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ABSTRACT

Quantum Chromodynamics (QCD) is the non-abelian gauge field the-

ory that within the Standard Model describes the strong interaction between

quarks and gluons. QCD exhibits two main properties: color confinement

and asymptotic freedom. The former implies that in ordinary matter quarks

and gluons are bounded within colorless hadrons. The latter is related to the

decrease of the QCD strength coupling with increasing characteristic energy

of the process. Asymptotic freedom implies that under extreme conditions

of high temperature and density the interaction affecting quarks and gluons

is so weakly that they are released from the bounding state to form a decon-

fined phase of matter known as the Quark-Gluon Plasma (QGP). Numerical

solutions of QCD equations on lattice (lQCD) predict that such transition is

properly a crossover at almost zero baryon density and with a critical temper-

ature Tc = 155 MeV . The study of nuclear matter under extreme conditions

is the main program of the experiments at the Relativistic Heavy Ion Collider

(RHIC) and Large Hadron Collider (LHC) where ultrarelativistic Heavy-Ion

Collisions (uHICs) are conducted to create an almost baryon free QGP with

initial T ≈ 3Tc. In this scenario Heavy Quarks (HQs), mainly charm and

bottom, play a unique role. Due to their large masses HQs are created at ini-

tial stage of HICs by hard perturbative QCD scattering processes. Moreover,

their thermalization time is comparable with the QGP lifetime. Hence HQs

can probe the entire evolution of the fireball carrying more information about
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Abstract

their initial properties. The most important observables in the HQ sector are

the nuclear modification factor RAA and the elliptic flow v2. The challenge of

each theoretical framework is to provide a simultaneous description of these

two observables that have been measured both at RHIC and LHC energies.

In this thesis we study the HQ dynamics within the QGP by means of a

relativistic Boltzmann transport approach. In this framework we treat non-

perturbative QCD effects by prescription of a Quasi-Particle Model (QPM) in

which light quarks and gluons of the bulk are dressed with effective masses

and the T dependence of the strength coupling is fitted to lQCD thermody-

namics. In the first part of this thesis we discuss about HQ transport co-

efficients by performing simulations in static QCD medium. We compare

our extracted drag and diffusion coefficients with results obtained through a

MonteCarlo integration. Afterwards we investigate charm suppression and

compare the results among various theoretical models. In the second part we

focus on the dynamical evolution of HQs within the QGP by carrying out

simulations of realistic HICs. We observe that within our QPM interaction,

which implies a T -dependent drag coefficient almost constant near Tc, we are

able to describe simultaneously the RAA and v2 of D mesons both at RHIC

and LHC energies. In order to compare with the experimental measurements

we couple the final HQ spectra to a hybrid coalescence plus fragmentation

hadronization model which is suitable to describe the large magnitude of the

observed baryon-to-meson ratio Λc/D
0 ∼ 1. In the same framework we pro-

vide our predictions for B meson RAA and v2 and compare our results with

the available experimental data. A goal of this work is to include the effect

of enhanced Λc production in HICs on the nuclear modification factor of D

mesons. Finally, we present our estimate of the HQ spatial diffusion coeffi-

cient Ds(T ) within our Boltzmann approach. We show that our phenomeno-

logical predictions of Ds for charm quark are in agreement with lQCD expec-

tations, meaning that through the study of HQ thermalization we can probe

the QCD interaction within the present uncertainties of lQCD. We point out

also that the possibility to calculate transport coefficients at the bottom mass

scale allows to reduce uncertainties coming from the adopted transport model

and to bring the estimate of Ds closer to the quenched lQCD.
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Abstract

Abstract in lingua italiana

La Cromodinamica Quantistica (QCD) è la teoria di gauge non-abeliana

che nell’ambito del Modello Standard descrive l’interazione forte fra quark e

gluoni. La QCD possiede due proprietà principali: il confinamento e la libertà

asintotica. A causa del confinamento quark e gluoni nella materia ordinaria

non possono esistere isolati, ma formano stati legati privi di colore noti come

adroni. La libertà asintotica si riferisce al fatto che la costante di accoppia-

mento della QCD diminuisce all’aumentare dell’energia del processo fisico.

Essa implica anche che in condizioni estreme di alta temperatura o densità

quark e gluoni interagiscono così debolmente da essere rilasciati dagli adroni

e formare un nuovo stato di materia chiamato Quark-Gluon Plasma (QGP).

Calcoli numerici basati sulla soluzione della QCD su reticolo (lQCD) hanno

mostrato che questa transizione di fase è in realtà un crossover che si verifica

ad una temperatura critica Tc = 155 MeV . Lo studio della materia nucle-

are in condizioni estreme è oggetto principale degli esperimenti al Relativis-

tic Heavy-Ion Collider (RHIC) e al Large Hadron Collider (LHC) dove si

effettuano collisioni di ioni pesanti (HICs) ad energie ultrarelativisitche per

creare il QGP a potenziale barionico µB ∼ 0 e con una temperatura iniziale

di circa T ≈ 3Tc. In questo scenario i quark pesanti (HQs), charm e bottom,

hanno un ruolo unico. Infatti, a causa della loro massa elevata, essi vengono

creati da processi “hard” negli stati iniziali di HICs e inoltre il loro tempo di

termalizzazione è confrontabile con la vita media del QGP. Perciò i HQs si

propagano lungo l’intera fase evolutiva della fireball preservando molte infor-

mazioni sulle loro proprietà dinamiche. Le più importanti osservabili sono il

fattore di modificazione nucleare RAA e il flusso ellittico v2. I modelli teorici

mirano a fornire una descrizione simultanea delle due osservabili misurate sia

a RHIC che a LHC. In questa tesi descriviamo la dinamica dei HQs all’interno

del QGP per mezzo di un approccio del trasporto relativistico di Boltzmann.

Includiamo gli effetti non-perturbativi della QCD attraverso un modello a

Quasi-Particelle (QPM) in cui quark leggeri e gluoni sono rivestiti con una

massa termica e la dipendenza da T della costante di accoppiamento è fittata

sulla termodinamica di lQCD. Nella prima parte ci concentriamo sullo studio
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Abstract

dei coefficienti del trasporto dei HQs effettuando simulazioni in un mezzo

statico. Quindi confrontiamo i risultati estratti per i coefficienti di drag e

diffusion con dei calcoli ottenuti attraverso un’integrazione Montecarlo e stu-

diamo la soppressione dei quark charm facendo un confronto fra vari mod-

elli teorici. Nella seconda parte discutiamo l’evoluzione dinamica dei HQs

nel QGP in simulazioni HICs realistiche. Osserviamo che con l’interazione

QPM, che determina un coefficiente di drag costante vicino a Tc, descrivi-

amo simultaneamente RAA e v2 dei mesoni D alle energie di RHIC e di LHC.

Per confrontarci con le misure sperimentali accoppiamo gli spettri finali dei

HQs con un meccanismo di adronizzazione basato su un modello ibrido di

frammentazione e coalescenza con cui spieghiamo anche il rapporto elevato

barioni-mesoni in HICs. Con lo stesso approccio del trasporto riportiamo le

nostre predizioni per RAA e v2 dei mesoni B. Una novità di questo lavoro è

rappresentata dall’impatto della produzione elevata di barioni Λc in HICs sul

fattore di modificazione nucleare dei mesoni D. Infine presentiamo le nostre

stime sul coefficiente di diffusione spaziale Ds(T ) dei quark charm mostrando

che esse sono in accordo con i valori calcolati in lQCD. Ciò dimostra che en-

tro le incertezze di lQCD è possibile esplorare le proprietà dell’interazione

di QCD attraverso la termalizzazione dei HQs. Mostriamo inoltre che lo

studio del Ds alla scala di massa del quark bottom riduce le incertezze che

derivano dai modelli del trasporto utilizzati e garantisce un maggiore accordo

con l’approssimazione statica di lQCD.

vii



INTRODUCTION

In the Standard Model of fundamental forces the current theory that de-

scribes the strong interaction among particles is Quantum Chromodynamics

(QCD). The elementary constituents of QCD are represented by quarks and

gluons which carry a “color” charge through which their dynamics is delin-

eated in terms of a quantum field Yang-Mills theory. The two main features

of QCD are color confinement and asymptotic freedom. The first one implies

that in ordinary nuclear matter quarks and gluons cannot exist as free parti-

cles, rather they are bounded within a length scale d ∼ 1 f m inside colorless

hadron states which mainly divide into mesons and baryons. The second one

is related to the decrease of the interaction strength at small distance, i.e. with

the increasing energy scale of the processes. Therefore, asymptotic freedom

allows to treat such processes within a perturbative QCD (pQCD) framework

and it implies also that under extreme conditions of high temperature and

density the strong interaction is sufficiently weak that quarks and gluons are

released from the bounding hadrons and become the degrees of freedom of

a new state of matter, known as the Quark-Gluon Plasma (QGP). With the

advent of high speed and powerful computers the study of strong interacting

systems has been carried out by solving the QCD equations numerically on

a lattice. In particular, lattice QCD (lQCD) calculations show that nuclear

matter experiences a crossover, rather than a sharp phase transition, at a crit-

ical temperature Tc ≈ 155 MeV . Most recent analysis indicate that at T > Tc
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Introduction

the system is characterized by a high degree of non-perturbative effects es-

timated by a non-vanishing trace anomaly (ǫ − 3P)/T 4 jointly with chiral

symmetry restoration < qq̄ >= 0 as expected within the deconfined QGP

phase. In the standard cosmological scenario it is believed that the QGP has

filled the early hot Universe for the first 10 − 20 µs after the Big Bang with

almost zero baryon chemical potential µB ∼ 0 and down to a temperature

value T ≈ 150 MeV ≃ 1012 K, then the system has undergone to hadroniza-

tion to form protons and neutrons. On the contrary a transition from hadronic

state to a quark phase with finite baryon density and almost T ∼ 0 can occur

inside the center of compact stellar objects, such as neutron stars, where the

matter density in the core reaches values ρm ≥ 3− 8 · 1017 Kg/m3, i.e. several

times larger than the ordinary nuclear matter ρ0 = 0.16 f m−3. The study of

nuclear matter under extreme conditions is pursued by performing Heavy-Ion

Collisions (HICs) at ultrarelativistic energies (above ∼ 10GeV per nucleon).

The experiments conducted at the Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory (BNL) with beam energy up to 200 AGeV

have given clear evidence of the QGP formation through the measurements of

collective flow and suppression of high transverse momentum (pT ) hadrons.

Such indications have been confirmed by the experimental measurements at

CERN Large Hadron Collider (LHC) where heavy nuclei are smashed up

with energies up to 5.5 ATeV and thus it is possible to scratch the QCD phase

diagram in the region of µB ∼ 0 and T ≈ 3Tc. Moreover, new interesting

phenomena arising at initial stage of HICs have been discovered that can be

analyzed by looking at the possible formation of QGP drops in small system

reactions (such as pp, pA collisions) and through the beam energy scanning

of the critical end-point.

In this scenario Heavy Quarks (HQs), mainly charm and bottom, play a

fundamental role which arises from two specific properties. The first one is

that they have masses much higher than the perturbative scale of QCD, i.e.

MHQ ≫ ΛQCD = 0.2GeV . From the point of view of particle physics this

implies that HQs are created by hard binary collisions at initial stage of HICs

with a formation time τ f ∼ 1/2MHQ ≤ 0.1 f m and production cross sections

that can be calculated within pQCD-like schemes at Next-to-Leading Order

2



Introduction

(NLO). The second one is typical of plasma physics and corresponds to the

condition MHQ ≫ T . This ensures that the probability to pop out a charm-

anticharm or bottom-antibottom pair from thermal excitation of the vacuum

is negligible. Therefore, HQs are witness of the entire phase space evolution

of the fireball and eventually carry out more information of their initial prop-

erties, because their thermalization time is comparable with the lifetime of

the QGP, i.e. τth(HQ) ∼ τQGP ≫ τ f . Two key observables for studying the

impact of HQ dynamics on QGP physics are the nuclear modification factor

RAA(pT ) which measures the suppression of high pT spectra of Heavy-Flavor

(HF) hadrons in nucleus-nucleus collisions compared to the proton-proton

collisions and the elliptic flow v2(pT ) = 〈cos(2φ)〉 which provides an estimate

of anisotropies with respect to the azimuthal angle φ in momentum space.

The challenge of each theoretical model is to provide a simultaneous descrip-

tion of RAA and v2 which have been widely measured (at least for D mesons)

both at RHIC and LHC energies. However, difficulties may arise that are

mostly due to the complex correlations among these two observables that can

be related to the dependence of HQ interaction on the medium evolution and

to the impact of the hadronization mechanism.

