
University of Catania
Department of Mathematics and Computer Science

PhD in Computer Science (International)

Rocco Alessandro Scollo

A Hybrid Immune Algorithm to Extract
Information from Complex Networks

Doctoral Thesis

Supervisor
Prof. Mario F. Pavone

Academic Year 2021/2022 (Cycle XXXV)

To my beloved wife Maria for her love and support.

Contents

Introduction x

1 Weighted Feedback Vertex Set Problem 1
1.1 Formal Definition . 2

2 Hybrid Immunological Algorithm 4
2.1 The Proposed Method . 4

2.1.1 Initialization . 5
2.1.2 Cloning . 7
2.1.3 Hypermutation . 8
2.1.4 Aging . 9
2.1.5 Selection . 10
2.1.6 Local Search . 10
2.1.7 Termination . 12

2.2 Experimental Results . 12
2.2.1 Convergence Behaviour . 14
2.2.2 Preliminary Results . 16
2.2.3 Parameter Tuning . 23
2.2.4 Results . 26

2.3 Conclusions . 37

3 Hybrid Immunological Algorithm with Reinforcement Learning 39
3.1 The Proposed Method . 40

3.1.1 Greedy Construction Algorithm 41
3.1.2 Destruction Phase . 43
3.1.3 Probability Learning . 45

3.2 Experimental Results . 47
3.3 Conclusions . 55

4 Community Detection 56
4.1 Modularity Optimization . 59

5 Stochastic Immunological Algorithm 61
5.1 The Proposed Method . 62

5.1.1 The Cloning Operator . 63
5.1.2 The Hypermutation Operator 64
5.1.3 Aging, Precompetition and Selection Operators 66

5.2 Behaviour Analysis . 67

ii

Contents

5.2.1 Datasets and Experimental Protocol 68
5.2.2 Parameters Tuning . 70
5.2.3 Convergence Behaviour . 74
5.2.4 Computational Time Complexity 79
5.2.5 Precompetition Operator Effectiveness 85

5.3 Experimental Results . 87
5.3.1 Functional Sensitivity Analysis 95

5.4 Conclusions . 100

6 Hybrid Immunological Algorithm 103
6.1 The Proposed Method . 103
6.2 Networks Data Set . 109

6.2.1 Social Networks . 109
6.2.2 Protein-Protein Interaction Networks 110
6.2.3 Metabolic Networks . 111
6.2.4 Transcriptional Regulatory Networks 111
6.2.5 Synthetic Networks . 112

6.3 Experimental Results . 113
6.3.1 Convergence Behaviour . 113
6.3.2 Results . 118
6.3.3 Functional Sensitivity of Community Detection 124

6.4 Local Search Position Analysis . 127
6.4.1 Results . 133
6.4.2 Functional Sensitivity Analysis 141

6.5 Conclusions . 142

7 Multi-level Optimization 145
7.1 Random and Smart Explosion . 146
7.2 Smart Merge . 148
7.3 Experimental Results . 149

7.3.1 Results . 151
7.4 Conclusions . 155

8 Conclusions 156

A Appendix 159
A.1 Parameter Tuning Results . 159

Bibliography 168

iii

List of Algorithms

2.1 Procedure that creates a feedback vertex set from a permutation of the
vertices of a graph. 6

2.2 Procedure that removes redundant vertices from a feedback vertex set. 7
2.3 Pseudo-code of the local search procedure that tries to improve a feed-

back vertex set. 12
2.4 Pseudo-code of Hybrid-IA. 13
3.1 Pseudo-code of Greedy-IA. 42
3.2 Greedy procedure that creates a feedback vertex set from a partial solution. 44
5.1 Pseudo-code of the stochastic immunological algorithm Opt-IA. 63
6.1 Pseudo-code of the hybrid immunological algorithm Hybrid-IA. 104

iv

List of Figures

1.1 A generic graph and the residual graph generated by a feedback vertex
set. 3

2.1 A generic weighted graph and a feedback vertex set constructed by a
permutation of its vertices. 5

2.2 A single iteration of the internal loop of the local search procedure for
the feedback vertex set problem. 10

2.3 Convergence behaviour of Hybrid-IA on random instance L_R15. . . . 15
2.4 Learning behaviour of Hybrid-IA during evolutionary cycle on random

instance L_R15. 16
2.5 Mutation rate α for different values of the mutation shape ρ, with respect

to the normalized fitness value. 24
2.6 The average gap value of Hybrid-IA on the small and large random

graphs. 32
2.7 The average gap value of Hybrid-IA on the small and large toroidal

graphs. 34
2.8 The average gap value of Hybrid-IA on the small and large hypercube

graphs. 34
2.9 The average gap value of Hybrid-IA on the small and large squared

grid graphs. 36
2.10 The average gap value of Hybrid-IA on the small and large not squared

grid graphs. 37

3.1 Destruction rate r for different values of the mutation shape ρ, with
respect to the normalized fitness value. 45

3.2 The average gap value of Greedy-IA on the large random graphs. . . 50
3.3 The average gap value of Greedy-IA on the large toroidal graphs. . . 51
3.4 The average gap value of Greedy-IA on the large hypercube graphs. . 52
3.5 The average gap value of Greedy-IA on the large squared grid graphs. 53
3.6 The average gap value of Greedy-IA on the large not squared grid

graphs. 54

5.1 A comparative analysis on the performances of some mutation operators
designed for community detection. 66

5.2 Results of the tuning for the parameter M on the Cattle PPI network. 71
5.3 Results of tuning parameters with M = 1 on the Cattle PPI network. . 73
5.4 Results of tuning parameters with M = 2 on the Cattle PPI network. . 74

v

List of Figures

5.5 Convergence behaviour of Opt-IA on American College Football, Cattle
PPI and C. elegans MRN networks. 75

5.6 Information gain curves of Opt-IA on American College Football, Cattle
PPI and C. elegans MRN networks. 78

5.7 Time-to-target plots for Grevy’s Zebras network with target value 0.2768. 81
5.8 Time-to-target plots for Zachary’s Karate Club network with target

value 0.4198. 81
5.9 Time-to-target plots for Bottlenose Dolphins network with target value

0.5285. 82
5.10 Time-to-target plots for Books about US Politics network with target

value 0.5272. 82
5.11 Time-to-target plots for C. elegans MRN network with target value 0.4185. 83
5.12 Time-to-target plots for C. elegans MRN network with target value 0.4239. 84
5.13 Time-to-target plots for H. pylori PPI network with target value 0.5086. 84
5.14 Time-to-target plots for H. pylori PPI network with target value 0.5116. 85
5.15 Community structures obtained by Opt-IA for Books about US Politics,

American College Football and C. elegans MRN networks. 96
5.16 Functional sensitivity analysis of Opt-IA performed on LFR benchmark

instances with 300, 500 and 1000 vertices. 99
5.17 Functional sensitivity analysis of Opt-IA performed on LFR benchmark

instances with 2000, 3000 and 5000 vertices. 100

6.1 Impact of the mutation shape ρ on the probability α of mutation oper-
ator, with respect to the normalized modularity value. 105

6.2 Result of mutation operator in terms of community structure changes
of the current partition. 107

6.3 Convergence behaviour of Hybrid-IA on LFR benchmark instances
with 1000 and 5000 vertices. 114

6.4 Learning ability of Hybrid-IA on LFR benchmark instances with 1000
and 5000 vertices. 115

6.5 Convergence behaviour and learning ability of Hybrid-IA on the E.
coli MRN network. 116

6.6 Comparative convergence behaviour of Opt-IA and Hybrid-IA on the
Books about US Politics network. 117

6.7 Community structures identified by Hybrid-IA on Cattle PPI and E.
coli TRN networks. 123

6.8 Community structures identified by Hybrid-IA on C. elegans MRN
and E. coli MRN networks. 123

6.9 Comparative evaluation of the performances of Hybrid-IA and Louv-
ain on the LFR instances with 1000 vertices and average degree 15 and
20. 128

6.10 Comparative evaluation of the performances of Hybrid-IA and Louv-
ain on the LFR instances with 5000 vertices and average degree 20 and
25. 129

6.11 Comparative evaluation of the performances of Hybrid-IA and Louv-
ain on the LFR instances with 10000 vertices and average degree 20 and
25. 130

vi

List of Figures

6.12 Convergence behaviour of the three methods on the LFR(1000,15,0.5)
instance. 134

6.13 Convergence behaviour of the three methods on LFR(1000,20,0.5) in-
stance. 135

6.14 Convergence behavior of the three methods on LFR(5000,20,0.5) in-
stance. 136

6.15 Convergence behavior of the three methods on LFR(5000,25,0.5) in-
stance. 137

7.1 Creation of the community network by the classic multi-level optimization.146
7.2 Multi-level with smart explosion approach. 147
7.3 Creation of the network of the next level by the multi-level optimization

with smart merge mechanism. 148
7.4 Communities detected on Power network by the smart merge approach

and the smart merge considering the connected components. 149
7.5 Convergence analysis over time of Random-IA, Random-IA with ran-

dom explosion, and Random-IA with smart explosion. 152
7.6 Convergence analysis over time of Hybrid-IA, Hybrid-IA with smart

merge, and Hybrid-IA with smart merge + check connect. 153

A.1 Tuning results for different values of the mutation shape ρ on random
instances with 100 vertices. 160

A.2 Tuning results for different values of the mutation shape ρ on random
instances with 200 vertices. 161

A.3 Tuning results for different values of the mutation shape ρ on random
instances with 300 vertices. 162

A.4 Tuning results for different values of the mutation shape ρ on random
instances with 400 vertices. 163

A.5 Tuning results for different values of the mutation shape ρ on random
instances with 500 vertices. 164

A.6 Tuning results for different values of the mutation shape ρ on squared
grid instances with 100 vertices. 165

A.7 Tuning results for different values of the mutation shape ρ on squared
grid instances with 196 vertices. 165

A.8 Tuning results for different values of the mutation shape ρ on squared
grid instances with 289 vertices. 166

A.9 Tuning results for different values of the mutation shape ρ on squared
grid instances with 400 vertices. 166

A.10 Tuning results for different values of the mutation shape ρ on squared
grid instances with 529 vertices. 167

vii

List of Tables

2.1 Preliminary test results of Hybrid-IA on the small instances of squared
grid, not squared grid and toroidal graphs. 18

2.2 Preliminary test results of Hybrid-IA on the small instances of hyper-
cube and random graphs. 20

2.3 Preliminary test results of Hybrid-IA on large instances of random
graphs. 21

2.4 Preliminary test results of Hybrid-IA on large instances of hypercube
graphs. 22

2.5 Preliminary test results of Hybrid-IA on large instances of toroidal
graphs. 23

2.6 Results of the tuning for the mutation shape parameter on the large
random and squared grid graphs. 25

2.7 Results of Hybrid-IA on small instances of random graphs. 27
2.8 Results of Hybrid-IA on small instances of squared grid graphs. . . . 28
2.9 Results of Hybrid-IA on small instances of not squared grid graphs. . 29
2.10 Results of Hybrid-IA on small instances of toroidal graphs. 29
2.11 Results of Hybrid-IA on small instances of hypercube graphs. 30
2.12 Results of Hybrid-IA on large instances of random graphs. 31
2.13 Results of Hybrid-IA on large instances of toroidal graphs. 33
2.14 Results of Hybrid-IA on large instances of hypercube graphs. 33
2.15 Results of Hybrid-IA on large instances of squared grid graphs. 35
2.16 Results of Hybrid-IA on large instances of not squared grid graphs. . 36

3.1 Results of Greedy-IA on large instances of random graphs. 49
3.2 Results of Greedy-IA on large instances of toroidal graphs. 50
3.3 Results of Greedy-IA on large instances of hypercube graphs. 52
3.4 Results of Greedy-IA on large instances of squared grid graphs. . . . 53
3.5 Results of Greedy-IA on large instances of not squared grid graphs. . 54

5.1 Social and biological network instances used in the experiments. 68
5.2 Experimental results of Opt-IA with and without the precompetition

operator on biological networks. 86
5.3 Comparative results of Opt-IA and Louvain algorithm. 87
5.4 Experimental results of Opt-IA on small social networks with dup = 4. 90
5.5 Experimental results of Opt-IA on social and biological networks with

dup = {9, 10}. 90
5.6 Comparative results of Opt-IA and algorithms of the first group on

social networks. 91

viii

List of Tables

5.7 Comparative results of Opt-IA and algorithms of the second group on
social networks. 92

5.8 Comparative results of Opt-IA and algorithms of the first group on
social networks. 94

5.9 Comparative results of two variant of Opt-IA and Louvain algorithm
on larger biological networks. 95

6.1 Social and biological network instances used in the experiments. 119
6.2 Comparative results of Hybrid-IA and other algorithms on social net-

works. 120
6.3 Comparative results of Hybrid-IA and other algorithms on biological

networks. 122
6.4 Functional sensitivity analysis of Hybrid-IA and Louvain on synthetic

networks with 1000 vertices. 125
6.5 Functional sensitivity analysis of Hybrid-IA and Louvain on synthetic

networks with 5000 vertices. 126
6.6 Functional sensitivity analysis of Hybrid-IA and Louvain on synthetic

networks with 10000 vertices. 127
6.7 Comparative results of the three methods on LFR benchmark instances. 138
6.8 Comparative results of the three methods on synthetic networks with

300 and 500 vertices. 139
6.9 Comparative results of the three methods on synthetic networks with

1000 and 5000 vertices. 140
6.10 Comparative evaluation of the performances of the three methods on

the LFR instances. 142

7.1 The benchmark networks used in the experiments. 150
7.2 Comparative results of random and smart explosion and Random-IA . 152
7.3 Comparative results of smart merge and Hybrid-IA 154
7.4 Comparative results of Hybrid-IA with smart merge and state-of-the-

art algorithms. 154

ix

Introduction

Metaheuristics represent a family of approximate optimization techniques and provide

high-quality solutions in a reasonable time for solving hard and complex problems,

sacrificing the guarantee of finding optimal solutions [138]. Metaheuristic search meth-

ods can be defined as upper-level general methodologies that can be used to guide the

construction of underlying heuristics to solve specific optimization problems.

The concept of (meta)heuristics to solve optimization problems was introduced in

the 1940s [114], but their popularity increased in the 1990s due to their efficiency and

effectiveness in solving combinatorial optimization problems. Metaheuristics find ap-

plication in a large number of real fields, such as telecommunications, automotive, and

robotics, but also machine learning and data mining for bioinformatics and computa-

tional biology, logistical problems, production, scheduling and transport. Metaheur-

istics are based on two opposing criteria [17, 138]: the exploration of the search space

(diversification) and the exploitation of the best solutions found (intensification). In

the intensification phase, promising regions are explored more thoroughly in the hope

of finding better solutions. On the other hand, in diversification unexplored regions

need to be visited to ensure that the search space is uniformly explored so that the

search is not limited to a small number of regions.

Initially, pure metaheuristics had considerable success because they quickly became

state-of-the-art algorithms for many combinatorial optimization problems. The first

two decades of research on metaheuristics have led several research communities to have

not much interaction with other optimization research communities. Only when it was

evident that pure metaheuristics had reached their limits, many researchers move their

x

Introduction

attention to the hybridization of metaheuristics [16].

In the field of optimization, interest in hybrid metaheuristics has grown significantly

over the last years, obtaining good results not only for classical optimization problems

but also for real-life applications. Combinations of algorithms such as metaheuristics,

mathematical programming, constraint programming and machine learning techniques

have provided very powerful search algorithms [137]. In fact, the main motivation

behind the combination of different algorithms is to exploit several complementary

optimization concepts to solve many hard optimization problems [13].

A possible hybridization is to combine Reinforcement Learning [84, 136] techniques

with metaheuristics methods. The aim of a learning component is to support the

optimization method, in order to provide useful information during the exploration

of the solutions space. In this way, reinforcement learning causes the optimization

algorithm to be adaptive, helping it make decisions or adjust parameters. Moreover,

reinforcement learning does not require a complete model of the underlying problem,

since they learn the model by gathering experience.

In this thesis work, some contributions are presented to the study and analysis

of hybrid metaheuristics to address combinatorial optimization problems on graphs.

For many combinatorial optimization problems, there is no prior information about

the characteristics of the problem or the properties of the landscape. Consequently,

my research has focused on the study and design of a general-purpose framework that

combines metaheuristics with local search procedures and/or reinforcement learning

to solve combinatorial optimization problems. Two complex problems have been ana-

lysed: the Feedback Vertex Set on graphs and the problem of Community Detection on

complex networks. The feedback vertex set has been analyzed using a hybrid immuno-

logical algorithm, in which the random exploration of the search space is contained by

a local search procedure, that tries to exploit the obtained solution with the purpose

to solve sub-instances of the original problem. The problem of community detection is

a classical clustering problem that arises from complex network analysis. In this case,

two approaches have been developed. The first is a fully random search algorithm

xi

Introduction

driven by stochastic operators designed for the problem of community detection. The

second approach is guided by a greedy local search procedure, which locally maximizes

the objective function. In addition, an in depth analysis has been conducted to invest-

igate how the position of local search can influence the performance of the algorithm,

in terms of exploration of the search space and solution quality.

Finally, a generic framework for grouping problems has been designed. Generally,

a grouping problem aims to group a set of given items into a fixed or variable number

of groups while respecting some specific requirements. Typical examples of grouping

problems are graph colouring and data clustering. The proposed framework combines

a population-based greedy metaheuristic with reinforcement learning techniques. This

algorithm aims to exploit a learning component to extract useful information on the

problem considered starting from a set of high-quality solutions, to guide the search

consciously.

The remaining part of the thesis is organized as follows. In Chapter 1 the Feedback

Set problems are introduced, which are well-known NP-hard combinatorial optimiza-

tion problem on graphs. The most general feedback set problem is the Feedback Vertex

Set problem, which consists in finding a minimum cardinality set of vertices that meets

all cycles in a graph. There are different versions of feedback vertex set problems,

depending on whether the graph is directed or undirected and/or whether the vertices

are weighted or not. Originating from the area of combinational circuit design, they

have found applications in many fields, including deadlock prevention and program

verification. Also, this chapter introduces some notations and a formal definition of

the feedback vertex set problem that is useful in the following chapters.

In Chapter 2 a hybrid immunological algorithm is presented to solve the weighted

variant of the Feedback Vertex Set problem. This algorithm takes inspiration from

the immune system, and it is based on three main immune operators (cloning, hyper-

mutation and aging), combined with a local search operator designed with the goal to

refine in a deterministic way all solutions produced by these operators. The proposed

algorithm has been tested on a dataset of more than 800 graph instances, that differ

xii

Introduction

from each other for topology, dimension, density and weight range, and compared with

the other three metaheuristics that represent a good reference point for this problem

on the benchmark instances considered. After a convergence analysis of the algorithm,

a parameter tuning of the algorithm has been conducted improving the preliminary

results already obtained. The preliminary results shown in this chapter have been

published in [46, 47], while the results obtained after the parameter tuning have been

submitted for publication to the Networks journal.

In Chapter 3 an evolutionary framework based on a greedy population combined

with reinforcement learning techniques for grouping problems is presented. An im-

munological algorithm evolves a population of solutions generated in a randomized

greedy way, alternating a phase of destruction and a phase of reconstruction, while

a probability learning procedure learns which solution components can be useful in

the construction of new solutions in order to guide the algorithm within the search

space. The Weighted Feedback Vertex Set has been considered as case study and sev-

eral experiments have been performed on large instances of the problem. Experimental

results have shown the goodness of the proposed framework, especially on the complex

instances of the benchmark dataset. The framework proposed in this chapter has been

submitted to the Journal of Combinatorial Optimization.

In Chapter 4 the complex networks and the problem of Community Detection are

introduced. Community detection is one of the most interesting research topics in

network science since it finds application in several fields that range from social science

to biology. The aim of the community detection problem is to detect communities

or clusters and their hierarchical organization, using the information encoded in the

topology of the network and exploiting, if available, their metadata. But the problem of

graph clustering is actually not well defined, because the main concept of community

is not defined. In light of this, the modularity function was introduced to evaluate

the quality of a partition of vertices of a network, making the problem of community

detection a combinatorial grouping problem.

In Chapter 5 an immune-inspired algorithm, Opt-IA, is presented with the aim

xiii

Introduction

is to detect the community structure of a complex network, maximizing the modu-

larity of partitions found during the search. Opt-IA is an immunological algorithm

based on a fully random-search process, as it is guided by purely stochastic operators.

The proposed algorithm was compared with several metaheuristics using social and

biological complex networks as a dataset. Furthermore, to analyze the convergence

behaviour of Opt-IA in different complexity scenarios, a functional sensitivity ana-

lysis was conducted using three community structure similarity metrics on synthetic

networks. The preliminary results obtained by Opt-IA have been published in [132],

while the results on the social networks in the Algorithms journal [41]. The results on

biological networks and the functional sensitivity analysis on synthetic networks have

been accepted for publication in the Soft Computing journal.

In Chapter 6, for the problem of community detection with maximization of mod-

ulation, a hybrid immunological algorithm is proposed. The proposed algorithm is

based on a deterministic local search that tries to improve the solutions of the current

population in order to speed up the convergence of the algorithm. Several experiments

have been performed on social, biological and synthetic networks, and the results com-

pared with other metaheuristics, in addition to Opt-IA. Furthermore, the reliability

of Hybrid-IA was analyzed with respect to three similarity measures, which show

how similar the detected communities are to the real ones. Finally, three different

ways of running the local search procedure within Hybrid-IA have been investigated,

analyzing the performances in terms of quality solution and information gain. The

results obtained by Hybrid-IA on social networks and shown in this chapter have

been published in the Algorithms journal [41], while the results on biological networks

and the functional sensitivity analysis on synthetic networks have been published in

the Informatics journal [126]. The analysis of the position of the local search procedure

has been published in [125].

In Chapter 7 two multi-level models for community detection are compared to re-

duce and simplify the original graph, because detecting communities and analysing

community structure are very computationally expensive tasks, especially on large

xiv

Introduction

networks. Both models have been applied to two variants of an immune-inspired al-

gorithm, the first one based on a fully random-search process, and the second based

on a hybrid approach. Experimental results show that both multi-level optimization

approaches help the immune algorithms to improve the quality of the solution found.

The proposed multi-level approaches presented in this chapter have been published

in [19].

Finally, in Chapter 8 I provide conclusions of this thesis and an outlook to future

works.

xv

1
Weighted Feedback Vertex Set

Problem

The Feedback Vertex Set (FVS) problem is a combinatorial optimization task that

consists in finding a subset of vertices whose removal from a graph makes it acyclic.

This kind of problem is also known as the hitting cycle problem since the set of ver-

tices must hit every cycle in the input graph. This problem generalizes a number of

problems, including the minimum feedback vertex (arc) set problem in both directed

and undirected graphs, and the graph bipartition problem, in which one must remove

a minimum-cardinality (minimum-weight) set of vertices so that the remaining graph

is bipartite. All these problems are also special cases of vertex (arc) deletion problems,

which consists in finding a minimum cardinality (or minimum-weight) set of vertices

(arcs) whose deletion gives a graph satisfying a given property.

The FVS problem originated from the area of combinational circuit design [83],

where a cycle is identified by some circuit elements that receive a new input before

being stabilized, but finds applications in many other real-world fields. Solving the

1

1. Weighted Feedback Vertex Set Problem

FVS problem plays a prominent role in operating systems and parallel computing for

the study of deadlock detection and/or prevention [143]. In the wait-for graph of

an operating system, each directed cycle corresponds to a deadlock situation and the

feedback vertex set can identify the minimum number of blocked processes that have

to be aborted. Also, the FVS problem finds application in complexity theory, where

some NP-hard problems on graphs can be solved in polynomial time for graphs with

bounded FVS number [87]. Other real-life applications are program verification [127],

information security [76] and the study of monopolies in synchronous distributed sys-

tems [112].

The problem of finding a feedback vertex set of minimal cardinality, or minimal

weight, is known to be a NP-complete problem [85, 151].

1.1 Formal Definition

Before formally defining the feedback vertex set problem, we give some definitions and

notations. Let G = (V, E) be an undirected graph, where V is the set of vertices and

E is the set of edges. Also, given a set of vertices X ⊆ V of G, we denote with G[X]

the subgraph of G induced by the set of vertices X, that is G[X] = (X, E[X]), where

E[X] = {(u, v) ∈ E : u, v ∈ X}. The degree of a vertex v in the graph G or in the

induced graph G[X] is denoted with d(v) and d[X](V) respectively.

Formally, the feedback vertex set problem can be described as follows. Given an

undirected graph, G = (V, E), a feedback vertex set of G is a subset S ⊆ V of vertices

such that each cycle in G contains at least one vertex of S. In other words, a feedback

vertex set S is a subset of vertices of G whose removal, along with all edges incident

to S, results in a forest, i.e., an acyclic graph where all connected components are

trees. Also, we can define the residual graph of G generated by S as the subgraph

G[S̄] induced by the set of vertices S̄ = V \ S. If G[S̄] is acyclic, then S is a feedback

vertex set. If w : V → R+ is a function that associates a positive weight to each vertex

v ∈ V , then the weight of a feedback vertex set S ⊆ V is the sum of the weights of

2

1. Weighted Feedback Vertex Set Problem

its vertices, i.e. ∑︁
v∈S w(v). Therefore, the minimum (weighted) feedback vertex set

problem asks to find a feedback vertex set of minimum-cardinality (minimum-weight).

If S is a feedback vertex set, we say that a vertex v ∈ S is redundant if the residual

graph G[S̄∪{v}] is still an acyclic graph. It follows that S is a minimal feedback vertex

set if it does not contain any redundant vertices. For example, the set S = {2, 3, 7} is

a feedback vertex set for the graph G in Figure 1.1a, because the residual graph G[S̄]

in Figure 1.1b is a forest. The set containing vertices S = {1, 2, 3, 7} is also a feedback

vertex set but it is not minimal because the vertex 1 is redundant.

1

2

3

4

5

6

7

8

24

17

21

8

12

32

4

28

G

(a)

1 4

5

6 8

24 8

12

32 28

G[S̄]

(b)

Figure 1.1: A generic graph (a) and the residual graph generated by S = {2, 3, 7}
(b). S is a feedback vertex set because the residual graph is a forest.

The feedback vertex set problem can be expressed with an integer zero-one pro-

gramming formulation [60, 61]. Given a feedback vertex S of graph G = (V, E, w), let

x = {xv}v∈V be a binary vector such that xv = 1 if v ∈ S, xv = 0 otherwise. Also, let

C be the set of cycles in G. The formulation of finding the minimum weighted feedback

vertex set of G as an integer programming problem is as follows:

min ∑︁
v∈V

w(v)xv

s.t. ∑︁
v∈Γ

xv ≥ 1, ∀Γ ∈ C

xv ∈ {0, 1}, v ∈ V.

(1.1)

3

2
Hybrid Immunological Algorithm

In the following we discuss in detail Hybrid-IA, an immunological algorithm developed

for the Weighted Feedback Vertex Set problem and belonging to the special class of

Clonal Selection Algorithms [50, 49, 45]. These types of algorithms take inspiration

from the dynamics of clonal selection, a widely accepted theory for modelling the

immune system of living organisms. In this model B lymphocytes are able to detect

and eliminate foreign entities invading the body, cloning some specific antibodies (Ab)

that will bind to a specific antigen (Ag). At the basis of Hybrid-IA, there is a similar

principle in which the antigen (Ag) represents the optimization problem, the antibody

(Ab) represents a point in the solution space (a candidate solution) and the Ab-Ag

affinity corresponds to the value of the objective function to optimize.

2.1 The Proposed Method

The key operators of the proposed algorithm are the Cloning and Hypermutation oper-

ators: the first simulates the proliferation of the cells, with the main goal to produce a

4

2. Hybrid Immunological Algorithm

new population of antibodies with higher affinity values, while the second one has the

purpose to explore the neighbourhood of each solution into the search space. Moreover,

to introduce some diversity in the memory set of cells, the Aging operator removes old

or less promising solutions keeping a high variability of affinity values between the solu-

tions. In addition to these immune operators, a local search procedure will be applied

to the survived cells with higher affinity, whose main aim is to refine stochastic moves

done during the evolutionary process and try to improve the best solutions found so

far.

1

2

3

4

5

6

7

8

24

17

21

8

12

32

4

28

G

π = {3, 1, 7, 2, 8, 6, 4, 5}

S = {3, 7, 2}

f(S) = 42

Figure 2.1: A generic weighted graph and a feedback vertex set constructed by a per-
mutation of its vertices. After the removal of the first four vertices of the permutation
π, the residual graph is acyclic and thus the subset S = {3, 7, 2} is a feedback vertex
set. Note that vertex 1 does not belong to the solution S because its degree is 1 after
the removal of vertex 3.

2.1.1 Initialization

The proposed algorithm, Hybrid-IA, is based on a population of d antibodies Ab,

where each cell represents a candidate solution of the weighted feedback vertex set

problem. In the initialization phase of the algorithm, each solution of the population

is constructed starting from a permutation of the vertices of the graph whose order de-

termines the visiting order of vertices to be removed. In particular, given an undirected

graph G = (V, E) and a permutation of its vertices π : {1, 2, . . . , |V |} → {1, 2, . . . , |V |},

the procedures computes a feedback vertex set S ⊆ V . In the beginning, the solution

S is empty, while the set of the residual graph X contains all vertices of the graph. At

5

2. Hybrid Immunological Algorithm

each iteration, the procedure removes a vertex u ∈ π from the residual graph G[X],

following the order of the permutation, moving it to S. In addition, the algorithm re-

moves from the residual graph G[X] all vertices that have a d[X](v) < 2, since they can

not be involved in any cycle and, consequently, they are not relevant in the construction

of the solution. The removal process is repeated until the residual graph G[X] does

not contain any vertices. In Figure 2.1 is shown a feedback vertex set S for the graph

G constructed from a permutation π. In the end, the algorithm removes from the con-

structed solution S any redundant vertices, going from the heavier vertex to the one

with the smallest weight, maintaining the feasibility of the solution and minimizing the

value of the objective function. The pseudocode of the described algorithms is shown

in Algorithms 2.1 and 2.2.

Algorithm 2.1: Procedure that creates a feedback vertex set starting from a per-
mutation π of the vertices V of a graph G.

1: procedure CreateSolution(G(V, E, w), π)
2: X ← V
3: S ← ∅
4: for u ∈ π do
5: if u ∈ X then
6: X ← X \ {u}
7: S ← S ∪ {u}
8: while ∃v ∈ X : d[X](v) < 2 do
9: X ← X \ {v}

10: end while
11: end if
12: end for
13: S ← RemoveRedundantVertices(S)
14: return S
15: end procedure

Once a solution is constructed, the permutation will be partitioned reordering the

vertices in a such way that all elements belonging to the solution S precede the elements

that are not in the solution. This partitioning slightly modifies the permutation and

guarantees that the relative ordering of vertices in each group, S and S̄, is preserved.

In this way any two vertices u, v ∈ S (u, v ∈ S̄) will have the same relative ordering

after the partitioning. Now, the first l = |S| vertices of the permutation π, represent

6

2. Hybrid Immunological Algorithm

a solution to the problem, and the sum of their weights ∑︁l
i=1 w(πi) is the fitness value

associated to the permutation.

Algorithm 2.2: Procedure that removes redundant vertices from a feedback vertex
set S of a graph G.

1: procedure RemoveRedundantVertices(G(V, E, w), S)
2: S ′ ← S
3: while S ′ ̸= ∅ do
4: u← argmaxu∈S′ w(u)
5: S ′ ← S ′ \ {u}
6: X ← (V \ S) ∪ {u}
7: if G[X] does not contain cycles then
8: S ← S \ {u}
9: end if

10: end while
11: return S
12: end procedure

2.1.2 Cloning

After the initialization phase, the evolutionary cycle of Hybrid-IA begins. The Clon-

ing operator is the first immune operator applied to the current population P (t), which

simply generates a fixed number of clones for each solution of the population. Unlike

the classical Clonal Selection Algorithm, where the number of clones is proportional

to the fitness value of the solution, Hybrid-IA uses a static version of the operator to

avoid a premature convergence of the algorithm. Generating a great number of good

solutions in a short time using a proportional version of the cloning operator, which can

influence the exploration of the search space due to a population of solutions very sim-

ilar to each other. Consequently, this may lead the algorithm to prematurely converge

towards local optimal. The parameter that regulates how many clones to generate is

the duplication factor dup, a user-defined parameter. To each solution of the interme-

diate population P (clo), of size d × dup, is assigned an age that determines how long

they can live within the population. In this way, each solution of the population can

mature and evolve, trying to produce better solutions, until they reach the maximum

age defined by the parameter τ . The age assigned to each solution is chosen randomly

7

2. Hybrid Immunological Algorithm

in the range [0 : 2
3τ], guaranteeing to each clone to live for at least 1

3τ generations, in

the worst case, for evolving and learning. The age assignment and the Aging operator,

described below, play an important role in the performances of Hybrid-IA because

they are able to keep high diversity among the solutions of the populations, avoiding

thus premature convergences [54, 141].

2.1.3 Hypermutation

The next immune operator is the Hypermutation, which is responsible for the explor-

ation of the neighbourhood of each cloned solution, with the aim to reach promising

regions of the search space and produce solutions with better fitness values. The op-

erator works with no mutation probability, unlike other evolutionary algorithms, and

performs some mutations on each cloned solution. The number of mutations is determ-

ined by a law inversely proportional to the fitness value of each solution considered: the

better the fitness value of the solution, the less the number of mutations performed. In

this way, the operator carefully explores the neighbourhood of good solutions trying to

further improve the fitness value by performing a few mutations, while bad solutions

are heavily modified in order to move the search to different points of the solutions

space.

Let π be the permutation associated with a candidate solution and l = |S| the

cardinality of the solution S constructed from the permutation, as described before.

The number of mutations is calculated as follows:

M = ⌊(α× l) + 1⌋, (2.1)

with α that represents the mutation rate obtained as

α = e−ρf̂(π), (2.2)

where ρ is a user-defined parameter that determines the shape of the curve of the

8

2. Hybrid Immunological Algorithm

mutation rate, and f̂ is the fitness function normalized in the range [0, 1]. Depending

on the value of the mutation shape ρ, the mutation rate α can assume extremely low

values, and in this case, the Equation 2.2 guarantees that at least one mutation is

performed on best or good solutions.

The basic idea of the hypermutation operator is to perturb the permutation in

order to find a new permutation of the vertices of the graph, whose ordering gives a

new solution. In light of this, the hypermutation uses the classical swap operator, which

consists in exchanging (or swapping) the position of two elements of the permutation.

In particular, let π = {π1, . . . , πi, . . . , πl, . . . , πj, . . . , π|V |} be a partitioned permutation

of a solution, the swap operator chooses randomly two positions i ∈ [1, l] and j ∈]l, |V |]

creating a new permutation π′ in which the vertices πi and πj are exchanged, that is

π′
i = πj and π′

j = πi. It is important to note that the new permutation is obtained by

swapping two vertices that belong to the two subsets S and S̄, that is the swap operator

exchanges a vertex in solution with a vertex not in solution. Finally, the procedure

described in Algorithm 2.1 constructs a new solution starting from the permutation

obtained.

2.1.4 Aging

After the creation by the hypermutation operator of a population of new candidate

solutions, the Aging operator removes old solutions with the main goal to maintain a

high diversity among them. Moreover, this operator allows the algorithm to escape

from local optima, jumping to other regions of the search space, and avoiding prema-

ture convergence toward suboptimal solutions. The maximum age is defined by the

parameter τ , which represents the number of generations allowed to the solutions for

maturating within the population. When the age of a solution exceeds the maximum

age, it will be removed from the population independently from its fitness value. There

is a variant, called Elitist Aging operator, that keeps in the population the best current

solution, even if its age is older than τ . Depending on the age assignment for each

9

2. Hybrid Immunological Algorithm

clone in the cloning phase, the aging operator can be applied to both the current and

mutated population, i.e. P (t) and P (mut). In the case of Hybrid-IA, the age assigned

to the cloned solutions guarantees at least 1
3τ generations, and the aging operator is

applied only to the current population P (t).

2.1.5 Selection

After the aging operator, the Selection operator generates the new population P (t+1)

for the next generation. The replacement strategy used is the (µ + λ)-Selection, that

consists in selecting the best d solutions from both populations P (t) and P (mut). The

age assignment, also, in this case, guarantees that the number of survived solutions that

will compete for the new population is greater than d. In this way, the operator ensures

that the size of the population is constant during the evolutionary cycle, without the

need to generate new candidate solutions.

1

3

4

5

6

7

8

24

21

8

12

32

4

28

G[X]

S = {6, 2}

f(S) = 49

S ′ = {4, 7, 2}

f(S ′) = 29

Figure 2.2: A single iteration of the internal loop of the local search procedure for
the feedback vertex set problem described in Algorithm 2.3. In this case the vertex 6 of
the solution S is replaced by the subset D6 = {4, 7}, because w(D6) < w(6), improving
the fitness value of the solution.

2.1.6 Local Search

At the end of the evolutionary cycle, a local search procedure is applied to the selected

candidate solutions, with the purpose to refine and improve the solutions that will go

to the next generation, and properly speed up the convergence of Hybrid-IA, driving

10

2. Hybrid Immunological Algorithm

it towards more promising regions [13]. The idea is to explore, in a deterministic

way, the neighbourhood of each solution performing some moves that improve the

objective function, i.e. to reduce the sum of weights of vertices belonging to a solution.

Each solution obtained by the creation solution algorithm is produced starting from

a randomly generated permutation that does not take into account the weight of the

vertices. For this reason, the local search tries to reduce the weight of a solution by

replacing one of its vertices with a set of vertices from the residual graph. In more

detail, let S be a solution without redundant vertices of the graph G. The local

search procedure starts moving the vertex with the largest weight from the solution,

that is u = argmaxu∈S w(u), to the residual graph G[S̄], generating a new graph

G′ = G[S̄ ∪ {u}]. Since S does not contain any redundant vertices, u restores one

or more cycles in G′ and all those cycles pass through u. Using the simple Depth

First Search (DFS) [34], the algorithm starts a visit from u to identify a cycle Γ along

with all vertices involved in it; thus, the algorithm breaks off the cycle Γ removing

from the residual graph G[X] the vertex v with smaller weight–degree ratio, that is

v = argminv∈Γ w(v)/d[X](v), where X = S̄ ∪ {u}. This process is repeated until the

residual graph G[X] does not contain any cycles. At the end of the iteration, Du

contains all removed vertices and represents a feedback vertex set for the graph G′. If

the sum of the weights of the removed vertices w(Du) is less than the weight of vertex

u, there is an improvement of the fitness value and then the procedure replaces Du with

u in the solution S. Otherwise, the local search rebuilds the residual graph G[S̄] and

repeats this process for all the vertices of S. For example, in Figure 2.2 the vertex 6 can

be replaced by the subset D6 = {4, 7} improving the objective function and maintaining

the feasibility of the solution. Finally, if there was at least a replacement of a vertex

u with a subset Du, the local search performs a redundancy control for the vertices of

the new solution. The pseudocode of the local search is shown in Algorithm 2.3.

11

2. Hybrid Immunological Algorithm

Algorithm 2.3: Pseudo-code of the local search procedure that tries to improve a
feedback vertex set S.

1: procedure LocalSearch(G(V, E, w), S)
2: S ′ ← S
3: while S ′ ̸= ∅ do
4: u← argmaxu∈S′ w(u)
5: S ′ ← S ′ \ {u}
6: X ← (V \ S) ∪ {u}
7: Du ← ∅
8: while G[X] contains cycles do
9: Select a cycle Γ in G[X] starting from u

10: v ← argminv∈Γ w(v)/d[X](v)
11: X ← X \ {v}
12: Du ← Du ∪ {v}
13: end while
14: if w(Du) < w(u) then
15: S ← S \ {u}
16: S ← S ∪Du

17: end if
18: end while
19: S ← RemoveRedundantVertices(S)
20: return S
21: end procedure

2.1.7 Termination

Hybrid-IA iteratively repeats the immune operators and the local search procedure

on the current population until a termination criterion is satisfied. In this research

work, the algorithm ends the execution after a fixed number of generations, defined by

the parameter TMax, or if it reaches the optimal value if known. In Algorithm 2.4 is

shown the pseudocode of Hybrid-IA.

2.2 Experimental Results

To evaluate the effectiveness and competitiveness of Hybrid-IA, in this section all

analysis, parameters tuning and experimental results carried out on the algorithm are

presented. The proposed algorithm was implemented in C++ using LEMON [53]

library, an open-source template library to handle data structures of the input graph

12

2. Hybrid Immunological Algorithm

Algorithm 2.4: Pseudo-code of Hybrid-IA.
1: procedure Hybrid-IA(d, dup, ρ, τ)
2: t← 0
3: P (t) ← InitializePopulation(d)
4: ComputeFitness(P (t))
5: while ¬StopCriterion do
6: P (clo) ← Cloning(P (t), dup)
7: P (mut) ← Hypermutation(P (clo), ρ)
8: ComputeFitness(P (mut))
9: P (t) ← Aging(P (t), τ)

10: P (t+1) ← (µ + λ)−Selection(P (t), P (mut))
11: LocalSearch(P (t+1))
12: ComputeFitness(P (t+1))
13: t← t + 1
14: end while
15: end procedure

instances, and compiled with GCC 9.4. All the following experiments were performed

on a Linux machine equipped with an Intel Xeon E5-2620 processor at 2.40 GHz and

16 GB of memory.

To accurately evaluate the performance of the proposed algorithm on different ap-

plication fields, a set of benchmark instances, originally proposed in [30], has been

considered for all experiments. This benchmark set consists of five classes of undir-

ected vertex-weighted graphs with a different number of vertices, density and weight

range: random graphs, squared and not squared grid graphs, toroidal graphs and hy-

percube graphs. The class of random and hypercube graphs are characterized by the

number of vertices n and the number of edges m, while the class of grid and toroidal

graphs by the coordinates x and y, which determine the number of vertices. The weight

w(v) for each vertex v ∈ V is randomly extracted from an uniform distribution from

the intervals [10, 25], [10, 50] and [10, 75]. For each combination of n, m and weight

range, or x, y and weight range, there are 5 problem instances that differ only in the

assignment of the weights of the vertices. Finally, depending on the number of vertices,

these instances are grouped into two classes: small instances, with about 25, 50 and

75 vertices, and large instances with about 100, 200, 300, 400 and 500 vertices.

For the comparisons outlined in the following section, three different algorithms have

13

2. Hybrid Immunological Algorithm

been considered, which represent nowadays a good reference point for this problem on

the benchmark instances considered: the Iterated Tabu Search (ITS) [30], the eXploring

Tabu Search (XTS) [24, 52] and a Memetic Algorithm (MA) [28]. All these three

algorithms use a k-diamond graph [29] to represent the neighbourhood of candidate

solutions. More precisely, to explore this neighbourhood XTS uses an approximation

algorithm [6], while ITS and MA use a dynamic programming algorithm [29] that is

able to solve the weighted feedback problem on the k-diamond graphs. Note that, as

described in Section 2.1.6, the local search operator involved in the evolutionary cycle

of Hybrid-IA, explores the same neighbourhood, but in this case with a more simple

heuristic to solve the problem for the sub-instance.

2.2.1 Convergence Behaviour

In the first part of the experimental phase, the analysis has been focused on the con-

vergence behaviour of the proposed algorithm in order to investigate the performances

of designed operators for this combinatorial optimization problem.

In Figure 2.3a is shown the convergence behaviour of Hybrid-IA on the ran-

dom instance L_R15, that is an instance with 200 vertices and medium density (see

Table 2.12). In particular, the three curves represent the average fitness value of the

population, the average fitness value of the mutated population and the best fitness

value discovered so far by the algorithm. From this plot can be seen that Hybrid-IA

has a good convergence in the first 100 iterations, both from the point of view of the

average fitness of the population and the best solution. In subsequent iterations, the

average fitness of the population remains almost constant, with variations due to the

aging operator, which discards old solutions introducing diversity from the mutated

population. This diversity among solutions is also confirmed by the distance that the

three curves maintain for the rest of the iterations.

The curves in Figure 2.3b represent the average fitness value of the current popu-

lation with and without the local search operator described in Section 2.1.6. This plot

14

2. Hybrid Immunological Algorithm

5200

5300

5400

5500

5600

1 10 100 1000

Iterations

F
it
n
es
s

Best Fitness Pop. Fitness Clo. Fitness

Convergence Behaviour

(a)

5300

5400

5500

1 10 100 1000

Iterations

F
it
n
es
s

Hybrid-IA Hybrid-IA w/o LS

Average Fitness

(b)

Figure 2.3: Convergence behaviour of Hybrid-IA on random instance L_R15. (a)
Average fitness function values of current population P (t), mutated population P (mut)

and the best solution. (b) Average fitness function values of current population P (t)

with and without local search procedure.

shows how the local search affects the convergence of the proposed algorithm, improv-

ing the exploration of the search space. Moreover, the local search operator helps the

algorithm to keep a high degree of diversity among the candidate solutions, as can be

seen from Figure 2.4a, which shows the curves of the standard deviation of the two

populations. This is useful for avoiding and/or escaping from local optima.

In addition to the convergence analysis, the learning ability of the algorithm was

also investigated, using the Kullback-Leibler divergence [89, 90] as a measure of the

information gained during the evolutionary process. The idea is to measure how the

current population P (t) is different from the initial population P (t0). Let S
(t)
i be the

number of solutions S that at iteration t have the fitness function value i; the candidate

solutions distribution function f
(t)
i can be defined as the ratio between the number S

(t)
i

and the total number of candidate solutions, that is:

f
(t)
i = S

(t)
i

|P (t)|
. (2.3)

15

2. Hybrid Immunological Algorithm

It follows that the Kullback-Leibler divergence DKL(t, t0) can be calculated as:

DKL(t, t0) =
∑︂

i

f
(t)
i log

⎛⎝ f
(t)
i

f
(t0)
i

⎞⎠ . (2.4)

The plot in Figure 2.4b shows the curves of the information gain obtained by the

algorithm with and without the use of the local search operator. Also, in this case, it

is clear how the local search helps the algorithm to learn more information from the

very first iterations, reaching a peak after 100 iterations and keeping this quantity of

information gained for the rest of the execution. On the other side, instead, the curve

of the information gained by the population without the local search grows much more

slowly and begins to have an oscillatory trend after about 100 iterations. Moreover,

this curve does not reach the information gain of the population with local search,

keeping on average a certain distance, except on rare occasions.

