Error Compensation Using Ra-

dio Mobile Network Quality Parameters in a

Rainfall Scenario

The last few years have been characterised by several applications devised with
the scope of creating smarter environment and systems. The key enabler of these
smart city applications has been the fusion of IoT or 5G based systems and AI.

In these scenarios, the data analysed via Deep Learning (DL) techniques and
exchanged between the sensors and the network assume a primary role for the
feasibility of smart systems.

The data passing through the 4G/5G communication channels must be sup-
ported by a robust link that withstands external disturbances in order to enable
high QoS. New concerns are emerging in this field, such as bandwidth speed, re-
liability of data communication, robustness of data connections and throughput.
Several studies have addressed these issues. In [149], the authors propose a clas-
sification system for online multimedia traffic based on a CNN network that will
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meet the demands of the networks of the future. Techniques of distributed user-
to-multiple AP association methods are proposed in [150], where the objective
is to maximize the long-term sum-rate subject to application QoS constraints,
as well as to AP load constraints. In [151], a method of classifying data flows
through the SDN is investigated in order to guarantee the QoS requirements of
different services. A series of machine learning algorithms are combined and a
data flow classification method called MACCA2-RF&RF is proposed in order to
identify the data flow category and obtain the QoS requirements.

In fact, although the rapid and continuous consolidation of the demand for
mobile Internet access together with the significant increase of mobile services
provided by the incoming fifth generation networks (5G) have created the con-
ditions for a significant expansion of mobile IP applications and services, radio
network equipment is often unable to support real-time and time-critical traffic
due to various disturbances affecting the wireless channel. There can be various
causes for the disruption of the wireless medium, including the adverse effect of
rain on radio channel quality [152, 153].

In this section, the rainfall level estimation algorithm, described in sub-section
4.4, is used to introduce a new Smart VPN bonding algorithm [154] that can oc-
casionally compensate the PER based on the statistical parameters of the mobile
radio signals and changes in the CID when the radio channel is affected by rain.

The key steps of the testbed scenario are summarized as follows:

1. Implementation of a video surveillance system equipped with a dual SIM
modem in road safety contexts;

2. Through the 4G mobile network (LTE) the SIMs connect to the various
eNBs from which the parameters of the mobile radio signal can be recorded.
The recorded radio parameters are extracted, processed and fed as input
to a CNN neural network that allows to estimate the rainfall intensity In
particular, through the statistical parameters of the mobile signal and the
number of “hops” between one mobile cell and another, it is possible to
identify the level of rainfall with a certain accuracy;

3. Together with the radio parameters, also the Packet Error Rate values for
each SIM were recorded, drawing the conclusion that the level of rainfall
varies hand in hand with the Packet Error Rate. Furthermore, the variation
of the latter is also linked to the variation of the radio parameters;

4. The VPN Bonding algorithm initially estimates the bandwidth for the two
connections and assigns the weights. When the rain is detected through
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the classification given by the neural network, it recalculates the weights
according to the estimated Packet Error Rate value.

In general, this study proposes a method to solve the problem of radio channel
fluctuations caused by the presence of rain, since the trend SNR, RSRP and CID
negatively affect the network performance. In this regard, a scheme is proposed to
detect rain and improve the radio link of critical equipment such as, for example,
modems on highways for the road safety, city units, as well as video surveillance
systems for forensic contexts and similar.

The work is structured as follows: in sub-section 4.5.1 a review is carried out
on standard methods for calculating the PER using the parameters of CQI; a
correlation between PER and statistics radio parameter (illustrated in sub-section
4.4) is presented in sub-section 4.5.2; in sub-section 4.5.3 the VPN Bonding Smart
algorithm is described. In sub-section the testbed (sub-section 4.5.4) and the
experimental results (sub-section 4.5.5) of the proposed solution are provided.

4.5.1 Standard Calculation of PER using the CQI

In this section, we will illustrate PER compensation techniques using Channel
Quality Indicator (CQI) mechanisms found in the literature, through which the
level of degradation of the radio channel is estimated. Finally, once the state of
the art has been analysed, in the second part of the section we will illustrate the
rationale behind the technique proposed in this paper.

In the literature, we find that as telecommunications technologies vary, so does
the way the CQI is calculated. In UMTS systems, for example, the CQI is
mainly related to three parameters: Signal-to-Noise Ratio (SNR) [155], Signal-
to-Interference plus Noise Ratio (SINR) [156] and Signal to Interference Ratio
(SIR) [157]. In the LTE standard, however, the calculation of the CQI depends
on the SINR [158–160]. This parameter is given by the power of the signal and the
noise received by the device plus the interference given by other radio channels.
In addition, the CQI may contain information about the best part of the spec-
trum on witch to receive the data. This is used for frequency domainscheduling.
Generally, a high CQI value indicates a high quality channel and vice versa.

Other studies propose the estimation of CQI, in LTE systems, by employing the
SNR and RSSI together with deep learning techniques [161, 162].

Even in 5G systems, several studies have addressed this aspect using the SNR
parameters [163] and SINR [164].

In general, therefore, by analysing traditional techniques from the literature, we
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can deduce a packet error rate dependency with CQI of this type (4.9):

PER = f [CQI (SNR, SINR,RSSI, SIR)] (4.9)

In this paper, we propose a new method of PER compensation specifically de-
signed for rainfall scenarios. In particular, as is well known in the literature,
rainfall intensity does not have a very noticeable impact on radio signal strength
when frequencies are below 10 GHz. In fact, studies carried out in [116, 165] have
shown that, for a correct and accurate estimation of rainfall levels, it is advisable
to analyse, for example, the variance of power levels and other parameters cal-
culated by the UE that are related to the impact rain has on cell selection and
handover and not just to channel quality.

The experimental analysis of this work also shows that, in rainfall scenarios,
PER compensation methods based on traditional CQI criteria fail to guarantee
an adequate level of quality of service in particular application scenarios. It is
therefore necessary, in this case, to take advantage of new mechanisms for esti-
mating the degradation of the channel quality based on the analysis of the level
of rainfall and, therefore, on the actual impact this has on the signal quality, also
through the use of non-standard CQI parameters such as the CIDHOPS. Taking
into account the rainfall estimation approach presented in the paragraph 4.4.5,
the idea is, therefore, to model, specifically during rainfall events, the packet loss
through the relation (4.10).

PERrain = g [CNNrest (CIDHOPS, RSRP, SNR,

RSRQ,RXL,CIDPERMANENCE, CIDCSR)]
(4.10)

A specific implementation of the model (4.10) is presented in the next sub-
section.

4.5.2 Correlation between packet error rate and statistics

radio parameter

In this study, we empirically correlated the values of PER with a subset of the pa-
rameters used as input to the CNN network, namely: RSRP , SNR and CIDHOPS.
The relationship derived is as follows:

PERrain
n =

1− 10
RSRPn
SNRn

−0.2·log10(CIDHOPSn+1)

10
(4.11)
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Figure 4.30: Percentage change in PER as precipitation level changes.

where n = 1, ..., N is a number of connection. In our case n = 2 (Operator 1 and
Operator 2)

The graph in Figure 4.30 shows the development of the PER as the intensity of
precipitation change, according to 4.11.

In line with the data shown graphically in Figure 4.22, the graph in Figure 4.30
outlines that the PER increases as the level of precipitation increases (from no
rain to shower) with a decrease in the cloudburst class.

Since PER is correlated to the RSRPVAR, SNRVAR and CIDHOPS values, it
is consistent with the fact that in a cloudburst situation, since the channel is
somewhat more stable (the rain is more evenly distributed and therefore there is
only signal attenuation effect), PER also stabilises at a threshold that is higher
than in the case of no rain. In the sub-section of experimental results, the effect
of the VPN Bonding algorithm on PER obtained using two radio links of two
different operators at varying rainfall levels is evaluated.

4.5.3 The Smart VPN Bonding Function

VPN bonding is usually employed in Ethernet switches but in the present study it
is exploited to counteract the drawbacks related to wireless links of mobile access
networks such as 3G, 4G and, incoming, 5G in rainfall conditions. VPN bond is
responsible for balancing the data load among the available network interfaces
enhancing the key performance indicators of the end-to-end path between the
source and destination nodes. Our approach is based on the following steps:
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i. Correlation of packet error rate with different rainfall levels through the
CNN;

ii. Evaluation of weights to be assigned to each active network interface;

iii. configuration of the VPN bond by assigning the calculated weights to each
active network interface.

As regards point (i), authors in [166] proposed a method for the fast analysis
and evaluation of the KPIs in a mobile Internet access scenario such as Internet
on board drone proving the suitability of the Self Loading of Periodic Streams
(SLoPS) technique [167].

This technique involves periodically sending data across mobile interfaces and
estimating the available bandwidth by evaluating the inter-arrival time between
the transmitted packets. Although the algorithm has shown promising results
in terms of accuracy and convergence time, it has two drawbacks: the waste of
bandwidth due to the transmission of test packets and the complexity introduced
by the use of a client-server application for which it is necessary to intervene both
at the edge of the network and in the Operator Workstation in the Control Room.
The technique proposed in this paper does not require any intervention from the
Control Room and does not need the transmission of test data traffic to estimate
the conditions of the wireless link. The estimation of rain is performed directly
by the edge device which, based on what is detected, evaluates the packet error
rate and defines the weights of the VPN bonding algorithm.

Once the KPIs of the individual connections have been estimated, the weights
to be assigned to each connection are calculated using Algorithm 2. First of all,
the weights are calculated on the basis of the service times (ST) guaranteed by
each connection (ST1 and ST2) as can be observed in (4.12) and (4.13).

ST1 = L1 +
PKTSize

BR1

(4.12)

ST2 = L2 +
PKTSize

BR2

(4.13)

where, L1 and L2 are, respectively, the latency relative to connection 1 and 2;
PKTSize

BR1
and PKTSize

BR2
are, respectively, the bandwidth relative to the connection

1 and 2. The weights, W1 and W2, are, therefore, calculated proportionally to
the service rate (µ) offered by each mobile connection (µ1 and µ2) according to
equations (4.14) and (4.15).
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Algorithm 2 Dynamic VPN-Bonding algorithm.
Input: µ1, µ2, PER1, PER2

Output: W1, W2, PERBonding

1: procedure
2: if µ1 > µ2 then
3: W2 ← 10.
4: W1 ← round(µ1

µ2
10).

5: else
6: W1 ← 10.
7: W2 ← round(µ2

µ1
10).

8: PERBonding in Eq. 4.16
9: if (PERBonding > PERth) ∧ ((PER1 < PERth) ∨ (PER2 < PERth))

then
10: do
11: if PER1 ≥ PER2 then
12: W1 −−.
13: W2 ++.
14: else
15: W1 ++.
16: W2 −−.
17: PERBonding in Eq. 4.16
18: while (PERBonding ≥ PERth)

µ1 =
1

ST1

(4.14)

µ2 =
1

ST2

(4.15)

Once this step is completed, Algorithm 2 shows the pseudo-code of the dynamic
VPN Bonding algorithm used in this study. The input of our algorithm are the
service rate (µ1 and µ2) and the packet error rate (PER1 and PER2) parameters
for each connection. The output of the algorithm are the weights (W1 and W2)
to be assigned to each radio link of the aggregated connection. At the begin, the
provisional weights of each connection, W1 and W2, are estimated proportionally
to the values of the service rate, calculated in equations (4.14) and (4.15) accord-
ingly to the procedure illustrated in lines from 2 to 7. Then, the value of PER of
the VPN bonding connection, PERBonding, begins by correlating the estimated
PER of each wireless link and the weight that has been assigned to each con-
nection. In this way, the PER of the aggregated connection can be predicted by
using 4.16):
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PERBonding =
W1

W1 +W2

PER1 +
W2

W1 +W2

PER2 (4.16)

where W1 and W2 are, respectively, the dynamically assigned weights for con-
nection 1 and 2; PER1 and PER2 are, respectively, the Packet Loss Rates for
connections 1 and 2 evaluated by exploiting (4.11).

