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Ai miei genitori
per la loro costante dedizione nel rendermi felice.
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Abstract
This PhD thesis aims to analyze research topics related to neural-inspired solutions

for robotic locomotion in order to provide new tools and answers to a series of still open
questions.

The use of quadrupedal robots, thanks to their unique abilities, represents one of the
most debated research topics in recent years. Neural methods are applied from the very
low level of the direct control of the single joint of a robot leg, up to the highest level to
model the whole robot behaviour and success while accomplishing a given task.

In particular, analysis will be carried out regarding new central pattern generator
methods based on the reaction-diffusion mechanism, FitzHugh–Nagumo’s neuron and sen-
sory feedback. Neural intelligence techniques will be used for the ground reaction forces
estimation, the motor faults compensation and the ground slope estimation with the aim
to obtain an efficient robot state estimation method giving the possibility to make the
robotic structure more robust and performing. Considering advanced MPC-based stabil-
ity controls, the usage of neuro-inspired control gait mechanisms, with respect to simpler
linear approaches, will make significant differences in terms of the capabilities of the robot
to follow a reference trajectory. An overview is then reported regarding the mobile robot
energetic consumption. Finally, the topic of robotic navigation in unstructured terrains
will be considered. Given an unstructured complex terrain and a group of robots (wheeled,
quadrupeds, hybrid, and so on), each of these unique in its characteristics and traversing
capabilities, the goal is to find which paths, among the infinite ones within the terrain,
they can cope according to their current mechanical abilities, skills, and knowledge of the
environment.
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Chapter 1

Introduction

The world of bio-inspired robots, especially in recent decades, has become increasingly
popular due to the fact that researchers and scientists have been able to verify the ex-
traordinary world that regulates the actions and activities of insects and animals. Insects
show a lot of amazing innate behaviors, for example, they cooperate when they have to
complete a given task or they are able to find an optimal path in a complex environment
from a starting point to an end point using chemical messages entrusted to substances
called pheromones. Besides, the limited number of contact points with the ground gives
them the possibility to reduce friction whereas the use of efficent control strategies al-
lows to actuate a balancing control even in complex unstructured terrains by regulating
the angles between their legs. All these aspects have been applied to insect-inspired and
quadruped robots in the last years by researchers around the world.

Legged locomotion provides important advantages for the exploration of uneven ter-
rain, in particular in presence of obstacles on their path. The first attempts to reproduce
gait on legs in robots were aimed at the use of hexapods [1, 2] and octopus robots [3],
to assess locomotion stability, guaranteeing always at least three contact points with the
ground. In [4] legged robots are used for the consolidation of buildings and structures in
general, while in [5] the problem of the morphological changes in terrain was faced using a
robot with wheels and front legs able to deposit sensors in the ground. The steps forward
in the electronic and sensor fields have given the opportunity to have hardware compo-
nents, like sensors and actuators, with low cost that have made mobile robots smarter
with respect to the past. For all these reasons, quadrupedal locomotion is starting to be
employed, guaranteeing a high level of robustness to disturbances and, at the same time,
permitting a relevant improvement in the robot’s dexterity.

The goal of this thesis is to face the topic of the legged control mechanism, from a
low-level to a high-level point of view. For this reason, the works reported in the following
chapters can be grouped into different research lines which, converging together, address
the issue of bio-inspired robot locomotion in unstructured terrains.
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1.1 From a low to a high level analysis
Starting from a low-level analysis of the problem, examples of locomotion control using
Central Pattern Generator (CPG) approaches for the robotic locomotion, are reported.
It is well known that CPG is a paradigm for locomotion control which aims in attaining
a specific locomotion gait without, in principle, considering sensor feedback as strictly
needed. The main issue is to reach a stable phase displacement among the legs which
guarantees an arbitrary steady state synchronization, given some hyphotheses. The par-
tial contraction theory will be used as a locomotion stability guarantee. Two different
CPG approaches will be formalized and applied to a hybrid legged and wheeled robot, in
particular, a reaction-diffusion based one and a FitzHugh–Nagumo’s neuron based one,
then, a focus on the role of the environmental feedback is provided.

Starting from a reliable CPG locomotion controller, neural approaches to estimate
Ground Reaction Forces (GRFs) for proprioception with the usage of SNNs (Spiking Neural
Networks) are proposed. Proprioception is the ability of a robot to perceive and recognize
its body position in space, without the support of sensors; it is considered a sixth sense as
it is regulated by a specific part of the brain. SNN are demonstrated to be more efficient
than non-spiking networks. CPG and active proprioception constitute an added value to
adaptive locomotion. In this way, it is possible to predict robot intrinsic quantities, such
as GRFs, starting from other quantities taken from motors, like Torques (TRQs), even if
one or more motors are damaged. At the end of this part, it will be possible to design an
efficient robot state estimation method based on Reservoir Computing (RC) theory.

From the locomotion control aspect, the design of a linear and a nonlinear MPC
controller for a quadruped robot endowed with FitzHugh-Nagumo CPG is proposed. In
particular, comparisons will be carried out between the results obtained using different
control mechanisms such as Proportional Integrative Derivative (PID), Model Predictive
Control (MPC), and Neural Network Model Predictive Control (NNMPC). It will be
reported demonstrating, in particular, that NNMPC represents the preferable control
typology in case of slippery terrains.

It is well known that legged locomotion involves, in principle, a large energy consump-
tion over the wheeled approach. For this reason, an energy analysis evaluation, expressed
using an univocal index, will be presented evaluating the quadruped locomotion efficiency
in unstructured environment in comparison with other simulated structures. The index
is the Cost of Transport (CoT) which will be used to estimate how expensive one path is
compared to another and how, for the same paths, two robots give different results due to
their different structures: this is fundamental from an engineering resource minimization
point of view.

From a high-level side, topics related to risk-based path planning in unstructured
environments will be presented. In particular, a discussion will be carried out about a
data-driven approach for learning risk-mediated traversability maps in the case of multiple
robot architectures and multiple paths characterised by different levels of complexity and
associated risk. Here, the method for obtaining a neural model representing the unique
characteristics of a mobile robot is presented considering also an acceptable risk threshold
associated with the path. In this way, at the end of this chapter, an optimal path estimator
model and risk threshold based is provided.
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1.2 Novelties
The main novelties presented in this thesis can be schematized as follows:

CPG methods for the quadruped locomotion

• Application to the quadruped locomotion of structures such as reaction-diffusion
system, FitzHugh–Nagumo’s neuron, Matsuoka’s neuron and SO(2)-networks.

• Starting from the mathematical formalizations of the structures presented above,
different CPG structures are obtained and then applied to the robotic field.

Liquid State Machine for the Ground Reaction Forces prediction

• Creation of an efficient robot state estimation method based on reservoir computing:
from the local proprioceptive information acquired at the level of the leg joints
(torques) of a simulated quadruped robot it is possible to obtain the GRFs recorded
at the foot level.

• Comparative analysis between the Echo State Network (ESN) and Liquid State
Machine (LSM) approaches.

Evaluation of robot energy consumption

• Implementation of a simple robotic control strategy based on the FitzHugh–Nagumo
Neuron (FHN) used as a basic block for the implementation of a CPG.

• The possibility to apply a nullcline-based control strategy to adopt the neuron
oscillation proprieties also facilitating the synchronization between the different
legs.

• Focus on an adaptative control to minimize the energetic cost.

MPC-based control strategies for the gait of a neuro-inspired quadruped
robot

• Implementation of a neural adaptative structure based on the proprioceptive infor-
mation and the exteroceptive signals acquired through ground contact sensor.

• Locomotion control realised using a central pattern generator implemented through
oscillators synchronized through environmental feedback.

• Results compared with those obtained using a linear MPC and a PID base con-
troller.

Robot-oriented neural models for path planning

• Design of a simple procedure for the generation of traversability maps needed for the
definition of the optimal path between two or more target positions. To avoid the
wearing out of the robots, they are simulated in an accurate dynamic environment,
and their traversing capabilities are learned through a data-driven approach.

• The approach produces a robot-specific traversability map, directly derived from
the robot exploration.
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• A multi-robot approach is used, where different robots can fulfil different missions
according to their kinematic and dynamic capabilities that are not analytically
defined but are inferred from the simulation data.

• Different traversability map estimation methods are developed considering not only
the minimisation of the travelled distance but also the risk related to the specific
path.

• The low computational complexity applied to real map terrains is a key aspect in
view of the implementation on embedded architectures for edge computing.

1.3 Software environments
The software tools employed in the following chapters are MATLAB, CoppeliaSim, Nest
simulator, and ROS simulator.

CoppeliaSim [6] is a dynamic simulation environment that also hosts different robotic
structures, robotic elementary parts, and environments in which robots can interact. The
CoppeliaSim framework provides an accurate and realistic dynamic simulation environ-
ment where performance can be evaluated before implementation on the actual robot
prototype. This simulation approach becomes essential when a large amount of data has
to be acquired, i.e., when data-based learning is involved.

Nest simulator [7] is a spiking neural network simulator used for different purposes
involving the neural science area. It can be adopted for the information processing in
the visual or auditory cortex of mammals, for the implementation of models of network
activity dynamics, e.g., laminar cortical networks or balanced random networks, models
of learning and plasticity and so on.

The ROS (Robot Operating System) [8] serves as the interface for the robot. It
provides libraries and tools to help software developers to create robot applications. ROS
simulator, together with the Nest simulator, will be used to build the LSM architecture.

1.4 Chapter outline
The following thesis is organized as follows. The topics related to the low-level analysis
are reported in:

• Chapter 2: the mathematical and formal description of the statistical indexes
used in this thesis is here reported.

• Chapter 3: new CPG approaches based on reaction-diffusion system and FitzHug-
Nagumo’s neuron applied to legged robots sensory feedback.

• Chapter 4: GRFs estimation using LSMs carrying out comparisons between dif-
ferent methodologies.

• Chapter 5: evaluation of energetic efficiency in an unstructured environment and
test on the real robot.
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The remaining topics, related to the high-level analysis, are faced in:

• Chapter 6: design of a linear and a nonlinear MLP controller for a quadruped
robot.

• Chapter 7: neural-based methods for the derivation of the traversability maps of
unstructured environments.

In Chapter 8, the conclusions and future developments are reported.
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Chapter 2

Performance analysis indexes

In this section, the formal description of the statistical indexes used in the following
chapters is reported. In particular, the indexes are:

• Accuracy, sensitivity, and specificity.
• Maximum Absolute Error.
• Normalized Root Mean Square Error.
• Mean Squared Error.
• Goodness Of Fit based on Normalized Root Mean Square Error.
• Akaike Information Criterion.
• Stability and harmony.

2.1 Accuracy, sensitivity, and specificity
The accuracy index indicates how close a given set of measurements (observations) are
to their reference values, i.e. accuracy is the proximity of measurement results to the
reference value [9]. In Fig.2.1 the graphical representation of the accuracy index related
to a reference index is shown.

The sensitivity and specificity are two statistical indexes describing the goodness of
a test in terms of results when a condition to be fulfilled is imposed. Individuals for
which the condition is satisfied are considered ”positive” and those for which it is not
are considered ”negative”. Sensitivity (true positive rate) refers to the probability of a
positive test, conditioned on truly being positive. Specificity (true negative rate) refers to
the probability of a negative test, conditioned on truly being negative [10]. In Fig.2.2 the
formulas to obtain the sensitivity and specificity indexes are reported. In particular:

Sensitivity =
TP

TP + FN
(2.1a)
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Figure 2.1: The accuracy related to a reference value considering a Gaussian measurements
distribution. The probability density indicated is a function that provides the likelihood
that the value of a random variable will fall between a certain range of values.

Specificity =
TN

TN + FP
(2.1b)

where:

• TP (True Positive): elements that are truly positive and that are predicted as
such.

• FP (False Positive): elements that are truly negative but that are predicted as
positive.

• FN (False Negative): elements that are truly positive, but that are predicted as
negative.

• TN (True Negative): elements that are truly negative and that are predicted as
such.

Figure 2.2: Diagram demonstrating the basis for deriving the elements in the sensitivity
and specificity indexes.
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2.2 MaxAE
The Maximum Absolute Error (MaxAE), given a series of measurements, represents the
maximum difference between the measured or inferred value of a quantity yt and its actual
value y, it is given by:

MaxAE = max(δy) (2.2)

with δx = yt − y.

2.3 Mean Squared Error
The Mean Squared Error (MSE) index is defined as follows:

MSE =

∑n
i=1(yi − yti)

2

n
(2.3)

where yi is the prediction, yti is the reference value and n is the number of considered
patterns. It measures the average squared difference between the estimated values and
the actual value and it corresponds to the expected value of the squared error loss.

2.4 Normalized Root Mean Square Error
The Normalized Root Mean Square Error (NRMSE) is defined as follows:

E(y, yt) =

√
⟨∥yt(n)− y(n)∥2⟩
⟨∥yt(n)− ŷt(n)⟩∥2⟩

(2.4)

where y is the prediction, yt is the reference value, ŷt is a theoretical value, n is the
number of considered patterns and ∥ · ∥ stands for the Euclidean norm. It represents
the normalized version of the Root Mean Square Error (RMSE) that is a measure of the
differences between values predicted by an estimator and the values observed.

2.5 Goodness Of Fit based on Normalized Root
Mean Square Error

The Goodness Of Fit (GoF) index is based on the NRMSE index and represents the error
norm between the model output y in the testing data set and the corresponding reference
signal yt:

Fit =
(
1− ||yt(n)− y(n)||
||yt(n)− ŷt(n)||

· 100
)

(2.5)

where ŷt is a theoretical value [11] and n is the number of considered patterns
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2.6 Akaike Information Criterion
The Akaike Information Criterion (AIC) estimates the model prediction quality, given a
collection of data-driven models, based on the obtained prediction accuracy and model
complexity [12]. According to Akaike’s theory, the most accurate model should have the
smallest AIC index, defined as follows:

AIC = N · log
(
det

(
1

N

N∑
1

ϵ
(
t, θ̂N

)(
ϵ
(
t, θ̂N

))T))
+ 2nP +N ·

(
ny ·

(
log(2π

)
+ 1

))
(2.6)

where N is the number of patterns in the estimation dataset, ϵ(t) is a ny − by − 1
vector of prediction errors, θN represents the estimated parameters, np is the number of
parameters to be estimated (model complexity), ny is the number of model outputs.

2.7 Stability and harmony
Stability and harmony are two indexes used to evaluate the property of a moving object
in a plane [13, 14], in particular:

• Stability accounts for the robot deceleration and rotational oscillation. It is defined
as follows:

Accmin = |min(Acc)| (2.7a)

AngPP = max(Ang)−min(Ang) (2.7b)

amin = max(Accmin) (2.7c)

PPmin = max(AngPP ) (2.7d)

Aminfinal
= max(Amin) (2.7e)

PPfinal = max(PP ) (2.7f)

Stability =
e−λAminfinal + e−λPPmaxfinal

2
(2.7g)

where Acc indicates the accelerations of the robot body and Ang the angular veloc-
ities in all three axes. The values of Acc minimum peak (Accmin) and Ang peak to
peak (AngPP ) characterize the locomotion stability. Stability is evaluated during
the time window of the experiment. This is divided into several cycles or periods
(Nperiods). We define Amin =

{
amin,1; ....; amin,Nperiods

}
, PP = {PPmin,1 ; ....;

PPmin,Nperiods
.} The decay constant λ is fixed to λ = 0.1.

14



• Harmony indicates the adaptation of the robot body position to the change in the
terrain level. To evaluate the Harmony index, the following relations are calculated:

RIamin
=

min(Accmin)

max(Accmin)
(2.8a)

RIPPmin
=

min(AngPP )

max(AngPP )
(2.8b)

RIAfinal
= min(RIA) (2.8c)

RIPPfinal
= min(RIPP ) (2.8d)

Harmony =
RIAfinal

+RIPPfinal

2
(2.8e)

where RIA = {RIamin,1
; RIamin,2

; ....; RIamin,Nperiods
.} and RIPP = {RIPPmin,1

;

RIPPmin,2 ; ....; RIPPmin,Nperiods
.}.
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Chapter 3

CPG methods for the
quadruped locomotion

In this chapter, innovative CPG approaches for the robotic locomotion will be reported.
In particular, the CPGs are based on the following structures:

• Reaction-diffusion system

• FitzHugh–Nagumo’s neuron

• Matsuoka’s neuron and environmental feedback

• SO(2)-networks as neural oscillators

3.1 Reaction-diffusion system
The locomotion control of a quadruped or hybrid robot is a challenging task. In the animal
kingdom, from mollusks to men, it is a clear evidence that locomotion flow, in steady state
conditions, involve stereotyped limbs dynamics which take place, in principle, in the ab-
sence of sensory feedback. Legs are controlled by centralised neural controllers which send
to the locomotion actuators robust phase synchnised oscillatory signals. This is mostly
evident in escape reactions: whichever are the ground conditions running is implemented
mostly invariantly. A fast and reactive response suggests the application of a centralized
control system. In particular, in [1] the authors employ Partial Contraction Theory to
demonstrate asymptotic stability in Reaction Diffusion based oscillatory networks, and in
[15] the high level locomotion control, involving steering, was argued to preserve stability
by weighting the oscillator states. Here this result if formally demonstrated.

A reaction-diffusion system-based CPG architecture was formalized in [15] and in
[5] and it is applied to a hybrid legged and wheeled robot. Cellular Neural Networks
(CNNs) are arrays of simple, identical, locally interconnected nonlinear dynamic circuits
called cells to build impressive analog signal processing systems [16]. When applied to
locomotion control, the main focus is to look for steady-state solutions able to guarantee
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an asymptotically stable equilibrium point of the phase solutions among the cells locally
behaving as nonlinear oscillators. The dynamics of the single node, for this particular
application, are described by the following two differential equations:

ẋ1,i = f1(x1,i, x2,i) = −x1,i + (1 + µ)y1,i − sy2,i

ẋ2,i = f2(x1,i, x2,i) = −x2,i + (1 + µ)y2,i − sy1,i

yk,i = tanh(xk,i) here k = 1, 2

(3.1)

Figure 3.1: The neural structure adopted for locomotion control. Each neuron is devoted to
control the position of two leg joints (Hip 2 and Knee) through the two-state variables x1,i

and x2,i defined in Eq. 3.1. As example, the two-state variables x1,3 and x2,3 controlling
the Hip 2 and Knee related to the 3rd leg are reported.

where parameters µ = 0.7 and s = 1 were selected in order to obtain a stable limit
cycle [15].

Connecting n identical cells, the whole system dynamics can be thus represented in
the following general form:

ẋi = f(xi) + kL
∑

i ̸=j j∈Nr

[Rij(wjxj)− xi] (3.2)

where:

• f(xi) = f(x1,i, x2,i) represents the dynamics of the i− th uncoupled oscillator.
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• kL is the feedback gain, whereas the summation operator represents the contri-
bution of the immediately neighboring cells around the cell i, within a neighbour
Nr.

• The last part of the equation represents the feedback error between the state vari-
ables of the i − th cell and the corresponding state variables of cell j, eventually
after a scaling, through the weight vector wj, and a phase-shift with respect to cell
i via the rotation matrix Rij .

• The value wj represents a scaling weight vector on the state variables of certain
cells, that will enable to easily implement a gain-based steering control [17].

Under these conditions, the two oscillators attain reciprocal equilibrium by minimising the
error term, which implies phase-shift weighted synchronization.

The dynamics of the whole locomotion controller, shown in Eq. 3.2, can be expressed
in a more compact form by the following reaction-diffusion system, outlining the Laplacian
operator:

ẋ = f(x)− kL · L · (w ⊙ x) (3.3)

where:

• x = [x1,1, x2,1, ...., x1,nn
, x2,nn

]T ∈ Rnt .

• f(x) = [f(x1,1, x2,1), ...., f(x1,nn , x2,nn)]
T .

• w ∈ Rnt is a weight vector acting element-wise on the state variables.