30

40

50

60

1 10 100 1000

Iterations

S
D

Hybrid-IA Hybrid-IA w/o LS

Standard Deviation

(a)

15

18

21

24

1 10 100 1000

Iterations

D
K

L
(t
,t

0
)

Hybrid-IA Hybrid-IA w/o LS

Information Gain

(b)

Figure 2.4: Learning behaviour of Hybrid-IA during evolutionary cycle on random
instance L_R15. (a) Standard deviation of fitness function and (b) information gain of
current population P (t) with and without local search procedure.

2.2.2 Preliminary Results

In this section, all preliminary outcomes obtained by Hybrid-IA are presented. For

all preliminary experiments presented, the parameters setting of Hybrid-IA were,

respectively: population size d = 100; duplication parameter dup = 2; maximum

16

2. Hybrid Immunological Algorithm

age reachable τ = 20; mutation rate parameter ρ = 0.5 for small instances, ρ = 1.3

for instances with |V | = 100 vertices, and ρ = 3.0 otherwise. The values of these

parameters have been determined through experimental tests and historical knowledge

learned on the algorithm.

Small Instances

Tables 2.1 and 2.2 show the results obtained by Hybrid-IA on different sets of instance.

In both tables, the first six columns represent the instance, with its name (Id), the size

of the graph (x and y for grid and toroidal graphs, n and m for random and hypercube

graphs), the lower and upper bound of the weight range (Low and Up), and the optimal

solution (Opt). In the next columns are reported the results of Hybrid-IA and the

other three algorithms compared. Further, in each line of the tables, the best results

among all are reported in boldface.

On the squared grid graph instances (top of Table 2.1) is possible to see how

Hybrid-IA is able to reach the optimal solution in 8 instances over 9, unlike of MA

that instead reaches it in all instances. However, in this instance (S_SG7) the per-

formances showed by Hybrid-IA are very close to the optimal solution (+0.2), and

anyway better than the other two compared algorithms. On the not squared grid

graphs (middle of Table 2.1) instead Hybrid-IA reaches the optimal solution on all

instances (9 over 9), outperforming all three algorithms on the instance S_NG7, where

none of the three compared algorithms is able to find the optimal solution. Also on

the toroidal graphs (bottom of Table 2.1) Hybrid-IA is able to reach the global op-

timal solution in 9 over 9 instances. In the overall, inspecting all results in table 2.1

is possible to see how Hybrid-IA shows competitive and comparable performances

to MA algorithm, except in the instance S_SG7 where it shows slight worst results,

whilst instead, it is able to outperform MA in the instance S_NG7 where it reaches the

optimal solution unlike of MA. Analysing the results with respect to the other two

algorithms is clear how Hybrid-IA outperform ITS and XTS in all instances.

In Table 2.2 are presented the comparisons on the hypercube and random graphs,

17

2. Hybrid Immunological Algorithm

Table 2.1: Preliminary test results of Hybrid-IA on the small instances of squared
grid, not squared grid and toroidal graphs.

Instance
Id x y Low Up Opt Hybrid-IA ITS XTS MA

Squared Grid

S_NG1 8 3 10 25 96.8 96.8 96.8 96.8 96.8
S_NG2 8 3 10 50 157.4 157.4 157.4 157.4 157.4
S_NG3 8 3 10 75 220.0 220.0 220.0 220.0 220.0
S_NG4 9 6 10 25 295.6 295.6 295.8 295.8 295.6
S_NG5 9 6 10 50 488.6 488.6 489.4 488.6 488.6
S_NG6 9 6 10 75 755.0 755.0 755.0 755.2 755.0
S_NG7 12 6 10 25 398.2 398.2 399.8 398.8 398.4
S_NG8 12 6 10 50 671.8 671.8 673.4 671.8 671.8
S_NG9 12 6 10 75 1015.2 1015.2 1017.4 1015.4 1015.2

Not Squared Grid

S_SG1 5 5 10 25 114.0 114.0 114.0 114.0 114.0
S_SG2 5 5 10 50 199.8 199.8 199.8 199.8 199.8
S_SG3 5 5 10 75 312.4 312.4 312.6 312.4 312.4
S_SG4 7 7 10 25 252.0 252.0 252.4 252.0 252.0
S_SG5 7 7 10 50 437.6 437.6 439.8 437.6 437.6
S_SG6 7 7 10 75 713.6 713.6 718.4 717.4 713.6
S_SG7 9 9 10 25 442.2 442.4 444.2 442.8 442.2
S_SG8 9 9 10 50 752.2 752.2 754.6 753.0 752.2
S_SG9 9 9 10 75 1134.4 1134.4 1138.0 1134.4 1134.4

Toroidal

S_T1 5 5 10 25 101.4 101.4 101.4 101.4 101.4
S_T2 5 5 10 50 124.4 124.4 124.4 124.4 124.4
S_T3 5 5 10 75 157.8 157.8 157.8 158.8 157.8
S_T4 7 7 10 25 195.4 195.4 197.4 195.4 195.4
S_T5 7 7 10 50 234.2 234.2 234.2 234.2 234.2
S_T6 7 7 10 75 269.6 269.6 269.6 269.6 269.6
S_T7 9 9 10 25 309.6 309.8 310.4 309.8 309.8
S_T8 9 9 10 50 369.6 369.6 370.0 369.6 369.6
S_T9 9 9 10 75 431.8 431.8 432.2 432.2 431.8

which present larger problem dimensions with respect to the previous ones. Analysing

the results obtained on the hypercube graph instances, it is very clear how Hybrid-IA

outperform all three algorithms in all instances (9 over 9), reaching even the optimal

18

2. Hybrid Immunological Algorithm

solution on the S_H7 instance where instead the three algorithms fail. On the random

graphs, Hybrid-IA still shows comparable results to MA on all instances, even reach-

ing the optimum on the instances S_R20 and S_R23 where instead MA, and the other

two algorithms fail. In the overall, analyzing all results of this table is easy to assert

that Hybrid-IA is comparable, and sometimes the best, with respect to MA also on

this set of instances, winning even on three instances the comparison with it. Extend-

ing the analysis to the comparison with ITS and XTS algorithms, it is quite clear that

Hybrid-IA outperforms them in all instances, finding always better solutions than

these two compared algorithms.

Large Instances

The comparisons on the random graphs are reported in Table 2.3. For this comparison

instances with different problem dimensions have been taken into account (from 100 to

500 nodes); with different densities of edges; and different ranges of weights. This helps

us in testing the efficiency of Hybrid-IA on different degrees of problem complexity,

and different optimization scenarios. Inspecting the Table 2.3, it is possible to assert

that the proposed immune metaheuristic outperforms all compared algorithms, reach-

ing the best solution in 27 instances over 36, and improving the best-known value so

far (i.e. K∗) in 11 of these instances. The MA algorithm, which is based on a genetic

algorithm, is instead able to reach the best solution in 17 instances over 36, and only

in 5 of them, it is able to find better solutions than Hybrid-IA and the other two

algorithms. About the other two algorithms, XTS is able to reach the best solutions

in 16 instances, and in 4 of these it reaches better solutions than the other compared

algorithms; whilst ITS finds the best solution only on 2 instances. It is important to

emphasize that: (1) in all those instances where Hybrid-IA reaches better values than

K∗, the improvement is almost always quite considerable; (2) in those instances where

Hybrid-IA is not able to find the best solutions, it is, anyway, always the second best;

(3) if Hybrid-IA is compared to MA in all those instances where both are not able

to find the best solution, i.e. where XTS is the winner, anyway the proposed immune

19

2. Hybrid Immunological Algorithm

Table 2.2: Preliminary test results of Hybrid-IA on the small instances of hypercube
and random graphs.

Instance
Id n m Low Up Opt Hybrid-IA ITS XTS MA

Hypercube

S_H1 16 32 10 25 72.2 72.2 72.2 72.2 72.2
S_H2 16 32 10 50 93.8 93.8 93.8 93.8 93.8
S_H3 16 32 10 75 97.4 97.4 97.4 97.4 97.4
S_H4 32 80 10 25 170.0 170.0 170.0 170.0 170.0
S_H5 32 80 10 50 240.6 240.6 241.0 240.6 240.6
S_H6 32 80 10 75 277.6 277.6 277.6 277.6 277.6
S_H7 64 192 10 25 353.4 353.4 354.6 353.8 353.8
S_H8 64 192 10 50 475.6 475.6 476.0 475.6 475.6
S_H9 64 192 10 75 503.8 503.8 503.8 504.8 503.8

Random

S_R1 25 33 10 25 63.8 63.8 63.8 63.8 63.8
S_R2 25 33 10 50 99.8 99.8 99.8 99.8 99.8
S_R3 25 33 10 75 125.2 125.2 125.2 125.2 125.2
S_R4 25 69 10 25 157.6 157.6 157.6 157.6 157.6
S_R5 25 69 10 50 272.2 272.2 272.2 272.2 272.2
S_R6 25 69 10 75 409.4 409.4 409.4 409.4 409.4
S_R7 25 204 10 25 273.4 273.4 273.4 273.4 273.4
S_R8 25 204 10 50 507.0 507.0 507.0 507.0 507.0
S_R9 25 204 10 75 785.8 785.8 785.8 785.8 785.8
S_R10 50 85 10 25 174.6 174.6 175.4 176.0 174.6
S_R11 50 85 10 50 280.8 280.8 280.8 281.6 280.8
S_R12 50 85 10 75 348.0 348.0 348.0 349.2 348.0
S_R13 50 232 10 25 386.2 386.2 389.4 386.8 386.2
S_R14 50 232 10 50 708.6 708.6 708.6 708.6 708.6
S_R15 50 232 10 75 951.6 951.6 951.6 951.6 951.6
S_R16 50 784 10 25 602.0 602.0 602.2 602.0 602.0
S_R17 50 784 10 50 1171.8 1171.8 1172.2 1172.0 1171.8
S_R18 50 784 10 75 1648.8 1648.8 1649.4 1648.8 1648.8
S_R19 75 157 10 25 318.2 318.2 321.0 320.0 318.2
S_R20 75 157 10 50 521.6 522.2 526.2 525.0 522.6
S_R21 75 157 10 75 751.0 751.0 757.2 754.2 751.0
S_R22 75 490 10 25 635.8 635.8 638.6 635.8 635.8
S_R23 75 490 10 50 1226.6 1226.6 1230.6 1228.6 1227.6
S_R24 75 490 10 75 1789.4 1789.4 1793.6 1789.4 1789.4
S_R25 75 1739 10 25 889.8 889.8 891.0 889.8 889.8
S_R26 75 1739 10 50 1664.2 1664.2 1664.8 1664.2 1664.2
S_R27 75 1739 10 75 2452.2 2452.2 2452.8 2452.2 2452.2

20

2. Hybrid Immunological Algorithm

Table 2.3: Preliminary test results of Hybrid-IA on large instances of random
graphs.

Instance
Id n m Low Up K∗ Hybrid-IA ITS XTS MA
L_R1 100 247 10 25 498.4 498.4 501.4 500.8 498.4
L_R2 100 247 10 50 836.8 833.8 845.8 840.0 836.8
L_R3 100 247 10 75 1207.6 1207.2 1223.8 1208.0 1207.6
L_R4 100 841 10 25 826.8 826.8 828.2 826.8 826.8
L_R5 100 841 10 50 1724.4 1724.4 1729.6 1724.6 1724.4
L_R6 100 841 10 75 2420.6 2420.6 2425.6 2420.6 2420.6
L_R7 100 3069 10 25 1134.0 1134.0 1134.0 1134.0 1134.0
L_R8 100 3069 10 50 2179.0 2179.0 2179.0 2179.0 2179.0
L_R9 100 3069 10 75 3228.6 3228.6 3228.8 3228.8 3228.6
L_R10 200 796 10 25 1468.2 1466.6 1488.4 1468.8 1468.2
L_R11 200 796 10 50 2399.0 2400.0 2442.6 2414.4 2399.0
L_R12 200 796 10 75 3089.6 3087.0 3157.0 3099.6 3089.6
L_R13 200 3184 10 25 1986.2 1987.2 2003.6 1986.8 1986.2
L_R14 200 3184 10 50 3650.6 3649.2 3683.6 3650.6 3651.8
L_R15 200 3184 10 75 5135.8 5133.8 5158.6 5137.2 5135.8
L_R16 200 12139 10 25 2447.8 2447.8 2450.0 2448.4 2447.8
L_R17 200 12139 10 50 4148.6 4148.6 4149.4 4148.6 4149.0
L_R18 200 12139 10 75 5528.4 5528.4 5531.4 5528.4 5528.4
L_R19 300 1644 10 25 2045.4 2044.8 2072.6 2045.4 2048.0
L_R20 300 1644 10 50 4175.4 4177.4 4239.4 4195.2 4175.4
L_R21 300 1644 10 75 6065.2 6072.4 6154.4 6102.8 6065.2
L_R22 300 7026 10 25 3203.0 3203.4 3231.0 3203.0 3207.6
L_R23 300 7026 10 50 6211.0 6214.2 6261.4 6211.0 6217.2
L_R24 300 7026 10 75 8585.4 8573.2 8660.6 8585.4 8613.2
L_R25 300 27209 10 25 3726.6 3726.6 3729.2 3726.6 3726.6
L_R26 300 27209 10 50 5734.8 5734.8 5738.0 5734.8 5734.8
L_R27 300 27209 10 75 10467.0 10467.0 10469.6 10467.0 10467.0
L_R28 400 2793 10 25 2989.6 2987.2 3015.2 2991.0 2989.6
L_R29 400 2793 10 50 6410.0 6421.6 6528.0 6435.8 6410.0
L_R30 400 2793 10 75 8597.2 8581.2 8730.0 8637.0 8597.2
L_R31 400 12369 10 25 4428.8 4434.0 4451.8 4428.8 4437.4
L_R32 400 12369 10 50 6785.8 6792.4 6837.4 6785.8 6800.6
L_R33 400 12369 10 75 10599.4 10599.2 10661.8 10599.4 10601.0
L_R34 400 48279 10 25 5060.4 5060.4 5060.8 5060.4 5060.6
L_R35 400 48279 10 50 7106.8 7106.8 7109.2 7106.8 7108.0
L_R36 400 48279 10 75 15103.2 15103.2 15114.6 15103.2 15117.8

metaheuristic find always better solutions than MA.

In Tables 2.4 and 2.5 are reported the outcomes on the hypercube and toroidal

graphs. These instances present graphs dimension from 100 to 512 nodes, and from

100 to 529 vertices, respectively. For the hypercube instances in Table 2.4, it is quite

21

2. Hybrid Immunological Algorithm

clear how Hybrid-IA reaches the optimal solution in all instances (9 instances in the

overall), improving the best-known value in 6 of these instances. Also on the toroidal

graphs in Table 2.5, is possible to see how Hybrid-IA outperforms the compared

algorithms finding the best solution in 10 instances over 15, unlike of MA that is

able to reach the best solution only in 7 instances. XTS and ITS, instead, never

have been able to reach the best solutions in any instance, except in L_T3 instance

for XTS. Moreover, whilst MA finds better solutions than Hybrid-IA in 5 instances,

our immune metaheuristic not only outperforms MA in 8 instances, but it improves

significantly the best-known values on them. It is worth emphasizing that, due to

the particular topology of the toroidal graphs, the local search finds some difficulties

primarily when acting on the selection of a new vertex based on its degree, or weight-

degree ratio, since the vertices tend to have all the same degree. A possible heuristic

approach is to modify the mutation rate (see Section 2.2.3).

Table 2.4: Preliminary test results of Hybrid-IA on large instances of hypercube
graphs.

Instance
Id n m Low Up K∗ Hybrid-IA ITS XTS MA
L_H1 128 448 10 25 731.8 731.4 740.0 742.0 731.8
L_H2 128 448 10 50 1066.8 1066.8 1071.0 1066.8 1067.2
L_H3 128 448 10 75 1161.6 1161.6 1163.6 1161.6 1162.4
L_H4 256 1024 10 25 1487.4 1486.6 1542.6 1534.2 1487.4
L_H5 256 1024 10 50 2279.6 2279.4 2311.4 2282.0 2279.6
L_H6 256 1024 10 75 2572.4 2572.4 2590.8 2576.4 2572.4
L_H7 512 2304 10 25 3119.0 3118.8 3240.8 3146.0 3119.0
L_H8 512 2304 10 50 4852.2 4843.6 4921.8 4872.4 4852.2
L_H9 512 2304 10 75 5553.4 5552.4 5588.6 5563.8 5553.4

Thus, analysing all results of both tables, it is possible to assert that Hybrid-IA

is competitive, and very often better than the other compared algorithms, especially

with respect to MA algorithm. The comparisons have been done on a total of 60

different graphs, and at different problem dimensions: Hybrid-IA reached the global

best solution in 46 instances, and on 25 of these it found solutions better than the

best-known values (K∗), whilst MA in only 23. If we focus on the comparison between

22

2. Hybrid Immunological Algorithm

Hybrid-IA and MA, we have that MA finds better solutions than our algorithm in

only 10 instances, unlike Hybrid-IA that outperforms MA in 35 instances over 60. In

the remaining 15 instances both algorithms reach the same solutions that correspond

also to the best known.

Table 2.5: Preliminary test results of Hybrid-IA on large instances of toroidal
graphs.

Instance
Id x y Low Up K∗ Hybrid-IA ITS XTS MA
L_T1 10 10 10 25 388.0 387.8 388.8 389.0 388.0
L_T2 10 10 10 50 457.6 457.4 458.6 457.6 457.6
L_T3 10 10 10 75 504.6 504.6 504.8 504.6 504.6
L_T4 14 14 10 25 748.8 747.6 750.8 748.8 749.6
L_T5 14 14 10 50 874.4 874.2 875.6 875.4 874.4
L_T6 14 14 10 75 1016.2 1016.2 1017.2 1016.4 1016.2
L_T7 17 17 10 25 1102.8 1105.2 1110.2 1107.4 1102.8
L_T8 17 17 10 50 1304.4 1304.6 1307.6 1306.0 1304.4
L_T9 17 17 10 75 1498.6 1497.6 1502.4 1499.6 1498.6
L_T10 20 20 10 25 1539.6 1540.2 1548.6 1540.0 1539.6
L_T11 20 20 10 50 1795.4 1795.6 1803.4 1797.6 1795.4
L_T12 20 20 10 75 2033.0 2031.8 2042.6 2033.6 2033.0
L_T13 23 23 10 25 2034.8 2039.0 2043.4 2043.8 2034.8
L_T14 23 23 10 50 2406.4 2406.2 2412.2 2410.8 2406.4
L_T15 23 23 10 75 2697.2 2695.4 2705.4 2704.2 2697.2

2.2.3 Parameter Tuning

As outlined in Chapter 2, the proposed algorithm has four parameters that affect the

performances: the population size d, the duplication factor dup, the mutation shape ρ

and the maximum age τ . However, starting from previous results [46, 47] on the same

benchmark instances and from some preliminary experiments, the crucial parameter

that affects the exploration of the neighbourhood of candidate solutions is the mutation

shape ρ. This parameter controls the mutation rate α defined in Equation 2.2, that is

the percentage of vertices to swap between the solution S and V \ S in the mutation

operator. For this reason, the parameter tuning was focused only on the mutation

shape ρ, trying to find the best value in the closed range [1.0, 4.0], with steps of 0.2. As

23

2. Hybrid Immunological Algorithm

can be seen in Figure 2.5, using a mutation shape greater than 4.0 means a significant

reduction of the number of mutations for a high number of good candidate solutions,

limiting the exploration of their neighbourhood and of the search space in general.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f̂(x)

α

ρ

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Figure 2.5: Mutation rate α obtained with Equation 2.2 for different values of the
mutation shape ρ, with respect to the normalized fitness value.

For the tuning experiments, we selected a subset of the benchmark instances de-

scribed before. More precisely, we chose for the training set the large random graphs

with low and medium density and the large grid graphs, as representations of regular

graphs (grid, toroidal and hypercube). This set consists of instances with a number of

vertices that goes from 100 to 500, with a graph density that ranges from 16.99% to

3.40% for medium and low-density random graphs, and from 3.64% to 0.72% for grid

graphs, and with a weight range of [10, 50] and [10, 75]. In this way, we tried to cover

all possible features of the benchmark set used. Note that, to save computational time

in this phase, we left out of the training set the large random graphs with high dens-

ity, because, for this kind of instance, Hybrid-IA already reaches good results with a

default configuration for this parameter [47]. Finally, for all 16 values of the mutation

shape ρ we performed 10 independent runs for each instance of the training set, and

for {1000, 1250, 1500, 1750, 2000} generations, respectively for {100, 200, 300, 400, 500}

24

2. Hybrid Immunological Algorithm

vertices, as termination criteria.

For the analysis of the tuning experiments, the rank-based as described in [10] has

been used. The values of the mutation shape ρ were ordered based on the solutions

obtained on the instances of the training set, grouped by size and density of the graph,

that is by n and m for random instances and only by n for grid instances. In particular,

for each instance the value of ρ that found the best average (over 10 runs), obtain rank

1, the second best average obtain rank 2, and so on. Then, for each n and m an average

of the rank for each value of ρ was calculated. The values of ρ with the best average

rank for each n and m, are shown in Table 2.6.

Table 2.6: Results of the tuning experiments for the mutation shape parameter on
the (a) large random and (b) squared grid graphs.

Random
n m ∆ ρ

100 247 4.99% 1.4
100 841 16.99% 1.4
200 796 4.00% 2.4
200 3184 16.00% 2.8
300 1644 3.67% 2.8
300 7026 15.67% 3.2
400 2793 3.50% 3.2
400 12369 15.50% 3.4
500 4241 3.40% 3.4
500 19211 15.40% 3.6

(a)

Grid
x y ∆ ρ

10 10 3.64% 1.4
14 14 1.90% 2.0
17 17 1.31% 2.4
20 20 0.95% 2.8
23 23 0.72% 3.2

(b)

In general, from these tuning results, we can see that the mutation shape ρ grows

increasing the size of the graph, that is, large instances require fewer changes during

the mutation phase than smaller problem instances. However, with the same number

of vertices, the mutation shape is slightly higher for instances with higher density, and

this difference seems to decrease when the size of the graph increases. For reasons of

space and readability, in Appendix A.1 are reported all figures that show the outcomes

of the tuning experiments.

25

2. Hybrid Immunological Algorithm

2.2.4 Results

The aim of this section is to analyse the performance of the proposed algorithm, com-

paring all the outcomes on this benchmark set with other metaheuristic algorithms

available from the literature. For all the experimental results presented in the fol-

lowing sections, the configuration of parameters of Hybrid-IA is as follows: the al-

gorithm maintains a population of candidate solutions of size d = 100, with a duplic-

ation factor dup = 2, and for a maximum of τ = 20 iterations, except for the best

solution (see Section 2.1.4). The mutation shape ρ, instead, changes based on the

features of the input instance, in accordance with the results of the parameter tuning

described in Section 2.2.3 and reported in Table 2.6. Finally, Hybrid-IA stops its

execution after a fixed number of generations TMax, that is 500 for small instances,

and {1000, 1250, 1500, 1750, 2000} for (respectively) large instances. It is important

to highlight that the results derived from [28] have been obtained considering as stop

condition a certain value of consecutive iterations without improvement of the best

solution. This value is determined with a formula related to the size and density of the

input instance, and the counter is reset every time an improvement occurs. Moreover,

MA, at the end of its execution, restarts the evolutionary cycle penalizing the vertices

belonging to the best solution found, in order to explore new regions of the search

space. For this reason, the actual number of iterations of MA is not known a priori.

For all algorithms compared, the Average Gap Value (AGV) has been calculated,

that is the sum of the difference between the value obtained by the algorithm and the

value of the best-known solution for an instance. The AGV can be computed as follow:

AGV = 1
N

N∑︂
i=1

(fi −K∗), (2.5)

where fi is the fitness value of the solution found by the algorithm on instance i, K∗

is the best fitness value known and N is the total number of instances for each value

of |V |. This value can be useful to understand the performance of an algorithm when

26

2. Hybrid Immunological Algorithm

Table 2.7: Results of Hybrid-IA on small instances of random graphs.

Instance
Id n m Low Up Opt Hybrid-IA ITS XTS MA
S_R1 25 33 10 25 63.8 63.8 63.8 63.8 63.8
S_R2 25 33 10 50 99.8 99.8 99.8 99.8 99.8
S_R3 25 33 10 75 125.2 125.2 125.2 125.2 125.2
S_R4 25 69 10 25 157.6 157.6 157.6 157.6 157.6
S_R5 25 69 10 50 272.2 272.2 272.2 272.2 272.2
S_R6 25 69 10 75 409.4 409.4 409.4 409.4 409.4
S_R7 25 204 10 25 273.4 273.4 273.4 273.4 273.4
S_R8 25 204 10 50 507.0 507.0 507.0 507.0 507.0
S_R9 25 204 10 75 785.8 785.8 785.8 785.8 785.8
S_R10 50 85 10 25 174.6 174.6 175.4 176.0 174.6
S_R11 50 85 10 50 280.8 280.8 280.8 281.6 280.8
S_R12 50 85 10 75 348.0 348.0 348.0 349.2 348.0
S_R13 50 232 10 25 386.2 386.2 389.4 386.8 386.2
S_R14 50 232 10 50 708.6 708.6 708.6 708.6 708.6
S_R15 50 232 10 75 951.6 951.6 951.6 951.6 951.6
S_R16 50 784 10 25 602.0 602.0 602.2 602.0 602.0
S_R17 50 784 10 50 1171.8 1171.8 1172.2 1172.0 1171.8
S_R18 50 784 10 75 1648.8 1648.8 1649.4 1648.8 1648.8
S_R19 75 157 10 25 318.2 318.2 321.0 320.0 318.2
S_R20 75 157 10 50 521.6 521.6 526.2 525.0 522.6
S_R21 75 157 10 75 751.0 751.0 757.2 754.2 751.0
S_R22 75 490 10 25 635.8 635.8 638.6 635.8 635.8
S_R23 75 490 10 50 1226.6 1226.6 1230.6 1228.6 1227.6
S_R24 75 490 10 75 1789.4 1789.4 1793.6 1789.4 1789.4
S_R25 75 1739 10 25 889.8 889.8 891.0 889.8 889.8
S_R26 75 1739 10 50 1664.2 1664.2 1664.8 1664.2 1664.2
S_R27 75 1739 10 75 2452.2 2452.2 2452.8 2452.2 2452.2

the size increases for a specific class of instances.

Small Instances

In the following tables, the results of the four algorithms on all small instances are

reported. The first five columns represent the instance, with its name (Id), the size of

the graph (n and m for random and hypercube graphs, x and y for grid and toroidal

graphs), the lower and upper bound of the weight range (Low and Up), and the optimal

solution (Opt). The last four columns report the fitness values of the best solutions

found by the compared algorithms. These fitness values are the average value obtained

27

2. Hybrid Immunological Algorithm

on 5 problem instances, as described in the first part of Section 2.2.4.

Table 2.7 shows the results of all algorithms on small random instances. From

this table, it is possible to note how Hybrid-IA obtains a perfect score reaching the

optimal solution for all instances. A similar result is obtained by MA, which reaches

the optimal solutions for 25 instances out of 27. MA fails to reach the optimum on two

instances with 75 vertices, S_R20 and S_R23, both with a weight range of [10, 50] but

with different density. XTS reaches the optimal solution for 18 instances out of 27,

failing mainly on instances with low density, both with 50 and 75 vertices. Finally, ITS

has the worst results, reaching the optimal solution only on 13 instances out of 27. This

algorithm never reaches the optimal solution on instances with a weight range [10, 25],

when the number of vertices is 50 and 75. Moreover, its performance also deteriorates

as the size of the instance increases, in particular on low and medium density.

Table 2.8: Results of Hybrid-IA on small instances of squared grid graphs.

Instance
Id x y Low Up Opt Hybrid-IA ITS XTS MA
S_SG1 5 5 10 25 114.0 114.0 114.0 114.0 114.0
S_SG2 5 5 10 50 199.8 199.8 199.8 199.8 199.8
S_SG3 5 5 10 75 312.4 312.4 312.6 312.4 312.4
S_SG4 7 7 10 25 252.0 252.0 252.4 252.0 252.0
S_SG5 7 7 10 50 437.6 437.6 439.8 437.6 437.6
S_SG6 7 7 10 75 713.6 713.6 718.4 717.4 713.6
S_SG7 9 9 10 25 442.2 442.2 444.2 442.8 442.2
S_SG8 9 9 10 50 752.2 752.2 754.6 753.0 752.2
S_SG9 9 9 10 75 1134.4 1134.4 1138.0 1134.4 1134.4

In Tables 2.8–2.11 the results on small regular instances are reported, that is squared

and not squared grid, toroidal and hypercube graphs respectively. Also, in this case,

Hybrid-IA obtained a perfect score, reaching the optimal solution for all 36 instances.

As for random instances, MA has similar performances (33 out of 36), failing only on

three instances with (about) 75 vertices and weight range [10, 25], S_NG7, S_T7 and

S_H7. XTS reaches the optimal solution on 24 instances out of 36, failing mainly on

instances with 75 vertices and weight range [10, 25] and [10, 75]. Also for this kind of

28

2. Hybrid Immunological Algorithm

Table 2.9: Results of Hybrid-IA on small instances of not squared grid graphs.

Instance
Id x y Low Up Opt Hybrid-IA ITS XTS MA
S_NG1 8 3 10 25 96.8 96.8 96.8 96.8 96.8
S_NG2 8 3 10 50 157.4 157.4 157.4 157.4 157.4
S_NG3 8 3 10 75 220.0 220.0 220.0 220.0 220.0
S_NG4 9 6 10 25 295.6 295.6 295.8 295.8 295.6
S_NG5 9 6 10 50 488.6 488.6 489.4 488.6 488.6
S_NG6 9 6 10 75 755.0 755.0 755.0 755.2 755.0
S_NG7 12 6 10 25 398.2 398.2 399.8 398.8 398.4
S_NG8 12 6 10 50 671.8 671.8 673.4 671.8 671.8
S_NG9 12 6 10 75 1015.2 1015.2 1017.4 1015.4 1015.2

Table 2.10: Results of Hybrid-IA on small instances of toroidal graphs.

Instance
Id x y Low Up Opt Hybrid-IA ITS XTS MA
S_T1 5 5 10 25 101.4 101.4 101.4 101.4 101.4
S_T2 5 5 10 50 124.4 124.4 124.4 124.4 124.4
S_T3 5 5 10 75 157.8 157.8 157.8 158.8 157.8
S_T4 7 7 10 25 195.4 195.4 197.4 195.4 195.4
S_T5 7 7 10 50 234.2 234.2 234.2 234.2 234.2
S_T6 7 7 10 75 269.6 269.6 269.6 269.6 269.6
S_T7 9 9 10 25 309.6 309.6 310.4 309.8 309.8
S_T8 9 9 10 50 369.6 369.6 370.0 369.6 369.6
S_T9 9 9 10 75 431.8 431.8 432.2 432.2 431.8

instance ITS has the worst performances (17 out of 36), failing to reach the optimal

solution when the size of the instances increases, except in rare occasions.

These considerations are reflected in Figures 2.6–2.10, which show the AGV (see

Equation 2.5) of the four algorithms. The curves of Hybrid-IA and MA have the

same trend on small instances, with a slight difference in favour of Hybrid-IA on

instances with 75 vertices, due to a higher number of optimal solutions found. On the

other hand, the curves of XTS and ITS tend to grow slightly on instances with 50

vertices and more on instances with 75 vertices for all classes, with the exception of

hypercube graphs, which seem to be the easiest instances to solve.

29

2. Hybrid Immunological Algorithm

Table 2.11: Results of Hybrid-IA on small instances of hypercube graphs.

Instance
Id n m Low Up Opt Hybrid-IA ITS XTS MA
S_H1 16 32 10 25 72.2 72.2 72.2 72.2 72.2
S_H2 16 32 10 50 93.8 93.8 93.8 93.8 93.8
S_H3 16 32 10 75 97.4 97.4 97.4 97.4 97.4
S_H4 32 80 10 25 170.0 170.0 170.0 170.0 170.0
S_H5 32 80 10 50 240.6 240.6 241.0 240.6 240.6
S_H6 32 80 10 75 277.6 277.6 277.6 277.6 277.6
S_H7 64 192 10 25 353.4 353.4 354.6 353.8 353.8
S_H8 64 192 10 50 475.6 475.6 476.0 475.6 475.6
S_H9 64 192 10 75 503.8 503.8 503.8 504.8 503.8

Large Instances

In this section the experimental results on large instances are reported, in order to

test the effectiveness of Hybrid-IA on complex problem instances. Table 2.12 reports

the outcomes on large random graphs. The columns of the table are the same as

Table 2.7, except for the column Opt, replaced by the column K∗ that represents the

best solution known, that is the best solution among ITS, XTS and MA. For this kind

of graph Hybrid-IA reaches the best solution in 29 out of 45 instances, improving the

best-known solution K∗ in 11 instances. In this statistic, MA and XTS have similar

performance, achieving the best solution in 21 and 20 out of 45 instances respectively.

ITS obtains the best solution in only 2 instances, confirming the low performance of

small instances.

The proposed algorithm reaches the best solution in all instances with n = 100,

improving K∗ in 3 instances. The same behaviour can be observed on graphs with

n = 200, where it fails only on two occasions, L_R11 and L_R13, with a gap from MA

of 0.4 and 1.4 respectively. When the size of the graphs increases Hybrid-IA does not

reach the best solutions, especially for low and medium density instances. However,

the gap from the best solutions K∗ is quite small for almost all instances with n equals

to 300, 400 and 500, expect for L_R29, L_R37 and L_R39, where the gap reaches a

peak of 17.0. On the other hand, Hybrid-IA finds the best solution for L_R24, L_R30,

30

2. Hybrid Immunological Algorithm

Table 2.12: Results of Hybrid-IA on large instances of random graphs.

Instance
Id n m Low Up K∗ Hybrid-IA ITS XTS MA
L_R1 100 247 10 25 498.4 498.4 501.4 500.8 498.4
L_R2 100 247 10 50 836.8 835.0 845.8 840.0 836.8
L_R3 100 247 10 75 1207.6 1207.2 1223.8 1208.0 1207.6
L_R4 100 841 10 25 826.8 826.8 828.2 826.8 826.8
L_R5 100 841 10 50 1724.4 1724.4 1729.6 1724.6 1724.4
L_R6 100 841 10 75 2420.6 2420.4 2425.6 2420.6 2420.6
L_R7 100 3069 10 25 1134.0 1134.0 1134.0 1134.0 1134.0
L_R8 100 3069 10 50 2179.0 2179.0 2179.0 2179.0 2179.0
L_R9 100 3069 10 75 3228.6 3228.6 3228.8 3228.8 3228.6
L_R10 200 796 10 25 1468.2 1465.4 1488.4 1468.8 1468.2
L_R11 200 796 10 50 2399.0 2399.4 2442.6 2414.4 2399.0
L_R12 200 796 10 75 3089.6 3088.0 3157.0 3099.6 3089.6
L_R13 200 3184 10 25 1986.2 1987.6 2003.6 1986.8 1986.2
L_R14 200 3184 10 50 3650.6 3649.2 3683.6 3650.6 3651.8
L_R15 200 3184 10 75 5135.8 5133.8 5158.6 5137.2 5135.8
L_R16 200 12139 10 25 2447.8 2447.8 2450.0 2448.4 2447.8
L_R17 200 12139 10 50 4148.6 4148.6 4149.4 4148.6 4149.0
L_R18 200 12139 10 75 5528.4 5528.4 5531.4 5528.4 5528.4
L_R19 300 1644 10 25 2045.4 2046.2 2072.6 2045.4 2048.0
L_R20 300 1644 10 50 4175.4 4177.8 4239.4 4195.2 4175.4
L_R21 300 1644 10 75 6065.2 6067.4 6154.4 6102.8 6065.2
L_R22 300 7026 10 25 3203.0 3204.0 3231.0 3203.0 3207.6
L_R23 300 7026 10 50 6211.0 6213.8 6261.4 6211.0 6217.2
L_R24 300 7026 10 75 8585.4 8573.2 8660.6 8585.4 8613.2
L_R25 300 27209 10 25 3726.6 3726.6 3729.2 3726.6 3726.6
L_R26 300 27209 10 50 5734.8 5734.8 5738.0 5734.8 5734.8
L_R27 300 27209 10 75 10467.0 10467.0 10469.6 10467.0 10467.0
L_R28 400 2793 10 25 2989.6 2990.4 3015.2 2991.0 2989.6
L_R29 400 2793 10 50 6410.0 6420.2 6528.0 6435.8 6410.0
L_R30 400 2793 10 75 8597.2 8583.4 8730.0 8637.0 8597.2
L_R31 400 12369 10 25 4428.8 4430.8 4451.8 4428.8 4437.4
L_R32 400 12369 10 50 6785.8 6789.4 6837.4 6785.8 6800.6
L_R33 400 12369 10 75 10599.4 10591.2 10661.8 10599.4 10601.0
L_R34 400 48279 10 25 5060.4 5060.4 5060.8 5060.4 5060.6
L_R35 400 48279 10 50 7106.8 7106.8 7109.2 7106.8 7108.0
L_R36 400 48279 10 75 15103.2 15103.2 15114.6 15103.2 15117.8
L_R37 500 4241 10 25 4056.4 4067.0 4102.8 4063.0 4056.4
L_R38 500 4241 10 50 7170.4 7172.8 7285.0 7204.6 7170.4
L_R39 500 4241 10 75 11135.6 11152.4 11285.6 11179.6 11135.6
L_R40 500 19211 10 25 5724.2 5726.4 5745.8 5724.2 5741.4
L_R41 500 19211 10 50 7677.8 7678.8 7725.0 7677.8 7678.2
L_R42 500 19211 10 75 14124.8 14121.4 14167.8 14124.8 14164.8
L_R43 500 75349 10 25 6361.6 6361.2 6366.4 6362.0 6361.6
L_R44 500 75349 10 50 8668.4 8668.4 8671.2 8668.4 8668.4
L_R45 500 75349 10 75 16932.4 16932.4 16939.2 16932.4 16933.8

31

2. Hybrid Immunological Algorithm

0

10

20

30

40

50

25 50 75 100 200 300 400 500

|V |

A
ve
ra
ge

G
ap

V
al
u
e

Hybrid-IA ITS MA XTS

Figure 2.6: The average gap value of Hybrid-IA on the small and large random
graphs.

L_R33 and L_R42, all with a weight range [10, 75], greatly improving K∗ for the first

three instances.

Inspecting the plot in Figure 2.6, Hybrid-IA obtains a negative AGV for the

instances with n that ranges from 100 to 400, while less than 5.0 points from K∗ for

instances with n = 500. However, the AGV of Hybrid-IA is always lower than that

obtained by the other three algorithms. Although MA and XTS have achieved a

similar number of best solutions for these instances, on average MA obtains a slightly

better AGV than XTS.

In Tables 2.13 and 2.14 the results on toroidal and hypercube large graphs are

reported. For this kind of instance, Hybrid-IA obtains the best performance, where

the algorithm is able to find the best solution in all toroidal instances (15 out of 15),

and in 6 out of 9 hypercube problem instances. As for the random instances, MA

and XTS have similar statistics also for this kind of graph, with MA that obtains the

best solution in 2 out of 15 toroidal instances and in 3 out of 9 hypercube instances,

while XTS obtains the best solution in 1 out of 15 toroidal instances and in 2 out of

9 hypercube instances. Moreover, no best solutions were found by ITS for both kinds

of graphs. For the toroidal instances, the AGV in Figure 2.7 of Hybrid-IA is quite

small for instances with 100 vertices and grows in a negative way as the size of graph

32

2. Hybrid Immunological Algorithm

Table 2.13: Results of Hybrid-IA on large instances of toroidal graphs.

Instance
Id x y Low Up K∗ Hybrid-IA ITS XTS MA
L_T1 10 10 10 25 388.0 387.8 388.8 389.0 388.0
L_T2 10 10 10 50 457.6 457.4 458.6 457.6 457.6
L_T3 10 10 10 75 504.6 504.6 504.8 504.6 504.6
L_T4 14 14 10 25 748.8 748.0 750.8 748.8 749.6
L_T5 14 14 10 50 874.4 874.2 875.6 875.4 874.4
L_T6 14 14 10 75 1016.2 1016.2 1017.2 1016.4 1016.2
L_T7 17 17 10 25 1102.8 1101.4 1110.2 1107.4 1102.8
L_T8 17 17 10 50 1304.4 1303.4 1307.6 1306.0 1304.4
L_T9 17 17 10 75 1498.6 1497.8 1502.4 1499.6 1498.6
L_T10 20 20 10 25 1539.6 1535.8 1548.6 1540.0 1539.6
L_T11 20 20 10 50 1795.4 1794.2 1803.4 1797.6 1795.4
L_T12 20 20 10 75 2033.0 2031.6 2042.6 2033.6 2033.0
L_T13 23 23 10 25 2034.8 2033.8 2043.4 2043.8 2034.8
L_T14 23 23 10 50 2406.4 2401.2 2412.2 2410.8 2406.4
L_T15 23 23 10 75 2697.2 2694.6 2705.4 2704.2 2697.2

Table 2.14: Results of Hybrid-IA on large instances of hypercube graphs.

Instance
Id n m Low Up K∗ Hybrid-IA ITS XTS MA
L_H1 128 448 10 25 731.8 731.4 740.0 742.0 731.8
L_H2 128 448 10 50 1066.8 1066.8 1071.0 1066.8 1067.2
L_H3 128 448 10 75 1161.6 1161.6 1163.6 1161.6 1162.4
L_H4 256 1024 10 25 1487.4 1486.6 1542.6 1534.2 1487.4
L_H5 256 1024 10 50 2279.6 2279.8 2311.4 2282.0 2279.6
L_H6 256 1024 10 75 2572.4 2572.8 2590.8 2576.4 2572.4
L_H7 512 2304 10 25 3119.0 3119.2 3240.8 3146.0 3119.0
L_H8 512 2304 10 50 4852.2 4844.0 4921.8 4872.4 4852.2
L_H9 512 2304 10 75 5553.4 5545.2 5588.6 5563.8 5553.4

increases, till to reach the maximum gap for instances with 529 vertices. For hypercube

graphs, Hybrid-IA fails to find the best solution in only three instances, L_H5, L_H6

and L_H7, with a gap from the best solution very small, 0.4 at most from MA. As can

be seen from the plot in Figure 2.8, the gap between Hybrid-IA and MA is minimal

for instances with n = 128 and n = 256. On the other hand, the gap of Hybrid-IA

from MA increases for instances with n = 512, where the improvement of K∗ obtained

for L_H8 and L_H9 is considerable.

33

2. Hybrid Immunological Algorithm

-3

0

3

6

9

25 49 81 100 196 289 400 529

|V |

A
ve
ra
ge

G
ap

V
al
u
e

Hybrid-IA ITS MA XTS

Figure 2.7: The average gap value of Hybrid-IA on the small and large toroidal
graphs.

0

20

40

60

16 32 64 128 256 512

|V |

A
ve
ra
ge

G
ap

V
al
u
e

Hybrid-IA ITS MA XTS

Figure 2.8: The average gap value of Hybrid-IA on the small and large hypercube
graphs.

Finally, in Tables 2.15 and 2.16 are reported the results of all algorithms on squared

and not squared grid graphs, while in Figures 2.9 and 2.10 the AGV for the same

set of instances. For this kind of graph, Hybrid-IA has slightly lower performance

obtaining only the best solution in 14 out of 30 grid instances, against the 12 best

solutions found out of 30 for MA. XTS has obtained the best solution in 6 out of 30,

while ITS obtains the best solution in only 1 out of 30 grid instances. For grid graphs

with 100 vertices, Hybrid-IA obtains the best solution for all 6 instances, improving

34

2. Hybrid Immunological Algorithm

Table 2.15: Results of Hybrid-IA on large instances of squared grid graphs.

Instance
Id x y Low Up K∗ Hybrid-IA ITS XTS MA
L_SG1 10 10 10 25 566.8 566.2 570.6 566.8 567.0
L_SG2 10 10 10 50 947.0 945.6 948.8 949.4 947.0
L_SG3 10 10 10 75 1557.8 1556.0 1566.0 1565.2 1557.8
L_SG4 14 14 10 25 1206.4 1207.4 1209.4 1207.6 1206.4
L_SG5 14 14 10 50 2007.8 2003.0 2008.6 2010.2 2007.8
L_SG6 14 14 10 75 3399.2 3403.0 3401.2 3406.0 3399.2
L_SG7 17 17 10 25 1829.4 1835.2 1834.2 1830.4 1829.4
L_SG8 17 17 10 50 3051.4 3051.2 3070.6 3062.8 3051.4
L_SG9 17 17 10 75 5071.2 5087.0 5089.8 5071.2 5072.2
L_SG10 20 20 10 25 2602.2 2622.0 2619.8 2607.8 2602.2
L_SG11 20 20 10 50 4299.8 4290.8 4321.2 4306.6 4299.8
L_SG12 20 20 10 75 7240.4 7277.6 7272.6 7240.4 7252.2
L_SG13 23 23 10 25 3453.6 3473.4 3462.8 3460.6 3453.6
L_SG14 23 23 10 50 5831.4 5818.8 5865.4 5837.4 5831.4
L_SG15 23 23 10 75 9681.0 9724.4 9723.4 9718.6 9681.0

the value of K∗ for 5 instances. For instances with 200 vertices, the algorithm fails

to find the best solution for the weight ranges [10, 25] and [10, 75], while maintaining

a small gap from MA. On the other hand, it finds the best solution for the range

[10, 50] (L_SG5 and L_NG5), resulting in AGV similar to that obtained by MA and

lower than XTS. When the size of the graphs increases, the algorithm exhibits the

same behaviour. For instances with n equals to 300, 400 and 500, Hybrid-IA fails

to obtain good solutions for instances with weight range [10, 25] and [10, 75], while it

is able to find better (L_SG8, L_SG11, L_SG14, L_NG8 and L_NG14), or at least similar

(L_NG11), solutions for the range [10, 50]. However, these best solutions found do not

significantly reduce the AGV value of Hybrid-IA, which remains higher than MA

and XTS on both grid graphs, except on not squared grid with 493 vertices, mainly

due to the best solutions obtained (L_NG14 and L_NG15).