From line 9 to 18 a condition is inserted; if respected, i.e. the PER of the
aggregated connection is lower than a threshold value PERth (which depends on
the type of application/service), the weights are used to configure the bonding;
otherwise the weight of the connection with the highest probability of error is
lowered until the bonding value falls below the threshold value.

The use of dynamic VPN Bonding, compared to the static one presented in [168],
allows performing the assignment of weights to each connection in a dynamic way.
It was preferred considering that in the system under analysis a compensation of
the packet error rate is provided based on the amount of rain detected (via the
neural network and radio parameters), which can vary from one connection to
another.

In [168], in fact, it was observed that the dynamic VPN Bonding technique
offers superior performance; however, we are more interested in having a dynamic
system that can adapt to the rainfall levels and the quality of detected radio
parameters.

4.5.4 The Testbed Scenario

A typical use in the road sector was assumed for the testbed. Nowadays, motor-
ways are equipped with a communication infrastructure based either on optical
fibre or on modems/routers equipped with mobile radio connectivity. Our sce-
nario is based on these premises and on the fact that mobile modems are often
equipped with dual USIMs to guarantee redundancy of the connection. In ad-
dition, these devices integrate virtual private networking functions in order to
guarantee the confidentiality of communications towards the operations room or
the body managing the infrastructure or the police force. In this scenario, the
introduction of a mechanism of rainfall estimation and Radio Packet Error Rate
compensation based on VPN bonding appears extremely simple and technically
feasible. More specifically, the scenario we envisaged concerns video surveillance
and road monitoring by means of cameras connected to the operations room via
a mobile radio network. The testbed was created with an edge node consisting
of a Raspberry Pi 3 single board PC equipped with a camera and two 4G USB
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Figure 4.31: Testbed overview.

modems. The open-source software MLVPN was used for the application of VPN
Bonding. This software enables the creation of end-to-end encrypted tunnels be-
tween the edge node and the remote Control Room and allows adapting the
run-time of the bonding parameters on the basis of key performance indicators
(latency, bandwidth, packet service rate and packet error rate correlated to the
rainfall classification) and according to the weights evaluated by means of the
proposed VPN-bonding algorithm, described in the previous Section.

The Smart UE was equipped with two SIMs belonging to different mobile oper-
ators, hereinafter referred to as Operator 1 (Op. 1) and Operator 2 (Op. 2), and
placed at a distance of 740 metres from the BS of Op. 1 and 810 metres from the
BS of Op. 2. The two BS are placed at a distance of about 1 Km. The diagram
is shown in Figure 4.31.

In general, therefore, the estimates of rain levels made on each SIM could also
be different because the two SIMs belong to two different operators and hook up
to two different radio base stations, located at different distances and directions
from the Smart UE.

4.5.5 Experimental Results

The aim of this study is to compensate for the packet loss rate when increased
rainfall levels are detected through Smart VPN Bonding techniques. The objective
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is to guarantee the quality of the video stream even when the channel is affected
by rain. The conducted tests compare the quality of the source video and the
received video through the VMAF index [169].

The metric provides an overall performance indicator with values between 0
and 100 as a result of the comparison, where the higher the value returned, the
higher the quality of the received video and, therefore, the end-user experience.
To perform the test, data were collected on a rainy day, for the five precipitation
intensities, in order to collect the performance indices in a video transmission us-
ing singularly Operator 1’s access network, singularly Operator 2’s access network
and, finally, the intelligent VPN bonding algorithm.

The testbed was carried out by holding 5 recording sessions with a time duration
of 10 minutes, for each intensity class. The data are shown in Table 4.9 and
correspond to the average of the values over 10 minutes for each of the five
sessions for each class.

From Table 4.9 it can be seen that the data for PER Op. 1 and PER Op. 2
are different due to the impact of rainfall on each connection relative to different
operators. The video captured by the Raspberry cam (source video) and the
videos received in the server were compared offline using the VMAF tool and
calculating the performance index for 10-minute time windows.

The results are presented in Figure 4.32, which shows the comparison between
the performance obtained using the individual mobile radio connections and the
performance obtained using the smart VPN bonding technique, i.e., the aggrega-

Figure 4.32: Comparison of VMAF index for single connections and Smart VPN
bonding algorithm for different rainfall intensity levels.
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Table 4.9: Comparison of PER and VMAF index for each single operator and
with smart VPN bonding algorithm for different rainfall classes.

Classes Test VMAF with
VPN Bonding

VMAF
Op. 1

VMAF
Op. 2

PER [%]
Op. 1 Op. 2

nr

1 71.29 75.29 70.10 0.00 0.00
2 67.23 69.23 66.20 0.20 0.20
3 59.80 63.80 59.80 0.50 0.50
4 60.21 63.21 59.00 0.70 0.70
5 32.54 35.54 30.00 1.00 1.00

m

1 80.37 43.06 24.40 0.20 1.50
2 75.15 42.94 26.84 0.50 2.00
3 47.74 29.84 20.89 1.00 2.50
4 51.65 34.43 25.82 1.50 3.00
5 38.25 25.50 19.12 2.00 4.00

h

1 71.71 41.37 26.20 0.40 1.50
2 76.75 47.97 33.58 0.80 2.00
3 50.79 33.86 25.39 1.20 2.40
4 42.66 30.47 24.37 1.80 3.00
5 39.20 27.44 21.56 2.00 3.50

s

1 51.15 35.41 27.54 1.00 1.80
2 45.16 30.84 23.68 1.50 2.80
3 47.94 34.24 27.40 1.80 3.00
4 35.45 25.78 20.95 2.50 4.00
5 34.58 26.41 22.32 2.90 4.20

c

1 71.83 59.85 53.87 0.40 0.50
2 65.26 41.95 30.30 0.80 1.80
3 65.25 44.27 33.79 1.00 1.90
4 50.63 37.50 30.94 1.30 2.00
5 46.74 37.39 32.71 1.50 2.00

tion of the two radio connections. The results indicate that the proposed approach
allows to compensate for the PER level as the rainfall level increases, resulting in
an improvement of the radio channel quality. Moreover, as expected, during “no
rain” scenario the PER performance, when exploiting the single operators or the
VPN Bonding algorithm, are comparable.

In general, as seen in the graphs, the intermediate rainfall levels (m, h and s)
have a similar impact on the performance of the radio channels and it is actu-
ally possible to further simplify the rainfall level classification and estimation
technique to only two classes nr, m/h/s/c.

Ultimately, the main factor we want to highlight in our study is that the Smart
VPN bonding system is activated when rain is detected and thus the PER begins
to degrade. From the graph, in fact, when we are in the “no rain” case there is no
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point in activating VPN Bonding. Viceversa, it is automatically activated when
we are in the other classes, which, as already mentioned, can be incorporated into
a single “no rain” class.

4.5.6 Discussion and Conclusion

The approach we propose in this paper is based on the use of a CNN for rainfall
estimation and an intelligent VPN bonding technique for compensating radio
packet errors (PER) when rain is detected. The objective of this study is to
guarantee the quality of service when the channel is heavily degraded by the
effect of rain. This is achieved by utilising new mechanisms for estimating channel
quality degradation based on the analysis of the level of rainfall and its actual
impact on signal quality, using, for example, non-standard CQI parameters such
as CIDHOPS. Taking into account the rainfall estimation approach presented
in the 4.4.5 section, the idea is to model the packet loss through the empirical
relation in (4.11). The reasons for introducing this new technique are many and
will be explained below:

• Several techniques exist in the literature for calculating packet error ratios
directly from channel quality indicators and compensating mechanisms, but
they are all at the base station level. The proposed mechanism allows an
UE terminal, equipped with two or more wireless connections, to assess the
PER, correlating it to the estimated rainfall level, and compensate for it by
activating the adaptive bonding mechanism on the available wireless links.
The proposed device will therefore be able to connect to existing networks
without the need to make changes to the existing infrastructure;

• The rainfall estimation algorithm, once the rainfall condition is detected,
automatically and dynamically activates the QoS compensation technique
through VPN bonding. Exploiting this technique avoids wasting bandwidth
and energy because it is not necessary to periodically send control packets
to evaluate the performance of individual wireless connections: the standard
VPN Bonding technique is based, in fact, on sending trains of data packets
(SLoPS technique) over the network in order to evaluate the performance of
wireless links. Furthermore, the adaptation of the weights in the proposed
Smart VPN Bonding technique occurs dynamically in a time (15 seconds)
typically halved compared to traditional techniques;

• The system and its proposed prototype lend themselves to a dual use: the
first as a meteorological station capable of estimating rainfall levels and

140



activating all the various alerting mechanisms when the radio parameters
indicate that rain is increasing (decreasing quality); the second as a Smart
UE, suitable for road monitoring, security and video surveillance applica-
tions, capable of compensating for the increase in PER, experienced by the
radio transceivers in rainy situations, through the activation and adaptation
of the VPN bonding mechanism.
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Chapter 5

An ML-based automatic analysis of
cardiac pathologies for advanced
telemedicine services

The increase in life expectancy and the consequent increase in the healthcare
demands of the population, with a growing proportion of elderly people and
chronic diseases, have led to a consequent evolution of innovative care models
based on data analysis techniques, sensors and highly advanced diagnostic tools.

Lately, the increasing use of machine learning and deep learning algorithms has
led to the emergence of new techniques for automatic disease monitoring and
recognition in different biomedical area [170, 171]. In particular, many studies
focus on the recognition of heart disease [57–63].

In sub-section 5.1, as described in [57, 172], the technique of recognizing dif-
ferent heart diseases through ECG signals and convolutional neural networks is
illustrated. In particular, two tests are carried out: the first test is about using
only the MIH-BIT Arrithmya dataset as input to the neural network; the second
test is about merging the MIH-BIT Arrithmya and Atrial Fibrillation datasets
into a single database. For both scenarios, the neural network was trained and
tested, providing the results on the classification accuracy of heart disease. In sub-
section 5.2, as described in [60, 173], the technique of recognizing different heart
diseases through PCG signals and convolutional neural networks is illustrated.
Again, two tests are performed: the first is related to the use of a public dataset
consisting of 5 classes of diseases. The network is trained with clean PCG signals
and tested with clean PCG signals, noisy (addition of “office noise”) and real-time
signals. The second test relates to the combining of two public datasets into a
single dataset consisting of 7 disease classes. In this scenario, the network was
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trained and tested with clean and noisy PCG signals (“office noise” and “bubble
noise”) where noise was added to the clean signals with different SNR.

5.1 Automatic Heart Pathologies Recognition Us-

ing ECG Signal

For many years, doctors have been aware that cardiovascular diseases constitute
a class of diseases considered to be one of the main causes of mortality [56]. Car-
diovascular diseases occur in the form of MI. Myocardial infarction, commonly
referred to as “heart attack”, stands for the failure of heart muscles to contract for
a fairly long period of time. Using appropriate treatment within an hour of the
start of the heart attack the mortality risk of the person who suffers from a heart
attack in progress can be reduced. When a heart condition occurs, the first diag-
nostic check consists of an ECG, which therefore is the main diagnostic tool for
CVD. The electrocardiograph detects the electrical activity of the heart during
the test time, which is then represented on a graphic diagram that reflects cycli-
cal electrophysiological events in the cardiac muscle [174]. By conducting careful
analysis of the ECG trace, doctors can diagnose a probable myocardial infarc-
tion. It is important, however, to underline that the sensitivity and specificity of
manual detection of acute myocardial infarction are 91% and 51%, respectively
[175]. Developing a computer-aided system to automatically detect MI would help
the cardiologists make better decisions. Hence, lately various studies have been
conducted on automatic MI detection. Sub-section 5.1.1 describe the electrical
activity of the heart during its operation. An overview of the state of the art on
cardiac disease recognition techniques using ECG signals and neural networks is
given in sub-section 5.1.2. In the sub-sections to follow, two major studies [57,
172] on cardiac disease recognition using one or more ECG datasets and CNN
networks are described. The first study, proposes a low-complexity solution for au-
tomatic heart disease recognition based on the direct application of a CNN-based
classification network to EGC signals, thus bypassing any possible heart disease
ECG signals from the time domain to other domains (e.g. frequency domain as
MFCC, Wavelet, etc.). This paper evaluates the performance of a classifier in the
following three classes: “Normal”, “Atrial Premature Beat” and “Premature Ven-
tricular Contraction”. The second one, extend previous work [57] by increasing
the number of cardiac diseases to be classified. In particular, two public datasets
are used: MIT-BIH Arrhythmia and the MIT-BIH Atrial Fibrillation. Again, the
CNN neural network model, described in Appendix C, and to the ECG signals,
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no pre-processing step is performed. These studies were carried out during the
PhD period.