• L ∈ Rnt×nt is the laplacian matrix built-up of blocks Ri,j (i.e. rotational matrix)
whose values are based on the topology of the network and the specific gait to be
generated.

• The gain kL used to weight the laplacian coupling among neurons, introduced in
Eq. 3.2, can be selected in order to satisfy the sufficient condition imposed by
exploiting Partial Contraction theory [18].

This will guarantee the convergence towards a desired synchronization pattern that rep-
resents a stable locomotion gait for the quadruped structure [1, 18].

In order to build the Laplacian connection matrix L, considering any two neurons i
and j (i, j = {FL, FR,HL,HR}), the L sub-matrix Li,j between them assumes one of
the following forms:


Li,j = −R(θi,j), if cells i and j are connected with a phase shift θi,j.
Lj,i = −R(−θi,j), for undirected balanced networks.
Li,j = Lj,i = 0, if no connection does exist between nodes i and j.
Li,i = diInc , ∀i = 1..nn, di: unweighted degree of node ith.

(3.4)

This theory formalises the problem of phase shift synchronization through the intro-
duction of a flow-invariant subspaceM, i.e. a subspace where the system trajectories are
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to be trapped. M encodes the phase shifts among the state variables. More in details, for
undirected diffusive tree graphs with w = 1 in Eq.3.3, as shown in [1, 18], a unique gain
KL can be found to guarantee the global exponential convergence to any imposed phase
shift among the neurons, i.e. any imposed locomotion gait.
However, for general directed diffusive weighted graphs, the laplacian matrix is gener-
ally non-symmetric and unbalanced, so it is not possible to apply directly the theoretical
results already proven.

For the structure considered in this chapter, as demonstrated below, it is possible
to find a suitable transformation to reformulate our graph in terms of an underlying
undirected diffusive tree graph. So, it is still possible to apply the partial contraction
result to demonstrate the convergence to a flow invariant subspace: this result was only
argued in the simulation results in [17]. For this purpose, let us prove the following Lemma.

Lemma 1 The non-symmetric connection matrix of the directed weighted graph in
Fig.3.1 is similar to a symmetric Laplacian matrix. Therefore, the directed weighted
graph in Fig.3.1, can be reformulated in terms of an undirected diffusive tree graph. To
demonstrate such a lemma, let us first explicit Eq. 3.3, for the graph in Fig.3.1. It holds:

ẋ1 = f(x1) +KL

∑4
i=1[RΦi1(wi1xi)− x1]

ẋ2 = f(x2) +KL[RΦ12(w12x1)− x2]

ẋ3 = f(x3) +KL[RΦ13(w13x1)− x3]

ẋ4 = f(x4) +KL[RΦ14(w14x1)− x4]

(3.5)

Let us now recall that, for every rotation matrix Rϕ, any weight wij ∈ R and any vector
x ∈ R2, it holds: Rϕ(wx) = wRϕ(x). The scaling gain of the state variables of cell j with
respect to cell i can be seen as a weight on the i → j link. Reformulating the equations
above, outlining the laplacian matrix (Eq.3.3), it holds:

L̂ =


3I −w21Rϕ21 −w31RΦ31 −w41RΦ41

−w12Rϕ12 I 0 0
−w13Rϕ13 0 I 0
−w14Rϕ14 0 0 I


Since, in general wij ̸= wji L̂ is neither symmetric nor balanced1.

Let us now define the following balancing non-singular matrix:

T =


I 0 0 0

0
√

w21

w12
I 0 0

0 0
√

w31

w13
I 0

0 0 0
√

w41

w14
I


It is easy to verify that T L̂T−1 = L with:

1A network (and so its Laplacian matrix L = {lij}) is balanced if:
∑

i ̸=j lij =
∑

i ̸=j lji
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L =


3I Rϕ21 −RΦ31 RΦ41

−Rϕ12 I 0 0
−Rϕ13 0 I 0
−Rϕ14 0 0 I

 (3.6)

Supposed that Rϕij = −R−ϕji, 2, L is the symmetric, balanced Laplacian matrix of
an undirected diffusive tree graph underlying the directed graph of Fig.3.1.

It is possible to demonstrate the following theorem:
Theorem 1 The directed weighted graph of Fig.3.1, represented by Eq. 3.3, possesses

solutions exponentially converging to any imposed flow-invariant subspaceM, (i.e., to any
phase shift among the oscillators) if there exists one gain Kmin : ∀k ≥ Kmin it holds:

k · λ1 > sup
xi

λmax

(
∂f

∂x
(xi, t)

)
(3.7)

λ1 is defined as the algebraic connectivity of the graph [19], i.e. the smallest non-vanishing
eigenvalue of the Laplacian matrix:

λ1 = λmin(L) = λmin(VT · L · V)

being V the orthonormal complement associated with the flow-invariant subspaceM; the
second member in Eq.3.7 represents the maximum eigenvalue of the Jacobian matrix of
the generic uncoupled cell.

The proof is based on the results from Lemma 1 and of Theorem 1 in [1]. In fact, for
the weighted directed tree graph of Fig.3.1, Lemma 1 states that there exists an underlying
undirected weight-balanced diffusive tree graph characterised by the balanced symmetric,
positive semi-definite laplacian matrix defined in Eq.3.6. According to Theorem 1 in [1],
for any imposed flow-invariant subspace (and therefore for the corresponding associated
Laplacian matrix), representing any given phase shift among the oscillators arranged into
an undirected diffusive tree graph, there exists a minimum gain kL for which Eq.3.7 holds.

Theorem 1 in [1], is thus extended to the weighted directed tree graph case herewith
presented, where it is now possible to define any phase among the oscillators and any
scaling among them, being assured the existence of an asymptotically stable solution to
the imposed phase equation. It has to be noticed that, although not general, the case of
this weighted directed tree graph underlines a lot of network structures, where an arbitrary
phase shift synchronization is desired among oscillators of different amplitudes.

The steering control of the robot, once selected the proper stabilising gain k, can be
performed by tuning the weights wij in Eq. 3.3; this result will be applied in Section 6.3.3.

Considering Eq.3.2, in [5] this latter is applied to a hybrid legged-wheeled robot, and
here, the system equation is modified in order to create a steering. This is obtained
by connecting the oscillators using direct links and imposing a phase relation through
the rotational matrix. For instance, we want that the left and right legs are in anti-
phase during locomotion, an R(ϕ) with ϕ = 180o can be applied in Eq.3.2. In order to

2This simply means that if cell i is lag phase shifted of a given angle Φ on cell j, this
latter cell is lead shifted of the same angle Φ with respect to cell i.
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implement a steering, the implementation of a time-varying rotational matrix R(ϕ(t)) is
realized. The steering of the robot is realized using different timing factors t associated
with the rotational matrix. Fig.3.2 shows the robot trajectory performed with different
rotational matrices that generate distinct curvature radii. The inner side leg stepping
amplitude is reduced and, at the same time, the inner side wheel speed is decreased acting
on the time-dependent rotational matrix R((t)).

Figure 3.2: Steering of the robot based on different timing factors t associated with the
rotational matrix.

3.2 FitzHugh–Nagumo’s neuron
In[20], a CPG is applied to the control of a simulated Mini Cheetah robot ([21, 22]) using
a network based on the FitzHugh–Nagumo’s neuron [23]. The locomotion patterns are
generated using a series of neurons connected, shown in Fig.3.3, controlling eight joints
related to the hip and knee of each leg (the coxa joint is not exploited in this work where
only sagittal movements of the legs are considered). The control system is developed
using four FHNs able to produce oscillating, rhythmic patterns in the absence of sensory
feedback, connected together to implement a CPG able to synchronize the oscillation
phases to obtain the desired locomotion gait [24]. As we can see, the network graph is
identical to that in Fig.3.1, so that we can, also in this case, apply the same approach for
the robot steering.

The FHN’s neuron mathematical model consists of two coupled, nonlinear ordinary
differential equations, modelling the fast evolution of the neuronal membrane voltage and
the slower recovery action of the sodium channel and potassium channel deactivation.
The cubic non-linearity present in the original model is approximated using a Piece-Wise
Linear function (PWL) obtaining what is called McKean’s caricature of the FHN [25].
The equation describing the behaviour of the FHN’s neuron is reported in the following:
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Figure 3.3: CPG structure. The legs are BL: back left, BR: back right, FL: front left,
and FR: front right. The synchronization phase between neurons is related to the adopted
locomotion gait.


ẋ1 = f1(x1, x2) = ( 1ε (γ(x1)− x2))
ẋ2 = f2(x1, x2) = (x1 + a− bx2)

γ(x) = a0 + a1x+
∑N

j=1 bj |x− Ej |
(3.8)

where:
• a, b, ε ∈ R.
• N = 2.
• a0 = γ(0)− b1|E1 − b2|E2.
• a1 = 1

2 (m0 +m2).
• b1 = 1

2 (m1 −m0).
• b2 = 1

2 (m2 −m1).
• Ej ∈ R.
• m0 m1 and m2 are the left, central and right slopes respectively.
• γ(x) is used to approximate a non-linear expression as the union of multiple seg-

ments each one having its own slope.
Considering that N = 2, the FHN’s phase portrait is composed of slow and fast

branches and it is enough to realize a slow-fast limit cycle where the outer branches
determine the stance and swing phases of each leg that can be controlled by modulating
the corresponding slope parameters. If the number of segments is equal to N + 1, then
the number of breakpoints in the PWL is N . Furthermore, the i− th slope is referred to
mi ∈ R, with i ∈ {0, ..., N} being m0 the slope of the leftmost segment and mN the slope
of the rightmost one.

In order to use the FHN’s neuron dynamic to control the Mini Cheetah’s gait, the
state variables x1 and x2 are normalized and used to control the joint position of the hip
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and knee, respectively. The direction control of the robot is implemented by calculating
the position and orientation errors between the robot’s centre of mass and the next target
point to be reached along the path, which is divided into a certain number of waypoints.
Therefore, the error is reduced by acting on the leg trajectories, allowing the robot to steer
when necessary. On the basis of the analysis performed by the authors in [26], a suitable
range for the parameters m0 and m2 was chosen as [-5, -1]. The values adopted for the
parameters are reported in Table 3.1.

Table 3.1: FHN’neuron parameters.

Parameter Value
a 0.7
b 0.8
ϵ 0.01
a0 0
a1 -1
b1 1
b2 -1
m0 [-5, -1]
m1 1
m2 [-5, -1]

The locomotion gaits can be generated by opportunely synchronising the phases of the
four oscillators seen in Fig.3.3 connected through a master-slave scheme and controlled
using the nullcline-based synchronization strategy as discussed in [24]. In Fig.3.4(a), the
neural dynamics are shown taking into account three different pairs of m0 and m2 pa-
rameters. By varying the value of the m parameters, it is possible to have a change in
the robot’s gait. In fact, in Fig.3.4(b), the frontal right foot trace, as recorded by the
leg foot position sensors, is reported, producing an effect in terms of energy efficiency;
the adopted sampling time is 25 ms. The stepping diagram obtained from the simulated
robot while walking on flat terrain with a trot gait is reported in Fig.3.4(c) (m0 = −1,
m2 = −1, ϕBR = 0, ϕFR = ϕBL = π). The stance phase is detected when the force sensor
on each leg tip is above 10% of the maximum detected value. The optimization of the
m parameters is therefore needed to find the best locomotion condition to minimize the
energy consumption.

3.3 Matsuoka’s neuron and environmental feed-
back

Even if CPG can work without any information coming from external stimuli, a feedback
mechanism is essential in the fine tuning of legs motions. In literature, a large amount
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(a)

(b)

(c)

Figure 3.4: Application results of the neuron model to the robot locomotion control. (a)
The FHN limit cycle shapes change based on the m parameters; (b) traces of the right
front leg tip obtained for the selected m; (c) Stepping diagram obtained during the trot
gait (m0 = m2 = −1).

of different strategies were introduced in this perspective. In [27] and [28], an approach
in introduced, which aims at demonstrating that structured locomotion patterns can also
emerge without having a pre-imposed set of basic oscillations, but, on the contrary, based
uniquely on an environmental feedback. This provides similar results to the decentralised
locomotion control, introduced by Holk Cruse which led to the development of the walknet
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network [29].
Our neural structure is adaptive and it is based on the proprioceptive information

and the exteroceptive signals acquired through ground contact sensors. The importance
of feedback will be further emphasised in chapter 6, where, based on [30, 31], the Model
Predictive Control (MPC) based control mechanisms generate the high-level descending
commands used by the CPG environment feedback-based. A focus on the MPC control
will be given in Chapter 4.

As shown in Fig.3.5, the quadruped consists of four identical legs equipped with three
revolute joints. Each foot has a cylindrical shape, and it is linked to the leg through a
prismatic passive joint that works as a shock absorber. The weight of the robot trunk is
not uniformly distributed: there are two main parts in the front and hind of the trunk
interconnected through a light-weight bar, mimicking the presence of the head, abdominal
parts, and tail. In this way, the robot’s weight is concentrated on the front and rear legs
of the robot. The robot model was developed in CoppeliaSim.

Figure 3.5: Quadruped model developed in a dynamic simulation environment.

The neural control architecture is schematically reported in Fig.3.6 (a) where each
leg is controlled through a half-center oscillator implemented through two interconnected
dynamical systems mimicking the extensor and flexor dynamics of muscles and taking
inspiration from the Matsuoka neuron [32]. A load sensor is equipped on the tip of each
leg, in fact, each leg controller is not directly interfaced with the others but they are
coupled through the environment.

In these equations, the suffix e, f , and i denote the extensor, the flexor, and the leg
number (i.e. 1: left front, 2: right front, 3: left hind, 4: right hind), respectively.

ẋ1ei = ϵr(−x1ei − bx2ei + γyfi + s+ feed1ei), (3.9a)
ẋ2ei = ϵa(−x2ei + yei), (3.9b)
yei =x1eiH(x1ei) (3.9c)
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(a)

(b)

Figure 3.6: Scheme of the locomotion control architecture. (a) The afferent load feedback
connection is reported: ipsilateral connections (red line), diagonal connections (green line),
and contralateral connections (blue line). (b) Feedback control scheme of each robot leg.
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ẋ1fi
= ϵr(−x1fi

− bx2fi
+ γyei + s+ feed1fi (3.10a)

+ feed2fi),

ẋ2fi
= ϵa(−x2fi

+ yfi), (3.10b)
yfi =x1fi

H(x1fi
) (3.10c)

where H(x) is the Heaviside function:

H(x) =

{
0, if x < 0

1, otherwise

The sensory information signals provided are detailed in the following.

feed1{e,f}i = ± k1 · (θi − θ0), (3.11a)
feed2f = [feed2f1, · · · feed2fi, · · · feed2f4]T (3.11b)

=K2 · L,
K2 = kipIp+ kcoCo+ kdiDi ∈ R4×4, (3.11c)
L = [l1, l2, l3, l4]

T ∈ R4 (3.11d)

The Ip, Co, Di parameters are matrices that are reported in Eq.3.12:

Ip =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

Co =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

Di =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (3.12a)

The presented model is a parallel distributed dynamical system where the neurons are
structured to match the leg structure. All the other parameters are tuned based on the
locomotion gait to be obtained as will be schematized and discussed in the following.

• Considering all single cells of the CPG controller, each one is made up of a 4-th
order nonlinear system, including two sub-units that stand for the flexor-extensor
couple [33] and, in each of these, i.e. extensor and flexor, the two-state variables
represent the membrane potential (x1{e,f}i) and the recovery variable (x2{e,f}i),
respectively.

• The recovery variable x2{ef}i inhibits the membrane potential x1{ef}i through the
constant parameter b.

• ϵr and ϵa are the time constants used to determine the basic frequency of the CPG
and the bias term s models the descending signal from the higher brain centres.
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• Within each half-center CPG, the parameter γ weights the flexor/extensor inter-
action and each hip joint angle is multiplied by the constant gain k1 and provided
in input to the half-center CPG of each leg [33], as in Eq. 3.9 and 3.10. If this
feedback would be eliminated walking would be impossible because of the loss of
the CPG rhythm during the stepping by the model.

• The terms feed1{e,f}i and feed2{e,f}i represent the sensory feedback, in particular:

– feed1{e,f}i indicates the error between a reference angle θ0 and the actual
hip joint angle θi (plus or minus signs are referred to the extensor and flexor,
respectively).

– feed2{e,f}i weights the afferent loads, represented by the vector L ∈ R4,
from the neighbouring legs. This varies according to the values of the fol-
lowing gains acting on the legs: kip (ipsilateral), kco (contralateral) and kdi
(diagonal) that depends on the used gaits.

• y{e,f}i are the outputs of the extensor and flexor neurons of the i-th leg; these are
discontinuous and non-negative terms due to the Heaviside function H(·).

All the above parameters are the same for each half-center CPG (i.e. for each leg).
Considering Fig.3.6(b), position control is applied to each leg. It is based on the

output from its half-center CPG, providing information related to the stance or swing
phase of the leg. The control flow can be schematized into three subparts:

1. The first is the phase generation in which, on the basis of the actual sensory infor-
mation coming from the robot legs, the half-center CPGs output, (i.e. yf and ye),
are computed.

2. The second phase is the parameters selection where, based on the flexor output, a
PI controller is selected. In particular:

• If yf (t) > 0 then the leg is led to the swing phase adopting the set of swing PI
parameters, that are Kswing

P and Kswing
I , used to reach a goal swing position

θswing
ref .

• On the contrary, the leg is led to the stance phase through the set of stance
PI parameters, i.e. Kstance

P and Kstance
I , adopted to reach a target stance

position θstanceref .

3. The last phase is the actuation in which, after selecting the PI parameters and the
target position, these are used in the PI controller of each leg providing an angular
speed to actuate the joints.

In particular, the PI controller equation of the j-th leg is:

ωj(t) =K
{sw,st}
Pj

ej(t) +K
{sw,st}
Ij

∫
ej(ti) dt, (3.13a)

ej(t) = θ
{sw,st}
ref − θhj (t) (3.13b)
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where:

• ωj(t) is the output angular velocity.

• θhj (t) is the current angle.

• ej(ti) is the angular position error and they are referred to the jth leg.

• θ
{sw,st}
ref are vectors containing the hip and knee target joint angles during the
swing/stance phase of the j-th leg.

• K
{sw,st}
Pj

andK
{sw,st}
Ij

are the proportional and the integral gains in the swing/stance
phase of the j-th leg, respectively.

• θsw,knee
ref is the angle position to which each leg retracts during the swing phase to
avoid tripping when the hip moves towards the target joint angle θsw,hip

ref .

• Considering the knee, this is extended until it reaches a target angle θst,kneeref when
the leg stance phase happens, and, in the meantime, the hip swings backwards to-
wards a target joint angle θst,hipref . This motion sequence leads the robot to complete
a stride cycle and to generate forward propulsion.

PI tuning was carried out using the guidelines in [34]. The parameters used are
reported in Table 3.2 and a set of PI parameters are imposed by the leg controller switching
periodically between stance and swing phase on the basis of the sign of the output variable
of the flexor neuron in the half-center oscillator associated with the corresponding leg.

Table 3.2: Coefficients for the low-level leg controller based on a PI. The desired positions
for both stance and swing phases are reported.

Parameter Value
Kstance

P 14.33
Kstance

I 10
Kswing

P 16.64
Kswing

I 16
θst,hipref -0.35 rad
θst,kneeref 0 rad
θsw,hip
ref 1.05 rad
θsw,knee
ref -1.22 rad

Starting from a predefined set of parameters shown in Table 3.3, this configuration
allows to generate gaits and to migrate between them by changing a subset of parameters
reported in the table.

To implement a heading control, a third input signal is adopted. Specifically, the input
is added to Eq. 3.10a and consists in:
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Table 3.3: Parameters adopted in the CPG structure.

