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1
Introduction

“What more powerful form of study of mankind could
there be than to read our own instruction book?”

Francis S. Collins,

Director of the Human Genome Project

From philosophy to genetics The word gene comes from the Greek
term genesis (γένεσις), that means birth, origin. As a matter of fact, the
first speculative theories on the origin of living beings, therefore a “primitive
notion of genetics”, can be already found in the fourth century B.C., when
the Greek philosophers Hippocrates, Socrates, Plato and Aristotle, began
to raise fundamental questions about the mechanisms of reproduction and
heredity.
Nevertheless, the origin of modern genetics can be dated in the second half
of the 19th century, when Gregor Mendel performed a remarkable series of
hybridization experiments on pea plants, that led to the two laws of genetics,
concerning the basic mechanisms of inheritance in nature. It has been only
at the beginning of the past century that genetics has adopted its modern
sense: the actual term genetics was coined in 1906 by William Bateson,
as “a new and well developed branch of Physiology”; three years later, the
word gene was introduced by Wilhelm L. Johannsen for the fundamental
physical and functional unit of heredity [Kel02]. With H. J. Muller, a famous
geneticist and Nobel laureate of the first half of the 20th century, the word
gene assumed a more meaningful connotation: it was defined not only as “the
fundamental unit of heredity”, but as “the basis of life” [M+29]. However,
these notions were still far from a clear and unique definition of what a gene
was. To have a definitive answer to the question, we have to wait until
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the discovery of the DNA and its structure by Watson and Crick in 1953
[WC53], when a gene was finally identified as a segment of deoxyribonucleic
acid, corresponding to a unit of inheritance.

From gene to genome The last few years represent the most flourish-
ing period for biology and related disciplines; in fact, the advances in this
field conducted research from pure biological sciences to other new promis-
ing areas. Starting from the discovery of DNA and its functions, a new era
in biological sciences and medicine has been heralded: from the diagnosis
to the detection of genetic predispositions to diseases; from the design of
new “custom drugs” based on specific genetic profiles, to the application of
gene treatments; from forensic identification to anthropology, DNA has had
a radical and widespread impact on many scientific fields. As a consequence,
several new research areas have been defined, such as genetic engineering,
genomics and proteomics, each of them focusing on specific problems and as-
pects in genetics. In particular, genomics concerns the study of the genome,
that is the entirety of the hereditary information in an organism, including
mapping the genes and sequencing the DNA.

From biology to computational science Besides these new branches
of biology, the success of the Human Genome Project (HGP, for short) led to
a new era also in computational science. HGP was an international 13-years
long project, begun formally in 1990, with the goal of identifying all the genes
and determining the sequences of the chemical base pairs in human DNA.
Due to the great amount of data produced, effective and efficient method-
ologies are required to perform accurate analysis. In this scenario, com-
putational biology, mathematics, engineering and computer science, bring
significant contributions, by suggesting computational methods and in silico
approaches to handle genomic issues.
In general, computational science can be defined as the discipline charac-
terized by the use of computers to analyze complex physical systems and
provide insight of their behavior [Ste93]. In particular, computational sci-
ence uses advanced computing and data analysis to conduct in silico ex-
periments, which are too expensive or impossible to lead in the real world.
To approach real-world problems from a computational perspective, a broad
range of approaches and mathematical methods have been proposed, ranging
from computational mathematics to numerical algorithm.
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In the last years, the rapid growth in computer power enabled an increasing
and fast development in this new field of science: high-performance calcu-
lators, a continuous increment of processor speed, massive parallelization,
the emergence of languages and software tools for complex computers, al-
lowed to study and solve highly complex real-world problems. Applications
of computational science, in fact, can be found in many fields, such as physics,
chemistry, biology, genetics, hydrodynamics, finance, engineering, economics,
geophysics, mechanics, cosmology, and many others.
Three major problem domains can be defined in computational science: mod-
eling, simulations, and optimization. Modeling and simulations concern the
design and tuning of models that reflect natural systems and processes, in
order to understand known events, such as earthquakes, cells lifecycle, drug
efficiency, or predict future situations, like weather, tornados, or economic
risks. Optimization methods aim to find the “best” solution among a set
of available alternatives in known scenarios, such as engineering processes,
protein design, disease detection.

From computational science to optimization Above all, problems
in genomics are among the most difficult in computational sciences. They
usually address the task of determining combinatorial properties of biologi-
cal material, by comparing, discovering similarities and patterns in genomic
sequences. There are several aspects in genomic problems that make them
interesting targets for computational science. In particular, at an abstract
level, genomic data (and, more in general, biological data) can be often ap-
proximated as sequences of elements, belonging to a specific alphabet; a
sequence of such elements is identified as a string. Strings contain genetic
material, DNA or RNA, that encodes biological instructions, for example to
produce the proteins that regulate the life of organisms. Due to their form,
these biological data necessitate of algorithmic methods to be treated, there-
fore the most viable approach is to combine computational and biological
sciences. Drug and treatment discovery, disease modeling, protein structure
prediction, genetic mapping, evolutionary tree reconstruction, are just few
examples of computational problems in genomics.
As many of such problems are NP-hard, the study of improved techniques
is necessary in order to solve them exactly, or at least with some guarantee
of solution quality. In this scenario, mathematical optimization provides ef-
ficient methods to obtain optimal solutions and design desired behavior of
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biological systems.
Optimization is a crucial task in the design of modern systems: identifying
an optimal configuration, indeed, is a problem that arises in every area of
sciences, ranging from industry-related problems, such as supply chain man-
agement or resources allocation, energy supply [PSP11], to micro-electronic
design, telecommunication [SPP11], medicine, economics and finance. Op-
timization methods are designed to identify near-optimal solutions to real-
world problems, where the notion of optimality is intrinsically related to the
specific problem discussed. In general, finding an optimal solution is an in-
tractable problem; although many results of mathematical analysis assure the
presence of global optimizers for many problems, it is common to face real
world applications where analytical methods are not applicable, due to the
roughness of the search landscape or the difficulty in approximating deriva-
tives. To overcome these limitations, a plethora of heuristic methods has
been designed; in general, these approaches require minimal expert knowl-
edge of the domain and ensure a good sampling of the solution space. Some
of the most popular heuristic optimization methods are Genetic Algorithms,
Simulated Annealing, Direct Search and Tabu Search.

This thesis is mainly focused on this domain, by addressing the study and
design of optimization approaches for problems in genomics. In particular,
two different classes of problems related to the analysis of genomic data are
discussed, and new computational approaches are introduced. The problems
addressed concern the selection and comparison of genomic sequences, and
the design and selection of optimal probes to perform efficient hybridization
experiments.

Thesis contribution and organization In order to settle the background
of this thesis, we address some preliminary questions on optimization prob-
lems and methods in Chapter 2: after a formal definition of optimization
problems, we focus our attention on the quality of the solutions and on
the complexity of the problems. Despite feasible solutions might be “easily”
found in some cases, the goal of optimization is the identification of the “best”
solution among a set of available alternatives, which is a difficult task. In
fact, the complexity of the problems makes brute-force approaches impracti-
cable, therefore effective and efficient methods are required. In such context,
we distinguish between exact and heuristic methods: exact approaches pro-
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vide quality guarantee, but they are not always applicable; in such cases,
heuristic methods offer a valid alternative to tackle optimization problems.
Hybrid approaches take both the advantages of optimality guarantee by ex-
act methods, and computational efficiency provided by heuristic strategies.
For a more detailed discussion on such optimization strategies, we remand
the reader to Chapter 2.

One of the main issues occurring in computational biology and bioinformat-
ics concerns the localization of similar features in DNA or protein sequences.
The Closest String Problem (CSP) represents one such problem, which con-
sists in finding a string that is close to each of the strings in a given finite set.
Such combinatorial optimization problem finds applications, for instance, in
genetic drug target and genetic probes design [LLM+99], in locating binding
sites [HHS90, SH89], and in coding theory [FL97, GJL99, Rom92]. Recently,
the CSP problem has received increasing attention: several approximation
algorithms have been developed [FL97, LLM+99, LMW02, MS08], and an
integer programming formulation along with a branch-and-bound approach
has been proposed [MLO+04]. Nevertheless, this latter approach presents
exponential time complexity and memory explosion. Another approach to
NP-hard problems consists in applying heuristic methods; these approaches
do not guarantee to find an optimal solution, but in general, they are able to
provide a good feasible solution, i.e. a solution with a value that is “close” to
the optimum, in reasonable amount of time. Simulated Annealing, Genetic
Algorithms [LHS05], hybrid methods [LHHW08], are heuristic approaches
proposed in literature for the Closest String Problem.
To overcome the NP-hardness of the problem [FL97, LLM+99], we present
two new approaches in Chapter 3: the first method is based on the Ant
Colony Optimization metaheuristic [Dor92, FP10], the second approach com-
bines a Simulated Annealing algorithm with a new heuristic for finding a good
initial solution for the problem, which allows to speed up sensibly the con-
vergence of the algorithm [PCP11].
To assess the effectiveness and robustness of the proposed methodologies, we
compared our proposed approaches extensively with the integer-programming
(IP) exact solution, and with other heuristic methods present in literature,
both on artificial and real instances. Experimental results show that our
approaches allow to locate good solutions for the problem and outperforms
the heuristic methods proposed for the CSP.
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Another important issue in genomics is the identification of targets, gener-
ally viruses or bacteria, in biological samples. Biologists can use hybridization
experiments to determine whether a specific DNA fragment, that represents
the virus, is present in a DNA solution. A probe is a segment of DNA or
RNA, labeled with a radioactive isotope, dye, or enzyme, used to find a spe-
cific target sequence on a DNA molecule by hybridization. Selecting unique
probes through hybridization experiments is a difficult task, especially when
targets have a high degree of similarity, for instance in case of closely related
viruses. The class of Probe Selection Problems involves the selection of a
small set of probes to analyze a population of unknown clones; in particular,
the Non-Unique Probe Selection Problem (NUPS, for short) concerns the se-
lection of non-unique probes, that are those hybridizing to more than one
target [POP11a].
Several approaches are largely known in literature for the Non-Unique Probe
Selection Problem, ranging from deterministic [KRS+04, RSP07] to heuristic
methods [MPR07, NRWG10, WN07, WNGR08].
In Chapter 4, after discussing the techniques for the design and selection of
hybridization probes, two new heuristic approaches are introduced for the
NUPS problem; the first one, is a canonical Monte Carlo algorithm with a
heuristic reduction. Starting from the results obtained by the Monte Carlo
method, a new combinatorial optimization approach called Space Pruning
Monotonic Search is proposed. The experimental results show that both
of the presented approaches are suitable for the problem and, in particular,
the Space Pruning Monotonic Search clearly outperforms the current
state-of-the-art methods [POP11b].
Finally, in Chapter 5, we draw our conclusions.

Despite the promising results found by the methods proposed in this thesis
for the Closest String Problem and the Non-Unique Probe Selection Problem,
we are conscious there is still a lot of work on these subjects. Moreover, new
emerging scenarios in biology and medicine, such as the design of custom
drugs, the detection of diseases, the control of drug effects, require the design
and development of computational methods and optimization approaches to
be tackled. Therefore, this thesis represents only a first step in what should
be a continual research towards the design of effective optimization methods
for problems in biomedicine.
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2
Mathematical Optimization

“Consider everything. Keep the good.
Avoid evil whenever you notice it.”

1 Thess. 5:21-22,

cited by A. Neumaier

Mathematical Optimization is an interdisciplinary branch of applied math-
ematics, related to the fields of Operations Research, Computational Com-
plexity and Algorithm Theory. It can be informally defined as the science
of finding the “best” solution from a set of available alternatives, where the
notion of “best” is intrinsically related to the specific problem addressed.
Optimization problems are countless in everyday life: from the choice of the
fastest way to get from home to office, to large scale problems such as the
maximization of company profit or the minimization of the side effects of
drugs, optimization is a crucial task in the design of modern systems. In
particular, optimization problems arise in every area of sciences: engineer-
ing, microelectronics, telecommunications, biomedicine, genetics, proteomics,
economics, finance, physics,
Unfortunately, for many of these problems, it is not known whether and how
they can be solved exactly in a “reasonable” time. Optimization methods
are designed to identify near-optimal solutions to these problems, where the
notion of optimal is intrinsically related to the specific problem discussed.

In this thesis, we focus our attention on two real-world optimization prob-
lems that arise in biomedical research. We start by settling the general con-
text and motivations of our study; in particular, in this chapter we address
some general questions about optimization problems and their solutions, in
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2.1. OPTIMIZATION PROBLEMS: WHAT, HOW AND HOW
MUCH

order to provide a background knowledge of the issues analyzed later.
We refer the reader to Chapter 3 and 4 for a detailed introduction and de-
scription of the problems studied.

2.1 Optimization Problems: what, how and how
much

2.1.1 What is an optimization problem?

In the simplest case, the optimization process seeks to minimize or max-
imize the value of a function, defined as objective, by choosing integer or
real variables from a defined domain of possible alternatives. Formally, an
optimization problem instance can be stated as follows [PS98]:

Definition 2.1.1 (Optimization Problem). Given a function f : S → R
from some set S to the real numbers, the objective is to find an element x0

in S such that f(x0) ≤ f(x) for all x in S (“minimization”), or such that
f(x0) ≥ f(x) for all x in S (“maximization”).

S is called feasible set, and it represents the set of all the possibilities from
which a feasible, or valid, solution can be built, i.e. a solution satisfying all
the constraints imposed for the problem.
f is the objective function, that evaluates the quality of feasible solutions
by assigning a certain “quality measure”, defined according to the specific
problem analyzed.
The point x0 is called a globally optimal solution to the given instance, that
is a feasible solution minimizing/maximizing the objective function value.
Informally, we can distinguish between a problem and an instance of the
problem: the pair (S, f) is defined as an instance where, given the input data
for the problem, a solution can be obtained if there is enough information
available. A problem is a collection of instances. Therefore, while the instance
represents a particular input to the problem and its corresponding solution,
an optimization problem can be viewed as an infinite collection of instances,
each of them characterized by a specific solution.
Given an algorithm A for an instance (S, f) of an optimization problem, A
is said to be exact if it always returns an optimal solution, and A is said to
be efficient if it runs in time polynomial on the size of its input.
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2.1. OPTIMIZATION PROBLEMS: WHAT, HOW AND HOW
MUCH

Optimization problems can be divided in two categories: those involving
continuous variable, and those with discrete variables. While there are more
theoretical results in continuous than in discrete optimization, many real
world problems involve the presence of discrete components. Combinatorial
Optimization represents the subset of Mathematical Optimization where the
solution domain is discrete or can be reduced to discrete [PS98]. This class
of methods finds application in many research areas, including management
sciences such as finance, marketing, supply chain, scheduling; in engineering,
as communication and energy related problems. In particular, optimization
has become an indispensable tool in many areas of biomedicine (e.g. X-
ray crystallography, protein folding, epileptic seizure prediction, etc.), and
it is frequently used for designing and modeling complex systems, which are
abundant in biology.

2.1.2 How good is a solution?

In general, finding the global optimum to an instance of an optimization
problem can be a very difficult task, and it is computationally intractable for
many problems. Nevertheless, it is often possible to find a solution that is the
best within a specific subset of the solution space, defined as a neighborhood.
This solution represents a local optimum. The search of an arbitrary local
optimum is a task addressed by local search methods. Shortly, a local search
starts from an initial solution and iteratively modifies that solution into a
better one, by performing a move, i.e. a small perturbation, on it. Such
move identifies a neighbor solution.
Two important issues in local search methods are the quality of the solution
found, and the complexity of the local search heuristic, i.e. how fast the local
optima can be found. Usually, the best choice is a tradeoff between quality
and computational complexity: whereas the larger is the neighborhood, the
better will be the solution found, it might be computationally intractable
to compute it. Therefore, the design of a local search heuristic involves the
choice of a “good” neighborhood, that is a neighborhood large enough to
contain good solutions, and on the other hand, small enough to ensure an
efficient search.
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2.1. OPTIMIZATION PROBLEMS: WHAT, HOW AND HOW
MUCH

2.1.2.1 Neighborhood

Local search is based on the concept of neighborhood. Given a feasible point
x ∈ S, a neighborhood can be informally defined as a set N(S) of points
that are close, in some sense, to the point x, for example because they can
be computed starting from x, or they share a significant part of their structure
with x. Formally, a neighborhood can be defined as follows.

Definition 2.1.2 (Neighborhood). Given an instance (S, f) of an optimiza-
tion problem, a neighborhood is a mapping

N : S → 2S

defined for each instance, where 2S denotes the powerset {V |V ⊆ S}.

The neighborhood function N specifies, for each solution x, a set N(x) ⊆
S, which represents the neighborhood of x. Therefore, we say that a solution
x′ is a neighbor of x if x′ ∈ N(x).

A local search algorithm searches through the solution space by iteratively
moving from the candidate solution to one of its neighbors. This process
can be viewed as a walk through the neighborhood graph, where the vertices
represent the solution points, and the arcs connect the neighbors.

Definition 2.1.3 (Neighborhood Graph). Given an instance (S, f) of a com-
binatorial optimization problem and a neighborhood function N , the neigh-
borhood graph is a directed node-weighted graph G = (V,E), where the node
set V is the set of solutions S, and the arc set E is defined such that (i, j) ∈ E
if and only if j ∈ N(i).

In such graph, the weight of a node j represents the cost of the corre-
sponding solution. A solution j is said to be reachable from a solution i, if
the neighborhood graph contains a path from i to j, that is, there exists a
sequence of solutions xi, xi+1, ..., xj, for j ≥ 1, and xl+1 ∈ N(xl), i ≤ l < j.

Definition 2.1.4 (Neighborhood-optimal solution). A solution x̂ ∈ S is
locally optimal with respect to the neighborhood N, or N-optimal, if for all
x ∈ N(x̂), f(x̂) ≤ f(x).

The neighborhood function may, or may not, generate the globally opti-
mal solution. When the neighborhood function is able to generate the global
optimum, starting from any initial feasible point, it is called exact.
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Definition 2.1.5 (Exact Neighborhood). Given an optimization problem
with feasible set S and a neighborhood N , if each locally optimal solution
x0 ∈ S with respect to N is also globally optimal, we say that the neighborhood
N is exact.

2.1.3 How (much) difficult is the problem?

Despite the fact that many real-world problems can be modeled as combina-
torial optimization problems, they are often very difficult to solve. In order
to develop a measure of the difficulty of a problem, we have to quantify the
resources needed to find a feasible solution. However, the choice of physical
measures, such as run-time or memory requirements, are irrelevant, since
they depend on the computing platform and on the specific algorithm imple-
mented to solve the problem. Moreover, the time needed to solve a problem
instance depends on certain properties of the instance itself, such as its size:
larger instances, for example, require more time to be solved. Thus, the time
required to solve a problem has to be a function of the size of the instance.
Computational complexity analyzes the inherent intractability or tractabil-
ity of such problems, and classifies them into complexity classes according
to their computational hardness. Specifically, if we consider computational
time, two main classes can be identified, that are P and NP.
The first complexity class contains all the problems that can be solved by
polynomial-time algorithms. This class is denoted by P, that stands for poly-
nomial time. P can be considered as the class of tractable problems, that
can be solved efficiently.
NP indicates the class of nondeterministic polynomial problems, that is the
set of decision problems solvable in polynomial time by a non-deterministic
Turing machine.
It is not known whether P=NP, though it is widely believed that there
are problems in NP which are not in P. Some such problems have a prop-
erty known as NP-completeness. NP-complete problems are considered in-
tractable, and only approximate solutions are known for them. In particular,
if an NP-complete problem could be solved in polynomial time, thus all NP-
complete problems can be solved in polynomial time, with the consequence
that P=NP. Formally, NP-completeness is defined as follows:

Definition 2.1.6 (NP-completeness). A decision problem C is NP-complete
if C is in NP, and every problem in NP is reducible to C in polynomial time.
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Specifically, a problem A is said to be “reducible in polynomial time” to
a problem B if, for each instance a of A, it is possible to build an instance
b of B in polynomial time, such that the two instances have the same truth
values.
A problem satisfying the second condition of NP-completeness, but not nec-
essarily the first one, is said to be NP-hard. Informally, an NP-hard problem
is “at least as difficult as” every other NP-complete problem.

Since many problems in combinatorial optimization are NP-hard, it is fun-
damental to explore techniques for dealing with NP-completeness. In the
next section, we provide an introduction of the main approaches used to
solve NP-hard problems.

2.2 How to solve it?

The available techniques for solving combinatorial optimization problems can
be roughly classified into two main categories: exact and heuristic methods.
While exact methods allow to find solutions with a guarantee of optimality,
the run-time increases dramatically with the instance size. Heuristic ap-
proaches, on the other side, sacrifice optimality guarantees in order to find
solutions in a more efficient way, by spending only a “reasonable” amount of
time to compute them. The combination of exact and heuristic approaches
defines the category of hybrid methods, which bring the advantages of both
techniques.