In this thesis we discuss about a relativistic transport approach to study the

dynamical properties of HQs and the role of coalescence and fragmentation

processes with the aim to give a correct solution of the the RAA − v2 “puzzle”

and to explore the hot QCDmatter properties by examining charm and bottom

thermalization. This thesis is organized as follows.

In Chapter 1 we will describe in a nutshell the construction of QCD as

a gauge field theory and we will come at its most relevant properties which

are asymptotic freedom and color confinement. We will also overview global

symmetries of the QCD Lagrangian in order to discuss about the chiral sym-

metry breaking and dynamical mass generation for light quarks in the Nambu

Jona-Lasinio (NJL) model which shares some properties of QCD theory. Fi-

nally we will summarize all the main features of strongly interacting systems

to build up the QCD phase diagram where the transition from hadron gas to

deconfined QGP is reported along the temperature-baryon chemical potential

space region which has been traversed by the evolving Universe at dawn of
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time and it is partially accessible by HICs nowadays.

In Chapter 2 we will discuss about the physics of ultrarelativistic HICs

which we divide into two parts. In the first one we will look at the initial

stages of HICs that can be modeled by geometrical Glauber or effective QCD-

like theories. Then we will describe how the formed hot QGP expands as a

nearly perfect fluid, i.e. with small value of shear viscosity to entropy density

η/s, and cools down until the free partons hadronize by fragmentation or

coalescence at T ∼ Tc to produce the final particles which in the end are

measured by the experimental detectors. In the second part we will focus on

the role of Heavy Quarks (HQs) production within the QGP. In particular,

we will discuss about the calculation of the HQ cross sections in high energy

reactions distinguishing between elementary pp collisions and HICs. We will

mention about the propagation of HQs in the early and pre-equilibrium stages

of the fireball evolution based on a recent work which is suitable for studying

HQ suppression and anysotropic flow both in pA and in AA collisions. We

will treat extensively the hadronization mechanism of HQs by describing a

hybrid fragmentation plus coalescence model that we will couple at the final

stage of their evolution through the QGP to obtain the final pT spectra of

the corresponding HF mesons and baryons. Finally, we will introduce the

definitions of nuclear modification factor RAA and elliptic flow v2. We will

briefly overview the most recent measurements of these two observables both

at RHIC and LHC and we will focus on the state-of-art in the HF sector

through a direct comparison with light hadrons.

In Chapter 3 we will review the formulation of classical kinetic theory by

deriving the relativistic Boltzmann-Vlasov equation which describes the dy-

namical evolution of interacting plasmas and we will also give a brief intro-

duction to transport equations in quantum theory both in the non-relativistic

and in the relativistic case employing the Wigner formalism and using as an

example the QCD-like sigma model. After that, we will discuss about the

main properties of our 3+1 dimensional transport cascade approach which is

based on the implementation of the Relativistic Boltzmann Equation (RBE)

for describing both bulk matter, i.e. gluons and light quarks (u, d, s), and HQ

dynamics in the QGP. We will show how to account for non-perturbative in-
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teraction within the QCD medium by prescription of a Quasi-Particle Model

(QPM) where the T -dependence of the strength coupling g(T ) is fitted to

reproduce lQCD thermodynamics. We will mention also how we can con-

straint the dissipative effects by tuning the collision integral to a fixed value

of η/s(T ) in order to gauge our transport approach for the QGP evolution to

the viscous hydrodynamical scheme. We will briefly remind also how to de-

rive the Fokker-Planck equation to describe the propagation of HQs through

the hot QCD plasma within a Brownian motion approximation. In particu-

lar, we will concentrate on the role of transport coefficients, mainly drag and

diffusion, which encode the main properties of the interaction and for this rea-

son they are fundamental ingredients which allow to probe the QGP features

through HQ thermalization. In the last part of the chapter we will focus on the

test particle method and the stochastic algorithm that we employ to solve nu-

merically the RBE both for the bulk partons and for the HQs and to examine

two-particle collisions in accordance with Lorentz covariance and causality.

In Chapter 4 we will focus on the calculation of drag and diffusion coef-

ficients for HQs in a pQCD scheme or in our QPM through the implementa-

tion of a multidimensional Monte-Carlo integration code. We will use these

results to make a comparison with the same coefficients extracted from the

Boltzmann framework that we set up to carry out numerical simulations in

static medium (“box”) at fixed temperature. Then we will present a compari-

son among various transport models for charm quark dynamics developed by

different theoretical groups (Catania, Duke, Berkeley-Wuhan, Nantes, Frank-

furt, Texas A&M) to reduce the uncertainties in the estimated drag coefficient.

In Chapter 5 we will present our Relativistic Boltzmann approach prop-

erly set up to perform simulations of realistic HICs at the energy of RHIC and

LHC. In the case of HQs we will couple our transport model self-consistently

to our hybrid fragmentation plus coalescence mechanism to obtain the final

HF hadrons nuclear modification factor RAA(pT ) and elliptic flow v2(pT ). We

will compare our results for D mesons with the available experimental data

and we will provide our predictions for B mesons. In this framework we will

address also the role of coalescence to reproduce the pT dependence of the

baryon-to-meson ratios at the level of charm quarks that has been measured
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both at RHIC and LHC energies and whose magnitude indicates the scenario

of a strong Λc enhancement. We will discuss the impact of Λc production on

the D meson suppression factor RAA(pT ), showing that the tracking of such ef-

fect leads to a significant improvement of our results towards the experimental

data and represents a novelty for the evolution of this observable. Finally, we

will look at charm and bottom thermalization by estimating the spatial diffu-

sion coefficient 2πT Ds(T ) extracted from our Boltzmann approach with QPM

interaction tuned to fit the measured RAA and v2 simultaneously and we will

compare our results with lQCD and other phenomenological expectations.

This thesis ends up with the Conclusions where we will make a summary

of the most relevant points on the physics of HQs and delineate future works

that demonstrate their unique role for probing the features of the QGP.
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CHAPTER 1

QUANTUM CHROMODYNAMICS IN A

NUTSHELL

1.1 QCD as a gauge field theory

In the Standard Model of particle physics Quantum Chromodynamics

(QCD) describes the strong interaction between quarks and gluons, which

are the basic constituents of hadrons, i.e. mesons and baryons, among which

are protons and neutrons eventually bounded into the wide range of nuclei.

In the Quantum Field Theory (QFT) paradigm QCD is a Yang-Mills theory

constructed on the SU(Nc) Lie group. Therefore for a rapid issue of its ba-

sic properties, we start writing a Dirac-like Lagrangian density in Minkowski

space

LD =
∑

f

q̄( f )
α (x)

(

iγµ∂µ − m f

)

q( f )
α (x) (1.1)

In this Lagrangian the spinor field q
( f )
α represents a quark having mass m f

in one of the N f possible flavors and we consider also an internal degree of

freedom, named color, denoted with the lower index α running from 1 to

Nc. Quarks possess also spin degrees of freedom, but we do not explicitly

7



1.1. QCD as a gauge field theory

indicate in Eq. (1.1) in order to streamline the notation1. If we look at the

possible symmetries of the theory, we easily discover a global symmetry, i.e.

not depending on the space coordinates x, due to the invariant form of LD

with respect to any rotation of the quark fields in the color internal space. The

general operator U which represents mathematically this transformation and

acting on the various components q
( f )
α (x), belongs to the SU(Nc) and quark

fields build its fundamental representation. In Yang-Mills theories the sym-

metry group SU(Nc) is called gauge group and any of its element U performs

a gauge transformation. In particular, for QCD the gauge group is SU(3)

where Nc = 3 are the quark colors. Each element of SU(Nc) can be written

in the form U = exp (−iθaT a) where θa are x-independent parameters of the

gauge transformation and T a are traceless hermitian matrices, the (N2
c − 1)

generators of the SU(Nc) Lie group. The group generators T a close a Lie al-

gebra which is independent on the group representation and it is represented

by the following commutation relation

[

T a,T b
]

= i f abcT c (1.2)

The f abc parameters are the so-called structure constants of the gauge group.

They are anti-symmetric quantities for index permutation and they also fulfill

the Jacobi identity

f abc f cd f + f ac f f cdb = f acd f bc f (1.3)

Instead, the matrix form of the generators T a depends on the specific group

representation which in turn is given by the field on which the gauge trans-

formation U acts 2. When the Lie group generators commute with each other,

that means from Eq. (1.2) all f abc have zero value, the Lie group is called

1Through the course of this thesis we adopt Einstein notation by which a sum over

Lorentz and other repeated indices is implied.
2In the fundamental representation of QCD gauge group SU(3) the Lie generators which

fulfill the commutator relation Eq. (1.2) are the 3 × 3 Gell-Mann matrices (T a)αβ = (λa/2) jk:

j and k run from 1 to 3 corresponding to the three pictorial values Red-Green-Blue (RGB)

for quark colors. There exists also an adjoint representation of SU(3) where the the relation

(T a)bc = −i f abc links directly the matrix form of the generators to the structure constants and

the value of all indices a, b and c equals the number of 8 generators of SU(3).

8



1.1. QCD as a gauge field theory

Abelian. On the other hand, if the generators T a do not commute, the Lie

group is non-Abelian. This seems just a mathematical variance, however it

has a remarkable consequence on the physical. We have already said that

the gauge group corresponding to QCD is S U(3), which is a non-Abelian

Lie group. Quantum Electrodynamics (QED), the corresponding Yang-Mills

theory describing the electromagnetic force in QFT, is based on a symmetry

for the U(1) gauge group, which is instead an Abelian one. Such difference

makes QCD a much more complex theory compared to QED and one can

physically observe it in all the problems regarding the strong interacting sys-

tems, some of which we will discuss in this thesis. For detail discussion of Lie

groups and Yang-Mills theories in QFT one can refer to a wide list of books,

some with introductory approach [1] [2] [3] and others more advanced [4] [5].

We will now go further on the construction of the QCD Lagrangian referring

specifically to [6]. The gauge principle states that from a physical perspective

the global symmetry of LD has to be promoted as a local symmetry, which

means that the in the operator U the parameters θa acquire a coordinate de-

pendence. We can write an infinitesimal gauge transformation of the quark

fields by expanding the exponential form of U at first order

q( f )
α (x) → q( f )

α (x) − iθa(x) (T a)αβ q
( f )

β (x) (1.4)

Substituting the transformed field Eq. (1.4) in the Lagrangian Eq. (1.1) an

extra term of the form q̄
( f )
α (x)γµ(T a)αβq

( f )

β ∂µθ
a(x) will prevent our theory to be

locally gauge invariant already at initial stage. The minimal application of the

gauge principle is simply pursued by replacing the normal space derivative ∂µ

appearing in Eq. (1.1) with the so called covariant derivative which clearly

has to be defined in the following way

(Dµ)αβ = δαβ ∂µ − ig T a
αβA

a
µ(x) (1.5)

9



1.1. QCD as a gauge field theory

Therefore, we move from the Dirac-like Lagrangian Eq. (1.1) to the gauge

invariant expression

LF =
∑

f

q̄( f )
α (x)

(

iγµDµ(x)αβ − m f δαβ
)

q
( f )

β (x) (1.6)

In this expression we are introducing new degrees of freedom through the

eight four-vector fields Aa
µ(x), known as gauge fields. In QCD these fields

represent vector bosons with spin 1 which are endowed with color charge and

couples to the fermionic current Ja,µ(x) = q̄( f )(x)γµT aq( f )(x) with the intensity

of strong interaction given by the QCD coupling constant g. The elementary

particles corresponding to the gauge fields are the gluons and the way how

the gluon fields Aa
µ(x) transform by color rotation is derivable by imposing

the local gauge invariance of the Lagrangian LF Eq.(1.6). Hence, we have

T aAa
µ(x) → U(x)(T aAa

µ(x))U
+(x) − i

g
(∂µU(x))U+(x) (1.7)

If we apply the transformation rules for quark Eq. (1.4) and gluon Eq. (1.7)

fields respectively, with simple algebraic steps we obtain that the product

Dµ(x) q( f )(x) is gauge rotated into U(x)
[

Dµ(x) q( f )(x)
]

, i.e. as the quark field

alone q( f )(x) → U(x)q( f )(x), where color indices are omitted. Using this

observation together with unitary of SU(3) elements the covariance of the

modified Dirac-like Lagrangian Eq. (1.6) by local gauge transformation is

straightforward. Moreover, we may use this shortcut to calculate the transfor-

mation of Aa
µ(x) fields if we impose such rule to covariant object Dµ(x) q( f )(x)

and we isolate the terms connected only to the gauge fields. This method is

equivalent to the previous one and leads to the following result

Aa
µ(x) → Aa

µ(x) + f abcθb(x)Ac
µ(x) −

1

g
∂µθ

b(x) (1.8)