Parameters Gait
Lateral

Sequence Trot Canter Gallop

ϵa 1.67
b 3
γ 2
θ0 0
k1 3
s 2.2 2.6 3 3
ϵr 6.25 8.33 16.67 16.67
kip -0.04 0 0.08 0.08
kco 0.04 0.04 -0.04 -0.04
kdi 0 0.08 0 0

feed3fi = ci · Sc, i = 1, . . . , 4 (3.14)

where Sc is the steering command and ci is the ith element of a template vector defined
as:

C =


+1
−1
+1
−1

 (3.15)

that regulates the contribution of the steering command among the legs. By acting
on Sc, a control system can allow the robot to steer and, therefore, follow an imposed
trajectory.

3.4 SO(2)-networks as neural oscillators
In [35], a CPG control composed of four identical and decoupled neural SO(2) oscillators
[36] is presented. In particular, a single leg of the quadruped is controlled by the decoupled
CPG consisting of two fully connected standard additive time-discrete neurons both using
a sigmoid transfer function. The discrete-time dynamics of two neuron networks with
standard additive neurons is presented in the following. In general, it is given by a 6-
parameter family of maps fρ : R2 → R2, ρ = (θ1, w12, w11, θ2, w21, w22) ∈ R6, where θi
denotes the bias term of neuron i, and wij the synaptic weight from neuron j to neuron
i. The output of a neuron is, in general, given by a sigmoidal transfer function σ, which
here is chosen to be the hyperbolic tangent σ = tanh. Considering, for convenience,
θ1 = θ2 = 0, the resulting two neuron dynamics are given by the following equations
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a1(t+ 1) := w11σ(a1(t)) + w12σ(a2(t)), (3.16a)
a2(t+ 1) := w21σ(a1(t)) + w22σ(a2(t)). (3.16b)

where ai denotes the activity of neuron i.
Having identified the Jacobian Dfρ(0) at the origin with the weight matrix w of the

network, it is now easy to construct networks which correspond to configurations guaran-
teeing that the origin as a fixed point attractor undergoes a Neimark-Sacker bifurcation.
Such networks have a weight matrix w satisfying det w = 1. A special type of matrices,
satisfying this condition, are the elements of the special orthogonal group SO(2). They
are associated with rotations in the plane and a standard representation of these elements
is given in terms of sin(φ) and cos(φ) of the rotation angle φ. Thus, convenient weight
matrices are of the form

w = Dfφ(0) =

(
w11 w12

w21 w22

)
=

(
cos(φ) sin(φ)
−sin(φ) cos(φ)

)
(3.17a)

so that it is possible to consider the dynamics of Eq. 3.16 as a one parameter family
of maps with parameter -π ≤ φ ≤ π, such that

a1(t+ 1) := cos(φ) · tanh(a1(t)) + sin(φ) · tanh(a2(t)), (3.18a)
a2(t+ 1) := −sin(φ) · tanh(a1(t)) + cos(φ) · tanh(a2(t)). (3.18b)

Because here one wants to obtain almost sinusoidal output signals from the network,
quasi-periodic attractors are preferred. Considering D̂ the determinant of Dfφ(0), there-
fore one has to go slightly beyond the line D̂ = 1 crossing the Neimark-Sacker bifurcation
set. To do this one may introduce a second parameter α > 1 to obtain D̂ > 1 for the
determinant of the Jacobian Dfφ(0), and the weight matrix of such a network is given by

w = Df(α,φ)(0) =

(
w11 w12

w21 w22

)
= α ·

(
cos(φ) sin(φ)
−sin(φ) cos(φ)

)
(3.19a)

and the eigenvalues λ1,2 of the Jacobian satisfy λ1,2 = α · e±i·φ. For obvious reasons,
networks with a weight matrix of the type of Eq. 3.19 will be called SO(2)-networks.

3.5 Conclusion
In this chapter, different CPG approaches for quadruped locomotion have been shown
considering different structures: reaction-diffusion system, FitzHugh–Nagumo’s neuron,
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Matsuoka’s neuron and environmental feedback and SO(2)-networks as neural oscillators.
In the first case, a reaction-diffusion system, outlining the Laplacian operator, is imple-
mented. In the second case, the locomotion is controlled using the dynamics generated
using a FitzHugh–Nagumo’s neuron considering different parameter settings. In the third
case, the CPG is implemented using oscillators synchronized through an environmental
feedback system based on the proprioceptive information and the exteroceptive signals ac-
quired through ground contact sensors. In the last structure, the CPG control is composed
of four identical and decoupled neural SO(2) oscillators.
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Chapter 4

Liquid State Machine for the
Ground Reaction Forces
prediction1

4.1 Recurrent Neural Networks
Before addressing the issue of Spiking Neural Networks, a reference to the Recursive
Neural Networks from which the previous ones derive is a must. In the field of machine
learning and artificial intelligence, the Recursive Neural Networks (RNNs) represent a
large class of computational models biologically inspired by brain modules. A RNN is a
type of artificial neural network including neurons connected in a loop so that the output
values of a layer of a higher level are used in the input of a layer of a lower level. These
deep learning algorithms are commonly used for explicity time depending problems so
that the input data are encoded as time series. A peculiar characteristics of RNN is
memory: they naturally exploit information from prior inputs to influence the current
input and output [37, 38]. In Fig.4.1 the difference in information flow between a RNN
and a Feed-forward Neural Network (FNN) is illustrated. As it is possible to see, RNN
has a recurrent connection on the hidden state. This looping constraint ensures that time
dependent information is captured in the input data.

1The results reported in this chapter are extracted from ”Ground Reaction Force Esti-
mation in a Quadruped Robot via Liquid State Networks - Paolo Arena, Maria Francesca
Pia Cusimano, Luca Patanè, Lorenzo Emmanuele Meli, Poramate Manoonpong and Sal-
vatore Taffara - 2022 International Joint Conference on Neural Networks (IJCNN)” and
”Insect-Inspired Spiking Neural Controllers for Adaptive Behaviors in Bio-Robots - 2022
IEEE Instrumentation and Measurement Magazine - Paolo Arena, Alessia Li Noce, Luca
Patanè, and Salvatore Taffara”.
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(a)

(b)

Figure 4.1: Comparison of RNN (a) and FNN (b).

4.1.1 Mathematical background
Let a problem of learning a functional relation between a given input u(n) ∈ RNu and a
desired output ytarget ∈ RNy , where n = 1, ..., T , and T is the number of data points in
the training dataset:

A non-temporal task involves learning a function

y(n) = y(u(n)) (4.1)
such that the error measure E(y,ytarget) is minimized, for instance through, the

NRMSE.
A temporal task is obtained when u and ytarget are signals defined in a discrete time

domain n = 1, ..., T and the goal is to learn a function:

y(n) = y(...,u(n− 1),u(n)) (4.2)
such that the error E(y,ytarget) is minimized.
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The difference between the temporal and non-temporal task is that function to learn
y(·) works as a memory in the first case while it is memoryless in the second one. In both
cases, the underlying assumption is that the functional dependence to learn already exists
in the data. For the temporal case this defines the way data stick to an additive noise
model:

ytarget(n) = ytarget(...,u(n− 1),u(n) + θ(n)) (4.3)
where ytarget(·) is the relation to be learned by y(·) and θ(n) ∈ RNy is a noise term

limiting the learning precision in matching the learned yn and the ytarget.
It comes that the error E(y,ytarget) is small when the task is learned with good

accuracy or precision. Normally one part of the T data points is used for training the
model and another part, unseen during the training, for testing it. Also, n, denoting the
discrete time, will often be used omitting its range 1, ..., T .

A series of drawbacks can be considered for the RNNs:

• RNNs, due to their complexity and recurrent nature, show a slow computation and
difficulty in the train process [39].

• RNNs suffer from the problem of vanishing gradients, which hampers the learning of
long data sequences. The gradients carry information used in the RNN parameter
update and when the gradient becomes smaller and smaller, the parameter updates
become insignificant which means no real learning is done [40, 41].

4.2 Reservoir computing: Liquid State Ma-
chines and Echo State Networks

To fix the problems above, in 2002, a new approach to RNNs design and training was
proposed by Maass et al. that proposed the Reservoir Computing (RC) theory [42, 43].
In this direction, Echo State Networks (ESNs) and Liquid State Machines (LSMs) are
particular RNNs randomly generated where only the readout layer is trained. LSM make
use of Spiking Neural Networks (SNNs) [44, 45].

RC is a computational framework suited for temporal/sequential data processing that
is derived from RNNs. A reservoir computing system consists of a reservoir for mapping
inputs into a high-dimensional space and a readout for pattern analysis from the high-
dimensional states in the reservoir. The reservoir is fixed and only the readout is trained
with a simple method such as linear regression and classification. Due to the low training
cost, the most important advantage of RC with respect to RNNs is the fast learning. An-
other advantage is that the reservoir without adaptive updating is amenable to hardware
implementation using a variety of physical systems, substrates, and devices.

The main difference between ESNs and LSMs is that the last ones are biologically
inspired spiking neural networks, whereas the first ones are rate-based approximations.
ESNs were originated as a Machine Learning algorithm for classifying/forecasting time
series, while LSMs were designed with the goal of modeling and understanding biological
neural networks [46].
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4.2.1 Examples of LSMs and ESNs applications
In [47], a study of the cerebellum as an LSM is carried out. The granular layer acts as the
reservoir, while the Purkinje cells act as the readout neurons. Soures et al., in [46], use
LSM for video activity recognition using the DogCentric dataset consisting of 209 videos
recorded for ten different activities being performed by four different dogs from a first-
person view point. In [48], Lazar, Pipa and Triesch analyse the temporal patterns problem
in time series, in particular, they combine spike timing dependent plasticity and intrinsic
plasticity to maintain homeostasis of neuronal activity that stabilizes the LSM. In [49]
the authors show that offline-trained LSMs implemented in the SpiNNaker neuromorphic
processor are able to classify visual events.

In [50], Jaeger et al. study ESNs made of leaky integrator neurons and they present
basic stability conditions, investigate parameter optimization by stochastic gradient de-
scent, and demonstrate the usefulness of leaky integrator ESNs in test cases that require
long time constants and insensitivity to time warped patterns. Steil, in [51], uses the
intrinsic plasticity of neurons to propose a new local, unsupervised adaptation rule for in-
reservoir connections that improves the richness of its dynamics from an information point
of view. In [52], Xue, Yang and Haykin try to optimize reservoir dynamics who implement
lateral inhibition structures in a modular ESN to improve the richness of the reservoir
dynamics. Venayagamoorthy, in [53], applies ESNs to monitor a multi-machine power
system, demonstrating improved performance with much simpler training when compared
with time delay neural networks. Skowronski and Harris, in [54], bring ESNs to speech
recognition and show improved performance with respect to Hidden Markov Models in
low signal to noise ratio regimes. Tong et al. in [55] use ESNs in language modeling to
learn grammatical structure and show that their performance is similar to that of Elman
networks, even though the ESN does not train the recurrent connections. In Table 4.1, a
summary of the above articles, with the related applications, is reported.

Table 4.1: Applications of LSMs and ESNs.

Reference Type of network Application
[47] LSM Modelling of the cerebellum.
[46] LSM Video activity recognition.
[48] LSM Neuronal plasticity analisys.
[49] LSM Classification of visual events.
[50] ESN Leaky integrator neurons.
[51] ESN Optimization of reservoirs of analog neurons.
[52] ESN Neural lateral inhibition.
[53] ESN Monitoring of a multi-machine power system.
[54] ESN Speech recognition.
[55] ESN Learn of grammatical structures.
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4.3 LSM: theory fundamentals
LSMs are randomly generated SNNs in which the internal connectivity parameters remain
static during the training process, acting as a reservoir. This latter is excited by input
signals and has a state, a non-linear transformation of the input’s history, that is connected
a to linear readout unit. The state of the reservoir can be seen as a mapping of the input
data into a higher dimension where the prediction or classification task is easier to solve,
similar to the kernel methods like Support Vector Machines.

If set properly, LSMs can represent spatiotemporal inputs in a higher dimensional
space where non-linear combinations of frequencies resonate, providing useful information
that makes the characterization of the input simpler to infer, while requiring a significantly
less amount of computational resources compared to a RNN trained in a standard way
as the connectivity weights among layers of the network are not trained, except for the
output or classification layer [56, 57].

Mathematically, a LSM maps input streams u(·) onto output streams y(·) exploiting
the dynamics of the internal liquid state x(t). Input signals are translated into spiking
sequences that are injected into the neurons belonging to the liquid layer. The different
readout maps extract the liquid state information, modulated by trainable weights. Of
course, the target value y(t), i.e. the desired output at time t, may depend on the values
u(s) of the input streams at previous time steps s. However, there is no need to explicitly
introduce the input or output delayed data since memory is built internally.

The liquid layer L maps input functions u(·) onto a state function:

x(t) = L(u(t)) (4.4)
Moreover, it is important to specify that the readout map is a memory-less function

f that transforms, at every time t, the current liquid state x(t) into the output:

y(t) = f(x(t)) (4.5)
f is generally chosen in a task-specific way. The memory-less property refers to the

fact that f does not need to retain any memory of previous states of the liquid, but as a
result of learning, the readout map will contribute to the system memory [58, 59].

4.4 Ground Reaction Forces estimation using
LSMs

In this section, the design of an efficient robot state estimation method based on RC is
shown. The local proprioceptive information acquired at the level of the leg joints, the
torques (TRQs), of a simulated quadruped robot are used as input of a LSMs to predict
the GRFs, so, the aim is to create a map between TRQs and GRFs. The robot taken into
account is the simulated version of the Lilibot [35], a small-sized and reconfigurable bio-
inspired robot with multiple real-time sensory feedback [60, 61]. During the simulations,
the Lilibot walks at a fixed speed showing a trot gait, i.e., each leg is in phase with its

37



diagonal and 180° out of phase with the other two legs. The quadruped is shown in Fig.4.3.
The robot legs are defined as: FR (front right leg), HR (hind right leg), FL (front left
leg), HL (hind left leg). The involved joints are H1 (hip 1 joint), H2 (hip 2 joint), K
(knee joint). The target signals consist of the vertical component of the ground reaction
forces at the tip of each leg. The simulations are performed in totally flat terrain.

In Fig.4.2 the control system used to control the robot movement is shown. The
communication between the controller (ROS node1) and the CoppeliaSim simulator (ROS
node2) is accomplished through three ROS topics and a parameter server. The topics
include:

• A “motorValues” topic transmitting motor commands of joints from the controller
to the simulated robot;

• A “sensorValues” topic transmitting sensory signals of the simulated robot to the
controller;

• A “neuralNetworkOutputs” topic transmitting the outputs of the sub-control mod-
ules. The parameters of the controller are accessed through a ROS parameter
server. The communication between the controller (ROS node1) and the real robot
(ROS node3) is also performed in the same manner through the ROS topics and
the parameter server [35].

Figure 4.2: Control scheme for the Lilibot. ROS and CoppeliaSim simulator communicate
together.
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Figure 4.3: Lilibot robot used in the dynamic simulation environment. Each leg is char-
acterized by three actuated joints for a total of 12 degrees of freedom.

The steps of the whole algorithm are schematized in Fig.4.4. The details for each
block will be given in the rest of the chapter.

Figure 4.4: Structure of an LSM that receives in input the coded data.

4.4.1 Dataset generation
The scheme used to train and to test the LSM is shown in Fig.4.5 where the TRQs
(Hip1FL, Hip2FL, KneeFL, Hip1FR, Hip2FR, KneeFR, Hip1HL, Hip2HL, KneeHL,
Hip1HR,Hip2HR,KneeHR) represent the input and the GRFs (GRFFL, GRFFR, GRFHL,
GRFHR) are the output of the LSM. In particular, 800 records (80% of the dataset) are
used for the learning phase and 200 records (20% of the dataset) for the testing phase.
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These data are collected while the simulated Lilibot walks. In particular, three datasets
are generated for flat terrain, downhill, and uphill terrain with a 5 degree of slope.

Figure 4.5: Dataset setting used to learn and test the LSM, the inputs are the TRQs while
the outputs are the GRFs. Three datasets are generated, for the flat, uphill, and downhill
terrain.

4.4.2 LSM setting and training
The LSM implemented in the work is schematized in Fig.4.6. There are two main parts,
the first one in which the raw data are encoded to be sent to the LSM and the second one
in which the LSM structure is shown.

• Encoding and input layer
The TRQs generated from the 12 actuated joints distributed in the legs, three
joints per leg, are the input sources of the LSM. These data have to be encoded
and, for this reason, the raw input data are sent to a step current generator in
which each input data is maintained for a given time window to be processed by
the network. These steps have time periods set in the parameter Stimi and are
normalised in amplitude scaling the signals in a range [0, 50] pA. Each current
generator is connected to one spike generator that, in the proposed network, is
implemented using a class I Izhikevich’s neuron [62], which generates the spike
train to be injected into the liquid lattice. The equation defining the Izhikevich’s
neuron is the following:{

dVm

dt = 0.04V 2
m + 5Vm + 140− u+ I

du
dt = a · (b · Vm − u)

(4.6)

If Vm ≥ Vth: {
Vm ← c

u← u+ d
(4.7)

where:
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Figure 4.6: Structure of an LSM that receives in input the coded data.

– Vm is the membrane potential;
– u is the recovery variable that provides negative feedback to Vm;
– Vth is the spike threshold;
– I is the input current;
– a describes the time scale of the recovery variable;
– b describes the sensitivity of the recovery variable to the subthreshold oscil-

lations of Vm;
– c represents the after-spike reset value of Vm;
– d is the after-spike reset value of the recovery variable.

The adopted values are: a = 0.02, b = 0.2, c = −65 and d = 2 to implement a
Class I behaviour where the spiking frequency is proportional to the amplitude of
the input current [62]. The neuron dynamic on time is shown in Fig.4.7.
Spike generators are randomly connected with a subset of lattice neurons, called
neuron targets. The fixed-outdegree connection synaptic rule (shown in Fig.4.8)
is adopted: the nodes of an input layer are randomly connected with the nodes
of the following layer such that each input has a fixed out-degree N (fixed to the
10% of the number of neuron targets). The synaptic model used is the static one
with uniform weight distribution, setting the minimum weight value (Wlow = 125)
and the maximum weight value (Whigh = 375). The delay for the connections is
obtained using a normal-clipped distribution, a Gaussian distribution, that takes
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Figure 4.7: Izhikevich neuron dynamic on time.

into in the two boundary parameters low limit delay (Dlow) and high limit delay
(Dhigh) beyond the standard deviation ν and the mean σ. The adopted values are:
ν=10, σ=5, Dlow = 3 and Dhigh = 200.

Figure 4.8: The nodes in the first layer are randomly connected with the nodes in the
second layer such that each node in the first has a fixed outdegree of N .

• Liquid layer
The neurons in the liquid layer are implemented with the Izhikevich’s model previ-
ously introduced. The synaptic connections follow the previously adopted fixed in-
degree rule (Fig.4.9) with N = 2 for excitatory-excitatory and excitatory-inhibitory
connections and N = 1 for the inhibitory-excitatory and inhibitory-inhibitory ones.
The adopted synaptic model, introduced by Tsodyks, implements short-term synap-
tic depression and short-term facilitation [63]. A Gaussian distribution is used for
the weight setting with ν = 50 and σ = 0.7 · |ν|.
A Poisson generator is used to inject noise inside the excitatory and inhibitory
neurons. The synaptic connections are static and a normal weight distribution
is adopted with σ = 1 and ν = 0.7. The delay distribution is obtained using a
normal-clipped structure with σ = 10, ν = 20, Wlow = 3 and Whigh = 200 .

• Output layer
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Figure 4.9: The nodes in the first layer are randomly connected with the nodes in the
second one such that each node in the first has a fixed indegree of N .