2.2.1 Exact Methods

Exact methods have the advantage of guaranteed quality of the solution
found, but the computational demand of such methods can be exponential in
the worst case. Exact methods can be classified into the following categories
[Pin02]:

• Adaptive stochastic search methods, based on random sampling in the
feasible set. These approaches can implement some strategies to im-
prove the random sampling, such as adaptive search strategy adjust-
ments, sample clustering, deterministic solution refinement options,
statistical stopping rules [Zhi91].

17



2.2. HOW TO SOLVE IT?

• Bayesian search algorithms, where a stochastic model is constructed to
guide the search phase [Moc97, Pel05].

• Branch and Bound algorithms, that are tree pruning techniques, based
on three main components: the selection of the node to process, bound
calculation, and branching. These operations are applied iteratively to
the collection of active subsets within the feasible set [Neu90, HW04].

• Enumerative strategies, which enumerate all the possible solutions to
the problem [HT94].

• Homotopy and trajectory methods, that aim at visiting all stationary
points of the objective function [For95].

• Integral methods, that approximate the level sets of the objective func-
tion to determine its essential supremum [ZZ95].

• “Naive” approaches, such as simultaneous grid search and pure random
search [Zhi91].

• Relaxation strategies, where the optimization problem is replaced by a
sequence of relaxed sub-problems, easier to solve [HT94].

In general, finding an optimal solution is an intractable problem; although
many results of mathematical analysis assure the presence of global optimiz-
ers for many problems, it is common to face real world applications where
exact methods are not applicable, due to the roughness of the search land-
scape or the difficulty in approximating derivatives. To overcome these limi-
tations, a plethora of heuristic methods has been designed; in general, these
approaches require minimal expert knowledge of the domain and ensure a
good sampling of the solution space.

2.2.2 Heuristic Methods

Etymologically, heuristic comes from the Greek word ευρισκειν (euriskein),
that means “to discover”, “to find”. In fact, although heuristic methods do
not guarantee to find an optimal solution, they should be able to “discover” a
“good” solution in a shorter period of time than exact approaches. In partic-
ular, metaheuristics can be defined as upper level methodologies for solving a
very general class of computational problems, as the Greek suffix μετά (meta)
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suggests. Metaheuristics include many methods, such as Simulated Anneal-
ing [KGV83], Tabu Search [GL98], Variable Neighborhood Search [MH97],
and several Evolutionary approaches and Memetic algorithms.

Since heuristics cannot guarantee the solution optimality, we might won-
der why these approaches have became widely used for addressing complex
optimization problems. In many cases, in fact, heuristics are preferable to
exact methods, for instance when such methods are not available, or when
an exact approach is available but it is computationally unfitting, due to the
excessive time or storage requirements; heuristics are also used to improve
the performance of an optimizer, since they are able to provide starting so-
lutions or a pruned search space. Additionally, due to their relatively simple
features, they can be easily implemented and therefore used to model com-
plex problems with a more pragmatic approach [ZE81].
In general, a “good heuristic” should be characterized by reasonable com-
putational efforts, such as reasonable storage requirements and computing
times, that do not grow exponentially as the problem size increases. Other
important features of good heuristics are simplicity, accuracy and robustness,
i.e., the method should not be sensitive to changes in parameters; it should
produce multiple solutions by perturbing the current point; it should imple-
ment good stopping criteria, in order to avoid “stagnation”, and having good
average performance [ZE81].

Due to their computational power, a large number of heuristic methods
have been proposed to solve real-world problems in several areas. Heuristic
approaches can be grouped into some main categories [Pin02]:

• “Globalized” extension of local search methods, characterized by a pre-
liminary global search, such as a grid or random search, followed by a
local search phase [VOR99].

• Evolution strategies, that represent an abstraction of the biological evo-
lution of living organisms, by implementing the “survival of the fittest”
principle. In evolutionary approaches, in fact, a population of individ-
uals is evolved, by means of natural selection and sexual reproduction
processes. Individuals with better fitness have higher probability to
reproduce and survive. Numerous variants of this general strategy
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can be constructed, according to different evolutionary “game rules”
[GH88, Gol87, Mos89, BGH90].

• Simulated Annealing, based on the physical analogy with the ther-
modynamic cooling process of crystal structures, that reach a stable
configuration characterized by minimal potential energy. This princi-
ple is applied to solve discrete and continuous optimization problems
[MRR+53, MU49, KGV83, HJJ03, RSV91, Haj88, LM86].

• Tabu Search, that implements the idea of forbidden moves to points in
the search space that have been already visited in the previous steps.
This strategy aims to explore new regions of the search space, with the
goal of finding a global optimum [GL98, VOR99].

• Approximate convex underestimation, that tries to estimate the large
scale, “overall” convexity characteristics of the objective function, by
performing direct sampling of the search space [Pin02].

• Continuation methods, that first transform the objective function into
a “smoother”, simpler function having fewer local minima, and then
use a local minimization procedure to trace the minimizers back to the
original function [For95, Pin02].

• Sequential improvement of local optima, such as tunneling, deflation,
and filled function methods, that usually operate on adaptively con-
structed auxiliary functions, to assist the search towards gradually bet-
ter solutions [LG85, Pin02].

2.2.3 Hybrid Methods

Hybrid methods combine the advantages of both exact and heuristic ap-
proaches: they mainly aim at providing solutions with optimality guarantee
in shorter time. Hybrid methods can be mainly classified into two categories:
collaborative combinations and integrative combinations [PR05].
The first class defines the algorithms that exchange information, but are im-
plemented as separate methods: exact and heuristic methods can be executed
in sequence, in parallel or can be intertwined. Such approaches have been
broadly proposed in literature, for instance evolutionary algorithms have
been combined with branch-and-bound techniques, and heuristic strategies
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have been applied to provide a pruning of the search space and speed up the
computation of optimal solutions.
When exact methods and heuristics are combined into integrative combi-
nations, one technique is a subordinate embedded component of the other.
This is the case where metaheuristics are used within an exact method to de-
termine bounds and incumbent solutions in branch-and-bound approaches,
or the case of heuristic column generation in branch-and-price algorithms.
Another example of integrative combinations is the exploration of neighbor-
hoods in local search heuristics by means of exact algorithms.

In the following, we propose several mathematical formulations, heuristic
and metaheuristic methods for addressing biomedical and engineering prob-
lems. Specifically, we implement a Monte Carlo and a Simutated Annealing
algorithms, along with a Mesh Adaptive Basin Hopping method. Addition-
ally, in consideration of the effectiveness and quality guarantee provided by
hybrid methods, we implement a hybrid approach in Chapter 4 to address the
Non-Unique Probe Selection Problem. The computational power of the pro-
posed methods is extensively explored, and experimental results are provided
in order to compare our approaches with the state-of-the-art.
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3
String Selection and Comparison

Problems

“Share our similarities, celebrate our differences.”

M. Scott Peck

3.1 Introduction

Starting from the introduction of the first chain-termination method for DNA
sequencing in 1977 by Sanger et al. [SNC77], the beginning of a new era of
advancements in molecular biology, chemistry, and computational science has
been marked [Bou10]. DNA sequencing, in fact, includes several methods and
technologies to map out the sequence of the nucleotides present in a strand
of DNA. Specifically, DNA sequencing results in a sequence of DNA compo-
nents called primary structure, consisting of four symbols A, C, G, and T ,
corresponding to the nucleotide bases of a DNA strand, adenine, cytosine,
guanine, and thymine, which encode the genetic information represented by
the DNA sequence.
Due to the growing amount of data made available through sequencing tech-
niques, the process of manually analyzing DNA sequences has became im-
practicable. This scenario led to the development of new scientific branches,
such as computational biology and bioinformatics. These biological sciences
study and develop new approaches for treating genomic data, and for ad-
dressing specific problems related to the recognition of features and functions
within biological samples.
One of the main issues occurring in computational biology and bioinformatics
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is to locate similar features in DNA or protein sequences; this information
can be used to detect potentially important regions within them [GJL99].
The recognition of similarities and analogies in genomic samples finds appli-
cations in the design of genetic drug and genetic probes [LLM+99], and in
locating binding sites for detecting disease risk [SH89, HHS90]. Other ap-
plications concern the field of data compression [GS85], and coding theory
[GJL99, FL97], where one is interested in determining the best way to encode
a set of messages [Rom92].
In molecular biology, in particular, the identification of common regions
within DNA or amino acid sequences provides relevant insights on the func-
tion of proteins and genes: high similarity among the sequences, in fact,
usually involves a structural or functional affinity. This information can be
used, for instance, to locate genes whose mutation is involved in genetic dis-
eases, by detecting the differences between genes of healthy and unhealthy
individuals.

Specifically, in order to address the task of discovering analogies and/or
differences in genomic samples, some similarity measures have to be defined.
To measure the number of similarities between two strings, two distance
metrics are commonly adopted: the Levenshtein or edit distance [Lev66],
and the Hamming distance [Ham50]. The edit distance between two strings
is defined as the minimum number of edits, that are insertions, deletions and
substitutions, required to transform one string into the other. The Hamming
distance represents a special case of the edit distance, where only mismatches
between strings are considered.
When the two strands of DNA bind together according to the Watson-Crick
base pairing [WC53], they are said to hybridize, and if this matching is exact,
one sequence is said to be the reverse complement of the other. Specifically,
given the four nucleotide bases, adenine (A) and thymine (T) form a comple-
mentary pair, as do cytosine (C) and guanine (G). We describe this pairing by
using the notation A=T, T=A, C=G, and G=C. For example, the Watson-
Crick complement of the sequence AACATG is represented by the sequence
TTGTAC.
The differences discovered between the sequences can be classified into two
main categories: substitutions, where a base in one strand does not pair with
the base on the other strand, and gaps, characterized by the presence of at
least one extra base in one strand. For instance, AACATG and TGGTAC
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present a substitution at the second base of the second sequence, where
the thymine is replaced by a guanine base, which does not match with the
adenine of the first sequence. If we consider now the sequences AACATG
and T − GTAC, we can see that a gap is present in the second sequence.
Since gaps are more destabilizing than substitutions [LLM+99], the use of the
Hamming distance, that involves only substitutions, is preferable as distance
metric to the edit distance, which considers also gaps.
The Hamming distance metric appears in several biological applications, and
especially in those related to the discovery of consensus sequences or the use
of its reverse complement [LLM+99]. Some applications are the design of di-
agnostic probes, drug design, and creation of PRC primers [Lan04, Bou10].

Design of Diagnostic Probes The task of designing a string that is
able to represent a set of known sequences and, at the same time, is easily
distinguishable from another set, is a problem arising in the diagnosis of
viruses and bacteria in host organisms. In particular, probes are used to
discover the presence of viruses and bacteria in biological samples. A probe
is a strand of DNA or RNA opportunely treated to easily detect the presence
of a target, for instance by making it fluorescent or radioactive. Hence, given
a set of DNA sequences representing the virus or the bacteria, and a host,
the problem is to discover a sequence that occurs in DNA sequences, and
does not appear in the host. This problem involves the design of the probe
sequence, that has to be as close as possible to the sequences to detect, and,
on the other hand, as far as possible from another set of sequences.

Drug Design Another important application of string selection concerns
the drug design. Here, given a set of sequences of orthologous genes1 from
a group of closely related pathogens, and a host, the goal is to identify a
sequence that is highly conserved in all of the pathogen sequences, but that
is not present in the host [LLM+99]. In fact, the conserved region might
encode relevant biological information, since it seems resilient to mutations.
This information can be exploited to identify the chemical components that
bind the conserved region, in order to create new effective therapies.
In antisense drug design, the same principle is used to create drugs that
inhibit the production of the protein related with the disease, but do not

1We recall that orthologous are genes in different species that evolved from a common
ancestral gene, and which encode proteins with the same function in different species.
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interfere with other proteins [LLM+99]. Specifically, antisense therapies focus
on impeding the production of proteins that cause the disease: antisense
binds mRNA to prevent that the genetic code related to the disease will be
read by the ribosome, which is responsible in assembling proteins based on
the instructions carried by mRNA.

Primers Design for Polymerase Chain Reaction Polymerase chain
reaction (PCR, for short) is a technique adopted in molecular biology for
amplifying a portion of DNA in many copies. PCR has many applications,
such as DNA cloning for sequencing, functional analysis of genes, forensic
identification, disease diagnosis. The PCR process requires the selection of
two primers, that are small fragments of DNA, hybridizing within a specific
region. The selection of primers is a complex task, and it affects the PCR
amplification process. In particular, the selection of primers that are able to
amplify several regions simultaneously can be viewed as a sequence problem
where the goal is to determine the maximum number of mismatches allowed
in the hybridization process [Bou10].

The class of problems addressing the recognition of similar characteris-
tics or differences within biological sequences has been defined by several
names, such as distinguishing string selection [LLM+99], consensus patterns
[HHS90], Hamming center problems [GJL99] and motif detection problems
[Bou10]. Specifically, two main problems fall into these categories: Farthest
String and Closest String problems.

The Farthest String Problem [LLM+99, Lan04, Bou10] informally defines
the problem where a pattern does not occur in a set of strings, and has ap-
plications in the analysis of genomic data. Such problem has been proved
NP-hard, therefore it is unlikely to solve in polynomial time, unless P=NP.
The Closest String Problem [LLM+99, Lan04, Bou10], contrary to the previ-
ous class, defines the task of finding a pattern that, with some errors, occurs
in a specific set of strings. In particular, it consists in finding a string with
minimum Hamming distance from the strings of a given finite input set.

To overcome the NP-hardness of the problem, we developed two approaches
which are presented in this chapter: the Ant-CSP algorithm, based on the
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Ant-Colony Optimization metaheuristic [FP10], and a Simulated Anneal-
ing approach combined with a new heuristic used for finding a good initial
solution for the problem [PCP11]. To assess the effectiveness and robust-
ness of the proposed methods, we extensively compare them with the other
approaches presented in literature, both on artificial and real instances. Ex-
perimental results show that our approaches allow to locate good solutions
for the problem, and outperform the other heuristic methods proposed.

3.2 The Closest String Problem

In this section, we define the Closest String Problem (CSP, for short), which
informally denotes the task of finding a string that presents many similarities
with a specific set of sequences.
The CSP problem finds applications in many fields, such as genetic drug
target and genetic probes design [LLM+99], in locating binding sites [SH89,
HHS90], and coding theory [GJL99, FL97, Rom92]. For a detailed discussion
on the biological relevance of string selection problems, we refer the reader
to Section 3.1.

A precise definition of the CSP is given next. To begin with, we need to
recall some notations. Given a string s over a finite alphabet Σ, |s| and s[i]
denote the length of s and the i-th character of s, respectively. We recall
that the Hamming distance between two strings s and t having equal length
is the number of positions at which s and t differ.

Definition 3.2.1 (Closest String Problem). Let S = {s1, s2, ..., sn} be a finite
set of n strings, over an alphabet Σ, each of length m.
The Closest String Problem for S is to find a string t of length m over Σ,
that minimizes the Hamming distance dc such that, for any s ∈ S,

dc(s, t) ≤ dc.

Let us consider the following example: given four strings on a binary
alphabet Σ = {0, 1}, S = {001000, 111000, 011011, 010101}, the string t =
011001 is a closest string for S; in fact, max4j=1 dc(sj, t) = max{2, 2, 1, 2} = 2.

The Closest String Problem can be viewed as a special case of a more
general problem, defined as Closest Substring Problem, (CSSP, for short)
whose formal definition is the following:
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Definition 3.2.2 (Closest Substring Problem). Let S = {s1, s2, ..., sn} be a
finite set of n strings, over an alphabet Σ, each of length at least m.
The Closest Substring Problem for S is to find a string t of length m over
Σ, that minimizes the Hamming distance dc with every substring z of si of
length m, z = si[h, l], l = m+ h− 1 and 1 ≤ i ≤ n:

dc(s, z) ≥ dc.

The Closest String Problem and the Closest Substring Problem are NP-
hard; in particular, Frances and Litman have proved the NP-hardness of the
CSP for binary codes, by considering an equivalent problem in coding theory
[FL97]. Then, Lanctot et al. have shown that even in the case of alphabets
with more than two characters the problem is NP-hard [LLM+99]. Therefore,
no polynomial-time solution is possible, unless P = NP.
Since the Closest String Problem represents a special case of the Closest
Substring Problem, it follows that also the CSSP is NP-hard [LLM+99].

Recently, the CSP and CSSP have received increasing attention. We
discuss some past results concerning such problems in the following section.

3.3 State-of-the-art Methods

The first integer-programming (IP, for short) formulation for the CSP has
been proposed, independently, in [BDLRP97] and [LMW02]. In [MLO+04],
three IP formulations are presented for the problem along with a heuristic:
the CSP is first reduced to an integer-programming problem, and then a
branch-and-bound algorithm is used to solve it.
Specifically, an instance of the CSP consists of a finite set S = {s1, s2, ..., sn}
of strings such that |si| = m. By si[j], we denote the j-th position of the
string si, for 1 ≤ i ≤ n and i ≤ j ≤ m. The goal of the problem is to find a
string t ∈ Σm such that maxi dc(si, t) is minimized, where dc represents the
Hamming distance.
Instead of working directly on strings, an injective transformation π is ap-
plied, which maps each character c into an integer π(c), and any string
s = (s[1], s[2], ..., s[m]) into a sequence π(s) = (x[1], x[2], ..., x[m]) ∈ Z of
the same length, such that x[k] = π(s[k]), for k = 1, ...,m.
For instance, given the alphabet Σ = {a, ..., z}, let us consider the “canon-
ical” transformation π(a) = 1, π(b) = 2, ..., π(z) = 26. Then, the string
s = differ is mapped into π(s) = (4, 9, 6, 6, 5, 18) ∈ Z6.
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Given a setX = {x1, ..., xn} of strings of the same lengthm, Vk represents the
set of the k-th characters of the strings xi, that is Vk = {x1[k], x2[k], ..., xn[k]},
for i = 1, ..., n and k = 1, ...,m.
Additionally, the binary variables vj,k are defined, which characterize a can-
didate solution t as follows:

vj,k =


1 if t[k] = j

0 otherwise
(3.1)

for j ∈ Vk, k = 1, ...,m.
Therefore, the integer-programming formulation for the CSP is defined as
follows [BDLRP97, LMW02, MLO+04]:

min dc (3.2)

subject to 
j∈Vk

vj,k = 1 k = 1, ...,m (3.3)

m−
m
j=1

vxi[j],j ≤ dc i = 1, ..., n (3.4)

0 ≤ vj,k ≤ 1 j ∈ Vk, k = 1, ...,m (3.5)

dc ∈ Z+ (3.6)

The objective function (3.2) minimizes the Hamming distance dc, whereas
(3.3) and (3.5) guarantee that exactly one character in Vk is selected. In-
equalities (3.4) say that if a character in a string s[i] is not chosen for a
solution t, then such character will contribute to increase the Hamming dis-
tance between t and s[i]. Finally, constraints (3.6) force the distance dc to
assume a non-negative value.
The above formulation (3.2)-(3.6) is the most effective from a computational
point of view, since it involves fewer variables and constraints [MLO+04,
CWB11]. Nevertheless, the approach proposed in [MLO+04] is not always
efficient and has an exponential-time complexity. Moreover, the branch-and-
bound technique leads easily to memory explosion.
In order to speed-up the solution search, a parallel version of the heuristics
presented in [MLO+04, MOP05] is developed in [GMPV08]. A new formu-
lation for the CSP is proposed in [CWB11], although experimental results
prove that it is not as effective as the one proposed in [BDLRP97, LMW02]
and [MLO+04].
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Due to the limited efficiency of exact methods in solving large instances
of the problem, a plethora of non-exact approaches have been proposed in
literature. In general, we can distinguish between two classes of non-exact
methods for solving optimization problems: approximation algorithms and
heuristics. Approximation algorithms guarantee a bound on the optimal so-
lution, whereas heuristic strategies do not. Several approximation algorithms
have been proposed for the CSP problem: two (4/3+ ϵ)-polynomial time ap-
proximation algorithms have been developed in [GJL99, LLM+99].
To overcome the NP-hardness of the problem, a fixed-parameter algorithm
with running time O(nm+ ndd+1) has been developed in [GNR01, GNR03],
where d is a parameter that represents the maximum Hamming distance al-
lowed. The underlying idea of this approach is to study the parameterized
complexity of the problem, under the assumption that either d or the num-
ber of input strings n are small. Plainly, for large values of d, such approach
becomes prohibitive. A better approximation for the CSSP is provided in
[LMW99], that gives a ratio 2 − 2

2|Σ|+1
, where |Σ| is the cardinality of the

alphabet. When |Σ| is large, the improvement provided by this approach
is not remarkable. For this reason, a new polynomial time approximation
scheme for the CSSP is presented in [Ma00], that combines a random sam-
pling procedure with the method presented in [LMW99].
Based on the previous approaches, new polynomial-time approximation al-
gorithms for the CSP and CSSP, having approximation ratio 1 + ϵ, for any
small ϵ, have been developed [LMW02]. A further improvement is presented
in [MS08], where an algorithm that finds the optimal solution for CSP with
running time O(mn+ nd(16|Σ|)d) is proposed.
The complexity results are improved in [WZ09], where a O(mn + nd(|Σ −
1|d23.25d)-time fixed parameter algorithm for the CSP is presented. Recently,
a polynomial-time approximation algorithm having a new time bound that
outperforms the other approaches has been presented [CMW11].
However, the running time of the approximation algorithms presented for the
CSP and CSSP, makes them of theoretical importance only.
In terms of parameterized complexity, the main result for the Closest Sub-
string Problem is that it cannot be solved in polynomial time, even when
the distance parameter is fixed. This is expressed by showing that the CSSP
belongs to the complexity class of W[1]-hard problems [FGN02, MOP05].