5.1.1 ECG Signal

From a graphic or numerical point of view, ECG represents the electrical activ-
ity of the heart during its operation. The most important elements of an ECG
waveform, which repeats for each cardiac cycle, are shown in Figure 5.1.

ECG is carried out to provide information about different heart diseases that a
person can suffer from [176], in order to guarantee effective therapy. According to
international conventions, the specific points that are identified in the trace of an
electrocardiogram are labeled with the letters P , Q, R, S, T , and, in particular,
are the following:

• P wave: the first wave that occurs in the ECG cycle, a small deflection that
represents Atrial depolarization or most commonly called “Atrial Contrac-
tion”;

• T wave: represents the depolarization of ventricles or most commonly called
“Ventricular Relaxation”;

• Q, R and S waves: together, these waves form the so-called QRS complex.

Figure 5.1: A typical ECG waveform and its characteristic patterns (P and T
waves, PR and ST segments, PR and QT intervals, as well as the QRS complex).
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The QRS complex represents the contraction of the ventricles or, technically
speaking, the depolarization complex of the ventricles. In particular, the Q
wave represents the depolarization of the interventricular septum, the R
wave reflects the depolarization of the main mass of the ventricles, and the
S wave is the final depolarization of the ventricles at the base of the heart.

Taken together, the P , Q, R, S and T waves make up the so-called PQRST

complex. Cardiologists denote the interval between two PQRST complexes by
the term “R−Rinterval”, which corresponds to a cardiac cycle.

Other parameters, which have been extensively used to make medical diagnoses
using the ECG trace, are:

• PR interval or PQ interval: the PR interval is a stretch formed by the
P wave and the PR segment (rectilinear stretch) that begins with the P

wave, that is, during the first deflection, and ends at the QRS complex. This
interval indicates the time that the depolarization wave takes propagating
from the atrial sinus node along the part of the electrical conduction system
of the heart present on the myocardium;

• ST segment, i.e. the time between the end of QRS complex and the start
of the T wave;

• QT interval, i.e. the time between the beginning of the QRS complex and
the end of the T wave, which is the electrocardiographic manifestation of
ventricular depolarization and repolarization [177].

5.1.2 Related Works

CNN have been utilized in arrhythmia detection, coronary artery disease detec-
tion, beats classification [68, 178, 179]. A deep belief network has been used to
classify signal quality in ECG [180]. Some researchers have implemented an 11
layers CNN to detect MI [181]. The authors have demonstrated the use of a shal-
low CNN only focusing on inferior MI. This network benefits from the use of
varying filter sizes in the same convolution layer which allows it to learn features
from signal regions of varying length. In [182] the authors propose a classification
system of cardiovascular diseases using the MLP network and the CNN network.
In particular, they compare the results obtained by both models, using the same
data set but different classes. There are two classes used in the MLP network:
“Arrhythmias” and “Normal”, while those used for 4 – layer CNN are nine classes.
ECG data used for the training / validation and test dataset was downloaded
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from two public dataset. This study shows low performance both using the MLP
network and the CNN network, i.e. 88.7% and 83.5%., respectively.

There are many other studies that deal with the classification of heart disease
via the ECG signal using deep learning algorithms based on CNN.

In [183] the authors use the RR interval to represent temporal characteristics,
focusing on the symbolic signal metric as the input. This contributes to a more
comprehensive study of the model and ensures 96.4% accuracy in the diagnosis
of arrhythmia among patients, using the MIT-BIH Arrhythmia dataset and the
Multi-Perspective Convolutional Neural Networks (MPCNN).

In [184] the authors develop a deep learning-based approach for multi-label ECG
classification called Multi ECGNet, which can effectively identify patients with
multiple heart diseases at the same time. A network model used is based on the
integration of ResNet, Xception and SE module. Experimental results show that
the performance can achieve an average micro− F1 score of 86.3% in classifying
55 types of arrhythmia. The dataset is retrieved from the 2019 Tianchi Hefei
High-Tech Cup ECG Human-Machine Intelligence Competition, which contains
32,142 cases, 24,106 of which are used as the training set and 8,036 - as the test
set.

In [185] the authors adopt a procedure consisting of a learning phase in which
classification accuracy is improved through a major feature extraction protocol.
A Genetic Algorithm (GA) process is used to aggregate the best combination
of feature extraction and classification. The execution of the proposed strategy
involves feeding the ECG signal into the Deep Neural Network (DNN) model in
which the deep features of each patient are extracted. Subsequently, these features
are entered into a GA that determines their optimal combination. Several classi-
fiers, including k-NN, SVM and multilayer perceptron (MLP), are used to classify
the features, and, finally, the detection of cardiovascular diseases is performed.
The results show that the proposed model achieves average accuracy values of
98% in arrhythmia detection on the MIT-BIH Arrhythmia Dataset.

In [186] a multi-model system is proposed consisting of two different deep learn-
ing bagging models. The first model is based on CNN and LSTM architectures
and takes raw ECG beats as input; the second model is based on the combination
of classical features, i.e. RR and HOS intervals, and the LSTM model. ECG data
is pre-processed (RR and HOS segment extraction is performed) before feeding
it to the network. The input of this model includes 5 consecutive heartbeats, in
which 2 previous and 2 subsequent heartbeats accompany the current heartbeat.
Performance evaluation of the proposed method is performed using 6 metrics:

146



Accuracy [%], F1Score [%], Specificity [%], Sensitivity [%], Positive Predictive
Value [%] and Cohen’s Kappa . The dataset used is the MIT-BIH Arrhythmia
with average accuracy of 95.81%.

In [187] the authors develop a 16-layer CNN-LSTM model to classify CAD,
MI and CHF signals. The lead II ECG signals used in this study are acquired
from healthy subjects and patients from four databases. The signals of 92 normal
subjects, 7 CAD patients, 148 patients with myocardial infarction and 15 pa-
tients with CHF are obtained from PTB Diagnostic ECG Database and Fantasia
Databases, St. Petersburg Institute of Cardiological Technics 12 lead Arrhythmia
Database, PTB Diagnostic ECG Database and BIDMC Congestive Heart Failure
Database, respectively. The classification Accuracy, Specificity, Sensitivity and
Positive Predictive Value are 98.51%, 97.89%, 99.30%, 97.33%, respectively, and
they are obtained with the proposed deep learning model.

In [188] the authors base their research on 15 different classes from the MIT-BIH
arrhythmia dataset. They then propose a new data augmentation technique using
Generative Adversarial Networks (GANs) to restore the balance of the dataset.
Two deep learning approaches are used: an end-to-end approach and a two-stage
hierarchical approach based on deep cCNNs to eliminate manual engineering fea-
tures by combining feature extraction, feature reduction, and classification into
a single learning method. With the end-to end approach, an overall accuracy of
98.30% and precision of 90% are achieved. The hierarchical approach achieved
98% overall accuracy and 93.95% precision.

5.1.3 Database

MIT-BIH Arrhythmia Dataset

One of the most commonly used databases in the literature is the MIT-BIH
Arrhythmia Dataset [189, 190]. It consists of 48 two-channel ambulatory ECG
recordings, each lasting 30 minutes, associated with different clinical conditions
(e.g. ventricular and supraventricular arrhythmia, ventricular tachyarrhythmia,
atrial fibrillation, etc.) and recordings of regular heartbeats. The database con-
tains ECG recordings of 47 subjects: 25 males aged 32 to 89, and 22 females aged
23 to 89. 23 recordings were randomly selected from a set of 4000 24-hour am-
bulatory ECG recordings collected from a mixed population of inpatients (about
60%) and outpatients (about 40%) at Beth Israel Hospital in Boston, the remain-
ing 25 recordings were selected from the same set to include less common but
clinically significant types of arrhythmia that would not be well represented in a
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small random sample. The recordings were digitized at 360 samples per second
per channel with a resolution of 11 bits over a range of ±10mV .

The dataset consists of 3 macro-disease classes: Normal Beat, Atrial Fibrillation
Beat and Premature Ventricular Beat.

These 3 macro-disease classes could split in: Normal sinus rhythm (N), Paced
rhythm (P), Atrial fibrillation (AFIB), Ventricular bigeminy (B) e Sinus brady-
cardia (SBR).

MIT-BIH Atrial Fibrillation Dataset

The MIT-BIH Atrial Fibrillation Database [191] consists of 25 ECG recordings
of subjects with atrial fibrillation, many of which are of the paroxysmal type. 23
out of 25 recordings include two ECG signals (in .dat files); recordings 00735 and
03665 are represented only by the rhythm annotation (.atr) and unverified beat
(.qrs) files. Each recording is 10 hours long, contains 2 ECG signals each sampled
at 250 samples per second with 12-bit resolution in a range of ±10 millivolts.
The original analogue signal, with a bandwidth of approximately 0.1Hz to 40
Hz, is also retrieved from Beth Israel Hospital. The .atr annotations (rhythm
annotations) were produced manually while the .qrsc (beat annotations) were
generated via an automated identification system.

The files contain rhythm annotations related to 5 classes of pathology: AFIB
(atrial fibrillation), AFL (atrial flutter), J (AV junctional rhythm), and N (used
to indicate all other rhythms).

Combined Dataset

In this section we will describe how the two datasets were combined in order
to create a single dataset that can be used for training and testing the neural
network. The two datasets have different characteristics, and the only common
feature is the AFIB (atrial fibrillation) class.

The first difference lies in the sampling rate (fs): the sequences in the MIT-BIH
Arrhythmia Dataset have the fs of 360 samples per second, whereas the ECG
sequences in the MIT-BIH Atrial Fibrillation Dataset have the fs of 250 samples
per second. To combine the data, the original sequences were re-sampled at a
frequency of fs = 1kHz.

Regarding disease classes, the only class the two datasets have in common is the
AFIB. In order to combine the two datasets uniformly, the authors have decided to
remove the N class related to MIT-BIH Atrial Fibrillation (a class that includes
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Figure 5.2: ECG signal for each type of diseases: (a) Normal Sinus Rhythm; (b)
Paced Rhythm; (c) Atrial Fibrillation; (d) Ventricular bigemy; (e) Sinus brady-
cardia; (f) Atrial flutter; (g) Junctional rhythm.

unspecified rhythms) and the AFIB class related to MIT-BIH Arrhythmia (as it
was already present in the other, more comprehensive dataset).

Based on these choices, the classes resulting from the combination of the two
datasets are as follows:

• N : Normal sinus rhythm;

• P : Paced rhythm;

• AFIB : Atrial Fibrillation

• B : Ventricular bigemy;

• SBR: Sinus bradycardia;

• AFL: Atrial flutter;

• J : Junctional rhythm.

Figure 5.2 shows an example of two-second ECG recordings for each type of
classified cardiac pathology.