To evaluate the liquid lattice activity, the exponential time decay amplitude in
a window of 60ms for each stimulus is collected, according to the readout delay
chosen. This index can be expressed with the following equation [64]:

fi(t) = e(−
t−t

spike
i
τ ) (4.8)

where tspikei ∈ [0, t] is the last spike time of the liquid neuron i and τ is a global
fading term fixed to 20ms in the following simulations. The function fi maps a
spike train of a neuron i to a continuous signal. The state evolution of the LSM
is then expressed as the sum, for each time window, of the exponential time decay
of each readout neuron. The supervised learning rule adopted to determine the
readout map is based on the Moore–Penrose inverse method as reported in the
following:

W = (XTX + kIp)
−1XT yt (4.9)

where W is the readout weight matrix, X corresponds to the state matrix that
includes the state of each readout neuron for each input pattern, k is a small
constant gain introduced in presence of ill-conditioned matrices, Ip is the p × p
identity matrix and yt is the target signal.

To choose the best LSM topology configuration, a grid search was performed by chang-
ing the number of excitatory and inhibitory neurons and evaluating the corresponding
MSE index (see Fig4.10). The best network configuration was obtained for a LSM with
a size of in total only 18 neurons having a 14-4 configuration (i.e., 14 excitatory and 4
inhibitory neurons). In this setup, all the excitatory neurons are used as readout neurons.
This network is considerably small if compared with the ESN network presented in [65]
where 100 reservoir neurons are considered. Inputs are coded as step currents eliciting 12
Izhikevich’s class I neurons (i.e., one for each input) whose operative input range varies
in [0 − 50]pA. This last interval was assumed as a normalization range for the input en-
coding and, as consequence, the ”zero torques” were set equal to 25pA. In the following
analysis, an LSM with 14 excitatory neurons and 4 inhibitory neurons in the liquid layer
was considered (see Fig.4.11).
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Figure 4.10: MSE values for different network topologies. The selected network is com-
posed of 14 excitatory neurons and 4 inhibitory ones.

Figure 4.11: LSM 14-4 structure graph where all 14 excitatory neurons are also used as
readout neurons. The inputs are represented by four groups of three triangles indicating
the three joints (i.e., hip 1, hip 2, and knee) of each leg. The 14 yellow nodes represent the
excitatory neurons and the 4 blue nodes are the inhibitory ones of the liquid layer. The
decoder (i.e., DEC) represents the readout map which finally provides the four estimated
GRFs.

A first analysis was focused on the excitatory spiking rate in order to investigate the
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dynamic range for each Izhikevich’s spiking neuron involved. The reservoir shows multiple
distinct dynamic behaviours that underline the LSM activity in response to the injected
stimulus. Some of the liquid neurons achieve a relevant spiking frequency, while some
others remain silent, failing to reach the activation threshold as can be seen in Fig.4.12
where the spiking rate map related to the excitatory neurons is shown.

After the setting of the LSM is completed, this latter is trained using the 80% of the
dataset TRQs-GRFs.
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Figure 4.12: Spiking rate map showing the spiking rate for the 14 excitatory neurons. Some
of the neurons (ID 1-5-6-8-11-13, dark blue) are silent during the reported simulation.

4.4.3 Performance evaluation: intact and faulty sen-
sors

Two different types of simulations were carried out. In the first one, there is a perfectly
working acquisition system and all the legs and motors work properly. In Fig.4.13 the
GRFs predicted and the real ones are compared for the flat terrain case. In the second
type of simulation, the presence of faulty sensors at the joint level is simulated. This
is carried out by associating a ”zero torque” signal to a broken joint or leg, seen as a
collection of joints, as needed.

The real and estimated signals, when a fault in the time window between 200 and 800
samples is applied, are shown for the two legs FR and FL in Fig.4.14. Also, in this case,
the sensory fault in FR is properly handled by the network through its fading memory and
capability to exploit the available information coming from the other joints. It has to be
underlined that the LSM here evaluated has been trained without any fault in the dataset.
So, the network is asked to reconstruct the missing information in one or multiple joints
from the data coming from all the others. Each experiment aims to exploit the dynamical
response of the network in presence of unexpected failures, for different configurations.
The purpose is to assess the robustness of the LSM and its capability to work as a fading
memory.

In Fig.4.15 the MSE and correlation coefficient between the estimated and actual
GRFs are considered for each of the four legs when all the FR torque sensors are in fault.
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Figure 4.13: Test results for the flat scenario predicted vs target GRFs. (a) FR leg, (b)
HR leg, (c) FL leg, (d) HL leg.

(a) (b)

Figure 4.14: Test with a fault in the sensors of all the three joints in the FR leg, occurring
in the time window between 200 and 800 samples (i.e., green area). Comparison between
the target and the estimated GRF signals for (a) FR and (b) the HL.

The degradation of the performance is particularly evident in the estimation of the GRF
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signal for the faulty leg, however, the still high level of correlation, with a maximum
degradation of about 5.7%, guarantees a good following of the stepping sequence.
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Figure 4.15: FR sensory system in fault: (a) MSE between the estimated and actual GRF
signals and (b) correlation coefficient in training (Tr), test (Te), and in presence of faults
(F).

Estimation performances in terms of MSE between the actual and estimated GRF
are reported in Table 4.2 where the outcome when each leg sensory system is in fault, is
reported.

Table 4.2: GRFs MSE results in test when all the joints of one leg are in fault.

MSE
FR HR FL HL

FR in fault 0.015 0.011 0.011 0.007
HR in fault 0.014 0.040 0.008 0.028
FL in fault 0.014 0.016 0.024 0.013
HL in fault 0.008 0.015 0.010 0.010
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4.5 Online GRFs estimation for terrain clas-
sification

The estimation capabilities of LSM can be exploited for obtaining information on the
terrain walked by the robot. In fact, even if the main role of the network is the pure
prediction of GRFs from joint TRQs, the fundamental rule that the network should have
learned would be the load distribution among the legs, strictly related to the type of
terrain walked. In Fig.4.16, the GRFs of the HR leg are reported when the robot walks on
terrains with different slopes, in particular a 5 degrees downhill and uphill. As it can be
verified, even if the network was trained only with flat terrain, the network underestimates
(overestimates) loads when walking uphill (downhill).

Figure 4.16: Test results in the case of uphill and downhill for the HR leg.

In order to implement an online terrain classifier, a LSM capable to estimate the GRFs
during the robot walk is developed. The scheme of communication between CoppeliaSim
and Nest is presented in Fig.4.17. Starting from the neural signals generated from the
CPG, sequential datasets of 160 TRQs related to the 8 motors (i.e. sequential datasets
of 160 rows × 8 columns representing the LSM inputs) and 160 GRFs related to the 4
legs (i.e. sequential datasets of 160 rows × 4 columns representing the LSM targets) are
collected in CoppeliaSim and sent to the LSM implemented in Nest. In Nest the errors
between the predicted and the target GRFs collected are obtained, generating a sequence
of samples representing how much the predicted values deviate from the desired ones.

Considering the sequential errors related to the HR leg, taken as example, Fig.4.18 is
obtained in which the robot is let to walk and to follow the path presented in Fig.4.19.
This latter is composed of five parts: a 20° downhill, a 10° downhill, a flat part, a 10°
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Figure 4.17: The communication scheme between the CoppeliaSim and Nest simulators.
Starting from the the CPG signals sent to the quadruped motors and exploiting the LSM
classification capabilities, it is possible to classify the type of terrain walked by the Lilibot.

uphill and a 20° uphill. As it is possible to verify, fixing five thresholds for the HR network
errors, it is possible to obtain a terrain classifier. Table 4.3 reports the threshold values
considering also the maximum and the minimum values defining each area.

Table 4.3: GRF errors thresholds, maximum and minimum values for each terrain related
to the HR leg.

Terrain Mean value Maximum value Minimum value
Downhill 20 degrees 0.1130 0.1523 0.0745
Downhill 10 degrees 0.0802 0.1155 0.0413

Flat 0.0215 0.0442 -0.0160
Uphill 10 degrees -0.0237 0.0129 -0.0532
Uphill 20 degrees -0.0427 -0.0134 -0.0729

4.6 Conclusions
In this chapter, a new architecture based on reservoir computing applied to a quadruped
robot is reported. In particular, the project focuses on the creation of an efficient and ro-
bust robot state estimation method implementing a robot-environment interaction. The
goal is the realization of an estimator dealing with proprioceptive and exteroceptive in-
formation, able to estimate the GRF at the tip of the leg using joint torque information
acquired on a simulated quadruped robot walking on different terrain slopes. In order to
test the learning capability and robustness of LSMs, unexpected faults during the tests
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Figure 4.18: Sequential GRF errors related to the HR leg obtained considering sequential
datasets of dimension 160×8 that are the LSM input and 160×4 that are the LSM output.

0 degrees

Lilibot

Figure 4.19: Path followed by the robot composed of: 20° downhill, 10° downhill, flat part,
10° uphill and 20° uphill.
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were considered, exploiting the presence of an internal temporal memory through the re-
current connections and the potentiality of spiking neurons processing. The comparison
with ESN suggests that spiking neurons in the LSM can encode temporal information
more effectively than non-spiking neurons in the ESN. Exploiting the capabilities of the
LSM to estimate the amplitude of the GRF, and considering such quantity strictly cor-
related with the terrain slope, an online terrain classifier was developed, where the robot
is able to recognise the slope of the terrain walked. At this aim, a LSM capable to esti-
mate the GRFs during the robot walk is developed building a communication between the
CoppeliaSim and Nest simulator. Evidences are given related to the fact that, fixing some
thresholds for the GRFs estimation errors related to the HR leg, it is possible to obtain a
terrain classifier.
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Chapter 5

Evaluation of robot energy
consumption1

Considering a set of mobile robots available to accomplish a task, the best one should be
chosen based on its capability. In general, not only the shorter time taken by the particular
robot to travel the route should be taken into account, but also its energy efficiency in
order to reduce the energy cost needed to carry out the task.

There may be energy limits that a robot, especially during climbing and walking on
complex terrains, must face and an estimation of the battery life is not trivial. So it is
clear that a fundamental aspect of quadrupedal navigation is the evaluation of energy
consumption.

5.1 COT index
In order to evaluate the energy cost spend by a mobile robot, the Cost Of Transport (COT)
index is commonly adopted in literature to express the energy efficiency in animals, mobile
robots, and especially quadruped robots [20]. It is an extremely useful tool when used
to indicate the effort needed by a mobile robot in accomplishing a task, for instance in
travelling on a given path. The power consumption, speed, and weight (which also includes
the payload) are part of the COT formula. The COT is specifically used to account for
an animal or robot efficiency in relation to its capability to move, it is not able to directly
express either the capability of a robot to change its speed due to its inertia or the operation
cost needed to maintain a robot in standby because if the speed is zero the index goes to
infinity [66, 67]. The COT is expressed as follows:

COT =
P

mgv
(5.1)

1The results reported in this chapter are extracted from ”Energy Efficiency of a
Quadruped Robot with Neuro-Inspired Control in Complex Environments - Paolo Arena
and Luca Patanè and Salvatore Taffara - 2022 Energies”.
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where P is the power consumption, m is the mass, g is the gravity acceleration and v is
the velocity.

In Fig.5.1 the characteristics of the most relevant legged structures (hexapods, quadrupeds,
bipeds, and monopods), regarding their COT values [68], are reported, in particular, the
distribution of the COT as a function of the weight for different robots is considered. The
COT indexes are evaluated in different experimental conditions that are specific for each
robot. In the COT calculation, the speed is evaluated by measuring the travelled space in
a given time window, therefore, representing an average speed. The red bullet refers to the
average COT drawn by the simulations performed using the Mini Cheetah analyzing the
COT for energy-efficient and low-speed gaits focalised on uneven terrains. It is clear that
the lower the speed, the higher the cost, since, in principle, a standing-up legged robot
with zero speed, has a non-zero power consumption to maintain the resting pose.
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Figure 5.1: Comparison between monopod, biped, quadruped, and hexapod robots in
terms of COT. The reported robots are the following: 1 HAMR-VP; 2 X2-VelociROACH;
3 DASH; 4 iSprawl; 5 Cheetah Cub; 6 MIT Learning Biped; 7 Rhex hexapod; 8 RHex-
biped; 9 Cornell Ranger; 10 Cornell Biped; 11 ARL Monopod I; 12 ARL Monopod II; 13
Scout II; 14 StarlETH; 15 Fastrunner; 16 MIT Cheetah; 17 ATRIAS 2.1; 18 Asimo; 19
KOLT; 20 Big Dog; 21 ETH Cargo; 22 Mini Cheetah (Simulated).

The Mini Cheetah simulated robots used in the following tests embed the CPG based
on the FitzHugh–Nagumo’s neuron shown in Chapter 3. The performance analysis of
the legged robot has been conducted on a simulated terrain obtained by acquiring the
height map of a target site using drones [69]. The image embeds georeferencing informa-
tion. Fig.5.2(a) shows an aerial image of the terrain, together with its 3D reconstruction
(Fig.5.2(b)) and the appearance of the terrain in the dynamic simulator (Fig.5.2(c)).

To compare the COT performance given by the Mini Cheetah with other robotic struc-
tures, the Robotnik and the Asguard robots are taken into account (see Fig.5.3). Table
5.1 contains information related to these three robot characteristics, Table 5.2 reports the
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(a) (b)

(c)

Figure 5.2: (a) Aerial image of the terrain used in simulation; (b) 3D terrain reconstruction;
(c) terrain reconstructed in the dynamic simulation environment.

COT values for the Robotnik and Asguard while Fig.5.4 shows the three different areas
extracted from the target terrains used to test the robot performances.

Table 5.1: Characteristics of the considered robots (h: height, w: width, d: depth).

Robots Weight [Kg] Type Dimension (h, w, d ) [cm3] Clearance [cm]
Mini Cheetah 9 Quadruped 35 × 20 × 30 (12-15)
Robotnik 40 Wheeled 39.2 × 61.3 × 72 18
Asguard 10 Hybrid 28 × 28.1 × 33.4 10

The highest COT values are given by the Robotnik robot due to the high powers
produced by its motors. On the other hand, the Asguard robot reaches a COT half the
Mini Cheetah one, due to its particular hybrid leg configuration.

The Mini Cheetah robot efficiency was evaluated for different values of the FhN neuron
parameters m0 and m2 in Eq. 3.8 for which different leg motions are executed, impacting
the COT value. A simulation campaign involving the Mini Cheetah was carried out to
find the best CPG configuration to minimize the COT obtaining the best m parameters
(m0 and m2) in Eq. 3.8) that can be selected based on the different terrains used as a
testbed. Using the knowledge about the best CPG parameters, the results found are useful
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Figure 5.3: Different robotic structures taken into consideration for the tests in the complex
terrain: at the top left the Robotnik, on the bottom left the Asguard, and on the right
the Mini Cheetah.

Table 5.2: COT index values related to the Asguard and Robotnik obtained on the uneven
terrain reported in Fig. 5.2

COT
Robots Flat Uphill 15◦ Downhill −15◦
Asguard 0.57 0.71 0.63
Robotnik 1.26 1.47 1.79

to design an adaptive control strategy that guarantees the lowest energy consumption for
the robot during its path. The leg motions are therefore modulated in front of different
terrain types, improving the COT. The terrain types considered are flat ground, uphill,
and downhill.

To find an optimal value for the COT, a statistical approach is used. The COT
distribution maps shown in Fig.5.5 can be obtained by changing, for each type of terrain,
the m parameters and recording the COT values of five simulations each with a different
robotic starting position. The yellow areas indicate parameter configurations that do not
guarantee the stability of the robot locomotion whereas the yellow circle indicates the
minimum value of COT.

Table 5.3 shows the optimal values obtained for flat ground, uphill (5◦ and 15◦), and
downhill (−5◦ and −15◦) terrain. These COT results can be used as input for an adaptive
control strategy that can modify the m parameters based on the current terrain type that
can be estimated based on inertial sensors.
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(a)

(b)

Figure 5.4: Different parts extracted from the terrain in Fig.5.2 used in the simulations:
(a) flat; (b) uphill and downhill with a slope of ±15◦.

Table 5.3: COT values and m parameters for the three different terrains: flat ground,
uphill (5◦ and 15◦), and downhill (−5◦ and −15◦).

Terrain m0 m2 COT
Flat ground -2.5 -4.5 1.29
Uphill 5◦ -3.5 -3 1.48
Uphill 15◦ -4.5 -4 1.47
Downhill −5◦ -4 -3.5 1.21
Downhill −15◦ -2 -2 0.96
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Figure 5.5: COT distribution maps depending on the combination of the parameters m0

and m2. (a) flat ground; (b) uphill 5◦ (c) uphill 15◦ (d) downhill −5◦ (e) downhill −15◦ .
The yellow circle in the maps indicates the optimal value obtained.

5.2 Choice of the optimal neural parameters
The adaptive mechanism implemented in the Mini Cheetah is represented in the state
machine in Fig.5.6. Developing tests in the simulation environment (Fig.5.2(b)) four pitch
thresholds are defined: PUF , PFU , PDF , PFD. The pitch values of the robot body are
called P , in particular:

• when P < PUF (P > PFU ) the robot passes from uphill (flat terrain) to flat terrain
(uphill).

• when P > PDF (P < PFD) the robot passes from downhill (flat terrain) to flat
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terrain (downhill).

This strategy allows avoiding continuous passages between the three terrain classes,
due to the noise present in the pitch signal unavoidable in realistic environments, creating
a hysteretic behavior that guarantees a sharp class transition. A coupling parameter m
is associated with each angular interval of the pitch, a suitable indicator for walking on
the different slopes. The choice of parameters was made as a consequence of the results
obtained in the previous simulations. Considering that for both uphills and downhills
there are two possible m parameters, the pitch angle is analysed to see if it is closer to 5◦

than to 15◦ (or vice-versa) and consequently the m parameters are assigned.

Figure 5.6: State machine used for the selection of the terrain class based on the robot
pitch angles: an hysteretic function has been realised to avoiding continuous flickering
between states (PUF = 0.08, PDF = −0.10, PFU = 0.16, PFD = −0.14).

5.3 Tests on a complex terrain
To test the COT performance of the Mini Cheetah, the terrain in Fig.5.7 is used. The
path followed by the Mini Cheetah is composed of the previously reported fundamental
sub-parts: flat ground, uphill 5◦, uphill 15◦, downhill −5◦ and downhill −15◦ that can
be recognized by the quadruped using an inertial sensor. To compare the effects of the
adaptive nullcline control on the COT result, a comparison is performed, considering
also the case of the non-modulated nullcline slopes. Being the trot gait the most stable
for quadruped locomotion at different speed profiles, it has been adopted for the tests.
Locomotion speed can be controlled at the level of the neural oscillation, acting both on
the neural oscillation frequency and, as in our novel approach, modulating the PWL slope
values. However, the speed value is a consequence of the parameter modulation strategy
focussing on minimizing the COT value. In fact, on uneven terrains, speed values are duly
avoided by the optimization phase in that they can cause the robot to fall.

The relationship between power and velocity during the simulation reported in Fig.5.7
is shown in Fig.5.8. In particular, Fig.5.8(a) reports the data related to the fixed control
mechanism, whereas Fig.5.8(b) shows the effect of the adaptive control strategy.

58



Figure 5.7: Terrain used as testbed in which the robot faces uphills, flat grounds, and
downhills.

From the downhill −15◦ to the uphill 15◦ case it can be seen that the power increases
while the speed decreases, as expected, while flat locomotion lies in between. Each colored
spot in Fig. 5.8 indicates the Power-vs-Speed values obtained from a 2s simulation of
the robot in the corresponding terrain segment (flat, uphill, downhill). The substantial
difference between the two cases regards the power recorded; in the case of fixed control, the
samples cover the right part of the graph, the high-power zone, compared to the adaptive
case. The analysis conclusion is that, in dealing with uneven and complex terrains, the
adaptive control strategy decreases the overall amount of power required for all the cases
analyzed. Fig.5.8(c) shows the comparison between the COT histogram for the adaptive
and fixed cases while Fig.5.8(d) shows the COT statistical comparison for the adaptive
and not adaptive cases. The statistical significance of the results obtained using the t-test
is p = 3.66 · 10−12. Even if the COT standard deviation in the not adaptive case is more
contained, nevertheless the average value (red line) is higher than in the adaptive case.
This is also clear from the histogram representation in Fig.5.8(c): here the highest number
of occurrences in the adaptive case is concentrated well below that one for the not adaptive
one. Moreover, the larger distribution for the adaptive case can, in some cases, find COT
values much lower than the not adaptive one. The improvement of the proposed strategy
is significantly high concerning the fixed control method.