This formula proves that gluons are really in the the adjoint representation of

the gauge group and that color rotations mix gluon fields in a non-trivial fash-

ion due to the non-Abelian feature of the theory. Finally, the complete QCD

Lagrangian in Minkowski space is constructed adding to LF a contribution

10



1.1. QCD as a gauge field theory

describing the dynamics of the gluon fields

LQCD =
∑

f

q̄( f )
α (x)

(

(iγµ(Dµ)αβ − m f δαβ
)

q
f

β(x) −
1

4
Fa
µν(x)F

a µν(x) (1.9)

The object Fa
µν(x) is called the gluon strength tensor and it is formally de-

fined through the commutator of the covariant derivatives which we can be

expanded into

T a Fa
µν(x) =

i

g

[

Dµ(x) , Dν(x)
]

= T a
[

∂µAa
ν(x) − ∂νAa

µ(x) + g f abcAb
µ(x)A

c
ν(x)

]

(1.10)

If we substitute Eq. (1.10) into the last term of the QCD Lagrangian Eq.(1.9),

the product Fa
µνF

a ,µν exhibits not only a kinetic part (∂µAa
ν−∂νAa

µ)
2, but carries

also other two terms which involve the product of respectively three and four

gluon fields: the former is proportional to g while the latter to g2. From

a physical point of view these terms describe the self-interaction between

gluons which as quarks and anti-quarks carry a net color charge. As we will

see, the gluon self-interaction terms are multiplied by the structure constant

of S U(3), therefore they arise singularly because the QCD gauge group is

non-Abelian. In QED framework we would construct the full Lagrangian

by starting with a local U(1) covariant Dirac-like Lagrangian and adding the

pure Electro-Magnetic field contribution, represented by the Maxwell tensor

Fµν(x) = ∂µAν(x) − ∂νAµ(x) , whose expression is visible in Eq. (1.10) if we

put f abc = 0 and replace g with the electric charge e: there would be also no

color index and T a → 1, as trivial generator of U(1). Then, we will arrive

to the well known result that the QED gauge bosons, i.e. photons, do not

carry electric charge and cannot self-interact3. We still need to determine the

transformation rule for the strength field tensor Fa
µν(x). Of course, if we want

the whole LQCD to be gauge invariant under local transformation of SU(3)

group, the product Fa
µνF

a ,µν appearing in Eq. (1.9) has to be gauge invariant.

However, this does not automatically translate into a covariant condition for

3QED contemplates the possibility of light-light scattering, but this process is realized

through fermionic boxes rather than direct photon-photon links in Feynman diagrams [7].
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1.1. QCD as a gauge field theory

Fa
µν(x) singularly

4. We may apply a generic rotation U(x) on the commutator

defining the strength field and use the property of T aFa
µν(x) to a tensor under

gauge transformations

T aFa
µν(x) → U(x)T aFa

µν(x)U
+(x) (1.11)

or we may use the transformation law for the gauge field Aa
µ(x) given in

Eq. (1.8) and treat each component Fa
µν(x) as a composed object. Then, we

obtain

Fa
µν(x) → Fa

µν(x) + f abcθb(x)Fc
µν(x) (1.12)

We have now introduced all the dynamical degrees of freedom for the gauge

theory of strong interaction and supplied the corresponding fields with the

correct transformation rules. We need just to collect all the relevant parts and

write the QCD Lagrangian in its full-glory

LQCD =
∑

f

[

q̄( f )
(

iγµ∂µ − m f

)

q( f ) + g Aa
µq̄

( f )γµT aq( f )
]

+
(

∂µAa
ν − ∂νAa

µ

)2

− g f abc
(

∂µAa
ν

)

Ab ,µAc ,ν − g2

4
f abc f ad f Ab

µAc
νA

d ,µA f ,ν (1.13)

where for clarity we have omitted both color and spin indices as well as ex-

plicit coordinate dependence of the fields. After the treatment of QCD as a

classical S U(3) Yang-Mills theory and the application of the gauge princi-

ple to construct the QCD Lagrangian Eq. (1.13), one usually proceeds further

with quantization. In standard QFT the problem of setting up a perturbative

expansion is addressed either using the LSZ reduction formula or introducing

the elegant Feynman path integral formalism [3], which by the way shows up

to be more powerful when dealing with gauge theories. Of course, we have

to jump over this discussion and go directly to the Feynman rules of pertur-

bative QCD (pQCD). These can be taken from different books [8] [3] [2] and

are also listed in the Appendix A of this thesis.

4The strength tensor will possess this property if the gauge group is abelian, as happens

again in QED for the Maxwell tensor.
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1.2. Main features of QCD

1.2 Main features of QCD

In the previous section we built up the QCD Lagrangian and revealed the

fundamental degrees of freedom in terms of quark and gluon fields, now we

want to look at the main properties of QCD, in particular the most important

which eventually govern the physics of strong interacting systems, such the

Quark-Gluon Plasma on which this thesis is focused. In order to do that we

will concentrate on the behavior of the QCD coupling constant, defined as

αs = g/4π which we have seen is the only free parameter, together with the

quark masses m f appearing in the QCD Lagrangian Eq. (1.13), and is the

same both for quark-gluon and gluon-gluon interaction.

1.2.1 QCD running coupling and Asymptotic Freedom

When setting up perturbative expansion in QFT, quantum corrections al-

ready at Next-to-Leading Order present singularities which arise very often

due to the divergence of the free momentum in Feynman loops in the large

limit and for this reason they are called Ultra-Violet (UV) divergences. The

topology of UV divergences is peculiar for each theory depending on the in-

teraction terms of the Lagrangian, as well as their number. If a theory is

characterized by a finite number of them, i.e. that UV divergences can hide in

all possible Feynman diagrams at higher order but their topology comes from

a finite number of diagrams at lower order, then the theory is said to be renor-

malizable and it can be candidate to become a physical theory. In pertubative

QCD (pQCD) UV divergences are nested in the connected Feynman diagrams

in which a loop expansion is brought both for the gluon and the quark prop-

agators, as well as in the vertex function defining the physical interaction

strength. In Fig.(1.1) we show a schematic list of them without going in the

detail of calculation. As we can see from Fig. (1.1) gluon propagator is cor-

rected by quantum fluctuations originated by fermionic loops and this results

in a variation of the color charge of the order of αs. This screening effect is

equivalent to what happens in QED where the Electro-Magnetic field acting

on a test charge is screened by a surrounding charged cloud which originates
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1.2. Main features of QCD

Figure 1.1: Bottom-left: Divergences in the gluon propagator arise from fermionic

loop and gluon self interaction: apart from the couplinf constant and

color factors the former diagram is equivalent to QED photon self en-

ergy, wile the latter belongs exclusively to QCD. Gluonic self interac-

tion should account from the physical states of the gauge bosons, so

ghost correction is introduced to reduce gluon loops at the physical

ones. Bottom-center: The Divergence of quark propagator results in the

fermionic self-energy in the same manner of QED. Bottom-right: Diver-

gences of vertex function. Diagrams with filled blobs on the three upper

boxes represent the correspondent full propagators or vertex function

after resumming over a series of divergent diagrams.

from the continuous splitting of the photon into virtual fermion-antifermion

pairs (vacuum polarization). However, in QCD there exists also an opposite

antiscreening effect which comes out exclusively from the property of gluon

to have a color charge and hence be able to self-interact through a three-vertex

and four-vertex topology diagrams. In QFT there is a quite standard proce-

dure to treat each divergence which arises order by order in the perturbative

expansion. One usually ends up in formal steps where firstly the divergence

is mathematically regularized introducing an explicit UV cut off Λ into the

loop integral or in a more elegant fashion generalizing the space dimension d

of integration5. Then, the singularity arising from taking the limit Λ → ∞ or

taking d = 4−ǫ and performing the limit ǫ → 0 is absorbed into bare parame-

ters or perturbative counterterms through a procedure called renormalization

5In addition to be more elegant, dimensional regularization is useful in QFT gauge theo-

ries because it explicit preserves gauge invariance.
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1.2. Main features of QCD

in order to get physical parameters which at the end have finite value and do

not depend the regularization procedure.

In QCD the coupling constant αs is modified when considering quantum

corrections of the vertex function and also the contributions on the gluon

propagator which arise from the multiple insertion of fermionic and gluonic

loops. The analysis results into a strength interaction parameter αs(Q
2) which

is not a constant value anymore, rather it is a function of Q2, which represents

the transfer momentum, i.e. the energy scale, of a specific process. A fully

pQCD calculation coupled to renormalization procedure leads to the follow-

ing definition of such running coupling constant

αs(Q
2) =

4π
(

11 − 2
3
N f

)

log

(

Q2

Λ2
QCD

) (1.14)

We see from Eq. (1.14) that αs(Q
2) is a monotonically decreasing as function

of the Q2 value. This means that at high energy QCD strength interaction

becomes weaker [9], in contrast to what happens for example in QED, and

this behavior is known as asymptotic freedom. Among the renormalizable

quantum field theories in Minkowski space, only Yang-Mills ones, i.e. non-

Abelian gauge theories, are asymptotically free and the proof of this state-

ment represents a milestone result achieved in modern QFT [10] [11]. In

Fig. (1.2) we present the state-of-the-art for the estimation of the value of

αs as function of transfer momentum Q up to the highest energies achieved

in accelerator factories. Points are experimental measurements for particular

processes involving QCD corrections [12] [13],while lines represent predic-

tions from pQCD calculations employing Eq. (1.14) or slightly modified be-

havior of the running coupling. In Fig. (1.2) the world average value of αs at

the pole mass of Z0 boson MZ = 91.18GeV as reported from Particle Data

Group (PDG) [14]. In Eq.(1.14) ΛQCD is the QCD scale parameter. When

the transfer momentum or the energy regime of a system Q2 ≫ Λ2
QCD, then

αs(Q
2) is rapidly decreasing and as a consequence the constituent quarks and

gluons fall in an asymptotically free state suffering weakly interacting scat-

tering processes whose calculations can be suitably treated in the framework
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1.2. Main features of QCD

Figure 1.2: The behavior of αs(Q
2) as function of transfer momentum Q2 for differ-

ent kind of experiments. The order of pQCD expansion of αs for each

set of measurements and theoretical predictions is indicated in brackets.

The plot is adapted from Refs. [14].

of pQCD. On the contrary, when the energy scale approach the ΛQCD value,

then αs ≈ 1 and strong interaction gets sufficient weight to lead quarks and

gluons to interact in a non-perturbative fashion where of course pQCD breaks

up. Theoretical models with quark flavor number N f = 3 estimate a value of

ΛQCD ≈ 200 MeV and in this regime a solution of the QCD field equations

is realizable only in a discretized form, as firstly proposed by Wilson [15]

and then become the paradigm of the so-called lattice QCD (lQCD) theories,

which are tested by numerous experiments.

1.2.2 Wilson Action and Confinement

In ordinary matter there not exist particles with non-zero color charge,

rather quarks and gluons are entrapped to form a wide range of colorless states

called hadrons. This peculiar property of QCD is called confinement. Due to

the fact that hadronic scale d ∼ 1 f m corresponds to an energy of the order

of ΛQCD ≈ 200 MeV , we cannot treat confinement within the same pQCD

framework we adopted to describe asymptotic freedom. In a pure gauge the-

ory the non-perturbative nature of QCD vacuum leading to confinement force
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1.2. Main features of QCD

can be studied by looking at the expectation value of the Wilson loop [15]

〈W(C)〉 =
〈

Tr
[

P
(

eig
∮

C dzµAµ(x)
)]〉

(1.15)

In Eq.(1.15) the Wilson loop is defined as the trace of a path-ordered (P)
product of gluon links around a closed contour C and essentially measures the

response of a gauge field to an external quark-like color source. The contour

C can be simplified into a rectangle with time T and length R dimensions.

Then if the time segment T is much larger than the distance R the Wilson

loop is equivalent to the gauge field free energy F1(x) originating from a static

quark-antiquark source and it can be expanded in the following potential form

〈W(C)〉 ≈
︸︷︷︸

T≫R

e−V(R)T ≈ exp

{

−
(

a

R
+ σR + b + . . .