In the overall, Hybrid-IA has been tested on a benchmark set with a total of 162

instances, with different topologies, sizes and densities. From the analysis of the results

reported in this section, we can see how Hybrid-IA achieves excellent performance,

both in terms of the best solution found and AGV, on random, toroidal and hypercube

35

2. Hybrid Immunological Algorithm

Table 2.16: Results of Hybrid-IA on large instances of not squared grid graphs.

Instance
Id x y Low Up K∗ Hybrid-IA ITS XTS MA
L_NG1 13 7 10 25 512.2 511.6 513.0 513.0 512.2
L_NG2 13 7 10 50 803.4 803.4 803.4 803.4 803.4
L_NG3 13 7 10 75 1382.8 1381.6 1390.8 1386.0 1382.8
L_NG4 18 11 10 25 1204.6 1205.4 1208.0 1206.4 1204.6
L_NG5 18 11 10 50 2041.2 2036.6 2049.8 2047.6 2041.2
L_NG6 18 11 10 75 3417.4 3421.2 3431.0 3422.2 3417.4
L_NG7 23 13 10 25 1923.8 1934.8 1930.6 1923.8 1925.2
L_NG8 23 13 10 50 3178.2 3171.6 3194.8 3187.6 3178.2
L_NG9 23 13 10 75 5258.0 5273.6 5286.6 5286.0 5258.0
L_NG10 26 15 10 25 2522.6 2544.6 2532.8 2522.6 2529.4
L_NG11 26 15 10 50 4144.2 4146.0 4164.8 4148.4 4144.2
L_NG12 26 15 10 75 7031.4 7070.8 7063.4 7031.4 7035.8
L_NG13 29 17 10 25 3255.0 3265.0 3270.0 3257.0 3255.0
L_NG14 29 17 10 50 5410.8 5398.0 5430.4 5422.6 5410.8
L_NG15 29 17 10 75 8953.0 8949.0 8993.2 8985.6 8953.0

graphs, while it has slightly lower performance on graphs with a particular topology,

such as grid graphs, that can be classified as the hardest ones. Among these instances,

the proposed algorithm was able to find the best solution in 127 of them, improving

the best-known values K∗ in 40 of them, while MA and XTS found the best solution

in 96 and 71 instances respectively.

0

10

20

30

25 49 81 100 196 289 400 529

|V |

A
ve
ra
ge

G
ap

V
al
u
e

Hybrid-IA ITS MA XTS

Figure 2.9: The average gap value of Hybrid-IA on the small and large squared
grid graphs.

36

2. Hybrid Immunological Algorithm

0

5

10

15

20

25

24 54 72 91 198 299 390 493

|V |

A
ve
ra
ge

G
ap

V
al
u
e

Hybrid-IA ITS MA XTS

Figure 2.10: The average gap value of Hybrid-IA on the small and large not squared
grid graphs.

2.3 Conclusions

In this section, an immune metaheuristic is presented and designed to tackle and solve

one of the most challenging combinatorial optimization problems, such as the weighted

variant of the feedback vertex set that finds applicability in many real-world tasks. The

proposed algorithm, simply called Hybrid-IA, is based on the clonal selection meta-

phor (proliferation and differentiation of the cells), and it takes advantage of three main

immune operators that allow the algorithm to make a faithful exploration of the search

space, avoid to get trapped into local optima and exploit all information learned as

better as possible. Also, a Local Search has been developed in Hybrid-IA whose goal

is to deterministically refine all solutions produced instead of the stochasticity. Sev-

eral experiments have been performed for evaluating both the efficacy of the developed

local search and the robustness and reliability of Hybrid-IA. A comparison with three

other different metaheuristics has been performed, which represent nowadays the state-

of-the-art on this problem: Iterated Tabu Search (ITS), eXploring Tabu Search (XTS)

and Memetic Algorithm (MA).

In the overall, Hybrid-IA has been run and tested on a total of 162 different graph

instances (in topology, dimension, and vertex weights), on which it was able in finding

37

2. Hybrid Immunological Algorithm

the best solution in 127 of them. Moreover, among these 127 instances, Hybrid-IA

has improved the best-known values in 40 of them. An analysis of the convergence and

learning process has been also performed in order to understand the dynamics features

of Hybrid-IA, as well as how well the local search affects the performances of the

presented immune metaheuristic. From these analyses emerges quite clear the goodness

of the designed local search, which is able to considerably improve the performances

of the algorithm, and allows it to learn much more information. Finally, inspecting all

outcomes, from the dynamic behaviours to experimental results, it is possible to assert

that Hybrid-IA is a robust, efficient and reliable optimization algorithm.

38

3
Hybrid Immunological Algorithm

with Reinforcement Learning

In recent years, part of the scientific community has focused its research on combining

learning techniques and heuristic/metaheuristic algorithms [147]. One of these learning

patterns is Reinforcement Learning (RL), which aims to learn the best move among

those available in the current state, continuously interacting with an unknown environ-

ment. Unlike supervised learning techniques, reinforcement learning adjusts its future

actions based on the obtained feedback from the environment in which it operates [72].

Integrating RL at metaheuristic level can be useful to learn properties of good

initial solutions or an evaluation function in order to guide a metaheuristic toward

high-quality solutions. For example, in [157] the opposition-based learning is combined

with a memetic algorithm for solving the maximum diversity problem, while in [144]

the authors propose a multi-objective memetic algorithm with clustering technique

and statistical learning for the discrete permutation flowshop scheduling problem. RL

techniques have been also used with Iterated Local Search [11, 145] and Tabu Search

39

3. Hybrid Immunological Algorithm with Reinforcement Learning

methods [94, 95]. Recently, in [158, 156] a general-purpose local search framework with

RL for solving grouping problems have been introduced, which employs a dynamically

updated probability matrix to generate starting solutions for a local search procedure.

In this work, we are interested in employing RL techniques to process informa-

tion collected from the search process of the population-based iterated greedy (PBIG)

algorithms [21], with the purpose of improving the performance of evolutionary al-

gorithms. The population-based iterated greedy approach belongs to the class of it-

erated greedy (IG) algorithms, which works on populations of solutions, rather than

being restricted to a single incumbent solution. At each iteration, the PBIG algorithm

first partially destroys a population of solutions and then a greedy heuristic is used

to construct a complete solution from the partially destroyed solutions. Starting the

solution construction from partial solutions has two important advantages. The first

one is that the solution construction process is substantially faster, and the second one

is the exploitation of good parts of solutions [78, 120]. This approach has proved their

potential for effectively solving a wide range of difficult optimization problems [21, 20,

22].

3.1 The Proposed Method

In this section, we outline the proposed framework, an evolutionary algorithm based on

a greedy population combined with reinforcement learning techniques. The proposed

algorithm, called Greedy-IA, is based on the immunological algorithm described in

Chapter 2, where a population of solutions, starting from an initial population gener-

ated in a quasi-greedy way, is repeatedly improved by alternating a phase of destruction

and reconstruction until a termination criterion is satisfied. The reinforcement learning

mechanism exploits the information discovered during these two phases with the aim

to guide the search towards promising regions of the solution space.

In general, construction methods are based on heuristics designed to extend partial

or empty solutions. These partial solutions may be extended by adding a solution

40

3. Hybrid Immunological Algorithm with Reinforcement Learning

component chosen from a finite set of solution components. In this framework, each

solution component is associated with a probability that determines its chances of being

selected to be part of the solution. These probabilities are stored in a probability matrix

and are used during the construction and reconstruction phases. This matrix evolves

at each iteration by means of reinforcement learning, depending on the contribution

that components give to the solutions.

The Weighted Feedback Vertex Set problem was used as case study to demonstrate

the application of the proposed framework, but can easily be applied to any grouping

problems for which a constructive heuristic is known. The algorithm works as follows.

First, the solutions of the initial population are generated by the function GreedyW-

FVS (or a generic randomized greedy heuristic), where all solution components have

the same probability to be part of the solution. Then, each solution is duplicated and

partially destroyed by the mutation operator, resulting in a partial solution. Starting

from this partial solution, a new complete solution is constructed using the proced-

ure GreedyWFVS, updating the probability matrix if the new solution improves the

parent one. Finally, the evolutionary cycle ends by applying the selection operator,

as described in Section 2.1.5. A high-level description of our algorithm is given in

Algorithm 3.1.

In the following sections, the three main phases of the algorithm are described in

more detail, that is the greedy construction algorithm, the destruction phase and the

probability updating procedure.

3.1.1 Greedy Construction Algorithm

The GreedyWFVS procedure takes a partial or empty solution S as input and con-

structs a complete solution, that is a feedback vertex set for the graph G(V, E). At

each construction step, this algorithm adds a solution component to the partial solu-

tion S from a finite set of solution components C. In the case of the Feedback Vertex

Set problem, C ⊂ V \ S represents the set of vertices involved in one or more cycles,

41

3. Hybrid Immunological Algorithm with Reinforcement Learning

Algorithm 3.1: Pseudo-code of Greedy-IA.
1: procedure Greedy-IA(n, d, l ρ, α, β, γ, δ, p0)
2: t← 0
3: P ← InitializeProbabilityVector()
4: P(t) ← GenerateInitialPopulation(n, P, l)
5: ComputeFitness(P(t))
6: while ¬StopCriterion do
7: P(c) ← Cloning(P(t), d)
8: P(h) ← Hypermutation(P(c), ρ)
9: P ′(t) ← GreedyWFVS(P(h), P, l)

10: ComputeFitness(P ′(t))
11: UpdateProbabilityVector(P,P(t),P ′(t), α, β, γ)
12: SmoothProbabilityVector(P, p0, δ)
13: P(t+1) ← Selection(P(t),P ′(t))
14: t← t + 1;
15: end while
16: end procedure

therefore with a degree greater than 1, in the residual graph induced by the partial

solution S, as described in Section 1.1. Note that when S is a complete solution it

holds that C = ∅. On the other hand, at the start of the algorithm, when S is empty,

it holds that C = V .

At each step, the next solution component to be added to S is selected in the

following way. First, all solution components in C are rated according to the following

greedy function defined as:

c(v) = w(v)/dS(v)τ , (3.1)

where τ is a parameter that weighs the degree of node v ∈ C with respect to the

reduced subgraph G[C] induces by the partial solution S. To diversify the search

the value of parameter τ is randomly selected from {1, 2} at the beginning of the

construction procedure. Then the algorithm selects a solution component v between

the l best candidates (l is a user-defined parameter), that is between those components

with lowest cost values, using the probability matrix P . In the case of the Feedback

Vertex Set problem, the probability matrix P can be represented as a vector, because

we have only two classes, in which pv = Pr(v ∈ S). Obviously, the probability that a

component v does not belong to solution S is given by 1− pv. In particular, to decide

42

3. Hybrid Immunological Algorithm with Reinforcement Learning

which of the l solution components to add to the solution S, the algorithm generates

a random value uniformly distributed over [0, 1]. If this random number is lower than

pvbest
, then vbest is chosen, otherwise, v is chosen uniformly at random between the

first l best candidates. Once a vertex is removed, the set of solution components C is

updated by recursively removing all the components that could no longer be part of

the solution, that is, those vertices with a degree less than 2. The solution construction

process stops when C = ∅. After a complete solution is constructed, a local refinement

procedure tries to reduce the weight of a solution by replacing one of its vertices with

a set of vertices from the residual graph (see Algorithm 2.3).

Finally, any redundant vertices are removed from the complete solution S, main-

taining the feasibility of the solution and minimizing the value of the objective function

(see Algorithm 2.2). Also in this case, the vertices of the complete solution S are rated

using the reverse greedy function in Equation 3.1 and assessed from the vertex with

the highest cost to the vertex with the lowest cost. The value of the parameter τ is

the same chosen at the beginning of the construction procedure. In Algorithm 3.2 is

shown the pseudocode of GreedyWFVS.

3.1.2 Destruction Phase

In the destruction phase, any complete S solution belonging to the offspring population,

generated by the cloning operator as described in Section 2.1.2, is partially destroyed

by removing a subset of vertices from solution S. The number of vertices to remove

from the solution S is calculated as follows:

M = ⌊(r · |S|) + 1⌋, (3.2)

with r that represents the destruction rate. The destruction rate r depends propor-

tionally on the quality of the solution and is obtained as:

r = e−f̂(S)/ρ, (3.3)

43

3. Hybrid Immunological Algorithm with Reinforcement Learning

Algorithm 3.2: Greedy procedure that creates a feedback vertex set for the graph
G(V, E, w) starting from a partial solution S and exploiting the probability vector P .

1: procedure GreedyWFVS(G(V, E, w), S, P , l)
2: C ← V \ S
3: while ∃v ∈ C : d[C](v) < 2 do
4: C ← C \ {v}
5: end while
6: τ ← rand(1, 2)
7: while C ̸= ∅ do
8: vbest ← argminu∈C w(u)/d[C](u)τ

9: if rand() < pvbest
then

10: v ← vbest

11: else
12: Let L ⊂ C contain the l vertices with the lowest cost
13: Choose v uniformly at random from L
14: end if
15: S ← S ∪ {v}
16: C ← C \ {u}
17: while ∃v ∈ C : d[C](v) < 2 do
18: C ← C \ {v}
19: end while
20: end while
21: S ← LocalSearch(S, τ)
22: S ← RemoveRedundantVertices(S, τ)
23: return S
24: end procedure

where f̂ is the fitness value of the solution S, normalized in the range [0, 1], and ρ is

the destruction shape, a parameter that determines the degree of destruction. Since

the quality of the solutions in the population is high on average, the destruction rate

considered allows maintaining the number of vertices to remove relatively low even

from the worst solutions, unlike what happens with Equation 2.2. Figure 3.1 shows

the curve of the destruction rate r for different values of ρ.

Then, the procedure removes the M vertices from the solution S in an iterative way.

Two different strategies to remove vertices have been considered. The first strategy uses

a uniform distribution in which each vertex has the same probability to be removed.

The second strategy uses a weighted distribution in which a vertex is removed with

a probability proportional to the weight-degree ratio, which is the same cost function

used in the randomized greedy construction procedure (see Equation 3.1).

44

3. Hybrid Immunological Algorithm with Reinforcement Learning

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f̂(x)

r

ρ

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Figure 3.1: Destruction rate r obtained with Equation 3.3 for different values of the
destruction shape ρ, with respect to the normalized fitness value.

Finally, the partial solution resulting S ′ from the destruction phase is then con-

structed using the procedure GreedyWFVS.

3.1.3 Probability Learning

After the destruction phase, the partial solution is reconstructed using the Greedy-

WFVS procedure used in the initial phase. In the case of the WFVS problem, and in

particular, during the greedy construction algorithm, the problem of selecting the next

node to be inserted in the solution, can be viewed as a reinforcement learning problem.

The idea behind the procedure of probability learning is to increase the probability of

selecting a vertex in the case of an improvement and decrease the probability in the

other case.

At the timestep t, let S ′ be the solution reconstructed from the solution S using

the probability vector P (t). If the new solution improves the parent one, that is if

∆(S, S ′) = f(S) − f(S ′) > 0, then the probability learning procedure is applied to

update the probability vector. Specifically, if a vertex v stays in the same set (S or

S̄ = V \ S) after the reconstruction phase, that is, it remains in solution or out of

45

3. Hybrid Immunological Algorithm with Reinforcement Learning

solution, the procedure rewards that set and update its probability pv in according to

the following equation:

pv(t + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α + (1− α)pv(t) v ∈ S ∧ v ∈ S ′

(1− α)pv(t) v /∈ S ∧ v /∈ S ′,

(3.4)

where α (0 < α < 1) is the award factor. Note that a reward for the probability to

belong to the set S̄, is equivalent to a decrease of probability to belong to the set S. On

the other hand, when a vertex is inserted into the solution or removed from the solution,

the procedure penalizes the former set and compensates the new one according to the

following equation:

pv(t + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− γ)(1− β)pv(t) v ∈ S ∧ v /∈ S ′

γ + (1− γ)β + (1− γ)(1− β)pv(t) v /∈ S ∧ v ∈ S ′,

(3.5)

where β (0 < β < 1) is the penalization factor and γ (0 < γ < 1) the compensation

factor. These probability updating rules are a modified version of the rules proposed

in [158]. Additionally, to forget some old decisions that are no longer helpful and

may mislead the construction procedure during the current search, the probabilities

are periodically reduced using a smoothing technique. The strategy to smooth the

probability vector works as follows. After the updating procedure, if the probability to

belong to the solution S of a vertex v ∈ V reaches a given threshold p0, i.e., pv(t) > p0,

it is reduced as follows:

pv(t + 1) = δ · pv(t), (3.6)

where δ (0 < δ < 1) is a smoothing coefficient. On the other hand, a reduction of the

probability to belong to the set S̄ is equivalent to an increase of probability to belong

to the set S by a factor 1− δ, that is:

pv(t + 1) = (1− δ)(1− pv(t)) + pv(t). (3.7)

46

3. Hybrid Immunological Algorithm with Reinforcement Learning

3.2 Experimental Results

In this section, all experimental results of the proposed framework are presented in

order to evaluate its effectiveness on grouping problems. All experiments were con-

ducted with the same parameter configuration. We used a population of n = 100

solutions with a duplication factor d = 1. The size of the candidates’ list used in the

construction phase was set to l = 10, while the destruction shape was set to ρ = 2.0.

The parameters of the probability learning procedure, reward (α), penalization (β) and

compensation (γ) coefficients, were set all three to 0.01. The smoothing probability

threshold and the smoothing coefficient were set to p0 = 0.95 and δ = 0.5 respectively.

The choice of these values was empirical and dictated by an initial experimental phase.

Consequently, these parameters need to be further analysed in the future.

As said before, we considered the Weighted Feedback Vertex Set problem as case

study. In particular, we focused our experiments on large instances of the benchmark

set introduced in [30] and described in Section 2.2. We decided to leave out the small

instances because the immunological algorithm Hybrid-IA already has good perform-

ances reaching the optimal value for all kinds of graphs.

In the following tables are shown all experimental results of Greedy-IA with

both strategies for the destruction phase (see Section 3.1.2). The structure of these

tables is as follows. The first five columns provide the instance identifier, the size (x

and y for grid and toroidal graphs, n and m for random and hypercube graphs) and

the lower and upper bound of the weight range (Low and Up). The sixth column

provides the best value K∗ between ITS [30], XTS [24, 52] and MA [28] algorithms.

The last four columns provide the results of Greedy-IA, where the U or the W as

subscript identify the Uniform or the Weighted destruction phase (see Section 3.1.2).

The columns labelled with Avg provide the average solution quality over the five random

instances, while the Diff columns represent the difference between the result obtained

by Greedy-IA and the best result among the three compared algorithms, that is,

Avg −K∗. The last row of each table provides the average of solution quality and the

47

3. Hybrid Immunological Algorithm with Reinforcement Learning

Average Gap Value (AGV) (see Equation 2.5 in Section 2.2.4) over the whole table.

Finally, in boldface are highlighted the results of Greedy-IA that improve, or at

least equal, the lower bound represented by K∗. Figures 3.2-3.6 show the AGV of

Greedy-IA as a function of the size of instances.

Table 3.1 shows the results of Greedy-IA for large random graphs. From these

results, we can observe that Greedy-IA reaches K∗ for 9 out of 15 high-density

instances, while for 5 out of 15 instances, the obtained results are slightly above K∗,

with a difference of at most +1.4. Only in one occasion, L_R43, Greedy-IA with the

uniform destruction operator improves K∗ (−0.4), obtaining what is most likely the

optimal solution. For low-density random instances, both versions of the Greedy-

IA algorithm have very similar performance on almost all instances. The proposed

algorithm reaches K∗ for 2 out of 15 instances (L_R1 and L_R3), and improves the fitness

value for 7 out of 15 instances. For medium-density instances, instead, Greedy-IA

obtains the best solution for 5 out of 15 instances, improving K∗ for 3 instances (L_R14,

L_R15 and L_R31). On the other hand, for low and medium instances where Greedy-

IA fails, the difference of obtained solutions from K∗ is minimal for instances with 100

vertices (+0.2) and grows slightly as the instance size increases, reaching a maximum

of +7.2 for a 500 vertices instance (L_R42). Inspecting the plot in Figure 3.2, Greedy-

IA obtains on average an AGV comparable to that obtained by MA for instances with

100 and 200 vertices, and always lower for larger instances, i.e., with 300, 400 and 500

vertices.

The experimental results of Greedy-IA for large toroidal graphs are reported

in Table 3.2. For these graphs, Greedy-IA obtains the best solution for 11 out of

15 instances. Both destruction strategies adopted, Greedy-IAU and Greedy-IAW,

obtain similar results for instances with 100 and 196 vertices, reaching K∗ for L_T2,

L_T5 and L_T6, while the maximum difference of +1.6 and +1.8 from K∗ is obtained for

the instance L_T1. For all instances with 289, 400 and 529 vertices, both versions of the

proposed algorithm have similar performance. Greedy-IA obtains the best solution

for almost all instances, with an improvement that slightly increases as the instance

48

3. Hybrid Immunological Algorithm with Reinforcement Learning

Table 3.1: Results of Greedy-IA on large instances of random graphs.

Instance Greedy-IAU Greedy-IAW

Id n m Low Up K∗ Avg. Diff. Avg. Diff.
L_R1 100 247 10 25 498.4 498.4 +0.0 498.4 +0.0
L_R2 100 247 10 50 836.8 835.0 -1.8 835.4 -1.4
L_R3 100 247 10 75 1207.6 1207.6 +0.0 1207.6 +0.0
L_R4 100 841 10 25 826.8 826.8 +0.0 826.8 +0.0
L_R5 100 841 10 50 1724.4 1724.4 +0.0 1724.4 +0.0
L_R6 100 841 10 75 2420.6 2420.8 +0.2 2420.8 +0.2
L_R7 100 3069 10 25 1134.0 1134.0 +0.0 1134.0 +0.0
L_R8 100 3069 10 50 2179.0 2179.0 +0.0 2179.0 +0.0
L_R9 100 3069 10 75 3228.6 3228.6 +0.0 3228.6 +0.0
L_R10 200 796 10 25 1468.2 1465.2 -3.0 1466.6 -1.6
L_R11 200 796 10 50 2399.0 2400.2 +1.2 2401.0 +2.0
L_R12 200 796 10 75 3089.6 3090.2 +0.6 3092.0 +2.4
L_R13 200 3184 10 25 1986.2 1987.0 +0.8 1987.0 +0.8
L_R14 200 3184 10 50 3650.6 3649.4 -1.2 3652.8 +2.2
L_R15 200 3184 10 75 5135.8 5135.6 -0.2 5144.0 +8.2
L_R16 200 12139 10 25 2447.8 2448.6 +0.8 2448.0 +0.2
L_R17 200 12139 10 50 4148.6 4148.6 +0.0 4149.6 +1.0
L_R18 200 12139 10 75 5528.4 5528.8 +0.4 5528.8 +0.4
L_R19 300 1644 10 25 2045.4 2044.6 -0.8 2045.0 -0.4
L_R20 300 1644 10 50 4175.4 4176.6 +1.2 4176.6 +1.2
L_R21 300 1644 10 75 6065.2 6067.8 +2.6 6069.6 +4.4
L_R22 300 7026 10 25 3203.0 3204.2 +1.2 3206.4 +3.4
L_R23 300 7026 10 50 6211.0 6218.8 +7.8 6213.8 +2.8
L_R24 300 7026 10 75 8585.4 8587.8 +2.4 8590.2 +4.8
L_R25 300 27209 10 25 3726.6 3727.0 +0.4 3727.0 +0.4
L_R26 300 27209 10 50 5734.8 5734.8 +0.0 5734.8 +0.0
L_R27 300 27209 10 75 10467.0 10467.0 +0.0 10467.0 +0.0
L_R28 400 2793 10 25 2989.6 2992.0 +2.4 2989.0 -0.6
L_R29 400 2793 10 50 6410.0 6413.4 +3.4 6413.8 +3.8
L_R30 400 2793 10 75 8597.2 8590.6 -6.6 8588.6 -8.6
L_R31 400 12369 10 25 4428.8 4429.4 +0.6 4427.0 -1.8
L_R32 400 12369 10 50 6785.8 6787.4 +1.6 6789.0 +3.2
L_R33 400 12369 10 75 10599.4 10600.8 +1.4 10600.8 +1.4
L_R34 400 48279 10 25 5060.4 5060.6 +0.2 5061.0 +0.6
L_R35 400 48279 10 50 7106.8 7106.8 +0.0 7106.8 +0.0
L_R36 400 48279 10 75 15103.2 15103.2 +0.0 15103.2 +0.0
L_R37 500 4241 10 25 4056.4 4054.6 -1.8 4053.0 -3.4
L_R38 500 4241 10 50 7170.4 7180.8 +10.4 7170.0 -0.4
L_R39 500 4241 10 75 11135.6 11137.8 +2.2 11138.8 +3.2
L_R40 500 19211 10 25 5724.2 5725.2 +1.0 5728.8 +4.6
L_R41 500 19211 10 50 7677.8 7680.6 +2.8 7684.4 +6.6
L_R42 500 19211 10 75 14124.8 14132.0 +7.2 14132.2 +7.4
L_R43 500 75349 10 25 6361.6 6361.2 -0.4 6362.0 +0.4
L_R44 500 75349 10 50 8668.4 8668.4 +0.0 8668.4 +0.0
L_R45 500 75349 10 75 16932.4 16933.8 +1.4 16933.8 +1.4
AVG 5401.27 5402.12 +0.85 5402.35 +1.08

49

3. Hybrid Immunological Algorithm with Reinforcement Learning

0

10

20

30

40

50

100 200 300 400 500

|V |

A
ve
ra
ge

G
ap

V
al
u
e

Greedy-IAU Greedy-IAW ITS MA XTS

Figure 3.2: The average gap value of Greedy-IA on the large random graphs.

Table 3.2: Results of Greedy-IA on large instances of toroidal graphs.

Instance Greedy-IAU Greedy-IAW

Id x y Low Up K∗ Avg. Diff. Avg. Diff.
L_T1 10 10 10 25 388.0 389.6 +1.6 389.8 +1.8
L_T2 10 10 10 50 457.6 457.6 +0.0 457.6 +0.0
L_T3 10 10 10 75 504.6 504.8 +0.2 504.8 +0.2
L_T4 14 14 10 25 748.8 749.2 +0.4 749.6 +0.8
L_T5 14 14 10 50 874.4 874.4 +0.0 876.4 +2.0
L_T6 14 14 10 75 1016.2 1016.2 +0.0 1016.2 +0.0
L_T7 17 17 10 25 1102.8 1103.8 +1.0 1102.0 -0.8
L_T8 17 17 10 50 1304.4 1304.2 -0.2 1305.2 +0.8
L_T9 17 17 10 75 1498.6 1500.4 +1.8 1498.4 -0.2
L_T10 20 20 10 25 1539.6 1536.2 -3.4 1537.0 -2.6
L_T11 20 20 10 50 1795.4 1795.6 +0.2 1794.8 -0.6
L_T12 20 20 10 75 2033.0 2034.4 +1.4 2034.4 +1.4
L_T13 23 23 10 25 2034.8 2035.8 +1.0 2031.8 -3.0
L_T14 23 23 10 50 2406.4 2403.8 -2.6 2404.6 -1.8
L_T15 23 23 10 75 2697.2 2696.8 -0.4 2698.2 +1.0
AVG 1360.12 1360.19 +0.07 1360.05 -0.07

size increases (from −0.2 for L_T8 to −3.0 for L_T13). For L_T12, both versions of the

algorithm reach a solution greater +1.4 than K∗. From Figure 3.3, the AGV obtained

by Greedy-IA is less than 1.0 for instances with 100 and 196 vertices, and decreases

as the instance size increases, reaching negative values for instances with 400 and 529

vertices.

50

3. Hybrid Immunological Algorithm with Reinforcement Learning

0.0

2.5

5.0

7.5

100 196 289 400 529

|V |

A
ve
ra
ge

G
ap

V
al
u
e

Greedy-IAU Greedy-IAW ITS MA XTS

Figure 3.3: The average gap value of Greedy-IA on the large toroidal graphs.

Table 3.3 shows the experimental outcomes for large hypercube graphs. Also, in

this case, both versions of the algorithm Greedy-IA have very similar performance

for instances with 128 and 256 vertices. Both destruction strategies achieve slightly

higher solutions than K∗, with a similar difference, except for the instance L_H4, where

Greedy-IAU obtain the best solution (−0.2). On the other hand, for instances with

512 vertices, the situation is the opposite. Greedy-IAU and Greedy-IAW achieve

the best results by improving the K∗ for all three weight ranges, with a maximum

increment of −16.4 for L_H8 obtained by Greedy-IAW. The AGV in Figure 3.4

reflects the results shown in Table 3.3. The AGV of Greedy-IA is comparable to

that obtained by MA for instances with 128 and 256 vertices, with a gap between 1.0

and 2.0, while it is negative for instances with 512 vertices.

Finally, in Tables 3.4 and 3.5 are reported the results of Greedy-IA for large

squared and not squared grid graphs. From these results it can be noted as the al-

gorithm, with both destruction strategies, significantly improves the lower bound K∗.

In particular, Greedy-IA obtains the best solution in 15 out of 15 squared grid in-

stances and in 14 out of 15 not squared grid instances. Only in one case, the algorithm

does not achieve the best solution, i.e., for L_NG2, with a difference of +0.2 for both

algorithms. For instances with 400 and 390 vertices, the biggest improvement is for

51

3. Hybrid Immunological Algorithm with Reinforcement Learning

Table 3.3: Results of Greedy-IA on large instances of hypercube graphs.

Instance Greedy-IAU Greedy-IAW

Id n m Low Up K∗ Avg. Diff. Avg. Diff.
L_H1 128 448 10 25 731.8 733.8 +2.0 733.8 +2.0
L_H2 128 448 10 50 1066.8 1068.6 +1.8 1069.4 +2.6
L_H3 128 448 10 75 1161.6 1162.4 +0.8 1162.4 +0.8
L_H4 256 1024 10 25 1487.4 1487.2 -0.2 1487.8 +0.4
L_H5 256 1024 10 50 2279.6 2281.8 +2.2 2282.6 +3.0
L_H6 256 1024 10 75 2572.4 2573.2 +0.8 2573.2 +0.8
L_H7 512 2304 10 25 3119.0 3116.8 -2.2 3116.6 -2.4
L_H8 512 2304 10 50 4852.2 4842.0 -10.2 4835.8 -16.4
L_H9 512 2304 10 75 5553.4 5550.2 -3.2 5551.8 -1.6
AVG 2536.02 2535.11 -0.91 2534.82 -1.20

0

20

40

60

128 256 512

|V |

A
ve
ra
ge

G
ap

V
al
u
e

Greedy-IAU Greedy-IAW ITS MA XTS

Figure 3.4: The average gap value of Greedy-IA on the large hypercube graphs.

instances with weight range [10, 75], L_SG12 and L_NG12, with a difference of −27.8

and −35.8 respectively. For the other ranges, [10, 25] and [10, 50], the improvement is

smaller. Same situation for instances with 529 and 493 vertices, where the best solution

increment occurs for instances with weight range [10, 75], L_SG15 (−44.2) and L_NG15

(−72.8). From the plots in Figures 3.5-3.6, Greedy-IA obtains a negative AGV for

both kinds of graphs, with a gap from K∗ that increases as the instance size increases.

In the overall, from the results reported in Tables 3.1-3.5 and Figures 3.2-3.6,

Greedy-IA with both destruction strategies has similar performance on all tested

52

3. Hybrid Immunological Algorithm with Reinforcement Learning

Table 3.4: Results of Greedy-IA on large instances of squared grid graphs.

Instance Greedy-IAU Greedy-IAW

Id x y Low Up K∗ Avg. Diff. Avg. Diff.
L_SG1 10 10 10 25 566.8 567.0 +0.2 566.6 -0.2
L_SG2 10 10 10 50 947.0 946.4 -0.6 945.8 -1.2
L_SG3 10 10 10 75 1557.8 1557.4 -0.4 1556.8 -1.0
L_SG4 14 14 10 25 1206.4 1205.0 -1.4 1204.6 -1.8
L_SG5 14 14 10 50 2007.8 2003.8 -4.0 2002.6 -5.2
L_SG6 14 14 10 75 3399.2 3393.4 -5.8 3392.8 -6.4
L_SG7 17 17 10 25 1829.4 1820.2 -9.2 1823.2 -6.2
L_SG8 17 17 10 50 3051.4 3050.8 -0.6 3051.0 -0.4
L_SG9 17 17 10 75 5071.2 5062.0 -9.2 5065.2 -6.0
L_SG10 20 20 10 25 2602.2 2594.4 -7.8 2591.6 -10.6
L_SG11 20 20 10 50 4299.8 4290.2 -9.6 4290.0 -9.8
L_SG12 20 20 10 75 7240.4 7212.6 -27.8 7215.2 -25.2
L_SG13 23 23 10 25 3453.6 3444.2 -9.4 3441.8 -11.8
L_SG14 23 23 10 50 5831.4 5820.8 -10.6 5814.2 -17.2
L_SG15 23 23 10 75 9681.0 9645.8 -35.2 9636.8 -44.2
AVG 3516.36 3507.60 -8.76 3506.55 -9.81

-20

-10

0

10

20

30

100 196 289 400 529

|V |

A
ve
ra
g
e
G
ap

V
al
u
e

Greedy-IAU Greedy-IAW ITS MA XTS

Figure 3.5: The average gap value of Greedy-IA on the large squared grid graphs.

random instances, with solutions that differ from K∗ on average by +0.85 for Greedy-

IAU and +1.08 for Greedy-IAW. The same considerations can be done for toroidal

instances, where both destruction strategies are equivalent, obtaining on average res-

ults that differ slightly from K∗, +0.07 for the uniform and −0.07 for the weighted.

For the hypercube graphs, Greedy-IA obtains on average a negative AGV (−0.91 for

53

3. Hybrid Immunological Algorithm with Reinforcement Learning

Table 3.5: Results of Greedy-IA on large instances of not squared grid graphs.

Instance Greedy-IAU Greedy-IAW

Id x y Low Up K∗ Avg. Diff. Avg. Diff.
L_NG1 13 7 10 25 512.2 511.6 -0.6 512.2 +0.0
L_NG2 13 7 10 50 803.4 803.6 +0.2 803.6 +0.2
L_NG3 13 7 10 75 1382.8 1382.4 -0.4 1382.0 -0.8
L_NG4 18 11 10 25 1204.6 1202.0 -2.6 1203.8 -0.8
L_NG5 18 11 10 50 2041.2 2040.4 -0.8 2038.6 -2.6
L_NG6 18 11 10 75 3417.4 3411.4 -6.0 3409.8 -7.6
L_NG7 23 13 10 25 1923.8 1919.0 -4.8 1919.6 -4.2
L_NG8 23 13 10 50 3178.2 3172.6 -5.6 3176.4 -1.8
L_NG9 23 13 10 75 5258.0 5249.0 -9.0 5252.8 -5.2
L_NG10 26 15 10 25 2522.6 2516.4 -6.2 2515.8 -6.8
L_NG11 26 15 10 50 4144.2 4142.0 -2.2 4142.6 -1.6
L_NG12 26 15 10 75 7031.4 7005.4 -26.0 6995.6 -35.8
L_NG13 29 17 10 25 3255.0 3241.2 -13.8 3246.0 -9.0
L_NG14 29 17 10 50 5410.8 5399.8 -11.0 5398.0 -12.8
L_NG15 29 17 10 75 8953.0 8886.0 -67.0 8880.2 -72.8
AVG 3402.57 3392.19 -10.39 3391.80 -10.77

-30

-20

-10

0

10

20

91 198 299 390 493

|V |

A
ve
ra
g
e
G
ap

V
al
u
e

Greedy-IAU Greedy-IAW ITS MA XTS

Figure 3.6: The average gap value of Greedy-IA on the large not squared grid
graphs.

Greedy-IAU against −1.20 Greedy-IAw), with a net improvement on instances with

512 vertices. Finally, Greedy-IA achieves the best results for almost all grid graphs,

with an average improvement of −9.81 and of −10.77 on squared and not squared grid

instances respectively.

54

3. Hybrid Immunological Algorithm with Reinforcement Learning

3.3 Conclusions

In this section, we have presented a generalized evolutionary framework based on a

greedy population combined with reinforcement learning techniques to solve grouping

problems. The proposed algorithm, Greedy-IA, is based on an Immunological Al-

gorithm that maintains a population of solutions generated with a randomized greedy

procedure. At each iteration, these solutions are repeatedly improved by alternating a

phase of destruction and reconstruction, while probability learning exploits useful in-

formation from visited local optima to guide the search process toward new promising

regions of the search space.

To evaluate the proposed algorithm, we have considered the Weighted Feedback

Vertex Set as a case study, a well-known combinatorial optimization problem with

several real applications. From the analysis of experimental results, the proposed

algorithm outperforms the other compared algorithms on the grid instances of the

benchmark dataset, while it has comparable performance on random, toroidal and

hypercube instances. Moreover, since the initial setting of the fundamental parameters

is arbitrary, the proposed algorithm has great room for improvement.

In future work, we plan to investigate in more detail how the updating rules affect

the probabilities of the solution components during the evolutionary process. Further-

more, we would like to apply the proposed framework to other combinatorial optimiz-

ation problems.

55

4
Community Detection

In the modern interdisciplinary sciences, complex networks are a powerful interpret-

ation tool useful for the analysis and representation of a wide number of real-world

systems and are widely involved in many areas, such as for instance neuroscience,

biology, social sciences, economics, and physics. With this graph-based model, it is

possible to represent connections and interactions of the underlying entities, where

vertices are the elementary parts of the real systems, while edges represent their mu-

tual interactions [108, 18]. Complex networks may contain specific groups of highly

interconnected vertices organized in compartments or structure, where each of them

has a role and/or a function that satisfy a specific property of cohesion. In terms of

graph theory, compartments are represented by partitions of the set of nodes with high

internal links density, called communities or modules, which are loosely associated with

other groups [66, 62].

Finding compartments in a graph-theoretic context is a fundamental issue in the

study of network systems, in which often they exhibit significantly different functions

and, therefore, a global analysis of the network would be inappropriate and imprac-

56

4. Community Detection

tical. A detailed analysis of individual communities, instead, may shed some light

on the organization of systems and leads to more significant insights into the roles of

individuals. This approach can also allow the visualization and analysis of large and

complex networks focused on a new higher-level structure, in which each identified

community can be compressed into a node belonging to the latter.

Community detection is one of the most important research topics in network sci-

ence and graph analysis, as it allows to understand the dynamics of a complex net-

work at different scales [66, 75, 55], such as for instance connections and interactions

between underlying entities, and, consequently, uncover important information that

become useful and crucial in many application areas. For instance, the modules detec-

ted by biological networks [9] are generally responsible for a common phenotype and

are useful in providing insights related to biological functionality. Disease phenotypes

are generally caused by the failure of groups of genes that are referred to as the disease

form. Since the genes responsible for a phenotype often have common functions, there

is a strong association between pathological and functional modules [69, 5, 8]. The

detection of modules within biological networks, generally responsible for a common

phenotype, is useful and crucial in providing insights into the biological functional-

ity of these genes. The techniques that allow the identification of modules, known as

community detection techniques, are methods that play a key role in obtaining the

functional modules which appear to be closely related to pathological forms, the re-

cognition of which would be useful for the molecular understanding and etiology of the

disease. From this would arise the development of specific drugs whose targets would

be the genes belonging to these modules.

The aim of community detection in graphs is to identify the modules and their

hierarchical organization, by using only the information encoded in the graph topo-

logy [115, 62, 105]. In particular, it refers to the division of the nodes of a network

into groups such that connections are dense within groups but sparser between them.

In other words, a cluster corresponds to a set of nodes with more edges inside the set

than to the rest of the graph. Although not all networks support such divisions, the

57

4. Community Detection

existence of good divisions is often taken as evidence of underlying structure or possible

interactive behaviours, making community detection a useful tool to understand how

complex networks are structured and work.

Community detection problem gained the attention of scientist communities to

bring valuable explanations to complex network analysis. For example, in biology,

applying graph clustering methods on relations among genes or proteins, modelled by

networks (Protein-Protein Interaction Network) is possible thanks to group proteins

having the same specific patterns and mechanisms operating within the cell [32], or

through analysis of the network produced by neuron interactions, understanding the

functional architecture of the brain [51]. In the same way, it is possible to identify,

in information networks, clusters of web pages that share some common topics and

similarities in a given social network to find individuals with common interests or

friendships. However, modelling and examining complex systems is a very difficult

process because the systems used for the real-world data representation contain highly

important information: social relationships among people or information exchange

and interactions between molecular structures. It follows, then, that the study of

community structures in a network is a central issue in better understanding such

dynamics, and, for this, it has inspired intense research activities. Indeed, detecting

highly linked communities can lead to many benefits, such as understanding how the

elements of a network interact and affect each other. Informally, a community in a

network is defined as a set of elements that are highly linked within the group and

weakly linked to the outside.

A plethora of diverse algorithms and techniques have been proposed for the de-

tection of the communities in real-world networks [106, 107]. They differ from one to

the other in criteria implementations for solving community detection problem. They

differ also in defining criteria for the identification of communities. These approaches

have been applied successfully in different domains of applications and many real-world

areas (such as biological, chemical, ecological, economic, political, social, etc.).

58

4. Community Detection

4.1 Modularity Optimization

Community detection is then a powerful tool for understanding the structure of com-

plex networks, and ultimately extracting useful information from them. Note that a

close connection implies a faster rate of information transmission, instead of a loosely

connected community. On the one hand, a network is represented by a number of in-

dividual nodes connected by edges, with a certain degree of interaction between some

nodes; on the other hand, communities are defined as groups of nodes, densely inter-

connected, but in sparse order with the rest of the network.

Modularity proposed by Newman et al. [109], is an evaluation measure commonly

used for assessing the quality of node partitions detected in a network. Hence, the

community detection problem can be easily summed up in finding clustering that max-

imized Q, whose decision version has been proved to be a NP-complete problem [23].

Originally defined for undirected graphs, has been subsequently extended to directed

and weighted graphs [106].

Modularity maximization is one of the most popular and widely used methods for

community partition. It detects communities by searching over possible partitions of

a graph, over which modularity is maximized. The modularity is based on the idea

that a random graph is not expected to have a community structure, therefore, the

possible existence of communities can be revealed by the difference of density between

vertices of the graph and vertices of a random graph with the same size and same

degree distribution.

Formally modularity is defined as follows: given an undirected graph G = (V, E),

with V the set of vertices (|V | = N), and E the set of edges (|E| = M), the modularity

of a community is defined by:

Q = 1
2M

⎡⎣ N∑︂
i=1

N∑︂
j=1

(︃
Aij −

didj

2M

)︃
δ(i, j)

⎤⎦, (4.1)

where A is the adjacency matrix of G, di and dj are the degrees of nodes i and j

59

4. Community Detection

respectively; δ(i, j) = 1 if i and j belong to the same community, 0 otherwise.

As asserted in [23], the modularity value for unweighted and undirected graphs lies

in the range [−0.5, 1], therefore, a low Q value (close to the lower bound) reflects a

bad graph partitioning, and implies the absence of real communities; good partitions

are instead identified by a higher modularity value that implies the presence of highly

cohesive communities. For a trivial clustering, with a single cluster, the modularity

value is 0. Interestingly, the modularity has the tendency to produce large communities

and, therefore, fails in detecting communities that are comparatively small with respect

to the network [63]. Taking into account the Q modularity as an evaluation measure,

community detection can easily be seen as a combinatorial optimization problem as

the problem aims to find a clustering that maximizes Q.

60

5
Stochastic Immunological

Algorithm

Immune-inspired computation nowadays represents a large and established family of

successful algorithms that take inspiration from the mechanisms and dynamics of the

immune system with which it protects living organisms. What makes the immune

system source of inspiration from an algorithmic perspective is its ability to detect, re-

cognize, and distinguish entities own to the organism from foreign ones, together with

its ability to learn new information and remember those foreign entities already recog-

nized. Three principal theories are at the basis of the immune-inspired algorithms: (1)

clonal selection [42, 111] (2) negative selection [64, 113]; and (3) immune networks [131].

Among these, what has proven to be quite efficient is the one based on the clonal se-

lection principle (called Clonal Selection Algorithms – CSA) [45, 44] mostly in search

and optimization applications.

61

5. Stochastic Immunological Algorithm

5.1 The Proposed Method

The proposed immune algorithm, Opt-IA, belongs then to this last class of algorithms,

and is based on three main immune operators: (i) static cloning, whose aim is to

generate a new population based on the highest fitness values; (ii) hypermutation, that

explores the neighbourhood of each point of the search space; and (iii) stochastic aging,

which removes solutions from the current population via a stochastic law, helping then

Opt-IA in escaping from local optima. In addition to these, some diversification

strategies have been also designed, whose aim is to keep high and proper diversity in

the population and to perform an appropriate exploration of the search space. The

Opt-IA algorithm is based on two main concepts, following the biological metaphor:

the antigen (Ag), which represents the problem to be solved, and the antibody (Ab),

or B cell that is instead a solution for the problem to be solved.

At each timestep t, Opt-IA maintains a population of size d of B cells (P (t)),

and each B cell Ab represents a subdivision of the vertices of the graph G = (V, E)

in communities. In details, if n is the cardinality of the set of vertices V , a B cell

x⃗ = {x1, . . . , xn} will be a sequence of n integers, between 1 and n, where xi = j

indicates that the vertex i belongs to the community j. A description of Opt-IA is

summarized in the pseudo-code shown in Algorithm 5.1. The proposed algorithm takes

as input: the network from which to detect the communities (G); population size (d);

the number of copies to be generated for each B cell (dup); the mutation rate (M); the

probability that an element will be removed from the population by the aging operator

(Pdie), and the maximum number of generations allowed (Tmax). It returns as output

the communities detected and the relative community number, as well as the best,

mean, worst and standard deviation (StD) of the modularity used for the comparisons.