5.4 Conclusion
This chapter dealt with the energy consumption that a given quadrupedal, lightweight
robot has to face to cross a complex path. For this reason, a detailed analysis to find the
best configuration of the FitzHug-Nagumo’s neuron control strategy aimed at minimizing
energy consumption in the case of the Mini Cheetah robot was carried out.

Once having found the optimal m parameters governing the left and right FHN phase
plane slopes, based on the particular terrain that the robot has to face, they can be used
in a locomotion control strategy to change the robot gait in runtime. To develop this
task an experimental analysis was carried out in simulation with the creation of a series of
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Figure 5.8: Point clouds describing the relation between velocity and power for the sce-
nario reported in Fig.5.7 in the fixed (a) and adaptive (b) case; (c) histograms for the
COT distribution; (d) statistical analysis of the COT index for the two analysed control
strategies. On each box, the central mark indicates the median, and the bottom and top
edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend
to the most extreme data points not considered outliers, the notch indicates the 95% con-
fidence interval of the median.

COT distribution maps and, consequentially, it was possible to create an adaptive control
mechanism aimed at minimizing energy consumption.

Finally, a test terrain was provided to compare the adaptive control mechanism with
the fixed control one demonstrating the improved performances that open the way to a
reliable application of the quadruped robot in realistic scenarios reducing the constraints
related to the battery life.

60



Chapter 6

MPC-based control strategies
for the gait of a neuro-inspired
quadruped robot1

In this Chapter, examples of the application of Model Predictive Control (MPC) based
control strategies applied to a simulated neuro-inspired quadruped robot gait are reported.
Differences in terms of performance will be underlined considering linear and nonlinear
implementations. In particular, the advantages of a NNMPC approach will be underlined
considering continuously time-varying trajectories and low friction surfaces along which
the quadruped has to move. Part of the results of the chapter are reported in [31, 30].

6.1 MPC theory fundamentals
The MPC is a feedback control algorithm that uses a model to make predictions about
future outputs of a process and it can handle Multi-Input Multi-Output (MIMO) systems.
In other words, the goal of MPC is to optimize, over the manipulatable inputs, forecasts of
a process trend. In order to realise this, forecasting is accomplished with a process model.
But, in real applications, models are not perfect forecasters, and feedback can overcome
some effects of poor models. The models that are controlled by MPC can be linear or
nonlinear.

1The results reported in this chapter are extracted from ”A data-driven neural net-
work model predictive steering controller for a bio-inspired quadruped robot - Paolo Arena,
Luca Patanè, Pierfrancesco Sueri and Salvatore Taffara - IFAC-PapersOnLine” and ”MPC-
based control strategy of a neuro-inspired quadruped robot - Paolo Arena, Pierfrancesco
Sueri, Salvatore Taffara and Luca Patanè - 2021 International Joint Conference on Neu-
ral Networks (IJCNN)” and ”Quadruped robot steering control on slippery surfaces via
NNMPC - Paolo Arena, Luca Patanè and Salvatore Taffara - To be submitted”.
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A simpler way to control a system can be done using a PID controller, but, making a
control action with n PID controllers can be challenging because each control loop would
operate independently from the others as if there are no interactions between the n loops.
Moreover, this strategy requires tuning too many controller gains. One of the advantages
of MPC is that it is a multivariable controller that controls the outputs simultaneously by
considering all the interactions between system variables. Besides, it is capable to handle
constraints that are imposed on the input and output.

During the execution, only the first control action is used, the rest is discarded. In this
way, the control action is based on the most recent value of the state of the plant. This
strategy is called state feedback strategy and it makes the control system robust against
model errors or changing of the reference signal [70, 71, 72].

In Fig.6.1, the relation between a static optimizer (representing the steady-state op-
timization), the MPC (dynamic optimizer), and the regulator (representing the low-level
controllers) is shown. A static optimizer is used when the goal is finding those points (if
any) at which a real‐valued function has a minimum or a maximum [73], while a regula-
tor is required when the plant can be controlled using a simple feedback control system.
The MPC uses the set-points from the static optimizer while the measurements from the
low-level controllers to which gives in input the actuator set-points.

Figure 6.1: Relation between a static optimizer, the MPC, and a regulator-based control.

MPC will calculate the best controls within a trade-off of tracking the reference signal
and a good control action. At each sample time, all the control actions inside a specific
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interval are calculated. The limit of this interval is the so-called prediction horizon (N2)
which represents the number of time steps in the future for which the plant response is
recursively predicted. Also, we will consider the variation of control action during a part of
this interval, called control horizon (Nu) (see Fig.6.2). There is an important relationship
between these two horizons: the control one must be under (or equal to) the prediction
horizon (Nu ≤ N2).

Figure 6.2: General control scheme of MPC.

Linear models in the process industries are, by their nature, empirical models and
identified from input/output data. Considering a linear model in state-space form, an
MPC can be represented in the state-space form:

dx

dt
= Ax+Bu, xj+1 = Axj +Buj (6.1a)

y = Cx, yj = Cxj (6.1b)

where x is the n-vector of states, y is the p-vector of (measurable) outputs, u is the
m-vector of (manipulatable) inputs, t is continuous time and j is the discrete-time sample
number. The MPC in state-space form has several advantages, in particular, the easy
generalization to multi-variable systems, the ease of analysis of closed-loop properties,
and the online computation. Furthermore, considering the linear system theory, the lin-
ear quadratic regulator theory, Kalman filtering theory, internal model principle, etc.,
are immediately accessible for use in MPC starting with this model form. Categories,
frameworks, and viewpoints, while indispensable for clear thinking and communication,
may blind us to other possibilities. From a theoretical perspective, the significant shift
in problem formulation came from the MPC practitioners who insisted on maintaining
constraints, particularly input constraints in the problem formulation.

Du ≤ d,Duj ≤ d (6.2a)
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Hx ≤ h,Hxj ≤ h (6.2b)

where D, H are the constraint matrices and d, h are positive vectors. The constraint
region boundaries are straight lines as shown in Fig.6.3. It is assumed that x = 0, u = 0
is the steady state to which we are controlling the process.

Figure 6.3: Example input and state constraint regions define by Eq.6.2(c-d).

Optimization over inputs subject to hard constraints leads immediately to nonlinear
control, and that departure from the well-understood and well-tested linear control the-
ory provided practitioners with an important and new control technology and motivated
researchers to understand better this new framework.

6.1.1 Nonlinear MPC
For nonlinear plants, the ability of the MPC to make accurate predictions can be en-
hanced if a neural network is used to learn the dynamics of the plant instead of standard
nonlinear modeling techniques. The selection of the minimization algorithm affects the
computational efficiency of the algorithm.

The general scheme of the Neural Generalized Model Predictive Control (NGMPC)
system can be seen in Fig.6.4. It starts with the input signal, r(n), which is presented
to the reference model. This model produces a tracking reference signal, ym(n), that is
used as an input to the Cost Function Minimization (CFM) block. The CFM algorithm
produces an output which is either used as an input to the plant or the plant’s model.
This input is set to the plant when the CFM algorithm has solved for the best input,
u(n), that will minimize a specified cost function. In the meanwhile, this input is set to
the plant’s model where the CFM algorithm uses this model to calculate the next control
input, u(n + 1), from predictions of the response from the plant’s model. Once the cost
function is minimized, the input is passed to the plant.

Schematizing, the NGMPC algorithm follows these steps:
1. Generation of a reference trajectory. If the future trajectory of ym(n) is unknown,

ym(n) is kept constant for the future trajectory.
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Figure 6.4: General scheme of a Neural Generalized Model Predictive Controller.

2. Starting with the previously calculated control input vector and predicting the
performance of the plant using the model.

3. Calculation of a new control input that minimizes the cost function.
4. Repeat steps 2 and 3 until the desired minimization is achieved.
5. Send the first control input to the plant.
6. Repeat the entire process for each time step.

The computational performance of a NGMPC implementation is largely based on
the minimization algorithm chosen for the CFM block. The objective is to find a
control time series that minimizes the cost function:

JNGMPC =

N2∑
j=N1

[ym(n+ j)− yn(n+ j)]2 +
Nu∑
j=1

λ(j)[∆u(n+ j)]2 (6.3)

where N1 is the minimum cost horizon. N2 is the maximum cost horizon, Nu is the
control horizon, ym is a reference trajectory, yn is the predicted output of the neural
network, λ is the control input weighting factor and δu(n+ j) is the change in u and it is
defined as u(n+ j)− u(n+ j − 1).

This cost function minimizes the mean squared error between the reference signal and
the plant’s model, and also the weighted squared rate of change of the control input. When
this cost function is minimized, a control input that meets the constraints is generated
that allows the plant to track the reference trajectory within some tolerance.

There are four tuning parameters in the cost function, N1, N2, Nu, and λ. In particu-
lar, the predictions of the plant will run from N1 to N2 future time steps, while the bound
on the control horizon is Nu. The second summation contains a weighting factor λ that is
introduced to control the balance between the first two summations. The weighting factor
acts as a damper on the predicted u(n+ 1).

65



Nonlinear models are used in MPC to improve the quality of the forecasting. The fun-
damentals in any process control problem (conservation of mass, momentum, and energy,
considerations of phase equilibria, relationships of chemical kinetics, and properties of fi-
nal products) introduce nonlinearity into the process description. For processes operated
over large regions of the state space (semi-batch reactors, frequent product grade changes,
processes subject to large disturbances) the advantages of nonlinear models appear larger.

Regardless of the identification method, the nonlinear model inside the MPC controller
also in state space form is given by Eq. 6.4.

dx

dt
= f(x, u), xj+1 = f(xj , uj) (6.4a)

y = g(x), yj = g(xj) (6.4b)

u ∈ U, uj ∈ U (6.4c)

x ∈ X,xj ∈ X (6.4d)

If the model is nonlinear, there is no advantage in keeping the constraints as linear
inequalities, so the constraints are taken as membership in more general regions U , X
shown in Fig.6.5.

Figure 6.5: Example input and state constraint regions defined by Eq.6.5

The quality of the plant’s model affects the accuracy of a prediction. A reasonable
model of the plant is required to implement GMPC. With a linear plant, there are tools and
techniques available to make modelling easier, but when the plant is nonlinear this task is
more difficult. Currently, there are two techniques used to model nonlinear plants. One is
to linearize the plant into a set of operating points. If the plant is highly nonlinear the set
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of operating points can be very large. The second technique involves developing a nonlinear
model which depends on making assumptions about the dynamics of the nonlinear plant.
If these assumptions are incorrect the accuracy of the model will be reduced. Models using
neural networks have been shown to have the capability to capture nonlinear dynamics.
For nonlinear plants, the ability of the GPC to make accurate predictions can be enhanced
if a neural network is used to learn the dynamics of the plant instead of standard modelling
techniques. Improved predictions affect rise time, overshoot, and the energy content of
the control signal [74].

Optimization problem and solver
To determine inputs of a given process that optimises the forecasted process behaviour,
these inputs, or control actions, are calculated repeatedly using a mathematical process
model for the prediction. In doing so, the fast and reliable solution of convex quadratic
programming problems in real-time becomes a crucial ingredient of most algorithms for
both linear and nonlinear MPC. So, to obtain the optimal control action, an optimization
problem has to be constructed and be solved; for this purpose, it is needed a constrained
quadratic programming problem, in particular a Quadratic Programming (QP) problem.
This kind of problem has the form:

min
x

1

2
xTHx+ xT g(wo) (6.5a)

s.t. lbA(wo) ≤ Ax ≤ ubA(wo) (6.5b)

lb(wo) ≤ x ≤ ub(wo) (6.5c)

where H is a positive (semi-)definite Hessian matrix of the objective function, g is
the gradient of the objective function, A is the constrain matrix, lbA and ubA represent
the lower and upper bounds for the constrain matrix respectively, lb and ub represent the
lower and upper bound for the optimization variable, respectively.

6.2 MPC-based quadruped locomotion
As introduced in Section 3.3, MPC strategies are used to implement an optimal control for
environmentally induced steering control. In particular, MPC is requested to generate the
descending commands to the low level CPG controller [30, 31]. In order to compare the
performance given by the linear and nonlinear MPC approaches, different simulations are
carried out to develop a comparative analysis. The differences between the two methods
will be highlighted. Finally, the obtained results are analyzed and compared with those
obtained in the same robotic architecture using a simple standard PID controller.
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6.2.1 LMPC and NNMPC design for a quadruped robot
The robot architecture and neural control algorithm, presented in Section 3.1 will be
used in this section. An overview of the results obtained in terms of gait stability when
a linear or a nonlinear MPC approach is used will be provided in the following part.
The MPC parameters used are summarized in Table 6.1. In the table, the characteristic
parameters of MPC are the prediction and control horizon. The former, according to
the MPC guidelines, was chosen to have 20-30 samples covering the open-loop transient
system response, whereas the latter has the best trade-off choice from 10% to 30% of the
Prediction Horizon.

Table 6.1: MPC parameters

MPC parameters Values
Sample time 0.05s
Number of

manipulated variables 1 (steering)

Number of the
measured outputs 1 (yaw)

Prediction horizon 150
Control horizon 40

Closed-loop performance fixed
Speed of state estimation fixed

LMPC approach
In order to implement a LMPC, the development of a linear model of the process to
be controlled is required. The quadruped robot model is identified with a data-driven
approach obtained using the Matlab identification toolbox. In particular, the relation
between the input that corresponds to the steering command provided to the robot, in
the form of the feed3fi signals (Eq. 3.14), and the output that corresponds to the robot’s
yaw angle, is modelled through a transfer function reported in the following

Fdt =
(3.54)s4 + (6.04)s3 − (13.71)s2 − (0.008)s− (0.005)

s5 + 161.26s4 + 212.81s3 + 1.46s2 + 0.08s+ 1.02 · 10−4
(6.6)

To identify the robot model, five different datasets have been used, one to identify
the model and the others to test it. The sampling time is fixed to 50 ms. The relations
between the steering and yaw values are shown in Fig.6.6. The training dataset is shown
in Fig.6.6(a) and it is used for the identification. Its robot behaviour is characterized by
a yaw ramp with a negative slope, followed by a ramp with a positive slope, and finally
a more complex behaviour with rapid changes of heading. A total of 10000 samples is
considered. The steering control action Sc in Eq.3.14 covers the entire allowed range (i.e.
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from -1.2 to 1.5) which is a hard constraint used for the MPC output signal. The first and
the second test datasets are reported in Fig.6.6(b) and Fig.6.6(c). Other three datasets
where the robot is following square-like trajectories were considered during the test phase.
To maintain a straight trajectory a steering signal (i.e. Sc) of about 0.2 is needed. The
linear model has been developed considering eleven different structures for the transfer
function with different numbers of poles and zeros.
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Figure 6.6: Training and test datasets used for the linear model identification considering
as input the Sc signal and as output the yaw angle. (a) Training dataset; (b-c) Test
datasets. The red line represents the Yaw Output, the blue line is the steering control
action. The yaw angle is reported in radians.

In Fig.6.7, an high-level scheme of the system architecture is reported. The MPC
inputs are the reference signal (i.e. xref ) and the actual yaw angle acquired from the
robot (i.e. mo in Fig 6.7). The control input provided to the robot in terms of steering is
the output of the MPC controller. The communication with the CoppeliaSim framework
has been performed using the 2-level s-function available in Matlab.

NNMPC approach
As for the linear case, to identify the robot model, five different datasets have been used,
one to identify the model and the others to test it and the data-driven approach is used
to identify the robot model.

Similarly to the LMPC case, in Fig.6.8 a high-level scheme of the system architecture,
developed in Matlab-Simulink, is reported. The reference signal Xref , representing the
desired yaw, is an input for the NN Predictive Control block, together with the actual
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Figure 6.7: Scheme of the LMPC developed in Simulink.

yaw of the robot, whereas the output is the control signal Sc which modulates the CPG
locomotion network. The communication with the CoppeliaSim dynamic framework has
been performed using the 2-level s-function available in Matlab. The MPC parameters
used are the same of those used in the LMPC case.

Figure 6.8: Scheme of the NNMPC developed in Simulink.

The NNMPC block employs a Neural Network-based model of the robot behaviour
able to describe and predict the effect of the steering control signal on the robot heading.
The best control sequence is derived via a numerical optimization algorithm minimizing
the following performance criterion J over the specified horizon:

J =

N∑
j=1

(yr(t+ j)− ym(t+ j))2 + ρ

NU∑
j=1

(u′(t+ j − 1)− u′(t+ j − 2))2 (6.7)

where N defines the cost horizons over which the tracking error is evaluated and NU

defines the dimension of the control horizon, in which the control increments are analyzed.
The u′ variable is the tentative control signal, yr is the reference (desired response), while
ym is the neural network model response. The ρ value weights the contribution of the
sum of the squared control increments on the index J ; its value was fixed to 0.05. The
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optimization block determines the control input u′ minimizing J , and then the optimal
u is provided as input to the robot CPG controller. The minimization algorithm used is
srchbac and it is a one-dimensional minimization routine based on a backtracking technique
[75].

The Search Parameter α works as a stop criterion for the minimization routine: if the
minimization between two consecutive control input candidates is less than α, the routine
stops.

As said, the linear model used to set the MPC was obtained by analyzing different
transfer function structures, containing a varying number of poles and zeros (from 1 to
7). The outcome of this identification procedure was a transfer function characterized
by 5 poles and 4 zeros. Based on this analysis, for the design of the nonlinear model,
the regressors for the input and output variables were used as input features for the
neural network structure. Therefore the input layer of the networks consisted of a nine-
dimension vector. The network has been trained offline in batch mode, using the training
dataset previously defined and adopting the Levenberg-Marquardt learning technique with
a maximum number of epochs equal to 400. To find the best number of hidden neurons
a supplementary analysis was carried out, in which the number of neurons was varied in
the range [3, 12].

The results of this hyperparameter analysis are shown in Fig.6.9.
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Figure 6.9: Network performance as a function of the number of hidden neurons. The
blue bars represent the FitNRMSE on the training dataset, while the red bars represent
the mean of the FitNRMSE calculated on the test datasets.

The most suitable number of hidden neurons selected is four. This network has a
training fit value of 94 and a mean test fit value of 65, which represents an improvement if
compared to the linear model identification, which was able to reach fit values in training
and test of 78 and 52, respectively. In Fig.6.10 the comparison between the neural model
and the linear transfer function is reported.
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Figure 6.10: Comparison of the identification performance for a linear and nonlinear model
on the (a) training dataset and (b) one of the test datasets.

Results and comparisons
The NNMPC and LMPC were tested on six different reference signals: two representing
an ideal square route (one clockwise and the other counterclockwise), two representing an
ideal equilateral triangle route (also in this case, in both directions), a one-period sine
reference and two semicircular routes.

The results related to the linear MPC version, are reported in Fig.6.11. For the
nonlinear MPC version, the results are reported in Fig.6.12, as a function of the searching
parameter α, used as a stopping criterion. In particular, in Fig.6.12(c), when the first
negative step is applied in the reference yaw, the controller does not properly work with
α = 0.001. Here, the control signal starts to oscillate between the two saturation limits
with the result that the output yaw is almost constant and loses the reference command
tracking.

To better evaluate these results, the FitNRMSE between the robot yaw and the ref-
erence signal was evaluated. The fit value is affected by the maximum angular velocity
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Figure 6.11: Behaviour of the robot controlled by the Linear MPC on: (a) Clockwise
square reference; (b) Counterclockwise square reference; (c) Clockwise triangle reference;
(d) Counterclockwise triangle reference; (e) Sine yaw reference; (f) Semicircular reference.

that the robot can reach, due to the physical constraints and to the constraints added in
the control action, i.e. the steering bounds. The reference signal is an ideal figure, and it
assumes that the robot should have the capability to turn on the spot: this is not possible
in our case, unless at the expense of complicated maneuvers, not conceived within the
trotting gait, which is the locomotion pattern shown by our robot.