5.1.4 Proposed Method

Method using only MIT-BIH Arrhythmia Dataset

Once the two public datasets were integrated and the classes of pathologies to be
recognized were defined it possible train and test the neural network (described
in Appendix C). NN input consists of 30-second segments where every second of
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Figure 5.3: The distribution of ECG segments used for learning (70%) and testing
(30%). 30 % of the learning dataset was used for the validation of the network.

ECG recording is equivalent to 360 samples, for a total of 10800 samples. So, the
dataset presents the following classes:

• “Normal” class, containing 1421 ECG segments;

• “Premature Ventricular Contraction” class, containing 335 ECG segments;

• “Atrial Premature Beat” class, containing 133 ECG segments;

This dataset was subsequently divided into two different datasets, see Figure
5.3.

• Training/Validation set, consisting of 995 segments for the “Normal” class,
234 segments for the “Premature Ventricular Contraction” class and 93 seg-
ments for the “Atrial Premature Beat” class. 70% of this set was used for
the training and the other 30% was used for the testing;

• Testing set, consisting of 426 segments for the “Normal” class, 101 segments
for the “Premature Ventricular Contraction” class and 40 segments for the
“Atrial Premature Beat” class.

At first, the network was trained by entering the data relating to the “Training
set” as input, then it was validated using the “Validation set”, in order to evaluate
the performance of the neural network (the percentage of loss and accuracy).
Finally, the “Testing set” was applied to validate and verify, through the accuracy
estimate, the robustness of the neural network to data external to the training /
validation set.
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Method using MIT-BIH Arrhythmia and Atrial Fibrillation Dataset

Once the two public datasets are combined and the classes of pathologies to be
recognized are defined, each individual ECG recording (of fairly long duration) is
split up into chunks of 2-second segments for each class. By doing so, it is possible
to extend the amount of recordings constituting each class.

As a result of the resampling process, the neural network input consists of 2-
second segments where every second of an ECG recording is equivalent to 2000
samples.

The dataset presents the following classes:

• N class, containing 31570 ECG segments;

• P class, containing 3608 ECG segments;

• B class, containing 1804 ECG segments;

• SBR class, containing 902 ECG segments;

• AFIB class, containing 150157 ECG segments;

• AFL class, containing 2932 ECG segments;

• J class, containing 164 ECG segments.

This dataset was subsequently divided into two different datasets:

• Training/Validation set, consisting of 22099 segments for the N class, 2525
segments for the P class, 1262 segments for the B class, 631 segments for
the SBR class, 105109 for AFIB class, 2052 for AFL class and 114 for J
class. 70% of this set was used for the training and the other 30% was used
for the testing;

• Testing set, consisting of 9471 segments for the N class, 1082 segments for
the P class, 541 segments for the B class, 270 segments for the SBR class,
45047 for AFIB class, 879 for AFL class and 49 for J class.

At first, the network was trained by entering the data relating to the “Train-
ing set” as input, then it was validated using the “Validation set”, in order to
evaluate the performance of the neural network (the percentage of loss and accu-
racy). Finally, the “Testing set” was applied to validate and verify, through the
accuracy estimate, the robustness of the neural network to data external to the
training/validation set.
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5.1.5 Experimental Results

Result using only MIT-BIH Arrhythmia Dataset

In this sub-section, the results of training and validation of the neural network
are presented and discussed. Figures 5.4a and Figure 5.4b represent the progress
of the training and validation loss and the progress of the training and validation
accuracy, respectively. As the graphs show, after 100 epochs training and vali-
dation losses stabilize at a value close to zero (Figure 5.4a), while training and
validation accuracy stabilizes at 100%. Such data are very encouraging, as it is
understood that there is a good percentage of accuracy in the classification of the
three classes described above.

In order to evaluate the performance of the CNN network with ECG sequences
external to the training dataset, the accuracy obtained with the “Testing set” is
assessed. Figure 5.5 shows the relative confusion matrix. The matrix highlights
an average classification accuracy level of 98.33%. The results obtained in terms
of the statistical parameters described in Appendix F, are shown in Table 5.1.

K-fold [192] cross validation was used in this study, which involves randomly
dividing the training dataset into k parts without reintegration: the K − 1 parts
are used for training the model and a part is used for testing. This procedure
is repeated k times so as to obtain k models and performance estimates. Sub-
sequently, the average performance of the models is calculated on the basis of
the different independent subdivisions to obtain an estimate of the performance
that is less sensitive to the partitioning of the training data. Since k-fold cross
validation is a resampling without reintegration technique, the advantage of this
approach is that each sample point will be part of the training and test datasets

(a) (b)

Figure 5.4: Training and validation phase: (a) Loss function trend. (b) Accuracy
function trend.
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Figure 5.5: Confusion matrix for “Testing set”.

only once, which provides a lower variance estimate of the template performance.
For this study, the training dataset is divided into ten parts, K = 10, and during
the ten iterations, nine parts are used for training and one part is used as a test
set for model evaluation. In addition, the estimated performance (for example,
the accuracy of the classification) of each part is then used to calculate the av-
erage estimated performance of the model. Figure 5.6 depicts the concept of the
k-fold cross validation technique. The average accuracy and standard deviation
for the model used in this study is 96.8± 1.2%.

Table 5.1: The table reports the overall values of accuracy TPR, TNR, TPR,
TDR and F1Score.

α Class TPR [%] TNR [%] FPR [%] FDR [%] F1Score [%]
1 Normal 99.0 97.1 2.9 1 98.0

2
Atrial

Premature
Beat

100 99.0 1.0 0 99.5

3
Premature
Ventricular
Contraction

96.0 98.96 1.04 4 97.5

Mean
Accuracy 98.33 % 98.33 98.35 1.65 1.66 98.33
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Figure 5.6: K-fold cross-validation method with subdivision of the training set
into k = 10 parts.

Result using MIT-BIH Arrhythmia and Atrial Fibrillation Dataset

Figure 5.7a and Figure 5.7b show the trend of loss function and accuracy related
to the training of the neural network, respectively. In both graphs, the blue curve
refers to the training set, while the orange curve refers to the validation set. It can
be observed that along with the increase in the number of epochs, i.e. the number
of complete training cycles performed, there is a reduction in loss function and
an increase in accuracy, which stabilize, respectively, after about 20 epochs (loss
function) and 40 epochs (accuracy).

The testing phase of the network yields excellent results. The accuracy turns
out to be quite high, about 93.3% considering 2-second chunks.

(a) (b)

Figure 5.7: Training and validation phase: (a) Loss function trend. (b) Accuracy
function trend.
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Figure 5.8: Testing phase: Confusion matrix.

Figure 5.9: Testing phase: Accuracy as the analysis window changes.

The confusion matrix of the test set (Figure 5.8), denotes very good discrimina-
tion ability of the network among the various classes except for the J class. Most
probably, this is due to the lack of data present in the class.

By applying the recurrence filter in post-processing, a final accuracy of about
100 percent is achieved after about 38 seconds (Figure 5.9). The use of this filter
solves the problem of the J class.

5.1.6 Discussion and Conclusion

Method with only MIT-BIH Arrhythmia Dataset

Table 5.2 shows a comparison between our method and other methods in terms
of feature extraction (FE), model used, system’s accuracy, and the statistical
classification accuracy.
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Hereinafter the differences between this work and the state of the art will be
discussed. In [193, 194] the authors use the extraction of decision tree (DT) and
R-Peak (RP) as features and do not apply convolutional neural networks (CNN),
but rather the Discrete Wavelet Transformation (DWT) and the Feed-Forward
Neural Network (FFNN). The authors claim an average accuracy of 96.56% and
87.66% respectively, while in our study the average accuracy is equal to 98.1%.
This result is higher than the study proposed in [193, 194].

Compared to the approaches proposed in [181, 182, 193–196], our method has
higher classification performances. As far as the studies proposed in [197, 198] are
concerned, it is evident that they have quite comparable performances, but they
use more hidden layers than our study, with a consequent increase in computation
costs. In addition, they do a preprocessing of data using wavelet transformation,
which implies an additional computational cost. Also from the point of view of the
structure of the neural network, in [197], in particular, 5 layers (two convolution
layers, two down sampling layers and one full connection layer) plus the output
layer formed by Softmax are used for classification, however, we use another
structure (previously described), which is more robust to the “vanishing gradients”
phenomenon.

In addition, to ensure that the model is correct, we apply the K-fold technique
(previously described) for cross validation, obtaining an average accuracy of 96.8%
and standard deviation of ±1.2%.

Usually, the processing unit implements the automatic disease classification al-
gorithm described above, showing the result of the diagnosis on the display.

This paper proposed an automated heart disease recognition technique based on
recent and innovative CNN networks. The proposed technique had high accuracy
and had low complexity of implementation. This approach harnessed the potential
of deep learning to capture the typical characteristics of given heart disease in
the ECG signal domain.

Using the “Testing set”, the proposed method yielded the following results:
98.33% mean accuracy; 98.33% sensitivity; 98.35% specificity; 1.65% false positive
ratio; 1.66% false negative ratio; 98.33% F1Score.

Method with MIT-BIH Arrhythmia and Atrial Fibrillation Dataset

The results obtained show that by applying the post-processing filter 100% ac-
curacy performance can be obtained on all classes after about 38 seconds. This
result exceeds even the performance of the state of the art, in particular, the
research using the MIT-BIH Arrhythmia dataset [183, 185–187].
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Table 5.2: ECG Classification - Comparison between the proposed method and
those previously studied.

Method FE Model A [%] TPR [%] TNR [%] FPR [%] FDR [%]
[193] DT DWT 96.56 90.87 98.45 9.13 1.55
[194] RP FFNN 87.66 94.04 76.21 5.96 23.79

[181] RP 11– Layer
CNN 95.22 95,49 94.19 - -

[195] - PNN 96.53 93.1 100 - -

[182]∗,+ - MLP
5 – Layer CNN 88.7/ 83.5 - - - -

[196] - 4 – Layer
CNN 92.7 - - - -

[197] Wavelet
transform

6 – Layer
CNN 97.5 - - - -

[198] Wavelet
transform

10 – Layer
CNN 99.8 99.5 - - -

[57] - 5 – Layer
CNN 98.33 98.33 98.35 1.65 1.66

* Different dataset for training/validation and testing

+ Use more cardiovascular diseases classes

Moreover, this study has as an added value of not being limited to the use of
only one dataset, but two datasets with similar characteristics are incorporated
and aggregated together in order to form a unique set of data with multiple
classes to be recognized. In addition, ECG data were fed to the network without
performing any kind of pre-processing.

5.2 Automatic Heart Pathologies Recognition Us-

ing PCG Signal

Sub-section 5.2.1 describes the acoustic signal trend of the heart during its op-
eration. An overview of the state of the art on cardiac disease recognition tech-
niques using PCG signals and neural networks is given in sub-section 5.2.2. In
sub-sections to follow, two major studies [60, 173] on cardiac disease recognition
using one or more PCG datasets and CNN networks are described. These studies
were carried out during the PhD period. In particular, the first study propose
an automated low-complexity solution for heart disease recognition based on the
direct application of a CNN classification network to raw data of a PCG signals
(5 classes), without the need for domain transformation from time to frequency
(e.g. MFCC, Wavelet, etc.). Further, this first approach, highlights the perfor-
mance’s dependence on office noise (only in testing phase). The second study is
based on a classification algorithm that allows classifying the PCG signal in 7
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classes, characterized by the presence of ambient noise (e.g. hospitals, etc.). The
database used in this study is a combination of two open access datasets present
in the literature. This study further extends the research proposed in [60] by using
only the dataset splitting mode so as to obtain recordings totally unknown to the
network in the testing dataset. The novelty it offers, in addition to the inclusion
of raw PCG data directly as input to the CNN neural network, is a simulation of
ambient noise (office and babble noise) within the clean PCG sequences.