)}

(1.16)

In particular, Eq.(1.16) is strictly valid if one considers heavy static color

sources QQ̄ (quenched approximation). Moreover, one expects that for a

large contour the potential is dominated by its linear term V(R) ≈ σR result-

ing in an area law for the Wilson loop

〈W(C)〉 ≈ e−σRT (1.17)

where RT is the area inside the rectangular contour C. With a non-zero value

of the so called spatial string tension σ , 0 an estimate of the Wilson loop in

quenched approximation would predict the existence of a strong-interacting

linear confinement. In case of full QCD with N f light quarks, the pop-up of

virtual qq̄ pairs breaks the heavy static string QQ̄ → Q(q̄q)Q̄ and the linear

confining potential becomes flat. In non-perturbative numerical simulation

where QCD equations are solved on a lattice grid [16] [17] one can still

define a potential function of the source distance R and calculate

V(R) = lim
T→∞

(

log (W(C(R,T ))

T

)

(1.18)
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Some results of these simulations are show in Fig.(1.3). On the left plot the

free energy of a static (quenched) quark-antiquark pair at large distances ap-

proaches a constant value which depends on the temperature T of the sur-

rounding medium, while at smaller distances it acquires a linear trend with

some non-zero value of σ. The study of confinement force can be studied

Figure 1.3: (left) The free energy F1(r) of static quark anti-quark source is cal-

culated in lattice QCD from Refs.[17] and approaches at constant T -

dependent value as the distance r between the two sources increases,

meaning an interaction with the medium which dissolves the linear con-

finement. The solid line corresponds to the T = 0 case which is equiva-

lent to a Cornell heavy quark potential Eq.(1.19). (right) The vanishing

of the spatial string tension and similar deconfinement transition is ex-

pected when looking at the melting of charmonium states due to the

formation of Debye color screening with decreasing radius rD as the

temperature T/Tc increases.

also through the analysis of bound states where a heavy quark HQ (charm or

bottom)6 is coupled to its corresponding anti-quark forming what is called a

quarkonium state (charmonium or bottomium). In non-relativistic theory the

energy spectrum of quarkonia can be treated by solving Schrödinger equation

with a Cornell potential given by

VHQH̄Q(R) = −
a

R
+ σ(R)R (1.19)

The second term in Eq.(1.19) represents a linear confinement force and one

can study the vanishing of such string tensionσ→ 0 by looking at the melting

of the quarkonium state inside a thermal medium with temperature T . This

6The large mass of top quark avoid the formation of bound states.
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happens when the average radius rmed of the bound state becomes larger than

the radius rD = 1/mD = 1/gT of the Debye screening arising from the vacuum

excitation of color charges as temperature increases, indicating a transition

from hadronic states to free quark states at some critical temperature Tc. This

is what is shown on the right plot of Fig.(1.3) for the case of charmonium

spectrum.

1.3 Global Symmetries of QCD

We look now for other global symmetries QCD, i.e. other invariant prop-

erties of the Lagrangian Eq. (1.9) with respect to transformations whose pa-

rameters do not depend on a local space time position x.

1.3.1 Chiral Symmetry in a QCD 2-flavor model

Let us concentrate for a moment on the fermionic part of the QCD La-

grangian that we can read in Eq. (1.6) and consider two quark flavors N f = 2,

namely up and down with masses mu and md respectively. We also compose

the corresponding fields u(x) and d(x) into a column field tq(x) = (u(x), d(x))

which has the property of being an isospin doublet. Then, the Lagrangian LF

becomes

L2 = q̄(x)
[

iγµ
(

∂µ + igAa
µ(x)T

a
)

− Mu,d

]

q(x) (1.20)

where we ha define the mass matrix Mu,d = diag (mu,md). We introduce now

the chiral projectors PL = (1 − γ5)/2 and PR = (1 + γ5)/2. If we apply them

to the doublet field q(x) we get left-handed and right-handed quark fields

which are. components in order to produce left-handed and right-handed

quark fields which are eigenstates of the chirality operator γ5 with eigenvalues

−1 and +1 respectively

qL(x) =
1

2

(

1 − γ5
)

q(x) qR(x) =
1

2

(

1 + γ5
)

q(x) (1.21)

which are still doublet fields with components qL(x) = (uL(x), dL(x)) and

qR(x) = (uR(x), dR(x)). Then we can write the Lagrangian L2 in terms of the
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left-handed and right handed fields

L2 = q̄L(x)
[

iγµ
(

∂µ + igAa
µ(x)T

a
)]

qR(x) + q̄R(x)
[

iγµ
(

∂µ + igAa
µ(x)T

a
)]

qR(x)

+ q̄L(x)Mu,d qR(x) + q̄R(x)Mu,d qL(x) (1.22)

What we observe is that in Eq. (1.22) that left- and right-handed compo-

nents are mixed only through the mass term of L2. In the massless limit,

i.e. mu ,md → 0, we know that the free chiral quark eigenstates qL, qR, cor-

respond also to eigenstates of the helicity operator which is defined as the

projection of spin vector to the momentum direction h = (σ̂ · ~p)/|~p|. One can

check that qL corresponds to helicity eigenstate with eigenvalue −1, while

qR is an helicity eigenstate with eigenvalue +1. For the corresponding anti-

quark fields the role of left-handed and right-handed components is inverted

such that q̄L has helicity +1, while q̄R has helicity −1. The absence of the

mass term in Eq. (1.22) leads to a Lagrangian which is invariant under the

global U(2)L × U(2)R transformation

qL → e−iσ jθ
j

L qL qR → e−iσ jθ
j

R qR (1.23)

where the rotation angles θ
j

L,R ( j = 0, . . . ,N2
f
− 1 = 3) are space-time inde-

pendent parameters and the matrices σ j correspond to the generators of the

symmetry group. By group composition we know that UL,R(2) = UR,L(1) ×
SUR,L(2) and separate the j = 0 phase rotation with parameters θ0

L
and θ0

R
with

generator σ0 = I2×2, i.e. the identity matrix in the doublet isospin space. At

quantum level we can construct the commutation relations between the re-

maining 3 × 3 conserved charges which are related to the global invariance

with respect to SU(2)L × SU(2)R

[

Qi
L,Q

j

L

]

= iǫ i jkQk
L

[

Qi
R,Q

j

R

]

= iǫ i jkQk
R

[

Qi
L,Q

j

R

]

= 0 (1.24)

We recognize that these conserved charges close two independent algebra of

angular momentum group whose generators are the well-known Pauli matri-
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ces

σ1 =





0 1

1 0



 σ2 =





0 −i

i 0



 σ3 =





1 0

− −1



 (1.25)

The U(2)L × U(2)R is called chiral symmetry. If we look at the transforma-

tion properties of the doublet field q(x), we notice that the chiral symmetry

includes a vector and an axial-vector transformation

U(1)V : q(x) → e−iαq(x) U(1)A : q(x) → e−iβγ5 q(x) (1.26)

In particular, the U(1)V transformation is realized when θ0
R
= θ0

L
= α and

θ
j

R,L = 0 ( j = 1, . . . ,N2
f
− 1) and it is related to the conservation of the baryon

number B = (Nu − Nū + Nd − Nd̄), while the U(1)A transformation is the

flavor-singlet axial rotation which is realized when θ0
R
= −θ0

L
= β with θ

j

R,L =

0 ( j = 1, . . . ,N2
f
− 1). The vectorial and axial nature of U(1)V and U(1)A

symmetries are visible in behavior with respect to parity transformation of

the conserved charges which are related to the currents calculated within the

Noether’s theorem [1]. Retaining the massive terms in the Lagrangian L2 we

can calculate such currents

∂µJ
µ

V
= ∂µ (q̄(x)γ

µq(x)) = 0

∂µJ
µ

A
= ∂µ

(

q̄(x)γµγ5q(x)
)

= 2iq(x)Mu,dγ
5q(x) (1.27)

Therefore, the UV(1) symmetry is preserved also in the massive case, i.e.

baryon number is conserved in strong interacting systems, while the axial

UA(1) is broken by the quark matrix. We mention here that in case of full

QCD including also the gluon dynamics, the UA(1) would be broken also by

a term −(αs/2π)F
a µνF̃a

µν where F̃a
µν = 1/2ǫµνλτF

a λτ is the dual field strength

tensor. This breaking of UA(1) symmetry due to quantum effects is known as

axial anomaly. Finally, the chiral symmetry group includes also the invari-

ance of L2 with respect to a combined S U(2)V × S U(2)A group. The related

Noether’s current are respectively proper and axial vector in the flavor space
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1.3. Global Symmetries of QCD

and fulfills the following conditions

∂µJ
j,µ

V
= ∂µ

(

q̄(x)γµ
σ j

2
q(x)

)

= iq̄(x)
[

Mu,d, σ
j
]

q(x)

∂µJ
µ

j,A = ∂µ

(

q̄(x)γµγ5σ
j

2
q(x)

)

= iq(x)
{

Mu,d, σ
j
}

γ5q(x) (1.28)

where [. . . ], {. . . } indicate respectively commutator and anti-commutator of

mass matrix with Pauli matrices with j = 1, . . . ,N2
f
− 1 = 3. This means

that both are exact symmetries in the limit of massless light quarks. More

precisely S U(2)A breaks if mu or md are different from zero, while S U(2)V

endures even if mu and md have non-zero but identical value. This is corre-

sponds to an isospin symmetry of strong interaction in case N f = 2, which is

very slightly broken because mu ≈ md.

1.3.2 Dynamical chiral symmetry breaking and restoration

The inclusion a finite mass part in the Lagrangian L2 directly adds a term

where the chirality eigenstates qL and qR are coupled in order to preserve par-

ity invariance. Due to the fact that light quark masses are small, one expects

that at ground state QCD realizes chiral symmetry with good approximation.

However experimental observation on pion spectra showed a strong deviation

from a chiral symmetric ground state. A solution of this problem was posed

by Nambu and Jona-Lasinio who proved that a classical QCD Lagrangian

like L2 with the chiral invariance property can lead to an effective theory of

nucleons and mesons at non-zero density value of pion mass already at its

vacuum state [18] [19]. In their famous NJL model with two flavor (u, d) and

isospin symmetry mu = md = m the Lagrangian is

LNJL = q̄
(

−i]γµ∂µ + mI2×2
)

q −
G2

NJL

2Λ2
NJL

[

(q̄q)2 +
(

iq̄~σγ5q
)2
]

(1.29)

with no gluon fields included and two couplings: the dimensionless GNJL giv-

ing the intensity of attraction of the scalar quark anti-quark pair q̄q and the

pseudo-scalar channel iq̄~σγ5q and the characteristic ΛNJL which has dimen-
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1.3. Global Symmetries of QCD

sion of inverse length and measure the deviation of q̄q interaction from being

point-like. The Lagrangian in Eq.(1.29) has global UV(1) × SUL(2) × SUR(2)

symmetry but breaks UA(1) for manifestly maintaining QCD axial anomaly.

The mark for chiral symmetry restoration is a vanishing value for the scalar

quark condensate defined as 〈q̄q〉 which is realized in the limit GNJL → 0.

Such mechanism can occur already at zero temperature and quark mass in

the form of Spontaneous Symmetry Breaking (SSB). The consequence of a

spontaneous breaking of a continuous symmetry is that new massless modes

show up. The most important property of these modes, named as Goldstone

bosons, is that they do not acquire a mass whatever the order of perturbative

expansion. In case of chiral symmetry these Goldstone bosons were predicted

to be the pions. Then pions can have a finite mass because chiral symmetry is

just an approximate symmetry for QCD. The NJL model can be formulated

within a low-energy effective field theory regarding GNJL as a fixed parameter

and obtaining a gap equation

G2
c

G2
NJL

≃ 1 − 1

2
(Gσ)2 log

(

4

(Gσ)2e

)

(1.30)

where Gc = π
√
8/6 is the value of GNJL at critical point and σ is an order

parameter related to chiral condensate 〈q̄q〉. The gap equation has solution

σ̄ ∝

√√

G2
NJL

−G2
c

− log
(

G2
NJL

−G2
c

) (1.31)

when GNJL approaches Gc from below. Due the non-zero value of the chi-

ral condensate 〈q̄q〉 instead, quark masses acquire an extra effective mass of

about m ≈ 300 MeV which is called constituent or dynamical QCD mass

connected to a non-zero value of the quark scalar density 〈q̄q〉 at ground

state. [20] In the chiral limit m = 0, a second order phase transition occurs at

critical point and one obtains in particular

Mu,d = GNJLσ̄
〈

ūu + d̄d
〉

= −
Λ2

NJL

GNJL

σ̄ (1.32)
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1.4. The QCD phase diagram

In case m , 0 the second order transition is washed out and one obtains a

smooth crossover. The behavior of the transition for various initial quark mass

parameter mq is presented in Fig.(1.4) where it is clearly visible the restora-

tion of the chiral limit through the vanishing of the dynamical quark mass in

the situation where G < Gc. In conclusion, chiral symmetry is exact only for

Figure 1.4: Dynamical light quark mass generation in the NJL model in chiral limit

mq = or in non-zero light quark mass mq , 0 (Ref. [21]).

the case of zero quark masses. Hence, one should find some evidence of an

approximate chiral symmetry breaking and generation of dynamical masses

only in the light quark sector (u, d and eventually s). On the other hand, such

effect should not characterize the QCD feature at the level of heavy quarks

(c, b, t) sector. In that case the generation of heavy quark masses should

be considered only within the Higgs mechanism for spontaneous breaking of

electroweak symmetry. This is summarized in Fig.(1.5) where total mass of

all quark flavors included in the Standard Model is analyzed in terms of gen-

eration from Higgs field fluctuations and QCD vacuum dynamical symmetry

breaking.