Table 6.2 shows the outcome of this analysis: the best results were obtained with the
search parameter α equal to 0.01 (i.e., Mean FitNRMSE = 77).

Finally, the NNMPC and the LMPC performance were compared. To test the MPC
performance, a comparison with the PID controller is carried out. The control scheme is
similar to the one shown in Fig.6.7 with the PID block instead of the MPC block. The
results in terms of Fit values and maximum absolute error (MaxAE) are outlined in Table
6.3. The NNMPC performs better in almost all cases as also demonstrated in Fig.6.13.
The accuracy is even more evident when the yaw signal undergoes continuous variations,
as depicted in Fig.6.13 (e)-(f). Here the NMPC controller does not suffer from any tracking
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Figure 6.12: Behaviour of the quadruped robot while following the reference steering
command generated by the NNMPC with α varying between 0.1, 0.01, 0.001: (a) Clockwise
square reference; (b) Counterclockwise square reference; (c) Clockwise triangle reference;
(d) Counterclockwise triangle reference; (e) Sine reference; (f) Semicircular reference.

delay and is also smoother than the MPC controller result.
Concluding, the comparative analysis carried out considering the fit values perfor-

mance and the MaxAE index demonstrates the effectiveness of the NNMPC in particular
in presence of continuously time-varying trajectories.

6.3 Locomotion in low friction surfaces
The comparison between LMPC and NNMPC carried out in the previous part of the chap-
ter can be extended considering the interaction between the quadruped and the surface.
The goal is to show the limits of the linear model when the robot is in presence of slipping
surfaces. In this case, the use of a nonlinear model is essential to capture the intrinsic
frequencies of the robot oscillations, due to the stepping locomotion. In the following
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Table 6.2: Fit values for the six datasets obtained through the LMPC, for different values
of α. The mean of the fit values is included in the last row.

References FitNRMSE

α=0.1
FitNRMSE

α=0.01
FitNRMSE

α=0.001
CW sq 74.51 75.77 70.35

CCW sq 71.60 69.57 69.67
CW tr 71.44 70.49 -44.38

CCW tr 64.48 64.26 64.16
sine 80.87 88.97 88.69
semi 90.04 92.85 92.57

Mean 75.49 76.99 56.84

Table 6.3: Comparison between the NNMPC and LMPC Fit values and MaxAE for the
six test datasets adopted. In the last row, the mean values calculated on the datasets are
indicated. (CW sq: clockwise square; CCW sq: counterclockwise square; CW tr: clockwise
triangle; CCW tr: counterclockwise triangle; sine: sine yaw; semi: semicircular).

Ref NNMPC LMPC
Fit MaxAE Fit MaxAE

CW sq 75.77 0.20 72.31 1.63
CCW sq 69.57 0.24 71.02 1.58
CW tr 70.49 0.19 68.48 2.18

CCW tr 64.26 0.28 65.45 2.06
sine 88.97 0.08 74.88 0.30
semi 92.85 0.07 84.47 0.40

Mean 76.99 0.17 72.77 1.35

simulations, the quadruped locomotion is governed using Eq. 3.3 introduced in chapter 3.
Using the NNMPC is possible to build a black-box model of the system where the

nonlinear characteristics can be learned from simulation and/or experimental data. In
this work, a neural model is shown to autonomously capture the nonlinear interactions
between the ground reaction force in slippery conditions and the center of mass motion.
The model can be therefore used within the MPC controller to generate an efficient control
of the robot’s motion.

The low-level CPG locomotion controller is here adopted to generate a set of reference
phase relationships among the actuators of the robot legs. It is based on the Reaction-
Diffusion Cellular Neural Network (RD-CNN) [76] paradigm, able to show steady-state
stable phase-shifted dynamics to generate the desired locomotion gait [15, 77]. Here, an
efficient steering control is realised by applying suitable gains to the neuron links of the
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Figure 6.13: Comparison between the robot heading and the reference signal obtained
using the LMPC, the PID, and the NNMPC control strategies in the case of: (a) Clockwise
square reference; (b) Counterclockwise square reference; (c) Clockwise triangle reference;
(d) Counterclockwise triangle reference; (e) Sine reference; (f) Semicircular reference.

RD-CNN. The phase stability of the steering gait is rigorously demonstrated by exploiting
Partial Contraction Theory [78]. Thanks to these results, a unique gain KL can be fixed
to reach a stable locomotion pattern invariant with respect to the desired steering angle
which can be imposed through suitable gains wi,j among the network links. The high-level
controller will be in charge of the selection of the suitable wij for a proper steering.

6.3.1 MPC and NNMPC design
The standard strategy to design the MPC controller both in the linear and in the nonlinear
case was followed. In Fig.6.14 a high-level scheme of the system architecture, developed
in Matlab-Simulink, is reported in the case of the NNMPC implementation. The only
difference with the LMPC is the block outlined as ”NN predictive controller”, which, in
the linear case, employs a linear model. The reference signal sig, representing the desired
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yaw speed of the robot center of mass ωz, is an input for the NN Predictive Control block,
together with its actual value. The controller output consists, in principle, of the vector w
which, applied in Eq.3.3 realizes the low-level steering control in the trotting Mini Cheetah.
The output weight vector is reduced to a scalar value applied only to specific leg joints. So
the MPC output is only one gain value. Communication with the CoppeliaSim dynamic
framework has been performed using a 2-level s-function available in Matlab.

Figure 6.14: High-level scheme of the NNMPC-based architecture for steering control.

Within the NNPC block (Fig.6.14) the robot neural model receives as input the steer-
ing control signal (i.e. the gain w) whereas the output is the heading (i.e. the yaw velocity,
ωz) of the robot center of mass. Once the model is obtained, the best control sequence is
calculated by minimizing the following performance index J over the given horizon:

J =

NH∑
j=1

(yr(t+ j)− ym(t+ j))2 + ρ

NU∑
j=1

(w′(t+ j − 1)− w′(t+ j − 2))2

s.t. |w’(t)| < γ (6.8)

where according to the classical MPC formulation: NH is the prediction horizon where
the tracking error is evaluated; NU is the control horizon where the control signal samples
are analyzed; w′ is the tentative control signal; yr is the reference response; ym is the
model output; ρ (in this case ρ = 0.05) weights the contribution of the sum of the squared
control increments on the index J ; γ = 0.07 is the saturation limit of the control input.
The optimization block determines the control input w′

0 minimizing J , to be provided to
the robot CPG controller. The minimization algorithm used is srchbac, a one-dimensional
minimization routine based on a backtracking technique [79]. According to the MPC
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guidelines, NH was chosen to have 20-30 samples covering the open-loop transient system
response, while NU is a fraction (10%− 30%) of NH . Typically, only the control input at
the next time step is applied to the robot, to make the control law more effective.

The MPC parameters adopted are reported in Tab.6.4.

Table 6.4: Parameters used in the NN Predictive Controller block shown in Fig.6.14

.

Parameters Value
Sample time 0.05s

No. manipulated variables 1 (w)
No. measured outputs 1 (ωz)
Prediction horizon NH 150 samples

Control horizon NU 40 samples

Once the dataset was generated, the relation between steering command and angular
velocity can be modelled using either a continuous-time transfer function (LMPC) or a
neural network (NNMPC).

6.3.2 Performance in slippery conditions
A slippery condition takes place whenever a foot in the stance phase shows a non-zero
velocity with respect to the world reference frame [80]. To quantify the efficiency of the
controller with respect to slippery, in front of the different friction conditions, the following
Slipping Index (SI) is defined as follows:

SI = ∥PW
fs (t)− PW

fs (t− 1)∥ (6.9)

where PW
fs (t) is the planar vector connecting the generic robot foot position, when in

the stance phase, to the World reference frame W . The index takes into account the
difference between two consecutive planar positions of a specific foot in contact with the
ground. Considering the time between two position recordings as unitary, SI accounts
for the residual speed of the robot foot. The idea behind this definition is that the
generic foot, while in stance, should not move, in ideal conditions and in case of high
friction. In this chapter, since a simulation approach is adopted, this index can be reliably
evaluated with respect to the world reference frame W . In the case of a real robot, it can
be easily referred to as the robot reference frame using well-known kinematic relations.
In real conditions, but also when using a realistic dynamic simulation environment, the
index never goes to zero, but maintains around a certain small quantity, recording small
natural fluctuations. So, if SI maintains below a certain upper bound SI, the slipping
conditions can be neglected, otherwise slipping has to be considered a source of potential
instability. This index, due to the dynamic conditions, has to be experimentally tuned
both in simulations and in the real robot deployment.

The software tools employed to perform the quadruped robot simulations are Matlab,
Simulink, and CoppeliaSim. In particular, the control scheme used to drive the robot is
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implemented in Simulink. The dataset acquisition campaigns, the model generation for
the NMPC and LMPC, and the locomotion gait generation are implemented in Matlab.
In CoppeliaSim the legged robot and its interaction with the adopted terrains can be
modelled, simulated, and controlled through Matlab.

Fig.6.15 shows the steering behaviour of the Mini Cheetah model within the simulated
environment in which the tests are performed. In Table 6.5 the physical characteristics of
the modelled robot are reported.

Figure 6.15: The simulated Mini Cheetah robot is shown while performing steering ma-
noeuvres in the CoppeliaSim framework. A trace of the center of mass position is left by
the robot during the simulation as shown in the lateral (left panel) and top view (bottom
right panel) of the scene. The reference signal and the actual steering speed are also shown
in the top right panel.

Table 6.5: Mini Cheetah robot physical characteristics adopted in the simulated model.

Features Values
Height 30 cm
Length 48 cm
Width 27 cm
Weight 9 kg

The effect of the gain-based steering control in terms of steering velocity is reported
in Fig.6.16(a) where a portion of the learning dataset (entirely composed of 500 steps with
random amplitude and duration) is shown in normal friction conditions that corresponds
to the interaction between rubber and dry asphalt.
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A different behaviour appears in presence of low friction that can be considered equal
to the interaction between rubber and wet ice, as shown in Fig.6.16(b). The complexity of
the low friction model hidden within the data will be evident when linear and nonlinear
modelling techniques for designing the MPC will be compared.
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Figure 6.16: Dataset obtained in the dynamic simulation environment in which couples
w-ωz are collected from the walking quadruped robot: (a) normal friction; (b) low friction.

6.3.3 CPG and steering mechanism
The CNN-based CPG approach adopted for the generation of locomotion patterns for the
considered quadruped robot, guarantees stable solutions when the constraints formulated
using the partial contraction theory are satisfied. Referring to Eq. 3.7, the direct calcu-
lation of the maximum eigenvalue of the Jacobian matrix, evaluated over the limit cycle
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shown by the single, uncoupled cell, leads to:

λmax

(
∂f

∂x
(xi, t)

)
= 0.646

whereas the algebraic connectivity of the graph is: λ1 = 0.2679. Therefore, we can choose
k=3 to satisfy Eq. 3.7.

Considering the FL leg as the reference one, a specific gait is defined through the
following vector:

Θgait = [θFL,FL; θFL,FR; θFL,BL; θFL,BR]

establishing the phase shift of all the legs with respect to the reference one. In this case,
the trot gait was adopted, characterised by:

Θtrot = [0◦; 180◦; 180◦; 0◦] (6.10)

The robot steering, when following a path, is performed exploiting the wij entries of the
vector w in Eq. 3.3. As stated above, only one gain value is calculated by the controller
and applied to a subset of leg joints. In detail, in our case W = {wi,j} ∈ R4 where
i = {1, 2} and j = {FL, FR,BL,BR}, if the same scaling value w̄ij is imposed to the
state variables of ipsilateral (e.g. right) legs, (right) the steering is performed, maintaining
the same gait (i.e. trot), given the phase invariance imposed by the Laplacian couplings.
Also, in our case the maximum steering radius is obtained via w1,FL = w2,FL = 0.3
(w1,FR = w2,FR = 0.3) for the left (right) steering. In Fig.6.17 the signals related to
the state variables acting on the Hip 2 joints, considering the four legs, are shown when
the right steering is performed. As it is possible to notice, by modulating the weight wij

entries related to ipsilateral legs, the state variables signals change in amplitude producing
a phase-invariant leg trajectory scaling.

6.3.4 Data-driven robot model
The development of the robot model for the MPC-based steering control was carried out
using a set of transfer functions with different numbers of poles and zeros for the linear case
whereas, in the nonlinear case, different I/O regressor couples were analyzed as reported
in Tab.6.6. The number of hidden neurons in the neural network was fixed to 20 through
a searching strategy based on a combination of expert knowledge, to fix a rough searching
domain, and a grid search, to identify the best configuration in terms of prediction accuracy
on the validation dataset.

The AIC analysis for all the models in Table 6.6 is shown in Fig.6.18. Therefore,
the optimal model structures are 5-1 (normal friction) and 3-2 (low friction) in the linear
case whereas in the neural network modelling the selected configurations are 2-4 (normal
friction) and 4-5 (low friction).

In Tab.6.7 the linear and nonlinear model Fit values and the Pearson correlation
coefficient R are reported using the optimal structures indicated by the AIC analysis.

Analyzing the Fit values it is evident, as expected, that the nonlinear approach out-
performs the linear one. Furthermore, applying a neural network to model the robot
behaviour allows for obtaining comparable performance in both scenarios with standard

81



0 200 400 600 800 1000

Time (samples)

-10

-5

0

5

10

A
n

g
u

la
r 

jo
in

t 
p

o
s
it
io

n
 (

d
e

g
) FL

FR

BL

BR

Figure 6.17: An example of the weighted phase shifted signals controlling the robot steering
via the wij entries in Eq.3.2. In the legend,labels (FL, FR, BL, BR) correspond to the
normalised first state variables of neuron 1,2,3 and 4,respectively, in Fig.3.1

Table 6.6: Transfer function and I/O regressors for the linear and nonlinear case, respec-
tively. The optimal structure was selected through the AIC index.

LMPC NNMPC
№ TF poles-zeros № I/O regressors
1 2-1 1 1-3
2 3-1 2 2-3
3 4-1 3 2-4
4 5-1 4 3-4
5 3-2 5 3-5
6 4-2 6 4-5
7 5-2 7 4-6
8 4-3 8 5-6
9 5-3 9 5-7
10 5-4

and low friction, whereas the linear solution shows a significant decrease in accuracy when
the low friction scenario is considered.

Fig.6.19 shows the estimation accuracy of the linear and nonlinear models for different
friction conditions between the robot and the terrain. It can be noticed that the angular
velocity signals obtained at low friction are less regular than in the normal friction case.
However, the neural network-based model can correctly estimate the output signals in
both conditions.
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Figure 6.18: AIC index results: the linear (a) and nonlinear (b) architectures were consid-
ered in presence of normal and low friction. The numbers reported in the x-axis correspond
to the configurations described in Table 6.6.

Table 6.7: Correlation coefficients and Fit values between the model output and the actual
one for the linear and nonlinear cases in presence of normal and low friction.

Model Friction Fit R
Linear normal 61.67 0.91

low 55.80 0.89
Nonlinear normal 76.97 0.97

low 75.10 0.97

A statistical analysis of the distributions of the error between the model output and the
target signal is reported in Fig.6.20 where a typical Gaussian distribution is shown in both
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Figure 6.19: Dataset obtained with the simulation campaign in which couples gain-ωz are
collected: (a) normal and (b) low friction scenario.

cases. The improved performance of the nonlinear model is demonstrated by the reduced
variance of its distribution compared to the linear approach. In the case of low friction,
the larger variance seems therefore to produce larger average errors which contribute to
boosting the nonlinear effects which affect the overall robot behavior. The time comparison
among the models (Fig.6.19) reveals that the linear model succeeds in acquiring the average
linear dynamics hidden in the nonlinear system, whereas the nonlinear model succeeds
in capturing much more details of the angular velocity dynamics, typical of quadrupedal
locomotion. These are instead treated as errors and filtered out by the linear model. These
aspects are not detectable in the statistical plots of Fig.6.20. Moreover, the linear model
seems to follow the system with a certain delay, clearly visible during the transient phases.
This aspect can be negligible in the case of normal friction but can become critical in the
case of low friction, where it is strictly needed to capture the high-frequency reactions of
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the robot. These modelling aspects will become essential for nonlinear control success.

(a)

(b)

Figure 6.20: Statistical analysis: error distribution for the (a) linear and (b) nonlinear
model in presence of normal and low friction.

6.3.5 MPC-based steering control
Three different reference signals were considered to control the robot steering: a sine wave,
a sequence of steps, and a triangle reference. Fig.6.21 shows the results obtained from the
dynamic simulation of the controlled quadruped robot for the different reference signals
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adopting the LMPC and the NNMPC in the scenarios with normal friction. The behaviour
of the robot, in presence of a more challenging scenario with low friction, is reported in
Fig. 6.22.
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Figure 6.21: Results obtained using the LMPC and NNMPC in a normal friction condition:
(a-b) sine wave reference, (c-d) step reference, (e-f) triangle reference.

As reported in Section 6.3.2, the Slipping Index was introduced as a simple method
to statistically quantify the slippery effect which can cause robot failure. As already
discussed, its evaluation needs the tuning of a threshold SI. This can be obtained through
a statistical analysis performed on the SI distribution as depicted in Fig.6.23. Here, the SI
is reported for the FR leg while in the stance phase, recorded during walking. Fig.6.23(a-
b) reports the values obtained using the LMPC and the NNMPC when a zero reference
signal (i.e. forward path) is provided to the system. When the robot follows a simple
forward trajectory, both controllers have equivalent performance. In the case of more
complex reference paths, such as a sine signal the weakness of LMPC arises, as shown in
Fig.6.23(d). Here, the LMPC and NNMPC controllers are compared in the low friction
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Figure 6.22: Results obtained using the LMPC and NNMPC in a low friction condition:
(a-b) sine wave reference, (c-d) step reference, (e-f) triangle reference.

scenario, acquiring samples of SI soon before the falling event shown in the LMPC case
(Fig.6.22(a)). From Fig.6.22(c), the SI shows a large statistical difference and is much
smaller in the NNMPC application. In particular, as a result of this statistical analysis,
a safe threshold to be used is SI = 0.02, quantified as the boundary of the third quartile
around the median SI value in the LMPC application. This can be considered as a
maximum normalised speed that, if overcome, can cause the robot fall.

In presence of a typical robot ground interaction with normal friction, the performance
of the NNMPC is mostly comparable with linear MPC, as reported in Tab.6.8. A normal
friction parameter helps in maintaining the robot’s stability while steering, reducing the
need for a nonlinear approach.

The performance of the LMPC drastically degrades in presence of scenarios with low
friction in the foot-ground interaction. As can be seen from Fig.6.22, in this case, when
the linear model is adopted, the robot is no longer able to correctly follow the reference
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Figure 6.23: Slipping statistical analysis: (a)-(b) LMPC and NNMPC cases, respectively,
when the robot follows a zero reference signal, (c) SI distribution when the robot follows
a sine reference (Fig.6.22(a-b)) in the low friction scenario. (d) SI time evolution related
to the previous case. The yellow circle represents the moment in which the robot starts
to oscillate, the blue one when the robot is fallen. Within each box, the central mark is
the median, the edges are the 25th and the 75th percentile, the whiskers extend to the
most extreme data points the algorithm considers to be not outliers, and the outliers are
depicted individually as ’+’.

Table 6.8: Fit and MSE values obtained using the LMPC and NNMPC approaches with
three different reference signals.

Ref. signal Fit MSE
LMPC NNMPC LMPC NNMPC

Triangle 70.75 70.97 0.013 0.009
Sine wave 68.40 67.45 0.008 0.01

Steps 63.99 62.69 0.009 0.02

steering signals, falling on the ground. The NNMPC is instead able to complete the trials
although the fitting between the reference and the current signal decreases if compared
with the normal friction case. The performance indexes for the low friction scenario, when
the NNMPC is adopted, are reported in Tab.6.9.