5.2.1 Heart Sound Features

Sounds from the cardiac system are generated by the opening and closing of heart
valves [56]. In fact, during the closure event, the simultaneous vibration of the
valve, the adjacent heart structures and the surrounding blood rapidly propa-
gates through the chest with an acoustic wave. With the help of a stethoscope
we are able to hear the heart tones, while the phonocardiographs (and electro-
cardiographs) allow for their graphic representation.

The PCG is a graph that represents the acoustic signal produced by the heart
system over time. Figure 5.10 shows some examples of normal and abnormal PCG
sequences. They are not always distinguishable by the human ear, but they are
always detectable by phonocardiogram.

Acoustically, the tones that characterize a normal heartbeat are defined as S1
and S2. The first is generated by the closure of the atrioventricular (AV) valves
and is characterized as a quiet, prolonged tone, lasting approximately 0.15 sec-
onds. The second is determined by the closure of the semilunar valves and is
characterized by a higher tone and duration of 0.12 seconds. Between S2 and S1
there is a long pause, representative of diastole, in which two other tones, S3 and
S4, can be perceived. The third tone is dull, weak and short, generated by the
vibration due to the rapid filling of the ventricles at the beginning of diastole; it
is often audible when the ventricle fails to empty completely with a consequent
increase in the ventricular end-diastolic volume. The fourth tone is audible during
atrial systole due to the contraction of the atria and the vibration of the ventric-
ular walls given by the blood received; S4 is often associated with swirling blood
flow. The S1 and S2 components are in the range 20 - 200 Hz, while S3 and S4
in the frequency range between 15 - 65 Hz.

The S3 and S4 tones [56],[64] are abnormal sounds, which include heart mur-
murs, adventitious sounds, and galloping rhythms. Murmurs are intra-cardiac
events observed in the frequency range between 20 - 600 Hz [56] and can be
broadly classified according to their intensity over time (i.e. crescendo, decrescendo
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Figure 5.10: Acoustic representation of the normal and abnormal PCG signal.

or crescendo-decrescendo) and position in the cardiac cycle (early, medium or late
or continuous.

5.2.2 Related Works

This section will provide an overview of the studies conducted over the past
10 years by multiple researchers to create cardiovascular disease detection and
classification systems using PCG heart sound.

Many authors have proposed classification systems with two or more classes
for the detection of heart disease using methods based on Multiclass Composite
Classifier [66], Support Vector Machine (SVM), Deep Neural Network (DNN),
K-Nearest Keighbors algorithm (KNN), Naïve Byes [199–203] and Feedforward
Neural Network (FNN) and Convolutional Neural Network (CNN) [60],[204–209].

An open access dataset containing 1000 PCG sequences, approximately two sec-
onds long, is proposed by the authors in [199]. The dataset is divided into a class
containing normal beats and four different classes of cardiac pathologies (Mitral
Regurgitation, Mitral Stenosis, Aortic Regurgitation and Mitral Valve Prolapse),
each containing 200 PCG recordings. The method proposed by the authors for
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the recognition of heart sound in the 5 different classes consists in the appli-
cation of three different algorithms for feature extraction: MFCC; DWT; MFCC
and DWT. The performance obtained by applying the extracted parameters from
the three different extraction methods to the three different machine learning al-
gorithms for classification varies from 80.2% to 97.9%. In [66] the authors use
Chirplet Transformation (CT) on the PCG signal to conduct an analysis based
on the Time-Frequency (TF) domain. The database referred to in the study is
the one proposed in [199], where only the “Mitral Valve Prolapse” class is ne-
glected. PCG sequences are split into sub-sequences of approximately 0.7 seconds
duration to which CT is, subsequently, applied. The matrix containing the TF pa-
rameters obtained from CT are used for the classification of cardiac pathologies
(Mitral Regurgitation, Mitral Stenosis, Aortic Regurgitation) or normal beats.
Entropy and local energy extraction functions are applied to the TF matrices,
which are obtained from CT on each 0.7-second PCG segment. The data obtained
for each matrix are entered as input to the Multiclass Composite Classifier net-
work. With this approach, the authors have achieved classification performance
between 96.2% and 99.6% with a low complex classifier.

Some authors conduct studies on PCG signal classification into only two classes,
normal and abnormal, using different deep learning algorithms (SVM, KNN, and
Naïve Byes) and non-open access datasets. In [200] twelve statistical parameters
are used to extract features of PCG signals, the dataset is randomly split to
create the raining and testing dataset. The accuracy of the results obtained by
applying the four classifiers range from 94.44% to 97.78%, with an equal error rate
between 5 and 2.22. In [201], PCG sequences are divided into sub-sequences of
duration between 10 and 25 milliseconds. For each sub-sequence, the extraction of
signal features is performed by time and frequency domain analysis and MFCC
parameters. The obtained parameters are given as input to the two different
neural network models. The accuracy, depending on the trained and tested neural
network model, varies between 96% and 100%.

Further studies [202–205] apply convolutional neural networks to classify PCG
signals into “normal” and “abnormal” class and use different feature extraction
techniques. The PCG signals used in the papers are extracted from the same
public database, PhysioNet/CinC Challenge 2016. The achieved performance is
quite significant and ranges between 63% and 97.05%.

In [206], the authors propose a 5-class classification system using convolutional
neural networks and the dataset from [199]. In particular, data augmentation
technique is applied to expand the dataset from 1000 to 2000 PCG recordings
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and they do not use any kind of feature extraction technique. Classification is
performed on two-second PCG segments and the dataset is randomly split into
training and testing. The achieved accuracy performance is 98.6%.

The studies illustrated so far use different databases, both public and private,
but they all apply the partitioning into training and testing datasets in a random
manner. This very often leads to different recordings that could belong to the
same patient in both datasets. This situation could lead to a false estimate of the
percentage of accuracy obtained at the time of classification, since the heartbeat
is related to the person. The testing dataset must, instead, have segments totally
unknown to the neural network in order to correctly estimate the robustness and
accuracy of the classification system.

5.2.3 Proposed Method

This section will describe the proposed method for the identification and classi-
fication of cardiac diseases affected by ambient noise. In particular, this section
will outline the pre-processing, matching and decision techniques for processing
and classifying the data.

During this phase, the PCG input signal is analyzed according to a raw wave-
form block analysis lasting Win = 2 seconds which, once re-sampled at 22,050
Hz and normalized in power to -20 dBFS, are fed to the CNN neural network
(Appendix C). The reference power value chosen for normalization is set by cal-
culating the average power value of all the training sequences for each class and
computing a global average of all the classes.

The matching phase is based on the convolutional neural network described in
section V and suitably trained with the training database. Every Win seconds the
CNN network directly receives a raw data vector that contains the amplitudes of
the PCG signal over time. The CNN decides which of the NC classes Ci the input
vector belongs to.

In order to make the method more robust and increase accuracy, even in the
presence of any ambient noises picked up by the electronic stethoscope, in the
decision block, a filter called “recurrence filter” allows to improve performance
by analyzing No successive decisions of the CNN network, with the purpose of
returning class Cout(K) as final output at k -th iteration. More specifically, the
filter acts on a circular vector C⃗K , which always contains the latest No decisions,
after a transition phase lasting Win(No − 1) seconds.

The most common among the classes in buffer C⃗K is selected according to the
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criterion in 5.1:
Cout(K) = ArgMax[Hist(C⃗K , NC)] (5.1)

where the Hist function creates a histogram bar chart of the elements in the
vector C⃗K sorted into NC equally spaced bins and the ArgMax function returns
the Ci index of the recurrence maximum value along the vector C⃗K . When in C⃗K

two or more classes have the same maximum number of repetitions, Cout(K) is
the last Ci class provided by the matching block. The method then makes the first
decision on the type of heart condition after K = No iterations, when the circular
buffer fills up, i.e. after a time equal to the analysis window lasting WA = WinNo

seconds.

Using only G-Y Son et al. Public Dataset

The public database [199] used in this paper contains Nc = 5 different classes Ci

of PCG recordings, each of Win = 2 seconds in duration and sampled at a fre-
quency of 8000 Hz, with the following numbers: Normal (N): 200 recordings; Aor-
tic stenosis (AS): 200 recordings; Mitral regurgitation (MR): 184 recordings; Mi-
tral stenosis (MS): 186 recordings; Mitral valve prolapses (MVP): 181 recordings.
Each class was divided into a learning database for 70% and a testing database
for the remaining 30% following two different criteria: (a) separating in sequen-
tial order a first group equal to 70% of the records from a second group equal
to the remaining 30%. In this case, testing not only contains different recordings
from learning, but the subjects are, also, different between testing and learning;
(b) obtaining the testing database by choosing randomly, for each class, the se-
quences from the complete database of that class until reaching a number equal
to 30%. This method does not offer any guarantee that in testing there are no
registrations belonging to the same subject, although with other registrations,
even in learning the same issue persists. The method (a), although it offers lower
performance, as we will see from the results, seems to us the most correct one
given the real functioning of an automatic cardiac pathology identification system
occurs with subjects who, obviously, did not take part in the design of the system
and took the test for the first time.

In order to verify the robustness against environmental noises, an additional
type (a) testing databases were created digitally adding ambient noise sequences
typical of office environments [209], normalized to -40 and -35 decibels relative to
full scale (dBFS) [210], thus obtaining respectively a SNR of 20 dB and 15 dB.

The learning set is in turn divided into a 70% training set and a 30% validation
set. The training set is used to train the neural network, while the validation set
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is used to validate it, calculating the accuracy and loss as the epochs increase.

G-Y Son et al. Public and Physionet Challenge 2016 - Combined Dataset

The database of PCG recordings used for convolutional neural network training
and testing is given by the union of two databases publicly available and widely
used in the literature: (a) the dataset presented by Y. G-Y Son et al. in [199]
and (b) Physionet Challenge 2016 [207, 208]. In particular, the first dataset was
considered in its entirety and includes the Normal (N) class and the following
4 cardiac pathologies: Aortic Stenosis (AS), Mitral Regurgitation (MR), Mitral
Stenosis (MS) and Miltral Valve Prolapse (MVP) to which the Atrial Fibrilla-
tion (AF) and Tachycardia (T) classes appropriately extracted from the second
dataset were added. To standardize the characteristics of the two datasets, all
sequences were resampled at 22050 Hz. Moreover, taking into account the op-
portunity to have normalized sequences at the system input, the PCG signal has
been normalized to a fixed power value. This power value is set by calculating
the average power value of all the sequences for each class and taking a global
average of all the classes. This value is expressed in decibels relative to full scale
(dBFS) and in the present study it is -20 dBFS.

In order to strengthen the proposed classification system, “office” type ambient
noise [209] was digitally added to the non-noisy PCG sequences, normalized in
power to -30, -40, -50 dBFS in order to have a SNR of 10, 15, 20 and 30 dB,
respectively. Once the noisy PCG sequences with the various SNR values were
obtained, a further normalization to -20 dBFS in power was done. In order to
evaluate the effect of different ambient noise, an equivalent PCG database was
also made by adding “babble” noise [211] with SNRs of 25 and 30 dB. A total of 6
databases were obtained one of which was named “clean”, i.e. without the addition
of noise, 3 with “office” noise and two with “babble” noise in the background.

The databases have been subdivided in a part equal to 70% for the Learning
(L-DB) and a remaining part equal to 30% for the Testing (T-DB), making so
that in the two datasets there were no sequences recorded by the same subject,
so as to obtain more realistic performances, when the network is tested with a
testing dataset completely unknown to it.

The Learning database without noise was denoted L_C (Clean Learning Dataset),
while, by adding to this database examples of the Learning database with “office”
noise in the breakdown 70% Clean, 10% SNR 10 dB, 10% SNR 20 dB, 10% SNR
30 dB a second Learning database with both clean and noisy sequences named
L_N (Noisy Learning DataBase) was obtained.
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Table 5.3: PCG dataset structure.