29



3.4. ANT-COLONY OPTIMIZATION FOR THE CLOSEST STRING
PROBLEM

Since heuristics are usually able to provide good solutions in a reasonable
amount of time, a plethora of heuristic approaches have been proposed for the
CSP. Genetic Algorithms (GA, for short) [Hol92, GH88, BGH90] are among
the most known metaheuristic methods; they mimic the natural evolutionary
process by evolving a population of solutions. The first GA for the CSP has
been proposed in [MMH03]; such paradigm has been successively adopted
in [LHS05, Jul09]. A Simulated Annealing approach has been presented in
[LHS05], and a hybrid algorithm has been implemented in [LHHW08], which
combines both the Genetic and the Simulated Annealing approaches, though
limited only to binary alphabets. Finally, a Memetic Algorithm has been
proposed in [BM10], which integrates a local search strategy with an evolu-
tionary method. In a more recent work [Tan11], a heuristic strategy based
on a Lagrangian relaxation and a Tabu Search method has been proposed
for the Closest String Problem.
In [LLHM11], an exact algorithm for the case of three strings with alpha-
bet size equal to two is presented; however, this case is only of theoretical
interest. A new approach has been introduced in [KK10], where the CSP is
addressed as a constraint satisfaction problem. Despite the innovation pro-
posed by this method, the results are claimed just for short instances of the
problem, that do not represent a real application.

Several heuristic approaches have been proposed in literature also for the
Closest Substring Problem [BT02, PS00, PRP03]. In particular, two exact
algorithms for small values of d and n have been implemented [Mar08]. Since,
for real instances, the values of n and d are usually large, these approaches
are characterized by only theoretical relevance.

3.4 Ant-Colony Optimization for the Closest String
Problem

3.4.1 An Overview of the Ant-Colony Optimization
Metaheuristic

TheAnt-Colony Optimization metaheuristic (ACO, for short) [DS02, DCG99,
Dor92] is a multi-agent approach particularly suited for hard combinatorial
optimization problems. In fact, this method covers two main application
fields: NP-hard problems, whose best known solutions have exponential-time
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worst-case complexity, and shortest path problems, in which the properties of
the problems graph representation can change over time, concurrently with
the optimization process. As the CSP problem is NP-hard, and searching a
closest string can be viewed as finding a minimum path into the graph of all
feasible solutions [MLO+04], it is natural to apply the ACO heuristic to the
Closest String Problem. This is what we do next.

3.4.1.1 Ant-Colony Optimization and Swarm Intelligence

The Ant-Colony Optimization metaheuristic is a member of a broader class
of optimization methods, known as Swarm Intelligence (SI, for short). Swarm
intelligence represents the collective behavioural intelligence of insect colonies,
exploited to perform several tasks, such as nest construction, food transporta-
tion, task partitioning. SI provides an alternative way to design intelligent
systems, where the notions of autonomy and distributed activities replace
the concepts of control and centralization [BDT99]. In fact, in a colony of
insects, each individual is not required to carry out all the tasks needed for
the survival of the entire colony, but it is specialized in some of them; such
partition of the work allows simultaneous activities, therefore it leads to a
more efficient organization than performing sequential tasks. A key feature
in insect colonies is their self-organization: individual behaviours emerge au-
tonomously within the colony, without the guidance of any controller; such
behaviours originate from local information, there is no global knowledge
of the entire system. Specifically, the self-organization mechanism relies on
four basic components: positive feedback, which promotes the most popular
behavioural patterns within the colony; negative feedback, that serves as a
regulatory control mechanism to balance the system; amplification of fluctu-
ations, that supports exploitation and exploration through trials and errors;
and multiple interactions among single agents.
The self-organization mechanism affects not only insect colonies, indeed it
can be applied to design complex intelligent systems: a colony of insects can
be thought of as a decentralized system for problem solution, based on the
interaction of simple agents. In fact, insect colonies are extremely suitable
to provide efficient and flexible solutions to complex problems.

Another important feature of SI is the stigmergy. Within a colony, two
kinds of interactions can be detected: direct interactions, such as visual con-
tact, antennation, chemical contact, and indirect interactions. The latters
are more subtle: two individuals indirectly interact when one of them mod-
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ifies the environment and the other responds to the new environment at a
later time [RM04]; this form of indirect communication is used to coordinate
the activities of the colony, and it is referred to as stigmergy.

3.4.1.2 Real and Artificial Ants

ACO is modeled on the principles of Swarm Intelligence. ACO was firstly
proposed by Dorigo as an innovative approach to the Traveling Salesman
problem [Dor92].
Specifically, the ACO metaheuristic represents a transposition of real ants
behaviour to artificial intelligence, and it has been inspired by the observa-
tion of real ant colonies, where the behaviour of each single ant is directed
to the survival of the whole colony [DCG99]. In particular, in his analy-
sis Dorigo pointed out the foraging behaviour of ants: when a new food
source is found, ants search for the shortest and easiest way to return to
nest. While walking from food sources to the nest, and vice versa, ants de-
posit on the ground a chemical substance called pheromone [DCG99]. Ants
can smell pheromones and, when choosing their way, they select with higher
probability paths marked by stronger pheromone concentrations. It has been
proved that pheromone trails make shortest paths to emerge over other paths
[DAGP90], due to the fact that pheromone density tends to be higher on such
paths.
In view of all these facts, artificial ants are modeled on the behaviour of real
ants.
As for real ant colonies, ACO is based on a population, or colony, of concur-
rent and asynchronous entities globally cooperating to find a good solution
to the task under consideration; although each ant is able to find a feasible
solution to the problem, high quality solutions are the result of the coopera-
tion among the population.
Artificial ants modify some aspects of their environments: real ants release
pheromone trails while walking; similarly, artificial entities release artificial
pheromone trails, that are numeric information locally stored in the prob-
lem’s state they visit. Such stigmergic communication allows to modify the
perception of the environment within the colony. As real pheromones evap-
orate over time, usually ACO implements a pheromone evaporation mecha-
nism; from a computational perspective, such strategy prevents the stagna-
tion of the algorithm into a local optimum.
Both artificial and real ants share the goal of finding the shortest path from
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an origin, that is the nest, to a destination, that is the food source. The
notion of shortest path can be thought of as the solution having minimum
cost. Ants move to adjacent problem states; this means they can not “jump”
from a state to another, but just walk through adjacent locations.
Finally, artificial ants adopt a myopic and stochastic state transition policy:
as the real ones, they take stochastic decisions to choose the next state to
move to, by using only local information and without any prediction on the
future states.
Despite these similarities, there are some differences between real and arti-
ficial ants: artificial ants move in a discrete world, and their moves consist
on transitions from discrete to discrete states; artificial ants have an internal
state to store their previous actions, and their timing in laying pheromone
might implement a different policy than real ants.

In analogy with the real behaviour of ant colonies, therefore, ACO applies
pheromone trails and social behaviour concepts to solve hard optimization
problems. In short, ACO algorithms work as follows: a set of asynchronous
and concurrent agents, a colony of ants, moves through the states of the
problem. To determine the next state, ants apply stochastic local decisions
based on pheromone trails. Ants can release (additional) pheromone into a
state, while building a solution, and/or after a solution has been built, by
moving back to the previous visited states.
In an elitist strategy, only the ant that has produced the best solution is
allowed to update pheromone trails. In general, the amount of pheromone
deposited is proportional to the quality of the solution built. To avoid a too
rapid convergence towards suboptimal regions, ACO algorithms include an-
other mechanism for updating pheromone trails, namely, pheromone evapora-
tion. This consists in decreasing over time the intensity of the components of
pheromone trails, as pheromone density tends to increase on shortest paths.
Thus, the evaporation mechanism limits premature stagnation, that are the
situations in which all ants repeatedly construct the same solutions, which
would prevent further explorations of the search space.

3.4.1.3 Convergence of ACO Metaheuristic

In order to assess the convergence of ACO metaheuristic, special classes of
ACO algorithms have been broadly studied. In particular, two kinds of con-
vergence have been proposed by Dorigo [DB05]: convergence in value, that
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considers the probability the algorithm has to generate an optimal solution at
least once, and convergence in solution, concerning the probability that the
ACO algorithm reaches a state which keeps generating the same optimal so-
lution. A proof for the convergence in value and in solution of a special class
of ACO algorithms has been provided in [SD02], which considers a positive
lower bound τmin to pheromone values, in order to prevent the probability
to generate any solution becomes zero. In particular, it has been proved
that for any small constant ϵ > 0 and for a sufficiently large number of algo-
rithm iterations t, the probability of finding an optimal solution is given by
P ∗(t) ≥ 1− ϵ, and it tends to 1 for t→∞.
While convergence proofs give theoretical results on relevant properties of the
algorithms, they usually do not provide any practical advice for implement-
ing efficient algorithms. An important practical result of the convergence of
ACO metaheuristic, is that ACO suffers of deception [BD04]. The notion of
deception has been introduced to describe problems which are misleading for
Genetic Algorithms [Gol87]; example of deceptive problems are n-bit trap
functions [DG93], that involve the presence of points corresponding to sub-
optimal solutions and characterized by large basins of attraction, or points
with relatively small basins of attraction that correspond to optimal solu-
tions. Therefore, Genetic Algorithms are not able to find an optimal solution
for this class of problems. In particular, it has been shown that Ant-Colony
optimization algorithms suffer from first order deception in the same way as
Genetic Algorithms suffer from deception, and second order deception caused
by a bias that leads to performance drawbacks over time.
Therefore, in order to implement efficient and effective ACO approaches, the
presence of first and second order deception has to be taken into account.

3.4.2 Ant-CSP: an Ant-Colony Optimization Algorithm
for the CSP

In this section, we provide a detailed description of our ACO approach for
the CSP problem, called Ant-CSP [FP10].

Given an input set S of n strings of length m, over a finite alphabet Σ, at
each iteration of the Ant-CSP algorithm, a colony consisting of u ants is
generated. Each of the artificial ants, say colonyi, searches for a solution by
means of the find solution procedure, by building a string while it moves
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character by character on a table τ , represented as a |Σ| ×m matrix. The
location τ [i, j], with 1 ≤ i ≤ |Σ| and 0 ≤ j ≤ m−1, mantains the pheromone
trail for the i-th character at the j-th position of the string.

Ants choose “their way” probabilistically, using a probability depending
on the value τ [i, j] of the local pheromone trail: the normalized probability
for each character is computed, depending on the pheromone value deposited
on it. So, the algorithm probabilistically chooses a character.
Initially, τ [i, j] = 1/|Σ|; once each ant has built and evaluated its own solu-
tion, respectively by means of the find solution() and evaluate solution()
procedures, pheromone trails are updated. We adopted an elitist strategy,
so that only the ant that has found the best solution, say colonybest, updates
the pheromone trails, by depositing an amount of pheromone, proportional
to the quality of the solution itself, on the characters that appear in the best
solution. In particular:

τ (t+1)[i, j] = τ (t)[i, j] +


1− HD

m


,

where HD is the maximum Hamming distance of the current string from all
strings in S. Thus, the larger is the pheromone trail for the i-th character,
the higher will be the probability that this character will be chosen in the
next iteration.
Pheromone values are normalized and are used as probabilities. After addi-
tional pheromone trail on the best string has been released, the evaporation
procedure is applied: this consists in decrementing each value τ [i, j] by a
constant factor ρ; in our experiments, we put ρ = 0.03.
The pseudo-code of the Ant-CSP algorithm is shown in Algorithm 1.

3.4.2.1 Datasets and Experimental Protocol

We have tested the ACO-CSP algorithm using the azotated compounds al-
phabet Σ = {A,C,G, T} of the fundamental components of nucleic acids.
In our test platform, we considered a number of input strings n = 10, 20, 30, 40,
50, and string length m = 10, 20, ..., 50, 100, 200, ..., 1000.

Specifically, we have compared our approach with two state-of-the-art
heuristic methods for the CSP : a Genetic Algorithm, GA-CSP, and a Simu-
lated Annealing, SA-CSP [LHS05].
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Algorithm 1 Pseudocode of the Ant-CSP algorithm

1: initialize table τ
2: for i← 1 to m do
3: for j ← 1 to |Σ| do
4: τij ← 1/|Σ|
5: end for
6: end for
7: initialize colony
8: while ¬ stopping criterion do
9: for i← 1 to u do

10: colonyi ← new ant()
11: colonyi.find solution()
12: colonyi.evaluate solution()
13: end for
14: for i← 1 to m do ◃ start pheromone evaporation
15: for j ← 1 to |Σ| do
16: τij ← (1− ρ) · τij
17: end for
18: end for ◃ end pheromone evaporation
19: colonybest.update trails()
20: end while
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For each of a randomly generated problem instance, all algorithms have
been run 20 times. The total colony size for the Ant-CSP algorithm as
well as the population size for the GA-CSP algorithm have been set to 10,
whereas the number of generations has been set to 1500. In the case of the
SA-CSP algorithm, we fixed the number of function evaluations in 15,000,
making the number of function evaluations comparable to the computational
work performed by the former two algorithms.

Our tests have been performed on an Intel Pentium M 750, 1.86 GHz, 1
GB RAM, running Ubuntu Linux.

3.4.2.2 Experimental Results

We report the results of our tests in the five tables below: HD indicates
the Hamming distance value, that we aim to minimize, Time is the running
time in milliseconds. For each length, we computed the average (AVG) of
the closest string scores found in the 20 runs and the standard deviation σ.
Also, we computed the average of the running time over the 20 runs (AVG).
The best results are reported in bold.

Experimental results show that almost always theAnt-CSP outperforms
both the GA-CSP and the SA-CSP algorithms both in terms of solution
quality and efficiency. As a matter of fact, the tables below show that our
algorithm is much faster than both the GA-CSP and SA-CSP algorithms. In
particular, in the case of short instances, i.e. for 10 ≤ m ≤ 50, the Ant-CSP
algorithm is from 5 to 36 times faster than GA-CSP.
Furthermore, it turns out that as n increases, the gap between the running
time of the Ant-CSP and the SA-CSP algorithms becomes considerable. In
Figure 3.1 we report the running times of the algorithms for some sets of
strings.

We also remark that the Ant-CSP provides results of a better quality
than the other two algorithms in terms of Hamming distance. In fact, the
cooperation among the colony ants and the pheromone trails tend to orient
the search towards optimal solutions, allowing to explore and modify local
optima. On the other hand, the SA-CSP algorithm behaves as a random
search, as it simply modifies a string without considering local promising
solutions. Likewise, the GA-CSP algorithm performs random mutations and
crossovers, whereas the Ant-CSP probabilistically selects each character for
the solution.
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Figure 3.1: Running times plot for n = 20, 30, 40, 50.
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We note also that theAnt-CSP algorithm is quite robust, as its standard
deviation σ remains low.

The above considerations show that our algorithm represents a valid and
innovative alternative to the SA-CSP and GA-CSP algorithms.

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG

10 8.45 0.497 67.5 6.9 0.3 1840 7.05 0.218 50.5
20 15.9 0.384 112 13.3 0.714 1860 13.1 0.589 97
30 23.6 0.663 216 19.6 0.583 2700 19.3 0.557 200
40 31.4 0.589 313 25.3 0.714 3040 25.1 0.654 281
50 38.8 0.678 428 31.8 0.994 3220 31.6 0.805 386
100 75.9 0.943 465 63.4 1.31 2060 62.2 0.766 433
200 151 1.04 901 129 1.43 2290 124 1.58 855
300 226 1.18 1350 195 2.19 2540 188 1.57 1290
400 301 2.01 1780 262 2.52 2720 252 1.68 1700
500 375 2.05 2190 330 2.52 2940 317 2.15 2110
600 450 1.87 2740 400 3.71 3800 385 2.5 2920
700 525 1.68 3980 470 3.43 4860 451 2.95 4270
800 600 1.51 3720 540 4.04 4370 517 2.11 3860
900 675 1.19 5670 610 4.01 6110 585 4.05 5690
1000 750 1.53 7720 680 4.12 7850 652 3.72 7850

Table 3.1: Results for inputsets of 10 strings of length m.
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SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG

10 8.95 0.384 211 7.95 0.218 3560 7.95 0.218 132
20 17.1 0.589 342 14.8 0.4 3460 14.8 0.4 258
30 24.8 0.536 502 21.6 0.497 3300 21.4 0.49 370
40 32.5 0.497 602 28.1 0.477 3220 28 0.632 452
50 40.1 0.726 735 35 0.589 3300 34.8 0.536 546
100 78.4 0.663 874 69.5 0.921 2250 67.7 0.853 646
200 154 0.917 2070 140 1.74 3370 135 0.963 1460
300 229 1.16 2300 210 2.09 2970 203 1.95 1810
400 305 1.18 4460 281 1.95 4980 272 1.56 3090
500 380 1.25 5270 353 2.52 4930 341 1.65 3510
600 456 1.46 4610 426 1.89 4180 411 1.68 3660
700 531 1.16 6280 499 3.51 4770 482 1.95 4350
800 607 1.32 11300 572 1.88 9370 553 2.84 7780
900 682 1.49 13700 645 2.58 10800 623 2.51 10400
1000 757 1.69 15700 720 2.79 11800 695 2.49 11800

Table 3.2: Results for inputsets of 20 strings of length m.

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG

10 9 0 245 8.25 0.433 2830 8.15 0.357 148
20 17.3 0.458 518 15.3 0.458 3460 15.2 0.4 341
30 25.1 0.357 772 22.7 0.458 3520 22.4 0.477 508
40 33 0.316 985 29.5 0.5 3720 29.1 0.357 638
50 40.9 0.539 1230 36.9 0.357 4180 36.1 0.436 814
100 79.3 0.557 1280 72.2 0.726 2450 70.8 0.536 850
200 156 0.829 4760 144 1.08 5800 140 0.975 2750
300 232 0.831 6640 216 1.77 6610 209 1.27 4260
400 308 0.829 9160 290 2.93 8160 280 1.28 5550
500 383 0.963 11110 362 1.66 8830 351 1.79 6760
600 459 1.24 12500 436 2.14 9800 423 1.95 7610
700 534 1.03 14500 510 2.57 10900 495 2.01 9430
800 610 1.14 17700 583 2.57 12600 568 2.36 10300
900 686 1.69 19800 658 3.42 13200 640 2.09 11400
1000 760 2.24 19800 731 2.97 12400 713 2.29 10700

Table 3.3: Results for inputsets of 30 strings of length m.
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SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG

10 9.4 0.49 428 8.9 0.3 4000 8.55 0.497 252
20 17.6 0.477 742 15.9 0.218 3990 15.8 0.433 471
30 25.6 0.49 1210 23.1 0.384 4690 22.9 0.384 754
40 33.3 0.458 1540 30.4 0.572 4640 30.1 0.218 962
50 41.2 0.433 1940 37.5 0.497 5070 37 0.589 1220
100 80 0.669 2080 73.6 0.663 3420 71.7 0.477 1260
200 157 0.889 5740 146 1.24 5570 142 0.669 3230
300 233 0.889 8760 219 0.954 8640 214 1.05 5550
400 309 0.831 10090 293 1.87 9510 285 1.16 6560
500 385 0.748 14800 368 2.07 11000 358 1.24 7330
600 461 1.01 17800 441 1.69 13100 431 1.91 7940
700 536 1.05 21700 515 2.1 14300 503 1.01 11700
800 612 1.1 23500 590 2.34 14300 577 1.93 11300
900 688 1.34 26700 664 2.52 17200 649 2.31 15600
1000 763 1.43 30900 738 2.62 15900 722 1.91 16000

Table 3.4: Results for inputsets of 40 strings of length m.