As a first step, i.e. at the timestep t = 0, Opt-IA randomly generates d solu-

tions using the uniform distribution, creating then the initial population P (t=0) (line

3 of Algorithm 5.1): any vertex is assigned to a community, randomly chosen in the

range [1, n], with n = |V |. In this way, many communities with few assigned vertices

62

5. Stochastic Immunological Algorithm

Algorithm 5.1: Pseudo-code of the stochastic immunological algorithm Opt-IA.
1: procedure Opt-IA(G, d, dup, M , Pdie, Tmax)
2: t← 0
3: P (t) ← InitializePopulation(d)
4: ComputeFitness(P (t))
5: repeat
6: P (clo) ← Cloning(P (t), dup)
7: P (mut) ← Hypermutation(P (clo), M)
8: ComputeFitness(P (mut))
9: P (agi) ← StochasticAging(P (t), Pdie)

10: P (pre) ← Precompetition(P (agi))
11: P (t+1) ← (µ + λ)−Selection(P (pre), P (mut))
12: t← t + 1
13: until (termination criterion is satisfied)
14: end procedure

will be generated; it will be the task of the developed hypermutation operator (see

Section 5.1.2) to compact the communities. Once the population is initialized, the

next step is to evaluate the fitness function for each B cell x⃗ ∈ P (t) by the function

ComputeF itness(P (t)) (line 4 of Algorithm 5.1). In this research work, for each B cell

x⃗, such function simply computes the value given by Equation 4.1.

After the initialization of the population, and the computation of the fitness of each

generated solution, the artificial evolution process begins, where the key operators take

place. As in any evolutionary algorithms, Opt-IA will end its evolution process once a

termination criterion is reached, which has been fixed in our experiments to a maximum

number of generations allowed (TMax).

5.1.1 The Cloning Operator

The first immune operator to be performed is the cloning operator (line 6 of Al-

gorithm 5.1), which has the main goal of producing a new population with higher

affinities (i.e. fitness values), and together with the hypermutation perform a careful

local search. Just as it happens in nature that all those cells able to better recognize

foreign entities will generate more copies of them, the cloning operator duplicates all

those solutions that seem to be promising: simply it copies/clones dup times each ele-

63

5. Stochastic Immunological Algorithm

ment of the population, creating a new intermediate population P (clo) of dimensions

d × dup. It was developed a static version of the cloning operator, unlike what really

happens in biology1, because this shows the disadvantage to guide easily and quickly

the algorithm towards local optima. Furthermore, to avoid premature convergence, we

also made dup independent from the fitness function value of the B cell. In a nut-

shell, if we had chosen to increase the number of clones for high-fitness elements, we

would have achieved quickly a very homogeneous population, causing in turn a poor

exploration of the search space.

5.1.2 The Hypermutation Operator

The hypermutation operator (line 7 of Algorithm 5.1) acts on each element of the

population P (clo) performing M mutations with the main aim to explore the search

space, and the neighbourhood of all solutions found so far. Similarly to the parameter

dup, also the mutation rate M is a user-defined parameter and is not related to the

fitness function of the solution, to avoid possible premature convergence. Importantly,

unlike classical evolutionary algorithms, no mutation probability was considered. Fur-

thermore, the introduction of blind mutations produces individuals with higher affinity

(i.e. higher fitness function values), which will be then selected to form improved ma-

ture progenies. In this research work different types of mutation operators have been

developed, which can act on a single vertex in the solution, like a local operator, or

on a group of vertices, like a global operator: equiprobability, existing, total random,

destroy and fuse operators.

Equiprobability operator. This mutation operator is locally applied and tries to find

a better neighbour not yet explored. Simply, it randomly selects a vertex i, and a

community cj among those existing at that moment, and, of course, different from

the one to which i belongs (i.e. ci ̸= cj), and, then, the vertex i is moved into the

community cj.
1In nature, the number of clones produced for a B cell is proportional to its ability to detect and

recognise the Ag.

64

5. Stochastic Immunological Algorithm

Existing operator. This mutation operator, randomly selects a vertex i and moves

it to the community cj, where j is a randomly selected vertex belonging to a different

community of i, that is ci ̸= cj. In this way, the larger the size of community cj, the

greater the probability that vertex i will be assigned to that community.

Total Random operator. This operator, like the equiprobability operator, randomly

selects a vertex i, and a community cj among the n = |V | possible.

Destroy operator. This operator works through a more global perspective than the

first operator, as it acts directly on the communities rather than the single vertices.

It is carried out as follows: two different communities are randomly selected, ci and

cj, which are, respectively, the community from where the vertices will be moved; and

the one that will receive such vertices. In particular, ci is selected among the currently

existing communities, whilst cj is randomly assigned a value in the range [1, n], with

n = |V |. Note that this means that cj could have a value that does not correspond

to any existing community. After that, a probability is randomly chosen, between 1%

and 50%, and on the basis of this probability, every vertex in ci will move into cj. As

already said, if cj is among the existing ones, then the new vertices will increase the

community itself; otherwise, a new community is created and added to the others.

Fuse operator. This last operator has the main aim to try to reduce and compact

the communities. Thus, it chooses randomly two different communities ci and cj and

moves all vertices belonging to ci into the community cj, decreasing consequently by

one the number of communities.

The effectiveness and efficiency of these mutation operators have already been

proven in [132] through a comparative analysis (Figure 5.1). In particular, the first two

have proven useful in improving the modularity function value, and in escaping to local

optima; the fuse operator, instead, albeit does not offer good results individually, also

has been taken into account since its goal is to aggregate communities. Trying then to

take advantage of the characteristics of each operator, the equiprobability and destroy

operators are applied with the same probability, while the last with low probability for

the above reasons (around 49.5%, 49.5%, and 1%).

65

5. Stochastic Immunological Algorithm

M = 1 M = 2 M = 3

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0.0

0.1

0.2

0.3

0.4

0.5

Iterations

F
it
n
es
s

Destroy Equiprobability Existing Fuse TotalRandom

Figure 5.1: A comparative analysis on the performances of some mutation operators
designed for community detection.

Finally, once the hypermutation was performed, and, then modify all the cloned

solutions, for each mutated B cell is computed its fitness value through the function

ComputeF itness(P (t)).

5.1.3 Aging, Precompetition and Selection Operators

The aging operator has the main goal of helping the algorithm in jumping out of

local optima and keep a high diversity inside the population. In this research work,

the stochastic aging operator (line 9 of Algorithm 5.1) has been developed that guides

Opt-IA to reduce premature convergences as much as possible. In detail, the elements

of the population are removed at each iteration with a Pdie probability, which is a user-

defined parameter. Diversification of solutions in a population is a crucial feature to

avoid getting trapped into local optima. However, this can also become a limitation in

carrying out a careful, and accurate exploration of their neighbourhoods, which also

plays a key role in the success of the algorithm. Thus, in order to have the right

balance between these two key features, the stochastic aging is applied only to the

P (t) population. In this way, diversity will be introduced in the population of the best

current solutions, which will then compete with their offspring in generating the new

population of the next generation; whilst the B cells in P (mut) will have the task of

66

5. Stochastic Immunological Algorithm

properly exploring the neighbourhoods.

After the aging operator, to strengthen heterogeneity in the population P (t), a pre-

competition step (line 10 of Algorithm 5.1) has been developed, which simply randomly

selects two different B cells from P (t): if the two solutions, although different, have the

same number of communities, then the one with lower fitness value will be removed

from P (t) with a 50% probability. This strategy allows, thus, to maintain a more

heterogeneous population during the evolutionary cycle, maintaining solutions with a

different number of communities, in order to better explore the search space.

The last operator before the end of the iteration is the creation of the new population

for the next timestep t + 1. In Opt-IA, the (µ + λ)-selection operator (line 11 of

Algorithm 5.1) has been developed, which selects the best d B cells from the two

populations P (pre) and P (mut), without fitness repetitions. This selection operator,

with µ ≤ d and λ = (d × dup), identifies the best µ = d elements from the offspring

set (P (mut)), and old parent B cells (P (pre)), therefore ensuring monotonicity in the

evolution dynamics. If two selected elements have the same fitness, then, only one of

them will be chosen randomly.

5.2 Behaviour Analysis

In this section, we study the features of Opt-IA and analyse its behaviour in order to

prove its efficiency and reliability. We start by describing the data sets, i.e. the complex

networks used for our studies and comparisons, along with the experimental protocol

adopted for all the performed tests. Likewise, we show the experimental tuning on

the population size, mutation rate and aging probability. Then, once the best setting

of Opt-IA’s parameters is determined, we show its dynamics and learning abilities.

Finally, we present the analysis of the time complexity of Opt-IA via the well-known

Time-To-Target plots, which are a classical methodology for running time analysis for

any stochastic algorithm.

67

5. Stochastic Immunological Algorithm

Table 5.1: Social and biological network instances used in the experiments.

Name Type |V | |E| ∆(G)
Grevy’s Zebras social-ecological 28 111 29.37%
Zachary’s Karate Club social 34 78 13.90%
Bottlenose Dolphins social-ecological 62 159 8.41%
Books about US Politics social 105 441 8.08%
American College Football social 115 613 9.35%
Jazz Musicians social 198 2742 14.06%
Cattle PPI biological 268 303 0.85%
E. coli TRN biological 418 519 0.60%
C. elegans MRN biological 453 2025 1.98%
H. pylori PPI biological 724 1403 0.54%
E. coli MRN biological 1039 4741 0.88%
S. cerevisiae PPI (1) biological 2018 2705 0.13%
S. cerevisiae PPI (2) biological 2284 6646 0.25%

5.2.1 Datasets and Experimental Protocol

The Opt-IA algorithm, presented in Section 5.1, has been tested and studied on eight

different real-world networks, which include six biological, and six social networks.

These networks are related to two different areas and are obtained from real-world

systems. Features and size of each network are detailed in Table 5.1.

More in detail, we considered six social networks: a small size network, called

Zachary’s Karate Club, and two larger ones, respectively called Books about US politics

and American College Football. The Zachary’s Karate Club network represents the

friendships between members of a university’s karate club in the US over a period of

2 years [154]. It has come to be a standard test network for clustering algorithms.

Each vertex represents a member of the club and each edge represents the relationship

between the two corresponding members of the club. The network called American

College Football was presented in [66] and represents the football match schedule for

the 2000 season. Vertices in the graph represent the teams, while edges represent

regular season games between the two corresponding teams. In the Books about US

politics network, the vertices represent the books on American politics purchased from

amazon.com, while edges connect pairs of books which are frequently co-purchased.

68

5. Stochastic Immunological Algorithm

The books in this network, compiled by V. Krebs [88], were classified by Newman [105]

into liberal or conservative categories, with the exception of a small number of books

without a clear ideological bias. Jazz Musicians [67] is the collaboration network

between Jazz musicians. Each vertex is a Jazz musician and an edge denotes that

two musicians have played together in a band.

We also took into consideration two different types of networks, which identify

social-ecological networks, called respectively Bottlenose Dolphins [98] and Grevy’s

Zebras [135]. Bottlenose dolphins are aquatic mammals in the genus Tursiops. The

network is built from a community of bottlenose dolphin community living in New

Zealand and observed between 1994 and 2001. Edges denote frequent association. In

the Grevy’s Zebras network, edges represent the interactions between two Equus grevyi

(vertex in the network) if they existed between them during the study.

Finally, six biological networks were also considered, namely: E. coli transcrip-

tion [129], C. elegans metabolic reaction [57], Cattle protein–protein interactions [31],

H. pylori protein-protein interactions [149, 116], E. coli metabolic reaction [123], and

two S. cerevisiae protein–protein interactions networks [153, 25]. In particular, in the

gene expression E. coli TRN network, which is a commonly used benchmark, the ver-

tices represent operons, i.e. functioning units of DNA containing a cluster of genes,

and edges are directed from a gene that encodes a transcription factor to a gene that

it directly regulates it [129].

Overall, all these networks, social and biological data in real work systems, are

well-known and commonly used datasets for evaluating the efficacy and efficiency of

designed algorithms for the community detection problem.

All the performed experiments were carried out on 30 independent runs, whilst the

considered stopping criterion was fixed at a maximum number of generations allowed

(Tmax = 4 × 103). Since Opt-IA is basically a blind search algorithm, it follows that

without knowledge about the domain and without the inclusion of any deterministic

refinement approach, obviously Opt-IA must evolve for more generations than any

hybrid/memetic approach or a hyper-heuristic. Nevertheless, the computational time

69

5. Stochastic Immunological Algorithm

of Opt-IA for reaching the overall best solution is, however, acceptable, as it is shown

in Section 5.2.4.

Finally, for each experiment, and then for each network, the following outcomes

were computed and shown: Best modularity found on all runs, Mean value of the best

solutions found per each run, worst modularity value found on the overall, standard

deviation (σ) and the number of communities discovered (NC).

5.2.2 Parameters Tuning

As described in Section 5.1 (see Algorithm 5.1), the crucial parameters that affect

the performances of Opt-IA are, respectively: (i) the population size (d), (ii) the

duplication factor (dup), (iii) the mutation rate (M) and (iv) the probability to remove

a B cell at each iteration (Pdie). Therefore, we need to find the best values for these

parameters.

In a preliminary work [132], a small and sparse network (almost_lattice network

with 64 vertices) was used to find the best setting for the parameter values. The network

was chosen since it shows a particular complex landscape. From this preliminary study,

the best parameter combinations obtained were, respectively, d = 8, and dup = 4,

whilst mutation rate M varied between 1 to 3. The efficacy of such a setting was

also validated by the comparison of Opt-IA with the well-known greedy optimization

method Louvain [12], one of the most popular algorithms for community detection.

The comparison, which for convenience is reported in Table 5.3 (see Section 5.3), shows

that the proposed algorithm outperforms Louvain in all networks tested.

Following these very good results, we ran Opt-IA on all the networks which are

shown in Table 5.1 using the same parameter configuration. Although the algorithm

was able to find the optimal solutions for some of the social networks, on the larger

ones, such as for instance, on the biological networks, we obtained, instead, very poor

results. In light of this, we performed a new study on the parameter tuning, but this

time we took into account the Cattle PPI biological network as a testbed, which is

70

5. Stochastic Immunological Algorithm

a large and sparse graph, and consequently a hard enough testbed. It is important

to highlight, also, that all experiments we conducted for the parameters tuning were

performed on 30 independent runs, to have more robust and reliable outcomes.

Based on the knowledge acquired on Opt-IA in previous research works [111, 46,

47], the population size was set to d = 100, since it is mainly related to the dimension

and complexity of the problem tackled. For all the other parameters, instead, the tuning

was determined by evaluating the fitness trend at their different values. The first step

of this study was conducted on the mutation rate parameter with five different values

(M = {1, 2, 3, 4, 5}), using the following parameter configuration settings: population

size d = 100, duplication parameter dup = 4, probability of random aging operator

Pdie = 0.02 and TMax = 4000.

0.68

0.69

0.70

0.71

1 2 3 4 5

M

F
it
n
es
s

Figure 5.2: Results of the tuning for the parameter M on the Cattle PPI network.

The outcomes of these experiments are reported in Figure 5.2 where we can see

the distribution of fitness values over 30 independent runs at the varying of M on

the Cattle PPI network. By observing the graph in the figure, it is possible to assert

that by increasing the number of mutations the performance of Opt-IA decreases

considerably with respect to both the best modularity found and the mean. The best

performances are obtained using small mutation rate values, that is M = {1, 2}. It

is important to note that although for M = 1 Opt-IA reaches a better median, the

performances for M = 1 and M = 2 are however equivalent when compared to the best

71

5. Stochastic Immunological Algorithm

value found. For this reason, both these values for M have been taken into account for

the next experiments. The good results obtained when performing a lower number of

mutations are primarily due to the effect of the aging and precompetition operators,

which produce good heterogeneity, and consequently, require the perturbation operator

to carry out the search in the neighbourhood of the current solutions.

Once the mutation rate M = {1, 2} was set, we performed a second step of para-

meter tuning to determine the best combination of parameters dup and Pdie. In par-

ticular, the duplication parameter was varied in the set {2, . . . , 10}, whilst Pdie in

{0, 0.01, 0.02, 0.05, 0.15, 0.3, 0.5}.

From both Figures 5.3 and 5.4, it is clear that better performances are obtained

when increasing the value of dup. In particular, higher modularity values are obtained

for dup = {8, 9, 10} for both M values. In other words, having more copies of each

solution helps Opt-IA in carrying out a careful and more accurate search in its neigh-

bourhood. Focusing further the analysis only on these last three values, it is possible

to assert that for dup = 9 and dup = 10, Opt-IA finds the best modularity more often

than for dup = 8.

Inspecting now the plots from the perspective of parameter Pdie and considering

these last two values for dup, we can see that the better performances of Opt-IA were

obtained for Pdie = 0.02. With this value, indeed, the algorithm was able to find a

better mean, and a lower standard deviation (σ). Each candidate solution will have a

0.02 probability to be removed from the population and such a low probability value is

enough to produce a good heterogeneity in the population (when, of course, combined

with the precompetition operator). From these last experiments, it also emerges that

for M = 1 the performances of Opt-IA are considerably better than for M = 2, since

the algorithm reaches the best solution more often, with a better mean and standard

deviation, proving, in turn, greater robustness and soundness.

In conclusion, from the overall experimental analysis, the best parameter combin-

ation obtained is the following: d = 100, dup = {9, 10}, M = 1 and Pdie = 0.02.

Note that, although dup = 10 showed slightly better performances on the considered

72

5. Stochastic Immunological Algorithm

dup = 2 dup = 3 dup = 4

0 0.01 0.02 0.05 0.15 0.3 0.5 0 0.01 0.02 0.05 0.15 0.3 0.5 0 0.01 0.02 0.05 0.15 0.3 0.5

0.60

0.65

0.70

PDie

F
it
n
es
s

dup = 5 dup = 6 dup = 7

0 0.01 0.02 0.05 0.15 0.3 0.5 0 0.01 0.02 0.05 0.15 0.3 0.5 0 0.01 0.02 0.05 0.15 0.3 0.5

0.68

0.69

0.70

0.71

0.72

PDie

F
it
n
es
s

dup = 8 dup = 9 dup = 10

0 0.01 0.02 0.05 0.15 0.3 0.5 0 0.01 0.02 0.05 0.15 0.3 0.5 0 0.01 0.02 0.05 0.15 0.3 0.5

0.69

0.70

0.71

0.72

PDie

F
it
n
es
s

Figure 5.3: Results of tuning parameters with M = 1 on the Cattle PPI network.

network, we took into consideration both values, because their effect is also related to

the network density (see results in Section 5.3).

73

5. Stochastic Immunological Algorithm

dup = 2 dup = 3 dup = 4

0 0.01 0.02 0.05 0.15 0.3 0.5 0 0.01 0.02 0.05 0.15 0.3 0.5 0 0.01 0.02 0.05 0.15 0.3 0.5

0.55

0.60

0.65

0.70

PDie

F
it
n
es
s

dup = 5 dup = 6 dup = 7

0 0.01 0.02 0.05 0.15 0.3 0.5 0 0.01 0.02 0.05 0.15 0.3 0.5 0 0.01 0.02 0.05 0.15 0.3 0.5
0.66

0.68

0.70

0.72

PDie

F
it
n
es
s

dup = 8 dup = 9 dup = 10

0 0.01 0.02 0.05 0.15 0.3 0.5 0 0.01 0.02 0.05 0.15 0.3 0.5 0 0.01 0.02 0.05 0.15 0.3 0.5

0.68

0.69

0.70

0.71

0.72

PDie

F
it
n
es
s

Figure 5.4: Results of tuning parameters with M = 2 on the Cattle PPI network.

5.2.3 Convergence Behaviour

A right convergence behaviour together with a good learning ability is the key factor

for any successful stochastic search algorithm. Thus, we conducted a deep analysis of

the dynamic behaviour of Opt-IA as reported in this section. We used the networks

74

5. Stochastic Immunological Algorithm

American College Football, Cattle PPI and C. elegans MRN because, being different in

types, sizes, density (∆ in Table 5.1), and mainly complexity, they allow a more robust

analysis. As described above (Section 5.2.1), all these experiments were averaged over

30 independent runs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500

F
it
n

e
s
s

Generations

Legend
Best fitness
Avg. Pop. fitness
Avg. Clones fitness

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

 250 300 350 400 450 500

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000 1200
F

it
n

e
s
s

Generations

Legend
Best fitness
Avg. Pop. fitness
Avg. Clones fitness

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

 650 700 750 800 850 900 950

(b)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

 0 500 1000 1500 2000 2500

F
it
n

e
s
s

Generations

Legend
Best fitness
Avg. Pop. fitness
Avg. Clones fitness

0.400

0.405

0.410

0.415

0.420

0.425

0.430

0.435

0.440

0.445

 1600 1800 2000 2200 2400

(c)

Figure 5.5: Convergence behaviour of Opt-IA on (a) American College Football, (b)
Cattle PPI and (c) C. elegans MRN networks. The figures show the average fitness
function value and the best solution versus generations.

Figure 5.5 shows the convergence curves of Opt-IA, and, in particular, the best

fitness, average fitness of the population, and average fitness of the hypermutated

population. In particular, one can see how in all three plots Opt-IA shows a very

good convergence towards the optimal solution. Indeed, the three curves grow slowly

and improve step by step until they reach the best solution. It is important to note

that initially the three curves are very close, and then begin to differentiate as they

approach the optimal solution (see inset plots). This is due to the diversification of the

solutions whose crucial impact happens mainly when the improvements are limited,

75

5. Stochastic Immunological Algorithm

and consequently when Opt-IA needs to get out of local optima.

Simply put, all three curves keep a right distance from each other, confirming the

existence of a good degree of diversity among the solutions, which is useful for avoiding

and/or escaping from local optima. Furthermore, it is also important to highlight that

the curve of the best fitness does not increase monotonically: for some generations, the

curve decreases slightly, and this corresponds to the discovery of better fitness values,

right in the next generations.

Having analysed the convergence behaviour, we performed a study on the learning

ability of Opt-IA. It is clearly very important to understand how much information

the algorithm is able to discover during the evolutionary process since it plays a crucial

role in the overall performance. To this end, we used the classical entropy function

information gain, known also as Kullback–Leibler divergence, to measure the quant-

ity of information the algorithm gains during the learning phase [89, 90]. Shannon’s

entropy [128] is the classical measure used in Information Theory and it represents a

good measure of randomness or uncertainty, where the entropy of a random variable is

defined in terms of its probability distribution. It is then used to measure the flatness

of the information distribution provided by a set of solutions. The Kullback-Leibler

divergence [89, 90] is the most frequently used information-theoretic distance measure

and indicates how different two probability distributions are.

Let B(t)
m be the number B cells that at the timestep t have fitness value m. The

candidate solutions distribution function f (t)
m is defined as the ratio of B(t)

m on the total

solutions number d, that is:

f (t)
m = B(t)

m∑︁
m B

(t)
m

= B(t)
m

d
. (5.1)

Therefore, the information gain, labelled K(t, t0), and entropy, labelled E(t), can be

defined as:

K(t, t0) =
∑︂
m

f (t)
m log

(︄
f (t)

m

f
(t0)
m

)︄
, (5.2)

76

5. Stochastic Immunological Algorithm

E(t) = −
∑︂
m

f (t)
m log f (t)

m , (5.3)

where, K(t, t0) is the quantity of information the system discovers during the con-

vergence process. The gain is, then, the amount of information the system learned

compared to the initial population P (t=0) which was randomly generated. Once the

learning and search process begins, the information gain monotonically increases until

it reaches a peak point after which it continues in a (roughly) steady state, consistently

with the maximum information-gain principle [82]:

dK

dt
≥ 0. (5.4)

Overall, the information gain is a useful entropy function for understanding the be-

haviour of algorithms both on-line and at run-time, and for performing an accurate

parameter tuning.

As for the convergence analysis, the same three networks were also used to evaluate

the learning ability of Opt-IA. Figure 5.6 displays the information gain curves, re-

spectively, on the American College Football in Figure 5.6a, Cattle PPI in Figure 5.6b

and C. elegans MRN in Figure 5.6c. Inspecting all three plots, we can clearly see how

Opt-IA quickly gains enough information during the first iterations, reaching regions

of search space with a good average, which proves the efficiency of the mutation oper-

ators designed to explore the search space. After that, due to the fully random search

process and without any guided search specific to the problem, the learning process

alternates in gaining or losing information, until it reaches the highest peak that cor-

responds to having reached the best overall solution. The insert plot shows the relative

standard deviations.

In Figure 5.6a it is possible to see the learning behaviour of Opt-IA on the Amer-

ican College Football network. In this plot, the algorithm shows a different learning

behaviour compared to the other two considered networks, because this network is a

little simpler in size and network density. Indeed, once the highest peak is reached

(in the generations range [20, 30]), Opt-IA begins to lose information until around

77

5. Stochastic Immunological Algorithm

19.5

20.0

20.5

21.0

21.5

22.0

22.5

 1 10 100 1000

K
(t

,
t 0

)

Generations

 1 10 100 1000
S

D

(a)

12.0

14.0

16.0

18.0

20.0

22.0

 1 10 100 1000

K
(t

,
t 0

)

Generations

 1 10 100 1000

S
D

(b)

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 1 10 100 1000

K
(t

,
t 0

)

Generations

 1 10 100 1000

S
D

(c)

Figure 5.6: Information gain curves of Opt-IA on (a) American College Football,
(b) Cattle PPI and (c) C. elegans MRN networks. The inset plots show the relative
standard deviations.

the 200th iteration when the curve begins to increase again, and therefore it starts to

gain again information. In the inset plot, we show the relative deviation standard (σ)

of Opt-IA, which measures the amount of dispersion (uncertainty) inside the popu-

lation. It is interesting to note, indeed, that the iteration point where the algorithm

reaches the maximum information gain corresponds exactly to the standard deviation

lowest point. Correctly, then, the maximum information gain corresponds to minimum

uncertainty. Similarly, at the point of the lowest information gain, reached before

200th generation, there is the highest standard deviation value. The information gain

curves displayed in Figures 5.6b and 5.6c show, instead, a steadier state behaviour once

the higher information value is reached. Interestingly, we can see in both plots that

after 1000 generations Opt-IA begins to discover new information, and particularly

in Figure 5.6b it reaches even the highest information gain value. This is consistent

78

5. Stochastic Immunological Algorithm

with the standard deviation curves, which reach their lowest values just after the 1000

generations.

In conclusion, both analyses (convergence and learning) prove the efficiency and

robustness of Opt-IA in the community detection task. More importantly, they high-

light and prove how Opt-IA needs more iterations to discover high-quality solutions

due to the strong randomness present in the developed operators.

5.2.4 Computational Time Complexity

The running time of Opt-IA for reaching the best solution is another crucial measure

to take into account for proving the efficiency of the proposed immune algorithm. We

used the time-to-target (TTT) plots [1, 59] which are a standard graphical methodology

for data analysis and for characterizing the running time of stochastic algorithms in

order to solve a specific optimization problem. They measure the CPU times to find

the target of the problem instance tackled. The basic idea behind TTT-plots is to

compare the empirical and theoretical distributions, i.e. it displays the probability

that an algorithm will find a solution as good as a target within a given running time.

A Perl program has been proposed by Aiex et al. in [2] for automatically generating

the TTT plots, which produces two different plots: a theoretical quantile-quantile

(QQ) plot with superimposed variability information, and a superimposed empirical

and theoretical distributions2.

In order to perform such an analysis, the Opt-IA algorithm is run n times on

a given instance using the achieving of a target value (i.e. achieve global optimum)

as a stopping criterion. Obviously, for every single run, a different seed is considered

for the random number generator to have independent runs. Note that the larger the

number n considered, the closer the empirical distribution will be to the theoretical

one. Therefore, following the suggestions given in [2], we set n = 200 because it

has been proven that this value gives very good approximations of the theoretical
2The Perl program can be downloaded at http://mauricio.resende.info/tttplots/tttplots.

zip.

79

http://mauricio.resende.info/tttplots/tttplots.zip
http://mauricio.resende.info/tttplots/tttplots.zip

5. Stochastic Immunological Algorithm

distributions. This analysis has been conducted on six different networks in size and

complexity: Grevy’s Zebras, Zachary’s Karate Club, Bottlenose Dolphins, Books about

US Politics, and C. elegans MRN and H. pylori PPI. For a proper analysis, it is

important to consider not easy instances, since the exponential distribution would

degenerate to a step function, due to the very small CPU times in almost all runs,

as asserted in [1]. Furthermore, these networks have been considered also because the

new stopping criterion requires that in the tackled networks/instances the success rate

is 100%.

In Figures 5.7-5.14 the TTT plots produced on the cited networks are shown. In

each figure, the left plot shows the empirical versus theoretical distribution, whilst in

right plots show the QQ plots with variability information.

Overall, by inspecting all plots for social networks in Figures 5.7-5.10, it emerges

how both empirical curves perfectly fit the theoretical ones for the first three networks,

whilst the empirical curves of Opt-IA slightly differ from the theoretical ones for the

Books about US Politics network. It is important to point out that the TTT plots

experiments on the Books about US Politics network were performed considering the

best solution found (0.5272) as target value for the stopping criterion, and Opt-IA was

able to find it in all 200 runs, although in Table 5.4 (see Section 5.3) the best and mean

values are not the same. This confirms that with a larger number of iterations the

developed search process is able to discover even better solutions until it reaches the

optimal ones, of course, with higher computational complexity time. However, from

the relative TTT plots in Figure 5.9, the empirical curve follows the same behaviour

as the theoretical one, proving consequently the efficacy of Opt-IA on this network.

For the C. elegans MRN and H. pylori PPI networks - two of the larger networks in

the dataset - two different target values were, instead, considered as stopping criteria,

since Opt-IA found better modularity than the compared algorithms (see Table 5.8),

either as best, mean and worst values. For C. elegans MRN the first experiment was

then conducted considering 0.4185 as target value (Figure 5.11), which corresponds to

the best modularity found among all compared algorithms, and specifically by HDSA.

80

5. Stochastic Immunological Algorithm

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

C
u
m
u
la
ti
ve

p
ro
b
ab

il
it
y

Time to target solution

Grevy’s Zebras

Empirical
Theoretical

(a)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
ea
su
re
d
ti
m
es

Exponential quantiles

Grevy’s Zebras

Empirical
Estimated

+1 Std. Dev. range
-1 Std. Dev. range

(b)

Figure 5.7: Time-to-target plots for Grevy’s Zebras network with target value t =
0.2768. (a) Empirical versus theoretical distributions and (b) QQ plot with variability
information.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u
m
u
la
ti
ve

p
ro
b
ab

il
it
y

Time to target solution

Zachary’s Karate Club

Empirical
Theoretical

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
ea
su
re
d
ti
m
es

Exponential quantiles

Zachary’s Karate Club

Empirical
Estimated

+1 Std. Dev. range
-1 Std. Dev. range

(b)

Figure 5.8: Time-to-target plots for Zachary’s Karate Club network with target value
t = 0.4198. (a) Empirical versus theoretical distributions and (b) QQ plot with vari-
ability information.

81

5. Stochastic Immunological Algorithm

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18

C
u
m
u
la
ti
ve

p
ro
b
ab

il
it
y

Time to target solution

Bottlenose Dolphins

Empirical
Theoretical

(a)

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
ea
su
re
d
ti
m
es

Exponential quantiles

Bottlenose Dolphins

Empirical
Estimated

+1 Std. Dev. range
-1 Std. Dev. range

(b)

Figure 5.9: Time-to-target plots for Bottlenose Dolphins network with target value
t = 0.5285. (a) Empirical versus theoretical distributions and (b) QQ plot with vari-
ability information.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

C
u
m
u
la
ti
ve

p
ro
b
ab

il
it
y

Time to target solution

Books about US Politics

Empirical
Theoretical

(a)

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
ea
su
re
d
ti
m
es

Exponential quantiles

Books about US Politics

Empirical
Estimated

+1 Std. Dev. range
-1 Std. Dev. range

(b)

Figure 5.10: Time-to-target plots for Books about US Politics network with target
value t = 0.5272. (a) Empirical versus theoretical distributions and (b) QQ plot with
variability information.

82

5. Stochastic Immunological Algorithm

Moreover, because the worst modularity computed by Opt-IA is still better than

the one found by HDSA, a second TTT plots experiment was performed setting the

stopping target to 0.4221 (Figure 5.12), i.e. the worst solution of Opt-IA on such a

network (see Table 5.8).

The same experimental protocol was used for the second biological network, H.

pylori PPI. The first experiment was conducted considering 0.5086 as target value

(Figure 5.13), which corresponds to the best modularity found by HDSA, while the

second experiment was performed setting the target solution to 0.5116 (Figure 5.14).

Focusing the analysis only on the plots in Figures 5.11-5.14, that is the two different

targets considered for the C. elegans MRN and H. pylori PPI networks, it appears

clear how Opt-IA easily achieves the same maximum modularity of HDSA, whilst

(obviously) needing more time to reach larger values of modularity. However, the

empirical curve fits perfectly with the theoretical one.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

C
u
m
u
la
ti
ve

p
ro
b
ab

il
it
y

Time to target solution

C. elegans MRN

Empirical
Theoretical

(a)

140

160

180

200

220

240

260

280

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
ea
su
re
d
ti
m
es

Exponential quantiles

C. elegans MRN

Empirical
Estimated

+1 Std. Dev. range
-1 Std. Dev. range

(b)

Figure 5.11: Time-to-target plots for C. elegans MRN network with target value t =
0.4185. (a) Empirical versus theoretical distributions and (b) QQ plot with variability
information.

83

5. Stochastic Immunological Algorithm

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

C
u
m
u
la
ti
ve

p
ro
b
ab

il
it
y

Time to target solution

C. elegans MRN

Empirical
Theoretical

(a)

160

180

200

220

240

260

280

300

320

340

360

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
M
ea
su
re
d
ti
m
es

Exponential quantiles

C. elegans MRN

Empirical
Estimated

+1 Std. Dev. range
-1 Std. Dev. range

(b)

Figure 5.12: Time-to-target plots for C. elegans MRN network with target value t =
0.4239. (a) Empirical versus theoretical distributions and (b) QQ plot with variability
information.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

C
u
m
u
la
ti
ve

p
ro
b
ab

il
it
y

Time to target solution

H. pylori PPI

Empirical
Theoretical

(a)

300

400

500

600

700

800

900

1000

1100

1200

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
ea
su
re
d
ti
m
es

Exponential quantiles

H. pylori PPI

Empirical
Estimated

+1 Std. Dev. range
-1 Std. Dev. range

(b)

Figure 5.13: Time-to-target plots for H. pylori PPI network with target value t =
0.5086. (a) Empirical versus theoretical distributions and (b) QQ plot with variability
information.

84

5. Stochastic Immunological Algorithm

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

C
u
m
u
la
ti
ve

p
ro
b
ab

il
it
y

Time to target solution

H. pylori PPI

Empirical
Theoretical

(a)

400

500

600

700

800

900

1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
ea
su
re
d
ti
m
es

Exponential quantiles

H. pylori PPI

Empirical
Estimated

+1 Std. Dev. range
-1 Std. Dev. range

(b)

Figure 5.14: Time-to-target plots for H. pylori PPI network with target value t =
0.5116. (a) Empirical versus theoretical distributions and (b) QQ plot with variability
information.

5.2.5 Precompetition Operator Effectiveness

The precompetition operator, in addition to the aging operator, plays a key role in

the performances of Opt-IA since it allows the algorithm to jump away from local

optima by introducing heterogeneity in the population. This, of course, is a crucial

characteristic, especially when addressing a hard and complex problem. Although the

usefulness and efficiency of the aging operator are well known [80, 81], little instead

is possible to assert on the efficacy of the precompetition operator, and how it affects

the performance of Opt-IA. In light of this, in this section, an analysis of the overall

effectiveness of the precompetition operator is presented, and it is shown in Table 5.2.

For this analysis four biological networks were considered (Cattle PPI, E. coli TRN, C.

elegans MRN and H. pylori PPI), and used for inspecting the convergence behaviour

of Opt-IA, by enabling or disabling such an operator.

Looking at the outcomes reported in the table, the usefulness and efficacy of the

precompetition operator are clearly evident: it allows Opt-IA to reach better modu-

larity values not only with respect to the maximum value found but also with respect

85

5. Stochastic Immunological Algorithm

Table 5.2: Experimental results of Opt-IA with and without the precompetition
operator on biological networks.

Opt-IA
Network Precompetition ¬Precompetition

Cattle PPI

Best 0.7195 0.7195
Mean 0.7156 0.7151
Worst 0.7061 0.7053
StD 0.0036 0.0044
NC 40 40

E. coli TRN

Best 0.7796 0.7776
Mean 0.7711 0.7701
Worst 0.7578 0.7525
StD 0.0051 0.0055
NC 39 39

C. elegans MRN

Best 0.4490 0.4470
Mean 0.4369 0.4340
Worst 0.4239 0.4069
StD 0.0053 0.0081
NC 8 9

H. pylori PPI

Best 0.5416 0.5329
Mean 0.5249 0.5235
Worst 0.5116 0.5133
StD 0.0063 0.0055
NC 19 19

to the mean of the best found values in all independent runs, with the consequence

of allowing the algorithm to obtain lower standard deviation values. It is important

to highlight that, except for the Cattle PPI network where the best modularity is the

same for both versions, the precompetition operator allows Opt-IA to produce con-

siderably higher modularity values, proving the successful effect of this operator. The

precompetition operator, in combination with the stochastic aging, compensates for

the indirect elitism provided by the selection operator, therefore it helps to maintain

the right balance of diversity in the population.

86

5. Stochastic Immunological Algorithm

5.3 Experimental Results

We discuss now the overall experimental results and compare them with the results

obtained by state-of-the-art algorithms. It is important to stress first that, in a prelim-

inary work [132], Opt-IA was compared to Louvain algorithm on a set of different,

simple and small networks, which for simplicity are reported in Table 5.3. By in-

specting this table, it becomes clear how Opt-IA, based on a pure random-search,

outperforms one of the best approaches on community detection with modularity op-

timization, which is Louvain algorithm3. However, given the low complexity of these

tested networks, a deep and detailed analysis must be conducted in order to evaluate

the real performance of Opt-IA. Therefore, for these new experiments, all networks in

the data set in Table 5.1 were considered, and the experimental protocol described in

Section 5.2.1 was used. The main goal of these experiments, as well as all comparisons

made, is to prove the competitiveness and reliability of Opt-IA in terms of solution

quality found, i.e. maximizing the modularity function (Equation 4.1).

Table 5.3: Comparative results of Opt-IA and Louvain algorithm.

Louvain Opt-IA
Network |V | Q NC Q NC

Zachary’s Karate Club 34 0.4156 4 0.4198 4
Bottlenose Dolphins 62 0.5188 5 0.5285 5
UK Faculty 81 0.4488 4 0.4488 4
Huckleberry 69 0.5346 4 0.5346 4
Les Miserables 77 0.5583 6 0.5600 6
GN_benchmark2 128 0.4336 2 0.4336 2
GN_benchmark4 128 0.5393 4 0.5393 4
LFR_benchmark 128 0.1560 6 0.1980 5
almost_lattice 64 0.5279 8 0.5576 8
3mixed 128 0.3682 5 0.4297 3

To this end, the proposed Opt-IA algorithm was compared to several different

heuristics and metaheuristics (13 in the overall), each of them designed and developed
3The results of the Louvain algorithm reported in the following tables were obtained using the im-

plementation of the igraph [40] library, version 1.2.8. In this version, the vertices are always processed
in the same order resulting in the very same partition.

87

5. Stochastic Immunological Algorithm

as a modularity optimization approach. Specifically, the first group of algorithms

considered for the comparisons, in addition to Louvain, are:

• Bat Algorithm (BA) [4], a metaheuristic method based on the echolocation be-

haviour of bats [150];

• Gravitational Search Algorithm (GSA) [4], a metaheuristic algorithm based on

the law of gravity and mass interactions [117];

• Big Bang–Big Crunch (BB-BC) algorithm [4], an algorithm inspired by the the-

ories of the universe evolution in which, during the main phase, energy dissipation

produces disorder and randomness, whilst in a second stage the randomly dis-

tributed particles are drawn into an order, i.e. the values in the vectors of the

function to be optimized are determined [58];

• Bat Algorithm based on Differential Evolutionary (BADE) [4], an improved ver-

sion based on the combination (hybridization) of Bat Algorithm and Differential

Evolution (DE) algorithm [134, 133], where this latter is used in the popula-

tion regeneration process. Both algorithms are used together for the selection of

adjacent vertices;

• Scatter Search algorithm based on Genetic Algorithm (SSGA) [4], a Scatter

Search (SS) approach [68, 100] of the best chromosomes provided by Genetic

Algorithm (GA) [77, 70] and subjecting the population to the crossover and the

mutation processes around the best solutions;

• Hyper-heuristic Differential Search Algorithm (HDSA) [4], a hyper-heuristic

based on the migration of artificial super-organisms, where each of them in the

population migrates between the maximum or minimum solution of the problem

using the Differential Search Algorithm (DSA) [33] in the process of regeneration

of individuals.

Moreover, the second group of algorithms considered for the comparisons are:

88

5. Stochastic Immunological Algorithm

• MA-Net [104], a memetic algorithm based on the combination of a genetic

algorithm with a local search;

• GACD [130], a genetic algorithm that takes advantage of the efficiency of the

locus-based adjacency encoding scheme to represent a community partition;

• Clustering Coefficient-based Genetic Algorithm (CC-GA) [121], a genetic al-

gorithm that uses the clustering coefficient (CC), which is a social networks ana-

lysis measure, to generate a better initial population;

• Multi-Start Iterated Greedy (MSIG) algorithm [122], which uses a new greedy

procedure for generating the initial solutions and reconstructing the solutions,

but has the disadvantage of being computationally expensive;

• Improved Discrete Particle Swarm Optimization with Redefined Operator (ID-

PSO-RO) [27], based on particle swarm optimization, in which the update formu-

las of velocity and position are redefined according to the locus-based adjacency

representation;

• Iterated Greedy (IG) algorithm [96] based on an iterative process that combines

a destruction phase and a reconstruction phase: a complete candidate solution is

partially destructed, and afterwards a new complete candidate solution is recon-

structed via a greedy constructive heuristic.

The results reported in the following tables were taken from [4, 104, 96].

Following what was previously described, the parameters setting of Opt-IA, in all

the performed experiments, are d = 100 as population size; Pdie = 0.02 the probability

of random aging operator; mutation rate M set to 1; and TMax = 4000 as the maximum

number of generations used as stopping criterion. The duplication parameter dup

in according to the parameters tuning reported in Section 5.2.2, has been set to 4

(dup = 4) for all those instances with |V | < 100 (small social networks), whereas

for the larger ones (|V | ≥ 100) the experiments were performed with dup = 9 and

dup = 10. Every experiment has been performed on 30 independent runs.

89

5. Stochastic Immunological Algorithm

Table 5.4: Experimental results of Opt-IA on small social networks with dup = 4.

Network Best Mean Worst StD NC

Grevy’s Zebras 0.2768 0.2768 0.2768 0.0000 4
Zachary’s Karate Club 0.4198 0.4198 0.4198 0.0000 4
Bottlenose Dolphins 0.5285 0.5285 0.5285 0.0000 5

Table 5.5: Experimental results of Opt-IA on social and biological networks with
dup = {9, 10}.

Network dup Best Mean Worst StD NC

Books about US Politics 9 0.5272 0.5270 0.5208 0.0012 5
10 0.5272 0.5268 0.5208 0.0016 5

American College Football 9 0.6046 0.6011 0.5848 0.0052 10
10 0.6046 0.5999 0.5891 0.0050 10

Cattle PPI 9 0.7195 0.7148 0.7018 0.0044 40
10 0.7195 0.7161 0.7049 0.0039 40

E. coli TRN 9 0.7734 0.7660 0.7486 0.0050 27
10 0.7795 0.7670 0.7589 0.0049 32

C. elegans MRN 9 0.4487 0.4366 0.4221 0.0070 8
10 0.4464 0.4377 0.4231 0.0061 10

The obtained outcomes are summarized in Tables 5.4 and 5.5. Table 5.4 reports

the results of the proposed algorithm on small social networks, while in Table 5.5 we

show the results on larger social networks and biological networks. In this last table,

the best results obtained for dup = 9 or dup = 10 are also highlighted in boldface.

The different setting of the duplication parameter is obviously due to the simplicity

of the first networks (dup = 4) compared to the last ones (dup = 9 or dup = 10),

which consequently require a more targeted search, and a less wide exploration of the

solution space. Larger networks with a density ∆ ≥ 1% (see Table 5.1), do not require

a great variability in the population, and for this reason, dup = 9 seems to be the most

appropriate value. Indeed, although in the social networks there is little difference in

the results between the two dup values (dup = 9 vs. dup = 10), in C. elegans MRN,

where ∆ = 1.98%, a significant improvement is instead obtained in terms of best and

average modularity found. On the other hand, for all networks with a low density

(∆ < 1%) the parameter dup = 10 ensures good average values (Mean) in Cattle PPI

90

5. Stochastic Immunological Algorithm

instance and best modularity (Best) for E. coli TRN network. In these cases, a small

increase in the dup parameter, i.e. having a larger number of duplicates, allows it to

produce higher variability, and consequently enables it to work well on very sparse

networks.

Tables 5.6-5.8 report the comparisons of Opt-IA with other heuristics and meta-

heuristics. The shown results are averaged on 30 independent runs for all algorithms.

Note that, unlike other algorithms that use a maximum number of generations fixed,

MA-Net stops running just only when 30 generations are performed without any im-

provement. For each table, the best modularity values (Best), average values (Mean),

worst modularity (Worst), standard deviation (StD), and the number of communities

discovered (NC) are showed, respectively.

Table 5.6: Comparative results of Opt-IA and algorithms of the first group on social
networks.