1.4 The QCD phase diagram

In the previous sections we discussed about confinement and asymptotic

freedom as fundamental properties of QCD that should govern the evolution

of any strong interacting system as function of energy scale. In particular,
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1.4. The QCD phase diagram

Figure 1.5: Quark mass generation: mass values of u, d and slightly s quarks fall in

the domain of spontaneous chiral symmetry breaking, while all heavy

quark masses seem to arise totally from Higgs mechanism. Picture is

adapted from PDG 2004 Ref. [22]

we focused on the fact that at high energies, i.e. small distances, quarks and

gluons enter in asymptotically free regime suffering weak interaction which

can be described within a perturbative framework.On the other hand, non-

perturbative approach based on the solution of QCD equations of static color

sources on a space-time grid predict that the string tension of the linear con-

fining potential vanishes when the source distance approaches to zero, or in

the same way as density increases. These results lead to the idea that strong

interacting QCD matter in condition of high temperature or density suffers

a phase transition in which quarks and gluons are released from the bound-

ing hadrons and become the real degrees of freedom of a new state matter.

More specifically Lattice QCD (lQCD) calculations at zero baryon chemical

potential µB = 0 showed up that this phase transition is rather a crossover

occurring at critical temperature Tc ≈ 155 − 175 MeV where thermodynamic

functions smoothly grow from the expected value of a pion gas to that of a

gas composed of quarks and gluons [23]. Instead, the region of finite chem-

ical potential µB was explored through phenomenological models, QCD-like

effective field theories and later within lQCD simulations at finite density

showing that actually strong interacting matter is characterized by a complex
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1.4. The QCD phase diagram

QCD phase diagram which is sketched in Fig (1.6).

Figure 1.6: The QCD phase diagram from Ref .[24]. The baryon chemical potential

µB or equivalently the nuclear matter density ρ (eventually normalized to

the density of ordinary nuclei ρ0 = 0.16 f m−3) is on the horizontal axis,

while the temperature T of the strong interacting system at equilibrium

is on the verical axis. The arrowed line represents the Standard Path of

Universe Evolution ias reported in Ref. [25].

We summarize here the main structure of the QCD phase diagram:

I) The nuclear liquid-gas phase transition is represented by the short vis-

ible blue line emerging from the abscissa point µB ≈ 920 MeV (T = 0),

which represents a nucleus at ground state, and ending up at a critical

point located at T ≈ 7.5 MeV .

II) When temperature increase so far, many baryon and meson resonances

are excited and the system falls in a state known as Hadron Resonance

Gas (HRG) characterized by broken chiral symmetry.

III) For much higher temperatures deconfinement transition occurs and mat-

ter goes to so called the Quark-Gluon Plasma (QGP) phase where one

expects also chiral symmetry to be restored.
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1.4. The QCD phase diagram

IV) The green arrowed line starting from the upper left part of the diagram

T > 200 MeV , µ ≈ 0 and ending up in the ordinary nuclear matter

point indicates the evolution of the Universe according to the Standard

Cosmological Model. In this paradigm it is believed that a baryon-poor

QGP filled up the hot primordial Universe about 12−20 µs after the Big

Bang. During its expansion the Universe cooled down passing through

the HRG state and at ending up into the ordinary nuclear matter with

roughly T ≈ 0.

V) The crossover transition separating the HRG state from the QGP is rep-

resented with the blue dashed line. This is region of the phase dia-

gram with high temperature and vanishing baryon chemical potential

explored very well within lQCD framework. Recent lattice QCD cal-

culations [26][27] supported by other effective QCD models allowed

to fix a new value of critical temperature Tc ≈ 155 MeV at µB = 0

and could be also extended for the search of the Critical End-Point

(CEP) which is expected to locate at moderate T an non-zero µB. Sub-

sequently to the CEP ithe crossover changes eventually into a first order

phase transition, which is represented by the solid blue line.

VI) Theoretical calculations based on QCD effective models predict that

another phase transition should occur for cold but extremely dense nu-

clear matter. The main features of this phase transition are similar in

some sense to the behavior of superconductors, leading to the so-called

Color Superconducting Phase. The system should locate in a kind of

color superconductor state which is separated from the QGP state by

another first order phase transition. Experimentally it is very difficult,

and currently not feasible, to probe this region because even at low en-

ergy collisions nuclear matter is compressed and heated. A chance to

understand this region of phase diagram is by studying cosmological

objects of the Universe, such as the compact neutron (or quark) stars

and supernovae remnants.
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CHAPTER 2

QUARK-GLUON PLASMA AND HEAVY

QUARKS IN RELATIVISTIC HEAVY-ION

COLLISIONS

Relativistic and Ultra-Relativistic Heavy-Ion Collisions (HICs) have been

designed to run in the most powerful accelerators with the aim to study the

properties of Quark-Gluon Plasma (QGP) and in general the strongly inter-

acting nuclear matter under extreme hot and dense conditions. The area under

experimental investigation is spread along the phase transition line from al-

most zero baryon density µB to values close to that of ordinary nuclear matter.

This allows to cover a large portion of the QCD phase diagram as shown on

the pictorial representation in Fig. (2.1). Inversely to what happened in Uni-

verse history, the evolution line of QCD matter in HICs starts from the point

corresponding to the ordinary nuclear matter to suddenly jump just above the

transition line. However, such phase of matter created at the initial stage HICs

has not reached the equilibrium condition yet and thus it does not appear on

the diagram. At later time the produced systems shows up at some position

which depends on the total center-of-mass energy indicated by the invariant

Mandelstam variable
√

s. In nucleus-nucleus collisions rather the total en-

ergy
√

s, the center-of-mass energy per nucleon (pair)
√

sNN is commonly

used. By means of some phenomenological conjectures, the initial tempera-
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Figure 2.1: QCD phase diagram: Courtesy from Brookhaven National Laboratory.

ture T0 of the thermalized fireball created in the central region of the collision

can be related to
√

sNN . Of course, the larger the collision energy the higher

the value of T0, while usually the baryon density µB decreases with
√

sNN due

to the saturation of the nuclear stopping power. After that the QGP medium

goes through a rapid evolution characterized by hydrodynamic expansion and

cooling down to finally ends up when quarks and gluons merge back into

the confined phase through a mechanism called hadronization happening at

T ≈ Tc. In the first part of this chapter we will present a brief description

of these stages and discuss about a theoretically treatment of the QCD mat-

ter evolution in relationship with main QGP observables. In the second part

instead we will introduce Heavy Quarks (HQs) produced in HICs focusing

on some essential properties that makes them unique probes to investigate the

QGP features. In Fig. (2.2) we quote a sketch of the time evolution of the

QCD matter created in HICs correlated with a survey of the most important

probes of the QGP, among which we include HQs.
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program

Figure 2.2: Evolution of QCD matter in HICs: adapted from Chu Shen sketch

https://u.osu.edu/vishnu/author/shen-201-2/. In evidence, production of

heavy quarks (charm and bottom) at initial stage of HICs: from propaga-

tion through the QGP to hadronization into heavy mesons and baryons.

2.1 Nucleus-Nucleus collisions from first experi-

ments to RHIC and LHC program

Experiments on Heavy-Ion Collisions (HICs) started in Lawrence Berke-

ley National Laboratory (LBNL) at beginning of 70s with the construction of

Bevatron-Bevalac, best known for the discovery of the anti-proton by E. Segre

and O. Chamberlain in 1955, but where also nitrogen and uranium beams

were accelerated for the first time at energies of about 1GeV per nucleon. A

decade later the HICs program began also at Brookhaven National Labora-

tory (BNL) and at the European Organization for Nuclear Research (CERN).

In 1986 the Alternating Gradient Synchrotron (AGS) at BNL and the Super

Proton Synchrotron (SPS) at CERN could accelerate respectively 28Si ions

at
√

sNN = 14GeV per nucleon and 16O at energies among 60 − 200 AGeV .

With the energy density reached in the central collisions at AGS and SPS
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program

it was possible to observe shock waves propagating in compressed baryonic

matter and study the nuclear Equation of State (EoS). However, such condi-

tions could only slightly scratch the phase transition region, indicating that

more powerful accelerating facilities were necessary in order to evidence

the formation of a QGP phase along a sufficient time interval. In 1995 at

the upgraded SPS 208Pb ion beams started to run in circle with energy from

158 AGeV to 200 AGeV , marking officially the beginning of ultra-Relativistic

Heavy-Ion Collisions (uRHICs) era. On February 10 of 2000 the combined

analysis of seven experiments at CERN SPS lead to the announcement of the

observation of a created new state of matter [28] whose characteristics were

consistent with the predicted QGP.

Still in 2000 experimental data were firstly collected at BNL Relativistic

Heavy Ion Collider (RHIC) and measurements are conducted even today. In

this facility fully stripped 198Au ions are accelerated into two colliding tubes

each one at beam energy of Eb = 100 AGeV , resulting in total center-of mass

energy of
√

sNN = 2Eb = 200GeV per nucleon. The evidence of the created

QGP phase at uHICs was confirmed by RHIC experiments and the possibility

to for a quantitative study of its properties was achieved through the analysis

of new observables. Initially there were four experiments built-up at RHIC:

1) BRAHMS detector extended over a broad range of rapidity in order to

identify particles, among which produced exited nuclei, during nuclear

reactions at relativistic energies.

2) PHOBOS apparatus devoted to estimate initial quantities of the formed

fireball, such as the temperature, size, and density, by measuring mul-

tiplicity, ratios and correlations among the various produced particles.

3) PHENIX the largest of the four experiments designed to investigate the

properties of the QGP through ma measure of direct probes such as

electrons, muons and photons.

4) STAR detector covers a large solid angle to measure the production of

particular hadron species and to extract information about the transport
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program

coefficients (viscosity) and chiral effects in the QGP through analysis

of collective motions and correlations.

While PHOBOS and BRAHMS finished the data-taking respectively in 2005

and in 2006, PHENIX and STAR are still operating with renew setup. In

particular, PHENIX is currently going through an upgrade process for be-

coming the sPHENIX detector devoted to explore the physics of the QGP at

the Critical End Point (CEP) as main goal of the RHIC Beam Energy Scan

program. STAR instead has been recently provided with a new tracking sys-

tem constituted by a Time Projection Chamber (TPC) and a Vertex detector

for measuring the major observables in the Heavy Quark sector with more

efficiency.

In 2010 the era of Large Hadron Collider (LHC) began officially with

first proton beams accelerated at 500GeV and soon pushed at highest energy

scale (7 − 14TeV) ever achieved in an accelerating facility. LHC community

joined quite immediately the HIC program with a run of lead ions acceler-

ated at 5.5TeV . This run took almost a month starting on 8 November 2010

and ending on 6 December 2010. A sufficiently amount of luminosity that

brought the ALICE experiment to observe the behavior of nuclear matter un-

der extreme conditions, similarly to what happened in the entire Universe at

about 10 − 20 µs after the Big Bang (see Fig. (2.1)). At this energies indeed

the QGP is formed at very high temperature and with almost zero baryon

chemical potential, a configuration of matter that has been predicted to exist

in the primordial Universe. There are four main experiments built-up around

the 27 km forming the ring of superconducting beamline at LHC. The largest

community of physicists joined the ATLAS and CMS collaborations whose

scientific program is mainly focused on researches within the Standard Model

of Particle Physics. ATLAS and CMS achieved the milestone result of ob-

serving Higgs boson with mass of about 126GeV [29] [30] and announced

it in a jointly speech on 4 July 2012. The ALICE experiment instead is de-

voted essentially to the physics of Heavy-Ions and since 2010 collects data

on Pb−Pb collisions at 2.76TeV and since 2016 also on Pb−Pb and p−Pb

at 5.02TeV for studying the properties of the QGP and evidence on its even-

tual creation in high energy small nuclear systems, such as p − A collisions.
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ALICE is a complex system of detectors, among which the inner tracker and

the TPC are devoted to identify Heavy-Flavor hadron yields and collective

flows. From this point of view, ATLAS and CMS have recently join the HICs

program, the former focusing on jet physics while the latter measuring charm

and beauty mesons at very high pT . The last of the four large experiments

is the LHCb collaboration where production of antimatter as well as study of

CP symmetry violation in the beauty sector (B0B̄0 meson mixing and bb̄ cross

section measure) are conducted. In conclusion we mention that at LHC the

TOTEM (total cross section, elastic scattering and diffraction dissociation),

MoEDAL (monopole and exotic particle) and LHCf (measurement of neutral

π0 meson production in order to understand ultra high energy cosmic rays)

are currently taking data.