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG

10 9.45 0.497 574 9 0 4390 8.85 0.357 334
20 17.8 0.433 1030 16.2 0.4 4620 16.1 0.218 620
30 25.9 0.3 1490 23.5 0.5 4820 23.2 0.4 899
40 33.5 0.497 1960 30.9 0.357 5070 30.6 0.497 1180
50 41.7 0.458 2410 38.2 0.433 5270 37.8 0.433 1450
100 80.6 0.49 2970 74.7 0.64 3970 73.3 0.64 1750
200 158 0.671 9090 148 0.91 8530 144 0.698 5550
300 234 0.678 14000 222 0.91 10900 216 0.889 8320
400 310 0.792 18500 297 1.65 13100 289 1.41 11100
500 386 1.16 21900 369 1.69 14800 362 1.24 12900
600 462 1.13 21200 444 1.5 14500 434 1.74 12200
700 538 1.14 26800 519 1.9 17300 508 1.7 15500
800 614 1.43 28900 594 2.9 14000 582 2.29 13900
900 689 1.1 33500 667 1.64 19700 656 2.11 18800
1000 765 1.19 36600 742 3.09 21000 729 1.68 18300

Table 3.5: Results for inputsets of 50 strings of length m.
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3.5 Greedy-Walk and Simulated Annealing for the
Closest String Problem

3.5.1 An Overview of Greedy-Walk and Simulated An-
nealing

3.5.1.1 The Greedy-walk

In order to provide good upper bounds for the CSP, several heuristics have
been proposed in literature. Most of them are characterized by the con-
struction of a good initial solution which allows to improve the running time
of branch-and-bound algorithms or other approaches, such as Genetic, Ant-
Colony Optimization, or Simulated Annealing algorithms. A straightforward
approach for generating a “starting point” in the search space consists in
choosing random characters at each position [LHS05, FP10]. Nevertheless,
this strategy can lead to a poor choice for a position j, 1 ≤ j ≤ m, when,
for instance, the chosen character does not appear in any of the strings in S
at the given position. In this case, other choices would reduce the Hamming
distance of the candidate string to some of the strings in S.
Another simple, but more effective, heuristic selects the most occurrent char-
acter at each position of the initial candidate solution. This idea is adopted,
on different levels, in several papers [LHHW08, Jul09, BM10].

In this section, we propose a novel heuristic strategy for building a good
initial solution, that combines the most occurrent character approach with a
greedy walk on the solution space [PCP11]. The underlying idea is to choose,
for each position 1 ≤ j ≤ m of the candidate string, the character that along
with the previous one minimizes the maximum Hamming distance. We refer
to our strategy as greedy because the choice at each position is local and
blind, as we simply choose a character according to a local evaluation of the
distance; moreover, our heuristic identifies a walk, since the choice of the
character at position j affects the choice of the character at position j + 1.
In details, given a set S = {s1, s2, ..., sn} of strings of the same length
m, which we represent as an n × m matrix, we iteratively create a ma-
trix H of the Hamming distance Hij, between the candidate string t and
the substring (si[1]...si[j]), for 1 ≤ i ≤ n and 1 ≤ j ≤ m. For the
first column, that involves only the characters appearing in the first po-
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index ↓
1 A G T C T
2 A T A A A
3 T C G T G
4 A G T G C
5 G A G A A

(a)

❍
❍❍❍

❍❍i
j

1 2 3 4 5

1 0 - - - -
2 0 - - - -
3 1 - - - -
4 0 - - - -
5 1 - - - -

(b)

Figure 3.2: (a) Input set S. (b) HD matrix after the choice of the most
occurrent character.

sition of the strings in S, we simply choose the most frequent character,
breaking ties arbitrarily; then we compute the Hamming distance between
the chosen character and each of the characters s1[1], s2[1], ..., sn[1]. To
better explain our strategy, we refer to the following set of strings S =
{AGTCT,ATAAA, TCGTG,AGTGC,GAGAA}, reported in Fig. 3.2a.
Since the most occurrent character at position 1 of the strings in S is A, the
first column of the matrix H is initialized as in Fig. 3.2b.

Next, let us consider the case in which 1 < j ≤ m: after locating the rows
that led to the maximum Hamming distance at position j−1, we choose, for
position j, any of the characters appearing on these rows (and column j); for
instance, at position 2 in our example, we can choose between the characters
C and A, which occur as characters at position j = 2 of the strings at rows
i = 3 and i = 5, that have the maximum Hamming distance at position 1.
The idea behind this approach is to keep the maximum Hamming distance as
low as possible, and this is obtained by trying to not increase its maximum
value at each iteration. Suppose we choose character C at position 2; then
we compute the Hamming distances between AC and each of the prefixes of
length 2 of our strings and move to the position 3, see Fig. 3.3.

We iterate the process until we reach the last position of the strings.
In the case where more characters lead to the same Hamming distance, we
choose the most occurrent one, breaking ties arbitrarily. In Fig. 3.4a, we re-
port in bold face the character chosen for the solution; the final matrix of the
Hamming distances for our example is shown in Fig. 3.4b. It turns out that
our proposed heuristic performs better than simply choosing the most occur-
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index ↓
1 A G T C T
2 A T A A A
3 T C G T G
4 A G T G C
5 G A G A A

(a)

❍❍❍
❍❍❍i

j
1 2 3 4 5

1 0 1 - - -
2 0 1 - - -
3 1 1 - - -
4 0 1 - - -
5 1 2 - - -

(b)

Figure 3.3: (a) Input set S. (b) HD matrix after the choice of the most
occurrent character.

index
1 A G T C T
2 A T A A A
3 T C G T G
4 A G T G C
5 G A G A A

(a)

❍
❍❍❍

❍❍i
j

1 2 3 4 5

1 0 1 2 3 3
2 0 1 2 2 3
3 1 1 1 2 3
4 0 1 2 3 4
5 1 2 2 2 3

(b)

Figure 3.4: (a) Input set S. (b) HD matrix after the choice of the most
occurrent character.
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rent character at each position, as result from extensive experimentations on
large datasets.

3.5.1.2 The Simulated Annealing Algorithm

Simulated Annealing (SA, for short) is a generalization of Monte Carlo meth-
ods, originally proposed by Metropolis and Ulam [MU49, MRR+53] as a
means of finding the equilibrium configuration of a collection of atoms at a
given temperature. The basic idea of SA was taken from an analogy with the
annealing process used in metallurgy, a technique involving heating and con-
trolled cooling of a material to increase the size of its crystals and reduce their
defects. SA is a stochastic method broadly applied to solve continuous and
discrete optimization problems: find the global minimum of a cost function
with many degrees of freedom is a difficult task, especially when the function
is characterized by the presence of many local minima. Methods based on
SA apply a probabilistic mechanism to escape from such local minima: the
underlying idea is to accept, under certain conditions, not only transitions
that improve the objective function value, but also transitions that do not.
The probability of accepting worsening steps varies during the search phase,
and it slowly decreases to zero. At the end of the search phase, when only
improvement of the objective function are considered, this method behaves
as a local search. Nevertheless, the possibility of explore points of the search
space that deteriorate the current optimal solution, allows to escape local
minima and to better explore the set of feasible solutions.

The SA strategy has been inspired by the thermodynamic annealing pro-
cess of solid materials, such as glass and metals, where a solid is heated to
a liquid state and then cooled slowly, so that its structure becomes frozen
at the crystal configuration of lowest energy. In this process, temperature
plays a major role: when it is set to high values, the atoms in the system
are in a highly disordered state, and the energy of the system is high. To
reach a more orderly state, the temperature is slowly decreased. The anneal-
ing accomplishes this phenomenon by gradually cooling the system, in such
a way that it reaches a stable structure. A fast decrement in temperature,
in fact, might cause defects in crystal structure. The system is in thermo-
dynamic equilibrium at temperature T if the probability P (Ei) of a state
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having energy Ei is governed by the Boltzmann’s distribution

P (Ei) =
exp


− Ei

kbT




j exp

− Ej

kbT

 ,
where kb represents the Boltzmann’s constant.
In the original Metropolis scheme, an initial state of a thermodynamic system
is chosen, having energy E and temperature T . Keeping T constant, the
initial configuration is perturbed, and the energy change ∆E is computed. If
∆E is negative, that happens when the new configuration represents a better
point, the new configuration is always accepted, otherwise it is accepted
with a probability given by the Boltzmann factor e−(∆E/T ). This process
is repeated L times for the current temperature, then the temperature is
decremented and the entire process is repeated until a frozen state is reached
at T = 0. As already discussed, methods based on the SA may accept not
only transitions that lead to better solutions, but also transitions that lead to
worse ones, in order to escape local optima. In particular, at the beginning
of the search, when temperatures are higher, the algorithm behaves as a
random search, therefore bad solutions can be accepted; whereas for lower
values of T , solutions are located in promising regions of the search space.

3.5.1.3 Simulated Annealing Convergence

The Simulated Annealing method is based on the theory of Markov pro-
cesses [MTG93], that define models where the successor of the current state
is chosen stochastically according only to its predecessor, without considering
the entire previous history. In particular, the convergence results for SA have
taken into account two models: the first considers a sequence of homogeneous
Markov chains, the other a single inhomogeneous Markov chain [HJJ03].
To introduce convergence results for both the homogeneous and inhomoge-
neous model, some additional notations are needed [BBM08].
Let us define the exponential acceptance rule as follows:

Y ← neighbor(N(X(t)))

X(t+1) =


Y, f(Y ) ≤ f(X(t))

Y, f(Y ) > f(X(t)),with p = e−(f(Y )−f(X(t)))/T

X(t), f(Y ) > f(X(t)),with (1− p)

(3.7)

46



3.5. GREEDY-WALK AND SIMULATED ANNEALING FOR THE
CLOSEST STRING PROBLEM

where X(t+1) represents the configuration at time t + 1, obtained from the
previous state X(t); p is the probability of choosing a worsening solution; T
is the temperature parameter.

Let (X , f) be an instance of a combinatorial optimization problem, where
X represents the search space and f the objective function.
Let X ∗ be the set of optimal solutions.
Starting from an initial configuration X(0) and iteratively applying the ex-
ponential acceptance rule (3.7), a trajectory X(t) is defined.
Under certain conditions, the probability of finding one of the optimal solu-
tions tends to one when the number of iterations goes to infinity:

lim
k→∞

Pr(X(k) ∈X ∗) = 1. (3.8)

Let O denote the set of possible outcomes of a sampling process, and let
X(k) be the stochastic variable denoting the outcome of the k-th trial. Given
the probability that the configuration is at a specific state j, after being
at the previous state i, we define the elements of the transition probability
matrix P as follows:

pij(k) = Pr(X(k) = j|X(k−1) = i). (3.9)

A stationary distribution of a finite time-homogeneous Markov chain is
defined as the stochastic vector q, where the components qi are

qi = lim
k→∞

Pr(X(k) = i|X(0) = j) for all j ∈ O. (3.10)

After the introductory definitions given above, some considerations on the
homogeneous and inhomogeneous models can be addressed.
In the homogeneous model, the temperature T is assumed to be held constant
for a sufficiently large number of iterations. Therefore, the Markov chain
associated to SA has a stationary distribution q(T ) whose components are
given by:

qi(T ) =
e−f(i)/T

j∈X e−f(j)/T
(3.11)

and
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lim
T→0

qi(T ) = q∗i =
1

|X ∗|
IX ∗(i) (3.12)

where IX ∗ is the characteristic function of the set X ∗, and it is equal to one
if the argument belongs to the set, zero otherwise.
It follows that

lim
T→0

lim
k→∞

Pr(X(k) ∈X ∗) = 1 (3.13)

Therefore we can say that the algorithm asymptotically converges with prob-
ability one, i.e. it finds an optimal solution with probability one.

The second convergence approach for Simulated Annealing is based on
inhomogeneous Markov chain models. In this approach, the Markov chain
does not need to reach a stationary distribution, but the condition that the
temperature parameter cools down sufficiently slowly before converging is
imposed.
At each iteration k, a different temperature value Tk is defined; this leads to
a nonincreasing sequence of values Tk such that limk→∞ Tk = 0.
If the temperature decrement is sufficiently slow, we have

Tk ≥
A

log(k + k0)
(3.14)

for A > 0 and k0 > 2; therefore

lim
k→∞

Pr(X(k) ∈X ∗) = 1 (3.15)

that means the Markov chain converges in distribution to q∗.

The homogeneous Markov chain model has been adopted in [LM86], which
proves that the algorithm converges with probability close to one, but there
are also cases where convergence takes exponential time. An important result
of this proof is the conjecture that when the temperature is close to zero, the
second largest eigenvalue will be close to one for problems with local optima,
and then the convergence will be very slow [HJJ03]. Therefore, the initial
temperature should be set to high values.
An important result of the inhomogeneous approach is the following: while
the logarithmic cooling schedule in (3.14) is a sufficient condition for the
convergence, for few values the logarithmic rule is also necessary [RSV91,
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HJJ03]; moreover, there is a unique choice for which the logarithmic rule is
both necessary and sufficient for the convergence of the Simulated Annealing
[Haj88].

3.5.2 A Combined Greedy-Walk Heuristic and Simu-
lated Annealing Approach for the CSP

Kirkpatrick first proposed to apply SA to solve combinatorial optimization
problems [KGV83]. He replaced the notion of energy with a cost function,
and the states of a system of particles with the solutions of a minimization
problem; thus, the search of a minimum energy status is translated into the
search of a solution that minimizes the cost function. Liu et al. [LHS05]
proposed a SA approach for the CSP that works much along the same lines
as Kirkpatrick’s algorithm; in a later work [LHHW08], SA has been combined
with a GA.

The main innovative point in our SA approach for the CSP problem lies
in the choice of the initial string and the mutation mechanism implemented
[PCP11]. Our algorithm starts the solution search from a string built by ap-
plying the greedy-walk heuristic proposed above (see Section 3.5.1.1). Unlike
the approach proposed in [LHS05], where the initial string is created ran-
domly, our heuristic allows to locate a good starting point, that is a solution
in general not too far from the optimal. This strategy not only speeds up
the convergence of the algorithm, but finds a better basin of attraction than
the ones identified by the “most occurrent character” heuristic.

After setting the initial temperature, the algorithm starts its search. For
each temperature value T , a block of L iterations is performed. At each
iteration, a new string t′ of length m over the alphabet Σ is constructed
by perturbing the string t built during the previous iteration. The idea
behind our rearrangement mechanism is to modify the string t at a certain
number of random positions, by initially substituting them with the most
frequent characters. The number of characters to change is determined by
the quality of the solution: the better is the solution, i.e. the lower is the
maximum Hamming distance, the smaller is the number of positions which
are changed. It should be noted that this step leads to a different solution
from the one built by the “most occurrent character” heuristic, since in our
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case only few positions of t are modified. In some cases, when this step fails
since the positions that we want to change in t already contain the most
frequent characters, we try to move to a new search domain, in order to
explore new areas of the search space, thus escaping local optima. This is
done by substituting some characters with those that appear in the farthest
string from t in S. This strategy has been already successfully adopted in
[MLO+04, GMPV08, LLHM11].
Once a new string t′ is obtained from t, the energy change ∆E = dH(t

′, S)−
dH(t, S) is evaluated, where S is the input set of strings and dH(t

′, S) stands
for the maximum Hamming distance between t and the strings in S.
If ∆E ≤ 0, t′ becomes the new current solution, otherwise t′ is chosen as
current solution with probability e−(∆E/T ) only. At the end of each block of
iterations, the temperature value is multiplied by a reduction factor γ. The
algorithm stops when a suitable termination criterion is met.
The pseudo-code of the algorithm SA for the CSP problem (SAGW) is shown
in Algorithm 2.

Algorithm 2 Pseudocode of the SAGW algorithm

1: generate an initial string t by applying the greedy-walk heuristic
2: set an initial T = Tmax

3: set the number of iterations L
4: set the reduction factor γ
5: while ¬ stopping criterion do
6: for 0 ≤ I < L do
7: t′ ← mutate(t);
8: ∆ = evaluate energy(t′, S)− evaluate energy(t, S);
9: if


∆ ≤ 0 OR


∆ > 0 AND e−∆/T > random(0, 1)


then

10: t← t′;
11: end if
12: end for
13: T ← γ · T ;
14: end while

3.5.2.1 Datasets and Experimental Protocol

We have tested our approach using a large and comprehensive testbed. In
particular, our experimentation focuses on two datasets, consisting of simu-
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lated and real biological data. The artificial dataset includes 195 instances,
that can be grouped into three main classes, according to the alphabet size
|Σ|. The first class, characterized by an alphabet size |Σ| = 2, contains
instances which can find applications in Coding Theory. The second class
uses an alphabet of four characters, that represents the azotated compounds
alphabet Σ = {A,C,G, T} of the fundamental components of nucleic acids.
Finally, the third class adopts an alphabet consisting of twenty characters,
which denote the 20 amino acids.

In our test platform, we considered a number of input strings n = 10, 15, 20,
25, 30, and string lengths m = 100, 200, ..., 900, 1000, 2000, ..., 5000. The in-
stances used were randomly generated as follows: given n, m, and the al-
phabet Σ, a character was randomly chosen from Σ for each position in the
resulting string. For each of the simulated problem instances, the algorithm
was run 20 times.

The real dataset consists of six instances from the McClure dataset [MVF94],
characterized by an alphabet size |Σ| = 20; these data represent a set of pro-
tein sequences frequently used to test string-comparison algorithms.

The parameters required by the Simulated Annealing algorithm have been
set as follows: the initial percentage of characters to change was set to 4%,
whereas the starting temperature T was set to 5. As stopping criterion we
have used the allowed number of iterations, which we have set in our tests to
10. This means that the temperature value was subjected to 10 decrements;
for each of them L = 500 iterations were performed. Finally, the temperature
reduction factor γ was set to 0.8. We remark that all these parameters have
been determined experimentally.

3.5.2.2 Experimental Results

Tables 3.6-3.21 report the results of our comparisons with the ILP formula-
tion, which is the most effective approach for the CSP problem. The first two
columns, n and m, are the number of strings in S and their length, respec-
tively. The ILP column contains the optimal closest string score found by
solving the integer linear programming formulation for the problem proposed
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in Section 3.3. The ILP problem is solved by using the CPLEX version 12.12,
with default settings.
The columns named SAGW report the best, average, and worst closest string
scores found by our algorithm in the 20 runs. The last column shows the gap
between our best solution and the one found by the exact method; it reports
how much our best solution is far from the best (i.e., in the first table, for
n = 10 and m = 100, our solution is 0.75% worse than the solution found by
CPLEX).

It results that the solutions found by our approach are very close to the
ones obtained by solving the mathematical IP formulation of the CSP with an
exact method, showing the effectiveness of our proposed approach. Moreover,
exact methods tend to perform quite poorly on large instances of the problem,
especially in terms of CPU time, while our algorithm is not so much affected
by the complexity of the datasets. By inspecting the experimental results,
it turns out that the gap between our approach and the exact method tends
to be smaller as the length m increases. For real instances, our algorithm
performs very well in the cases of string length equals to 100 and 98 (see
Table 3.21).

ILP SAGW
n m Best Best Avg Worst GAP
10 100 37 38 39.6 51 0.008
10 200 74 75 78.05 92 0.009
10 300 111 112 116.3 137 0.007
10 400 148 151 154.4 178 0.008
10 500 186 189 191.95 217 0.005
10 600 224 226 230.9 261 0.006
10 700 260 264 269.4 303 0.006
10 800 299 301 307.4 343 0.005
10 900 334 338 343.9 382 0.004
10 1000 372 377 382.15 425 0.004
10 2000 747 752 759.15 839 0.003
10 3000 1123 1129 1141.4 1253 0.003
10 4000 1493 1496 1516.5 1662 0.002
10 5000 1871 1877 1896.25 2083 0.002

Table 3.6: Results for n = 10 and |Σ| = 2.

2http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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ILP SAGW
n m Best Best Avg Worst GAP
15 100 41 41 42.75 53 0.010
15 200 78 80 82.95 96 0.008
15 300 118 120 124.1 141 0.009
15 400 158 161 163.4 186 0.007
15 500 197 200 203.7 227 0.007
15 600 237 240 243.8 272 0.006
15 700 275 277 284.35 317 0.006
15 800 316 320 324.25 357 0.006
15 900 355 359 362.65 402 0.005
15 1000 393 397 402.5 445 0.004
15 2000 789 796 800.05 875 0.004
15 3000 1185 1191 1198.5 1308 0.003
15 4000 1580 1589 1597.6 1737 0.003
15 5000 1971 1983 1994.95 2167 0.002

Table 3.7: Results for n = 15 and |Σ| = 2.