Algorithms
Network Opt-IA Louvain HDSA BADE SSGA BB-BC BA GSA

Grevy’s Zebras

Best 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768
Mean 0.2768 - 0.2768 0.2768 0.2768 0.2766 0.2768 0.2768
Worst 0.2768 - 0.2768 0.2768 0.2768 0.2761 0.2768 0.2768
StD 0.0000 - 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000
NC 4 4 4 4 4 4 4 4

Zachary’s Karate Club

Best 0.4198 0.4189 0.4198 0.4198 0.4198 0.4198 0.4198 0.4198
Mean 0.4198 - 0.4198 0.4188 0.4198 0.4196 0.4133 0.4170
Worst 0.4198 - 0.4198 0.4156 0.4198 0.4188 0.3946 0.4107
StD 0.0000 - 0.0000 0.0018 0.0000 0.0004 0.0105 0.0037
NC 4 4 4 4 4 4 4 4

Bottlenose Dolphins

Best 0.5285 0.5285 0.5285 0.5268 0.5257 0.5220 0.5157 0.4891
Mean 0.5285 - 0.5282 0.5129 0.5200 0.5141 0.4919 0.4677
Worst 0.5285 - 0.5276 0.4940 0.5156 0.5049 0.4427 0.4517
StD 0.0000 - 0.0005 0.0120 0.0040 0.0068 0.0289 0.0155
NC 5 5 5 4 5 5 4 6

Books about US Politics

Best 0.5272 0.5205 0.5272 0.5239 0.5221 0.4992 0.5211 0.4775
Mean 0.5270 - 0.5272 0.5178 0.5203 0.4914 0.5020 0.4661
Worst 0.5208 - 0.5272 0.5137 0.5167 0.4799 0.4815 0.4558
StD 0.0012 - 0.0000 0.0042 0.0024 0.0084 0.0149 0.0079
NC 5 4 5 4 5 9 3 5

American College Football

Best 0.6046 0.6046 0.6046 0.5646 0.5330 0.5171 0.5523 0.4175
Mean 0.6011 - 0.6033 0.5513 0.5277 0.5061 0.5272 0.4032
Worst 0.5848 - 0.6019 0.5430 0.5189 0.4986 0.4742 0.3905
StD 0.0052 - 0.0009 0.0085 0.0057 0.0069 0.0325 0.0109
NC 10 10 10 11 6 10 7 5

By analysing Table 5.6, it is clear how the proposed Opt-IA considerably outper-

forms all compared algorithms, except for HDSA. Regarding this latter, however, it is

91

5. Stochastic Immunological Algorithm

possible to note how both algorithms (Opt-IA and HDSA) show identical perform-

ances on the first two networks in the table reaching the same values of Best and Mean;

whilst on the last two, HDSA outperforms Opt-IA only with respect the average val-

ues (both reach the same Best values). On the network Bottlenose Dolphins, instead,

Opt-IA strictly outperforms HDSA reaching a better mean value, and a standard

deviation value equal to zero. It is important to highlight that HDSA uses an initial

population generated with a Genetic Algorithm and a Scatter Search algorithm. It

follows obviously that this method is potentially more robust from a Mean value per-

spective. However, the difference between the values obtained by both heuristics, as

Best and Mean, is almost irrelevant, demonstrating that the two algorithms Opt-IA

and HDSA can be considered comparable in the overall.

Table 5.7: Comparative results of Opt-IA and algorithms of the second group on
social networks.

Algorithms
Network Opt-IA GACD CC-GA MSIG IDPSO-RO IG MA-Net

Zachary’s Karate Club

Best 0.4198 0.4198 0.4198 0.4198 0.4198 0.4198 0.420
Mean 0.4198 0.4198 0.4198 0.4198 0.4198 0.4198 0.419
Worst 0.4198 0.4198 0.4198 0.4198 0.4198 0.4198 -
StD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.002
NC 4 - - - - - 4

Bottlenose Dolphins

Best 0.5285 0.5285 0.5285 0.5201 0.5285 0.5285 0.529
Mean 0.5285 0.5272 0.5275 0.5189 0.5271 0.5268 0.523
Worst 0.5285 - - - - - -
StD 0.0000 0.0020 0.0019 0.0017 0.0010 0.0014 0.004
NC 5 - - - - - 5

Books about US Politics

Best 0.5272 0.5272 0.52729 0.5232 0.5272 0.5269 0.527
Mean 0.5270 0.5257 0.5271 0.5149 0.5261 0.5269 0.526
Worst 0.5208 - - - - - -
StD 0.0012 0.0002 0.0002 0.0070 0.0021 0.0000 0.002
NC 5 - - - - - 5

American College Football

Best 0.6046 0.5879 0.5787 0.6033 0.6044 0.6046 0.605
Mean 0.6011 0.5777 0.5640 0.5954 0.5900 0.6017 0.601
Worst 0.5848 - - - - - -
StD 0.0052 0.0069 0.0093 0.0084 0.0129 0.0033 0.003
NC 10 - - - - - 10

Jazz Musicians

Best 0.4451 - - - - - 0.445
Mean 0.4449 - - - - - 0.445
Worst 0.4449 - - - - - -
StD 0.0001 - - - - - 0.000
NC 4 - - - - - 4

In Table 5.7 Opt-IA is compared with the second group of more recent meta-

heuristics methods. Also on this comparison, the proposed algorithm outperforms the

92

5. Stochastic Immunological Algorithm

compared algorithms in all networks. Indeed, if the comparison is inspected from a

ranking perspective with respect to the Best values, Opt-IA is always at the top,

whilst if it is analysed with respect to the Mean values, it is easy, instead, to assert

that it is always among the first two positions and very often in the first one. It is

worth emphasizing once again that, whilst these compared algorithms include determ-

inistic and sophisticated strategies, Opt-IA is fully random both in the generation of

the initial population and in the solutions search process into the search space. There-

fore, having shown better performances, it confirms the robustness and efficiency of all

designed random operators.

In Table 5.8, Opt-IA is compared with the first group of algorithms on biological

networks. Unfortunately, no results were found by the other considered algorithms on

these networks. Thus, inspecting this table, it is possible to see how Opt-IA strictly

outperforms all algorithms, including HDSA, on the C. elegans MRN and H. pylori

PPI networks compared to all evaluation metrics (Best, Mean, Worst and StD), and

detecting a smaller community value. However, on the other two networks, Opt-IA

and HDSA are comparable in Cattle PPI with respect to the best value reached,

but Opt-IA is outperformed by HDSA with respect to the mean values. Also, on

the E. coli TRN instance HDSA outperforms Opt-IA in all assessment values. It is

important to highlight that Opt-IA performs better than HDSA on larger networks.

Finally, focusing the inspection only on the comparison between Opt-IA and

Louvain it is easy to assert that the first considerably outperforms the latter, except

for the H. pylori PPI network. Overall, then, analyzing all outcomes and comparisons

performed, it is possible to assert that the proposed algorithm Opt-IA outperforms

all the compared metaheuristics, and shows comparable performances with respect

to hyper-heuristic HDSA. It is important to highlight that HDSA uses an initial

population generated with a Genetic Algorithm and improved with a Scatter Search

algorithm, Opt-IA, instead, is entirely blind to the features of the problem, and it

is based only on random-search without any deterministic guide. Therefore, taking

into account these main differences and features, and, primarily, having found results

93

5. Stochastic Immunological Algorithm

Table 5.8: Comparative results of Opt-IA and algorithms of the first group on social
networks.

Algorithms
Network Opt-IA Louvain HDSA BADE SSGA BB-BC BA GSA

Cattle PPI

Best 0.7195 0.7195 0.7195 0.7183 0.7118 0.7095 0.7143 0.7053
Mean 0.7161 - 0.7195 0.7138 0.7079 0.7084 0.7100 0.6983
Worst 0.7049 - 0.7194 0.7059 0.7052 0.7079 0.7063 0.6949
StD 0.0039 - 0.0001 0.0051 0.0025 0.0007 0.0035 0.0041
NC 40 40 40 41 40 48 42 43

E. coli TRN

Best 0.7795 0.7786 0.7822 0.7680 0.7507 0.7520 0.7629 0.7416
Mean 0.7670 - 0.7815 0.7621 0.7457 0.7485 0.7599 0.7375
Worst 0.7589 - 0.7808 0.7560 0.7412 0.7452 0.7542 0.7328
StD 0.0049 - 0.0006 0.0043 0.0035 0.0026 0.0034 0.0034
NC 32 40 47 58 61 71 56 61

C. elegans MRN

Best 0.4487 0.4263 0.4185 0.3473 0.3336 0.3374 0.3514 0.3063
Mean 0.4366 - 0.4074 0.3385 0.3220 0.3266 0.3438 0.3039
Worst 0.4221 - 0.3962 0.3335 0.3124 0.3194 0.3356 0.2974
StD 0.0070 - 0.0010 0.0054 0.0077 0.0074 0.0073 0.0037
NC 8 9 13 25 22 21 22 24

H. pylori PPI

Best 0.5386 0.5450 0.5086 0.4926 0.4726 0.4681 0.4900 0.4600
Mean 0.5204 - 0.5078 0.4854 0.4695 0.4660 0.4814 0.4567
Worst 0.5065 - 0.5048 0.4809 0.4659 0.4642 0.4738 0.4549
StD 0.0067 - 0.0017 0.0047 0.0021 0.0018 0.0073 0.0020
NC 17 23 52 69 70 75 62 77

comparable with those of HDSA, it is possible to confirm the efficiency and reliability

of the proposed random-search algorithm Opt-IA.

In order to study Opt-IA on large networks a further set of networks was con-

sidered and tested, and the results are reported in Table 5.9. Of course, being Opt-IA

fully based on random-search, for these experiments, a larger number of iterations

was needed. During these experiments, increasing the network size, we saw that the

combination of the developed operators guided the algorithm towards useless search,

disregarding a proper and deep exploration of specific neighbourhoods. However, such

behaviour did not happen on all previously tested networks. In light of this, to indir-

ectly guide the search to explore promising regions in the search space more intensively,

a simple modification in Opt-IA was made: allow the selection operator to also choose

elements having the same fitness. This modified version, reported in Table 5.9, is la-

belled as Opt-IAFR (Opt-IA with Fitness Repetition), whilst the original one is called

Opt-IA. Both versions are compared with the well-known Louvain algorithm. By

94

5. Stochastic Immunological Algorithm

Table 5.9: Comparative results of two variant of Opt-IA and Louvain algorithm
on larger biological networks.

Network Algorithm Best Mean Worst StD NC

H. pylori PPI
Opt-IA 0.5386 0.5204 0.5065 0.0067 17
Opt-IAFR 0.5416 0.5249 0.5116 0.0063 19
Louvain 0.5450 - - - 23

E. coli MRN
Opt-IA 0.3287 0.3141 0.3026 0.0074 31
Opt-IAFR 0.3629 0.3437 0.3282 0.0064 9
Louvain 0.3569 - - - 9

S. cerevisiae PPI (1)
Opt-IA 0.6387 0.6145 0.5955 0.0100 257
Opt-IAFR 0.6516 0.6344 0.6178 0.0089 386
Louvain 0.7638 - - - 216

S. cerevisiae PPI (2)
Opt-IA 0.4753 0.4606 0.4405 0.0082 288
Opt-IAFR 0.4879 0.4746 0.4473 0.0085 317
Louvain 0.5905 - - - 46

comparing the two versions, it appears clear how such a simple change allows Opt-IA

to improve the modularity values in the overall. At any rate, the results obtained by

the best version of Opt-IA still remain a bit far from the results obtained by Louv-

ain. This is explainable with the features of Opt-IA to be fully based on random

search and without any simple deterministic approach. It is very likely that by further

increasing the number of generations the gap with Louvain’s results will be substan-

tially narrowed. As expected, this is the main limitation of our proposed random-search

algorithm.

In Figure 5.15, finally, are displayed the communities detected by Opt-IA on the

Books about US Politics (Figure 5.15a), American College Football (Figure 5.15b) and

C. elegans MRN (Figure 5.15c) networks, respectively.

5.3.1 Functional Sensitivity Analysis

Although modularity is the commonly used evaluation metric, it tells very little about

how similar the detected communities are when compared to the original/target ones.

Furthermore, an important limitation in modularity optimization is that it can fail

in identifying smaller communities, due to the degree of interconnectivity of the com-

95

5. Stochastic Immunological Algorithm

(a) (b)

(c)

Figure 5.15: Community structures obtained by Opt-IA for (a) Books about US
Politics, (b) American College Football and (c) C. elegans MRN networks.

96

5. Stochastic Immunological Algorithm

munities [63]. To this end, we conducted a second experimental step, using synthetic

networks generated by the LFR algorithm proposed in [92, 91]. The aims of this second

experiment are to analyse the convergence behaviour of Opt-IA in different complexity

scenarios, thanks to the diverse network features which can be generated, and, most

importantly, by inspecting how good and similar are the communities uncovered by

Opt-IA with respect to the target ones. Obviously, since all networks are artificially

generated, their community structures are known. It is important to stress how this

benchmark faithfully reproduces the key features of real graphs communities, affirming

therefore its validation.

The networks generated for this experiment were respectively created with 300,

500, 1000, 2000, 3000 and 5000 vertices, each of them with average degree 15 and 20

or 20 and 25, and the maximum degree equal to 50. Furthermore, for each instance,

we set: τ1 = 2 as the exponent of the degree distribution; τ2 = 1 as the distribution

of community sizes; minc = 10 and maxc = 50, respectively, as minimum and max-

imum of the communities’ size. All experiments were conducted at the varying of the

mixing parameter µt, which identifies the relationship between the vertex’s external

and internal degree with respect to its community: the greater the value of µt, the

greater is the number of edges that a vertex shares with vertices outside of its com-

munities. In order to analyse the performances of Opt-IA on several scenarios, the

mixing parameter was made to vary in the range {0.1, 0.2, · · · , 0.8}.

Once the synthetic networks were generated, each with different features, a func-

tional sensitivity analysis was conducted using the well-known community structure

similarity metrics, such as (1) Normalized Mutual Information (NMI) [48] that meas-

ures the amount of information correctly extracted, and allows for assessing how similar

the detected communities are to real ones; (2) Adjusted Rand Index (ARI) [79], which

focuses on the pairwise agreement, that is for each possible pair of elements it evaluates

how similarly the two partitions treat them; and, finally, (3) Normalized Variation of

Information (NVI) [101], expressed using the Shannon entropy, which measures the

amount of information lost and gained in changing from one clustering to another one:

97

5. Stochastic Immunological Algorithm

sum of the information needed to describe C, given C ′, and the information needed to

describe C ′ given C. Note that NMI is the most used in community detection tasks. It

is important also to point out that the closer to 1 the NMI and ARI values are (closer

to 0 for the NVI value, instead), the more similar the uncovered communities are to

the target ones.

In Figure 5.16 we can see the graphics of NMI, ARI and NVI indexes for the LFR

benchmarks with 300, 500 and 1000 vertices. By analysing each plot, it is possible to

note how the NMI and ARI curves remain on high values (> 0.70) for µt ≤ 0.6 and

µt ≤ 0.5, respectively, whilst the NVI curve remains on low values for µt ≤ 0.5. This

proves that Opt-IA is able to uncover communities roughly closer to the original ones.

The two NMI and ARI curves instead begin to decrease, and the NVI curve increases,

as the graph begins to get denser (µt > 0.6); in this case, Opt-IA detects community

structures not well-defined.

In Figure 5.17, instead, it is displayed the functional sensitivity analysis conducted

on the synthetic networks with 2000, 3000 and 5000 vertices. By inspecting these

plots, it is possible to assert that, for instances with 2000 vertices, the NMI curves in

Figure 5.17a still continue to remain high for µt ≤ 0.5, whilst decrease at the increasing

of the mixed parameter, corresponding then to more complex community structure.

The ARI curves in Figure 5.17b, remain acceptable for all µt ≤ 0.4 while decreasing at

higher values of µt. As we have repeatedly said, this is obviously caused by the fully

random search at the basis of the algorithm that requires a longer time to converge

towards good solutions. The same analysis can be done also for the NVI curves in

Figure 5.17c. This is confirmed by looking at the convergence behaviours shown in

Section 5.2.3 (Figure 5.5), wherein each of them the relative convergence is represented

by a monotonically increasing curve with respect to the number of generations.

For the instance with 3000 and 5000 vertices, it is important to note that the

behaviour of the NMI curve on the plot in Figure 5.17a, where the NMI curve values

are on average high (≥ 0.55), highlights the limit of Opt-IA due to its randomness,

and, consequently, pointing out the need to have longer iterations for solving larger

98

5. Stochastic Immunological Algorithm

300 500 1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.25

0.50

0.75

1.00

Mixing parameter

N
M
I

Average degree 15 20

(a)

300 500 1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.25

0.50

0.75

1.00

Mixing parameter

A
R
I

(b)

300 500 1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.25

0.50

0.75

1.00

Mixing parameter

N
V
I

(c)

Figure 5.16: Functional sensitivity analysis of Opt-IA performed on LFR benchmark
instances with 300, 500 and 1000 vertices. (a) Normalized Mutual Information, (b)
Adjusted Rand Index and (c) Normalized Variation of Information.

networks. The same statement can be also made for plots in Figures 5.17b and 5.17c.

On the other hand, however, these high NMI curve values obtained by Opt-IA prove

the ability of the algorithm to detect communities as similar to the target ones as

possible.

99

5. Stochastic Immunological Algorithm

2000 3000 5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.25

0.50

0.75

1.00

Mixing parameter

N
M
I

Average degree 15 20 25

(a)

2000 3000 5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.25

0.50

0.75

1.00

Mixing parameter

A
R
I

(b)

2000 3000 5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.25

0.50

0.75

1.00

Mixing parameter

N
V
I

(c)

Figure 5.17: Functional sensitivity analysis of Opt-IA performed on LFR benchmark
instances with 2000, 3000 and 5000 vertices. (a) Normalized Mutual Information, (b)
Adjusted Rand Index and (c) Normalized Variation of Information.

5.4 Conclusions

A novel immune algorithm was designed and developed for community detection, which

represents one of the most influential problems in many research areas. The pro-

100

5. Stochastic Immunological Algorithm

posed algorithm, called Opt-IA, is inspired by the clonal selection principle, and con-

sequently is based on three main immune operators, such as cloning, hypermutation

and stochastic aging, whose combination allows the algorithm to perform in a proper

way the exploration and exploitation of the search space. The presented algorithm

is entirely blind to the features of the problem because it is mainly based on a pure

random search of the solutions combined with stochastic operators. In this way, the

algorithm can easily jump out from local optimal and perform an extensive explora-

tion thanks to the high diversity in the population produced by the several stochastic

strategies developed.

The reliability and efficiency of Opt-IA in community detection has been tested

on several social and biological networks, each of them showing different complexity

and dimensions. By inspecting the results of all the performed experiments, it clearly

emerges the efficiency and reliability of Opt-IA, as well as its robustness as proven

in the analysis of the convergence quality and learning capability. Having included a

random-search strategy in Opt-IA along with several stochastic operators, it allows

the algorithm to carry out a careful and at the same time vast exploration of the search

space. An analysis of the computational time complexity has been also conducted by

making use of the time-to-target (TTT) plots, which confirm that Opt-IA albeit it

needs more iterations compared to other algorithms (due to its pure randomness), it

reaches however the best solutions in acceptable times.

In order to assess Opt-IA with respect to the state-of-the-art in community de-

tection, the algorithm was compared against about twenty different heuristics and

metaheuristics. From these comparisons, it appears very clear how the proposed al-

gorithm strictly outperforms most of the compared algorithms, except for the hyper-

Heuristic where instead the performances can be considered comparable in the overall.

In particular, the main difference in the performances between the hyper-Heuristic

and Opt-IA is given on the values of the average of the best solutions found on 30

independent runs. However, this is reasonably foreseeable since the main feature of

hyper-Heuristic methods is the combination of several heuristics, efficient on the prob-

101

5. Stochastic Immunological Algorithm

lem to be tackled, in order to exploit the strength of one to overcome the weaknesses of

the others, while Opt-IA is an algorithm entirely based on random-search combined

with pure stochastic operators.

In conclusion, all the outcomes and the analysis conducted to prove the reliability

of the proposed random search, making Opt-IA comparable with sophisticated al-

gorithms, especially on networks that are not too dense, such as biological networks for

instance. Obviously, the limit of the random search, and therefore of Opt-IA, is the

need to have a large number of generations to converge to acceptable solutions when

tackling wide networks (e.g. |V | ≥ 5000). However, since the solution search process

is entirely guided by randomness and stochastic operators, and therefore without any

deterministic approach or any information on the features of the network (Opt-IA is

a fully blind algorithm), it allows, the other hand, to be easily adapted and applied in

dynamic network scenarios and situations of high uncertainty.

102

6
Hybrid Immunological Algorithm

6.1 The Proposed Method

Immunological Algorithms (IA) are among the most used population-based metaheur-

istics, successfully applied in search and optimization tasks. They take inspiration from

the dynamics of the immune system in performing its job of protecting living organ-

isms. One of the features of the immune system that makes it a very good source of

inspiration is its ability to detect, distinguish, learn, and remember all foreign entities

discovered [64]. Hybrid-IA [41] uses a deterministic local search, based on rational

choices that refine and improve the solutions found so far and belongs to the special

class Clonal Selection Algorithms (CSA) [111, 47], whose efficiency is due to the three

main immune operators: (i) cloning, (ii) hypermutation, and (iii) aging. Furthermore,

this algorithm is based on two main concepts: antigen (Ag), which represents the prob-

lem to tackle, and B cell, or antibody (Ab) which represents a candidate solution, i.e.

a point in the solution space.

At each time step t, the algorithm maintains a population of d candidate solutions:

103

6. Hybrid Immunological Algorithm

each solution is a subdivision of the vertices of the graph G = (V, E) in communities.

Let N = |V |, a B cell x⃗ is a sequence of N integers belonging to the range [1, N], where

xi = j indicates that the vertex i has been added to the cluster j. The population

is initialized at the time step t = 0 randomly assigning each vertex i to a group j,

with j ∈ [1, N]. Just after the initialization step, the algorithm evaluates the fitness

function of each generated element (x⃗ ∈ P (t)), i.e. Equation 4.1, using the procedure

ComputeFitness(P (t)). Hybrid-IA ends its evolution once the halting criterion is

reached, which was fixed to a maximum number of generations (Tmax). The pseudo-

code of Hybrid-IA is described in Algorithm 6.1.

Algorithm 6.1: Pseudo-code of the hybrid immunological algorithm Hybrid-IA.
1: procedure Hybrid-IA(d, dup, ρ, τB)
2: t← 0
3: P (t) ← InitializePopulation(d)
4: ComputeFitness(P (t))
5: repeat
6: P (clo) ← Cloning(P (t), dup)
7: P (mut) ← Hypermutation(P (clo), ρ)
8: ComputeFitness(P (mut))
9: (P (t)

a , P (mut)
a)← Aging(P (t), P (mut), τB)

10: P (sel) ← (µ + λ)−Selection(P (t)
a , P (mut)

a)
11: P (t+1) ← LocalSearch(P (sel))
12: t← t + 1
13: until (termination criterion is satisfied)
14: end procedure

Cloning is the first immune operator to be carried out, which simply copies dup

times each B cell producing an intermediate population P (clo) of size d× dup. A static

version was considered for avoiding premature convergences, which can instead occur

using the proportional one. Indeed, if a number of clones proportional to the fitness

value are produced, preferring the cloning of the best through a higher number of clones,

already in the first iterations is very likely that a population of B cells very similar

to each other is obtained, with the outcome to cannot perform a proper exploration

of the search space, and thus getting easily trapped in local optima. Once a clone is

created, Hybrid-IA assigns an age to it that determines how long the clone/solution

104

6. Hybrid Immunological Algorithm

can live inside the population: from such assigned age until it reaches the maximum

age allowed τB (user-defined parameter). Specifically, a random age chosen in the range

[0 : 2
3τB] is assigned to each clone. In this way, each clone is guaranteed to stay in the

population for at least a fixed number of generations (1
3τB in the worst case). The age

assignment and the aging operator (described below) play a crucial role in Hybrid-IA

performances, and any evolutionary algorithm in general, because they are able to keep

the right amount of diversity among the solutions, helping thus the algorithm to avoid

premature convergences [54].

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f̂(x)

α

ρ

1.0

2.0

3.0

4.0

5.0

Figure 6.1: Impact of the mutation shape ρ on the probability α of mutation operator,
with respect to the normalized modularity value.

The aim of the hypermutation operator is to generate new elements, acting on each

clone in P (clo), with the main purpose of efficiently and carefully exploring the search

space. Just as happens in the natural immune system, the number of changes on each

clone, called mutation rate, is determined through an inversely proportional law to the

fitness function value of the B cell considered: better the fitness value of the solution,

smaller the relative mutation rate will be. In particular, let x⃗ be a cloned B cell, the

mutation rate α = e−ρf̂(x⃗) is defined as the probability to move a vertex from one

105

6. Hybrid Immunological Algorithm

community to another one, where ρ is a user-defined parameter that determines the

shape of the mutation rate, and f̂(x⃗) is the fitness function normalized in the range

[0, 1]. In Figure 6.1 are displayed the curves of the mutation rate behaviour at the

varying of the ρ parameter. It is therefore shown how the ρ mutation shape affects the

probability α, at different fitness function values. Indeed, it is possible to observe how

low fitness values (which represent not good solutions) correspond to high α values,

which means that a high number of vertices will be moved from one community to

another; vice versa, at high fitness values (i.e. the best solutions), correspond low α

values, and that is only a low number of vertices will be moved.

Formally, it works as follows: for each B cell, two integers ci and cj (ci ̸= cj) are ran-

domly chosen, which represent respectively two communities (see description of solution

representation above). The first one is chosen among the existing communities, whilst

the latter is randomly chosen in the range [1, N]. Then, all vertices in ci are moved in

cj with a probability given by α. Note that, however, cj might not match with any

currently existing community; in this case, a new community will be created and added

to the existing ones. Depending on the cj value, two different mutation approaches can

occur: merging and splitting. In the first, a subset of vertices of community ci will

be moved and therefore merged with another existing community cj; in the second,

instead, a community ci will be divided into two communities: ci itself, and a new one

cj. In figure 6.2 is reported a simple example of how these two approaches work (mer-

ging in Figure 6.2a and splitting in Figure 6.2b) for better comprehension. The main

idea behind the hypermutation operator is to create and discover new communities

by moving a variable percentage of vertices from existing communities. This search

method balances the effects of local search (described below), allowing the algorithm

to avoid premature convergences towards local optima.

The static aging operator is the one that plays a central role in the efficiency and

reliability of Hybrid-IA, particularly when it is applied to complex and large problems.

It simply acts on each mutated B cell by removing older ones from the two populations

P (t) and P (mut). Let τB be the maximum number of generations allowed for every B cell

106

6. Hybrid Immunological Algorithm

(a) (b)

Figure 6.2: Result of mutation operator in terms of community structure changes of
the current partition. (a) A subset of vertices from community ci will be merged to an
existing community cj. (b) A subset of vertices from community ci will be divided to
create a new community cj.

to stay in the population; once the age of a B cell exceeds τB, it will be removed from

the relative population, independently from its fitness value. However, an exception

may be done for the best current solution, which is kept alive even if its age is older

than τB. Such variant is called elitist aging operator. The purpose of this operator

is, then, to allow the algorithm to escape and jump out from local optima, assuring a

proper turnover between the B cells in the population, and producing, consequently,

high diversity among them.

The last operator to be performed within the evolutionary cycle is the (µ + λ)-

Selection operator, with µ = d and λ = (d× dup), which has the aim to select the best

d survivors from both populations P (t)
a and P (mut)

a , producing a temporary population

P (sel), on which the local search will be performed later. Basically, it identifies the best

d elements among the set of offspring and the parent B cells (those that survived the

aging step), ensuring monotonicity in the evolutionary dynamics.

The local search designed and introduced is the key operator to properly speed

up the convergence of the algorithm, and, in a way, drive it towards more promising

regions. Furthermore, it intensifies the search and explores the neighbourhood of each

solution using the well-known Move Vertex (MV) approach [86]. The basic idea of

the proposed LS is to assess deterministically if it is possible to move a vertex from

107

6. Hybrid Immunological Algorithm

its community to another one within its neighbours. The MV approach takes into

account the move gain that can be defined as the variation in modularity produced

when a vertex is moved from one community to another. Before formally defining the

move gain, it is important to point out that the modularity Q, defined in Equation

(4.1), can be rewritten as:

Q(c) =
k∑︂

i=1

⎡⎣ ℓi

M
−
(︄

di

2M

)︄2
⎤⎦ , (6.1)

where k is the number of the found communities; c = {c1, . . . , ci, . . . , ck} is the set of

communities that is the partitioning of the set of vertices V ; li and di are, respectively,

the number of links inside the community i, and the sum of the degrees of vertices

belonging to the i community. Thus, the move gain of a vertex u ∈ ci is the modularity

variation produced by moving u from ci to cj, that is:

∆Qu(ci, cj) =
lcj

(u)− lci
(u)

M
+ dV (u)

[︄
dci
− dV (u)− dcj

2M2

]︄
, (6.2)

where lci
(u) and lcj

(u) are the number of links from u to vertices in ci and cj respectively,

and dV (u) is the degree of u when considering all the vertices V . If ∆Qu(ci, cj) > 0,

then moving vertex u from ci to cj produces an increment in modularity, and therefore

a possible improvement. Consequently, the goal of MV is to find a vertex u to move

to an adjacent community in order to maximize ∆Qu:

argmax
v∈Adj(u)

∆Qu(i, j), (6.3)

where u ∈ ci, v ∈ cj and Adj(u) is the adjacency list of vertex u.

For each solution in P (select), the Local Search begins by sorting the communities

in increasing order with respect to the ratio between the sum of inside links and the

sum of the vertex degrees in the community. In this way, poorly formed communities

are identified. After that, MV acts on each community of the solution, starting from

vertices that lie on the border of the community, that is, those that have at least an

108

6. Hybrid Immunological Algorithm

outgoing link. In addition, for communities, the vertices are sorted with respect to

the ratio between the links inside and the vertex degree. The key idea behind LS is

to deterministically repair the solutions which were produced by the hypermutation

operator, by discovering new partitions with higher modularity values. Equation 6.2

can be calculated efficiently because M and dV (u) are constants, the terms lci
and dci

can be stored and updated using appropriate data structures, while the terms lci
(u)

can be calculated during the exploration of all adjacent vertices of u. Therefore, the

complexity of the move vertex operator is linear on the dimension of the neighbourhood

of vertex u.

6.2 Networks Data Set

In this section, the different social and biological networks used during the tests are

summarized, and for which the communities were identified. They are grouped into

five types, where three of them, described below, refer to biological interactions and

main molecular networks.

6.2.1 Social Networks

Social networks are a classical example of networks with a community structure, as

people tend to form groups within their work environment, family, and friends. The

instances that have been considered in this work are well-known networks used for the

community detection problem. Grevy’s Zebra [135] is a network created by Sundaresan

et al. in which a link between vertices indicates that a pair of zebras appeared together

at least once during the study. In Zachary’s Karate Club [154] network, collected by

Zachary in 1977, a vertex represents a member of the club and an edge represents a

tie between two members of the club. Bottlenose Dolphins [98] is an undirected social

network of dolphins where an edge represents a frequent association. Books about US

Politics [88] is a network of books sold, compiled by Krebs, where edges represent

frequent co-purchasing of books by the same buyers. Another network considered is

109

6. Hybrid Immunological Algorithm

American College Football [66], a network of football games between colleges. Jazz

Musicians [67] is the collaboration network between Jazz musicians. Each vertex is a

Jazz musician and an edge denotes that two musicians have played together in a band.

6.2.2 Protein-Protein Interaction Networks

The physical interaction between the proteins has always been an important consider-

ation for gene function. Proteins are the main participants in a variety of biological

processes inside cells, including signal transduction, homeostasis control, maintenance

of internal balance and developmental processes [155]. They rarely function independ-

ently but form protein complexes [73]. The mathematical representation of the physical

contacts between proteins inside the cell can be obtained through a non-direct binary

physical PPI network [97], in which vertices represent proteins and whose edges con-

nect pairs of interacting proteins. By considering the spatial and temporal aspects of

interactions, networks can help understand the general organization of protein-protein

connections and discover the principles of their organization within the cell. These

have a fundamental role in all biological processes and in all organisms [142], there-

fore a complete knowledge of PPIs and their protein interconnections, would allow the

understanding of cell physiology in pathogenic (and normal) states. This would have

a great impact on disease diagnosis, disease genes often interact with other disease

genes [69], as well as for drug discovery and disease treatment [103, 140, 56]. In this

work, two small Cattle PPI [31] and Helicobacter pylori PPI Protein-Protein interac-

tions [149, 116] and two large networks (with a number of vertices > 2000), related

to Yeast PPI instances [153, 25] have been considered. All networks in question are

related to the data of interactions between proteins in the three different organisms

mentioned before (cattle, helicobacter pylori and yeast) where each vertex represents

a protein and they are linked if they interact physically within the cell.

110

6. Hybrid Immunological Algorithm

6.2.3 Metabolic Networks

With the technological advancement and the sequencing of whole genomes, as well as

it has been possible to reconstruct the protein-protein interaction networks described

above, it has also been possible to obtain the networks of biochemical reactions in

many organisms. Metabolic networks are powerful tools to represent and study a

complete set of relationships between metabolites, small chemical compounds, and

proteins/enzymes. They describe the set of processes and reactions that determine

the biochemical and physiological properties of a cell, including the chemical reactions

of metabolism, the metabolic pathways and regulatory interactions that drive these

reactions. Metabolic networks make it possible to detect diseases given an enzymatic

defect in a reaction that can affect flows in subsequent reactions. These defects often

cause cascading effects responsible for associated metabolic diseases [93]. Therefore,

this type of network can be used to understand if metabolic disorders are linked due

to their related reactions [119]. In order to investigate this functional information, it

is necessary to identify the functional modules in it [152]. Identifying the communit-

ies in the metabolic networks will help in understanding the pathways and cycles in

metabolic networks [62]. In the two considered real networks, the metabolic network of

Caenorhabditis elegans [57] and E. coli bacteria [123], each vertex represents a meta-

bolite, and each direct link a reaction between them that binds the metabolite with

the reaction product.

6.2.4 Transcriptional Regulatory Networks

Understanding the mechanisms underlying the regulation of gene expression is the main

goal of contemporary biology. Important cellular processes, such as cell differentiation,

cell cycle and metabolism are controlled by the complex biological mechanism of gene

regulation. However, the relationship between structure and regulatory function is

not easy to observe experimentally. Therefore, a Systems Biology-based approach is

needed. In this regard, network theory is useful for understanding the activity behind

111

6. Hybrid Immunological Algorithm

these complex transcriptional regulatory mechanisms [7]. The transcriptional network

can be represented as a direct graph, composed of transcription factors (TFs) and target

genes (TGs) which are regulated in a tightly coordinated way. Within the network,

each vertex represents a gene (or operon, in the case of prokaryotic organisms) and

the edges represent direct transcriptional regulation. Each edge is directed from a

gene (or operon) that encodes a transcription factor to a gene (or operon) that is

regulated by that transcription factor. Transcription factors are modular proteins that

regulate the gene expression of other proteins by binding to specific sites in the DNA

(promoter sites) and allowing (or preventing) the synthesis of mRNA. The relationships

between TFs and their targets (TGs) determine a given phenotype [118]. Moreover, in

transcription regulatory networks, modules (or communities) correspond to sets of co-

regulated genes [26, 99, 148, 159]. For this reason, the problem of community detection

plays a relevant role [139]. Escherichia coli and Saccharomyces cerevisiae are two well-

known organisms often used as a model for studying gene regulation. In this work, two

transcriptional regulatory networks, E. coli TRN [129] and Yeast TRN [102] have been

considered, constituted by transcription factors and target genes, where each edge in

the network is directed from an operon that encodes a TF to an operon that it directly

regulates.

6.2.5 Synthetic Networks

In addition to real biological networks, artificial instances were also taken into account

in the experimental phase. These synthetic networks can be generated with different

characteristics and with a known community structure. Using these kinds of networks

allows for testing of the algorithms on different scenarios and gives the possibility of

evaluating the goodness of the detected communities. The algorithm used to generate

these synthetic networks is the LFR benchmarks, proposed in [92, 91]. The algorithm

assumes that both the distributions of degree and community size are power laws, with

exponents τ1 and τ2, respectively. The mixing parameter µt, identifies the relationship

112

6. Hybrid Immunological Algorithm

between the vertex’s external and internal degree. In particular, each vertex of the

networks shares a fraction 1−µt of its edges with the other vertices of its community and

a fraction µt with other vertices outside of its community. Also, the LFR benchmarks

can be used to generate directed and weighted synthetic networks with overlapping

communities. More details on the LFR algorithm about key parameters and how to

generate benchmark instances can be found in [92, 91].

6.3 Experimental Results

For evaluating the efficiency and reliability of Hybrid-IA, many experiments have

been performed on all biological networks described above (see Section 6.2). In each

experiment Hybrid-IA maintains a population of d = 100 B cells; uses a duplication

parameter dup = 2; keeps a solution for at most τB = 5 generations within the pop-

ulation, and uses ρ = 1.0 as mutation shape. This parameter setting comes out from

preliminary experimental results performed, and from previous knowledge learned.

6.3.1 Convergence Behaviour

In the initial part of the experimental phase, the analysis has been focused on the

convergence behaviour and learning rate in order to inspect the efficiency of Hybrid-

IA. For this study, artificial networks have been taken into account as benchmark

instances, which have been generated by the LFR algorithm [92, 91] and described in

Section 6.2.5. In particular, networks with 1000 vertices and average degree 15 and

20, and networks with |V | = 5000 and average degree 20 and 25 have been generated.

For each of these networks generated, the maximum degree was set to 50, while the

exponents of the power laws, which control the degree and community sizes distribution

(τ1 and τ2), have been set to 2 and 1, respectively. A minimum of 10 vertices to a

maximum of 50 have been set as sizes of the communities. The mixing parameter µt was

fixed to 0.5. Finally, for these experiments, a maximum number of generations Tmax =

100 was set, and 5 random instances were generated for each network parameters

113

6. Hybrid Immunological Algorithm

configuration.

0.4640

0.4650

0.4660

0.4670

0.4680

0.4690

 10 20 30 40 50 60 70 80 90 100

F
it
n

e
s
s

Generations

Average and Best Fitness

Average
Best

k = 15
k = 20

(a)

0.4930

0.4931

0.4932

0.4933

0.4934

0.4935

 10 20 30 40 50 60 70 80 90 100

F
it
n

e
s
s

Generations

Average and Best Fitness

Average
Best

k = 20
k = 25

(b)

Figure 6.3: Convergence behaviour of Hybrid-IA on LFR benchmark instances
with 1000 and 5000 vertices. Average and best fitness value versus generations on
(a) LFR(1000,15,0.5) and LFR(1000,20,0.5), and on (b) LFR(5000,20,0.5) and
LFR(5000,25,0.5).

In Figure 6.3a is shown the convergence plot on the LFR instances with 1000 vertices

and average degree k of 15 and 20. The two curves represent the best and average fitness

of the population and both are averaged over 100 independent runs. From this plot can

be noted how the two curves of the best fitness have the same trend for both values of

k: reach a high value of modularity in the early generations and then improves slowly.

The improvement for k = 20 compared to the first generations is minimal, while for

k = 15 the increase in modularity is slightly more significant. Instead, the average

fitness curves have a similar trend in the first generations, but subsequently decrease

and then gradually increase. From these two curves can be seen how the population

maintains a good degree of diversity within the population, favouring thus a better

exploration of the search space.

A similar situation can be also observed on the LFR instances with 5000 vertices.

The plots in Figure 6.3b show the best and average fitness of the population for k = 20

and k = 25. For k = 25, Hybrid-IA obtains a high value of modularity in a few

generations, and after that it stays in a steady state for the rest of the execution,

reaching a high-modularity plateau [71]. On the other hand, for k = 20 the algorithm

has a growth much more constant and linear, both in terms of the best solution and

114

6. Hybrid Immunological Algorithm

the average of the population. Also, in this case, the two curves of best and average

fitness are well separated, indicating that the algorithm maintains a good diversity of

solutions within the population.

 23

 24

 25

 26

 27

 28

 29

 30

 1 10 100

K
(t

,
t 0

)

Generations

Information Gain and Standard Deviation

k = 15
k = 20

S
D

(a)

 24

 25

 26

 27

 28

 29

 30

 1 10 100

K
(t

,
t 0

)
Generations

Information Gain and Standard Deviation

k = 20
k = 25

S
D

(b)

Figure 6.4: Learning ability of Hybrid-IA on LFR benchmark instances with 1000
and 5000 vertices. Information gain and standard deviation versus generations on
(a) LFR(1000,15,0.5) and LFR(1000,20,0.5), and on (b) LFR(5000,20,0.5) and
LFR(5000,25,0.5).

Once analyzed the convergence behaviour, an investigation on the learning ability

of Hybrid-IA has been performed as well, using the information gain that measures

the quantity of information the algorithm gains during the evolutionary process [89,

90], that is the amount of information learned compared to the randomly generated

initial population. At each generation t, let B(t)
m be the number of the B cells that have

the fitness function value to m; the candidate solutions distribution function f (t)
m can

be defined as the ratio between the number B(t)
m and the total number of candidate

solutions:

f (t)
m = B(t)

m∑︁
m B

(t)
m

= B(t)
m

d
. (6.4)

It follows that the information gain K(t, t0) can be calculated as:

K(t, t0) =
∑︂
m

f (t)
m log

(︄
f (t)

m

f
(t0)
m

)︄
. (6.5)

The plots in Figures 6.4a and 6.4b show the information gain obtained by the

algorithm during its running in different scenarios. For both values of |V |, Hybrid-IA

115

6. Hybrid Immunological Algorithm

0.3400

0.3450

0.3500

0.3550

0.3600

0.3650

0.3700

0.3750

0.3800

0.3850

 200 400 600 800 1000 1200 1400 1600 1800 2000

F
it
n

e
s
s

Generations

Average and Best Fitness

Average
Best

 800 850 900 950 1000

(a)

 24

 25

 26

 27

 28

 29

 30

 1 10 100

K
(t

,
t 0

)

Generations

Information Gain and Standard Deviation

S
D

(b)

Figure 6.5: Convergence behaviour and learning ability of Hybrid-IA on the E. coli
MRN network. (a) Average and best fitness value of the population versus generations.
(b) Information gain and standard deviation versus generations.

is able to learn information step by step, showing thus an increasing curve until it

reaches a steady state, which is exactly when the modularity of all solutions begins

to become similar. The monotonically increasing of the information gain curve until

reaching a steady state is consistent with the maximum information-gain principle:
dK
dt
≥ 0. In the overall, the convergence behaviour and learning process analyzed

(Figures 6.3 and 6.4), suggest that Hybrid-IA finds very quickly good solutions in

networks with medium/high density (i.e. k = 20 for 1000 vertices and k = 25 for 5000),

as the community structure is well-defined. On the other hand, on sparse networks,

with an unclear community structure, the algorithm converges more slowly.

In addition, a convergence analysis on the network E. coli MRN [123] was carried

out, which presents a very low density (less than 1%). In Figures 6.5a and 6.5b are

shown the plots relative to the run in which Hybrid-IA has reached its best solution.

Again, after the initial climb, the algorithm begins its exploration around the solutions

found, gradually improving. In some places (inset plot of Figure 6.5a) the algorithm

seems to stagnate in some local optima but, thanks to the aging operator, manages to

escape, finding better solutions. During these phases, the population tends to reduce

its diversity, being almost entirely composed of solutions of equal quality.

Finally, the experimental analysis has been focused on the inspection of the effi-

ciency of Hybrid-IA with respect to Opt-IA, in terms of convergence and solution

116

6. Hybrid Immunological Algorithm

quality found. In Figure 6.6, the convergence behaviour of both Opt-IA and Hybrid-

IA on the Books about US Politics network is shown. In this plot, the curves represent

the evolution of the best and average fitness of the population; the standard deviation

of the fitness values of the population is superimposed onto the average fitness and

gives an idea about how heterogeneous the elements in the population are.

0.00

0.10

0.20

0.30

0.40

0.50

50 100 150 200 250 300 350 400

0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54

1 2 3 4 5 6 7 8 9 10

F
it
n
es
s

Generations

Hybrid-IA
Opt-IA

Figure 6.6: Comparative convergence behaviour of Opt-IA and Hybrid-IA on the
Books about US Politics network.

From Figure 6.6, one can note how Opt-IA converges more slowly towards the

best solution, as expected, always keeping a certain variability within the population.

This allows the algorithm to better explore the search space. When the population

is composed of very different elements, i.e., when the standard deviation is high, the

algorithm discovers new solutions, significantly improving the current best solution.

However, after about 250 generations, Opt-IA reaches the optimal solution and the

curves (best and average fitness) tend to overlap. Moreover, the achievement of the

optimal solution helps the creation of better clones, reducing the variability of the

population. Unlike Opt-IA, Hybrid-IA converges easily thanks to the local search

applied to the elements after the selection phase. As can be noted from the inset plot in

Figure 6.6, Hybrid-IA reaches the optimal solution after a few generations. Even in

117

6. Hybrid Immunological Algorithm

this case, once the best solution is reached, the population follows the same trend of the

curve of the best fitness, and both curves continue (almost) as a single line. If on one

hand, the local search helps to quickly discover good solutions, on the other, it reduces

the diversity inside the population, reducing then the exploration of the search space.

In particular, as demonstrated by the worst value found in the Jazz Musicians network,

reported in Table 6.2, Hybrid-IA prematurely converges towards local optima, from

which it will hardly be able to get out. At the end of the analysis of Figure 6.6, it

is possible to conclude that the stochastic operators designed in Opt-IA guarantee

an excellent and large exploration of the search space, but with the disadvantage of

requiring a longer evolution time; however, the local search developed in Hybrid-IA,

and relative sorting criteria, allow for quickly discovering good solutions to exploit

during the evolutionary process.

6.3.2 Results

In this section, the outcomes obtained by Hybrid-IA on the social and biological

networks, described above and summarize in Table 6.1, are presented and analyzed.

For proving the competitiveness and reliability of Hybrid-IA with respect to the state

of the art and assessing its performance in general, the algorithm was compared to other

well-known metaheuristics, each based on a modularity optimization approach.