2.2 Models for initial states of HICs

2.2.1 The Glauber Model

The Glauber model is based on a semi-classical approach in which nucleus-

nucleus collisions are treated as a superposition of multiple independent nucleon-

nucleon interactions. In this model one adopts also the so-called eikonal ap-

proximation for which the nucleons are assumed to travel along straight lines

and do not suffer deflection after the collisions. Such approximation holds

quite effectively at very high energies. We provide a brief description of the

Glauber model referring in particular to Ref. [31]. The collision between the

projectile nucleus B with the target nucleus A is illustrated in Fig. (2.3) where

in the standard description the beamline is along the z direction and the im-

pact parameter ~b is directed along the x axis. The density of nucleons inside

the target nucleus A is usually parametrized by a Woods-Saxon expression

ρA(rp) =
ρ0

1 + exp
(

rp−RA

a

) ,

∫

d3~rpρA(rp) = A (2.1)

where rp is the position of the nucleon, RA is the radius of the nucleus A,

in particular RA = r0A1/3 given the atomic number A and the constant value
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2.2. Models for initial states of HICs

Figure 2.3: Illustration of high-energy nucleus-nucleus collision between projectile

B and target A at given impact parameter ~b: (a) transverse side view, (b)

longitudinal beam view [31].

r0 ≈ 1.2 f m, ρ0 ≈ 0.16 f m−3 is the density of nuclear matter at equilibirum

and a is the surface thickness parameter. Similarly for the projectile nucleus

B a Wood-Saxon density ρB is defined and finally both ρA and ρB are properly

normalized to the total number of nucleons inside the corresponding nuclei, as

explicitly shown in the second expression in Eq. (2.1) for nucleus A. At RHIC

and LHC facilities symmetric collisions between gold Au and lead Pb nuclei

are performed, meaning that in this framework one assumes the nuclei A and

B to be the same. For Au nucleus we have A = 197, hence RAu = 6.38 f m

with parameter a = 0.535 f m while for Pb nucleus we have A = 208, so one

gets RPb = 6.68 f m and value of a = 0.546 f m. A collection Wood-Saxon

parameters for various nuclei species is reported in Ref. [32]. The nuclear

matter thickness function for nucleus A is defined through the projection of

the density of nucleons ρA along the beam axis z

TA(~s) =

∫

dzA ρA

(

~s, zA

)

(2.2)

Then the overlap function [33] for collisions between nucleus A and nucleus

B at given impact parameter ~b is constructed by folding TA with the corre-
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Figure 2.4: Wood-Saxon profile of density distribution of nucleons for Au − 197

(left) and Pb − 208 (right) nuclei. The parameter values are taken from

Ref. [32]

sponding thickness function TB for the nucleus B in the following manner

TAB(~b) =

∫

d2~s TA(~s)TB(~s − ~b) (2.3)

in Eq. (2.3) the convolution with respect to the ~s variable is performed accord-

ing to the sketch in Fig. (2.3) and also the following normalization condition

is considered ∫

d2~b TAB(~b) = AB (2.4)

The overlap function TAB is given in unit of an inverse area and can be inter-

preted as the effective overlap area for which a certain nucleon of the projec-

tile B can interact with a nucleon of target A assuming that distance between

the center of nuclei in transverse plane is equivalent to ~b. Then it is possi-

ble to define the probability of having one single nucleon-nucleon interaction

within an A + B collision at impact parameter ~b as

pAB(~b) = σin
NN

TAB(~b)

AB
,

∫

d2~bpAB(~b) = σin
NN (2.5)
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Assuming that binary nucleon-nucleon collisions are independent with each

other, i.e. one nucleon from A after a collision with one nucleon of B main-

tains the same cross section σin
NN

when it collides eventually with another nu-

cleon inside B, then the probability that n inelastic nucleon-nucleon collisions

within the A + B reaction at impact parameter ~b occurs, follows a bynomial

distribution

P(n|A, B, ~b) =





AB

n



 pAB(~b)
n
(

1 − pAB(~b)
)AB−n

=
AB!

(AB − n)!



σ
in
NN

TAB(~b)

AB





n 

1 − σin
NN

TAB(~b)

AB





AB−n

(2.6)

where in the second line we substituted the explicit formula for pAB(~b) Eq. (2.5).

In high energy HICs the inelastic nucleon-nucleon cross section σin
NN

is iden-

tified with the inelastic cross section in proton-proton collisions σin
pp. A large

amount of experimental data from the total proton-proton cross section in a

wide range of center-of-mass energy is collected in the PDG database from

which it is possible to extract the inelastic contribution. In particular, at the

energies of RHIC (
√

s = 200GeV) and LHC (
√

s = 7TeV) proton-proton

collisions the value σin
pp is equivalent respectively to about 40mb and 70mb.

Having a probability expression we can calculate the average number of bi-

nary nucleon-nucleon collisions < n > and the variance δn2 with respect to it,

because they correspond respectively to the first and second momenta of the

binomial distribution in Eq. (2.6). Hence, we obtain for the mean value

< n(A, B, ~b) >=

AB∑

n=0

nP(n|A, B, ~b) = σin
NNTAB(~b) (2.7)

while for the variance we get

δn2 =< n2 > − < n >2= σin
NNTAB(~b)



1 −
σin

NN
TAB(~b)

AB



 (2.8)
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We also observe that, in the limit of large nuclei AB ≫ n, binary nucleon-

nucleon collisions become rare events and the bynomial distribution Eq. (2.5)

can be approximated by a Poisson distribution which has single parameter

corresponding precisely to the mean value Eq. (2.7)

P(n|A, B, ~b) ≈ < n(A, B, ~b) >n

n!
e−<n(A,B,~b)> (2.9)

The sum of the probability of inelastic nucleon-nucleon collisions over all

possible outcomes (assuming at least one binary nucleon-nucleon collision

n = 1 to occur within the A + B reaction) results in a total probability for

inelastic nucleus-nucleus collision whose integral in turn is normalized to the

total inelastic cross section

Pin
tot(A, B,

~b) = 1 −


1 −
σin

NN
TAB(~b)

AB





AB

≈ 1 − e−σ
in
NN

TAB(~b)

σin
AB =

∫

d2~bPin
tot(A, B,

~b) (2.10)

where the approximated expression for Pin
tot is valid in the Poisson condition.

Among the value of σin
AB
, the Glauber model provides more importantly the

estimates of the Ncoll(~b) and Npart(~b) [33] [34]. The former is the mean num-

ber of binary nucleon-nucleon collisions, each one occurring with probability

distribution P(n|A, B, ~b), so we can immediately identify it with the first mo-

mentum of the probability distribution Pin
tot, i.e. the mean value < n(A, B, ~b) >

Ncoll(~b) =< n(A, B, ~b) >=

∫

d2~sσin
NNTA(~s)TB(~s − ~b) (2.11)

where in Eq. (2.11) we used the expressions for the overlap function in terms

of the thickness functions Eq.(2.3). The latter represents the total number of

nucleons which participate into the nucleus-nucleus collision and it is easy to
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prove taht in the Glauber Model this value can be written as

Npart(~b) =

∫

d2~s TA(~s)
(

1 − e−TB(~s)σ
in
NN

)

+

∫

d2~s TB(~s − ~b)
(

1 − e1−TA(~s)σ
in
NN

)

(2.12)

We observe from Eq. (2.11) and (2.12) how such estimates scale correctly

with the mass number of both nuclei, due to the geometrical nature of the

Glauber model. The outputs of the Glauber model represented by Ncoll and

Npart are not measurable quantities, but their monotonic behavior as function

of the impact parameter ~b can be used to trace back its value from the depen-

dence of some experimental observables. In particular, the inclusive charged

particle multiplicity Nch strongly depends on the value of b: the smaller its

value, more central is the collision between the nuclei resulting in a larger

production of charged particles, i.e. higher Nch. Then, it is possible to per-

form a subdivision of Nch in terms of so-called centrality classes as depicted

in Fig. (2.5) and map its measured value by means of the phenomenological

distributions Ncoll(b) and Npart(b) of the Glauber model. In conclusion, we

mention that by means of the Glauber model it is possible to sample an initial

distribution of particles inside the overlap region by calculating the integra-

tion kernel of Eq. (2.3) and not performing the integration which results in

the discussed TAB function. Then, applying Eq. (2.11) and Eq. (2.12) we can

obtain the initial density profile of hard and soft partons which follow respec-

tively the distributions of binary collisions and whole participant nucleons in

the transverse plane and from which we can estimate the initial energy density

(temperature) profile of the thermalized system (Chapter 4).

2.2.2 The Monte-Carlo Glauber Model

The geometrical approach for initial state of HICs introduced firstly by

Glauber [35] and developed in Ref. [31] is also known as optical or stan-

dard Glauber model, because as we have seen in the previous paragraph the

construction of the thickness function and resulting binary collisions and par-
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Figure 2.5: Centrality classes related to the average number of participant nucle-

ons < Npart > which is calculated from Glauber model Eq. (2.12).

The experimental differential pseudo-rapidity distribution dσch/dη ∼
σ

pp

in
dNch/dη is shown as function measured of total number of charged

particle Nch at midrapidity |η| < 1. Plot is taken from Ref. [31].

ticipant nucleons is based on a derivation from a continuous density profile

of the nucleons inside the nuclei. We remind also in this approach nucleons

are assumed to move undeflected after collisions (eikonal limit), which is a

valid approximation until the overlapping region is larger than the range of

nuclear force. Hence, in the optical limit there is no need to provide a specific

localization for each nucleon to get the estimates of Ncoll and Npart as func-

tion of the impact parameter b. Moreover, the motion of nucleons is treated

independently from the nucleus state and this is reflected in the fact that the

overall nucleus-nucleus cross section σin
AB

directly depends on the probability

of a single nucleon-nucleon interaction as we can infer from Eq. (2.10).

Monte-Carlo calculations of the Glauber model, shortly named as MC

Glauber, can be carried out through a stochastical sample of the nucleons
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inside overlapping region provided some specific functions for the density

of nucleons inside the target and projectile nucleons are defined. Usually

ρA(r) and ρB(r) follow gaussian or more widely a Wood-Saxon shape as we

have seen in Eq.(2.1). In this case a proper normalization constant should be

chosen in order to define the correct probability density distributions for the

radial coordinate r. The azimuthal and polar angles of the nucleons instead

can be extracted uniformly. Given the spatial coordinates for the nucleons in

the overlap region, one can calculate the separation distance ~s for each pair

nucleons, one belonging to the projectile nucleus B and the other to the target

one A. and make a stochastic comparison with the inelastic cross section
√

σin
NN

: a collision between the nucleons of the pair occurs for a given impact

parameter ~b if their distance satisfy the condition |~s| <
√

σin
NN
/π. Within

the stochastic algorithm nucleons are assumed to move along straight lines

and suffer no deviation from previous collisions (eikonal approaximation).

Finally, this MCGlauber procedure is repeated iteratively by simulating many

A+B reactions and the knowledge of density profile in the overlapping region

allows the calculate the average number of binary nucleon-nucleon collisions

< Ncoll > and the average number of participants < Npart > as function of the

randomly given impact parameter ~b. Consequently in a single Monte-Carlo

event thickness functions of nuclei are not anymore smooth distributions, but

rather they can be written as a sum of various random deltas

T̂A(~s) =

A∑

i=1

δ2
(

~s − ~rA
⊥,i

)

, T̂B(~s
′) =

B∑

i=1

δ2
(

~s′ − ~rB
⊥,i

)

(2.13)

where each ~rA(B)

⊥,i is the position in the transverse plane to the beam axis z of

each nucleon whose complete location in the coordinate space~ri = (zA,B
i
,~rA(B)

⊥,i )

is sampled according to the density distribution ρA(B)(r) of the owner nucleus.

Analogously to what we have done for the optical Glauber model, we can
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define the overlap function in the following manner

T̂AB(~b) =

∫

d2~sTA(~s)TB(~s + ~b)

=

∫

d2~s

A∑

i=1

δ2
(

~s − ~sA
i

)
B∑

j=1

δ2
(

~s + ~b − ~sB
j

)

=

A∑

i=1

B∑

j=1

δ2
(

~sB
j − ~sA

i − ~b
)

(2.14)

Then the resulting function in Eq. (2.14) at some fixed impact parameter value

~b is specific for the space configuration of the nucleons in the colliding nuclei,
[

A(~sA
1
, ..., ~sA

A), B(~s
B
1
, ..., ~sB

B)
]

(MC event), and the the total number of binary

collisions occurring at each MC event can be derived by simply multiplying

the obtained overlap function Eq. (2.14) with the inelastic nucleon nucleon

cross section σin
NN

< n
([

A(~sA
1 , ..., ~s

A
A), B(~s

B
1 , ..., ~s

B
B)

]

, ~b
)

>= σin
NN

A∑

i=1

B∑

j=1

δ2
(

~sB
j − ~sA

i − ~b
)

(2.15)

In the end, the average number of binary collisions Ncoll(~b) in the MC-Glauber

model is the average over all sampled binary nucleon-nucleon scattering events

Eq. (2.15) weighted with the related thickness functions (2.13) and integrated

over all possible coordinates of the nucleons in the transverse plane (~sA
i , ~s

B
j ).