ILP SAGW
n m Best Best Avg Worst GAP
20 100 42 44 44.6 54 0.014
20 200 82 85 87.1 103 0.014
20 300 124 128 129.25 148 0.012
20 400 163 167 169.95 195 0.010
20 500 204 207 212.75 242 0.010
20 600 246 250 254.85 281 0.011
20 700 285 291 296.65 327 0.009
20 800 328 334 337.2 369 0.009
20 900 368 374 379.45 418 0.008
20 1000 409 415 420.7 465 0.008
20 2000 819 830 835.9 903 0.006
20 3000 1231 1240 1249.55 1347 0.005
20 4000 1636 1653 1663.25 1784 0.004
20 5000 2054 2071 2080.4 2236 0.004

Table 3.8: Results for n = 20 and |Σ| = 2.
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ILP SAGW
n m Best Best Avg Worst GAP
25 100 43 45 46.2 58 0.017
25 200 85 87 88.95 100 0.013
25 300 126 129 132.05 152 0.012
25 400 169 173 175.25 194 0.011
25 500 211 215 218.05 239 0.010
25 600 252 257 259.4 287 0.009
25 700 293 298 302.85 334 0.008
25 800 335 340 344.8 377 0.008
25 900 377 384 386.95 424 0.007
25 1000 422 427 431 469 0.007
25 2000 838 848 853.7 914 0.006
25 3000 1252 1263 1275.75 1368 0.005
25 4000 1675 1688 1698.5 1817 0.004
25 5000 2093 2107 2117.4 2260 0.003

Table 3.9: Results for n = 25 and |Σ| = 2.

ILP SAGW
n m Best Best Avg Worst GAP
30 100 45 46 47.3 59 0.018
30 200 87 89 91.15 105 0.015
30 300 129 132 134.6 157 0.013
30 400 173 178 179.75 199 0.014
30 500 215 221 222.75 249 0.012
30 600 256 263 265.8 291 0.011
30 700 299 305 309.05 342 0.010
30 800 342 349 352.85 382 0.010
30 900 384 391 395.85 431 0.010
30 1000 426 433 439.05 481 0.009
30 2000 853 867 872.35 932 0.007
30 3000 1277 1292 1300.85 1388 0.006
30 4000 1707 1724 1732.05 1838 0.005
30 5000 2133 2152 2162.25 2294 0.004

Table 3.10: Results for n = 30 and |Σ| = 2.
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ILP SAGW
n m Best Best Avg Worst GAP
10 100 57 58 60.4 78 0.015
10 200 114 117 119.05 137 0.012
10 300 172 174 177.6 199 0.010
10 400 229 233 236.45 260 0.009
10 500 286 290 294.2 327 0.008
10 600 346 348 353.55 386 0.008
10 700 404 407 412 449 0.007
10 800 462 466 470.95 514 0.006
10 900 519 524 528.5 576 0.006
10 1000 578 582 587.35 640 0.006
10 2000 1154 1164 1170.55 1265 0.004
10 3000 1731 1736 1749.85 1893 0.003
10 4000 2314 2325 2332.45 2513 0.003
10 5000 2891 2902 2914 3142 0.003

Table 3.11: Results for n = 10 and |Σ| = 4.

ILP SAGW
n m Best Best Avg Worst GAP
15 100 61 63 63.85 73 0.015
15 200 122 124 126.1 141 0.015
15 300 183 186 188.4 211 0.013
15 400 243 246 250.45 273 0.012
15 500 304 308 312.6 342 0.012
15 600 364 369 373.3 406 0.009
15 700 425 430 436.05 474 0.009
15 800 487 492 497.55 537 0.008
15 900 548 554 558.3 606 0.008
15 1000 609 616 620.05 667 0.008
15 2000 1219 1229 1235.05 1320 0.005
15 3000 1828 1838 1849 1975 0.004
15 4000 2436 2452 2461.65 2634 0.004
15 5000 3052 3071 3078.6 3293 0.003

Table 3.12: Results for n = 15 and |Σ| = 4.
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ILP SAGW
n m Best Best Avg Worst GAP
20 100 63 65 66.8 77 0.022
20 200 125 128 130.85 150 0.016
20 300 190 193 195.25 215 0.015
20 400 252 257 259.5 282 0.014
20 500 313 319 321.95 352 0.011
20 600 376 382 385.55 418 0.010
20 700 441 448 450.1 483 0.011
20 800 503 509 513 554 0.009
20 900 564 572 576.95 618 0.009
20 1000 627 634 639.85 691 0.009
20 2000 1258 1268 1276.45 1359 0.007
20 3000 1891 1902 1909.05 2028 0.005
20 4000 2517 2531 2543.5 2697 0.004
20 5000 3149 3164 3174.3 3365 0.004

Table 3.13: Results for n = 20 and |Σ| = 4.

ILP SAGW
n m Best Best Avg Worst GAP
25 100 65 67 68.45 80 0.023
25 200 128 131 133.65 149 0.018
25 300 193 197 199.1 217 0.015
25 400 257 262 264.95 287 0.014
25 500 321 327 329.05 354 0.012
25 600 385 391 395.35 423 0.013
25 700 449 455 460.1 493 0.011
25 800 514 522 524.75 564 0.011
25 900 577 584 589.6 629 0.010
25 1000 644 651 655.55 699 0.010
25 2000 1283 1297 1302.25 1380 0.007
25 3000 1928 1941 1949.05 2059 0.006
25 4000 2571 2588 2597.65 2737 0.005
25 5000 3213 3234 3242.6 3420 0.004

Table 3.14: Results for n = 25 and |Σ| = 4.
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ILP SAGW
n m Best Best Avg Worst GAP
30 100 66 68 69.75 83 0.024
30 200 131 134 136.9 152 0.021
30 300 197 201 203.45 227 0.018
30 400 261 267 269.1 295 0.015
30 500 327 332 335.25 362 0.013
30 600 392 400 401.55 431 0.013
30 700 457 464 468.15 499 0.012
30 800 523 529 532.85 566 0.011
30 900 588 597 600.3 636 0.012
30 1000 652 659 665.35 704 0.010
30 2000 1302 1317 1323.6 1393 0.008
30 3000 1958 1973 1979.45 2084 0.006
30 4000 2610 2634 2637.25 2775 0.005
30 5000 3260 3280 3291.15 3460 0.005

Table 3.15: Results for n = 30 and |Σ| = 4.

ILP SAGW
n m Best Best Avg Worst GAP
10 100 78 79 80.2 91 0.018
10 200 155 157 159.5 178 0.014
10 300 232 235 237.75 252 0.009
10 400 310 313 316.45 335 0.008
10 500 389 392 396.3 420 0.009
10 600 467 469 473.5 496 0.007
10 700 546 550 552.7 581 0.006
10 800 623 626 631.45 665 0.006
10 900 703 706 710.55 744 0.006
10 1000 779 783 787.6 829 0.006
10 2000 1560 1564 1572.45 1643 0.004
10 3000 2340 2347 2355.8 2452 0.003
10 4000 3122 3131 3140 3264 0.003
10 5000 3908 3918 3924 4077 0.002

Table 3.16: Results for n = 10 and |Σ| = 20.
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ILP SAGW
n m Best Best Avg Worst GAP
15 100 82 84 84.95 93 0.024
15 200 164 165 167.35 181 0.014
15 300 245 249 250.6 265 0.013
15 400 327 331 333.2 348 0.012
15 500 409 413 415.6 436 0.010
15 600 490 494 497.6 520 0.009
15 700 571 576 580.3 605 0.009
15 800 655 660 662.7 688 0.008
15 900 735 740 744.9 776 0.007
15 1000 818 822 827.5 859 0.007
15 2000 1636 1644 1650.1 1709 0.005
15 3000 2454 2464 2472.15 2554 0.004
15 4000 3275 3284 3292.4 3403 0.003
15 5000 4091 4105 4115 4251 0.003

Table 3.17: Results for n = 15 and |Σ| = 20.

ILP SAGW
n m Best Best Avg Worst GAP
20 100 84 86 87.3 94 0.027
20 200 168 170 171.55 184 0.017
20 300 250 255 256.6 274 0.016
20 400 335 339 340.65 359 0.012
20 500 418 422 425.25 446 0.011
20 600 502 507 510.4 534 0.011
20 700 586 592 594.3 618 0.010
20 800 669 674 678.35 704 0.009
20 900 754 761 763.5 793 0.009
20 1000 836 845 847.05 881 0.008
20 2000 1674 1683 1688.75 1743 0.006
20 3000 2513 2524 2530.5 2612 0.004
20 4000 3351 3361 3372.1 3480 0.004
20 5000 4188 4203 4203 4337 0.003

Table 3.18: Results for n = 20 and |Σ| = 20.
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ILP SAGW
n m Best Best Avg Worst GAP
25 100 85 87 88.55 94 0.027
25 200 170 173 174.65 187 0.019
25 300 255 259 261.1 274 0.017
25 400 340 344 346.7 364 0.013
25 500 426 430 432.95 449 0.013
25 600 510 516 518.35 541 0.011
25 700 595 601 604.95 628 0.012
25 800 680 687 690.1 716 0.010
25 900 766 773 775.4 807 0.009
25 1000 851 859 861.2 892 0.009
25 2000 1702 1710 1716.7 1776 0.006
25 3000 2554 2562 2570.65 2650 0.005
25 4000 3401 3418 3424 3530 0.004
25 5000 4255 4273 4278.8 4412 0.004

Table 3.19: Results for n = 25 and |Σ| = 20.

ILP SAGW
n m Best Best Avg Worst GAP
30 100 86 89 89.65 96 0.027
30 200 173 176 176.95 187 0.020
30 300 258 262 264.35 278 0.017
30 400 344 349 351.05 367 0.014
30 500 430 435 437.9 456 0.014
30 600 516 522 525 546 0.012
30 700 602 609 611.7 635 0.012
30 800 688 695 698.05 721 0.010
30 900 774 782 785.1 814 0.010
30 1000 860 867 871.1 901 0.010
30 2000 1720 1732 1737.85 1788 0.007
30 3000 2584 2594 2599.95 2677 0.005
30 4000 3444 3460 3465 3566 0.005
30 5000 4304 4322 4328.2 4452 0.004

Table 3.20: Results for n = 30 and |Σ| = 20.
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ILP SAGW GAP
Name n m Best Best Avg Worst
McClure-582-20-6-141 6 141 88 95 95 113 0.050
McClure-582-20-10-141 10 141 97 106 106 121 0.064
McClure-582-20-12-141 12 141 97 105 105 119 0.057
McClure-586-20-6-100 6 100 72 73 73 81 0.010
McClure-586-20-10-98 10 98 75 77 77 85 0.020
McClure-586-20-12-98 12 98 77 79 79.05 84 0.021

Table 3.21: Results for McClure instances.
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In order to assess the effectiveness of the new heuristic method proposed,
we also compared our algorithm with other heuristic algorithms proposed
for the CSP. It results that our approach performs better than the memetic
algorithm (for short, MA) and compounded GA and SA (for short, CGSA)
presented in [BM10, LHHW08], respectively. Detailed results are presented
in Table 3.22; in boldface we report the best solution and in italic the best
average scores. In particular, the columns named CGSA and MA represent,
respectively, the best solution found by the compounded GA and SA in one
run and the average of the closest string scores found by the memetic algo-
rithm in 10 runs, as reported in their respective papers [BM10, LHHW08],
for the alphabet size |Σ| = 2. Our algorithm SAGW finds always better
results than the compounded approach, and it also outperforms the average
scores of the memetic algorithm in 9 cases out of 18, when |Σ| = 2.

In Table 3.23, we report the experimental results for the memetic algo-
rithm [BM10], the Genetic Algorithms presented in [Jul09], and our algo-
rithm SAGW on a dataset consisting of 10 strings of length 500, for each
alphabet size |Σ| = {2, 4, 20}. In particular, in boldface we report the best
solution scores. Since the results in the original papers [BM10, Jul09] are
computed for five classes of instances, each of them with a specific Hamming
diameter (that is the maximum Hamming distance between any two strings
in the input set S), we compared the best score among the five classes and
the mean of the average values. It turns out that the algorithm SAGW
outperforms the Genetic Algorithms when |Σ| = 4 and |Σ| = 20, and it finds
results that are comparable with the memetic approach.

The algorithm SAGW gives also improved solutions with respect to the
Genetic Algorithm and Simulated Annealing algorithm presented in [LHS05]
for a small dataset, and implemented in [FP10] for large instances, and it
computes always better solutions than the ant-colony optimization approach
proposed in [FP10], for |Σ| = 4, as shown in Table 3.24, where the best
average solution scores are reported in italic.

For the simulated data, the best solution found by SAGW always out-
performs the ones found by the Largest Distance Decreasing algorithm (for
short, LDDA) presented in [LLHM11], as reported in Tables 3.25, 3.26, and
3.27, where we report the best solution in boldface, and the best average
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scores in italic. In the case of real instances, our approach guarantees results
comparable with LLDA, and outperforms it in two cases (see Table 3.28).

For an in-depth comparison, we refer the reader to [BM10, LHHW08,
LLHM11, Jul09, LHS05, FP10].

CGSA MA SAGW
n m Best Avg Best Avg
10 300 121 116.70 112 116.3
10 400 162 153.50 151 154.4
10 500 201 191.80 189 191.95
10 600 241 228.90 226 230.9
10 700 284 266.50 264 269.4
10 800 328 302.90 301 307.4
15 300 130 131.11 120 124.1
15 400 172 170.30 161 163.4
15 500 215 215.90 200 203.7
15 600 256 254.5 240 243.8
15 700 299 296.60 277 284.35
15 800 347 339.20 320 324.25
20 300 136 130.10 128 129.25
20 400 177 172.20 167 169.95
20 500 224 211.40 207 212.75
20 600 270 254.10 250 254.85
20 700 311 293.90 291 296.65
20 800 356 335.40 334 337.2

Table 3.22: Comparison among MA, CGSA, and our approach for |Σ| = 2.

DBGA MA SAGW
|Σ| n m Best Avg Best Avg Best Avg
2 10 500 187 191.52 186 190.44 189 191.95
4 10 500 292 294.66 289 291.16 290 294.4
20 10 500 394 396.54 389 391.88 392 396.3

Table 3.23: Comparison among the DBGA, MA, and our approach for n =
10, m = 500.
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SA GA Ant-CSP SAGW
n m Avg Avg Avg Best Avg
10 100 75.9 63.4 62.2 58 60.4
10 200 151 129 124 117 119.05
10 300 226 195 188 174 177.6
10 400 301 262 252 233 236.45
10 500 375 330 317 290 294.2
10 600 450 400 385 348 353.55
10 700 525 470 451 407 412
10 800 600 540 517 466 470.95
10 900 675 610 585 524 528.5
10 1000 750 680 652 582 587.35
20 100 78.4 69.5 67.7 65 66.8
20 200 154 140 135 128 130.85
20 300 229 210 203 193 195.25
20 400 305 281 272 257 259.5
20 500 380 353 341 319 321.95
20 600 456 426 411 382 385.55
20 700 531 499 482 448 450.1
20 800 607 572 553 509 513
20 900 682 645 623 572 576.95
20 1000 757 720 695 634 639.85
30 100 79.3 72.2 70.8 68 69.75
30 200 156 144 140 134 136.9
30 300 232 216 209 201 203.45
30 400 308 290 280 267 269.1
30 500 383 362 351 332 335.25
30 600 459 436 423 400 401.55
30 700 534 510 495 464 468.15
30 800 610 583 568 529 532.85
30 900 686 658 640 597 600.3
30 1000 760 731 713 659 665.35

Table 3.24: Comparison among SA, GA, Ant-CSP, and our approach for
|Σ| = 4.
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LLDA SAGW
n m Best Avg Worst Best Avg Worst
10 100 40 40.3 41 38 39.6 51
10 200 76 76.7 78 75 78.05 92
10 300 116 116.7 118 112 116.3 137
10 1000 379 380 382 377 382.15 425
10 2000 755 758 760 752 759.15 839
10 3000 1131 1135.7 1141 1129 1141.4 1253
10 4000 1516 1524 1531 1496 1516.5 1662
10 5000 1885 1888.3 1891 1877 1896.25 2083
20 100 44 44.7 45 44 44.6 54
20 200 86 86.3 87 85 87.1 103
20 300 127 129 131 128 129.25 148
20 1000 421 421.7 423 415 420.7 465
20 2000 837 838.3 840 830 835.9 903
20 3000 1249 1251.3 1254 1240 1249.55 1347
20 4000 1661 1665.7 1670 1653 1663.25 1784
20 5000 2075 2077 2081 2071 2080.4 2236
30 1000 440 441 443 433 439.05 481
30 2000 870 871 872 867 872.35 932
30 3000 1302 1304 1305 1292 1300.85 1388
30 4000 1725 1730.7 1733 1724 1732.05 1838
30 5000 2159 2160.7 2163 2152 2162.25 2294

Table 3.25: Comparison between LLDA and SAGW for |Σ| = 2.
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LLDA SAGW
n m Best Avg Worst Best Avg Worst
10 100 60 60.7 61 58 60.4 78
10 200 119 120 121 117 119.05 137
10 300 177 177.7 179 174 177.6 199
10 1000 588 588.7 589 582 587.35 640
10 2000 1167 1172.3 1181 1164 1170.55 1265
10 3000 1752 1753.3 1755 1736 1749.85 1893
10 4000 2346 2348 2349 2325 2332.45 2513
10 5000 2908 2915.3 2921 2902 2914 3142
20 100 67 67.3 68 65 66.8 77
20 200 131 131.3 132 128 130.85 150
20 300 196 196.3 197 193 195.25 215
20 1000 644 646.7 649 634 639.85 691
20 2000 1280 1282.3 1287 1268 1276.45 1359
20 3000 1918 1922 1926 1902 1909.05 2028
20 4000 2544 2551.7 2562 2531 2543.5 2697
20 5000 3180 3185.3 3193 3164 3174.3 3365
30 1000 672 673.3 675 659 665.35 704
30 2000 1324 1328 1332 1317 1323.6 1393
30 3000 1984 1987.3 1992 1973 1979.45 2084
30 4000 2628 2631.7 2637 2634 2637.5 2775
30 5000 3296 3298.7 3301 3280 3291.15 3460

Table 3.26: Comparison between LLDA and SAGW for |Σ| = 4.
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LLDA SAGW
n m Best Avg Worst Best Avg Worst
10 100 82 83 84 79 80.2 91
10 200 161 161.7 163 157 159.5 178
10 300 240 240 240 235 237.75 252
10 1000 787 790 794 783 787.6 829
10 2000 1570 1573.7 1578 1564 1572.45 1643
10 3000 2352 2353.3 2355 2347 2355.8 2452
10 4000 3132 3138.3 3143 3131 3140 3264
10 5000 3918 3923 3927 3918 3924 4077
20 100 87 87.7 88 86 87.3 94
20 200 172 173.3 174 170 171.55 184
20 300 256 257 258 255 256.6 274
20 1000 846 848 851 845 847.05 881
20 2000 1689 1690.3 1692 1683 1688.75 1743
20 3000 2531 2534 2537 2524 2530.5 2612
20 4000 3367 3369.7 3374 3361 3372.1 3480
20 5000 4208 4212.3 4218 4203 4203 4337
30 1000 874 874.7 875 867 871.1 901
30 2000 1742 1742 1742 1732 1737.85 1788
30 3000 2607 2608.3 2610 2594 2599.95 2677
30 4000 3472 3473.7 3475 3460 3465 3566
30 5000 4343 4344.3 4347 4322 4328.2 4452

Table 3.27: Comparison between LLDA and SAGW for |Σ| = 20.