In Fig.6.24 the Stability and Harmony indexes are reported, showing the statistical
distribution over 20 trials. Here the robot follows a straight path considering the normal
and low friction environments and applying the LMPC and NNMPC control strategies.

The Stability and Harmony indexes for both the LMPC and NNMPC strategies are
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Table 6.9: Fit and MSE values obtained using the NNMPC approach with three different
reference signals.

Reference signal Fit MSE
Triangle 59.12 0.02
Sine wave 56.79 0.04
Steps 55.59 0.03

significantly better in the normal friction scenario than in the slippery terrain. The statis-
tical relevance of the different distributions was analyzed in Tab. 6.10 using the Welch’s
t-test, a test decision for the null hypothesis. Considering the results, h is 1 if the test re-
jects the null hypothesis at the 5% significance level, and 0 otherwise. LMPC and NNMPC
show the same distribution only for the stability analysis at normal friction, whereas in all
the other cases the differences are statistically relevant and demonstrate the effectiveness
of the NNMPC if compared with its linear counterpart.

Stability Harmony
h p-value h p-value

LMPCNF vs LMPCLF 1 0.0001 1 0.000005
NNMPCNF vs NNMPCLF 1 0.001 1 0.00006
LMPCNF vs NNMPCNF 0 0.82 1 0.001
LMPCLF vs NNMPCLF 1 0.01 1 0.04

Table 6.10: The Welch’s t-test was applied to the stability and harmony indexes reported
in Fig. 6.24 the subscripts indicate normal friction (NF) and low friction (LF).

6.4 Conclusion
In this chapter, the effect of linear and nonlinear MPC-based control strategies acting
on the robot steering and applied on a quadruped robot, endowed with a bio-inspired
locomotion controller are analyzed. The quadruped robot behaviour has been modelled
using a neural network designed and optimized following a data-driven approach. From a
comparative analysis carried out considering the fit values performance and the MaxAE
index, it was possible to evaluate the control results in terms of matching between the ref-
erence signals of the yaw angle of the controlled robot simulated in a dynamic framework.
The comparative analysis of the results demonstrates the effectiveness of the NNMPC in
particular in presence of continuously time-varying trajectories.

In the second part of the chapter, the control of the quadruped in slippery surfaces is
taken into account. In particular, the low-level phase-shifted synchronization among the
robot legs, for general manoeuvres including steering, was entrusted to a reaction-diffusion
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Figure 6.24: Performance indexes when the robot follows a straight path considering the
low friction environment applying the LMPC and NNMPC control strategies: (a) stability
and (b) harmony. The statistics are performed over 20 trials, changing the robot initial
leg configuration for each case.

CNN CPG. Since steering manoeuvres require a network controller using a weighted di-
rected graph, a new theoretical result introduced in section 2 is here exploited to design
an exponentially stable gait controller, imposing specific phase relations among the robot
legs. Moreover, the most stable and regular gait, i.e. trot, was adopted because of the crit-
ical application of trajectory control in slippery terrains. For high-level trajectory control,
linear and nonlinear (neural network-based) MPCs are compared. MPC guides the robot
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steering based on a reference consisting in the angular velocity (yaw speed) and acting
on specific gains modulating the neural signals applied as position control references to
the robot joints. To properly compare the results, a neural network and a linear transfer
function model were developed and optimized, using a data-driven approach, to model
the quadruped robot behaviour. The dataset adopted was generated using a model of
the Mini Cheetah robot, simulated in a dynamic environment, both in typical working
conditions and in presence of slippery terrains. The results obtained with NNMPC were
compared with the linear MPC-based approach. The selection of the optimal model was
achieved in both cases through the AIC index, taking into account both the accuracy and
the complexity of the model. A comparative analysis was carried out taking into account
the Fit and the MSE indexes. The difference between the two control systems is evident
in the case of relevant slippery conditions: the LMPC was no longer able to complete
the requested steering trajectories causing the robot falling. The main reason is that the
impulsive forces generated on the robot body during the leg touch down and stance phase
can be filtered out only in the case of a normal friction condition: in this case, a linear
model can approximate quite well the robot dynamic response to the steering commands.
In the case of slippery surfaces, the advantage of an NNMPC is evident even if it is com-
putationally more complex respect the LMPC. The quality of the control architecture was
also demonstrated using typical indexes adopted for legged locomotion such as Stability
and Harmony. These quantified the improvements obtained with an NNMPC control in
the low friction case. The dynamic simulation analysis of the quadruped robot represents
a needed step for future implementations on the hardware prototype. Particular attention
was already devoted to reducing the computational complexity, in view of an onboard
implementation, for both the developed CPG and the MPC, through the selection of the
optimal linear and nonlinear robot models in terms of prediction accuracy and model com-
plexity. The approach adopted, being essentially data-driven, can be extended to different
scenarios including uneven terrains and robot architectures, as discussed.
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Chapter 7

Robot-oriented neural models
for path planning1

This chapter reports research works developed during the PON CLARA project (CLoud-
plAtform and smart underground imaging for natural Risk assess‐ment) whose main goal
was the acquisition of a deep knowledge of the territory concerning the phenomena of
hydrogeological instability and seismic risk that can affect inhabited centers. This goal
has been pursued through the development of widespread smart technology that enable
the acquisition, management and sharing of complex information.

In general, considering the problem related to the robotic navigation, four main aspects
can be identified: localization (where is the robot?), path planning (how can the robot reach
a target point from a starting point?), motion control (what is the better gait the robot can
use considered the particular task), perception (how can the robot read the data coming
from the sensors? and, if a sensor is damaged, how can be replaced?). In this chapter,
one of the fundamental problems of mobile robot navigation is faced using neural tools, in
particular, a neural-based method for the derivation of the traversability maps is proposed.

The methods for the optimal path search include rescue operations, telerobotic sys-
tems [81, 82], exploration of complex terrains, and sensor positioning landslides [5, 83].
In [83] an autonomous drilling robot for landslide monitoring is proposed, whereas in [4]
the problems related to the installation and maintenance of the monitoring equipment
used for landslides, owing to the complexity of the terrain, are dealt with. For instance,
after a ground movement, a sensor node must either be moved or replaced to allow proper
monitoring. Assessment of robot traversability is fundamental in planetary exploration

1The results reported in this chapter are extracted from ”Learning traversability map of
different robotic platforms for unstructured terrains path planning - Paolo Arena, Carmelo
Fabrizio Blanco, Alessia Li Noce, Salvatore Taffara and Luca Patanè - 2020 International
Joint Conference on Neural Networks (IJCNN)” and ”Learning risk-mediated traversabil-
ity maps in unstructured terrains navigation through robot-oriented models - Paolo Arena,
Luca Patanè and Salvatore Taffara - 2021 Information Sciences.”
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wherein the environment and the robot have to be simulated before real tests [84]. Re-
cently, quadruped platforms have been considered for planetary exploration [85].

The optimal paths to be followed to reach a target location based on the specific char-
acteristic of a particular type of robot available represent the optimal solutions minimizing
the path lengths while maintaining the risk associated with that path below the maximum
acceptable upper bound [86, 87].

7.1 Notes on neural and shortest paths algo-
rithms

In this section, the computing structures and algorithms adopted to obtain the results in
the Chapter are briefly introduced.

7.1.1 Multilayer Perceptrons
The Multilayer Perceptron (MLP) is a Feed-forward Neural Network (FNN) consisting of
elementary units called neurons connected and trained with the backpropagation algorithm
associated with the Levenberg-Marquardt optimisation method. Neurons are arranged
within an input layer, a hidden layer, and an output layer. The number of neurons in
both the input and output layers is related to the task to be accomplished, whereas there
is no fixed rule to determine the number of neurons in the hidden layer which is selected
using optimisation strategies [88].

Considering a vector x including p input variables, i.e., x = [x1, x2, · · · , xp]
T , and a

number of neurons in the hidden and output layer of q and 1, respectively, the structure
W = [wij ] is the p× q weight matrix that connects p inputs to the q hidden layer nodes.
b = [bjh] (with j ∈ [1, q]) is a vector of biases for the hidden layer nodes. The weight
k = [kOj ] (j ∈ [1, q]) is the vector that connects the q hidden layer nodes to a single
output. Therefore, the input-output relation of the MLP can be expressed as follows:

y = g
( q∑

j=1

kojf
(( p∑

i=1

wijxi

)
+ bhj

)
+ b0

)
(7.1)

where f(·) and g(·) are the activation functions (e.g. sigmoidal functions) for the
hidden and output layer neurons, respectively. bhj and b0 are the bias parameters for
the hidden and output neurons, respectively. The hyperparameters to be selected are
the number of neurons in the hidden layer (numHidden), the neuron activation function
(actFunction), the learning algorithm (solver), the maximum number of learning epochs
(MaxNumEpochs), and the maximum number of validation failures (MaxFail).

7.1.2 Decision trees
A Decision Tree (DT) is a hierarchical model made up of decision rules that divide inde-
pendent variables into homogeneous zones using a recursive strategy [89, 90]. DT aims to
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Figure 7.1: MLP neuronal structure. In the simplest structure, the MLP consists of three
layers: an input, an output, and a hidden layer of nonlinearly-activating nodes. Since
MLPs are fully connected, each node in one layer is connected with a certain weight to
every node in the following layer.

define the set of decision rules from a set of input variables that can be used to forecast
the output. If the target variables are discrete or continuous, a DT is called classification
or regression tree. DT has been successfully applied for classification and estimation in
many real-world contexts. The hyperparameter considered for the DTL classifier is the
maximum number of splits (MaxNumSplts).

The structure of a DT is simple: the internal nodes represent the features of the
dataset while the branches represent the decision rules and each leaf node describes the
outcomes. In particular, there are two nodes in every decision tree: one is the decision
node and the other is the leaf node.

A DT algorithm is named in this way because it starts with a root node and it expands
into many branches and forms a structure like that of a tree. It simply asks a question
and based on a dichotomous answer, it expands into subtrees.

To build a tree, we use the CART algorithm, which stands for Classification and
Regression Tree Algorithm [91].

7.1.3 Random forest classifiers
The evolution of DTL approach to provide a more robust performance has resulted in the
Random Forest (RF). This model consists of a large number of small DTs, that are trained
slightly differently, each one producing its own estimation. The RF model combines these
estimations to produce a more accurate prediction. The construction of an RF involves
the choice of a metric for attribute collection and a pruning method [92, 93]. The training
algorithm for RF applies the general technique of bagging [94] to tree learners. One
decision tree is trained alone on the whole training set. In a RF, N DTs are trained each
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(a)

Figure 7.2: A decision tree learning algorithm structure. It starts with a root node and
it expands into many branches and forms a structure like that of a tree. It simply asks a
question and based on a dichotomous answer, it expands into subtrees.

one on a subset of the original training set obtained via bootstrapping [95] of the original
dataset, i.e., via random sampling with replacement. The hyperparameter considered for
the RF classifier, in addition to that used for the DT, is the number of DTs in the ensemble
(numTrees).

7.1.4 Dijkstra’s algorithm
Given a positive, weighted, and directed graph G = (T,E), containing T nodes and E
edges, for any node s, the Dijkstra’s algorithm finds the path with the lowest cost (i.e.
shortest path) between s and the other nodes in G. It can also be used to find the shortest
paths from a single node to a single destination node by stopping the algorithm once
the shortest path to the destination node has been determined [96]. In particular, the
Dijkstra’s algorithm is applied to directed graphs evaluated with non-negative evaluation,
i.e., characterized by non-negative arcs.

It is structured as follows:
D1. A coefficient λi is associated to each node of the graph so that λ1 = 0 and

λi = β1i (i = 2, ..., n) with β1i the valuation of the arc (x1, xi) (if this arc does not exist,
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Figure 7.3: RF structure: the algorithm relies on multiple DTs that are all trained slightly
differently, all of them are taken into consideration for the final classification.

then β1i = +∞). The λ1 coefficient is declared definitive and it is indicated with λ∗
1. The

algorithm goes to step D2.
D2. If all λi (i = 1, ..., n) coefficients were declared definitive, the algorithm stops,

otherwise it goes to D3.
D3. Let λ∗

n the last coefficient declared definitive. Each temporary coefficient λi is
replaced with λi = min{λi, λ

∗
n + βni}. Among the new temporary coefficients λi, the

minimum value one is chosen and it is declared as definitive. The algorithm goes to D2.
An example of how the Dijkstra’s algorithm works is shown below, the related graph

is shown in Fig.7.4.
Start
First step:
λ∗
1 = 0, λ2 = 13, λ3 = λ4 = λ5 = +∞, λ6 = 8, λ7 = 12.

Second step:
λ2 = min{λ2, λ

∗
1 + β12} = min{13, 0 + 13} = 13

λ3 = min{+∞, 0 + β13} = min{+∞,+∞} = +∞
λ4 = min{+∞, 0 + β14} = min{+∞,+∞} = +∞
λ5 = min{+∞,+∞} = +∞
λ∗
6 = min{8, 0 + 8} = 8. This is declared definitive.

λ7 = min{12, 0 + 12} = 12
Third step:
λ2 = min{13, λ∗

6 + β62} = min{13, 8 +∞} = 13
λ3 = min{+∞, 8 + β63} = min{+∞,+∞} = +∞
λ4 = min{+∞, 8 + β64} = min{+∞,+∞} = +∞
λ5 = min{+∞, 8 + β65} = min{+∞, 8 + 11} = 19
λ∗
7 = min{12, 8 + β67} = min{12, 8 +∞} = 12. This is declared definitive.

Fourth step:
λ∗
2 = min{13, 12 + β72} = min{13,+∞} = 13. This is declared definitive.

λ3 = min{+∞, 12 + β73} = +∞
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λ4 = min{+∞, 12 + 15} = 27
λ5 = min{19, 12 + 15} = 19
End

Figure 7.4: Example of graph in which Dijkstra’s algorithm is applied.

7.2 Terrain mathematical formalization
To provide an exhaustive methodology for the generation of traversability maps, it is
useful to provide a mathematical formalism related to the basic elements constituting the
traversability problem. Considering a real terrain map shown in Fig.7.5(a), the heightmaps
is shown in Fig.7.5(b) and the related locally connected (each node is connected to its
neighboring nodes), fully oriented (each arc has a direction) graph in Fig.7.5(c).

• C is the point cloud generating the terrain map and it is a matrix of uniformly
spaced height points after a downsampling that generated a set P ⊂ C.

• G = (T,E) is the graph connecting the points in C and is characterised by regular
tessellation (Fig. 7.5(b)), where:

– T = {Ti,j} is the set of tiles (i.e. nodes of the graph), here represented through
quadrangles of fixed dimension Td and corners identified through their 2D
coordinates Ti,j = {p++

i,j , p+−
i,j , p−+

i,j , p−−
i,j }, where each element contains the

elevation of the corresponding point in the map.
– E = {Ei,j} is the set of edges representing the paths between the centre

of the considered tile and its neighbours in the four cardinal and diagonal
directions: Ei,j = (ei,j,i−1,j−1, ei,j,i−1,j , · · · ei,j,i+1,j , ei,j,i+1,j+1). In Fig. 7.6,
a description of a generic tile Ti,j and its constituent elements is reported.

• Vk,l→m,n is the path connecting two generic tiles Tk,l and Tm,n, and it is described by
an ordered sequence of adjacent tiles along the corresponding edges, characterised
by the starting and ending edges Vk,l→m,n = {ek,l,∗,∗, · · · e∗,∗,m,n}.
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• L(Vk,l→m,n) is the length of a path and it is defined as the number of edges contained
in that path. The shortest path V k,l→m,n, whose length is L(V k,l→m,n) is defined
as that characterised by the lowest number of edges among all the other paths
Vk,l→m,n.

The previous indexes are reported in Fig.7.6 describing the constituting elements of a
generic tile Ti,j .

(a) (b)

(c)

Figure 7.5: Terrain used as testbed: (a) 3D reconstruction; (b) 3D height map; (c) locally
connected, fully oriented graph. The zoom of a detail is shown.

7.3 Robot-oriented neural model: the algo-
rithm

The proposed algorithm for terrestrial navigation is summarised in Fig.7.7. It is divided
into two parts: the learning process and the model exploitation. In the first one, the robot-
oriented neural models are generated starting from a training dataset. In the second one,
the model obtained in the previous part is used to obtain the traversability maps and,
consequently, the optimal paths, based on different approaches.
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Figure 7.6: Description of a generic tile Ti,j and its constituting elements. A path
Vi,j→i+2,j−1 is reported.

Learning process

1. Training data. The first step involves the selection of a training map from among
a set of target maps.

2. Morphological features extraction and dynamic simulations. The mor-
phological characteristics are extracted after partitioning the terrain into tiles of
fixed dimensions. In parallel, a set of selected robots was simulated in a dynamic
environment containing the training map. The robots taken into account, as it is
possible to see in the flow chart, are four, i.e.:

(a) Robotnik Summit-XL (upper right) that is a four-wheeled platform with skid-
steering kinematics in which each wheel integrates a brushless motor with a
gearbox and encoder mounted on an independent suspension system [97].

(b) 5BSPL (upper left), a quadruped-like robot adopting a kinematic structure
composed of a set of five links connected in a closed chain by five revolute
joints, two of which are actuated by brushless DC electric motors (BLDC)
and two are passive, made up of ball bearings. This structure is called ”5-bar
symmetric planar linkage” [98].

(c) Asguard robot (bottom right) is a hybrid prototype with an interesting struc-
ture composed of four rotating wheels modelled as a five-pointed star [99]. In
this work, the robot is controlled using a bio-inspired Central Pattern Gen-
erator (CPG) controller. In [100], an overview of the relationship between
locomotion and neural control mechanisms is given. This robot is highly agile
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and fast on flat ground and, at the same time, it is capable of dealing with
very rough terrains such as rubble, gravel, and even stairs.

(d) Cooperative Asguard (bottom left), it is a structure created to improve the
locomotion capabilities of the Asguard robot, following a bio-inspired strategy
developing a coupling mechanism between two robots. Inspiration comes
from snails and octopuses that, to attract females, perform a courtship ritual
aimed at creating a mechanical connection with the partners. Nature can
provide simple solutions that can be technically reproduced and adapted for
other purposes. The male robot has a harpoon with two actuated compliant
joints, one oriented along the horizontal axis and the other along the vertical
axis. On the other hand, the female robot has a funnel in the front part,
in which the harpoon can be inserted and locked mechanically. The male-
actuated appendage facilitates assembly owing to the difficulties that occur
when the alignment procedure is performed on uneven terrains. Through a
searching algorithm, the male robot can approach and mechanically couple
with a female. The harpoon joints are actuated only during the search and
coupling phases. After that, they are no longer actuated, and the two-robot
link behaves as a two-DoF spring damped passive coupling system. In this
study, already assembled robots will be considered. The expected advantages
of a coupled structure are improved stability and the capability to overcome
higher obstacles than a single system.

Each robot could move from one tile to a neighbour, randomly selected to evalu-
ate its capabilities. For the selected tiles, a series of morphological features were
collected and used as input for the neural network, whereas the network targets
encoded the success or failure of the robot in traversing the tiles in a given direction.

3. Robot-oriented neural models. The developed dataset is then provided to a
series of neural networks to learn the specific roving robot capabilities in relation
to the terrain configurations. The robot-oriented neural model, one for each robot,
is obtained.

Model exploitation

1. Target data selection. The first step of the model exploitation part involves the
selection of the target map, i.e., the map for which the optimal paths have to be
obtained.

2. Morphological features extraction. From the selected target map, the dataset
related to the morphological features is obtained.

3. Robot-oriented neural models. The neural network trained in the previous
learning process is used taking in input the dataset generated in the previous step
to obtain the robot-oriented neural models.

4. Direction-based traversability maps. The learned models are subsequently
tested on different terrains (i.e., target maps), providing traversability maps in
real-time without the need to run the simulator. This strategy was applied to
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generate eight traversability maps (four cardinal and four diagonal directions) for
each robot.