Class L_C L_N DB-T
Normal 140 182 60

Aortic Stenosis 140 182 60
Mitral Regurgitation 124 163 60

Mitral Stenosis 127 166 59
Mitral Valve Prolapse 131 173 50

Atrial Fibrillation 56 74 28
Tachycardia 56 74 28

Finally, by subdividing the PCG sequences into several sub-sequences of Win
duration equal to two seconds, the numerical values for each class of pathology
were obtained (Table 5.3). Table 5.3 shows the number of 2-second PCG samples
related to each class in the different datasets.

5.2.4 Experimental Results

Results Using only G-Y Son et al. Public Dataset

In this section, the results of training and subsequent testing of the neural network
are presented and discussed.

In order to evaluate the performance of the CNN network with PCG sequences
external to the training dataset, the accuracy obtained with the “Testing set” is
assessed. Figure 5.11 shows the relative confusion matrix, in the case of the testing
set obtained according to criterion (a). Considering that the testing database
contains sequences of people totally unknown to the network, the CNN network
classifies 2-second long PCG recordings, guaranteeing an average classification
accuracy level of 89.6%. The performance obtained with a testing set generated
according to criterion (b), provides a better accuracy of about 7 percentage points,
but does not properly represent the real application case in which testing dataset
certainly contains recordings belonging to people other than learning dataset.

By applying the recurrence filter it is possible to obtain 100% accuracy in both
types of testing set (a) and (b), as illustrated in Figure 5.12. When testing accord-
ing to criterion (a), the recurrence filter in the post-processing phase guarantees
100% performance, with an analysis window of at least 34 seconds (blue line),
compared to 6 seconds (red line) when using a testing set (b). The presence of
PCG recordings, also different for the subjects, leads to an initial reduction in
performance of about 7 percentage points, a difference that with the increase
of the analysis window gradually becomes zero after 34 seconds, a time abso-
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Figure 5.11: Confusion matrix - G-Y Son et al. public dataset.

Figure 5.12: Accuracy as the analysis window changes - G-Y Son et al. public
dataset.

lutely compatible with the application context. Finally, as regards the robustness
against environmental noise, more specifically office noise [209], Figure 5.12 shows
that, for SNR > 20dB, the impact of noise on accuracy is negligible (green line),
while for SNR = 15dB there is a reduction of 11%, which, however, gradually
decreases as the observation window increases (orange line). In general, it is pos-
sible to increase the robustness to ambient noise if the auscultation time of the
cardiac signal is increased.

In order to verify the behavior of the system with real-time testing, Normal,
Mitral Regurgitation and Mitral Valve Prolapse PCG sequences (Figure 5.13)
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Figure 5.13: Normal and abnormal real-time heart sounds.

were recorded with a Thinklabs Rhythm Digital Electronic Stethoscope model in a
hospital setting. The results in terms of accuracy are shown in Figure 5.12 (dashed
lines). The accuracy is low with reduced analysis window values, it reaches 100%
for analysis window values between 10 and 24 seconds, i.e. values compatible with
the application context.

Results with G-Y Son et al. Public and Physionet Challenge 2016 -
Combined Dataset

This section will present the results obtained in the testing phase of the pro-
posed method. The first part of the results concerns the results obtained with
the CNN neural network training based on the L_C dataset, while the second
part concerns the results obtained with the mixed L_N dataset. In both cases,
the testing datasets used for the performance evaluations are represented by the
“clean” case (T-C), “office” with SNR=15 dB (T_O-N SNR 15dB), and “bab-
ble” with SNR=25dB (T_B-N SNR 25dB) and with SNR=30 dB (T_B-N SNR
30dB).

Figure 5.14 and Figure 5.15 represent, respectively, the confusion matrix in the
case of testing “clean” sequences fed to the CNN trained with the L_C dataset and
with the L_N dataset. It can be observed from the comparison of the two figures
that the degree of misclassification is very similar and this is due to the right
compromise imposed on the L_N between clean and noisy training sequences,
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Figure 5.14: Confusion matrix with L_C and T-C - G-Y Son et al. and Physionet
challenge 2016 dataset.

Figure 5.15: Confusion matrix with L_N and T-C - G-Y Son et al. and Physionet
challenge 2016 dataset.

obtained respectively with the percentages of 70% (clean) and 30% (noisy).
The graphs in Figure 5.16 show the accuracy as the WA analysis window varies.

Specifically, the solid curves are pertinent to the clean learning dataset (L_C),
while the dashed curves are pertinent to the second noisy learning dataset (L_N).

In general, it must be noted that for both trainings the level of accuracy ranges
between 80% and 100%, depending on the width of the analysis window.

The tests carried out on the network trained with the mixed learning database
(L_N) result in better performance than the tests obtained with the training
given by the clean dataset (L_C). In fact, it was observed that apart from the
curve relative to testing “clean” sequences for which we have however comparable
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Figure 5.16: Accuracy as WA analysis window changes - G-Y Son et al. and
Physionet challenge 2016 dataset.

performances, all the dashed curves show superior values than the respective con-
tinuous curves. Training with examples of noisy PCG sequences allows ensuring
greater robustness to ambient noise obtaining an average increase in accuracy of
5%.

From the graph we can see that in order to obtain 100% accuracy we need a
Wa analysis window of about 42 seconds in the clean case (dashed red line) and
46 seconds in the case of “office” noise up to 15 dB SNR (dashed green line).
The system is not only robust to the same type of noise used for the learning
phase of the CNN network but, as can be seen from the figure (blue and purple
lines), it is also robust to other types of noise such as “babble” noise that could
be present during an automatic heart disease recognition test through the use of
an electronic stethoscope.

Table 5.4: Accuracy, TPR, TNR, FPR and F1Score comparison values as the
Learning/Testing dataset and WA change.

DB-L Evaluation’s Metrics [%] DB-T
T_C T_O-N SNR 15dB T_B-N SNR 25dB T_B-N SNR 30dB

L_C

A [84.6, 100.0] [79.0, 97.4] [72.0, 80.3] [79.4, 94.6]
TPR [86.8, 100.0] [83.3, 97.4] [72.0, 80.3] [81.5, 94.6]
TNR [86.7, 100.0] [84.0, 97.1] [74.0, 81.0] [82.2, 94.0]
FPR [0, 13.3] [2.9, 16.0] [19.0, 26.0] [6.0, 17.8]

F1 Score [83.8, 100.0] [78.0, 97.4] [68.5, 80.3] [79.2, 94.6]

L_N

A [85.4, 100.0] [84.9, 100.0] [81.3, 95.4] [84.3, 99.7]
TPR [86.5, 100.0] [87.1, 100.0] [81.3, 95.4] [84.3, 99.7]
TNR [83.5, 100.0] [86.8, 100.0] [81.6, 94.8] [84.1, 99.7]
FPR [0, 16.6] [0, 13.2] [5.2, 18.4] [0.3, 15.9]

F1 Score [85.9, 100.0] [85.2, 100.0] [80.7, 95.4] [84.3, 99.7]
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Figure 5.17: Acoustic representation of PCG signals in the presence of office noise
with SNR equal to 15 dB.

In order to evaluate the performance of the system trained with the two datasets,
Table 5.4 introduces the metrics of evaluation of the confusion matrix related to
each of the tests performed starting from an analysis window of 2 seconds up to
54 seconds (details in Appendix F).

In general, it is possible to obtain 100% accuracy in the presence of ambient
noise by increasing the analysis window to values that generally do not exceed 60
seconds, i.e. time compatible with an application context such as telemedicine.
Figure 5.17 outlines a graphical feedback in the case of office noise with SNR
equal to 15 dB.

5.2.5 Discussion and Conclusion

Using only G-Y Son et al. Public Dataset

Table 5.5 shows the comparisons with the two recent scientific publications [66,
199] based on the same database. All the performance indices and the relative per-
formances in terms of accuracy, F1Score, sensitivity and specificity [199], clearly
highlight the superior performance of the proposed method despite using raw
data in input to the CNN network which, thereby, succeeds in perfectly grasping
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Table 5.5: Method and performance comparison PCG 5 classes.

Authors Method NC
Analysis

Window [s]
Feature

Extraction
Testing
Dataset Accuracy [%] Sensitivity [%] Specificity [%] F1Score [%]

[199]
SVM
DNN
KNN

5 2
MFCC
DWT

MFCC + DWT

(b) Different
records (20 %) [80.2, 97.9] [82.0, 98.2] [93.5, 99.4] [86.0, 99.7]

[66]
Multiclass
composite
classifier

4 0.7
Chirplet Transf
Time-frequency

analysis

(b) Different
records (30%) [96.2, 99.6] [91.7, 100] [97.8, 100] [94.9, 100]

[60] Raw Data
CNN-based
classifier

5 [2, 6] -
(b) Different
records (30%) [96.6, 100] [96.8, 100] [96.8, 100] [96.9, 100]

[2, 34]
(a) Different

subjects/
records (30%)

[89.6, 100] [90.8, 100] [89.6, 100] [89.9, 100]

Table 5.6: Method and performance comparison PCG 7 classes.

Authors Method Nc Analysis
Window [s]

Feature
Extraction

Testing
Dataset

Noisy
Rec Accuracy [%]

[199]
SVM
DNN
KNN

5 2
MFCC
DWT

MFCC + DWT

(b) Different
records (20 %) No [80.2, 97.9]

[66]
Multiclass
composite
classifier

4 0.7
Chirplet Transf
Time-frequency

analysis

(b) Different
records (30%) No [96.2, 99.6]

[208] CNN 5 2 - G-Y Son et al. DB
+ data Augmentation No 99

[60] Raw Data
CNN-based
classifier

5 [2, 6] -
Different

records (30%) No [96.6, 100]

[2, 34]
Different
subjects/

records (30%)
[89.6, 100]

[173] Raw Data
CNN-based
Classifier

7 [2, 42] -

Different
subjects/

records (30%)
No [84, 100]

[2, 42]
Different
subject/

records (30%)
Yes [72, 85]

the differences between the characteristics of the 5 classes taken into considera-
tion in the time domain. This study proposes an automated technique for cardiac
disease diagnosis based on the PCG audio signal obtained from an electronic
stethoscope. The technique does not use domain transforms, thus keeping com-
putational complexity to a minimum by directly processing the raw data recorded
by the stethoscope. Thanks to the intrinsic ability of CNN networks to capture
the differences in the signals in the various classes and to the recurrence filter pro-
posed, the new heart sound disease recognition method allows to achieve 100%
accuracy in less than 34 seconds, even in the presence of ambient office noise.
That is compatible with the application contexts to which the proposed method
is directed.
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G-Y Son et al. Public and Physionet Challenge 2016 - Combined Dataset

Table 5.6 compares recent scientific publications [66],[199], from the perspective
of methods and results, that are based on the same database.

Our method stands out from its predecessors by three factors:

1. Increased number of classes of heart disease for classification;

2. Use of testing PCG signals, totally unknown to the neural network. So, PCG
signals in the testing dataset are related to different people and recordings;

3. Addition of two different types of ambient noise (office noise and babble),
with different SNR, in both the learning and testing dataset sequences. This
makes the system much more robust to interference.

From the point of view of classification performance, the proposed method offers
excellent results regardless of the type of learning and testing dataset used.
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Chapter 6

Conclusion

For the development of more sustainable and resilient cities, emergencies should
be treated as of the main elements of the urban dynamics, potentially affecting
multiple systems in a city environment. Actually, with most world population
living in urban areas, with increasingly presence of large and mega cities, the
negative impacts of emergencies and disasters have been more significant in the
last decades. This scenario has fostered the adoption of different emergency-prone
approaches in multiple contexts, but the challenges imposed by overcrowded cities
will still demand more efficient solutions.

In this thesis, three main issues were addressed in relation to environmental and
health risk management in smart cities.

The first topic focuses on the possibility of using drone-femtocell systems to
locate devices under rubble in post-earthquake scenarios. Assuming that the lo-
calisation of each individual device leads to the rescue of a human life, the studies
presented aim to devise algorithms with very low localisation error and very high
drone energy efficiency.