LLDA SAGW
Name n m Avg Best Avg Worst
McClure-582-20-6-141 6 141 89 95 95 113
McClure-582-20-10-141 10 141 100.3 106 106 121
McClure-582-20-12-141 12 141 100.7 105 105 119
McClure-586-20-6-100 6 100 71.3 73 73 81
McClure-586-20-10-98 10 98 79.3 77 77 85
McClure-586-20-12-98 12 98 81 79 79.05 84

Table 3.28: Comparisons between SAGW and LLDA [LLHM11] for McClure
instances.
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3.6 Conclusions and Future Directions

Algorithms for sequence analysis are of central importance in computational
molecular biology and, more in general, in genetics and proteomics. The
recognition of similarities and analogies in biological samples, in fact, finds
applications in many fields of biomedicine, such as the design of genetic drug
and genetic probes, and in locating binding sites. The Closest String Prob-
lem belongs to this class of problems, and it informally defines the task of
finding a pattern that presents similarities with a given set of sequences.
In this chapter, we introduced first the biological implications of string search
problems, and after an accurate analysis of the state-of-the-art methods, we
presented two promising approaches for the CSP.
In particular, the Ant-CSP, based on the Ant-Colony Optimization meta-
heuristic [FP10], and a Simulated Annealing method combined with a greedy-
walk heuristic [PCP11], have been introduced. Ant-CSP has been compared
with two heuristic approaches presented for the CSP, that are a Genetic Al-
gorithm and a Simulated Annealing method [LHS05]. Experimental results
show that our algorithm computes almost always better solutions and is much
faster than both the two methods, regardless the number and the length of
input strings. The greedy walk heuristic presented else in this chapter, as the
name states, identifies a walk on the solution space, greedy because the choice
of each component of the solution is local and blind. We tested the effective-
ness of such heuristic by combining it with a Simulated Annealing algorithm
for the CSP. We compared our approach with the mathematical formula-
tion proposed in [BDLRP97, LMW02, MLO+04] and the heuristic methods
presented in [BM10, LHHW08, LLHM11, Jul09, LHS05, FP10]. Experimen-
tal results show that the combination of our heuristic with the SA algorithm
computes almost always better solutions than the other heuristic approaches,
and has comparable results with exact methods. Despite the large number
of methods presented in literature for the Closest String Problem, it is our
opinion there is still a lot of work to investigate the computational issues of
another important problem occurring in string selection, that is the Closest
Substring Problem. For this reason, we plan to focus our future works on two
fronts: on one side, performance improvements and development of a new
strategy to improve quality of solutions and convergence speed; on the other
hand, we plan to extend our approaches to the Closest Substring Problem,
due to its biological and computational relevance.
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4
Probe Design and Selection Problems

“Volumes of history written in the ancient alphabet
of G and C, A and T.”

Sy Montgomery

4.1 Introduction

One of the most important recent development in biology is the success of The
Human Genome Project (HGP), whose principal goal was to sequence the
entire human genome. The project was completed in 2003, after a 13-years
effort; due to the great amount of data collected, the data analysis on this
project will continue for years. In this scenario, in silico design has become
an effective approach to tackle genomic data, since computational methods
allow one to reduce the time and cost required for performing experiments,
by decreasing the number of wet experiments needed or by speeding up the
experimentation process.
The first step towards mapping the human genome consists in breaking down
the DNA into segments, achieved by making a genomic library from human
DNA. A DNA library is constructed by fragmenting large pieces of DNA with
a restriction enzyme, and cloning these fragments randomly into a suitable
vector. Given a DNA library, the problem is how to identify a specific probe
in a clone. A probe is a segment of DNA or RNA, labelled with a radioactive
isotope, dye, or enzyme, used to find a specific sequence of nucleotides or
gene on a DNA molecule by hybridization. A clone is said to be positive if
it contains a given probe, otherwise it is negative.
DNA microarray technology provides a fast approach to monitor thousands
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of genes at the same time on a single chip, and to perform hybridization ex-
periments: the basic mechanism behind microarrays is hybridization between
two DNA strands, according to the Watson-Crick complementary pairing of
nucleotide bases. A DNA microarray or DNA chip is a glass or nylon slide,
onto which single strands of DNA sequences, that represent the probes, are
fixed. The foundation of microarray technology lies in the Watson-Crick
base-pairing: two DNA strands, the probe and the target, hybridize if they
are complementary to each other. The amount of hybridized target repre-
sents the gene expression level.
Some important applications of DNA microarray are [SL03]: gene identi-
fication, where microarrays are used to measure the specific expression of
thousands of genes simultaneously, in order to identify their functions and
how they determine phenotypes; detection of genetic disease [AP03]; tempo-
ral analysis of cell cycle variation [EB00]; drug discovery and toxicological
research [DG99]; forensic identification [HSR+08].

Since the optimal design involves the minimum number of hybridization
experiments, the selection of the probe set represents a crucial step in the
entire process, because it affects the experimental costs and its effectiveness
[BCDV+01]. Problems involving the selection of probe sets to analyze un-
known clones fall into the category of Probe Selection Problems, and can
be classified into two main classes: Oligonucleotide Fingerprinting and Non-
Unique Probe Selection Problem.

Oligonucleotide Fingerprinting Oligonucleotide fingerprinting [HPM+99,
HSS+00, HSL+00, GLSW07, POP11a] is a technique used to identify unique
probes by performing hybridization experiments: hybridization signals are
evaluated and a vector of numerical values, the fingerprint, is assigned to
each probe. Essentially, a fingerprint is a sequence of numbers represent-
ing the interaction of the clone sequence with the probe sets. The oligonu-
cleotide fingerprinting method was first developed in 1986 for analyzing the
mammalian genome. From then on, since many computational challenges
arise in this method, several algorithmic approaches have been developed;
in particular, two main issues have been handled: clones classification and
probe selection. The classification of oligonucleotide fingerprints comprises
many steps, starting from the creation of clones to perform hybridization,
to the analysis of the fingerprints resulting from the experiments. Once this
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analysis is completed, clones are classified according to their characteristics
and the results of hybridization; two classes are therefore constructed, repre-
senting the clones that hybridize to probes, and those that do not [FBJ03].
Unfortunately, the step of translating hybridization signals into two groups,
representing the presence of an hybridization and its absence, is not easy to
perform, especially due to the intensity values of hybridization array [FBJ03].
Most of the existing approaches to classify clones are based on clustering
methods [HPM+99, HSS+00, HSL+00].
Probe selection for fingerprinting is a difficult task, since the “quality” of
probes affects the final design. From this perspective, effective and efficient
computational methods have been developed to provide a fast and accurate
set of probes. These approaches range from exact methods [RG02], to heuris-
tic algorithms [GLSW07]. In particular, two variations of the original probe
selection problem have been introduced by Borneman et al. in [BCDV+01],
where the objectives are to maximize the number of clones distinguished
(Maximum Distinguishing Probe Set), and to minimize the number of probes
needed to distinguish all the clones (Minimum Cost Probe Set). The MCPS
problem can be considered as a special case of the SET COVER problem
[Hoc97], and MDPS as a special case of MAXIMUM COVERAGE [Hoc97].
MCPS and MDPS are NP-hard, when the length of probes is unbounded
[BCDV+01]. To overcome their NP-hardness, some heuristic methods have
been introduced in literature [BCDV+01, CMN04, dST93].

Non-Unique Probe Selection Problem Depending on the application,
hybridization experiments can be conducted using unique or non-unique
probes: the first case occurs when a probe hybridizes to only one target,
otherwise the presence of non-unique probes characterizes the experiment
[GLSW07]. Unfortunately, performing hybridization experiments by using
unique probes for every target is not always possible, because targets might
present similar traits. Moreover, false positive and false negative can in-
validate the results of hybridization experiments. The approach adopted to
overcome these difficulties consists in using non-unique probes, and intro-
ducing constraints that increase the threshold of accuracy into the design
(for a detailed discussion, see Sec. 4.2). Due to the relevance of this prob-
lem in biomedical fields, a conspicuous number of both mathematical and
algorithmic methods have been developed for the design and selection of hy-
bridization probes. Specifically, exact approaches and heuristic algorithms
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have been broadly studied for the Non-Unique Probe Selection Problem; a
detailed description of the approaches proposed in literature is provided in
Section 4.3.

Then, in Sections 4.4 and 4.5, two new methods for the Non-Unique Probe
Selection Problem are presented [POP11b]. The first is a canonical Monte
Carlo algorithm that implements a heuristic reduction phase (see Sec. 4.4),
aiming to minimize the number of probes required in the final design. The
choice of applying a heuristic approach is mainly due to the complexity of
the problem, that makes impracticable the construction of a feasible solution
within a reasonable computational effort.
Starting from the results obtained by this method, a new combinatorial op-
timization approach, called Space Pruning Monotonic Search, is pro-
posed [POP11b] (see Sec. 4.5). This new approach combines the quality
guarantee provided by deterministic methods, with the exploring ability of
heuristic procedures. In fact, while the exact method allows one to find so-
lutions with a guarantee of optimality, the heuristic phase prunes the search
space in order to obtain a feasible solution within a reasonable amount of
time and computational resources.
Experiments have been conducted by using both artificial and real data sets,
in order to assess the effectiveness of the approaches developed. The ex-
perimental results have been compared with the state-of-the-art methods;
it turns out that both the Monte Carlo and the Space Pruning Mono-
tonic Search represent promising approaches and, in particular, the Space
Pruning Monotonic Search clearly outperforms the other methods pro-
posed for the problem.

4.2 The Non-Unique Probe Selection Problem

The choice of the oligonucleotide probe sets plays an important role in hy-
bridization experiments: the optimal probe set should contain a minimal
number of oligonucleotides in order to minimize the number of hybridiza-
tion experiments, since this affects the experimental costs [BCDV+01]. Due
to the importance of performing an efficient design and selection, this sub-
ject has attracted increasing interest in the last twenty years. Therefore, a
plethora of approaches has been proposed in literature, ranging from specific
software tools and web-based applications to select oligonucleotides having
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specific characteristics, such as low similarity, absence of secondary structure,
specific length [RHZ02, WS03, ELD03, BZJ+03, MSG02, TNK+03, NWK03,
GS04, CHMS04, RCD+04, Nor05], to algorithms that optimize the design
[KS02, LDB+96, SL03, LHZ05, RHMP05, CGF+05].
The Probe Selection Problem involves the selection of a small set of probes to
analyze a population of unknown clones [Rag07]. The basic (binary) Probe
Selection Problem can be formally stated as follows [BCDV+01]:

Definition 4.2.1. Let C = {c1, ..., cm} be a set of unknown clones (or tar-
gets), and P = {p1, ..., pn} a set of oligonucleotide probes of preselected length
l. The objective is to find a smallest set P of probes such that any two dis-
tinct clones c, d ∈ C are distinguished by at least one probe p ∈ P , where a
probe p is said to distinguish two clones c, d if it is a substring of exactly one
of c or d.

Finding probes that are unique through hybridization experiments is dif-
ficult, especially when targets have a high degree of similarity, as in the case
of closely related viruses. An alternative approach consists in the selection
of non-unique probes, characterized by the hybridization to more than one
target. In addition to the intrinsic complexity of this task, the presence of
errors can affect the results of the experiments: false hybridizations can occur
(false positive), or experiments might not report their presence (false nega-
tive). A remedy is introducing redundancy into the design, by requiring that
targets have to be separated by more than one probe (separation constraint),
and that each target has to hybridize to more than one probe (coverage con-
straint). The formal definition of the Non-Unique Probe Selection Problem
(NUPS, for short) requires some additional definitions.

Definition 4.2.2 (Target-Probe Incidence Matrix). Given m target sequences
t1, ..., tm, and n candidate probes p1, ..., pn, a target-probe incidence matrix
H = (hij) is defined by hij = 1 if target ti hybridizes to probe candidate pj,
and hij = 0 otherwise.

An example of target-probe incidence matrix can be found in Tab. 4.1.

Definition 4.2.3 (Probe Coverage). Given m target sequences t1, ..., tm, and
n candidate probes p1, ..., pn, a probe pj, 1 ≤ j ≤ n, is said to be covered by
the target ti, 1 ≤ i ≤ m, if the target ti hybridizes to the probe pj, or,
equivalently, if hij = 1.

72



4.2. THE NON-UNIQUE PROBE SELECTION PROBLEM

p1 p2 p3 p4 p5 p6

t1 1 1 0 1 0 1
t2 1 0 1 0 0 1
t3 0 1 1 1 1 1
t4 0 0 1 1 1 0

Table 4.1: Target-probe incidence matrix

Definition 4.2.4 (Probe Separation). Given m target sequences t1, ..., tm,
and n candidate probes p1, ..., pn, a probe pj, 1 ≤ j ≤ n, is said to distinguish
or separate two target sequences ta and tb, if it is a substring of exactly one
of ta or tb, i.e. if |haj − hbj| = 1.

As an example, given the targets ta = AGGCAATT and tb = CCATATT
GG, for the probe pj = GCAA, haj = 1, hbj = 0; therefore pj distinguishes
ta and tb. On the contrary, for the probe pk = ATT , we have hak = hbk = 1,
so that it follows pk does not distinguish the target pair ta, tb.
Informally, the goal of the Non-Unique Probe Selection Problem is to select
a minimum set of probes such that the presence or absence of every single
target can be univocally determined. In order to reduce the presence of
experimental errors, each pair of targets should be distinguished by at least
hmin probes; these requirements are called Hamming distance constraints1 or
separation constraints. The coverage constraint requires that each target has
at least cmin probes hybridizing to it.
Let us consider the following example: in Table 4.1, if hmin = cmin = 1,
and assuming that only a target among t1, t2, t3, t4 is present in the sample,
a minimal solution is represented by the set of probes {p1, p2, p3}. In fact,
for target t1, p1 and p2 hybridize, while p3 does not; for target t2, p1 and p3
hybridize, while p2 does not; probes p2 and p3 hybridize to target t3, while
p1 does not; finally, only probe p3 hybridize to t4.
Nevertheless, our assumption that only a single target is present in the sample
is not realistic. The above solution containing the probes p1, p2, p3, results in
the hybridization of all probes if both the targets t1 and t2 are in our sample,
and it is not possible to distinguish the case where the pair (t1, t2) is present,

1We recall that the Hamming distance between two strings of equal length is defined
as the number of positions at which the strings differ.
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from the case where t3 is also in the sample.
If we consider now the case where hmin = cmin = 2, any of the pairs (t1, t3),
(t1, t4), (t2, t3), (t3, t4) hybridize to every probe in {p2, p3, p5, p6}; therefore,
we can infer the presence of target t3, but we cannot determine which other
target is present. These considerations show that the Non-Unique Probe
Selection is a difficult problem.
In particular, it can be proved that the problem is NP-hard using a reduction
from the set cover problem, as a special case for hmin = 1 and cmin = 0
[KRS+04, KRS+07].

4.3 State-of-the-art Methods

Due to its importance in genomic applications, the Non-Unique Probe Selec-
tion Problem has been broadly studied, and a great number of mathematical
and algorithmic approaches have been proposed. In particular, we distinguish
between exact and heuristic methods. In the following section, we introduce
the state-of-the-art methods for the problem, by describing both the exact
and heuristic approaches presented in literature.

4.3.1 Exact methods

Many combinatorial formulations of the Non-Unique Probe Selection Problem
have been presented in literature. In [KRS+04, KRS+07], after a preliminary
reduction of the numbers of candidate probes, the problem is modeled as a
variation of a set-cover integer linear programming.
Let N = {p1, ..., pn} denote the set of candidate probes, M = {t1, ..., tm}
denote the set of targets, and P = {(i, k)|1 ≤ i < k ≤ m} denote the set
of all combinations of target indices. Let xj, j ∈ N , be the binary-valued
decision variables, with xj = 1 if the probe j is chosen, 0 otherwise.
The problem is formulated as follows:

min
n

j=1

xj (master ILP) (4.1)
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subject to

n
j=1

hijxj ≥ cmin ∀i ∈M (4.2)

n
j=1

|hij − hkj|xj ≥ hmin ∀(i, k) ∈ P (4.3)

xj ∈ {0, 1} ∀j = 1, ..., n. (4.4)

The objective function (4.1) minimizes the number of probes; the constraints
in (4.2) require that at least cmin selected probes hybridize to each target, and
(4.3) represents the Hamming distance constraints. Finally, (4.4) restricts the
variables to binary values.
When it is not possible to ensure h-separation for all target pairs with the
given set of probes, the solutions of the above ILP formulation is empty. As
a remedy, a large number l = m · h of unique virtual probes is added to the
initial set of available probes. It is important to note that such “artificial”
probes are chosen only if the separation constraint does not hold the original
set of candidate probes. In this scenario, the objective function coefficients
of the virtual probes are set to a large number M ; the original master ILP
is hence reformulated as follows:

min
n

j=1

xj +M
n+l

k=n+1

xj, (4.5)

with n replaced by n+ l in the constraints of the original master ILP formu-
lation.
The master ILP formulation presented in (4.1 )- (4.4) guarantees separation
between pairs of single targets. In some circumstances, however, separation
between groups of targets is desirable, since this approach can take into ac-
count cross-hybridization and error tolerance. A group-testing approach for
this case has been already introduced in [STR03], where separation is defined
also among pairs of small target groups.
For the mathematical formulation, group-separability is considered in a new
model, the slave ILP. Given a set of targets S, let ωS

j = maxi∈S hij the sig-
nature of S, resulting from applying the logical OR to the rows in S, with
j = 1, ..., n. S and T are d-separable if and only if the Hamming distance
between ωS and ωT is at least d. A cutting-plane approach is proposed to
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solve this problem: the idea is to iteratively construct a most violated group
constraint by looking at the current solution.
Let x∗ be a solution vector, and X = {j|x∗

j = 1} the index set of probes
included in x∗. For a target set S, let ωS

|X be the restriction of ωS to the
columns in X. The following slave ILP is solved to find target groups S and
T such that the Hamming distance between ωS

|X and ωT
|X is less or equal than

d:

max

j∈X

(σ0
j + σ1

j ) (slave ILP) (4.6)

subject to

σ0
j ≤ 1− si ∀(i, j) ∈M ×X with hij = 1 (4.7)

σ0
j ≤ 1− ti ∀(i, j) ∈M ×X with hij = 1 (4.8)

σ1
j ≤


i∈M

hijsi ∀j ∈ X (4.9)

σ1
j ≤


i∈M

hijti ∀j ∈ X (4.10)
i∈M

si ≥ 1 (4.11)
i∈M

ti ≥ 1 (4.12)

si + ti ≤ 1 ∀i ∈M (4.13)
i∈M

si ≤ c (4.14)
i∈M

ti ≤ c (4.15)

0 ≤ σ0
j ≤ 1 ∀j ∈ X (4.16)

0 ≤ σ1
j ≤ 1 ∀j ∈ X (4.17)

si ∈ {0, 1} ∀i ∈M (4.18)

ti ∈ {0, 1} ∀i ∈M (4.19)

Variables σ0
j and σ1

j model the similarity between S and T for the probe j:
σ0
j = 1 if and only if ωS

j and ωT
j are equal to zero, σ1

j = 1 if and only if both
variables are equal to 1. Constraints (4.7) and (4.8) express that σ0

j = 0 if S
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or T contain a target that hybridizes to probe j; due to the constraints (4.9)
and (4.10), σ1

j = 1 if at least one target in both S and T hybridizes to probe
j.
Finally, constraints (4.11) and (4.12) avoid that S = ∅ and T = ∅, while
(4.13) and (4.14) control the size of S and T .

A new formulation that does not require virtual probes is modeled in
[KRS+07]. Here, the maximal possible separation between two groups of
targets S and T is defined as:

h(S, T ) =

j∈N

|ωS
j − ωT

j |. (4.20)

Therefore the following model is introduced:

min
n

j=1

xj (4.21)

subject to

xj ∈ {0, 1} ∀j ∈ N (4.22)
j∈N

|ωS
j − ωT

j | · xj ≥ min{d, h(S, T )} ∀S, T ⊆M, (4.23)

|S| ≤ c, |T | ≤ c, S ̸= T.

Inequalities (4.23) ensure that coverage constraints are satisfied; since the
number of constraints in (4.23) is exponential, a branch-and-bound approach
is applied to solve the relaxed version of the problem.

In [DTMW08], an algorithm based on the previous ILP formulations is
proposed to solve the Non-Unique Probe Selection Problem using a d-disjunct
matrix.
A matrix is d-disjunct if and only if the union of any d columns does not
contain any other column, formally:

Definition 4.3.1 (d-disjunct matrix). H is a d-disjunct matrix if and only if
for any (d+1) columns t0, t1, ..., td, there exists a row pi such that H[i, 0] = 1
and H[i, j] = 0, ∀j = 1, ..., d.
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Row pi is said to cover the pair (t0, ⟨t1, ..., td⟩). The problem is hence
reformulated as follows:

Problem 4.3.2 (Minimum d-Disjunct Submatrix (MIN-d-SD)). Given m
non-unique probe candidates and an m×n target-probe incidence matrix M ,
select a minimum set of the probe candidates such that the h × n submatrix
H is d-disjunct, where h ≤ n.

Of course, also the new defined problem is NP-hard [TZ09]. This problem
is addressed by reformulating the ILP models proposed in [KRS+07]. The
first new ILP formulation is based on the following definition:

Definition 4.3.3. H is called (d, k)-disjunct if each column has at least
(k + 1) 1-entries not contained in the union of other d columns.