In particular, it was compared with an effective Hyper-Heuristics Differential Search

Algorithm (HDSA) [4, 33] based on the migration of artificial superorganisms; an im-

proved Bat Algorithm (BADE) [4, 150, 133] based on Differential Evolution algorithm;

a Scatter Search (SSGA) [4, 68, 100] algorithm based on the Genetic Algorithm; a

modified Big Bang–Big Crunch (BB-BC) [4, 58] algorithm; the original Bat Algorithm

(BA) [4, 150] based on echolocation behaviour of bats adapted for community detec-

tion; and the original Gravitational Search Algorithm (GSA) [4, 117], re-designed for

solving the community detection problem. Further, the Louvain algorithm [12], a

greedy optimization method that attempts to optimize the modularity, was also con-

118

6. Hybrid Immunological Algorithm

Table 6.1: Social and biological network instances used in the experiments.

Name Reference |V | |E|

Grevy’s Zebras [135] 28 111
Zachary’s Karate Club [154] 34 78
Bottlenose Dolphins [98] 62 159
Books about US Politics [88] 105 441
American College Football [66] 115 613
Jazz Musicians Collaborations [67] 198 2742
Cattle PPI [31] 268 303
E. coli TRN [129] 418 519
C. elegans MRN [57] 453 2025
Yeast TRN [102] 688 1078
H. pylori PPI [149, 116] 724 1403
E. coli MRN [123] 1039 4741
Yeast PPI (1) [153] 2018 2705
Yeast PPI (2) [25] 2284 6646

sidered for the comparison1.

The parameter configuration used by Hybrid-IA is the same as described above,

whilst the number of generations (Tmax) considered depends on the size of the network

tested: for social instances, Tmax was set to 100, for biological instances with less than

1000 vertices, Tmax was set to 1000, while for the ones with more than 1000 vertices,

Tmax is 2000. It is important to highlight that in all compared algorithms the results

have been taken from [4].

The comparison performed on all social networks is reported in Table 6.2, where

we show for each algorithm (where possible) the best, mean, and worst values of the

Q modularity; standard deviation, and, finally, the created communities number (k).

Furthermore, whilst the experiments for Hybrid-IA, Opt-IA and Louvain were

performed on 100 independent runs, for all other compared algorithms, only 30 inde-

pendent runs have been considered. Obviously, all algorithms optimize the same fitness

function reported in Equation 4.1 and rewritten in a simpler way in Equation 6.1.

From Table 6.2, it is possible to note that all algorithms reach the optimal solu-

tion in the first two networks Grevy’s Zebras and Zachary’s Karate Club; on all the
1For these experiments we used the C++ source code of Louvain algorithm that can be downloaded

from this link: https://perso.uclouvain.be/vincent.blondel/research/louvain.html.

119

https://perso.uclouvain.be/vincent.blondel/research/louvain.html

6. Hybrid Immunological Algorithm

Table 6.2: Comparative results of Hybrid-IA and other algorithms on social net-
works. The results are calculated over 100 independent runs for Hybrid-IA, Opt-IA
and Louvain, while over 30 runs for the rest.

Name Hybrid-IA Opt-IA Louvain HDSA BADE SSGA BB-BC BA GSA

Grevy’s Zebras

k 4 4 4 4 4 4 4 4 4
Best 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768
Worst 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 0.2761 0.2768 0.2768
Mean 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 0.2766 0.2768 0.2768
StD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000

Zachary’s Karate Club

k 4 4 4 4 4 4 4 4 4
Best 0.4198 0.4198 0.4188 0.4198 0.4198 0.4198 0.4198 0.4198 0.4198
Worst 0.4198 0.4198 0.3854 0.4198 0.4156 0.4198 0.4188 0.3946 0.4107
Mean 0.4198 0.4198 0.4156 0.4198 0.4188 0.4198 0.4196 0.4133 0.4170
StD 0.0000 0.0000 0.0064 0.0000 0.0018 0.0000 0.0004 0.0105 0.0037

Bottlenose Dolphins

k 5 5 5 5 4 5 5 4 6
Best 0.5285 0.5285 0.5185 0.5285 0.5268 0.5257 0.5220 0.5157 0.4891
Worst 0.5220 0.5268 0.5176 0.5276 0.4940 0.5156 0.5049 0.4427 0.4517
Mean 0.5273 0.5285 0.5203 0.5282 0.5129 0.5200 0.5141 0.4919 0.4677
StD 0.0009 0.0003 0.0032 0.0005 0.0120 0.0040 0.0068 0.0289 0.0155

Books about US Politics

k 5 5 4 5 4 5 9 3 5
Best 0.5272 0.5272 0.5205 0.5272 0.5239 0.5221 0.4992 0.5211 0.4775
Worst 0.5246 0.5063 0.5102 0.5272 0.5137 0.5167 0.4799 0.4815 0.4558
Mean 0.5270 0.5267 0.5261 0.5272 0.5178 0.5203 0.4914 0.5020 0.4661
StD 0.0005 0.0028 0.0027 0.0000 0.0042 0.0024 0.0084 0.0149 0.0079

American College Football

k 10 10 10 10 11 6 10 7 5
Best 0.6046 0.6046 0.6046 0.6046 0.5646 0.5330 0.5171 0.5523 0.4175
Worst 0.6031 0.5736 0.5963 0.6019 0.5430 0.5189 0.4986 0.4742 0.3905
Mean 0.6039 0.5989 0.6038 0.6033 0.5513 0.5277 0.5061 0.5272 0.4032
StD 0.0007 0.0078 0.0018 0.0009 0.0085 0.0057 0.0069 0.0325 0.0109

Jazz Musicians

k 4 4 4 - - - - - -
Best 0.4451 0.4451 0.4451 - - - - - -
Worst 0.4446 0.4449 0.4346 - - - - - -
Mean 0.4450 0.4449 0.4422 - - - - - -
StD 0.0002 0.0001 0.0027 - - - - - -

other network instances, both Opt-IA and Hybrid-IA outperform all other com-

pared algorithms, matching their best values only with HDSA. It is important to

point out, which proves, even more, the efficiency of the proposed immunological al-

gorithm, how the mean values obtained by Opt-IA and Hybrid-IA, on all tested

networks, are better than the best modularity found by the other algorithms, such as

BADE, SSGA, BB-BC, BA, and GSA; even on the Bottlenose Dolphins and Amer-

ican College Football networks, the worst modularity value obtained by Opt-IA is

equal to or greater than the best one obtained by the same algorithms. On the Bot-

tlenose Dolphins network, Opt-IA reaches a better mean value than Hybrid-IA and

HDSA, since, because of its random/blind exploration of the search space, it jumps

out from local optima more easily than the other three. The opposite behaviour of

Opt-IA occurs when the size and complexity of the networks increase. In such a case,

120

6. Hybrid Immunological Algorithm

it obviously needs more generations to converge towards the optimal solutions and

this is highlighted by the mean value and the standard deviation obtained for Books

about US Politics and American College Football. Note that, with longer generations,

Opt-IA finds roughly the same mean values as Hybrid-IA.

Hybrid-IA shows more stable results on all tested networks than Opt-IA, obtain-

ing lower standard deviation values in all instances. On Bottlenose Dolphins network,

Hybrid-IA has a mean value slightly lower than Opt-IA and HDSA, while in Books

about US Politics lower only than HDSA. As described above, this is due to the local

search that leads the algorithm to a premature convergence towards local optima, ob-

taining the lowest worst value. Furthermore, HDSA is a hyper-heuristic which uses

a genetic algorithm and scatter search to create the initial population for the differ-

ential search algorithm, speeding up the convergence of the algorithm, and reducing

the spread of results. In Jazz Musicians network, both Opt-IA and Hybrid-IA al-

gorithms obtain similar results, better than those obtained by Louvain. Finally, if

we focus on the comparison with only the Louvain algorithm, both immunological

algorithms outperform it in almost all networks (5 out of 6).

Table 6.3 displays the detailed results of Hybrid-IA in comparisons to the others,

and presents, for each algorithm, the best values of the Q modularity (Best) found, the

average of the values (Mean), the worst modularity (Worst), the standard deviation

(StD) and the number of community structures (k) detected by the best solution.

Noticeably, the proposed Hybrid-IA algorithm outperformed all metaheuristics in

terms of both the value of modularity obtained and mean value, except HDSA in the

E. coli TRN biological network, although it still provides an upper limit very close

to that obtained. It is important to highlight that Hybrid-IA results underline the

efficiency of the proposed algorithm, also proved by the fact that the average values

obtained on Cattle PPI, E. coli TRN, C. elegans MRN and H. pylori PPI networks

are better than the Best modularity values obtained by the other algorithms, with the

exception of the Hyper-heuristic Differential Search Algorithm (HDSA).

Furthermore, from the analysis of the results obtained by the Louvain algorithm,

121

6. Hybrid Immunological Algorithm

Table 6.3: Comparative results of Hybrid-IA and other algorithms on biological
networks. The results are calculated over 100 independent runs for Hybrid-IA, Opt-
IA and Louvain, while over 30 runs for the rest.

Name Hybrid-IA Opt-IA Louvain HDSA BADE SSGA BB-BC BA GSA

Cattle PPI

k 40 40 40 40 41 40 48 42 43
Best 0.7195 0.7195 0.7195 0.7195 0.7183 0.7118 0.7095 0.7143 0.7053
Worst 0.7011 0.7049 0.7181 0.7194 0.7059 0.7052 0.7079 0.7063 0.6949
Mean 0.7154 0.7161 0.7193 0.7195 0.7138 0.7079 0.7084 0.7100 0.6983
StD 0.0037 0.0039 0.0005 0.0001 0.0051 0.0025 0.0007 0.0035 0.0041

E. coli TRN

k 43 32 41 47 58 61 71 56 61
Best 0.7785 0.7795 0.7793 0.7822 0.7680 0.7507 0.7520 0.7629 0.7416
Worst 0.7563 0.7589 0.7747 0.7808 0.7560 0.7412 0.7452 0.7542 0.7328
Mean 0.7701 0.7670 0.7779 0.7815 0.7621 0.7457 0.7485 0.7599 0.7375
StD 0.0049 0.0049 0.0011 0.0006 0.0043 0.0035 0.0026 0.0034 0.0034

C. elegans MRN

k 10 8 10 13 25 22 21 22 24
Best 0.4506 0.4487 0.4490 0.4185 0.3473 0.3336 0.3374 0.3514 0.3063
Worst 0.4321 0.4221 0.4216 0.3962 0.3335 0.3124 0.3194 0.3356 0.2974
Mean 0.4437 0.4366 0.4365 0.4074 0.3385 0.3220 0.3266 0.3438 0.3039
StD 0.0040 0.0070 0.0049 0.0010 0.0054 0.0077 0.0074 0.0073 0.0037

Yeast TRN

k 33 - 26 - - - - - -
Best 0.7668 - 0.7683 - - - - - -
Worst 0.7363 - 0.7489 - - - - - -
Mean 0.7569 - 0.7607 - - - - - -
StD 0.0050 - 0.0033 - - - - - -

H. pylori PPI

k 51 19 24 52 69 70 75 62 77
Best 0.5359 0.5416 0.5462 0.5086 0.4926 0.4726 0.4681 0.4900 0.4600
Worst 0.5104 0.5116 0.5356 0.5048 0.4809 0.4659 0.4642 0.4738 0.4549
Mean 0.5240 0.5249 0.5410 0.5078 0.4854 0.4695 0.4660 0.4814 0.4567
StD 0.0056 0.0063 0.0025 0.0017 0.0047 0.0021 0.0018 0.0073 0.0020

E. coli MRN

k 13 9 8 - - - - - -
Best 0.3817 0.3629 0.3734 - - - - - -
Worst 0.3598 0.3282 0.3450 - - - - - -
Mean 0.3695 0.3437 0.3583 - - - - - -
StD 0.0042 0.0064 0.0058 - - - - - -

Yeast PPI (1)

k 353 386 213 - - - - - -
Best 0.7002 0.6516 0.7648 - - - - - -
Worst 0.6602 0.6178 0.7519 - - - - - -
Mean 0.6798 0.6344 0.7609 - - - - - -
StD 0.0078 0.0089 0.0022 - - - - - -

Yeast PPI (2)

k 159 317 46 - - - - - -
Best 0.5796 0.4879 0.5961 - - - - - -
Worst 0.5524 0.4473 0.5870 - - - - - -
Mean 0.5652 0.4746 0.5925 - - - - - -
StD 0.0052 0.0085 0.0019 - - - - - -

the only deterministic algorithm included in the comparison, it is clear how Hybrid-IA

performs well equating the modularity value in the Cattle PPI dataset, and exceed-

ing it in the C. elegans MRN and E. coli MRN networks. For these datasets, the

Figures 6.7a, 6.8a, 6.8b show the detected community structures by Hybrid-IA. Fig-

ure 6.7b shows the communities generated for E. coli TRN network. For the other

instances considered, the modularity is however close to the optimal one. Finally, as

122

6. Hybrid Immunological Algorithm

will be explained in detail in the next section, although Louvain manages to achieve

a better maximization of the modularity value than the ones achieved by Hybrid-IA,

the latter reveals a higher number of communities. This is due to the different nature

of the two algorithms, where Louvain algorithm tends to aggregate communities.

(a) (b)

Figure 6.7: Community structures identified by Hybrid-IA on (a) Cattle PPI and
(b) E. coli TRN networks.

(a) (b)

Figure 6.8: Community structures identified by Hybrid-IA on (a) C. elegans MRN
and (b) E. coli MRN networks.

123

6. Hybrid Immunological Algorithm

6.3.3 Functional Sensitivity of Community Detection

In order to uphold the efficiency and reliability of Hybrid-IA in detecting strong

communities, a new evaluation metric has been considered. Thanks to the advantages

offered by the synthetic networks (see Section 6.2.5), the Normalized Mutual Informa-

tion (NMI) [48] has been taken into account, which is a widely used measure to compare

community detection methods as it discloses the similarity between the genuine com-

munity (target) and the detected community structures. While the modularity allows

for getting the measure of how cohesive the detected communities are, the NMI allows

for assessing how similar they are concerning the real ones. Moreover, a more in-depth

functional sensitivity analysis was conducted based on two other community structure

similarity metrics: Adjusted Rand Index (ARI) [79], which is based on pairs counting for

measuring the similarity, and Normalized Variation of Information (NVI) [101], which

is based on the Shannon entropy and measures the lost and the gained information in

changing from one clustering to another one. It is worth recalling that whilst in NMI

and ARI the values as close as 1 indicate a strong similarity between the community

detected and the real one (1 means identical communities), the NVI values, on the

other hand, tend to 0 as the similarity between the compared communities increases (0

means identical communities). For this analysis, a new dataset of LFR instances has

been generated, with the mixing parameter µt that ranges from 0.1 to 0.8. The three

measures of functional sensitivity were computed on synthetic networks with 1000,

5000 and 10000 vertices.

In Tables 6.4-6.6, the Hybrid-IA outcomes on these new synthetic datasets are

reported and compared to the ones obtained by Louvain. The features of the LFR

networks tested are shown in the first column; for each of these parameters, 5 random

instances have been generated. The values of modularity Q and clustering measures

have been computed over 100 independent runs for both algorithms.

Analyzing the comparison, it is possible to see how Louvain outperforms Hybrid-

IA in almost all networks with 1000 vertices with respect to the Q modularity metric,

124

6. Hybrid Immunological Algorithm

Table 6.4: Functional sensitivity analysis of Hybrid-IA and Louvain on synthetic
networks with 1000 vertices. NMI, ARI and NVI were considered as community struc-
ture similarity metrics.

Hybrid-IA Louvain
(|V |, k, µt) Q NMI ARI NVI Q NMI ARI NVI

(1000, 15, 0.1) 0.8608 0.9951 0.9873 0.0098 0.8608 0.9918 0.9785 0.0161
(1000, 15, 0.2) 0.7621 0.9894 0.9716 0.0209 0.7623 0.9807 0.9483 0.0377
(1000, 15, 0.3) 0.6646 0.9862 0.9567 0.0271 0.6651 0.9716 0.9175 0.0550
(1000, 15, 0.4) 0.5654 0.9836 0.9490 0.0322 0.5660 0.9691 0.9104 0.0598
(1000, 15, 0.5) 0.4670 0.9847 0.9467 0.0301 0.4688 0.9462 0.8274 0.1019
(1000, 15, 0.6) 0.3688 0.9612 0.8664 0.0742 0.3718 0.9113 0.7368 0.1627
(1000, 15, 0.7) 0.2712 0.5467 0.2379 0.6220 0.2675 0.4977 0.2168 0.6664
(1000, 15, 0.8) 0.2415 0.1600 0.0219 0.9130 0.2354 0.1536 0.0218 0.9167
(1000, 20, 0.1) 0.8606 0.9980 0.9948 0.0040 0.8607 0.9931 0.9842 0.0135
(1000, 20, 0.2) 0.7622 0.9964 0.9918 0.0071 0.7622 0.9914 0.9782 0.0170
(1000, 20, 0.3) 0.6656 0.9921 0.9771 0.0156 0.6658 0.9830 0.9525 0.0332
(1000, 20, 0.4) 0.5668 0.9910 0.9707 0.0179 0.5676 0.9656 0.8961 0.0664
(1000, 20, 0.5) 0.4685 0.9829 0.9426 0.0337 0.4700 0.9491 0.8363 0.0968
(1000, 20, 0.6) 0.3688 0.9748 0.9038 0.0491 0.3712 0.9263 0.7641 0.1370
(1000, 20, 0.7) 0.2714 0.9244 0.7561 0.1399 0.2737 0.8230 0.5403 0.3002
(1000, 20, 0.8) 0.2169 0.1708 0.0288 0.9064 0.2069 0.1793 0.0300 0.9012

and in all instances with 5000 and 10000 vertices. On the other hand, though, Hybrid-

IA outperforms Louvain in all networks with respect to the NMI index, except just

for one (1000, 20, 0.8).

This gap is due to the combination between the random search and local search

that, together with the diversity produced by the immune operators, requires a longer

convergence time than Louvain. Indeed, Louvain is a multilevel algorithm that

although obtains good modularity values, aggregates too much the communities by-

passing, then, the real community structures of the networks. These results prove,

therefore, a better ability of the hybrid immune algorithm proposed in detecting com-

munities closer to the true ones, than the greedy optimization algorithm. Importantly,

although modularity assesses the cohesion of the communities detected, maximizing Q

might not correspond to detecting true communities. Indeed, as also asserted in [63],

in maximizing modularity is possible to fail to identify smaller communities due to the

degree of interconnectedness of the communities.

125

6. Hybrid Immunological Algorithm

Table 6.5: Functional sensitivity analysis of Hybrid-IA and Louvain on synthetic
networks with 5000 vertices. NMI, ARI and NVI were considered as community struc-
ture similarity metrics.

Hybrid-IA Louvain
(|V |, k, µt) Q NMI ARI NVI Q NMI ARI NVI

(5000, 20, 0.1) 0.8923 0.9988 0.9940 0.0024 0.8934 0.9586 0.8194 0.0794
(5000, 20, 0.2) 0.7927 0.9965 0.9816 0.0070 0.7949 0.9394 0.7302 0.1142
(5000, 20, 0.3) 0.6929 0.9965 0.9808 0.0070 0.6960 0.9252 0.6678 0.1392
(5000, 20, 0.4) 0.5931 0.9948 0.9711 0.0104 0.5976 0.9065 0.5941 0.1709
(5000, 20, 0.5) 0.4936 0.9951 0.9728 0.0098 0.5003 0.8779 0.4959 0.2177
(5000, 20, 0.6) 0.3939 0.9966 0.9797 0.0068 0.4030 0.8474 0.4048 0.2648
(5000, 20, 0.7) 0.2932 0.9927 0.9539 0.0145 0.3056 0.8145 0.3327 0.3130
(5000, 20, 0.8) 0.2084 0.3285 0.0176 0.8027 0.2102 0.2634 0.0195 0.8481
(5000, 25, 0.1) 0.8922 0.9993 0.9966 0.0013 0.8925 0.9770 0.8928 0.0449
(5000, 25, 0.2) 0.7925 0.9988 0.9935 0.0024 0.7936 0.9527 0.7821 0.0902
(5000, 25, 0.3) 0.6929 0.9986 0.9921 0.0029 0.6948 0.9348 0.7026 0.1225
(5000, 25, 0.4) 0.5931 0.9987 0.9915 0.0027 0.5966 0.9125 0.6158 0.1609
(5000, 25, 0.5) 0.4934 0.9955 0.9747 0.0089 0.4983 0.8907 0.5366 0.1970
(5000, 25, 0.6) 0.3939 0.9950 0.9666 0.0100 0.4008 0.8621 0.4473 0.2424
(5000, 25, 0.7) 0.2940 0.9951 0.9653 0.0097 0.3037 0.8285 0.3604 0.2927
(5000, 25, 0.8) 0.1872 0.6067 0.0667 0.5607 0.1942 0.5654 0.1065 0.6058

By analyzing these tables it is possible to assert the same statement made for

NMI for the other two evaluation metrics, as well. Indeed, appears clear as Hybrid-

IA achieves better metric values than Louvain in all three sensitivity measures. It

follows therefore that, albeit Louvain achieves slightly better modularity values in

almost all networks considered (mainly on the larger ones), Hybrid-IA instead is able

to detect communities strongly similar to the real ones outperforming Louvain in all

three sensitivity metrics. It is worth pointing out how Hybrid-IA obtains NMI and

ARI values close to 1 in almost all tested networks, with particular reference to the

largest one (|V | = 10000).

In Figures 6.9a are shown the curves of the NMI, ARI and NVI indices for all LFR

benchmarks with 1000 vertices. From these plots can be observed that the two curves

have the same trend: for low values of µt (≤ 0.3), both algorithms obtain similar results,

and the NMI curves grow as a common line, while as the µt parameter increases, the

gap between Hybrid-IA and Louvain begins to be more consistent. However note

126

6. Hybrid Immunological Algorithm

Table 6.6: Functional sensitivity analysis of Hybrid-IA and Louvain on synthetic
networks with 10000 vertices. NMI, ARI and NVI were considered as community
structure similarity metrics.

Hybrid-IA Louvain
(|V |, k, µt) Q NMI ARI NVI Q NMI ARI NVI

(10000, 20, 0.1) 0.8938 0.9995 0.9982 0.0010 0.8945 0.9686 0.8874 0.0609
(10000, 20, 0.2) 0.7938 0.9981 0.9925 0.0037 0.7951 0.9538 0.8198 0.0883
(10000, 20, 0.3) 0.6940 0.9980 0.9925 0.0040 0.6960 0.9407 0.7563 0.1119
(10000, 20, 0.4) 0.5941 0.9977 0.9900 0.0045 0.5972 0.9202 0.6682 0.1478
(10000, 20, 0.5) 0.4942 0.9988 0.9945 0.0024 0.4986 0.8982 0.5793 0.1847
(10000, 20, 0.6) 0.3943 0.9996 0.9974 0.0008 0.4004 0.8720 0.4872 0.2269
(10000, 20, 0.7) 0.2909 0.9847 0.8556 0.0301 0.3013 0.8287 0.3737 0.2925
(10000, 20, 0.8) 0.2064 0.2621 0.0085 0.8491 0.2094 0.1704 0.0079 0.9068
(10000, 25, 0.1) 0.8937 0.9995 0.9984 0.0010 0.8940 0.9792 0.9253 0.0407
(10000, 25, 0.2) 0.7940 0.9993 0.9968 0.0014 0.7947 0.9627 0.8524 0.0719
(10000, 25, 0.3) 0.6941 0.9990 0.9955 0.0020 0.6955 0.9497 0.7946 0.0958
(10000, 25, 0.4) 0.5942 0.9992 0.9969 0.0015 0.5964 0.9320 0.7179 0.1273
(10000, 25, 0.5) 0.4944 0.9982 0.9917 0.0036 0.4978 0.9083 0.6199 0.1679
(10000, 25, 0.6) 0.3943 0.9984 0.9897 0.0032 0.3989 0.8841 0.5313 0.2077
(10000, 25, 0.7) 0.2941 0.9981 0.9860 0.0038 0.3008 0.8516 0.4299 0.2584
(10000, 25, 0.8) 0.1849 0.4316 0.0227 0.7245 0.1867 0.3352 0.0247 0.7985

that, when the mixing parameter assumes higher values, the generated LFR networks

have community structures not well-defined, resulting, then, in low NMI values for

both algorithms. In Figures 6.10a and 6.11a, instead, are shown the NMI curves for

the LFR networks with 5000 and 10000 vertices. For these instances, on the other

hand, the difference between Louvain and Hybrid-IA is much more substantial, and

it is evident even at low values of µt.

6.4 Local Search Position Analysis

Evolutionary computation represents today a consolidated and established class of al-

gorithmic methodologies able to tackle hard and complex optimization problems mainly

thanks to their ability to be easily applied to new and unknown problems, and, in gen-

eral, to all those problems whose knowledge about their features and structures is very

limited. Among the evolutionary computation methodologies, the immune-inspired

127

6. Hybrid Immunological Algorithm

N = 1000

k = 15

N = 1000

k = 20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.25

0.50

0.75

1.00

Mixing parameter

N
or
m
al
iz
ed

M
u
tu
al

In
fo
rm

at
io
n

Hybrid-IA Louvain

(a)
N = 1000

k = 15

N = 1000

k = 20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.25

0.50

0.75

1.00

Mixing parameter

A
d
ju
st
ed

R
an

d
In
d
ex

(b)
N = 1000

k = 15

N = 1000

k = 20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.25

0.50

0.75

Mixing parameter

N
or
m
al
iz
ed

V
a
ri
at
io
n
of

In
fo
rm

at
io
n

(c)

Figure 6.9: Comparative evaluation of the performances of Hybrid-IA and Louvain
on the LFR instances with 1000 vertices and average degree 15 and 20. The plots show
(a) the Normalized Mutual Information, (b) the Adjusted Rand Index and (c) the
Normalized Variation of Information as function of the mixing parameter. Each point
corresponds to an average over 5 graph realizations and 100 runs.

128

6. Hybrid Immunological Algorithm

N = 5000

k = 20

N = 5000

k = 25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.4

0.6

0.8

1.0

Mixing parameter

N
or
m
al
iz
ed

M
u
tu
al

In
fo
rm

at
io
n

Hybrid-IA Louvain

(a)
N = 5000

k = 20

N = 5000

k = 25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.25

0.50

0.75

1.00

Mixing parameter

A
d
ju
st
ed

R
an

d
In
d
ex

(b)
N = 5000

k = 20

N = 5000

k = 25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

Mixing parameter

N
or
m
al
iz
ed

V
a
ri
at
io
n
of

In
fo
rm

at
io
n

(c)

Figure 6.10: Comparative evaluation of the performances of Hybrid-IA and Louv-
ain on the LFR instances with 5000 vertices and average degree 20 and 25. The plots
show (a) the Normalized Mutual Information, (b) the Adjusted Rand Index and (c)
the Normalized Variation of Information as function of the mixing parameter. Each
point corresponds to an average over 5 graph realizations and 100 runs.

129

6. Hybrid Immunological Algorithm

N = 10000

k = 20

N = 10000

k = 25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.25

0.50

0.75

1.00

Mixing parameter

N
or
m
al
iz
ed

M
u
tu
al

In
fo
rm

at
io
n

Hybrid-IA Louvain

(a)
N = 10000

k = 20

N = 10000

k = 25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.25

0.50

0.75

1.00

Mixing parameter

A
d
ju
st
ed

R
an

d
In
d
ex

(b)
N = 10000

k = 20

N = 10000

k = 25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.25

0.50

0.75

Mixing parameter

N
or
m
al
iz
ed

V
a
ri
at
io
n
of

In
fo
rm

at
io
n

(c)

Figure 6.11: Comparative evaluation of the performances of Hybrid-IA and Louv-
ain on the LFR instances with 10000 vertices and average degree 20 and 25. The plots
show (a) the Normalized Mutual Information, (b) the Adjusted Rand Index and (c)
the Normalized Variation of Information as function of the mixing parameter. Each
point corresponds to an average over 5 graph realizations and 100 runs.

130

6. Hybrid Immunological Algorithm

algorithms represent a powerful algorithmic class, which takes inspiration from the

principles and dynamics of the biological immune system (IS). What makes the IS very

interesting and a source of inspiration from a computational perspective is its ability

in learning, detecting, and recognizing foreign and dangerous entities [64].

However, although many methodologies inspired by biology and nature have been

developed, and applied effectively in many combinatorial optimization problems, it

clearly emerges from the literature that just on these kinds of problems their hybridiza-

tion, that is their combination with concepts and/or components of other optimization

techniques (e.g., Local Search algorithms), turns out to be much more efficient and

successful, thus proving to be very powerful search algorithms [13]. The basic idea of

this combination is to exploit the strengths of one to overcome the weaknesses of the

other: random search performs an excellent exploration of the search space (thanks

to its stochastic nature), whilst the deterministic approach, for instance, is useful for

refine and improve the current solutions found. There are many different ways to gen-

erate hybrid methods, but the most common and popular is to combine evolutionary

algorithms and local improver methods (such as Local Search, Hill-Climbing, etc.),

which are applied one after another, using the output of the former as input for the

latter. Furthermore, it is also common in this case that the revised and improved

individual, by the local improver method, replaces the original one in the population.

In this section, we want to investigate when is better to perform the Local Search

(LS), and if, in the overall, replacing the original solution with the revised one by

LS is the best choice. In light of this Hybrid-IA (described in Section 6.1) has

been taken into account in an attempt to answer these questions. Hybrid-IA has

been considered as it was successfully applied in several and various combinatorial

optimization problems [43, 46, 47, 41]. Thus, the effect of the local search on the

performances of Hybrid-IA has been investigated, considering three different positions

in the evolutionary cycle in which to run the local improver method: (1) acting and

refining the best solutions found so far (to be run just after selecting the best elements

for the next generation); (2) acting on the perturbed elements and replacing them (to

131

6. Hybrid Immunological Algorithm

be run after the hypermutation operator, see Algorithm 6.1); and, finally, (3) acting

always on the perturbed elements but producing a new population, whose individuals

will compete to the selection of the new population for the next generation.

The main idea behind the Local Search operator is to refine and improve in a

deterministic way the solutions produced by the stochastic mutation operator. In this

study, the effect and impact of the position where to run the local search within Hybrid-

IA are inspected (see Section 6.1 and Algorithm 6.1). Specifically, three approaches

have been taken into account:

• Method A: applying the local search operator just after the selection operator,

acting, consequently, on the individuals already selected to produce the new

population for the next generation. In this way, the local search is always applied

to the best solutions, intensifying the exploration in their relative neighbourhood.

• Method B: applying LS to the population generated by the hypermutation op-

erator, where each revised individual replaces the hypermutated one, maintaining

the same population. In this way, it is applied to a wider set of solutions gen-

erated from the current ones through mutation allowing a better exploration of

the search space. Of course, the computational complexity is higher than in the

previous case because it is applied to a population of d× dup.

• Method C: applying LS to the hypermutated individuals, as in the previous

method, but producing a new temporary population, which will compete with

the other populations to the selection for the next generation. In this way, the

algorithm keeps the memory of the discoveries made via random search, which

generates diversity in the population, and, at the same time, it carries out a

careful exploration of their neighbourhood via local search. Computational com-

plexity is the same as the previous method.

132

6. Hybrid Immunological Algorithm

6.4.1 Results

In this section, all experiments performed are presented in order to inspect what is the

best position where to run the local search within the evolutionary cycle of Hybrid-

IA. For this study [125], community detection has been considered as the test problem,

and, specifically, several artificial networks have been taken into account as benchmark

instances. These networks were generated by the LFR algorithm, proposed in [92, 91],

and have been used because they allow us to perform our study on different complexity

scenarios thanks to their diverse features. Note that the validity of this benchmark is

given by faithfully reproducing the key features of real graph communities. In partic-

ular, networks with number of vertices 300, 500, 1000, and 5000 have been generated,

with average degree 15, 20, and 25, and maximum degree 50. Further, for all |V | values,

the exponent of the degrees distribution was set to τ1 = 2, whilst the distribution of

community sizes to τ2 = 1. The minimum and maximum of the communities’ size for

such artificial networks were considered, respectively, minc = 10 and maxc = 50. The

mixing parameter µt, which identifies the relationship between the vertex’s external

and internal degree with respect to its community, was instead set to 0.5: greater is

the value of µt, greater is the number of edges that a vertex shares with vertices outside

of its communities. For each network parameters configuration, 5 random instances

have been generated.

For all experiments performed on all tested networks the following parameters set-

ting have been used for Hybrid-IA: B cells population size d = 100; the number of

generated clones dup = 2; ρ and τB, respectively, to 1.0 and 5. All these parameters

have been identified both from the knowledge learned by previous works [111, 47, 41],

and from preliminary experiments carried out. The maximum number of generations

has been considered as stopping criterion and was set to MaxGen = 100. 50 inde-

pendent runs were also performed. In order to assess which of the three methods is

the most efficient and reliable, in addition to the convergence behaviour analysis and

solution (modularity) quality obtained by each method, also the Information Gain as

133

6. Hybrid Immunological Algorithm

0.4645

0.4650

0.4655

0.4660

0.4665

0.4670

0.4675

0.4680

 10 20 30 40 50 60 70 80 90 100

F
it
n

e
s
s

Generations

Average Fitness

A
B
C

(a)

0.4645

0.4650

0.4655

0.4660

0.4665

0.4670

0.4675

0.4680

 10 20 30 40 50 60 70 80 90 100

F
it
n

e
s
s

Generations

Best Fitness

A

B

C

(b)

 24

 25

 26

 27

 28

 29

 30

 31

 1 10 100

K
(t

,
t 0

)

Generations

Information Gain and Standard Deviation

A
B
C

S
D

(c)

Figure 6.12: Convergence behaviour of the three methods on the LFR(1000,15,0.5)
instance. (a) Average and (b) best fitness value of the population versus generations.
(c) Information gain and standard deviation.

been considered as evaluation metric. This entropic function measures the quantity of

information the system discovers during the learning phase (see [89, 90, 43]).

For all network instances, the convergence analysis was carried out for the three

methods. Due to the space limit, only the most significant ones are reported. In

Figures 6.12 and 6.13 are shown the convergence plots for the LFR instances with 1000

vertices and average degree k of 15 and 20 respectively. From these plots can be noted

that method A reaches high modularity values in the first 10 generations, afterwards

improving very slowly.

The same trend is also visible in the average fitness of the population, with a peak

in the first generations and a slow growth for the rest of the run. Methods B and C,

on the other hand, have a growth much more constant and linear, both in terms of the

best solution and the average of the population. The average fitness curve is very close

134

6. Hybrid Immunological Algorithm

0.4665

0.4670

0.4675

0.4680

0.4685

0.4690

0.4695

 10 20 30 40 50 60 70 80 90 100

F
it
n

e
s
s

Generations

Average Fitness

A
B
C

(a)

0.4665

0.4670

0.4675

0.4680

0.4685

0.4690

0.4695

 10 20 30 40 50 60 70 80 90 100

F
it
n

e
s
s

Generations

Best Fitness

A

B

C

(b)

 24

 25

 26

 27

 28

 29

 30

 31

 1 10 100

K
(t

,
t 0

)

Generations

Information Gain and Standard Deviation

A
B
C

S
D

(c)

Figure 6.13: Convergence behaviour of the three methods on LFR(1000,20,0.5)
instance. (a) Average and (b) best fitness value of the population versus generations.
(c) Information gain and standard deviation.

to the curve of the best solution, indicating a population composed of solutions with

values of modularity very similar to each other and consequently very homogeneous.

This is also supported by the information gain curve, in which the peak is reached in

the earliest generations, after that, it stays in a steady state for the rest of the execution

(Figures 6.12c and 6.13c), while method A needs more generations to converge to the

same value reached by the other two methods.

The same situation is obtained in the networks with 5000 vertices and average

degree k equal to 20 and 25 (Figures 6.14 and 6.15). Also in these plots, method A

has a much slower convergence than the other two methods and maintains a certain

degree of diversity within the population, demonstrated by the distance between the

two curves: best solution, and average fitness of the population. In this case, in both

methods B and C, the two curves have a higher slope, which suggests that with more

135

6. Hybrid Immunological Algorithm

generations they could achieve better solutions.

0.4930

0.4932

0.4934

0.4936

0.4938

 10 20 30 40 50 60 70 80 90 100

F
it
n

e
s
s

Generations

Average Fitness

A
B
C

(a)

0.4930

0.4932

0.4934

0.4936

0.4938

 10 20 30 40 50 60 70 80 90 100

F
it
n

e
s
s

Generations

Best Fitness

A

B

C

(b)

 24

 25

 26

 27

 28

 29

 30

 31

 1 10 100

K
(t

,
t 0

)

Generations

Information Gain and Standard Deviation

A
B
C

S
D

(c)

Figure 6.14: Convergence behavior of the three methods on LFR(5000,20,0.5) in-
stance. (a) Average and (b) best fitness value of the population versus generations. (c)
Information gain and standard deviation.

The greater diversity introduced by methods B and C, allows to better explore

the search space and to find solutions with a higher modularity value. Table 6.7

shows the results of the experiments of the three methods carried out on benchmark

instances. In particular, in the table are reported the maximum value of modularity

(Q), the average number of communities (K) and computational time, all averaged over

5 random instances. From these results, can be noted that on the networks with 300

vertices, all three methods reach what is most likely the maximum modularity value,

detecting the same number of communities. On the other hand, for the instances with

500 vertices, only for k = 20 method A reaches the same modularity value of methods

B and C, while for k = 15 reaches a slightly lower modularity value, about 1.79×10−4,

which leads to a different number of communities detected (17.6 for method A versus

136

6. Hybrid Immunological Algorithm

0.4930

0.4931

0.4932

0.4933

0.4934

0.4935

0.4936

0.4937

 10 20 30 40 50 60 70 80 90 100

F
it
n

e
s
s

Generations

Average Fitness

A
B
C

(a)

0.4930

0.4931

0.4932

0.4933

0.4934

0.4935

0.4936

0.4937

 10 20 30 40 50 60 70 80 90 100

F
it
n

e
s
s

Generations

Best Fitness

A

B

C

(b)

 24

 25

 26

 27

 28

 29

 30

 31

 1 10 100

K
(t

,
t 0

)

Generations

Information Gain and Standard Deviation

A
B
C

S
D

(c)

Figure 6.15: Convergence behavior of the three methods on LFR(5000,25,0.5) in-
stance. (a) Average and (b) best fitness value of the population versus generations. (c)
Information gain and standard deviation.

16.8 for both method B and C). The difference in modularity becomes greater as the

number of vertices increases. For the instances with 1000 vertices, method A reaches

a lower modularity value than the other two methods (about 10−3 on average for both

instances), as observed in the respective convergence plots. The other two methods,

B and C, reach the best modularity value for k = 20 and k = 15 respectively, with a

minimum difference between each other.

The same results can be observed for the network with 5000 vertices, where method

A is behind the other two methods in terms of modularity, although with a lower gap

with respect to the instances with 1000 vertices (about 4 × 10−4), while methods B

and C achieve the best modularity value for k = 25 and k = 20 respectively. Moreover,

unlike smaller instances (300, and 500 vertices), on the networks with 1000 and 5000

vertices, the number of communities found by methods B and C is different. Finally,

137

6. Hybrid Immunological Algorithm

Table 6.7: Comparative results of the three methods on LFR benchmark instances.
The results are averaged on 5 random instances and calculated over 100 independent
runs.

A B C
Instance K Q Time K Q Time K Q Time
(300, 15, 0.5) 11.6 0.392061 8.3 11.6 0.392061 14.5 11.6 0.392061 15.5
(300, 20, 0.5) 11.2 0.386560 9.4 11.2 0.386560 16.9 11.2 0.386560 17.9
(500, 15, 0.5) 17.6 0.436989 13.7 16.8 0.437168 24.6 16.8 0.437168 26.1
(500, 20, 0.5) 17.0 0.430526 16.3 17.0 0.430526 29.7 17.0 0.430526 31.3
(1000, 15, 0.5) 34.4 0.467073 28.0 30.0 0.468122 51.2 30.4 0.468205 53.9
(1000, 20, 0.5) 37.0 0.468532 33.8 33.0 0.469451 62.6 32.2 0.469442 65.2
(5000, 20, 0.5) 196.4 0.493532 182.4 190.2 0.493985 346.0 189.4 0.493994 353.5
(5000, 25, 0.5) 193.0 0.493379 228.8 185.4 0.493741 438.1 184.6 0.493740 427.1

from the computational time point of view, methods B and C, as expected, take about

90% more time than method A, but they allow a better exploration of the search space

obtaining solutions with higher modularity values.

In order to consolidate the outcomes obtained so far and make them more reli-

able, an extended further analysis has been performed at the varying of the mixing

parameter (µt), on all three methods, whose outcomes are reported in Tables 6.8

and 6.9. As described above, the mixing parameter µt identifies the relationships

between the communities, that is the ratio between the vertex’s degree internal to the

community, and the external one. In this way, it is possible to carry out a comparat-

ive analysis in different scenarios, each of which was designed as realistic as possible

(µt = {0.1, 0.2, . . . , 0.8}). Table 6.8 reports the experimental results obtained by the

three methods on networks with 300 and 500 vertices. Focusing on the first one, that is

the network with 300 vertices, it is possible to note how the three methods are equival-

ent in all those instances where the external links are below, or around, the threshold of

50% (µt ≤ 0.5). By increasing this threshold, instead, methods B and C significantly

improve method A, both in terms of the modularity values and number of communities

discovered. A similar behaviour can be observed also on the network with 500 vertices,

although the threshold, where the three methods are equivalent, decreases to µt ≤ 0.4

when the average degree k of the vertices is 15. What is more interesting to note is

that the method C considerably outperforms not only the method A, which is to be

138

6. Hybrid Immunological Algorithm

Table 6.8: Comparative results of the three methods on synthetic networks with 300
and 500 vertices.

A B C
Instance K Q Time K Q Time K Q Time

|V | = 300

(300, 15, 0.1) 10.2 0.766602 3.8 10.2 0.766602 6.5 10.2 0.766602 7.4
(300, 15, 0.2) 12.0 0.673573 4.5 12.0 0.673573 7.9 12.0 0.673573 8.7
(300, 15, 0.3) 13.0 0.583192 5.3 13.0 0.583192 9.3 13.0 0.583192 10.1
(300, 15, 0.4) 11.2 0.484404 5.9 11.2 0.484404 10.5 11.2 0.484404 11.3
(300, 15, 0.5) 11.6 0.392061 8.3 11.6 0.392061 14.5 11.6 0.392061 15.5
(300, 15, 0.6) 11.0 0.305655 6.9 10.6 0.306509 12.4 10.6 0.306509 13.2
(300, 15, 0.7) 8.0 0.241728 7.1 6.6 0.247123 12.8 6.8 0.247811 13.5
(300, 15, 0.8) 7.8 0.232779 7.0 6.8 0.240292 12.7 6.8 0.239547 13.4
(300, 20, 0.1) 8.6 0.754457 4.5 8.6 0.754457 7.8 8.6 0.754457 8.7
(300, 20, 0.2) 11.8 0.670396 5.2 11.8 0.670396 9.3 11.8 0.670396 10.1
(300, 20, 0.3) 12.0 0.577310 6.1 12.0 0.577310 11.0 12.0 0.577310 11.8
(300, 20, 0.4) 12.6 0.496497 7.0 12.6 0.496497 12.7 12.6 0.496497 13.5
(300, 20, 0.5) 11.2 0.386560 9.4 11.2 0.386560 16.9 11.2 0.386560 17.9
(300, 20, 0.6) 11.0 0.288503 8.4 10.8 0.288713 15.4 10.8 0.288713 16.2
(300, 20, 0.7) 8.6 0.223786 8.5 7.8 0.227081 15.5 7.6 0.227327 16.2
(300, 20, 0.8) 7.6 0.202636 8.7 6.2 0.207970 15.8 6.4 0.207610 16.5

|V | = 500

(500, 15, 0.1) 18.6 0.820874 6.1 18.6 0.820874 10.4 18.6 0.820874 11.6
(500, 15, 0.2) 20.4 0.724672 7.4 20.4 0.724672 13.0 20.4 0.724672 14.2
(500, 15, 0.3) 18.6 0.626449 8.7 18.4 0.626457 15.5 18.4 0.626457 16.7
(500, 15, 0.4) 17.0 0.529800 9.9 17.0 0.529800 18.0 17.0 0.529800 19.2
(500, 15, 0.5) 17.6 0.436989 13.7 16.8 0.437168 24.6 16.8 0.437168 26.1
(500, 15, 0.6) 16.6 0.336580 12.0 14.6 0.337333 22.0 14.8 0.337325 23.2
(500, 15, 0.7) 11.0 0.248666 12.1 8.8 0.256057 22.2 8.2 0.256795 23.3
(500, 15, 0.8) 10.2 0.237794 11.9 8.0 0.245876 21.8 7.6 0.246542 22.8
(500, 20, 0.1) 19.2 0.817709 7.1 19.2 0.817709 12.6 19.2 0.817709 13.8
(500, 20, 0.2) 17.6 0.721416 8.8 17.6 0.721416 15.9 17.6 0.721416 17.1
(500, 20, 0.3) 19.2 0.629277 10.4 19.2 0.629277 19.0 19.2 0.629277 20.2
(500, 20, 0.4) 18.6 0.533117 11.9 18.4 0.533150 22.1 18.4 0.533150 23.3
(500, 20, 0.5) 17.0 0.430526 16.3 17.0 0.430526 29.7 17.0 0.430526 31.3
(500, 20, 0.6) 17.4 0.338484 14.2 17.0 0.338712 26.5 17.0 0.338712 27.7
(500, 20, 0.7) 13.2 0.241751 15.0 11.2 0.245852 27.6 10.4 0.246251 28.6
(500, 20, 0.8) 9.0 0.211891 14.3 7.4 0.218448 26.3 7.0 0.218741 27.4

expected based on the previous results but also the method B, especially when the

average degree is k = 20 and the external links grow (µt ≥ 0.6). This is due to the

fact that as the vertices average degree and, primarily, the number of external links

increases, the problem becomes harder and, consequently, to have two different pop-

139

6. Hybrid Immunological Algorithm

ulations competing with each other (the ones produced by the random search and by

the refinement one) produce more heterogeneity and therefore higher diversity in the

population, which helps the algorithm to carry out a better exploration in the search

space, avoiding thus being trapped in local optima.