Considering studies conducted on this topic, described in chapter 3, our al-
gorithms implemented for each phase (mobile terminal classification and locali-
sation), in typical conditions of a real application scenario, achieved accuracies
greater than 60% with an average error in estimating the position of about 1
meter. On the other hand, with regard to the study for the optimisation of flight
time and energy of drones through GT, it can be concluded that through the
proposed method there is a reduction of the overall flight time, and therefore of
energy consumption, which, on average, ranges from 25% to 66%. These values
depend on the technology adopted and/or the spatial resolution to be obtained
in the localization process.

This performance entails a further increase of about 10%, bearing in mind that
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application scenarios are characterized by non isotropic propagation of radio fre-
quency signals. The studies conducted are innovative in their field, as in the state
of the art few researches deal with this topic; mainly because the scenario is very
complex. For this reason, the tests conducted and the results obtained are very
promising.

The second topic involves the detection and classification of rainfall levels using
different types of signals (audio, video, radio) and deep learning techniques. This
approach predicts and manages hydrogeological risk situations (landslides, floods
and inundations) in cities in time, and thus also in terms of road safety and
much more. Three different approaches for the classification of rainfall levels using
audio, video and radio signals, respectively, were addressed in the chapter 4.

Regarding the classification of rainfall by audio signal, the proposed study
presents a technique that allows classifying the different levels of rainfall inten-
sity accurately and quickly. An analysis of the different statistical and spectral
characteristics of the acoustics produced by the rain at various rainfall levels
is presented. In particular, the system is very simple, being based on a plas-
tic shaker, a microphone, and a low-cost/low-power signal processing unit. The
performance is very good in terms of accuracy and ability to adapt to sudden
changes in precipitation intensity. It should be borne in mind that, especially in
low rainfall, the peak rain indicator used to label the database has a low temporal
resolution. Thus, taking into account the typical micro-variances of rainfall inten-
sity, it is possible to consider an average accuracy of 93%, assuming that overall
system performance does not include mis-classification between adjacent classes.
In general, the proposed solution is adequate for a precipitation level monitoring
service, with its major advantage being that it is an entirely electronic system
that can be easily integrated on existing platforms and systems.

Regarding the classification of rainfall by video signal, the proposed study is
an alternative to traditional rain gauges which is based on the extraction of
differential frames from video sequences. Rainfall levels are classified by applying
a convolutional neural network. Performance is very good in terms of precision and
ability to adapt to sudden changes in rainfall intensity. The percentage of accuracy
of the average classification obtained by applying the DCT for to 16×16 sub blocks
is approximately 49%, which can reach 75% if the adjacent mis-classifications are
not considered. The audio and video rain gauge exceeds the limits of traditional
ones, as it requires no mechanical parts, specific and periodic maintenance.

Regarding the classification of rainfall by radio signal, the proposed study intro-
duces an innovative approach to rainfall classification for smart city applications.
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The main idea is based on the impact that rain has on a set of parameters that
characterize the radio-mobile channel quality. The approach highlights the link
between rainfall levels and the trend of parameters adopted for the cell selection
phase in the LTE mobile network. In particular, the system requires only the
extraction of the parameters that a UE measures and the subsequent comparison
with a non-linear matching system based on MLP networks. The performance is
very good in terms of accuracy and spatial resolution. Taking into account the
typical micro-variances of rainfall intensity, it is possible to consider an average
accuracy of 96%. Also in this case, the rain gauge exceeds the limits of the tradi-
tional ones, as it has no mechanical parts and requires no maintenance. Compared
to the state of the art, the study described in this thesis exploits radio frequen-
cies typical of telecommunication networks (1.8 MHz and 2.6 GHz) to assess the
impact of rain on radio parameters and thus to classify it.

For all studies, ad hoc databases were constructed. These contain recordings of
audio/video/radio signals taken on different days and at different locations. The
third topic concerns healthcare management within smart cities, in particular, the
possibility of defining innovative algorithms for the detection and classification
(in very short times and with high precision) of heart disease using ECG and
PCG signals in conjunction with deep learning techniques.

Public datasets were used in the studies regarding the classification of heart dis-
ease using ECG signals. The classification results obtained are highly accurate,
approximately 98-100% by applying a post-processing filter. The innovations in
these works, compared to the state of the art, are many: excellent recognition
and classification of more than three disease classes; use of RAW signals as input
to the neural network without the use of signal pre-processing systems; excellent
performance in short times (2-38 seconds). Also in this case, for the classification
of heart disease using the PCG signal, public datasets were used. In this thesis,
two kinds of studies are conducted for the classification of heart diseases and
the average results obtained are very high, approximately 84-100% using clean
PCG sound and 72-85% using PCG sound with ambiental noise (office and bab-
ble noises). In both cases the maximum performance is obtained by applying a
post-processing filter. In these studies RAW signals were used as input to the
neural network, without the use of signal pre-processing systems and in order to
obtain the maximum classification accuracy, it is necessary to wait a maximum
of 34 seconds in clean PCG signal cases and 42 seconds in noises PCG signal
cases. These timelines fit perfectly into the contexts of Telemedicine and health
monitoring in smart cities.
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Appendix

Appendix A: Tools: Qucell 4G/LTE Small Cell, Ac-

cuver XCORE/XIMS, GMON and GeoDevice

.0.1 Qucell 4G/LTE Small Cell

The femtocell is a small base station of limited radius coverage and low power
designed for home or small business use. In particular, the Qucell LTE Small Cell
was used for the test beds in this paper. It is also called HeNB (Home evoluted
Node UTRAN B); it has the function of wireless connection with the UE (User
Equipment) to process packets with the LTE Air standards between the EU and
EPC. The LTE Small Cell has the interaction of the HeNB function with the
Femto GW server (Gateway), SeGW (Security Gateway), HeMS (HeNB Man-
agement System), see Figure A.1. Small Cell (HeNB) is connected to the SeGW
and, through the authentication process, creates an IPSec connection between
Small Cell and SeGW with which communication is activated. At the end of the
authentication process, Small Cell is connected to HeNB GW (Femto GW), ready
to serve the services by communicating with the MME (Mobility Management
Entity). The process of setup, management, alarm, statistics, etc. is managed
through the HeMS Server which has a connection with the Small Cell through
the IP network.

The hardware and software specifications of the femtocell are described in Table
1.

.0.2 Accuver XCORE/XIMS

Accuver XCORE / XIMS is a software that implements EPC NF in a PC and
provides tests and environment for E-UTRAN equipment: eNB or Home eNB. The
EPC network includes MME (S1 −MME) functions for mobility management
and the EU-User Equipment session, S-GW (S1 − U) functions for IP routing,
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Table 1: LTE Femto AP – General H/W specification.

Title Spec. Note

Frequency Band LTE 1805 – 1880 MHz downlink LTE Band 31710 – 1785 MHz uplink

Centre Frequency
1849.9 MHZ DL

1754.9 MHz UL

1649 EARFCN DL

19649 EARFCN UL
Transmit Power 17 dBm/path 2 RF output types

Bandwidth 20 MHz FDD

Antennas 2 x 2 MIMO External
Antenna (Gain: 3dBi)

Main Chipset Baseband Qualcomm FSM9905 SoC
RF Qulacomm FTR8900 RF

External Interface Ethernet
Qualcomm AR8033

1 Gbps x 1 (Backhaul)
1000Base-T/RJ-45

Memory RAM 2GByte DDR3L RAM
ROM 4GByte Emmc

HSS functions for managing subscriber information and the PCRF functions for
QoS.

.0.3 GMON

G-MoN is an application made in Android to control the signal level of a Wi-Fi
network and to obtain very complete and detailed analysis of a 2G / 3G / 4G
network. When running the application, apart from basic settings, G-MoN offers
several options in its graphical interface, such as:

Figure A.1: Connection diagram for LTE Small Cell and EPC.
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• “2G / 3G / 4G”: presents information and parameters relating to the mobile
radio network (“CID”, “LAC”, “RXL”, “RSRP”, “RSRQ”, etc.). In particular,
the information given by “RSRP” and “RXL” serves as the basis for the
localization algorithm proposed in this paper;

• “Wi-Fi”: presents all the data concerning the wi-fi connection (“SSID”, “CH”,
“RXL”, etc.);

• “Cell History”: contains what you need to know about the coordinates (lati-
tude “LAT” and longitude “LON”), precision (“ACC”) and altitude (“ALT”).
In this case, obviously, the GPS must be enabled.

.0.4 GeoDevice

In order to carry out a series of simulations of the scenario and the techniques
proposed in this paper, a specific tool called GeoDevice was designed and im-
plemented. The software implements a graphic engine to meet the project spec-
ifications. The graphic library adopted (low level) is OpenGL, which ensures
extreme flexibility, not only in terms of graphic performance but also (and above
all) cross-compiling on Linux, Windows and Mac. The structure of the engine is
based on a series of low-level operating classes designed to reconstruct the three-
dimensional primitives needed in the rendering phase. The rendering is made by
objects, therefore it is easy to extend the graphic functionalities defining new
classes and leaving the reconstruction operations to the aforementioned low level
classes. The engine also implements a moving camera that allows you to explore
the three-dimensional scenario in virtual reality.

The tool implements the:

• Classification Phase: which allows the classification of the terminals within
or outside the various monitoring areas, considering, or not, the additional
attenuation;

• Localization Phase: which allows the insertion of the scene in question and
the data obtained from the measurements in the field, subsequently applying
the localization algorithm of the mobile terminal.

As regards the “Classification Phase” the tool provides for the insertion of mobile
terminals in one or more monitoring areas, simulates the power received from the
terminals when the femtocell runs along the perimeter of the area and generates
the polar diagram determining if the terminals they are classified within or outside
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the monitoring area. As for the “Localization Phase”, the tool is meant to outline
a scene which, for the study carried out in this paper, corresponds to a building of
a certain length, height and depth. Once the scene has been defined it is possible
to load the data through a file with the “.json” extension. The data represent the
power values measured at precise coordinates defined a priori. Once the data is
loaded, the tool automatically proceeds to apply the algorithm for locating the
terminal, adopting one of the three methods described above, based on the “power
wall” created.

Appendix B: Game Theory

In this short section we summarize the basic concept of GT required to define
the Nash equilibrium, in the case of two player game in a strategic form. Each
player is given a finite strategy set:

A1 = {s1, . . . , sn}, A2 = {t1, . . . , tm}, (1)

and a vector (s, t) ∈ A = A1 × A2 is called a strategy profile.
Each player expresses a preference relation on the set A, , i.e. the player can

order all the strategy profiles, for instance, from the best to the worst.
Players act so as to maximize their own welfare, which is described (for each

player) through a utility function of the whole strategy profile:

u1 : A1 × A2 → R, u2 : A1 × A2 → R. (2)

Each player only controls own strategies; the player has to solve an optimization
problem for each strategy chosen by the other player. A Nash equilibrium is a
strategy profile (s∗, t∗) for which no player can improve own utility by unilaterally
changing strategy, that is, the following two inequalities must hold:

u1(s
∗, t∗) ≥ u1(s, t

∗), for each s ∈ A1, (3)

u2(s
∗, t∗) ≥ u2(s

∗, t), for each t ∈ A2. (4)

In the present case of two players and a finite set of strategies the “game” is
usually represented using a table, which in the simplest fashion provides only two
strategies available for each player (see below). Such a table corresponds to two
matrices (one for each player) thus such a game is often called bimatrix game.
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Specifically, the rows represent the two possible actions of player 1, while the
columns represent the two possible actions of player 2, and the ordered pairs of
numbers in each cell are the values of (u1, u2) which correspond to the strategy
profile selected by the cell.

t1 t2

s1 u1(s1, t1), u2(s1, t1) u1(s1, t2), u2(s1, t2)

s2 u1(s2, t1), u2(s2, t1) u1(s2, t2), u2(s2, t2)

Similarly, the concept of Nash equilibrium can be reformulated using the so
called best response function combined with the bimatrix representation of the
game also provides a method for the computation of the possible equilibrium.