The following mathematical formulation is used to construct a (1, d− 1)-
disjunct submatrix.

min
m
i=1

xj (4.24)

subject to 
i∈M

|Mij −MijMik|xi ≥ d ∀j, k ∈ N, j ̸= k (4.25)

xj ∈ {0, 1} ∀i ∈M, (4.26)

where M is the target-probe incidence matrix; m and n are, respectively, the
number of probes and targets; xi = 1 if probe pi is chosen for the submatrix
H, otherwise is 0. The first constraint guarantees that any column in M has
at least a number d of 1-components not contained in any other column.
A second ILP formulation recalls the slave ILP proposed in [KRS+07]; it
finds the target sets R and S that violate d-disjunctness.
In order to detect errors in hybridization experiments, a new ILP problem
is modeled, that is able to identify at most d targets when at most k errors
occur, by constructing a (d, 2k)-disjunct matrix [DH06].

min
m
i=1

xj (4.27)
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subject to
i∈M

|Mij −MijMik|xi ≥ d+ 2k ∀j, k ∈ N, j ̸= k (4.28)

xj ∈ {0, 1} ∀i ∈M. (4.29)

The algorithm for the error tolerance case uses this formulation to construct
the (1, d+2k−1)-disjunct matrix, and the second one to find the target sets
that violate (d, 2k)-disjunctness.

4.3.2 Heuristic methods

Though exact methods are able to locate solutions with a guarantee of op-
timality, these approaches require an exact knowledge of the domain; more-
over, in some cases, finding a solution via integer programming software is
intractable, due to the large number of variables and constraints within the
problem [MLO+04]. Heuristic algorithms allow to overcome these difficul-
ties, by implementing search strategies that speed up the location of optimal
solutions, even if without any guarantee of optimality.

A two-phases heuristic algorithm for the Non-Unique Probe Selection Prob-
lem has been presented in [MPR07]. It consists of a construction phase,
which builds a feasible solution when possible, and a reduction phase that
reduces the number of probes while maintaining feasibility. To begin with,
candidate probes are selected according to the number of targets to which
each probe binds, until the minimum coverage constraint is satisfied for each
target. The algorithm next focuses on satisfying the minimum Hamming
distance constraint: probes that are not included in the current solution are
sorted in decreasing order by the number of target pairs they separate; then
probes are selected from the ordered list and added to the solution until the
number of Hamming distance violated constraints is reduced to a predefined
threshold. The remaining probes are found using a local search. The reduc-
tion phase iteratively deletes two probes at a time and verifies if the solution
is still feasible, or if it can be made feasible by adding just one probe to the
solution.
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A cutting plane algorithm is presented in [RSP07]: this method relaxes a
large subset of Hamming distance constraints, in order to find and improve
the lower bound on the number of probes required in an optimal solution.
Relaxed constraints are reinstated only if it is needed to maintain feasibility.
Results provided by this approach are compared to the values computed
by the heuristic algorithm implemented in [MPR07] and the ILP approach
presented in [KRS+04]: the cutting-plane algorithm outperforms the two
approaches, in particular it is able to find solutions that are about 20%
better than the previous best ones provided by the other two methods.

A model-based approach is discussed in [WN07], where a greedy heuris-
tic uses a Bayesian model [Pel05] for guiding the search towards the probes
that satisfy separation and coverage constraints. In general, a Bayesian op-
timization algorithm generates an initial population of solutions randomly,
according to a uniform distribution. Therefore, the current population is up-
dated for a number of iterations, by selecting the best solutions using meth-
ods inspired to Genetic Algorithms. This allows one to construct a Bayesian
network representing the population of promising solutions, and new solu-
tions are generated by sampling the defined probabilistic model. The new
candidate solutions replace some of the old ones in the original population,
in order to obtain in-silicon evolutionary pressure.
The model-based approach proposed in this work is similar to a Bayesian
algorithm, but it does not consider any evolution mechanism. It represents
a modification of the heuristic presented in [MPR07]: the idea is to prefer
probes that appear in the largest number of minimal sets, by distinguishing
between good and bad ones. Good probes are those with the highest degree
of contribution to minimal solutions, whereas bad probes have the lowest de-
gree of contribution. In order to include good probes in a feasible candidate
solution, a coverage and a separation probabilistic models are implemented
as follows.
Given the target-probe incidence matrix H, a candidate probe set P =
{p1, ..., pn} and a target set T = {t1, ..., tm}, let the function covdrc : P ×T →
[0, 1] be defined as follows:

covdrc(pj, ti) = hij ×
cmin

|Pti|
, pj ∈ Pti , ti ∈ T (4.30)

where Pti is the set of probes hybridizing to target ti. Notice that covdrc(pj, ti)
is the amount that pj contributes to satisfy the coverage constraint for target
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ti. Additionally we have 0 ≤ covdrc(pj, ti) ≤ 1. The coverage function
Cdrc : P → [0, 1] is then defined as follows:

Cdrc(pj) = max
ti∈Tpj

{covdrc(pj, ti) | 1 ≤ j ≤ n}, (4.31)

where Tpj is is the set of targets covered by pj. Cdrc(pj) is the maximum
amount that pj can contribute to satisfy the minimum coverage constraints.
Function Cdrc favors the selection of probes that cmin-cover targets ti that
have the smallest subsets Pti ; these are the essential or near-essential covering
probes. In particular, Cdrc guarantees the selection of near-essential covering
probes that cmin-cover dominated targets, where ti dominates tk if Ptk ⊂ Pti .
Similarly, the function sepdrc : P × T 2 → [0, 1] is defined as

sepdrc(pj, tik) = |hij − hkj| ×
hmin

|Ptik |
, pj ∈ Ptik , tik ∈ T 2 (4.32)

where Ptik is the set of of probes separating target-pair tik; sepdrc(pj, tik) is
what pj can contribute to satisfy the separation constraint for target-pair tik.
We have 0 ≤ sepdrc(pj, tik) ≤ 1. The separation function Sdrc : P → [0, 1] is:

Sdrc(pj) = max
tik∈T 2

pj

{sepdrc(pj, tik) | 1 ≤ j ≤ n}, (4.33)

where T 2
pj

is the set of target-pairs separated by pj. Sdrc(pj) is the maximum
amount that pj can contribute to satisfy the minimum separation constraints.
Function Sdrc favors the selection of essential or near-essential probes that
hmin-separate dominated target pairs ; these probes hmin-separate targets-
pairs tik that have the smallest subsets Ptik .
Now, cover and selection functions are combined together into the selection
function, that allows to choose the minimum number of probes such that
coverage and separation constraints are satisfied:

Ddrc(pj) = max{(Cdrc(pj), Sdrc(pj)) | 1 ≤ j ≤ n}. (4.34)

Ddrc(pj) represents the degree of contribution of pj, that is, the maximum
amount required for pj to satisfy all the constraints; Ddrc ensures that all
essential probes pj will be selected for inclusion in the subsequent candidate
solution, since Cdrc(pj) = 1 or Sdrc(pj) = 1.
The model-based algorithm uses the above introduced functions to create
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a feasible set of probes, according to the constraints of coverage and sep-
aration. This algorithm consists of three phases: the initialization phase
creates an initial solution; since this solution can be infeasible, the construc-
tion phase repeatedly inserts high-degree probes into the initial solution in
order to maintain feasibility; finally, the reduction phase removes low-degree
probes to reduce the cardinality of the solution set. This heuristic is called
Dominated Row Covering heuristic. Results provided by the described model
are compared with the ones obtained by applying the ILP method [KRS+04]
and the heuristic algorithm presented in [MPR07]: the Bayesian algorithm
obtains comparable results for the artificial data, and better results on real
instances.

The selection strategy introduced in [WN07] has been combined with an
evolutionary approach in [WNGR08], where a Genetic Algorithm, already
proposed for the Set Cover Problem in [BC96], is adapted to the Non-Unique
Probe Selection Problem. After the creation of a random population, two so-
lutions are selected, by using fitness scaling and binary tournament. There-
fore, a fusion crossover is used to create a new solution, to which a mutation
operator is applied. In order to guarantee the feasibility, the heuristic pre-
sented in [WN07] is applied to the generated solution. At this point, a new
solution has been generated from the pool of “parents”, and it is used to
replace a randomly selected solution with an above-average fitness in the
population. This process will be iterated until a stopping criterion is met.
Each solution is modeled as an n-bit binary string s = s1...sn, where sj = 1
if pj ∈ S and sj = 0 if pj /∈ S, 1 ≤ j ≤ n. The fitness of an individual s
is directly related to its objective value, which corresponds to the number of
probes in its associated subset S. That is, the fitness of s is defined as

f(s) =
n

j=1

sj. (4.35)

To create a new population from the current one, crossover and mutation
operators are applied. The crossover operator used to create a new individual
from two parental ones is a generalized fitness-based crossover: it considers
the differences between the parents and is more capable of generating new
solutions when the parents are similar; also, the fittest parent influences more
the “child” solution. Let fP1 and fP2 be the fitness values of the parents P1

and P2 respectively, and let C denote the child solution. Then for 1 ≤ j ≤
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n, Cj = P1j = P2j, provided that P1j = P2j; otherwise Cj = P1j, with
probability p = fP2/(fP1 + fP2), and Cj = P2j, with probability 1− p.
After the crossover, the algorithm applies the mutation operator by randomly
altering a number of bit positions, in order to introduce diversity and prevent
the stagnation into local optima. The number of positions to mutate for
a given solution depends on the mutation rate, which is correlated to the
convergence rate of the algorithm; it is defined as:

B =

 mf

1 + exp −4mg(t−mc)

mf

 , (4.36)

where t is the current number of child solutions generated, mf specifies the
final stable mutation rate, mc is the number of solutions that should be
generated such that the mutation rate is

mf

2
, and mg specifies the gradient

at t = mc. The value of mf is user-defined and the values of mc and mg are
problem-dependent parameters.
The initial population is generated with a high probability of being feasible,
by putting

scj =


1 if r ≤ Ddrc(pj)
0 otherwise

1 ≤ j ≤ n (4.37)

where r ∈ [0, 1] is randomly chosen.
If the solution is infeasible, a heuristic feasibility operator, consisting of the
Construction and Reduction Phase of the model presented in [WN07], is
applied to maintain feasibility. In order to replace solutions in the current
population, a steady-state replacement strategy is implemented: a new solu-
tion replaces a randomly chosen individual of the population having a higher
fitness value. This strategy is elitist since the best solutions are picked and
they replace always the worst ones; in this way the population will converge
quicker. This method allows one to create high quality solutions; in fact it
outperforms all the previous implemented methods, by constructing a probe
set with minimum cardinality.

Though the Dominated Row Covering heuristic presented in [WN07] guar-
antees the selection of near-essential probes that cmin-cover and hmin-separate
dominated targets, it is not able to distinguish among targets having the same
values for Cdrc or Sdrc. To address this task, a Dominated Probe Selection
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heuristic has been introduced in [WNR08]. Here, the coverage and sepa-
ration functions penalize each probe p by an amount that is proportional,
respectively, to the number of targets that it covers or separates.

In order to guarantee separation not only between target pairs, but also
between pairs of small groups of targets, a subset selection criterion has been
introduced in [WNR08]. This criterion is used by a sequential forward algo-
rithm [PNK94] to select the best subset of probes; in particular, it iteratively
selects the probe that maximizes the Dominant Probe Selection criterion, and
adds it to the current probe set. When a feasible solution is found, a reduc-
tion phase based on [WN07] is applied. This method performs better than
the approaches proposed in [MPR07, STR03]; nevertheless, the Genetic Al-
gorithm proposed in [WNGR08] and the cutting plane method developed in
[RSP07] provide better results for all the tested datasets.

In [NRWG10], the two heuristics presented so far, the dominated row cov-
ering and the dominated probe selection, have been modified in order to
consider, at each step, the knowledge about the probes that are already se-
lected in the previous iterations. In fact, these methods compute coverage
and separation values during the initialization phase, and their values re-
main unchanged for the rest of the computation. Three new heuristics are
introduced: the Dynamic Dominated Row Covering Heuristic, the Dynamic
Dominant Probe Selection Heuristic and the Normalized Dynamic Domi-
nant Probe Selection Heuristic. The first, takes into account the information
about selected probes: if a probe q is selected for a given target or target-
pair, coverage and separation are re-computed only for those rows affected
by this selection.

In a further work [GGWN09], the dominated row covering heuristic, the
dominated probe selection heuristic, and a new one, the Sum of Dominated
Row Covering, have been combined with a Bayesian optimization algorithm
[LL02]. The new heuristic introduced in [LL02] is capable to distinguish
among probes that have the same score for the coverage of the dominated
targets, and the same score for the separation of the dominated target pairs.
This new approach outperforms the other methods in some test instances.
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In [GGWN10], a multiobjective optimization method has been combined
with the Bayesian algorithm presented in [GGWN09] to solve the Non-Unique
Probe Selection Problem for the multiple targets case. The two objectives
for this problem are minimizing the number of probes involved in a solu-
tion and maximizing the ability of recognizing multiple targets. In order to
evaluate the fitness functions, a modified version of the Weighted Average
Ranking (WAR, for short) is computed. In WAR, each objective is evalu-
ated separately and the fitness values of the solutions for each objective are
sorted. Solutions are then ranked according to their fitness, finally the ranks
obtained by sorting each list of objectives are averaged. This approach guar-
antees successful results for the simple cases of five and ten targets in the
sample, and good results for the case of fifteen in almost all the instances
considered in the dataset. When twenty targets are considered, it is able to
find good solutions for some of the real and artificial datasets.

4.4 Monte Carlo algorithm with Heuristic Reduc-
tion

The first new method presented in this chapter for the Non-Unique Probe Se-
lection Problem is a canonical Monte Carlo algorithm with Heuristic Reduc-
tion (MCHR, for short) [POP11b]. Monte Carlo methods [MRR+53, MU49]
are stochastic approaches used to model several phenomena in various fields,
from physics to engineering, from biology to finance.

The choice of developing a Monte Carlo approach for the NUPS problem
has been guided by the ability of Monte Carlo methods to perform an ex-
tensive search in the solution space, by applying a probabilistic mechanism
that avoids local minima. Specifically, this is implemented by the possibil-
ity of accepting not only transitions that improve the value of the objective
function, but also moves that can deteriorate the solution quality.

The first step in designing our Monte Carlo approach consists in modeling
the NUPS as an optimization problem, by defining the cost function. Since
the objective of the Non-Unique Probe Selection Problem is to minimize the
number of probes included in the final design, an optimal solution should con-
tain the minimum number of probes such that the presence of each target can
be univocally determined, while the separation and coverage constraints are
verified. In particular, the proposed Monte Carlo algorithm builds a feasible
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initial solution, by using the Dominated Row Covering Heuristic proposed
in [WNGR08]: the idea is to prefer the choice of probes that appear in the
largest number of minimal sets, by distinguishing between “good” and “bad
probes”. “Good probes” are those with the highest degree of contribution to
minimal solutions, whereas “bad probes” are those with the lowest degree of
contribution to minimal solutions. In other words, this heuristic favors the
selection of probes that cover and separate many target sequences, where
these targets hybridize to the minimum number of probes such that the cov-
erage constraint holds (i.e., the number of probes that cover each target is
as close as possible to the value cmin), and the number of probes separating
those targets is the minimum allowed (i.e., the number of probes that sepa-
rate each target pair is as close as possible to the value hmin).
The choice of the Dominated Row Covering Heuristic is mainly due to effi-
ciency considerations [NRWG10]: though the other heuristic strategies pre-
sented in Sec. 4.3 [WN07, WNGR08, WNR08, GGWN09, NRWG10] are able
to locate promising solution, their computational complexity varies between
O(n2m4) and O(n8m8), where n is the cardinality of the probe set, and m
is the number of targets. On the other hand, the Dominated Row Cover-
ing Heuristic runs in O(n2m2) time. Therefore, the limited gain in terms of
quality of the solutions seems not justify the computational cost needed to
reach it.

In order to include the good probes in a feasible candidate solution, the
selection function D : P → [0, 1] is computed for each probe, according
to the Dominated Row Covering Heuristic. Given a set of n probes P =
{p1, p2, ..., pn}, D(pj), 1 ≤ j ≤ n, represents the degree of contribution of
the probe pj, that is, the maximum amount required for pj to satisfy all the
constraints. The higher is the value of D(pj), the better is the quality of
probe pj.

MCHR starts by computing the value of the heuristic D for each probe;
then an initial solution sinitial is randomly constructed with a high probabil-
ity of being feasible [WNGR08], since each probe is chosen probabilistically
according to its D value. In this way, the choice of “bad” probes is discarded
in favour of a design characterized by a “good” initial solution.
If this solution is infeasible, a heuristic feasibility operator [WNGR08] is
applied to maintain feasibility. This operator consists of two phases: first,
a construction phase iteratively chooses, among the probes not included in
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the current solution, those having the highest value for the Dominated Row
Covering Heuristic. These probes are then added to the incumbent solution,
until a feasible solution is built.
Therefore, a reduction phase tries to reduce the number of probes, by delet-
ing those with the lowest value of the heuristic since they poorly contribute
to good solutions, if this procedure does not affect the feasibility.
The pseudocode of the Monte Carlo algorithm with Heuristic Reduction is
presented in Alg. 3. Once a feasible solution is constructed, at each iteration

Algorithm 3 Pseudocode of the MCHR algorithm.
scur ← sinitial
fcur ← finitial
while ¬ stopping criterion do

snew ← random reduction(scur, ρ)
∆← min(1, exp (−β ∗ (fnew − fcur))
if (fnew < fcur) then

snew ← scur
else

if ((fnew ≥ fcur) ∧ (random < ∆)) then
snew ← scur
EI ← (γ ∗ fcur)
if ((fcur − EI) < fbest) then

snew ← greedy reduction(scur, γ)
end if

end if
end if

end while

of the main loop, a new solution is constructed from the current solution, by
applying the random reduction procedure (line 4): this step selects a random
number of probes to delete from the current solution. This number depends
on a parameter ρ, representing the percentage of probes that we aim to dis-
card from the current solution. Since this new solution might be infeasible,
the heuristic feasibility operator is applied.
By deleting probes from the initial solution, a new solution is generated. If
this new solution is better than the old one (line 6), i.e. contains less probes,
it will become the new incumbent used by the next iteration of the algorithm
(line 7).
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We want to recall that Monte Carlo methods accept not only solutions that
improve the value of the objective function, but also solutions that do not,
in order to avoid the stagnation of the algorithm into a local optimum. In
order to achieve this non-monotonic search behavior, a solution that is worse
than its predecessor is accepted according to the following probability:

p = e(−β(fnew−fcur)), (4.38)

where fnew and fcur represent, respectively, the objective value of the new
generated solution and of the “old” one, and β ∈ (0, 1] is a parameter of the
algorithm (line 5). The acceptance probability depends on the quality of the
solution, so that good solutions have a higher probability to be accepted.
When this happens, a new step of the algorithm is performed: the expected
improvement (EI) is computed in line 11; this represents the number of probes
to delete from the current solution, according to the input parameter γ.
Therefore, if it is possible to obtain a solution that contains less probes
than the best one by deleting a fraction γ of them (line 12), the greedy
reduction procedure is performed (line 13). This step iteratively tries to
delete the probes one by one; if this results in an infeasible solution, the
probe is reinstated in the current solution.

4.5 Space Pruning Monotonic Search

Combinatorial optimization problems are usually characterized by very rugged
and, frequently, ill-conditioned search space; in general, if the optimization
procedure starts from a region of the search space which does not contain the
optimal solution, it is difficult and computationally expensive to escape from
this basin towards a new promising one. This process becomes extremely
hard to accomplish especially when the dimension of the problem is relevant.

Deterministic and heuristic methods try to overcome these difficulties
by introducing some globalization techniques; the paradigm of globalization
strategies is to detect a search direction that achieves a descent in the value
of a given objective function, in order to improve the likelihood of conver-
gence when good initial solutions are not available [PSSW06].
Globalization methods can be classified into three main categories: stochas-
tic, population based and multi-start strategies [KL08]. Stochastic approaches,
like perturbed gradient [PSdC94] and simulated annealing [KGV83], incor-
porate probabilistic elements to iteratively compute a solution, and adjust
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the parameters to improve its quality. Population-based strategies belong to
the class of the nature-based optimization algorithms; they compute a pop-
ulation of solutions, which are combined to generate new candidate points.
Examples of population-based methods are Genetic Algorithms [Hol92] and
Ant-Colony Optimization [Dor92]. Multi-start methods are characterized by
the use of a minimization algorithm, like gradient descent, generally coupled
with a heuristic procedure that aims to improve the solution by sampling
the search space [PSdC94, Mar03]; the output of the algorithm is the best
overall solution found among the ones generated at each iteration.