Table 6.9: Comparative results of the three methods on synthetic networks with 1000
and 5000 vertices.

A B C
Instance K Q Time K Q Time K Q Time

|V | = 1000

(1000, 15, 0.1) 38.8 0.860777 12.3 38.0 0.860833 21.2 38.2 0.860826 23.4
(1000, 15, 0.2) 37.0 0.762139 15.1 35.8 0.762252 27.0 35.8 0.762255 29.2
(1000, 15, 0.3) 36.6 0.664539 17.6 35.2 0.664881 32.0 34.0 0.664966 34.2
(1000, 15, 0.4) 34.8 0.565415 20.6 33.0 0.565756 37.8 33.2 0.565726 40.0
(1000, 15, 0.5) 34.4 0.467073 28.0 30.0 0.468122 51.2 30.4 0.468205 53.9
(1000, 15, 0.6) 33.2 0.368714 25.1 28.2 0.370871 46.7 27.6 0.370888 48.9
(1000, 15, 0.7) 24.4 0.270108 25.3 16.8 0.279350 47.0 16.4 0.279087 49.1
(1000, 15, 0.8) 17.0 0.241944 23.9 9.0 0.249147 44.2 9.0 0.250582 46.2
(1000, 20, 0.1) 39.2 0.860630 14.2 37.8 0.860694 25.0 38.0 0.860692 27.3
(1000, 20, 0.2) 38.0 0.762173 17.9 36.2 0.762229 32.5 36.6 0.762228 34.8
(1000, 20, 0.3) 38.2 0.665545 21.2 36.0 0.665768 39.1 36.4 0.665732 41.5
(1000, 20, 0.4) 40.4 0.566834 24.3 35.6 0.567383 45.3 35.8 0.567336 47.6
(1000, 20, 0.5) 37.0 0.468532 33.8 33.0 0.469451 62.6 32.2 0.469442 65.2
(1000, 20, 0.6) 36.4 0.368643 30.1 29.4 0.370331 56.7 29.4 0.370210 59.0
(1000, 20, 0.7) 32.0 0.271142 31.6 26.2 0.275290 59.6 26.4 0.275260 62.0
(1000, 20, 0.8) 11.8 0.215022 29.4 8.2 0.222399 54.7 8.8 0.221720 56.8

|V | = 5000

(5000, 20, 0.1) 199.8 0.892274 71.4 193.8 0.892360 129.3 193.0 0.892371 139.4
(5000, 20, 0.2) 200.4 0.792707 90.6 194.4 0.792857 167.7 194.4 0.792848 177.7
(5000, 20, 0.3) 191.0 0.692909 108.4 186.4 0.693102 203.3 185.2 0.693111 213.5
(5000, 20, 0.4) 190.4 0.593117 127.1 186.6 0.593357 240.5 184.0 0.593378 251.0
(5000, 20, 0.5) 196.4 0.493532 182.4 190.2 0.493985 346.0 189.4 0.493994 353.5
(5000, 20, 0.6) 196.6 0.393921 160.3 187.8 0.394428 306.1 186.0 0.394455 316.5
(5000, 20, 0.7) 203.8 0.292948 176.2 192.8 0.293851 337.3 191.0 0.294002 347.9
(5000, 20, 0.8) 87.2 0.209471 158.8 74.8 0.212451 299.5 73.6 0.212407 307.7
(5000, 25, 0.1) 173.8 0.892187 85.3 170.2 0.892213 156.9 170.2 0.892212 167.8
(5000, 25, 0.2) 184.6 0.792506 109.8 177.2 0.792600 205.6 176.6 0.792608 216.5
(5000, 25, 0.3) 190.2 0.692853 133.5 180.6 0.693021 252.5 179.8 0.693028 263.8
(5000, 25, 0.4) 203.6 0.593075 157.5 192.6 0.593369 300.6 191.0 0.593358 311.9
(5000, 25, 0.5) 193.0 0.493379 228.8 185.4 0.493741 438.1 184.6 0.493740 427.1
(5000, 25, 0.6) 195.6 0.393853 199.4 186.8 0.394274 383.5 184.2 0.394325 395.3
(5000, 25, 0.7) 198.4 0.293983 219.1 190.0 0.294451 421.9 186.6 0.294483 434.2
(5000, 25, 0.8) 136.8 0.187554 213.6 128.2 0.189877 409.5 121.0 0.189884 419.8

From Table 6.9, where are showed the experimental results on the networks with

140

6. Hybrid Immunological Algorithm

1000 and 5000 vertices, appears even more obvious how the method A achieves worst

performances than the other two, in all instances considered. On the other hand,

analyzing the results obtained with the two methods B and C, it is possible to note

that the improvements of one over the other are minimal, except in some few instances,

in which the difference in the results is more consistent, but in any case, there is no

one method that outperforms the other.

Finally, at the conclusion of the analysis conducted, also on these experiments

emerges that the methods B and C seem to be more suitable than method A for

solving this kind of task, dues to their feature of producing higher diversity in the

population.

6.4.2 Functional Sensitivity Analysis

As the last step of this work, in this subsection, the investigation of the sensitivity of

the three community detection methods is reported from a functional perspective. The

main aim of this analysis is to measure the similarity between the detected communities

and the original ones. For doing this, commonly used community structure similarity

metrics have been considered: (1) Normalized Mutual Information (NMI) [48], mostly

used in community detection, which measures the amount of information correctly ex-

tracted, and allows for assessing how similar the detected communities are concerning

to real ones; (2) Adjusted Rand Index (ARI) [79], which focuses on the pairwise agree-

ment: for each possible pair of elements it evaluates how similarly the two partitions

treat them; and (3) Normalized Variation of Information (NVI) [101], expressed using

the Shannon entropy, which measures the amount of information lost and gained in

changing from one clustering to another one: sum of the information needed to describe

C, given C ′, and the information needed to describe C ′ given C.

The results of the sensitivity analysis are displayed in Table 6.10 (only for 1000 and

5000 vertices). From this investigation, clearly appears that the method A outperforms

the other two in almost all tests performed, uncovering, consequently, more similar

141

6. Hybrid Immunological Algorithm

Table 6.10: Comparative evaluation of the performances of the three methods on the
LFR instances.

NMI ARI NVI
Instance A B C A B C A B C

|V | = 1000

(1000, 15, 0.1) 0.995076 0.993003 0.993406 0.987372 0.981960 0.982767 0.009774 0.013864 0.013076
(1000, 15, 0.2) 0.989911 0.986152 0.986299 0.972978 0.961779 0.962704 0.019958 0.027290 0.026998
(1000, 15, 0.3) 0.986682 0.982557 0.978907 0.959832 0.947997 0.938800 0.026279 0.034215 0.041232
(1000, 15, 0.4) 0.984039 0.977067 0.978024 0.951622 0.928518 0.931673 0.031354 0.044819 0.042942
(1000, 15, 0.5) 0.980926 0.964332 0.966406 0.929535 0.880768 0.887543 0.037157 0.068856 0.064955
(1000, 15, 0.6) 0.962855 0.941986 0.938977 0.878173 0.810258 0.807698 0.071483 0.109514 0.114978
(1000, 15, 0.7) 0.566374 0.570550 0.561501 0.255813 0.267680 0.267179 0.602756 0.598517 0.607492
(1000, 15, 0.8) 0.153777 0.141303 0.133809 0.018578 0.020726 0.018665 0.916663 0.923923 0.928225
(1000, 20, 0.1) 0.997058 0.994186 0.994506 0.992727 0.986538 0.986870 0.005859 0.011530 0.010894
(1000, 20, 0.2) 0.996428 0.991117 0.992519 0.991809 0.977045 0.981142 0.007108 0.017577 0.014826
(1000, 20, 0.3) 0.992238 0.986079 0.987491 0.975973 0.960172 0.964767 0.015342 0.027357 0.024658
(1000, 20, 0.4) 0.991002 0.975938 0.976641 0.969473 0.924002 0.927008 0.017786 0.046974 0.045641
(1000, 20, 0.5) 0.981394 0.966023 0.963240 0.938705 0.887424 0.878358 0.036511 0.065719 0.070864
(1000, 20, 0.6) 0.983971 0.955068 0.956729 0.938273 0.844614 0.854032 0.031441 0.085971 0.082923
(1000, 20, 0.7) 0.900786 0.883085 0.889212 0.697262 0.647438 0.661896 0.179480 0.208653 0.198344
(1000, 20, 0.8) 0.188565 0.169013 0.178392 0.032102 0.030706 0.032586 0.895656 0.907590 0.901889

|V | = 5000

(5000, 20, 0.1) 0.998699 0.995858 0.995852 0.993303 0.979368 0.981182 0.002598 0.008249 0.008261
(5000, 20, 0.2) 0.997220 0.994302 0.994357 0.985554 0.970421 0.970917 0.005540 0.011330 0.011222
(5000, 20, 0.3) 0.995626 0.993126 0.992399 0.978385 0.963591 0.959471 0.008707 0.013653 0.015086
(5000, 20, 0.4) 0.994701 0.992059 0.990630 0.971258 0.953632 0.945201 0.010541 0.015756 0.018565
(5000, 20, 0.5) 0.994329 0.989973 0.989782 0.965862 0.935363 0.936114 0.011278 0.019852 0.020225
(5000, 20, 0.6) 0.995598 0.989923 0.989166 0.967716 0.932997 0.931082 0.008751 0.019952 0.021435
(5000, 20, 0.7) 0.994403 0.988913 0.990555 0.962057 0.914500 0.931269 0.011110 0.021893 0.018713
(5000, 20, 0.8) 0.331168 0.311846 0.285959 0.017992 0.017609 0.014301 0.801519 0.815065 0.832675
(5000, 25, 0.1) 0.999453 0.997549 0.997604 0.997325 0.988301 0.988875 0.001094 0.004889 0.004780
(5000, 25, 0.2) 0.998614 0.994864 0.994512 0.992296 0.974097 0.972542 0.002767 0.010219 0.010916
(5000, 25, 0.3) 0.998593 0.993634 0.993192 0.991259 0.966756 0.963601 0.002809 0.012650 0.013523
(5000, 25, 0.4) 0.998201 0.992714 0.991784 0.988323 0.959321 0.954605 0.003589 0.014465 0.016297
(5000, 25, 0.5) 0.994865 0.989942 0.989864 0.970057 0.937639 0.940216 0.010211 0.019912 0.020066
(5000, 25, 0.6) 0.995162 0.989456 0.987228 0.967998 0.930606 0.914103 0.009626 0.020867 0.025219
(5000, 25, 0.7) 0.995383 0.989142 0.988225 0.967148 0.922344 0.924432 0.009187 0.021477 0.023274
(5000, 25, 0.8) 0.623561 0.622423 0.602764 0.080319 0.078396 0.069817 0.543574 0.544915 0.565846

communities to the target/real ones, in opposite to the outcomes obtained with respect

to the modularity evaluation metric. This is caused by the limitation in the modularity

optimization which can fail to identify smaller communities; this limitation can depend

on the degree of interconnectedness of the communities [63].

6.5 Conclusions

Being able to efficiently analyze complex networks is one of the most crucial and central

issue in many areas, including systems biology, since through them is possible to under-

stand and identify the dynamics and structures of molecular interactions. In general,

142

6. Hybrid Immunological Algorithm

disease phenotypes are generally caused by the failure of modules of genes that often

have similar biological roles. In light of this, being able to detect elements of a net-

work that have characteristics in common, or similar functions, plays a key and useful

role in providing insights into the biological functionality of these elements. Therefore,

developing efficient and robust algorithmic methods able to uncover such elements in

biological networks may help in detecting those groups of genes that are the cause of

disease, and, consequently, useful in the development of specific and targeted drugs.

The problem to identify modules in a network is known as community detection.

A Hybrid Immune Algorithm, called Hybrid-IA, was designed for the community

detection problem and was tested on several large biological networks. The strength

of Hybrid-IA is given not only by the immune operators (cloning, hypermutation

and aging) but also by a specially designed Local Search, which aims to speed up

the convergence of Hybrid-IA towards promising regions. Basically, it attempts de-

terministically to move a vertex from the belonging community to another within its

neighbours with the purpose to refine and improve the solutions discovered.

For assessing the robustness of Hybrid-IA, a comparison with other metaheur-

istics, hyper-heuristics and the well-known algorithm Louvain has been performed.

Such a comparison has been conducted based on modularity function maximization.

However, due to the limitation of the modularity optimization in detecting communit-

ies that are comparatively small, the Hybrid-IA performances have been also evalu-

ated with respect to the Normalized Mutual Information (NMI), Adjusted Rand Index

(ARI) and Normalized Variation of Information (NVI), which are evaluation metrics

commonly used in community detection that simply assess how similar the communit-

ies discovered are with respect to the real ones. Inspecting, in the overall, all outcomes

obtained and all comparisons performed clearly emerges how Hybrid-IA outperforms

all metaheuristics and hyper-heuristics compared in terms of best and mean modularity

values. Focusing only on the comparison with Louvain is possible to assert that al-

though Hybrid-IA finds slightly lower modularity values, it is still able to detect more

similar communities to the real ones with respect to those discovered by Louvain.

143

6. Hybrid Immunological Algorithm

Moreover, three different positions where run the local search within Hybrid-IA,

have been investigated in order to ascertain which of the three acts best on the al-

gorithm’s performance. A comparison between the three methods has been conducted

with respect to the solution quality found and the learning process quality. Several

artificial networks were generated (|V | ∈ {300, 500, 1000, 5000, 10000}) through which

was possible to inspect the three methods in various complex scenarios. The obtained

outcomes highlight that running the local search just after the hypermutation operator

is the best choice for this kind of optimization problem because in this way higher

diversity is produced that helps the algorithm, especially on larger and complex net-

works.

144

7
Multi-level Optimization

The multi-level approach is an optimization technique used to improve a community de-

tection algorithm, both in terms of the objective function and computational cost. This

approach consists in creating a new graph in which the vertices are the communities

of the partial solution found by the base algorithm, while edges between communities

are merged together with a weight given by the sum of the edges between vertices in

the corresponding two communities. Edges between vertices in the same community

are translated in self-loops in the new graph. In this way, the modularity value for the

partition does not change in the new graph [3]. In Figure 7.1 is shown the creation of a

new level starting from the partition found on the current graph. The reduced graph is

then passed as input to the base algorithm to compute the next solution. These steps

are repeated until no further improvement can be achieved or for a certain amount of

time. At each iteration, the size of the reduced graph decreases and consequently the

efficiency of the base algorithm is greatly improved.

In a metaheuristic algorithm, the implementation of multi-level optimization could

lead to wrong solutions, because some parts of the solution would be locked and any fur-

145

7. Multi-level Optimization

1

2
4

3

5

6

7
8

9

10

11

12

MULTI-LEVEL
2

2

2

6 C1

C2

C3

C4

Figure 7.1: Creation of the community network by the multi-level optimization.
Communities will be translated in vertices in the next level, while edges are merged
together with a weight that is the number of edges that those communities share. Self-
loops identify internal edges.

ther improvement to the solution would be done only by fusing together the remaining

vertices. After a few iterations, the graph will be reduced to a small number of vertices

where any combination between them would not result in a modularity improvement,

but the solution would remain of low quality. In light of this, in the following sections

we propose two multi-level approaches: the first one uses a backtracking mechanism to

give the underlying base metaheuristic algorithm a chance to improve specific parts of

the global solution; the second one uses a heuristic to merge vertices together.

7.1 Random and Smart Explosion

The first approach proposed consists of the classical multi-level optimization with a

backtracking mechanism that brings the algorithm back to a previous level when there is

no improvement of the modularity value for a certain number of levels. Then to the base

algorithm, we provide the graph of the level with the best partition found in which some

vertices, that represent communities, are disaggregated from the original graph. This

allows freeing vertices that had been blocked in an earlier wrong solution trying to repair

communities not well-formed. The communities which explode are randomly selected

from those in the best partition and the number is given by a user-defined parameter

Ne. Usually, the number of communities to disaggregate is kept low in order to avoid

degrading too much the current solution and letting the underlying base algorithm

focus mainly on those vertices that are now free. After the roll-back to a previous

146

7. Multi-level Optimization

level, the multi-level approach continues in a classical way until a new stagnation of

the modularity value occurs. Then the back-tracking mechanism is applied again and

this process is repeated a certain number of times. Finally, the algorithm stops and

returns the best solution found.

A complete disaggregation of one or more communities affects the performance of

the base algorithm, disrupting correct parts of the current solution and increasing the

number of vertices to evaluate. A further improvement of this approach consists in a

smart explosion of the communities, in which only a subset of vertices is disaggregated.

In this way, the method disaggregates only critical vertices, that is the vertices that lie

on the boundary of the community. Critical vertices are identified using the internal-

total degree ratio:
kint

i (C)
ki

< Te, (7.1)

where kint
i (C) is the sum of the weights of edges that vertex i shares with other vertices

belonging to the same community C, ki is the sum of weights of all incident edges of

vertex i and Te is a user-defined threshold. In Figure 7.2 is shown the application of

the smart explosion approach.

1

2
4

3

5

6

7
8

9

10

11

12

MULTI-LEVEL
2

2

2

6 C1

C2

C3

C4

SMART
EXPLOSION

2

2
4 C1

C2

C3

C4

5

6

Figure 7.2: Multi-level with smart explosion approach. In this case, vertices 5 and 6
have an internal-total degree ratio less or equal than 0.5 and the method disaggregates
them from their own community in order to let the base algorithm relocate them to a
better community.

147

7. Multi-level Optimization

7.2 Smart Merge

A naive multi-level approach, that blindly merges all vertices in their respective sup-

posed communities, could lead to wrong associations vertex-community, as described

before. The second proposed approach modifies the multi-level optimization introdu-

cing a quality-based aggregation. In particular, during the aggregation phase, only those

vertices belonging to the same community and with a high internal-total degree ratio

(Equation 7.1) will be merged together. In this way, the vertices that are supposed to be

already associated with the correct community and that will not change in subsequent

iterations will be merged together, reducing the size of the graph and the complexity

of the base algorithm. On the other hand, critical vertices are kept free and can be

moved to the correct community by the underlying base algorithm. In Figure 7.3 is

shown how the multi-level with smart merge mechanism works. This approach is useful

and efficient with a base algorithm that finds good partitions in a relatively small time.

Algorithms that tend to converge slowly starting from low-quality solutions, do not

receive a significant improvement by this approach because the aggregation heuristic

used in the smart merge (that depends on the threshold Tm) decreases the graph size

slowly, affecting the overall computational time.

However, although this approach allows reaching high values of modularity, by in-

1

2
4

3

5

6

7
8

9

10

11

12

SMART
MERGE

2

2
4 C1

C2

C3

C4

5

6

Figure 7.3: Creation of the network of the next level by the multi-level optimization
with smart merge mechanism. In this case vertices 5 and 6 are kept free because they
share a number of links with other communities greater than or equal to those they
share with their own community.

148

7. Multi-level Optimization

specting the graphical representation of the detected communities (Figure 7.4a), it is

possible to note how a single community is composed by elements disconnected from

each other (see inset plot in Figure 7.4a). This happens because these disconnections

are disregarded by smart merge approach, as it asserts the goodness of a vertex by

checking only if its links are inside or outside. In light of this, to overcome this limita-

tion, it was enough to add a control on the communities detected by the basic version of

the algorithm (Hybrid-IA), which divides the clusters into their connected compon-

ents. Through this simple check, the detected communities appear to be more compact

graphically (Figure 7.4b), as well as reaching higher modularity values (see Table 7.3,

Section 7.3). This variant is called smart merge + check connect.

(a) (b)

Figure 7.4: Communities detected on Power network by (a) the smart merge ap-
proach and (b) the smart merge considering the connected components.

7.3 Experimental Results

To assess the robustness and efficiency of the proposed multilevel approaches, three

well-known benchmark networks were used, which are reported in Table 7.1. Obviously,

the comparison with the relative basic versions is also presented in this section to check

the improvements produced by the proposed approaches. In particular, Random-IA

has been considered as the basic algorithm for the random and smart explosion ap-

149

7. Multi-level Optimization

proaches due to its stochastic nature; in this way, it can repair a small region of the

network disaggregated by the explosion mechanism. On the other hand, as described in

Section 7.2, Hybrid-IA has been used as underlying metaheuristic for the smart merge

approach, because this algorithm reaches in just a few iterations solutions with high

modularity value. Consequently, the backtracking approaches developed in random

and smart explosion, if applied on Hybrid-IA should disaggregate a high number of

communities at each stagnation of modularity, and then correct/repair all communit-

ies, increasing however the network size, and therefore considerably slowing down the

convergence of the entire algorithm.

Table 7.1: The benchmark networks used in the experiments.

Name Description |V | |E|
Email [74] University e-mail network 1133 5451
Yeast [25] Protein-protein interaction network in budding yeast 2284 6646
Power [146] Topology of the Western States Power Grid of the US 4941 6594

For all the experiments, both versions use the same parameter configurations, spe-

cifically a population of d = 100 solutions, a duplication factor dup = 2, τB = 20

as the maximum age allowed, and a mutation shape ρ = 1.0. Due to the different

algorithmic structures of the two versions, a different number of iterations MaxGen

was considered. In particular, for Random-IA we set MaxGen = 1000 for each level,

while in Hybrid-IA the number of iterations is related to the size of the network:

MaxGen starts from 50 iterations and progressively decreases proportionally to the

size of the network, to a minimum of 10 iterations.

For the multi-level optimization process, the random explosion reverts just Ne = 1

community to the original network, while the smart explosion approach disaggregates

Ne = 2 communities using a threshold Te = 0.5. The multi-level optimization with

the smart merge mechanism instead uses a Tm = 0.5 to construct the network for the

next level. Although multi-level optimization can stop its execution when it detects a

modularity stagnation, for an easier comparison all algorithms were run 30 times for

each instance and for a prefixed CPU time. In particular, in random explosion and

150

7. Multi-level Optimization

smart explosion, which use Random-IA as basic algorithm, the CPU time limit was

fixed, respectively, to 1200 seconds for Email, 2400 seconds for Yeast and 3600 seconds

for Power. In smart merge approach, which uses Hybrid-IA as the underlying basic

algorithm, the CPU time limit was fixed to 120 seconds for Email, 900 seconds for

Yeast and 3600 seconds for Power.

7.3.1 Results

The first analysis of this research work focused on investigating the impact that the

two random and smart explosion approaches have on the basic version (Random-IA),

and how much they positively affect its overall performances. Figure 7.5 therefore

shows the convergence behaviour of the proposed multi-level approaches compared

with Random-IA. In particular, the three convergence curves of (1) Random-IA,

(2) Random-IA with random explosion, and (3) Random-IA with smart explosion

are displayed, from which it is possible to analyze how much improvement the two

proposed multi-level approaches produce compared to the basic version. With regard

to the larger benchmark networks, it can be clearly seen how the improvements pro-

duced by the two multi-level approaches are remarkably reaching significantly higher

modularity values. Inspecting only the comparison between the two multi-level ap-

proaches it is possible to assert: (a) on the Email network the random explosion shows

an initially slower convergence than smart explosion, whilst, afterwards, the two curves

join showing the same convergence behaviour. However, towards the end of the run,

random explosion is able to improve and reach a slightly higher modularity value than

smart explosion; (b) on the Yeast and Power networks, instead, smart explosion clearly

outperforms random explosion, especially on the larger network (Power), where the

distance between the curves is quite significant and clear in favour of smart explosion.

In Table 7.2 we can see, respectively, the best modularity found, the mean of

the best, and the standard deviation (mean±σ), for all three benchmark networks

considered. The outcomes shown in the table confirm what was asserted from the

151

7. Multi-level Optimization

27

Grafico 5-3 &RQIURQWR�WUD�DOJRULWPR�,PPXQRORJLFR�H�OH�GXH�YHUVLRQL�GHOO¶HVSORVLRQH

(a)

27

Grafico 5-3 &RQIURQWR�WUD�DOJRULWPR�,PPXQRORJLFR�H�OH�GXH�YHUVLRQL�GHOO¶HVSORVLRQH

(b)

27

Grafico 5-3 &RQIURQWR�WUD�DOJRULWPR�,PPXQRORJLFR�H�OH�GXH�YHUVLRQL�GHOO¶HVSORVLRQH (c)

Figure 7.5: Convergence analysis over time of Random-IA, Random-IA with ran-
dom explosion, and Random-IA with smart explosion on the benchmark networks (a)
Email, (b) Yeast and (c) Power.

convergence plots, that the random explosion works better on the smaller networks

(i.e. Email), whilst smart explosion on the other two. With regard to the Power

network, which is the larger and then the most significant from the multi-level approach

perspective, the modularity value found by smart explosion is way better than the

others, especially with respect to the basic version that instead finds low values of

modularity (0.1260). This points out, then, how the multi-level approach designed in

smart explosion helps the random-search algorithm (Random-IA) in revealing good

community structures.

Table 7.2: Comparative results of random and smart explosion and Random-IA.
Best modularity found, mean and standard deviation (σ) as comparison measures.

Email Yeast Power
Algorithm best mean±σ best mean±σ best mean±σ

Random-IA 0.3841 0.3465± 0.0186 0.4411 0.4089± 0.0171 0.1260 0.1200± 0.0026
Random-IA+RE 0.5627 0.5416± 0.0142 0.5388 0.5210± 0.0091 0.5791 0.5568± 0.0124
Random-IA+SE 0.5539 0.5282± 0.0160 0.5538 0.5404± 0.0092 0.7532 0.7364± 0.0093

The same analysis was conducted to understand how the smart merge approach

affects the performance of Hybrid-IA, which is the basic version on which it is applied.

152

7. Multi-level Optimization

In Figure 7.6 is therefore shown the convergence behaviour of the multi-level approach

compared to the basic one. By inspecting the three plots, it can be seen how smart

merge and the smart merge + check connect variant are similar on the Email network,

whilst in the Yeast one the connected-components version is shown to be slightly better

than the smart merge version alone. It is important to point out that both multi-level

versions improve in any case the performance of the basic algorithm, although such

improvements are moderate.

0 20 40 60 80 100 120
Time (s)

0.33

0.36

0.39

0.42

0.45

0.48

0.51

0.54

0.57

Modularity over time - Email

HybridIA
HybridIA + Smart Merge
HybridIA + Smart Merge + Check Connect

(a)

0 200 400 600 800
Time (s)

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Modularity over time - Yeast

HybridIA
HybridIA + Smart Merge
HybridIA + Smart Merge + Check Connect

(b)

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Modularity over time - Power

HybridIA
HybridIA + Smart Merge
HybridIA + Smart Merge + Check Connect

(c)

Figure 7.6: Convergence analysis over time of Hybrid-IA, Hybrid-IA with smart
merge, and Hybrid-IA with smart merge + check connect on the benchmark networks
(a) Email, (b) Yeast and (c) Power.

The improvements produced by the smart merge and smart merge + check connect

approaches are best seen on the larger network Power, where the gap between the three

curves is clear and marked. In particular, the variant smart merge + check connect

produces sharply best performance, reaching considerably higher modularity values

than the basic version, and the smart merge one.

These improvements are also confirmed by the results reported in Table 7.3, both

in terms of best and average modularity value found. Indeed, by inspecting the table,

153

7. Multi-level Optimization

Table 7.3: Comparative results of smart merge and Hybrid-IA. Best modularity
found, mean and standard deviation (σ) as comparison measures.

Email Yeast Power
Algorithm best mean±σ best mean±σ best mean±σ

Hybrid-IA 0.5782 0.5690± 0.0049 0.5858 0.5710± 0.0057 0.7202 0.7065± 0.0063
Hybrid-IA+SM 0.5824 0.5801± 0.0018 0.5929 0.5845± 0.0045 0.8125 0.7964± 0.0099
Hybrid-IA+SM+C 0.5813 0.5782± 0.0019 0.5998 0.5940± 0.0033 0.9321 0.9294± 0.0015

it clearly appears that, due to the high-quality solutions produced by Hybrid-IA on

networks not excessively large, the effects and improvements produced by the multi-

level approach are limited, while instead on the large one, where the basic algorithm

struggles to reach high modularity values, the improvement contribution given by the

multi-level approach is notable and mainly relevant (0.7202 vs 0.9321).

Finally, Table 7.4 reports the comparisons between the smart merge + check connect

variant (being the best approach) and the state-of-the-art: SS+ML, a multi-level

algorithm based on a single-step greedy coarsening and fast greedy refinement [110];

MSG-VM, a multistep greedy algorithm with vertex mover [124]; Louvain, a fast

multi-level greedy algorithm [12]; CNTS, a combined neighbourhood tabu search [65];

and CNTS-ML, the multi-level version of the CNTS algorithm [65]. It is possible to

see how the proposed multilevel approach is competitive with the community detection

state-of-the-art on the first two benchmark networks, a little less on the Power one.

However, on this last network, the results obtained by Hybrid-IA with smart merge

+ check connect are not so far from the compared ones.

Table 7.4: Comparative results of Hybrid-IA with smart merge and state-of-the-art
algorithms.

Network MSG-VM SS+ML Louvain CNTS CNTS-ML Hybrid-IA+SM+C
Email 0.5746 0.5813 0.5758 0.5820 0.5815 0.5813
Yeast 0.5948 0.6068 0.5962 0.6053 0.6055 0.5998
Power 0.9381 0.9392 0.9371 0.9380 0.9392 0.9321

154

7. Multi-level Optimization

7.4 Conclusions

The multi-level models we propose for community detection on quite large networks and

which are based on two variants of an immune-inspired algorithm were experimentally

shown to be very competitive and efficient. Yet, still trailing some state-of-the-art

methodologies, especially on extremely large networks. Given such promising initial

results, as future work, we plan to tackle even larger networks, in particular biological

and online social networks. We will focus our research direction on implementing

mechanisms, such as reinforcement and probabilistic learning, to better guide the level

construction phase of the multi-level approaches to further improve both the objective

function and convergence.

155

8
Conclusions

In this thesis work, some research contributions in the field of hybrid metaheuristics

have been presented. In particular, combinatorial optimization problems on graphs

have been analyzed, such as vertex/arc removal or grouping problems, using an im-

munological algorithm combined with local search techniques in the first phase, and

reinforcement learning components in the second step.

Initially, I focused my attention on designing a hybrid immunological algorithm,

called Hybrid-IA, to address the problem of Feedback Vertex Set, a well-known com-

binatorial optimization problem that finds application in many real problems. The

proposed algorithm has been tested on a dataset of over 800 instances with different

characteristics. The results of an initial preliminary experimental phase have shown

that the proposed algorithm has performance comparable to results obtained by other

metaheuristic algorithms. Moreover, tuning the parameters has allowed adapting the

search process of the algorithm to the features of the input instance, further improving

the results, especially on large instances of the benchmark dataset.

In parallel, a completely random immunological algorithm guided by stochastic

156

8. Conclusions

operators was developed to solve the problem of Community Detection on social, bio-

logical and synthetic networks. The results of the experimental phase and the analysis

conducted show the reliability of the proposed algorithm. But the limits of this type of

search process are the large number of generations needed to converge towards accept-

able solutions for large instances of the problem. In light of this, this algorithm has

been extended by introducing a local search procedure, which aim is to locally max-

imizes the modularity function in a greedy way. The results obtained by the proposed

algorithm have been analyzed with respect to three similarity measures, showing the

ability of Hybrid-IA to detect a community structure more similar to the real one on

synthetic networks. Also, for this problem, it was investigated whether the location of

the local search procedure within the immunological algorithm affects its performance,

both in terms of solution quality and learning process. Analysis of the results has

shown that a high diversity of the population allows the algorithm to discover better

solutions.

Furthermore, two multi-level approaches have been proposed to tackle large in-

stances of the community detection problem. The first approach is based on a back-

tracking mechanism, while the second one is on a quality-based aggregation method.

Both multi-level optimization approaches have been applied using two different immun-

ological algorithms as an underlying heuristic. From the experimental analysis emerges

that the two proposed models help the underlying algorithms to significantly improve

their performances from both quality of solutions found and the computational point

of view.

Finally, I focused my research on designing a general-purpose framework for combin-

atorial optimization problems. The proposed algorithm combines a population-based

greedy metaheuristic with reinforcement learning techniques to extract useful inform-

ation from the local optima discovered during the search. The framework employs a

randomized greedy algorithm to construct new solutions and a probability learning

component to learn which solution components are more promising. The Feedback

Vertex Set problem has been considered as a case study. The results on the benchmark

157

8. Conclusions

dataset have shown that the proposed framework reaches better solutions than the com-

pared algorithms on squared and not squared grid graphs while obtaining comparable

results on random, toroidal and hypercube graphs.

Other contributions, not included in this document, concern experimental analysis

of how different strategies on an Ant Colony Optimization (ACO) algorithm affect

the optimization efficiency of the entire colony, in an unknown and dynamic environ-

ment [39, 38]. Furthermore, the ant colony optimization has been used to hybridize

an agent-based model to evaluate the effects of different behaviours in crowd simula-

tions [37, 36, 35], with respect to three evaluation metrics: the number of agents that

reach the goal and the time and cost required to reach it.

Currently, my research work is focused on an extension of the Construct, Merge,

Solve & Adapt (CMSA) framework, initially proposed in [15, 14]. The main idea is to

introduce a learning component to guide the construction of new solutions, similarly

as shown in Chapter 3. Some initial experiments have shown promising results on the

Weighed Vertex Cover.

In future work, I plan to investigate more in detail the probability updating proced-

ure of the framework proposed in Chapter 3 and to study some mechanisms to reduce

solution components probabilities periodically in order to forget some earlier decisions.

Additionally, I plan to apply the proposed algorithm to other types of combinator-

ial optimization problems. Moreover, starting from the idea proposed in Section 7.2,

I would like to develop a smart merge approach with probability learning within an

iterated multi-level optimization algorithm.

158

A
Appendix

A.1 Parameter Tuning Results

In this section are reported the outcomes of the parameter tuning of Hybrid-IA for

the Weighted Feedback Vertex Set described in Section 2.2.3. For each value of ρ the

box-plots in Figures A.1–A.10 represents the distribution of the results over 10 runs

on instances of the training set, grouped by number of vertices, density (number of

edges) and weight range. The box represents the distribution between the first and the

third quartile, with a horizontal line to denote the second quartile (the median), while

the two vertical lines reach the minimum and the maximum values respectively. The

cross-shaped point represents the average value.

159

A. Appendix

835

840

845

850

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(a)

1210

1215

1220

1225

1230

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(b)

1724

1728

1732

1736

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(c)

2420

2424

2428

2432

2436

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(d)

Figure A.1: Tuning results for different values of the mutation shape ρ on random
instances with n = 100, m = 247, weight range [10, 50] (a) and [10, 75] (b), and on
random instances with n = 100, m = 841, weight range [10, 50] (c) and [10, 75] (d).

160

A. Appendix

2410

2430

2450

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(a)

3100

3120

3140

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(b)

3650

3660

3670

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(c)

5140

5150

5160

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(d)

Figure A.2: Tuning results for different values of the mutation shape ρ on random
instances with n = 200, m = 796, weight range [10, 50] (a) and [10, 75] (b), and on
random instances with n = 200, m = 3184, weight range [10, 50] (c) and [10, 75] (d).

161

A. Appendix

4200

4240

4280

4320

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(a)

6100

6150

6200

6250

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(b)

6220

6230

6240

6250

6260

6270

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(c)

8570

8590

8610

8630

8650

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(d)

Figure A.3: Tuning results for different values of the mutation shape ρ on random
instances with n = 300, m = 1644, weight range [10, 50] (a) and [10, 75] (b), and on
random instances with n = 300, m = 7026, weight range [10, 50] (c) and [10, 75] (d).

162

A. Appendix

6450

6500

6550

6600

6650

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(a)

8600

8700

8800

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(b)

6790

6800

6810

6820

6830

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(c)

10590

10610

10630

10650

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(d)

Figure A.4: Tuning results for different values of the mutation shape ρ on random
instances with n = 400, m = 2793, weight range [10, 50] (a) and [10, 75] (b), and on
random instances with n = 400, m = 12369, weight range [10, 50] (c) and [10, 75] (d).

163

A. Appendix

7200

7250

7300

7350

7400

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(a)

11200

11300

11400

11500

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(b)

7680

7700

7720

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(c)

14125

14150

14175

14200

14225

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(d)

Figure A.5: Tuning results for different values of the mutation shape ρ on random
instances with n = 500, m = 4241, weight range [10, 50] (a) and [10, 75] (b), and on
random instances with n = 500, m = 19211, weight range [10, 50] (c) and [10, 75] (d).

164

A. Appendix

945

950

955

960

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(a)

1560

1570

1580

1590

1600

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ
F
it
n
es
s

(b)

Figure A.6: Tuning results for different values of the mutation shape ρ on squared
grid instances with x = 10, y = 10, weight range [10, 50] (a) and [10, 75] (b).

2000

2010

2020

2030

2040

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(a)

3390

3420

3450

3480

3510

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(b)

Figure A.7: Tuning results for different values of the mutation shape ρ on squared
grid instances with x = 14, y = 14, weight range [10, 50] (a) and [10, 75] (b).

165

A. Appendix

3050

3075

3100

3125

3150

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(a)

5100

5150

5200

5250

5300

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ
F
it
n
es
s

(b)

Figure A.8: Tuning results for different values of the mutation shape ρ on squared
grid instances with x = 17, y = 17, weight range [10, 50] (a) and [10, 75] (b).

4320

4360

4400

4440

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(a)

7300

7400

7500

7600

7700

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(b)

Figure A.9: Tuning results for different values of the mutation shape ρ on squared
grid instances with x = 20, y = 20, weight range [10, 50] (a) and [10, 75] (b).

166

A. Appendix

5900

6000

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(a)

9800

10000

10200

10400

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

ρ

F
it
n
es
s

(b)

Figure A.10: Tuning results for different values of the mutation shape ρ on squared
grid instances with x = 23, y = 23, weight range [10, 50] (a) and [10, 75] (b).

167

Bibliography

[1] Aiex, R. M., Resende, M. G. C. and Ribeiro, C. C. ‘Probability Distribution of

Solution Time in GRASP: An Experimental Investigation’. In: Journal of Heur-

istics 8 (2002), pp. 343–373. doi: 10.1023/A:1015061802659.

[2] Aiex, R. M., Resende, M. G. C. and Ribeiro, C. C. ‘TTT plots: a perl program

to create time-to-target plots’. In: Optimization Letters 1 (2007), pp. 355–366.

doi: 10.1007/s11590-006-0031-4.

[3] Arenas, A., Duch, J., Fernández, A. and Gómez, S. ‘Size reduction of complex

networks preserving modularity’. In: New Journal of Physics 9.6 (June 2007),

pp. 176–176. doi: 10.1088/1367-2630/9/6/176.

[4] Atay, Y., Koc, I., Babaoglu, I. and Kodaz, H. ‘Community detection from biolo-

gical and social networks: A comparative analysis of metaheuristic algorithms’.

In: Applied Soft Computing 50 (2017), pp. 194–211. doi: 10.1016/j.asoc.

2016.11.025.

[5] Aureli, M., Masilamani, A. P., Illuzzi, G., Loberto, N., Scandroglio, F., Prinetti,

A., Chigorno, V. and Sonnino, S. ‘Activity of plasma membrane β-galactosidase

and β-glucosidase’. In: FEBS Letters 583.15 (2009), pp. 2469–2473. doi: 10.

1016/j.febslet.2009.06.048.

[6] Bafna, V., Berman, P. and Fujito, T. ‘A 2-Approximation Algorithm for the

Undirected Feedback Vertex Set Problem’. In: SIAM Journal on Discrete Math-

ematics 12.3 (1999), pp. 289–297. doi: 10.1137/S0895480196305124.

168

https://doi.org/10.1023/A:1015061802659
https://doi.org/10.1007/s11590-006-0031-4
https://doi.org/10.1088/1367-2630/9/6/176
https://doi.org/10.1016/j.asoc.2016.11.025
https://doi.org/10.1016/j.asoc.2016.11.025
https://doi.org/10.1016/j.febslet.2009.06.048
https://doi.org/10.1016/j.febslet.2009.06.048
https://doi.org/10.1137/S0895480196305124

Bibliography

[7] Barabási, A.-L., Albert, R. and Jeong, H. ‘Scale-free characteristics of random

networks: the topology of the world-wide web’. In: Physica A: Statistical Mech-

anics and its Applications 281.1 (2000), pp. 69–77. doi: 10 . 1016 / S0378 -

4371(00)00018-2.

[8] Barabási, A.-L., Gulbahce, N. and Loscalzo, J. ‘Network medicine: a network-

based approach to human disease’. In: Nature Reviews Genetics 12.1 (2011),

pp. 56–68. doi: 10.1038/nrg2918.

[9] Barabási, A.-L. and Oltvai, Z. N. ‘Network biology: understanding the cell’s

functional organization’. In: Nature Reviews Genetics 5.2 (2004), pp. 101–113.

doi: 10.1038/nrg1272.

[10] Benedettini, S., Blum, C. and Roli, A. ‘A Randomized Iterated Greedy Al-

gorithm for the Founder Sequence Reconstruction Problem’. In: Learning and

Intelligent Optimization (LION 2010). Ed. by Blum, C. and Battiti, R. Berlin,

Heidelberg: Springer, 2010, pp. 37–51. doi: 10.1007/978-3-642-13800-3_4.

[11] Benlic, U., Epitropakis, M. G. and Burke, E. K. ‘A hybrid breakout local search

and reinforcement learning approach to the vertex separator problem’. In:

European Journal of Operational Research 261.3 (2017), pp. 803–818. doi:

10.1016/j.ejor.2017.01.023.

[12] Blondel, V. D., Guillaume, J.-L., Lambiotte, R. and Lefebvre, E. ‘Fast unfolding

of communities in large networks’. In: Journal of Statistical Mechanics: Theory

and Experiment 2008.10 (Oct. 2008), P10008. doi: 10.1088/1742-5468/2008/

10/P10008.

[13] Blum, C. and Raidl, G. R. Hybrid Metaheuristics: Powerful Tools for Optimiz-

ation. Springer, 2016. doi: 10.1007/978-3-319-30883-8.

[14] Blum, C. and Ochoa, G. ‘A comparative analysis of two matheuristics by means

of merged local optima networks’. In: European Journal of Operational Research

290.1 (2021), pp. 36–56. doi: 10.1016/j.ejor.2020.08.008.

169

https://doi.org/10.1016/S0378-4371(00)00018-2
https://doi.org/10.1016/S0378-4371(00)00018-2
https://doi.org/10.1038/nrg2918
https://doi.org/10.1038/nrg1272
https://doi.org/10.1007/978-3-642-13800-3_4
https://doi.org/10.1016/j.ejor.2017.01.023
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1007/978-3-319-30883-8
https://doi.org/10.1016/j.ejor.2020.08.008

Bibliography

[15] Blum, C., Pinacho, P., López-Ibáñez, M. and Lozano, J. A. ‘Construct, Merge,

Solve & Adapt A new general algorithm for combinatorial optimization’. In:

Computers & Operations Research 68 (2016), pp. 75–88. doi: 10.1016/j.cor.

2015.10.014.

[16] Blum, C., Puchinger, J., Raidl, G. R. and Roli, A. ‘Hybrid metaheuristics in

combinatorial optimization: A survey’. In: Applied Soft Computing 11.6 (2011),

pp. 4135–4151. doi: 10.1016/j.asoc.2011.02.032.

[17] Blum, C. and Roli, A. ‘Metaheuristics in Combinatorial Optimization: Overview

and Conceptual Comparison’. In: ACM Computing Surveys 35.3 (Sept. 2003),

pp. 268–308. doi: 10.1145/937503.937505.

[18] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and Hwang, D.-U. ‘Complex

networks: Structure and dynamics’. In: Physics Reports 424.4 (2006), pp. 175–

308. doi: 10.1016/j.physrep.2005.10.009.

[19] Bordonaro, G., Scollo, R. A., Cutello, V. and Pavone, M. ‘A Comparative Ana-

lysis of Different Multilevel Approaches for Community Detection’. In: Meta-

heuristics (MIC 2022). Ed. by Di Gaspero, L., Festa, P., Nakib, A. and Pavone,

M. Vol. 13838. Lecture Notes in Computer Science. Cham: Springer, 2023,

pp. 230–245. doi: 10.1007/978-3-031-26504-4_17.

[20] Bouamama, S. and Blum, C. ‘On solving large-scale instances of the knapsack

problem with setup by means of an iterated greedy algorithm’. In: 2017 6th

International Conference on Systems and Control (ICSC 2017). IEEE, 2017,

pp. 342–347. doi: 10.1109/ICoSC.2017.7958697.

[21] Bouamama, S., Blum, C. and Boukerram, A. ‘A population-based iterated

greedy algorithm for the minimum weight vertex cover problem’. In: Applied Soft

Computing 12.6 (2012), pp. 1632–1639. doi: 10.1016/j.asoc.2012.02.013.

[22] Bouamama, S., Blum, C. and Pinacho-Davidson, P. ‘A Population-Based Iter-

ated Greedy Algorithm for Maximizing Sensor Network Lifetime’. In: Sensors

22.5 (2022). 1804. doi: 10.3390/s22051804.

170

https://doi.org/10.1016/j.cor.2015.10.014
https://doi.org/10.1016/j.cor.2015.10.014
https://doi.org/10.1016/j.asoc.2011.02.032
https://doi.org/10.1145/937503.937505
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1007/978-3-031-26504-4_17
https://doi.org/10.1109/ICoSC.2017.7958697
https://doi.org/10.1016/j.asoc.2012.02.013
https://doi.org/10.3390/s22051804

Bibliography

[23] Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z. and

Wagner, D. ‘On Modularity Clustering’. In: IEEE Transactions on Knowledge

and Data Engineering 20.2 (Feb. 2008), pp. 172–188. doi: 10.1109/TKDE.2007.

190689.

[24] Brunetta, L., Maffioli, F. and Trubian, M. ‘Solving the feedback vertex set

problem on undirected graphs’. In: Discrete Applied Mathematics 101.1 (2000),

pp. 37–51. doi: 10.1016/S0166-218X(99)00180-8.