This corresponds to the following expression

Ncoll(~b) =





A∏

i=1

∫

d2~sA
i

T̂A(~s
A
i )

A









B∏

j=1

∫

d2~sB
j

T̂B(~s
B
j )

B




σin

NN

A∑

i=1

B∑

j=1

δ2
(

~sB
j − ~sA

i − ~b
)

=
σin

NN

AB

A∑

i=1

B∑

j=1

∫

d2~sA
i T̂A(~s

A
i )T̂B(~s

B
j )δ

2
(

~sB
j − ~sA

i − ~b
)

= σin
NNT̂AB(~b) (2.16)

Carrying out the multiple integrations and performing the sums over all the

nucleons in the A + B reaction, we arrive in the end at the same formula for

Ncoll(~b) we have derived for the optical Glauber model. However, the result

is very different in substance, due to the intrinsic dependence of the overlap
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function T̂AB(~b) on the stochastic sample, which can be alternatively inter-

preted as a variation of the impact parameter itself b for each collision event.

Hence, individual collisions between the two nuclei can be visualized as a

discrete geometric overlap between the interacting nucleons and maintain the

characteristic fluctuations event-by-event before they are obscured through an

ensemble average. In Fig. (2.6) we present a 2D-illustration profile of a single

Au − Au collision event at RHIC energy
√

sNN = 200GeV for three differ-

ent centrality classes. We show also also two orthogonal prospects of each

event: the side view on the xz plane (left) and the beam’s eye view on the

yz plane (right) where the magnitude and direction of the impact parameter b

is represented with a red line. The position of the nucleons inside the target

and projectile nuclei is sampled according to the MC Glauber model avail-

able online (https://github.com/MCGlauber/MCG). Nucleons from the projec-

tile nucleus B are represented as red spots among which the participants are

colored in yellow, while nucleons from the target nucleus A are represented

as blue spots with participants in violet. Similarly initial conditions from the

MC Glauber model can be obtained for Pb − Pb collisions at LHC energies
√

sNN = 2.76TeV . We shown a single LHC event in Fig.(2.7) for three differ-

ent values of centrality.

Finally, in Fig. (2.8) we present the extracted values for < Npart > and

< Ncoll > as function of impact parameter b obtained by running several sim-

ulations at RHIC Au−Au@200 AGeV and LHC Pb−Pb@5.5 ATeV energies

within the MC Glauber model. The strong dependence of < Npart > and

< Ncoll > on the impact parameter value b is clearly visible in both cases

and it plays a fundamental role in order to relate both quantities to some ex-

perimentally measurable observable with same monotonic behavior, such as

charged particle multiplicity Nch.

2.2.3 Electro-Magnetic Fields in HICs

In the classical picture of HICs the incoming nuclei are composed objects

which propagate along the z axis at almost speed of light. In the center-of-

mass (CM) frame of the two nuclei they appear as tiny pancakes of thickness
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Figure 2.6: Ilustration plot of colliding gold nuclei A = B = Au − 197 at RHIC

energy
√

sNN = 200GeV for three different centrality classes: (a) central

collision 0 − 10% with b = 3.25 f m, (b) peripheral collision 10 − 40%

with b = 7.5 f m, (c) most peripheral collision 10−80% with b = 11 f m.

2RA/γCM where RA is the nuclear radius and γCM is the Lorentz factor which

is given by

γCM = (1 − β2)− 1
2 =

(

1 −
p2

z

ECM

)

(2.17)

In Eq. (2.17) pz is the momentum value along the beam axis, while ECM is

the energy of each nucleus in the CM frame. Lorentz contraction leads proton

inside the nuclei to be squeezed along the longitudinal direction within a size

∆z which depends on the collision energy (at
√

s = 200 AGeV ∆z ∼ 1 f m).

This brings to a de-localization of protons and neutrons inside the nuclear
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Figure 2.7: Ilustration plot of colliding lead nuclei A = B = Pb−208 at LHC energy√
sNN = 2.76TeV for three different centrality classes: (a) central colli-

sion 0 − 10% with b = 3.25 f m, (b) peripheral collision 30 − 50% with

b = 9.25 f m, (c) most peripheral collision 50 − 60% with b = 12 f m.

disks and increases their transparency to the stopping power. Consequently

nucleons leave the central region of the reaction at almost speed of light and

maintaining a frozen transverse position ~x⊥. In non-central collisions, with

impact parameter b , 0 directed along the x axis, protons leaving the fireball,

i.e. in the spectators region, with flying speed ~β = βẑ are responsible for the

creation of intense magnetic field ~B, whose dominant component is parallel

to the y direction as schematically represented in Fig. (2.9). The magnitude of

such field can estimated by applying Biot-Savart law with in an initial value

of eBy ≈ 5m2
π and eBy ≈ 50m2

π respectively at RHIC and LHC energies. In
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(a) (b)

Figure 2.8: Binary collisions Npart(b) and participant nucleons Npart(b) as func-

tion of impact parameter b for various simulations of RHIC Au −
Au collisions (left) and LHC Pb − Pb collisions (right) per-

formed within the MC Glauber model package available online

(https://github.com/MCGlauber/MCG). Spots represent the extracted val-

ues for 1000 MC iterations, while lines are the resulting averages: green

for < Npart(b) > and yellow for < Ncoll(b) >.

Standard Unit Measure this is equivalent of an order B ∼ 1019 Gauss, mean-

ing as the most intense field ever formed in the entire Universe, even larger

than the one of magnetic stars. Spectator sources of this field leave the col-

liding region at almost speed of light, resulting in a magnetic field which is

rapidly decreasing in time. However, it is believed that this enormous field

can survive quite sufficiently to leave an imprint on the azimuthal distribu-

tions and correlations of produced particles, as well as induce a measurable

charged and rapidity odd direct flow v1 ∼ 〈px〉 of heavy flavor hadrons due to

short time of formation of heavy quarks [36]. In the following we will briefly

introduce a realistic calculation of Electro-Magnetic (E.M.) fields in Heavy-

Ion Collisions (HICs) [37] by focusing on the aspects that allow to construct a

transport model for Heavy-Quarks (HQs) coupled to Maxwell fields that can

address this problem and lead to the prediction collected in the result section

of Chapter 5. It is important to mention also that the interplay of magnetic

fields with quantum anomalies could lead to some phenomena, including chi-

ral magnetic, quadrupole deformation and enhancement of anysotropic pho-

tons by magneto-sonoluminescence, that are very interesting especially in the

light quark sector, but due to their complex and twined nature they have not

been related to some measured observable yet and also foul up the E.M. drift
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through many opposite sources. On the other hand, due to their large masses

(see Fig.(1.5)) are decoupled from this chiral effects and they can dynamical

retain the initial E.M. kick leading to the possibility to enhance their corre-

sponding v1.

Figure 2.9: Sketch of the formation of charge and rapidity-odd finite directed flow

v1 = 〈px〉 , 0 due to presence of E.M. fields at initial stages of HICs.

Picture is taken from Ref. [37]

Referring to the scheme in Fig. (2.9) the produced E.M. fields act on the

charged quark and anti-quarks forming the QGP matter mainly in a twofold

manner. The first one originates from the time variation of ~B induces an

electric field ~E with dominant component Ex by construction, which in turn

results in a Faraday current opposite to the magnetic field variation and ob-

tained by the Ohm’s law

JFaraday = σel
~E (2.18)

In Eq. (2.18) σel is the electric conductivity of expanding plasma which con-

sequently should have a temperature dependence related to the various stages

of HICs, from pre-equilibrated matter to hadronic phase transition with hy-

drodynamical phase-space evolution in between. However, models approx-

imate σel of the QGP medium as constant function and choose a value in

agreement QGP with the order of magnitude estimated by lattice QCD [38].
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In particular, calculations are performed considering σel = 0.023 f m−1 at

T ∼ 1.5 − 2Tc. A detail extraction of electric conductivity from field correla-

tors and Kubo formulas with a specific analysis on the QCD medium within

a transport framework is described in Ref. [39] (see also [? ]). Meanwhile, a

second contribution to the Lorentz force q~v × ~B acts on the moving particles

with charges q and longitudinal velocity ~v ≈ cẑ akin to a classical Hall cur-

rent ~JHall which lies perpendicularly to both ~v and ~B and it is also opposite in

sign to JFaraday. The net combination of these effects produces a drift of the

charged particles in the xz plane leading to a finite value of v1 ∝ 〈px〉 which

is an odd function of electric charge and rapidity. In particular from Fig (2.9),

when the induced electric force is lower than the Hall effect, JFaraday < JHall

the flow is negative 〈px〉 < 0 for positive charges (q > 0) at forward (pseudo-

)rapidity η > 0, while is positive for negative charges (q < 0). The result is

opposite at backward (pseudo-)rapidity η < 0, due to the change of sign of

particle velocity ~v → −~v.
We mentioned previously that the produced E.M. fields come from the

whole contribution of protons inside the charged ions colliding at non-zero

impact parameter ~b. Hence, one has to start with the elementary magnetic and

electric fields from a single point-like charge e located at frozen transverse

direction ~x⊥ and propagating along the +z(−z) direction with velocity β. In

order to calculate these elementary fields in the conducting medium σel one

needs to solve Maxwell equation






∇ · ~E = δ(z′ − βt)δ(~x′⊥ − ~x⊥)

∇ · ~B = 0

∇ × ~E = −∂t
~B

∇ × ~B = (∂t + σel)~E + e~βδ(z′ − βt)δ(~x′⊥ − ~x⊥)

(2.19)

The solutions of this system, which can be written in terms two wave equa-

tions one for the magnetic and the other for the electric field, is obtained by

means of the Green function method [40] and are indicated respectively as

~B+, ~E+ for particles in the forward light-cone t > z and as ~B−, ~E− for particles

in the backward light-cone t > −z. These elementary fields are function of an
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arbitrary space-time point (t, ~x⊥, z), then one can obtain a simple analytic for-

mula in the Milde framework by replacing t and z coordinates with the proper

time the proper time τ =
√

t2 − z2 and the spacetime rapidity η = tanh−1(z/t).

In particular, the main components of the electric and the magnetic fields are

related to each other by the following expression

eE+
x (τ, η, x⊥, φ) = eB+

y (τ, η, x⊥, φ) coth
(

Yβ − η
)

(2.20)

where ~x⊥ = (x⊥ cos φ, x⊥ sin φ) and Yβ = tanh−1(β) is the momentum rapidity

of the forward source. For the specific expressions of eB+
y and eE+

x we refer

to Ref. [37] and originally to Ref. [41]. One can also prove that these are

actually the dominant components in any case when fluctuations in event-by-

event non-central collisions are not included. Nonetheless, it has been proven

that initial stage of HICs are characterized by sharp density profile which lead

to large fluctuations that can be addressed for example within a MC Glauber

discrete distribution. However, the generated components of the E.M. fields

within an event-by-event analysis usually remain comparable and eventually

smaller than B
(±)
y and E

(±)
x , so they can be kept easily under control.

The whole contribution from the spectators is obtained by folding these

elementary E.M. fields with the transverse density which takes the form

ρ±(x⊥, φ) =
3

2πRA

√

R2
A
−

(

x2
⊥ ± bx⊥ cos φ +

b2

4

)

(2.21)

if one projects the probability distribution of protons in either the + or the −
moving direction, assuming they are distributed uniformly inside the spher-

ical nuclei of radius RA, with the centers displaced by x = ±b/2, y = 0.

On the other hand, one has to perform explicit integration over the longitudi-

nal direction, in case of a Wood-Saxon parametrization of the nuclear density

distribution Eq.(2.1). Then, the resulting magnetic field generated by Z point-

like spectator protons summing over forward (η) and backward (−η) rapidity
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is given by

eBy = −Ze

∫

dφ′dx′⊥x′⊥

[

ρ−(x
′
⊥, φ

′)~B+
s (τ, η, x⊥, φ) + ρ+(x

′
⊥, φ

′) ~Bs

+

(τ,−η, x⊥, φ)
]

(2.22)

with an analogous formula for the electric component eEx. Participant pro-

tons lose some rapidity during collisions, so their contribution is smoothed

out by some empirical distribution f (Yb) which makes the produced E.M.

fields of secondary order compared to the spectator part at least in the initial

stage. We display the time evolution of eBy and eEx at ~x⊥ = 0 at respec-

tively RHIC Au−Au@200 AGeV semi-peripheral collisions (b = 7.5 f m) for

η = 0.5 and at LHC Pb−Pb@2.76 ATeV peripheral collisions (b = 9.25 f m)

for η = 1.0 as derived from Ref. [36].