By considering the field of deterministic methods, a common feature is
the ability of efficiently locating an optimal solution, when starting from
a promising region of the solution space; it implies the use of a promising
initial iterate, for instance a user-provided solution, or pruning the solution
space of the problem. A pruning technique is a procedure that provides a
sub-region of the search space of the problem P ′ starting from the original
problem P , in order to reduce the computational burden needed to find an
optimal solution, and to avoid the exploration of known basins. The name
is inspired by gardening, in which pruning means to clip off branches on a
tree, that corresponds to what we “ideally” perform on the search space.
Pruning techniques are commonly implemented in search algorithms, since
they are able to enormously reduce the size of the original problem, and focus
the search into promising basins of attraction. For instance, the bound step
of any branch-and-bound algorithm realizes a pruning strategy, by reducing
the search tree to a computationally manageable size.

Starting from this considerations, we developed a new method for the
Non-Unique Probe Selection Problem [POP11b], which implements a prun-
ing strategy to narrow the search space. The proposed new approach, called
Space Pruning Monotonic Search (SPMS), is an iterative method
which applies a pruning of the input problem P , and then uses a determin-
istic method to solve the pruned problem P ′ (see Alg. 4). In particular, the
pruning strategy allows to locate a promising solutions basin, while the power
of the deterministic approach is exploited to efficiently solve the subproblem.
We want to highlight that this method is extremely general, which means
that any pruning and optimization method can be implemented to perform
the search into the narrowed space created by the pruning procedure.
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Algorithm 4 Pseudocode of the SPMS algorithm.

1: P ∗ ←pruning(P ) ◃ Initial pruning
2: f ∗ ←pruning(P ∗) ◃ Initial evaluation
3: while ¬ converged do
4: P ′ ←pruning(P ∗)
5: f ′ ←solve(P ′)
6: if (f ′ < f ∗) then
7: f ∗ ← f ′

8: P ∗ ← P ′

9: end if
10: end while

The algorithm is monotonic, as stated in its name; such monotonic property
guarantees that only solutions representing an improvement of the objective
value are accepted. In fact, many recent results in monotonic search methods
have shown that this approach is extremely effective, especially when com-
bined with heuristic solution perturbations and deterministic solvers [ACLS09,
GLS09]. Specifically, the monotonic behavior prevents the choice of degen-
erate solutions, while the heuristic perturbation introduces changes into the
current solution aiming to improve its quality.

Since the Space Pruning Monotonic Search introduced in this sec-
tion deliberately represents a general framework to solve optimization prob-
lems, this method can be extended to take into account different strategies;
for instance it can implement several accepting criteria, according to the spe-
cific problem addressed. Analogously, different convergence criteria can be
defined, e.g. the attainment of a prefixed number of iterations or a quality
threshold.
Additionally, many improvement techniques can be introduced in SPMS;
as an example, in order to improve its effectiveness, our approach can be
extended with a randomized pruning technique: by exploring different and,
possibly, random subregions of the search space, this strategy might enhance
the coverage of the whole landscape and hence lead to better solutions.
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4.5.1 A SPMS approach for the Non-Unique Probe
Selection Problem

We apply the SPMS approach introduced in the previous section for solv-
ing the Non-Unique Probe Selection Problem; in particular, an Integer Linear
Programming (ILP) formulation is used to model the problem, and an ad-hoc
pruning technique is proposed to narrow the search space. The ILP formula-
tion adopted to define the problem has been first proposed in [KRS+04] (see
Section 4.3.1); it is defined as follows:

min
n

j=1

xj (4.39)

subject to

n
j=1

hijxj ≥ cmin ∀i ∈M (4.40)

n
j=1

|hij − hkj|xj ≥ hmin ∀(i, k) ∈ P (4.41)

xj ∈ {0, 1} ∀j = 1, ..., n (4.42)

The objective function (4.39) aims to minimize the number of probes in the
final design; the coverage constraints (4.40) require that at least cmin selected
probes hybridize to each possible target, and the separation constraints (4.41)
ensure that each target-pair is separated by at least hmin probes. The decision
variables xj are binary (4.42): xj, 1 ≤ j ≤ n, is equal to 1 if the probe pj
is chosen for the solution, otherwise is 0. When it is not possible to hmin-
separate all pairs of targets with the initial set of probes, the solution of the
above ILP is empty. In this case, a large number l = m·hmin of unique virtual
probes is added. Such probes are chosen only if the separation constraint does
not hold with the original set of candidate probes, by setting the objective
function coefficients of the virtual probes to a large number M . The original
objective function (4.39) is reformulated as:

min
n

j=1

xj +M
n+l

k=n+1

xj (4.43)

where n is replaced by n+l in the constraints of the original ILP formulation.
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Since the problem involves only binary variables, as a pruning technique
we force the presence of good probes in our solution, by fixing the variables
corresponding to these probes. In this way, starting from the original problem
P , where the solution space contains the original set of probes, we obtain a
new problem P ′, that is a subproblem of the original problem P . P ′ presents
the same objective value and the same constraints of P , but the new search
space is limited to the fixed variables.

Specifically, the Dominated Row Covering heuristic [WNGR08] is chosen
as the strategy for selecting the probes to include into the pruned problem
P ′: once the value of this heuristic is computed for each probe, the decision
variables corresponding to the probes having the highest value are fixed. This
means that, if a probe represents an essential component, it is forced to be
part of the solution by setting the value of its decision variable to 1.
In particular, a minimum threshold for the heuristic is determined, and
among the probes that present a value equal or higher than this prefixed
bound, some are selected by a random procedure and added to the current
solution. The randomization strategy introduced is able to better explore the
search space, by allowing the selection of probes that present a high degree
of contribution to optimal set, but not necessarily the highest value for the
heuristic. In this way, even if the algorithm maintains his monotonic be-
havior by choosing only solutions that improve the objective function value,
the stagnation of the algorithm into local optima is avoided: the mecha-
nism of choosing the probes among the ones having the highest value for the
heuristic, in fact, prevents that the search gets trapped into a suboptimal
solution. Moreover, this simple randomized strategy bypasses the complex
computation implemented in [WNR08] for distinguishing among probes hav-
ing the same value for the Dominated Row Covering heuristic, by avoiding a
dramatic increment of the computational complexity of the algorithm.

Once the essential components are selected by the randomized procedure,
a deterministic method is used to solve the pruned problem; the method
verifies if the located solution is feasible, otherwise it adds probes until a
feasible solution is constructed. The idea behind this approach is to reduce
the computational effort of the deterministic solver by exploiting the power of
the heuristic; additionally, the high quality of the partial solution identified in
the previous step allows the deterministic method to add a minimum number
of probes to obtain a feasible solution.
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4.6 Dataset and Experimental Results

4.6.1 Datasets and Experimental Protocol

The experiments for the methods presented in Sections 4.4 and 4.5 have been
conducted on the same group of data: it includes ten artificial (a1, ..., a5,
b1, ..., b5), and three real datasets (Meiobenthos, HIV-1 and HIV-2 ).
The artificial data sets and the Meiobenthos sequences have been first pro-
posed in [KRS+04], while the instances HIV-1 and HIV-2 have been used in
[Rag07].

To generate the artificial data, the Random Evolutionary FORest Model
(REFORM) software was used with two different forest models. From each
model, five independent test sets were generated. The test sets generated
from the first model (a1-a5 ) contain 256 targets each; from the second one,
five test sets (b1-b5 ), with 400 targets each, are constructed. The choice
of these topologies has been made because the sets of target sequences con-
structed present a high degree of similarity, so that they cannot be easily
separated by using unique probes.
The probe candidates for each of the ten artificial test sets were generated
using the Promide software [Rah03].

For the real datasets, three groups of sequences are constructed. In par-
ticular, one group contains sequences from Meiobentos organisms, and the
other two are HIV sequences.
Benthos are organisms that live in the sea floor. They are categorized ac-
cording to their size; specifically, Meiobenthos have size between 100µm and
500µm [BBH99]. In order to obtain the target sequences, 1,230 28S rDNA se-
quences from different organisms present in the Meiobenthos were clustered
in 149 groups. Clusters were representative of approximately 56% of all
Meiobenthos sequences [STR03]. A test set of 679 targets has been obtained
by arbitrarily selecting a representative from each cluster. The correspond-
ing probe set contained 15,139 probes.
The second and the third group of real data consisted of 200 each HIV-1 and
HIV-2 sequences downloaded from the National Center for Biotechnology
Information; as for the artificial instances, these sequences present high simi-
larity [MPR07]. Candidate probes have been generated using Primer3 [RS00]
with default input parameters. The default parameters include: length be-
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tween 18 and 27 nucleotides, melting temperature between 57◦C and 63◦C,
and GC content between 20% and 80% for each HIV sequence.

The properties of the datasets are presented in Table 4.2: the second and
third columns are the number of targets and number of probes of each data
set, respectively. Since most of the data sets used are not able to satisfy the
minimum Hamming distance constraints for every pair of targets, even if the
entire set of candidate probes is chosen for the solution, artificial probes are
added to the final solution set. Column |V | represents the number of such
virtual probes.

In order to prevent the presence of false negative and false positive, re-
dundancy is added into the design by requiring that each probe hybridize
to more than one target, and that each target-pair is separated by more
than one probe; this is addressed by setting the parameters cmin = 10 and
hmin = 5.
The stopping criterion for the MCHR algorithm is established as the number
of iterations, and it is set to 4000. The parameters ρ, β, and γ are, respec-
tively, 0.1, 0.4 and 0.03 and have been experimentally fixed.
The SPMS performs 10 iterations, where the pruned ILP problem is solved
by using CPLEX version 12.12.

4.6.2 Experimental Results

The two new methods presented in the previous sections have been com-
pared with the state-of-the-art approaches for the Non-Unique Probe Se-
lection Problem [POP11b, POP11a]; Table 4.3 provides the experimental
results, and it reports the number of probes included in the final solution
(|Pmin|) for the methods proposed in the literature and our approaches. In
particular, in bold face we report the best solution for each instance of the
problem.
By inspecting these results, the MCHR algorithm seems to not guarantee
the best performances; however, it is possible to note that its solutions are
close to the putative global optima for the HIV − 1 and HIV − 2 instances.
An analysis of the second dataset shows that MCHR finds the same pu-

2http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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Set |T | |P | |V |

a1 256 2786 6
a2 256 2821 2
a3 256 2871 16
a4 256 2954 2
a5 256 2968 4
b1 400 6292 0
b2 400 6283 1
b3 400 6311 5
b4 400 6223 0
b5 400 6285 3
M 679 15139 75
HIV-1 200 4806 20
HIV-2 200 4686 35

Table 4.2: Properties of the datasets used for experiments.

tative optima obtained of the Bayesian Algorithm; this result is extremely
good since BOA is largely regarded as the best algorithm so far.

Turning to the SPMS method, it is important to note that it is able to
find the putative optimal solution for many datasets; in particular, it finds
two new putative optima for the set a4 and M . While for the a4 dataset
the new solution contains 3 less probes that the best known solution, for the
M dataset there is a reduction of 59 probes, which is extremely remarkable.
Moreover, this approach is very fast to compute the solution, whereas many
of the previous proposed methods, such as the Genetic, Bayesian and Monte
Carlo algorithms are slow due to their intrinsic characteristics [WNGR08].
SPMS cannot find the best solution for the datasets b2 and b5; these sets are
characterized by the presence of many probes with low or the same heuristic
values; it seems that the Dominated Row Covering heuristic is not able to
distinguish between them producing low quality solutions [WNGR08].
The SPMS algorithm is not able to find good solutions for the instances
HIV-1 and HIV-2. Since there are no results in literature found by ILP
formulations for these datasets, we solved the ILP model [KRS+04] by using
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CPLEX without any heuristic reduction step, in order to understand if this
performance can be apportioned to the characteristics of our approach or to
the ILP model proposed. From this analysis, we found out that the number of
probes included in the final solution is equal to 1075 and 1027 for HIV-1 and
HIV-2, respectively, which are very different from the SPMS results. This
suggests that the intrinsic characteristics of the datasets make the problem
hard to solve with the proposed ILP formulation, even if this problem is
mitigated by our method.

Finally, we performed a ranking of the state-of-the-art methods for the
Non-Unique Probe Selection Problem; specifically, we assigned a score based
on the number of putative optimal solutions found by each algorithm. By
inspecting the results in Table 4.4, it is possible to note that SPMS represents
the best approach for this biological combinatorial optimization problem;
instead, the MCHR algorithm is not well ranked even if it is superior to
four other approaches. Moreover, it seems that deterministic and hybrid-
deterministic methods are more suitable for this problem, since they reach
the first two positions in our ranking.

4.7 Conclusions and Future Directions

The complexity in designing and selecting optimal probes for hybridization
experiments makes this subject an interesting problem from a computational
perspective. In particular, a plethora of methods have been proposed in liter-
ature to address several issues related to the selection and design of probes,
ranging from exact approaches to heuristic algorithms. After introducing
the biological aspects of hybridization procedures, this chapter illustrates
the state-of-the-art methods for the described problems.

In particular, the Non-Unique Probe Selection Problem represents a chal-
lenging problem from a biological and computational point of view. Two
new heuristics approaches are introduced to tackle it: a canonical Monte
Carlo algorithm and a new optimization method called Space Pruning
Monotonic Search [POP11b]. This last method brings a new concept of
problem simplification, which provides promising regions of the search space
to deterministic optimization methods.
We performed an extensive set of computational experiments to assess the
quality of the solutions and the robustness of these new methods on a well
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Rank Method Score

1 SPMS 6
2 OCP[RSP07] 5
3 BOA[GGWN09] 4
4 GA[WNGR08] 3
5 ILP [KRS+04, KRS+07] 2
6 MCHR 1
7 GrdS [STR03] 0
7 GDRM[MPR07] 0
7 DRC [WN07] 0
7 SFPS[WNR08] 0

Table 4.4: Ranking of the state-of-the-art methods.

known set of benchmarks and real data. The analysis of the results shows
that SPMS is the best approach for the problem, since it reaches the greatest
number of optimal solutions.

We think that there is still a lot of work to be done on this emerging and
interesting research field: firstly, target-group separation for the Non-Unique
Probe Selection Problem represents a new field, that has not been well inves-
tigated yet.
From a biological point of view, it is important to note that the experiments
conducted for the Non-Unique Probe Selection Problem are focused on iden-
tifying five targets in the sample; it can be interesting to extend the existing
approaches for the case of more targets since this could be more realistic from
a biological point of view. A new approach for the problem could concern
the reformulation of separation and coverage constraints as a unique metric,
since the resulting problem could be easier to solve. Moreover, the intrinsic
characteristics of the datasets used for the experiments have not been well
explored. Since they affect the computational results, it would be desirable
taking into account the biological information contained in the sequences,
in order to better explore the search space and deeply understand the re-
sults. Relative to the proposed algorithms, we believe that better results can
be found by performing a finer tuning of the parameters. Since the Space
Pruning Monotonic Search performs very well, we plan to study new
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different and powerful heuristics in order to fix the variables. We also plan
to apply a multi-objective optimization strategy for the problem, where the
constraints are treated as conflicting objective functions; in this way we aim
to provide to biologists a better way to analyze the computational results
from a biological perspective.

99



5
Conclusions

Optimization problems are ubiquitous in everyday life and are present in
different forms. In particular, in many areas of biomedicine, optimization has
become an indispensable tool: drug design and discovery, disease diagnosis
and treatment, protein modeling, are just few examples of biomedical issues
that benefit from in silico design. In fact, computer-aided approaches have
an important impact on the reduction of experimental time and cost.
In this thesis, we introduced and discussed two classes of problems that
involve the design of genomic sequences: String Selection and Comparison
(in Chapter 3), and Probe Design (in Chapter 4).

String Selection and Comparison The first class deals with the identi-
fication of common regions within genomic samples. Specifically, similarities
and differences among DNA and protein sequences provide relevant infor-
mation on their function: high similarity usually involves a structural or
functional affinity; such insight is used, for instance, to locate genes associ-
ated with genetic diseases. Such class of methods addressing the recognition
of similar characteristics or differences within biological sequences comprises
several problems.
In this thesis, we focused our attention on the Closest String Problem, which
consists in finding a string with minimum Hamming distance from the se-
quences of a given finite input set. To overcome the NP-hardness of the prob-
lem, we introduced two new approaches: the Ant-CSP algorithm, based on
the Ant-Colony Optimization metaheuristic [FP10], and a Simulated Anneal-
ing approach, that exploits a new heuristic strategy which allows to find a
promising starting point for solving the problem [PCP11].
The Ant-Colony Optimization metaheuristic takes inspiration from real ant
colonies, where the behaviour of each single ant is directed to the survival
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of the whole colony. In particular, artificial ants are modeled on the forag-
ing behaviour of real ants: when a new food source is found, ants search
the shortest and easiest way to return to nest; ants deposit on the ground
a chemical substance called pheromone that influences and guides the other
ants of the colony in locating the shortest path to reach the food source and
coming back to the nest. This approach is very effective in solving NP-hard
problems that can be represented as a graph whose characteristics change
over time, concurrently with the optimization process. Due to its features,
the Closest String Problem is suitable for the Ant-Colony Optimization ap-
proach. The experimental results conducted show that such method is able
to compute good solutions, regardless the number and the length of input
strings.

The second algorithm presented for the Closest String Problem introduces
a new heuristic, called greedy walk : as the name states, it identifies a walk on
the solution space, that is greedy because the choice of each component is lo-
cal and myopic. We proved the effectiveness of such heuristic by combining it
with a Simulated Annealing algorithm, and we compared our approach with
the mathematical formulations and heuristic methods presented in literature
for the Closest String Problem. Experimental results show that the combi-
nation of our heuristic with the Simulated Annealing algorithm computes
almost always better solutions than the other heuristic approaches, and has
comparable results with exact methods.

Despite the large number of methods presented in literature for the Closest
String Problem, it is our opinion there is still a lot of work to investigate its
computational issues. At this stage, the next step will be a deeper analysis
of the heuristic presented in this work, and the investigation of new algo-
rithms and heuristic to obtain not only the improvement of the quality of
the solutions, but also an improvement of the performances and convergence
speed, since they greatly affect the experimentation costs and time. In such
context, the combination of heuristic and exact methodologies might be a
successful strategy. On the other hand, we plan to extend our approaches
to the Closest Substring Problem, due to its biological and computational
relevance. Such goal requires an accurate tuning of the proposed algorithms,
and a meticulous performance analysis of our approaches for this special case
of the Closest String Problem, due to its computational intractability.
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Probe Design and Selection The second class of problems addressed
in this thesis involved the design of hybridization probes, used to identify
specific targets in biological samples. A probe is a short sequence of DNA
or RNA material, labelled with chemical and enzymatical techniques, used
to find a specific target sequence on a DNA molecule by performing hy-
bridization experiments. Such experiments allow one to determine whether
the probe is present in a DNA solution, i.e. the probe binds with the tar-
get. Hybridization is a commonly used technique in disease diagnosis, DNA
sequencing, gene expression profiling, drug discovery and development. The
selection of “appropriate” probes for hybridization is a difficult task: in par-
ticular, selecting unique probes, i.e. probes hybridizing to only one target, is
often impracticable. In this thesis we studied the Non-Unique Probe Selec-
tion Problem, where the selection of a minimum set of non-unique probe is
addressed. Due to the genomic relevance of such problem, several approaches
have been developed in literature. We proposed two new heuristic approaches
for the Non-Unique Probe Selection Problem.

The first one is a canonical Monte Carlo algorithm, that implements a
heuristic reduction phase to discard “sub-optimal” probes from the final de-
sign. Starting from the results obtained by this method, a new combinatorial
optimization approach, called Space Pruning Monotonic Search is pro-
posed [POP11b]. This new hybrid method combines the quality guarantee
provided by an exact solver, with the exploring ability of an effective and
efficient heuristic procedure. To assess the robustness of such methods, we
conducted an extensive set of experiments, both on artificial and real data
sets. The experimental results have been compared with the state-of-the-art
methods: it results that both the Monte Carlo and the Space Pruning
Monotonic Search are promising methods and, in particular, the Space
Pruning Monotonic Search clearly outperforms the existing approaches
for the problem.

Despite the very encouraging results found by our method, we are con-
scious of being only at the beginning of our research on this class of prob-
lems. First, we would like to better explore the combination of exact and
heuristic methods for this class of problems, due to the computational effec-
tiveness of hybrid approaches. Moreover, we would like to focus our future
research on the target-group separation criteria, since they have not yet been
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deeply investigated. From a biological point of view, it could be interesting
to extend the existing approaches for the case of higher separation or cover-
age thresholds; additionally, a further exploration of the biological meaning
and features of the datasets used for the experiments might lead to a more
effective design.

Moreover, new challenging problems in medicine and biology, such as the
analysis of signaling pathways to study drug effects, the identification of
Single Nucleotide Polymorphism interactions to detect the risk of certain
diseases, the optimization of treatment and drug delivery, represent a new
frontier for optimization. In fact, in silico approaches play a major role in
such contexts, and the necessity of effective optimization methods leads to a
new focus on these subjects.
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