[25] Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L.,

Zhang, N., Li, G. and Chen, R. ‘Topological structure analysis of the protein-

protein interaction network in budding yeast’. In: Nucleic Acids Research 31.9

(May 2003), pp. 2443–2450. doi: 10.1093/nar/gkg340.

[26] Cantini, L., Medico, E., Fortunato, S. and Caselle, M. ‘Detection of gene

communities in multi-networks reveals cancer drivers’. In: Scientific Reports 5

(2015), p. 17386. doi: 10.1038/srep17386.

[27] Cao, C., Ni, Q. and Zhai, Y. ‘A novel community detection method based on

discrete particle swarm optimization algorithms in complex networks’. In: 2015

IEEE Congress on Evolutionary Computation (CEC 2015). 2015, pp. 171–178.

doi: 10.1109/CEC.2015.7256889.

[28] Carrabs, F., Cerrone, C. and Cerulli, R. ‘A memetic algorithm for the weighted

feedback vertex set problem’. In: Networks 64.4 (2014), pp. 339–356. doi: 10.

1002/net.21577.

[29] Carrabs, F., Cerulli, R., Gentili, M. and Parlato, G. ‘A linear time algorithm

for the minimum Weighted Feedback Vertex Set on diamonds’. In: Information

Processing Letters 94.1 (2005), pp. 29–35. doi: 10.1016/j.ipl.2004.12.008.

[30] Carrabs, F., Cerulli, R., Gentili, M. and Parlato, G. ‘A Tabu Search Heuristic

Based on k-Diamonds for the Weighted Feedback Vertex Set Problem’. In: Net-

work Optimization. Ed. by Pahl, J., Reiners, T. and Voß, S. Berlin, Heidelberg:

Springer, 2011, pp. 589–602. doi: 10.1007/978-3-642-21527-8_66.

171

https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1016/S0166-218X(99)00180-8
https://doi.org/10.1093/nar/gkg340
https://doi.org/10.1038/srep17386
https://doi.org/10.1109/CEC.2015.7256889
https://doi.org/10.1002/net.21577
https://doi.org/10.1002/net.21577
https://doi.org/10.1016/j.ipl.2004.12.008
https://doi.org/10.1007/978-3-642-21527-8_66

Bibliography

[31] Cattle Protein-Protein Interactions. 2009. url: https://biit.cs.ut.ee/

graphweb/welcome.cgi?t=examples.

[32] Chen, J. and Yuan, B. ‘Detecting functional modules in the yeast protein–

protein interaction network’. In: Bioinformatics 22.18 (July 2006), pp. 2283–

2290. doi: 10.1093/bioinformatics/btl370.

[33] Civicioglu, P. ‘Transforming geocentric cartesian coordinates to geodetic co-

ordinates by using differential search algorithm’. In: Computers & Geosciences

46 (2012), pp. 229–247. doi: 10.1016/j.cageo.2011.12.011.

[34] Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. Introduction to al-

gorithms. MIT press, 2009.

[35] Crespi, C., Fargetta, G., Pavone, M. and Scollo, R. A. ‘An agent-based model for

crowd simulation’. In: Artificial Life and Evolutionary Computation (WIVACE

2022). Communications in Computer and Information Science. (in press). Cham:

Springer, 2023.

[36] Crespi, C., Fargetta, G., Pavone, M. and Scollo, R. A. ‘An Agent-Based Model

to Investigate Different Behaviours in a Crowd Simulation’. In: Bioinspired Op-

timization Methods and Their Applications (BIOMA 2022). Ed. by Mernik, M.,

Črepinšek, M. and Eftimov, T. Vol. 13627. Lecture Notes in Computer Science.

Cham: Springer, 2022, pp. 1–14. doi: 10.1007/978-3-031-21094-5_1.

[37] Crespi, C., Fargetta, G., Pavone, M., Scollo, R. A. and Scrimali, L. ‘A Game The-

ory Approach for Crowd Evacuation Modelling’. In: Bioinspired Optimization

Methods and Their Applications (BIOMA 2020). Ed. by Filipič, B., Minisci, E.

and Vasile, M. Vol. 12438. Lecture Notes in Computer Science. Cham: Springer,

2020, pp. 228–239. doi: 10.1007/978-3-030-63710-1_18.

[38] Crespi, C., Scollo, R. A., Fargetta, G. and Pavone, M. ‘How a Different Ant

Behavior Affects on the Performances of the Whole Colony’. In: Metaheurist-

ics (MIC 2022). Ed. by Di Gaspero, L., Festa, P., Nakib, A. and Pavone, M.

172

https://biit.cs.ut.ee/graphweb/welcome.cgi?t=examples
https://biit.cs.ut.ee/graphweb/welcome.cgi?t=examples
https://doi.org/10.1093/bioinformatics/btl370
https://doi.org/10.1016/j.cageo.2011.12.011
https://doi.org/10.1007/978-3-031-21094-5_1
https://doi.org/10.1007/978-3-030-63710-1_18

Bibliography

Vol. 13838. Lecture Notes in Computer Science. Cham: Springer, 2023, pp. 187–

199. doi: 10.1007/978-3-031-26504-4_14.

[39] Crespi, C., Scollo, R. A. and Pavone, M. ‘Effects of Different Dynamics in an

Ant Colony Optimization Algorithm’. In: 2020 7th International Conference on

Soft Computing Machine Intelligence (ISCMI 2020). IEEE, Nov. 2020, pp. 8–

11. doi: 10.1109/ISCMI51676.2020.9311553.

[40] Csardi, G. and Nepusz, T. ‘The igraph software package for complex network

research’. In: InterJournal Complex Systems (2006), p. 1695. url: https://

igraph.org.

[41] Cutello, V., Fargetta, G., Pavone, M. and Scollo, R. A. ‘Optimization Algorithms

for Detection of Social Interactions’. In: Algorithms 13.6 (2020). doi: 10.3390/

a13060139.

[42] Cutello, V., Lee, D., Nicosia, G., Pavone, M. and Prizzi, I. ‘Aligning Multiple

Protein Sequences by Hybrid Clonal Selection Algorithm with Insert-Remove-

Gaps and BlockShuffling Operators’. In: International Conference on Artificial

Immune Systems (ICARIS 2006). Ed. by Bersini, H. and Carneiro, J. Berlin,

Heidelberg: Springer, 2006, pp. 321–334. doi: 10.1007/11823940_25.

[43] Cutello, V., Nicosia, G. and Pavone, M. ‘An immune algorithm with stochastic

aging and Kullback entropy for the chromatic number problem’. In: Journal of

Combinatorial Optimization 14.1 (2007), pp. 9–33. doi: 10.1007/s10878-006-

9036-2.

[44] Cutello, V., Nicosia, G., Pavone, M. and Prizzi, I. ‘Protein multiple sequence

alignment by hybrid bio-inspired algorithms’. In: Nucleic Acids Research 39.6

(Mar. 2011), pp. 1980–1992. doi: 10.1093/nar/gkq1052.

[45] Cutello, V., Nicosia, G., Pavone, M. and Timmis, J. ‘An Immune Algorithm

for Protein Structure Prediction on Lattice Models’. In: IEEE Transactions on

Evolutionary Computation 11.1 (Feb. 2007), pp. 101–117. doi: 10.1109/TEVC.

2006.880328.

173

https://doi.org/10.1007/978-3-031-26504-4_14
https://doi.org/10.1109/ISCMI51676.2020.9311553
https://igraph.org
https://igraph.org
https://doi.org/10.3390/a13060139
https://doi.org/10.3390/a13060139
https://doi.org/10.1007/11823940_25
https://doi.org/10.1007/s10878-006-9036-2
https://doi.org/10.1007/s10878-006-9036-2
https://doi.org/10.1093/nar/gkq1052
https://doi.org/10.1109/TEVC.2006.880328
https://doi.org/10.1109/TEVC.2006.880328

Bibliography

[46] Cutello, V., Oliva, M., Pavone, M. and Scollo, R. A. ‘A Hybrid Immunological

Search for the Weighted Feedback Vertex Set Problem’. In: Learning and Intel-

ligent Optimization (LION 2019). Ed. by Matsatsinis, N. F., Marinakis, Y. and

Pardalos, P. Vol. 11968. Lecture Notes in Computer Science. Cham: Springer,

2020, pp. 1–16. doi: 10.1007/978-3-030-38629-0_1.

[47] Cutello, V., Oliva, M., Pavone, M. and Scollo, R. A. ‘An Immune Metaheuristics

for Large Instances of the Weighted Feedback Vertex Set Problem’. In: 2019

IEEE Symposium Series on Computational Intelligence (SSCI 2019). IEEE,

Dec. 2019, pp. 1928–1936. doi: 10.1109/SSCI44817.2019.9002988.

[48] Danon, L., Díaz-Guilera, A., Duch, J. and Arenas, A. ‘Comparing community

structure identification’. In: Journal of Statistical Mechanics: Theory and Ex-

periment 2005.09 (Sept. 2005), P09008–P09008. doi: 10.1088/1742- 5468/

2005/09/p09008.

[49] De Castro, L. N. and Von Zuben, F. J. ‘Learning and optimization using the

clonal selection principle’. In: IEEE Transactions on Evolutionary Computation

6.3 (2002), pp. 239–251. doi: 10.1109/TEVC.2002.1011539.

[50] De Castro, L. N. and Von Zuben, F. J. ‘The Clonal Selection Algorithm with En-

gineering Applications’. In: Workshop on Artificial Immune Systems and Their

Applications (GECCO ’00). 2000, pp. 36–37.

[51] Deco, G. and Corbetta, M. ‘The Dynamical Balance of the Brain at Rest’. In:

The Neuroscientist 17.1 (2011), pp. 107–123. doi: 10.1177/1073858409354384.

[52] Dell’Amico, M., Lodi, A. and Maffioli, F. ‘Solution of the cumulative assignment

problem with a well-structured tabu search method’. In: Journal of Heuristics

5.2 (1999), pp. 123–143. doi: 10.1023/A:1009647225748.

[53] Dezső, B., Jüttner, A. and Kovács, P. ‘LEMON – an Open Source C++ Graph

Template Library’. In: Electronic Notes in Theoretical Computer Science 264.5

(2011), pp. 23–45. doi: 10.1016/j.entcs.2011.06.003.

174

https://doi.org/10.1007/978-3-030-38629-0_1
https://doi.org/10.1109/SSCI44817.2019.9002988
https://doi.org/10.1088/1742-5468/2005/09/p09008
https://doi.org/10.1088/1742-5468/2005/09/p09008
https://doi.org/10.1109/TEVC.2002.1011539
https://doi.org/10.1177/1073858409354384
https://doi.org/10.1023/A:1009647225748
https://doi.org/10.1016/j.entcs.2011.06.003

Bibliography

[54] Di Stefano, A., Vitale, A., Cutello, V. and Pavone, M. ‘How long should offspring

lifespan be in order to obtain a proper exploration?’ In: 2016 IEEE Symposium

Series on Computational Intelligence (SSCI 2016). Dec. 2016, pp. 1–8. doi:

10.1109/SSCI.2016.7850270.

[55] Didimo, W. and Montecchiani, F. ‘Fast layout computation of clustered net-

works: Algorithmic advances and experimental analysis’. In: Information Sci-

ences 260 (2014), pp. 185–199. doi: 10.1016/j.ins.2013.09.048.

[56] Diss, G., Filteau, M., Freschi, L., Leducq, J.-B., Rochette, S., Torres-Quiroz, F.

and Landry, C. R. ‘Integrative avenues for exploring the dynamics and evolu-

tion of protein interaction networks’. In: Current Opinion in Biotechnology 24.4

(2013), pp. 775–783. doi: 10.1016/j.copbio.2013.02.023.

[57] Duch, J. and Arenas, A. ‘Community detection in complex networks using ex-

tremal optimization’. In: Physical Review E 72.2 (Aug. 2005), p. 027104. doi:

10.1103/PhysRevE.72.027104.

[58] Erol, O. K. and Eksin, I. ‘A new optimization method: Big Bang–Big Crunch’.

In: Advances in Engineering Software 37.2 (2006), pp. 106–111. doi: 10.1016/

j.advengsoft.2005.04.005.

[59] Feo, T. A., Resende, M. G. C. and Smith, S. H. ‘A Greedy Randomized Adaptive

Search Procedure for Maximum Independent Set’. In: Operations Research 42.5

(1994), pp. 860–878. doi: 10.1287/opre.42.5.860.

[60] Festa, P., Pardalos, P. M. and Resende, M. G. C. ‘Feedback Set Problems’. In:

Handbook of Combinatorial Optimization: Supplement Volume A. Ed. by Du,

D.-Z. and Pardalos, P. M. Boston, MA: Springer, 1999, pp. 209–258. doi: 10.

1007/978-1-4757-3023-4_4.

[61] Festa, P., Pardalos, P. M. and Resende, M. G. C. ‘Feedback Set Problems’. In:

Encyclopedia of Optimization. Ed. by Floudas, C. A. and Pardalos, P. M. Boston,

MA: Springer, 2009, pp. 1005–1016. doi: 10.1007/978-0-387-74759-0_178.

175

https://doi.org/10.1109/SSCI.2016.7850270
https://doi.org/10.1016/j.ins.2013.09.048
https://doi.org/10.1016/j.copbio.2013.02.023
https://doi.org/10.1103/PhysRevE.72.027104
https://doi.org/10.1016/j.advengsoft.2005.04.005
https://doi.org/10.1016/j.advengsoft.2005.04.005
https://doi.org/10.1287/opre.42.5.860
https://doi.org/10.1007/978-1-4757-3023-4_4
https://doi.org/10.1007/978-1-4757-3023-4_4
https://doi.org/10.1007/978-0-387-74759-0_178

Bibliography

[62] Fortunato, S. ‘Community detection in graphs’. In: Physics Reports 486.3

(2010), pp. 75–174. doi: 10.1016/j.physrep.2009.11.002.

[63] Fortunato, S. and Barthélemy, M. ‘Resolution limit in community detection’.

In: Proceedings of the National Academy of Sciences 104.1 (2007), pp. 36–41.

doi: 10.1073/pnas.0605965104.

[64] Fouladvand, S., Osareh, A., Shadgar, B., Pavone, M. and Sharafi, S. ‘DENSA:

An effective negative selection algorithm with flexible boundaries for self-space

and dynamic number of detectors’. In: Engineering Applications of Artificial

Intelligence 62 (2017), pp. 359–372. doi: 10.1016/j.engappai.2016.08.014.

[65] Gach, O. and Hao, J.-K. ‘Combined neighborhood tabu search for community

detection in complex networks’. In: RAIRO-Oper. Res. 50.2 (2016), pp. 269–

283. doi: 10.1051/ro/2015046.

[66] Girvan, M. and Newman, M. E. J. ‘Community structure in social and biological

networks’. In: Proceedings of the National Academy of Sciences 99.12 (2002),

pp. 7821–7826. doi: 10.1073/pnas.122653799.

[67] Gleiser, P. M. and Danon, L. ‘Community structure in Jazz’. In: Advances in

Complex Systems 06.04 (2003), pp. 565–573. doi: 10.1142/S0219525903001067.

[68] Glover, F. ‘Heuristics for integer programming using surrogate constraints’. In:

Decision Sciences 8.1 (1977), pp. 156–166. doi: 10.1111/j.1540-5915.1977.

tb01074.x.

[69] Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M. and Barabási, A.-L.

‘The human disease network’. In: Proceedings of the National Academy of Sci-

ences 104.21 (2007), pp. 8685–8690. doi: 10.1073/pnas.0701361104.

[70] Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, 1989.

176

https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1016/j.engappai.2016.08.014
https://doi.org/10.1051/ro/2015046
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1142/S0219525903001067
https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
https://doi.org/10.1073/pnas.0701361104

Bibliography

[71] Good, B. H., De Montjoye, Y.-A. and Clauset, A. ‘Performance of modularity

maximization in practical contexts’. In: Physical Review E 81.4 (Apr. 2010),

p. 046106. doi: 10.1103/PhysRevE.81.046106.

[72] Gosavi, A. ‘Reinforcement Learning: A Tutorial Survey and Recent Advances’.

In: INFORMS Journal on Computing 21.2 (2009), pp. 178–192. doi: 10.1287/

ijoc.1080.0305.

[73] Gu, H., Zhu, P., Jiao, Y., Meng, Y. and Chen, M. ‘PRIN: a predicted rice

interactome network’. In: BMC Bioinformatics 12.161 (2011). doi: 10.1186/

1471-2105-12-161.

[74] Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F. and Arenas, A. ‘Self-similar

community structure in a network of human interactions’. In: Physical Review

E 68.6 (Dec. 2003), p. 065103. doi: 10.1103/PhysRevE.68.065103.

[75] Gulbahce, N. and Lehmann, S. ‘The art of community detection’. In: BioEssays

30.10 (2008), pp. 934–938. doi: 10.1002/bies.20820.

[76] Gusfield, D. ‘A Graph Theoretic Approach to Statistical Data Security’. In:

SIAM Journal on Computing 17.3 (1988), pp. 552–571. doi: 10.1137/0217034.

[77] Holland, J. Adaptation in Natural and Artificial Systems: An Introductory Ana-

lysis with Applications to Biology, Control, and Artificial Intelligence. MIT

Press, 1992.

[78] Hoos, H. H. and Stützle, T. Stochastic Local Search: Foundations & Applications.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2004.

[79] Hubert, L. and Arabic, P. ‘Comparing Partitions’. In: Journal of Classification

2 (1985), pp. 193–218. doi: 10.1007/BF01908075.

[80] Jansen, T. and Zarges, C. ‘On benefits and drawbacks of aging strategies for

randomized search heuristics’. In: Theoretical Computer Science 412.6 (2011),

pp. 543–559. doi: 10.1016/j.tcs.2010.03.032.

177

https://doi.org/10.1103/PhysRevE.81.046106
https://doi.org/10.1287/ijoc.1080.0305
https://doi.org/10.1287/ijoc.1080.0305
https://doi.org/10.1186/1471-2105-12-161
https://doi.org/10.1186/1471-2105-12-161
https://doi.org/10.1103/PhysRevE.68.065103
https://doi.org/10.1002/bies.20820
https://doi.org/10.1137/0217034
https://doi.org/10.1007/BF01908075
https://doi.org/10.1016/j.tcs.2010.03.032

Bibliography

[81] Jansen, T. and Zarges, C. ‘On the Role of Age Diversity for Effective Aging

Operators’. In: Evolutionary Intelligence 4.2 (2011), pp. 99–125. doi: 10.1007/

s12065-011-0051-6.

[82] Jaynes, E. T. Probability Theory: The Logic of Science. Cambridge University

Press, 2003.

[83] Johnson, D. B. ‘Finding All the Elementary Circuits of a Directed Graph’. In:

SIAM Journal on Computing 4.1 (1975), pp. 77–84. doi: 10.1137/0204007.

[84] Kaelbling, L. P., Littman, M. L. and Moore, A. W. ‘Reinforcement Learning: A

Survey’. In: Journal of Artificial Intelligence Research 4 (May 1996), pp. 237–

285. doi: 10.1613/jair.301.

[85] Karp, R. M. ‘Reducibility among Combinatorial Problems’. In: Complexity of

Computer Computations. Ed. by Miller, R. E., Thatcher, J. W. and Bohlinger,

J. D. Boston, MA: Springer, 1972, pp. 85–103. doi: 10.1007/978-1-4684-

2001-2_9.

[86] Kernighan, B. W. and Lin, S. ‘An efficient heuristic procedure for partitioning

graphs’. In: The Bell System Technical Journal 49.2 (Feb. 1970), pp. 291–307.

doi: 10.1002/j.1538-7305.1970.tb01770.x.

[87] Kratsch, S. and Schweitzer, P. ‘Isomorphism for Graphs of Bounded Feedback

Vertex Set Number’. In: Algorithm Theory - SWAT 2010. Ed. by Kaplan, H.

Berlin, Heidelberg: Springer, 2010, pp. 81–92. doi: 10 . 1007 / 978 - 3 - 642 -

13731-0_9.

[88] Krebs, V. A network of books about recent US politics sold by the online book-

seller Amazon.com. 2008. url: http://www.orgnet.com.

[89] Kullback, S. and Leibler, R. A. ‘On Information and Sufficiency’. In: The An-

nals of Mathematical Statistics 22.1 (1951), pp. 79–86. doi: 10.1214/aoms/

1177729694.

[90] Kullback, S. Information Theory and Statistics. Wiley, 1959.

178

https://doi.org/10.1007/s12065-011-0051-6
https://doi.org/10.1007/s12065-011-0051-6
https://doi.org/10.1137/0204007
https://doi.org/10.1613/jair.301
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1007/978-3-642-13731-0_9
https://doi.org/10.1007/978-3-642-13731-0_9
http://www.orgnet.com
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694

Bibliography

[91] Lancichinetti, A. and Fortunato, S. ‘Benchmarks for testing community detec-

tion algorithms on directed and weighted graphs with overlapping communities’.

In: Physical Review E 80.1 (July 2009), p. 016118. doi: 10.1103/PhysRevE.

80.016118.

[92] Lancichinetti, A., Fortunato, S. and Radicchi, F. ‘Benchmark graphs for test-

ing community detection algorithms’. In: Physical Review E 78.4 (Oct. 2008),

p. 046110. doi: 10.1103/PhysRevE.78.046110.

[93] Lee, D.-S., Park, J., Kay, K. A., Christakis, N. A., Oltvai, Z. N. and Barabási,

A.-L. ‘The implications of human metabolic network topology for disease co-

morbidity’. In: Proceedings of the National Academy of Sciences 105.29 (2008),

pp. 9880–9885. doi: 10.1073/pnas.0802208105.

[94] Li, L., Wei, Z., Hao, J.-K. and He, K. ‘Probability learning based tabu search for

the budgeted maximum coverage problem’. In: Expert Systems with Applications

183 (2021), p. 115310. doi: 10.1016/j.eswa.2021.115310.

[95] Li, M., Hao, J.-K. and Wu, Q. ‘Learning-driven feasible and infeasible tabu

search for airport gate assignment’. In: European Journal of Operational Re-

search 302.1 (2022), pp. 172–186. doi: 10.1016/j.ejor.2021.12.019.

[96] Li, W., Kang, Q., Kong, H., Liu, C. and Kang, Y. ‘A novel iterated greedy

algorithm for detecting communities in complex network’. In: Social Network

Analysis and Mining 10.29 (2020), pp. 1–17. doi: 10 . 1007 / s13278 - 020 -

00641-y.

[97] Lim, Y. H., Charette, J. M. and Baserga, S. J. ‘Assembling a Protein-Protein

Interaction Map of the SSU Processome from Existing Datasets’. In: PLOS

ONE 6.3 (Mar. 2011), e17701. doi: 10.1371/journal.pone.0017701.

[98] Lusseau, D., Schneider, K., Boisseau, O. J., Haase, P., Slooten, E. and Dawson,

S. M. ‘The bottlenose dolphin community of Doubtful Sound features a large

proportion of long-lasting associations’. In: Behavioral Ecology and Sociobiology

54 (2003), pp. 396–405. doi: 10.1007/s00265-003-0651-y.

179

https://doi.org/10.1103/PhysRevE.80.016118
https://doi.org/10.1103/PhysRevE.80.016118
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1073/pnas.0802208105
https://doi.org/10.1016/j.eswa.2021.115310
https://doi.org/10.1016/j.ejor.2021.12.019
https://doi.org/10.1007/s13278-020-00641-y
https://doi.org/10.1007/s13278-020-00641-y
https://doi.org/10.1371/journal.pone.0017701
https://doi.org/10.1007/s00265-003-0651-y

Bibliography

[99] Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho,

D. M., Allison, K. R., Kellis, M., Collins, J. J. and Stolovitzky, G. ‘Wisdom

of crowds for robust gene network inference’. In: Nature Methods 9.8 (2012),

pp. 796–804. doi: 10.1038/nmeth.2016.

[100] Martí, R., Laguna, M. and Glover, F. ‘Principles of scatter search’. In: European

Journal of operational Research 169.2 (2006), pp. 359–372. doi: 10.1016/j.

ejor.2004.08.004.

[101] Meilă, M. ‘Comparing clusterings–an information based distance’. In: Journal

of Multivariate Analysis 98.5 (2007), pp. 873–895. doi: 10.1016/j.jmva.2006.

11.013.

[102] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. and Alon, U.

‘Network Motifs: Simple Building Blocks of Complex Networks’. In: Science

298.5594 (2002), pp. 824–827. doi: 10.1126/science.298.5594.824.

[103] Mullard, A. ‘Protein–protein interaction inhibitors get into the groove’. In:

Nature Reviews Drug Discovery 11.3 (2012), pp. 173–175. doi: 10 . 1038 /

nrd3680.

[104] Naeni, L. M., Berretta, R. and Moscato, P. ‘MA-Net: A Reliable Memetic Al-

gorithm for Community Detection by Modularity Optimization’. In: Proceedings

of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems,

Volume 1. Ed. by Handa, H., Ishibuchi, H., Ong, Y.-S. and Tan, K. C. Cham:

Springer, 2015, pp. 311–323. doi: 10.1007/978-3-319-13359-1_25.

[105] Newman, M. E. J. ‘Communities, modules and large-scale structure in networks’.

In: Nature Physics 8.1 (2012), pp. 25–31. doi: 10.1038/nphys2162.

[106] Newman, M. E. J. ‘Fast algorithm for detecting community structure in net-

works’. In: Physical Review E 69.6 (June 2004), p. 066133. doi: 10 . 1103 /

PhysRevE.69.066133.

180

https://doi.org/10.1038/nmeth.2016
https://doi.org/10.1016/j.ejor.2004.08.004
https://doi.org/10.1016/j.ejor.2004.08.004
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1038/nrd3680
https://doi.org/10.1038/nrd3680
https://doi.org/10.1007/978-3-319-13359-1_25
https://doi.org/10.1038/nphys2162
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.69.066133

Bibliography

[107] Newman, M. E. J. ‘Finding community structure in networks using the eigen-

vectors of matrices’. In: Physical Review E 74.3 (Sept. 2006), p. 036104. doi:

10.1103/PhysRevE.74.036104.

[108] Newman, M. E. J. ‘The Structure and Function of Complex Networks’. In: SIAM

Review 45.2 (2003), pp. 167–256. doi: 10.1137/S003614450342480.

[109] Newman, M. E. J. and Girvan, M. ‘Finding and evaluating community structure

in networks’. In: Physical Review E 69.2 (Feb. 2004), p. 026113. doi: 10.1103/

PhysRevE.69.026113.

[110] Noack, A. and Rotta, R. ‘Multi-level algorithms for modularity clustering’. In:

Experimental Algorithms (SEA 2009). Ed. by Vahrenhold, J. Berlin, Heidelberg:

Springer, 2009, pp. 257–268. doi: 10.1007/978-3-642-02011-7_24.

[111] Pavone, M., Narzisi, G. and Nicosia, G. ‘Clonal selection: an immunological

algorithm for global optimization over continuous spaces’. In: Journal of Global

Optimization 53.4 (2012), pp. 769–808. doi: 10.1007/s10898-011-9736-8.

[112] Peleg, D. ‘Size bounds for dynamic monopolies’. In: Discrete Applied Mathem-

atics 86.2 (1998), pp. 263–273. doi: 10.1016/S0166-218X(98)00043-2.

[113] Poggiolini, M. and Engelbrecht, A. ‘Application of the feature-detection rule to

the Negative Selection Algorithm’. In: Expert Systems with Applications 40.8

(2013), pp. 3001–3014. doi: 10.1016/j.eswa.2012.12.016.

[114] Pólya, G. How to Solve It. Princeton University Press, 1945.

[115] Porter, M. A., Onnela, J.-P. and Mucha, P. J. ‘Communities in networks’. In:

Notices of the AMS 56.9 (2009), pp. 1082–1097.

[116] Rain, J.-C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Len-

zen, G., Petel, F., Wojcik, J., Schächter, V., Chemama, Y., Labigne, A. and

Legrain, P. ‘The protein-–protein interaction map of Helicobacter pylori’. In:

Nature 409.6817 (2001), pp. 211–215. doi: 10.1038/35051615.

181

https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1007/978-3-642-02011-7_24
https://doi.org/10.1007/s10898-011-9736-8
https://doi.org/10.1016/S0166-218X(98)00043-2
https://doi.org/10.1016/j.eswa.2012.12.016
https://doi.org/10.1038/35051615

Bibliography

[117] Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S. ‘GSA: A Gravitational

Search Algorithm’. In: Information Sciences 179.13 (2009), pp. 2232–2248. doi:

10.1016/j.ins.2009.03.004.

[118] Ravasi, T., Suzuki, H., Cannistraci, C. V., Katayama, S., Bajic, V. B., Tan,

K., Akalin, A., Schmeier, S., Kanamori-Katayama, M., Bertin, N., Carninci, P.,

Daub, C. O., Forrest, A. R. R., Gough, J., Grimmond, S., Han, J.-H., Hashimoto,

T., Hide, W., Hofmann, O., Kamburov, A., Kaur, M., Kawaji, H., Kubosaki, A.,

Lassmann, T., Nimwegen, E. van, MacPherson, C. R., Ogawa, C., Radovanovic,

A., Schwartz, A., Teasdale, R. D., Tegnér, J., Lenhard, B., Teichmann, S. A.,

Arakawa, T., Ninomiya, N., Murakami, K., Tagami, M., Fukuda, S., Imamura,

K., Kai, C., Ishihara, R., Kitazume, Y., Kawai, J., Hume, D. A., Ideker, T.

and Hayashizaki, Y. ‘An Atlas of Combinatorial Transcriptional Regulation in

Mouse and Man’. In: Cell 140.5 (2010), pp. 744–752. doi: 10.1016/j.cell.

2010.01.044.

[119] Ross, R., Dagnone, D., Jones, P. J. H., Smith, H., Paddags, A., Hudson, R. and

Janssen, I. ‘Reduction in Obesity and Related Comorbid Conditions after Diet-

Induced Weight Loss or Exercise-Induced Weight Loss in Men’. In: Annals of

Internal Medicine 133.2 (2000), pp. 92–103. doi: 10.7326/0003-4819-133-2-

200007180-00008.

[120] Ruiz, R. and Stützle, T. ‘A simple and effective iterated greedy algorithm for the

permutation flowshop scheduling problem’. In: European Journal of Operational

Research 177.3 (2007), pp. 2033–2049. doi: 10.1016/j.ejor.2005.12.009.

[121] Said, A., Abbasi, R. A., Maqbool, O., Daud, A. and Aljohani, N. R. ‘CC-GA: A

clustering coefficient based genetic algorithm for detecting communities in social

networks’. In: Applied Soft Computing 63 (2018), pp. 59–70. doi: 10.1016/j.

asoc.2017.11.014.

182

https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1016/j.cell.2010.01.044
https://doi.org/10.1016/j.cell.2010.01.044
https://doi.org/10.7326/0003-4819-133-2-200007180-00008
https://doi.org/10.7326/0003-4819-133-2-200007180-00008
https://doi.org/10.1016/j.ejor.2005.12.009
https://doi.org/10.1016/j.asoc.2017.11.014
https://doi.org/10.1016/j.asoc.2017.11.014

Bibliography

[122] Sánchez-Oro, J. and Duarte, A. ‘Iterated Greedy algorithm for performing com-

munity detection in social networks’. In: Future Generation Computer Systems

88 (2018), pp. 785–791. doi: 10.1016/j.future.2018.06.010.

[123] Schellenberger, J., Park, J. O., Conrad, T. M. and Palsson, B. Ø. ‘BiGG: a Bio-

chemical Genetic and Genomic knowledgebase of large scale metabolic recon-

structions’. In: BMC Bioinformatics 11.213 (2010). doi: 10.1186/1471-2105-

11-213.

[124] Schuetz, P. and Caflisch, A. ‘Efficient modularity optimization by multistep

greedy algorithm and vertex mover refinement’. In: Physical Review E 77.4

(Apr. 2008), p. 046112. doi: 10.1103/PhysRevE.77.046112.

[125] Scollo, R. A., Cutello, V. and Pavone, M. ‘Where the Local Search Affects Best

in an Immune Algorithm’. In: AIxIA 2020 – Advances in Artificial Intelligence

(AIxIA 2020). Ed. by Baldoni, M. and Bandini, S. Vol. 12414. Lecture Notes in

Artificial Intelligence. Cham: Springer, 2021, pp. 99–114. doi: 10.1007/978-

3-030-77091-4_7.

[126] Scollo, R. A., Spampinato, A. G., Fargetta, G., Cutello, V. and Pavone, M. ‘Dis-

covering Entities Similarities in Biological Networks Using a Hybrid Immune

Algorithm’. In: Informatics 10.1 (2023). doi: 10.3390/informatics10010018.

[127] Shamir, A. ‘A Linear Time Algorithm for Finding Minimum Cutsets in Redu-

cible Graphs’. In: SIAM Journal on Computing 8.4 (1979), pp. 645–655. doi:

10.1137/0208051.

[128] Shannon, C. E. ‘A Mathematical Theory of Communication’. In: The Bell Sys-

tem Technical Journal 27.3 (1948), pp. 379–423. doi: 10.1002/j.1538-7305.

1948.tb01338.x.

[129] Shen-Orr, S. S., Milo, R., Mangan, S. and Alon, U. ‘Network motifs in the tran-

scriptional regulation network of Escherichia coli’. In: Nature Genetics 31.1 (May

2002), pp. 64–68. doi: 10.1038/ng881.

183

https://doi.org/10.1016/j.future.2018.06.010
https://doi.org/10.1186/1471-2105-11-213
https://doi.org/10.1186/1471-2105-11-213
https://doi.org/10.1103/PhysRevE.77.046112
https://doi.org/10.1007/978-3-030-77091-4_7
https://doi.org/10.1007/978-3-030-77091-4_7
https://doi.org/10.3390/informatics10010018
https://doi.org/10.1137/0208051
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1038/ng881

Bibliography

[130] Shi, C., Wang, Y., Wu, B. and Zhong, C. ‘A New Genetic Algorithm for Com-

munity Detection’. In: Complex Sciences (Complex 2009). Ed. by Zhou, J. Ber-

lin, Heidelberg: Springer, 2009, pp. 1298–1309. doi: 10.1007/978- 3- 642-

02469-6_11.

[131] Smith, S. L. and Timmis, J. ‘An immune network inspired evolutionary al-

gorithm for the diagnosis of Parkinson’s disease’. In: Biosystems 94.1 (2008),

pp. 34–46. doi: 10.1016/j.biosystems.2008.05.024.

[132] Spampinato, A. G., Scollo, R. A., Cavallaro, S., Pavone, M. and Cutello, V. ‘An

Immunological Algorithm for Graph Modularity Optimization’. In: Advances

in Computational Intelligence Systems (UKCI 2019). Ed. by Ju, Z., Yang, L.,

Yang, C., Gegov, A. and Zhou, D. Vol. 1043. Advances in Intelligent Systems

and Computing. Cham: Springer, 2020, pp. 235–247. doi: 10.1007/978-3-

030-29933-0_20.

[133] Storn, R. and Price, K. ‘Differential Evolution – A Simple and Efficient Heur-

istic for global Optimization over Continuous Spaces’. In: Journal of Global

Optimization 11.4 (1997), pp. 341–359. doi: 10.1023/A:1008202821328.

[134] Storn, R. and Price, K. Differential Evolution: A Simple and Efficient Adaptive

Scheme for Global Optimization over Continuous Spaces. Tech. rep. TR-95-012.

Berkeley, CA, USA: International Computer Science Institute, 1995.

[135] Sundaresan, S. R., Fischhoff, I. R., Dushoff, J. and Rubenstein, D. I. ‘Network

metrics reveal differences in social organization between two fission–fusion spe-

cies, Grevy’s zebra and onager’. In: Oecologia 151 (2007), pp. 140–149. doi:

10.1007/s00442-006-0553-6.

[136] Sutton, R. S. and Barto, A. G. Reinforcement Learning: An Introduction. MIT

Press, 2018.

[137] Talbi, E.-G. ‘A Unified Taxonomy of Hybrid Metaheuristics with Mathematical

Programming, Constraint Programming and Machine Learning’. In: Hybrid Me-

184

https://doi.org/10.1007/978-3-642-02469-6_11
https://doi.org/10.1007/978-3-642-02469-6_11
https://doi.org/10.1016/j.biosystems.2008.05.024
https://doi.org/10.1007/978-3-030-29933-0_20
https://doi.org/10.1007/978-3-030-29933-0_20
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/s00442-006-0553-6

Bibliography

taheuristics. Ed. by Talbi, E.-G. Berlin, Heidelberg: Springer, 2013, pp. 3–76.

doi: 10.1007/978-3-642-30671-6_1.

[138] Talbi, E.-G. Metaheuristics: from Design to Implementation. Wiley Publishing,

2009.

[139] Tang, B., Hsu, H.-K., Hsu, P.-Y., Bonneville, R., Chen, S.-S., Huang, T. H. M.

and Jin, V. X. ‘Hierarchical Modularity in ERα Transcriptional Network Is Asso-

ciated with Distinct Functions and Implicates Clinical Outcomes’. In: Scientific

Reports 2 (2012), p. 875. doi: 10.1038/srep00875.

[140] Taylor, I. W., Linding, R., Warde-Farley, D., Liu, Y., Pesquita, C., Faria, D.,

Bull, S., Pawson, T., Morris, Q. and Wrana, J. L. ‘Dynamic modularity in pro-

tein interaction networks predicts breast cancer outcome’. In: Nature Biotech-

nology 27.2 (2009), pp. 199–204. doi: 10.1038/nbt.1522.

[141] Vitale, A., Di Stefano, A., Cutello, V. and Pavone, M. ‘The Influence of Age

Assignments on the Performance of Immune Algorithms’. In: Advances in Com-

putational Intelligence Systems (UKCI 2018). Ed. by Lotfi, A., Bouchachia, H.,

Gegov, A., Langensiepen, C. and McGinnity, M. Cham: Springer, 2019, pp. 16–

28. doi: 10.1007/978-3-319-97982-3_2.

[142] Von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S. and

Bork, P. ‘Comparative assessment of large-scale data sets of protein–protein in-

teractions’. In: Nature 417.6887 (2002), pp. 399–403. doi: 10.1038/nature750.

[143] Wang, C.-C., Lloyd, E. L. and Soffa, M. L. ‘Feedback Vertex Sets and Cyclically

Reducible Graphs’. In: Journal of the ACM 32.2 (Apr. 1985), pp. 296–313. doi:

10.1145/3149.3159.

[144] Wang, X. and Tang, L. ‘A machine-learning based memetic algorithm for the

multi-objective permutation flowshop scheduling problem’. In: Computers &

Operations Research 79 (2017), pp. 60–77. doi: 10.1016/j.cor.2016.10.003.

185

https://doi.org/10.1007/978-3-642-30671-6_1
https://doi.org/10.1038/srep00875
https://doi.org/10.1038/nbt.1522
https://doi.org/10.1007/978-3-319-97982-3_2
https://doi.org/10.1038/nature750
https://doi.org/10.1145/3149.3159
https://doi.org/10.1016/j.cor.2016.10.003

Bibliography

[145] Wang, Y., Pan, S., Li, C. and Yin, M. ‘A local search algorithm with rein-

forcement learning based repair procedure for minimum weight independent

dominating set’. In: Information Sciences 512 (2020), pp. 533–548. doi: 10.

1016/j.ins.2019.09.059.

[146] Watts, D. J. and Strogatz, S. H. ‘Collective dynamics of ’small-world’ networks’.

In: Nature 393.6684 (1998), pp. 440–442. doi: 10.1038/30918.

[147] Wauters, T., Verbeeck, K., De Causmaecker, P. and Vanden Berghe, G. ‘Boost-

ing Metaheuristic Search Using Reinforcement Learning’. In: Hybrid Metaheur-

istics. Ed. by Talbi, E.-G. Berlin, Heidelberg: Springer, 2013, pp. 433–452. doi:

10.1007/978-3-642-30671-6_17.

[148] Wilkinson, D. M. and Huberman, B. A. ‘A method for finding communities of

related genes’. In: Proceedings of the National Academy of Sciences 101.suppl 1

(2004), pp. 5241–5248. doi: 10.1073/pnas.0307740100.

[149] Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M. and Eisen-

berg, D. ‘DIP: the Database of Interacting Proteins’. In: Nucleic Acids Research

28.1 (Jan. 2000), pp. 289–291. doi: 10.1093/nar/28.1.289.

[150] Yang, X.-S. ‘A New Metaheuristic Bat-Inspired Algorithm’. In: Nature Inspired

Cooperative Strategies for Optimization (NICSO 2010). Ed. by González, J. R.,

Pelta, D. A., Cruz, C., Terrazas, G. and Krasnogor, N. Berlin, Heidelberg:

Springer, 2010, pp. 65–74. doi: 10.1007/978-3-642-12538-6_6.

[151] Yannakakis, M. ‘Node-and Edge-Deletion NP-Complete Problems’. In: Proceed-

ings of the Tenth Annual ACM Symposium on Theory of Computing (STOC

’78). New York, NY, USA: Association for Computing Machinery, 1978, pp. 253–

264. doi: 10.1145/800133.804355.

[152] Yanrui, D., Zhen, Z., Wenchao, W. and Yujie, C. ‘Identifying the Communities

in the Metabolic Network Using ’Component’ Definition and Girvan-Newman

Algorithm’. In: 2015 14th International Symposium on Distributed Computing

186

https://doi.org/10.1016/j.ins.2019.09.059
https://doi.org/10.1016/j.ins.2019.09.059
https://doi.org/10.1038/30918
https://doi.org/10.1007/978-3-642-30671-6_17
https://doi.org/10.1073/pnas.0307740100
https://doi.org/10.1093/nar/28.1.289
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1145/800133.804355

Bibliography

and Applications for Business Engineering and Science (DCABES 2015). 2015,

pp. 42–45. doi: 10.1109/DCABES.2015.18.

[153] Yu, H., Braun, P., Yildirim, M. A., Lemmens, I., Venkatesan, K., Sahalie,

J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., Hao, T., Rual,

J.-F., Dricot, A., Vazquez, A., Murray, R. R., Simon, C., Tardivo, L., Tam, S.,

Svrzikapa, N., Fan, C., De Smet, A.-S., Motyl, A., Hudson, M. E., Park, J.,

Xin, X., Cusick, M. E., Moore, T., Boone, C., Snyder, M., Roth, F. P., Barabási,

A.-L., Tavernier, J., Hill, D. E. and Vidal, M. ‘High-Quality Binary Protein In-

teraction Map of the Yeast Interactome Network’. In: Science 322.5898 (2008),

pp. 104–110. doi: 10.1126/science.1158684.

[154] Zachary, W. W. ‘An Information Flow Model for Conflict and Fission in Small

Groups’. In: Journal of Anthropological Research 33.4 (1977), pp. 452–473. doi:

10.1086/jar.33.4.3629752.

[155] Zhang, Y., Gao, P. and Yuan, J. S. ‘Plant Protein-Protein Interaction Network

and Interactome’. In: Current Genomics 11.1 (2010), pp. 40–46. doi: 10.2174/

138920210790218016.

[156] Zhou, Y., Duval, B. and Hao, J.-K. ‘Improving probability learning based local

search for graph coloring’. In: Applied Soft Computing 65 (2018), pp. 542–553.

doi: 10.1016/j.asoc.2018.01.027.

[157] Zhou, Y., Hao, J.-K. and Duval, B. ‘Opposition-Based Memetic Search for the

Maximum Diversity Problem’. In: IEEE Transactions on Evolutionary Compu-

tation 21.5 (2017), pp. 731–745. doi: 10.1109/TEVC.2017.2674800.

[158] Zhou, Y., Hao, J.-K. and Duval, B. ‘Reinforcement learning based local search

for grouping problems: A case study on graph coloring’. In: Expert Systems with

Applications 64 (2016), pp. 412–422. doi: 10.1016/j.eswa.2016.07.047.

[159] Zhu, J., Zhang, B., Smith, E. N., Drees, B., Brem, R. B., Kruglyak, L.,

Bumgarner, R. E. and Schadt, E. E. ‘Integrating large-scale functional gen-

187

https://doi.org/10.1109/DCABES.2015.18
https://doi.org/10.1126/science.1158684
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.2174/138920210790218016
https://doi.org/10.2174/138920210790218016
https://doi.org/10.1016/j.asoc.2018.01.027
https://doi.org/10.1109/TEVC.2017.2674800
https://doi.org/10.1016/j.eswa.2016.07.047

Bibliography

omic data to dissect the complexity of yeast regulatory networks’. In: Nature

Genetics 40.7 (2008), pp. 854–861. doi: 10.1038/ng.167.

188

https://doi.org/10.1038/ng.167

	Introduction
	Weighted Feedback Vertex Set Problem
	Formal Definition

	Hybrid Immunological Algorithm
	The Proposed Method
	Initialization
	Cloning
	Hypermutation
	Aging
	Selection
	Local Search
	Termination

	Experimental Results
	Convergence Behaviour
	Preliminary Results
	Parameter Tuning
	Results

	Conclusions

	Hybrid Immunological Algorithm with Reinforcement Learning
	The Proposed Method
	Greedy Construction Algorithm
	Destruction Phase
	Probability Learning

	Experimental Results
	Conclusions

	Community Detection
	Modularity Optimization

	Stochastic Immunological Algorithm
	The Proposed Method
	The Cloning Operator
	The Hypermutation Operator
	Aging, Precompetition and Selection Operators

	Behaviour Analysis
	Datasets and Experimental Protocol
	Parameters Tuning
	Convergence Behaviour
	Computational Time Complexity
	Precompetition Operator Effectiveness

	Experimental Results
	Functional Sensitivity Analysis

	Conclusions

	Hybrid Immunological Algorithm
	The Proposed Method
	Networks Data Set
	Social Networks
	Protein-Protein Interaction Networks
	Metabolic Networks
	Transcriptional Regulatory Networks
	Synthetic Networks

	Experimental Results
	Convergence Behaviour
	Results
	Functional Sensitivity of Community Detection

	Local Search Position Analysis
	Results
	Functional Sensitivity Analysis

	Conclusions

	Multi-level Optimization
	Random and Smart Explosion
	Smart Merge
	Experimental Results
	Results

	Conclusions

	Conclusions
	Appendix
	Parameter Tuning Results

	Bibliography