5. Optimal path algorithm. The traversability maps are used as inputs for a path-
planning algorithm to provide the best robotic structure to be employed and the
optimal route between specific locations identified on the map (i.e., assigned task)
depending on the level of the admissible risk selected, as clarified in the flowchart
and in the following sections.

6. Optimal path validation on dynamic simulator. The results obtained in the
previous steps are verified in the dynamic simulator.

7.3.1 Morphological features extraction
The target terrain used to test the methodology was acquired by a drone with an onboard
camera. The reconstructed height map has a spatial resolution of approximately 13 cm in
the x and y directions and 1cm for the altitude (z-direction)[101]. To allow a compromise
between fast data processing and the average size of the adopted robots, the map was
downsampled and the final spatial resolution was fixed to 65 cm/tile for the evaluation
of the optimal paths. This allows the maintenance of some height points per tile equal to
5∗5, which is useful for a suitable characterisation of the tile roughness and the maximum
heights that our robots can encounter, as discussed below.

The method adopted to obtain the morphological characteristics of the terrain be-
longs to the class of geometric approaches [102]. The height map of the terrain, as shown
in Fig. 7.5(b), is used to extract the most salient morphological characteristics embed-
ded in each tile: average height difference, maximum height, average slope, and average
roughness.

1. Average height difference. If Ti,j and Tm,n are two consecutive tiles, the heights
are HTi,j

= mean(p++
i,j , p+−

i,j , p−+
i,j , p−−

i,j ) and HTm,n
= mean(p++

m,n, p
+−
m,n, p

−+
m,n, p

−
m,n),

respectively. The height difference between the two tiles is ∆HTi,j ,Tm,n
= HTi,j

−
HTm,n

.

2. Maximum height. The maximum height that the robot has to face while moving
through the considered tile is Hmax

Ti,j
= max(C|Ti,j

).

3. Average slope. It is related to the motion direction. Considered Ti,j and a robot
moving from the south to the north direction (i.e. y-axis direction) on it, the slope
is STi,j

= arcsin( 1
Td

(
p++
i,j +p+−

i,j

2 − p+−
i,j +p−−

i,j

2 )).

4. Average roughness. For each tile Ti,j , we have a cloud of point heights C|i,j
extracted from the original heightmap before downsampling. The least-squares
plane fitting method was used. An interpolation plane limited to the considered
tile points Π|Ti,j

, as shown in Fig.7.8(b), was created. The average distance of the
points (dk,l for the generic ck,l point) in C|Ti,j

from the plane Π|Ti,j represents the
tile roughness DTi,j = mean(dist(C|Ti,j

,Π|Ti,j )).

101



Figure 7.7: Flow chart describing the entire algorithm that leads to the neural models
generation.

The previous indexes can be visualized in Fig.7.8. In particular, in Fig.7.8(a) the
average heights, maximum heights and average slopes of the tiles Ti,j and Tm,n are reported
while in Fig.7.8(b) the roughness of a set of 5 ∗ 5 tiles is represented.
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(a) (b)

Figure 7.8: Morphological parameters representation: (a) two neighbor tiles Ti,j and Tm,n

and the relative parameters: HTi,j
(height), STi,j

(slope), DTi,j
(roughness), Hmax

Ti,j
(max-

imum height); (b) Distribution of a matrix of 5x5 height points constituting a generic tile
and the corresponding interpolation plane. RTi,j is calculated by mediating the distances
of each point in the tile and interpolation plane. The triangles (in (a)) represent the tile
heights while the blue stars (in (a) and (b)) represent the height points.

7.4 Dataset generation
To obtain the dataset used to train the neural networks and to obtain the traversability
maps, the selected robot is left to freely explore the selected environments and the success
or failure in traversing a given area is detected. A neural model, for each vehicle, is learned
to acquire traversing path-specific traversability skills. The traversability information is
binary coded:

1. 0 if the robot can pass the tile,

2. 1 otherwise.

Firstly, the traversability information is collected only considering the cardinal direc-
tions, then, exploiting the generalisation capabilities of neural structures, the diagonal
directions can be obtained and the models can be adapted for other terrains (Fig.7.9).

The direction control of the robot is implemented using a PI controller acting on the
position and orientation errors between the robot’s centre of mass and the next target
point to be reached along the path which is divided into a certain number of waypoints.
The control acts on the wheel rotation direction or on the leg trajectories, allowing the
robot to steer when necessary, based on a proportional-integral (PI) controller.

The training dataset is composed of more than 2000 patterns for each robot, divided
into learning (65%), validation (15%), and test data (20%), randomly selected from the
simulation environment. The hyperparameters used to set the different structures are here
reported:

MLP

1. numHidden= [1 100]

2. actFunction= tanh (hyperbolic tangent)
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Figure 7.9: Schematization of the process through which the dataset is obtained. Starting
from the terrain morphological features and the successes/failures in traversing the tiles
forming the terrain considering the cardinal directions, the dataset is built. The diagonal
directions can be obtained using the neural generalization capabilities.

3. solver= sgd (stochastic gradient descent)

4. MaxNumEpochs= 1000

5. MaxFail= 6 (training stops if validation performance has increased more than
MaxFail times since the last time it decreased)

DTL

1. MaxNumSplits= 100, and for RF numTrees=1000.

RF

1. numTrees=1000.

7.4.1 Performance Predictive evaluation
A simulation campaign was conducted to evaluate the accuracy, sensitivity, and specificity
of the models.

In the MLP case, as shown in Fig.7.10 the accuracy values for the test phase, when the
number of neurons in the hidden layer changes from 1 to 100 for each robot are reported.
To obtain a reliable statistical value, for each network configuration, 100 learned networks
were trained, each time with different randomisations between learning and test patterns.
For the DTL method, the accuracy is related to the maximum number of splits of the tree.
Fig.7.11(a) shows the accuracy distribution during the test phase for the Cooperative
Asguard. Fig.7.11(b) shows the trends of the curves representing the accuracy of RF
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changing the number of trees selected, applying the method for the same robot. From
Figs. 7.10 and 7.11, the optimal parameter selection obtained using a grid searching
strategy, is reported for each method.

(a) (b)

(c) (d)

Figure 7.10: Accuracy results for the MLP in testing for each robot: (a) Robotnik; (b)
5BSPL; (c) Asguard; (d) Cooperative Asguard. The statistics were performed over 100
trials, changing the network initialisation as well as learning and test data splitting for
each case. Within each box, the central mark is the median, the edges are the 25th and the
75th percentile, the whiskers extend to the most extreme data, the algorithm is considered
to be not an outlier, and the outliers are depicted individually as +.

7.5 Traversability maps estimation methods
Using the learned models, it is possible to generate the traversability maps for the eight
considered directions by selecting any real terrain map used as a testbed for which a
heightmap is available.

In Fig.7.12, the three different strategies used for the traversability map generation
are schematized considering also the relations between them. The three methods are:

• Minimum path traversability maps
• Risk-dependent traversability maps
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(a) (b)

Figure 7.11: Test accuracy distribution for the Cooperative Asguard robot: (a) DTL; (b)
RF.

Table 7.1: Performances indexes obtained on the test phase for the MLP, DT, and RF
methods applied to the different robots. The indexes are accuracy, sensitivity, specificity,
and F1-score. The optimal path parameters for each configuration are also reported: the
number of hidden layers for the MLP, the number of nodes for the DTL, and the maximum
number of tree splits for the RF.

Robots Arch.
type Accuracy Sensitivity Specificity F1-score Opt.

param.
Robotnik MLP 87.93± 2.11% 86.34± 2.84% 83.09± 3.03% 84.68 10

DT 85.39± 2.07% 89.52± 3.11% 82.18± 3.55% 85.69 17
RF 89.18± 1.70% 89.78± 2.36% 88.65± 2.52% 89.21 89

5BSPL MLP 84.97± 2.51% 91.45± 4.10% 78± 3.57% 84.19 69
DT 80.30± 2.19% 84.14± 3.21% 76.30± 3.55% 80.02 72
RF 83.20± 1.81% 85.90± 2.72% 80.88± 2.65% 83.31 83

Asguard MLP 84.90± 1.99% 94.35± 2.19% 78.92± 2.79% 85.94 43
DT 86.77± 1.73% 91.44± 1.97% 79.73± 3.34% 85.18 36
RF 87.14± 1.44% 89.35± 1.82% 85.15± 2.18% 87.19 100

Coop.
Asg. MLP 90.89± 2.01% 95.11± 1.77% 84.55± 2.96% 89.51 75

DT 86.70± 1.79% 90.81± 2.03% 80.32± 3.55% 85.24 58
RF 91.32± 1.17% 92.38± 2.01% 90.33± 2.01% 91.34 89

– Minimum path length and larger risk traversability maps.
– Minimum risk and longer path length traversability maps.

In particular, the minimum path traversability maps take into account the robot’s safety
showing all the paths that the robot can traverse without harm, the risk-dependent
traversability maps [86] provide traversability maps subject to an acceptable risk.

The risk-dependent traversability maps and the minimum path traversability maps
methods are obtained from the traversability maps built considering the average of the
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thresholded outputs from the 100 MLP structures previously learned. The obtained result
provides a continuous value between 0 and 1 where the extreme conditions indicate that
the considered tile is either easily traversable or impossible to pass through, whereas the
values in between are associated with the riskiness of carrying out the action.

Figure 7.12: Traversability maps estimation methods: minimum path and risk dependent
traversability maps.

7.5.1 Minimum path traversability maps
Directional traversability maps are built such that each element represents a physical point
in the map, and its value is related to the possibility for the robot to reach that point
coming from the opposite direction. This strategy consists of comparing each MLP output
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that belongs to the range [0, 1] to a given threshold Th = 0.5. This binary discriminates
whether the neural model estimates the robot as successful in traversing that specific tile.
We assign a value Mmax(Mmin) if the output is above (below) the threshold and compute
the average value for the 100 MLP previously learned.

From the averaged outputs of the neural networks, the eight directional traversability
matrices M∗ (where * spans all four cardinal and four diagonal directions) are created
through the following procedure: each element in the matrix represents a tile and its
value is provided by the corresponding neural-network-averaged output. It quantifies the
possibility for the robot to reach, from the chosen tile to the next tile, moving in the
considered direction. This defines the value of the directed edge ei,j;∗,∗ for tile Ti,j . For
example, in the case of the north traversability matrix MN , MN (i, j) = ei,j;i,j+1 (as
depicted in Fig.7.6). MN (i, j) = Mmin (MN (i, j) = Mmax), indicates that, from Ti,j ,
the robot is completely able (unable) to reach the neighbouring north tile Ti,j+1. This
strategy was repeated for each of the eight maps.

In Fig. 7.13, the north traversability map related to the Asguard robot is reported as
an example. They refer to the terrain used to learn the neural networks even if only a
small amount of data was used during the training phase (approximately 2 · 103 patterns
over the 26 · 103 reported in the entire traversability maps). The Asguard robot cannot
pass through high-value areas, whereas others can be travelled more safely. A comparison
of the obtained results with the terrain reconstruction is shown in Fig.7.5; it is clear that
traversability maps are a visual representation of the robot’s motion capabilities within
the environment. The results show that the learned models can be usefully applied to
general terrain configurations, thus representing an internal model that implicitly embeds
the robot features (including kinematics and dynamic constraints) useful for solving the
traversability problem.

7.5.2 Risk dependent traversability maps
This possibility of modifying the risk level when travelling on the selected path information
can be considered by considering the average outcome of the 100 MLPs. This value was
allowed to vary from approximately 0 (very low-risk/easy path) to 1 (very high-risk/non-
traversable path). To assign this ”level of risk” to each directed edge, a maximum tolerable
risk (Rmax) is defined; all the averaged MLP outputs larger (smaller) than Rmax will be
saturated to the maximum value Mmax (minimum value Mmin) to make the corresponding
links non-traversable (traversable). Therefore, we recreate the directed edge values as de-
scribed before (i.e., the matrix M∗ for each direction) to obtain the directed traversability
maps. The following optimal path planner extracts the path (if it exists) from two selected
points with minimal length and is subject to a risk below Rmax. As introduced before, this
strategy will be therefore called ”risk-dependent traversability map with minimum path
length and larger risk” (ML). Another possible strategy consists of selecting the Rmax in
searching not for the shortest path, but for the least risky one; this is implemented by
fixing the edge values. This strategy is called ”risk-dependent traversability map with
minimum risk and longer length” (MR).

To analyse the outcome of these possible strategies, a series of different scenarios are
analysed in the following, referring to the Pareto optimality [103, 104, 105].
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Figure 7.13: Traversability maps obtained for the Asguard robot in the north direction
using the minimum path traversability map method. The extreme values Mmin(Mmax)
indicate that the robot is always able (unable) to traverse the considered area in a given
direction. Values between these extreme cases indicate different levels of success.

The difference between these methods is related to the fact that in ML the traversabil-
ity matrix (M∗

i,j) contains continuous values depending on the averaged MLP models, and
the latter (MR), in which M∗

i,j contains binary values that account for the maximum risk
chosen to minimise the path length and then further extended to identify the minimum
risky path.

To obtain the thresholded maps, the following steps are performed as described above;
once the non-thresholded maps are obtained, a risk threshold Rmax is applied. The map
values lower than Rmax are set at Mmin; those larger or equal to this are set to Mmax. For
each robot, different traversability maps can be obtained; for instance, setting a threshold
Rmax = 0.1 generates an optimal path that is safer than that generated with Rmax =
0.9. Fig.7.14 shows the northward traversability maps for the Asguard robot taken as
an example, considering these two extreme thresholds: 0.1 and 0.9. This strategy allows
obtaining binary images which show the traversability maps according to the level of risk
imposed. A higher risk level leads to an increase in the number of possible paths and,
consequently, the possibility of finding shorter lengths for the final path.
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(a) (b)

Figure 7.14: North traversability maps with Rmax = 0.1 (left column) and Rmax = 0.9
(right column) for the Asguard robot.

7.6 Optimal path estimation
Considering the three previously described methods, it is possible to derive the opti-
mal paths by selecting a given robot and a different terrain with respect to the one
used to obtain the neural model using the generalization capability of neural networks.
Fig.7.15 shows the optimal path obtained for the Asguard robot using the minimum path
traversability maps method, while Fig. 7.16 (a-b) shows the paths obtained using the ML
and MR approaches. Figure 7.16 (c) shows the shortest path taken by the robot using the
MR method. The robot used in the simulations in Fig. 7.16 is the 5BSPL.

A motivation that could lead to choosing either the shortest, but the risky path (ML),
or a less dangerous but longer path (MR), could be driven by a time-saving priority (first
case) or by a safety-preserving priority (second case). A possible side effect of choosing
a risky path is related to the stress of the actuation module. In fact, the overall torque
requested from the robot actuators is, on average, larger when the robot travels steeper
and more complex roads. Moreover, choosing a risky path implies that it is sometimes
unable to complete the assigned path. This concept is supported by the results reported
in Table 7.2, which compares the average torques of the four robots considering the short
and long paths.

A strategy to select minimum risk paths consists of modifying the structure that cre-
ates the previously introduced thresholded traversability maps. Once a certain threshold
value is set, the values of the non-thresholded map that are larger than the latter are
saturated to the value of Mmax, whereas the lower ones maintain their own values. Thus,
the average weight from the MLP averaged output below Mmax represents the average of
a failing traversability. This leads the algorithm to find the optimal path in terms of min-
imum cost tiles, but not necessarily the shortest in terms of the number of tiles travelled
compared with the previous strategy; therefore, it can be considered a risk-minimising
method. Table 7.3 summarises all the data related to the routes covered by the four
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Figure 7.15: Minimum path traversability maps method: optimal paths obtained for the
Asguard robot, changing the start and target position.

Table 7.2: Average torques involved for the minimum risk, longer path (MR) and minimum
length, larger risk path (ML); / indicates uncompleted paths.

Average torques [kg·m2/s2]
MR ML

Asguard 29 34
Coop. Asguard 20 27
5BSLP 83 /
Robotnik 79 /

robots, as the number of tiles travelled and the average risk of the route obtained, where
0 indicates a completely safe path and 1 is an impossible route.

From the analysis, it can be highlighted that two different methods can be considered
for selecting the optimal path: the ML which selects the shortest path, and the MR which
chooses a longer but the safest cumulative path over the admissible paths. Consequently,
two different traversability maps are obtained. Considering Table 7.3 and, in particular,
the values related to the MR method, the paths at maximum and minimum risk can be
considered Pareto-optimal because there are no other paths that are more traversable (i.e.
less risky) and shorter at the same time, based on the particular risk maximum threshold
chosen.
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(a) (b)

(c)

Figure 7.16: Short (Rmax = 0.9) and long (Rmax = 0.1) path related to the 5BSPL
robot: (a) paths obtained using the ML, (b) paths obtained using the MR, (c) short path
performed in the simulation environment using the MR with Rmax = 0.9.

7.7 Conclusion
The goal of this Chapter was the realization of a simple neural network capable of learning
the capabilities of a particular robot, chosen among a series of robots, when it moves
through a complex terrain in order to generate a neural model expressing the robot’s
capabilities. For this goal, a set of high-level features was collected from heightmaps and
used to learn neural structures that can classify if a specific area of the map is traversable
for the selected robot.

Considering the accuracy values obtained using different neural structures, a shallow
network such as a multilayer perceptron that achieved interesting performances, was cho-
sen. The traversability maps generated with MLPs can be used to evaluate the optimal
path between the starting and target positions. The concept of Pareto optimality was
then introduced to choose the best robotic structure and the right compromise between
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Table 7.3: Length of the path expressed in the number of crossed tiles and average risk
referred to the paths followed by the four robots. The upper bound for the acceptable risk
was considered for the two cases, Rmax=0.9, and Rmax=0.1.

Minimum length (ML) Minimum risk (MR)

L(V 47,54→22,35)
Average

risk L(V47,54→22,35)
Average

risk
Robotnik Rmax=0.9 28 0.58 57 0.12

Rmax=0.1 143 0.39 224 0.01
5BSPL Rmax=0.9 33 0.35 41 0.14

Rmax=0.1 143 0.05 146 0.05
Asguard Rmax=0.9 37 0.21 47 0.13

Rmax=0.1 134 0.06 153 0.03
Coop.

Asguard Rmax=0.9 40 0.22 114 0.07

Rmax=0.1 134 0.06 155 0.28

the path length and the associated risk.
It was demonstrated that, in certain cases, the possibility of assembling robots leads

to an improvement in individual capabilities.
Comparisons with more complex neural networks already used in the literature, such

as convolutional neural networks, showed that the proposed shallow networks can provide
comparable results in the generation of traversability maps.
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Chapter 8

Conclusions and future
developments

The results reported in the previous chapters are, of course, encouraging and give the
possibility to pursue these research topics related to the study of neuro-inspired robots
and applications. In fact, there are still some open points that need a deeper investigation
and consideration.

Considering the traversability maps generation problem, the implemented algorithm
could be extended to include different types of terrains. In particular, the focus could be
on the acquisition of further information, beyond the terrain morphology, regarding the
type and consistency (e.g., sand, gravel, clay, rubble, silt, etc.) and creating specialised
networks able to model the robot behaviour in each specific terrain condition. The work
opens the way to embedded, edge computing-based solutions to implement the optimal
route planning directly on board the robot. From a real application point of view, in
terrains affected by landslides, the effort lies in deriving an accurate model of the chosen
robot.

Considering the real structure of the Mini Cheetah robot, it includes the external
PC and the sensor modules that give a neural and a sensing intelligence to the robot. As
reported in [22], due to the addition of new hardware components, the actual structure has
unavoidably a different weight arrangements, so the dynamics effect modification should
be taken into account and duly included in the software framework for the application
of the whole methodology developed in [86]. Considering this structure peculiarities,
the theoretical results related to the LMPC and NNMPC obtained in [31, 30] should be
validated on the real final structure. Furthermore, regarding the LSMmethodology applied
to the quadruped locomotion shown in [60], several future applications and studies could
involve the application of the developed system on the real robots based on the promising
results reported.
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