The best response of player 1 to the strategy t chosen by player 2 is defined as
follows:

B1(t) = {s∗ ∈ A1 : u1(s
∗, t) ≥ u1(s, t), ∀s ∈ A1},

that is, B1(t) is the subset of points of A1 where the function u1(·, t) reaches its
maximum value. However, it should be noted that in the case of a finite strategy
the set B1(t) can be either singleton or containing more points, but it cannot be
empty.

Analogously:

B2(s) = {t∗ ∈ A2 : u2(s, t
∗) ≥ u2(s, t), ∀t ∈ A2}.

The definition of Nash equilibrium can thus be reformulated according to the
following:
(s∗, t∗) is a Nash equilibrium if and only if

s∗ ∈ B1(t
∗) and t∗ ∈ B2(s

∗). (5)

Furthermore, we can introduce the map B : A→ A defined by:

B(s, t) = (B1(t), B2(s))

which allows us to characterize a Nash equilibrium as a fixed point of B, i.e. a
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point (s∗, t∗) ∈ A such that:

(s∗, t∗) ∈ B(s∗, t∗).

Although the best response of each player is always non-empty, it must be
highlighted that in the case of a finite strategy set the existence of a fixed point
of the map B is not guaranteed.

While there are numerous studies on fixed point theorems we have observed that
there are very few papers dealing with the discrete case relevant to the purposes
of the present study, where A only contains a finite number of points (see, e.g.
[212–214]) and the established conditions therein do not fit our framework.

Indeed, the fact that Nash equilibria may fail to exist is well known and the
standard approach to overcome this problem is to pass from the finite strategy
scenario to the so-called mixed strategies which generally stands for a probability
distribution over the finite strategy space and establishing the Nash equilibrium
in this new framework. This approach, using a two-drone coverage, has been
suggested in [100].

Considering the vital application scenario of our study, we do not intend to
change the nature of the problem from a deterministic to a probabilistic one;
instead, we aim to introduce a procedure which allows the drones to continue their
search in the cases where Nash equilibrium does not exist. Numerous experiments
conducted show that such cases are extremely rare and constitute a very low
percentage of the total number of instances.

Appendix C: Very deep CNN for Raw Waveforms

CNN are a specialized kind of neural network for processing data that has a known
grid-like topology. Examples include time-series data, which may be considered
as a 1-D grid taking samples at regular time intervals, and image data, which
may be considered as a 2-D grid of pixels.

The general characteristics and architecture of this network are described in
[215], where the only difference is the sample rate used. In all studies using the
CNN network described in this thesis, the sampling rate is 44.1 kHz instead of 8
kHz.

The deep convolutional neural network is mainly composed of:

1. 1D convolution layers;

2. Batch normalization layers;
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3. RELU layers;

4. Pooling layers;

5. Softmax.

Only in the first convolution, a convolutional kernel composed of 80 elements
is used. The subsequent convolution layers have it set to 3, with the aim of
reducing the computational cost. After each convolution, batch normalization is
carried out to avert the explosion of parameters and avoid the phenomenon of
“vanishing gradients”. Batch normalization allows training deep networks and is
applied after each convolutional layer and before performing the ReLU (rectified
linear activation function). The level of pooling in CNN, placed before RELU,
reduces the problem of data overfitting by the network, taking the input size by
half the actual input.

Unlike the classic CNN that uses fully connected neurons as their output layer,
this network performs a single AvgPool and then a LogSofMax softmax followed
by a natural logarithm log (softmax (x)). The structure of the proposed network
is illustrated below and in A.2:

• Input Layer: Vectors of signal (PCG, ECG, Audio Rainfall) Samples (44100).

• Layer 1:

– Conv1D (1, 128, 80, 4): 1 input channel, 128 output channel, 80 kernel
size, stride 4;

– BatchNorm1D (128): 128 features;

– MaxPool1D with kernel size 4.

• Layer 2:

– Conv1D (128, 128, 3): 128 input channel, 128 output channel, 3 kernel
size;

– BatchNorm1D (128): 128 features;

– MaxPool1D with kernel size 4.

• Layer 3:

– Conv1D (128, 256, 3): 128 input channel, 256 output channel, 3 kernel
size;

– BatchNorm1D (256): 256 features;
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– MaxPool1D with kernel size 4.

• Layer 4:

– Conv1D (256, 512, 3): 256 input channel, 512 output channel, 3 kernel
size;

– BatchNorm1D (512): 512 features;

– MaxPool1D with kernel size 4.

• Output Layer:

– AvgPool1D (30): 30 kernel size;

– Linear (512, numclasses): input 1× 512, 7 output classes;

– Log Softmax.

The input of the neural network is a vector that contains sequences of raw
waveforms (PCG, ECG, Audio Rainfall) each with duration equal to Win = 2

seconds. The CNN neural network derives the index associated with one of the
NCi

different classes Ci(i = 1, ..., N) using the LogSoftMax function.

Figure A.2: CNN architecture for RAW waveform.
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Appendix D: CNN: SqueezeNet

Convolutional Neural Network, called SqueezeNet [216],is a completely convolu-
tional network with reduced complexity and with layers of dropouts. This network
allows to obtain good accuracy and increase performance. To create a CNN net-
work with reduced complexity, three main strategies are necessary:

i. Replace 3× 3 filters with 1× 1 filters. Given a budget of a certain number
of convolution filters, we will choose to make the majority of these filters
1× 1, since a 1× 1 filter has 9X fewer parameters than a 3× 3 filter.

ii. Decrease the number of input channels on “3× 3” filters. Consider a convo-
lution layer that is comprised entirely of 3× 3 filters. The total quantity of
parameters in this layer is (numberofinputchannels) · (numberoffilters) ·
(3 · 3). So, to maintain a small total number of parameters in a CNN, it is
important not only to decrease the number of 3× 3 filters (see i.), but also
to decrease the number of input channels to the 3× 3 filters.

iii. Delay downsample on the network so that convolution levels have large ac-
tivation maps. In a convolutional network, each convolution layer produces
an output activation map with a spatial resolution that is at least 1 × 1

and often much larger than 1 × 1. The height and width of these activa-
tion maps are controlled by: (1) the size of the input data (e.g. 256 × 256

images) and (2)the choice of layers in which to downsample in the CNN
architecture. Most commonly, downsampling is engineered into CNN archi-
tectures by setting the (stride > 1) in some of the convolution or pooling
layers. If early3 layers in the network have large strides, then most layers
will have small activation maps. Conversely, if most layers in the network
have a stride of 1, and the strides greater than 1 are concentrated toward
the end4 of the network, then many layers in the network will have large
activation maps. Our intuition is that large activation maps (due to delayed
downsampling) can lead to higher classification accuracy, with all else held
equal.

Strategies 1 and 2 are about judiciously decreasing the quantity of parameters in
a CNN while attempting to preserve accuracy. iii. is about maximizing accuracy
on a limited budget of parameters.

A Fire module is comprised of: a squeeze convolution layer (which has only
1 × 1 filters), feeding into an expand layer that has a mix of 1 × 1 and 3 × 3

convolution filters; we illustrate this in Figure 1. The liberal use of 1 × 1 filters

209



in Fire modules is an application of i. from Section 3.1. We expose three tunable
dimensions (hyperparameters) in a Fire module: s1×1, e1×1, and e3×3. In a Fire
module, s1×1 is the number of filters in the squeeze layer (all 1 × 1), e1×1 is the
number of 1× 1 filters in the expand layer, and e3×3 is the number of 3× 3 filters
in the expand layer. When we use Fire modules we set s1×1 to be less than (e1×1

+ e3×3), so the squeeze layer helps to limit the number of input channels to the
3× 3 filters, as per ii..

In Figure A.3 that SqueezeNet begins with a standalone convolution layer
(conv1), followed by 8 Fire modules (fire2-9), ending with a final conv layer
(conv10). In this type of network, the number of filters per fire module from the
beginning to the end of the network increases. SqueezeNet performs max-pooling
with a stride of 2 after layers conv1, fire4, fire8, and conv10; these relatively late
placements of pooling are per iii..

Figure A.3: Macroarchitectural view of our SqueezeNet architecture.
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Appendix E: Multi-Layer Perceptron

One of the first algorithms used in machine learning for supervised learning is
the SLP. Frank Rosemblat in [217] published the first concept of the Perceptron
learning rule based on the McCullock-Pitts (MCP) neuron. This learning rule
consists in an algorithm that automatically expresses the optimal weight coef-
ficients to be multiplied by input characteristics. This multiplication operation
allows making the decision on whether to activate the neuron or not; with the
possibility, therefore, to define whether or not a given sample belongs to a partic-
ular class. Mathematically, it is possible to have input signals xi and weights wi.
One must define a function of activation, which works on a linear combination of
certain X input values and a corresponding vector of W weights, where Z is the
neural network input (6):

W = [wi · · ·wm] , X = [xi · · ·xm] ,

Z = (w1 · x1 + w2 · x2 + · · ·+ wm · xm) ,

Θ(z) =

{
1 ifz ≥ 0

0 otherwise.

(6)

If the activation of a particular sample x(i), which is the output of the Θ(z), is
greater than the given threshold, one can predict which class it belongs to. In the
Perceptron algorithm, the activation function is defined in sections. The input of
the z = W T ·X network is reduced to a binary output by the Perceptron activation
function, thus being used to linearly discriminate between the two classes.

SLP is a very simple neural network, which manages well to classify only if the
variables are linearly separable. Based on the statistical analysis described in the
following sections, it is possible to note that the variables involved in this study
cannot be separated linearly.

For this reason, we have used a MLP network which, unlike the SLP which
has a single hidden layer and a single neuron, contains multiple hidden layers
and for each layer there are multiple neurons. The substantial difference is that
sigmoid functions such as logistic regression are used in MLP networks, to activate
neurons, according to (7).

Θ(z) =
1

1− e−z
(7)

MLP is a typical example of a feedforward artificial neural network. The term
feedforward refers to the fact that each level acts as input to the next level,
without loops. As for our study, it is possible to observe in Figure A.4 that we
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Figure A.4: Multi-Layer Perceptron architecture.

used a five-layer MLP. The first is the input layer, the second, third and fourth
are hidden layers with 150, 100 and 50 neurons, respectively, while the last layer
is the output layer.

Appendix F: Statistical Classification Parameter

In the field of machine learning and specifically the problem of statistical classifi-
cation, a confusion matrix, also known as an error matrix, is a specific table layout
that allows visualization of the performance of an algorithm. Each row of the ma-
trix represents the instances in an actual class while each column represents the
instances in a predicted class, or vice versa.

The metrics of evaluation of the confusion matrix are:

• Accuracy (A): is how close or far off a given set of measurements (observa-
tions or readings) are to their true value;

• True Positive Ratio (TPR) or Sensitivity or Recall: refers to the probability
of a positive test, conditioned on truly being positive;

• True Negative Ratio (TNR) or Specificity: refers to the probability of a
negative test, conditioned on truly being negative;

• False Positive Ratio (FPR) or fall-out: is the probability of falsely rejecting
the null hypothesis for a particular test;

• F1Score: is a measure of a test’s accuracy. It is calculated from the precision
and recall of the test.
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These metrics are calculated through (8), (9), (10), (11), (12), respectively.
Where TP is the number of True Positive, FN is the number of False Negative,
TN is the number of True Negative e FP is the number of False Positive.

A =
TP + TN

TP + TN + FP + FN
(8)

TPR =
TP

TP + FN
(9)

TNR =
TN

FP + TN
(10)

FPR = 1− TNR (11)

F1Score =
2TP

2TP + FP + FN
(12)
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