(a) (b)

Figure 2.10: Adapted from [36]. Time variation of E.M. fields eBy and eEx produced

by spectator protons in HICs at RHIC (right) and LHC (left) events.

2.3 QGP phase at thermal equilibrium

The concept of thermalization of the fireball created in the central region

of HICs was firstly introduced by Bjorken in his milestone work [42] where he

related the initial time τ0 and initial energy density ǫ0 (or equivalently entropy

density s0) of his hydrodynamical scenario to some measurable observables.

It is rather well known the formula where in case of free streaming expansion

49



2.3. QGP phase at thermal equilibrium

he derived an estimate of ǫ0

ǫ0,B jorken =
1

πR2
A
τ0

dET

dy
|y=0 (2.23)

as function of the total transverse energy per unit of rapidity at mid-rapidity

and extracted a value of τ0 ≈ 1 f m by fitting the final particle multiplicity to

the experimental data. Models for initial stages of HICs, like standard or MC

Glauber as well as microscopic theories based on parton cascade and more

recent color-string or Color Glass Condensate (CGC) model that we do not

discuss in this thesis but we mention trough some references [43, 44, 45, 46],

also attempt to provide an estimate of the initial time τ0. Some studies have

tried to estimate τ0 applying relativistic transport theory based on Boltzmann

equation but considering gluon distribution which is initially out of equilib-

rium and derived from CGC factorized form, like the Kharzeev-Levin-Nardi

(KLN) model, known also as fKLN [47]. Similarly other approaches coupled

the Boltzmann equation to a classical field description, i.e. Yang-Mills equa-

tions [48], and predicted that system thermalization occurs at shorter time

compared to Bjorken’s paradigm, obtaining a value of τ0 ≈ 0.6 − 0.8 f m/c.

A precise value of initial time is not needed in the aim of this work, rather it

is important for us to known that within different approaches there is strong

evidence that the system has reached local thermalization at about τ0 ≈ 1 f m.

At ultra-relativistic HICs conducted at RHIC and LHC facilities the observa-

tion of high multiplicity events is associated by Eq. (2.23) to the formation

of a hot baryonic-free fireball with an initial energy density ǫ0 which is larger

than the critical value ǫc ∼ 1GeV/ f m3. Hence, it is expected that the system

has crossed the transition line and founds in the QGP phase. In the case the

thermalization condition is also established one it is possible to assign an ini-

tial temperature T0 higher than the critical value Tc ≈ 155 MeV expected by

lQCD [49]. This temperature can be related to other thermodynamical quanti-

ties which together with Heisenberg relation T0τ0 ∼ 1 allow to state quite rea-

sonably that in Au−Au collisions at RHIC with
√

sNN = 200GeV the system

has T0 ≈ 2Tc, while at LHC Pb− Pb collisions
√

sNN = 2.76TeV the system

has T0 ≈ 3 − 4Tc. Quarks and gluons produced within the central region are
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not free to escape, rather they scatter through elastic and inelastic collisions

forming a hot and dense interacting bulk. Such microscopic processes are

responsible to the development of pressure gradients which drive the macro-

scopical expansion and cooling of the QGP medium. The appropriate frame-

work for describing the dynamical evolution of a complex system formed

by many particles, whether it is in equilibrium or not, is Relativistic Kinetic

Theory. In this section we want to provide the basic ideas of kinetic theory,

getting from specific books [50] [51], and through which we can introduce

another widespread approach for treating the QGP phase-space evolution. A

detail discussion of relativistic kinetic theory with a focus on the derivation of

our transport equations for bulk and heavy quarks dynamics will be the topic

of the next chapter. The main concept of kinetic theory is the distribution

function for a single particle of type-i, namely a gluon or a quark (anti-quark)

i = g, q(q̄), defined as fi(x, p) and which gives the probability of finding such

kind of particle at general phase-space (x, p). It makes sense to introduce the

distribution function if the system is formed by a large number of particles.

Hence, by definition fi(x, p)∆3~x∆3~p is equivalent to the average number of

particles which at certain time t = x0 are located within the volume element

∆3~x centered at ~x and whose momentum lies in the range (~p, ~p + ∆3~p), while

energy is obtained by relativistic dispersion relation p0 = Ep =

√

p2 + m2
i
,

being mi the mass of a particle of i species. Relativistic kinetic theory is based

on the derivation of transport equations where starting from initial conditions

fi(t = 0, ~x, ~p) = f 0
i
(~x, ~p) and accounting microscopic processes and interac-

tion forces it is possible calculate the general solution fi(t, ~x, ~p) for later time.

However, taking respectively the first and second momenta of the distribu-

tion function fi(x, p) for each particle species one can construct the particle

four-flow J
µ

i
(x) and the energy-momentum tensor T µν(x) which are invariant

macroscopic objects

J
µ

i
(x) ≡

∫

d4p

(2π)3
δ(p2 − m2

i )p
µ fi(x, p) =

∫

d3~p

(2π)3Ep

pµ fi(x, p) (2.24)

T
µν

i
(x) ≡

∫

d4

(2π)3
δ(p2 − m2

i )p
µpν fi(x, p) =

∫

d3~p

(2π)3Ep

pµpν fi(x, p) (2.25)
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2.3. QGP phase at thermal equilibrium

where we explicitly solved delta function to arrive to last expressions of

Eq. (2.24) and Eq. (2.24). If fi(x, p) is a solution of the kinetic equations,

J
µ

i
(x) and T µν(x) fulfills respectively well known conservation laws for parti-

cle and energy-momentum conservation, which at the end represent the start-

ing point for another successful framework for describing the QGP evolution,

which is hydrodynamics. We will give now a short overview of the hydrody-

namical paradigm and derive a part of the original Bjorken’s scenario.

2.3.1 Ideal Hydrodynamics

Fluid dynamics is a continuum description based on the solution of macro-

scopic equations for baryon number and energy-momentum conservation laws

which can be founded in the hypothesis that the system is in thermal equilib-

rium, at least locally, and which in the Lorentz covariant form are given by

∂µJ
µ

B
(x) = 0 (2.26)

∂µT
µν(x) = 0 (2.27)

In Eq. (2.26) T µν and JB are treated as classical continuum fields and their ini-

tial values are provided by some models, like for example Glauber or CGC.

here we drop the index i by considering only one kind of particles, of course

direct extension for a system formed by different particle species is simply

realized by defining the energy-momentum tensor and current as the sum

of all contributions T µν =
∑

i T
µν

i
and J

µ

B
=

∑

i BiJ
m
i

where we account the

baryon number Bi = +(−)1/3 for quarks (antiquarks) and Bi = 0 for glu-

ons. As we have seen, in kinetic theory Eq. (2.24)-(2.25) these two quantities

have a microscopic definition through the phase space distribution function

f (x, p). Instead, in hydrodynamics T µν and J
µ

B
have to be expressed in terms

of mascroscopic classical fields such as energy density ǫ(x), particle density

n(x), pressure P(x), entropy density s(x) temperature T (x) and also chemical

potential µB(x). Within this set of thermodynamical functions we can give

a full description of the equilibrium state of the plasma. Moreover, because

we deal with an expanding system, we need to introduce a relativistic flow
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2.3. QGP phase at thermal equilibrium

velocity uµ(x) consistently at each space-time point. The straightforward way

to do that is to start from the Local Rest Frame (LRF) which corresponds to

the coordinate system where locally the fluid is static. Then, in this frame the

flow velocity reduces to the form u
µ

LRF
(x) = (1, 0, 0, 0). This brings also to the

following normalization

uµu
µ = 1 (2.28)

valid in any inertial frame and Lorentz transformation with a fluid velocity

~v(x) applied on u
µ

LRF
(x) gives us the general expression for the four-velocity

uµ = γ(x)
(

1, ~v(x)
)

(2.29)

with γ(x) = 1/
√

1 − v2(x). At local thermal equilibrium the distribution func-

tion gets the following exponential form

feq(x, p) =
g

2π

[

exp

(
pµuµ(x) − µB(x)

T (x)

)

± 1

]−1

(2.30)

which corresponds to the covariant generalization of the Maxwell-Boltzmann

function, known as Boltzmann-Jüttner distribution where g is the is the degen-

eracy factor due to spin, color and other internal degrees of freedom, while the

± corresponds to fermionic (+) and baryonic (-) statistics. Plugging Eq. (2.30)

into the definition of the baryonic current Eq. (2.24) we obtain its expression

in terms of the macroscopic fields. In particular, we have

J
µ

B
(x) = n(x)uµ(x) (2.31)

where n(x) is the particle baryon number density in the LRF of the system.

The perfect fluid is characterized by conservation of entropy density for an

observer which is locally comoving. This means also that local pressure P(x)

is isotropically the same in all directions and exerted by the fluid perpendic-

ular to the container. The result is that in ideal hydrodynamics the energy

53



2.3. QGP phase at thermal equilibrium

momentum tensor in the LRF is diagonal and gets the form

T
µν

LRF
=





ǫ(x) 0 0 0

0 P(x) 0 0

0 0 P(x) 0

0 0 P(x)





(2.32)

Then, Lorentz transformation to an inertial frame where a fluid element moves

locally with flow velocity uµ(x) given by Eq. (2.29) allows to derive the gen-

eral formula of the energy-momentum tensor

T µν(x) = [ǫ(x) + P(x)] uµ(x)uν(x) − P(x)ηµν (2.33)

where ηµν is the metric tensor for the Minkovski space. As we can see in

Eq. (2.33) T µν(x) for an ideal fluid shows no dissipative term. The next step

is to cast the obtained expressions for JB(x) Eq. (2.31) and T µν(x) Eq. (2.33)

inside the conservation laws Eq. (2.26). These corresponds to a total of five

equations, while we have to determine six thermodynamical variables: ǫ(x),

P(x), n(x) and the three components of the flow velocity vx(x), vy(x) and vz(x).

In order to achieve a unique solution the hydrodynamical system has to be

supplied with the so-called Equation of State (EoS) which is usually written

as a relation between the energy density ǫ and the pressure P

P = λǫ (2.34)

assuming zero baryon chemical potential µB = 0 which is a reasonable con-

dition at ultra-relativistic HICs. Clearly, the specific expression for the nu-

merical constant λ is directly connected to the properties of the QCD mat-

ter. Physically it has the meaning of the speed of sound λ = c2
s and for an

ideal relativistic gas one can apply the black body radiation relation cs =

1/
√
3 → λ = 1/3. However, the general derivation of a realistic QCD

EoS cs =
√
∂P/∂ǫ is a complex issue which at the same time has a large

scale of interest, because it is a fundamental ingredient for the description
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2.3. QGP phase at thermal equilibrium

of any strongly interacting system, from QGP to compact stars and cosmol-

ogy for expanding Universe. A detail discussion about the status-of-art for

the EoS within lattice QCD framework from pure gauge theory to quark ex-

tension at small non-zero chemical potential µB , 0 is given in Ref. [23].

Once we have the EoS and initial conditions for T µν(x) and JB(x) hydrody-

namical equations become a perfectly solvable system from which we can

derive the space-time evolution of the thermodynamical variables for the ex-

panding system. Instead of using directly the energy-momentum conserva-

tion given in its covariant form, we can extract a scalar equation by con-

tracting Eq. (2.28) with flow velocity and using the normalization condition

Eq. (2.28). Hence, by casting T µν(x) expression Eq. (2.33) in the contracted

formula we get

uν∂µ
[
(ǫ(x) + P(x)) uµ(x)uν(x) − P(x)ηµν

]

= uµ∂µǫ + (ǫ + P)∂µu
µ = 0

(2.35)

Then, applying thermodynamic relations ǫ + P = T s+ µB n and using baryon

number conservation Eq. (2.26), we arrive to the bright result

∂µ(s(x) uµ) = 0 (2.36)

which in terms of a defined four-vector sµ(x) = s(x)uµ, we can identify as the

conservation of the entropy current ∂µsµ(x) = 0 known also as energy equa-

tion. Equivalently the motion of the ideal fluid is an adiabatic and reversible

process, something that we expect because it lacks of any dissipation force.

To recover a total of five independent equations, next to the scalar condition

Eq. (2.36) we have to combine other four equations which can obtained by

projecting Eq.(2.28) along the transverse direction of the flow velocity

(ηλν − uλuν)∂µ
[
(ǫ(x) + P(x)) uµ(x)uν(x) − P(x)ηµν

]

= −∂λP + uλu
µ∂µP + (ǫ + P)uµ∂µuλ = 0

(2.37)

This corresponds to the relativistic generalization of the Euler equation where
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the material derivative of the fluid velocity
(

∂/∂t + ~v · ∇)

~v is related to pres-

sure gradient ∇P.

Bjorken ’s scenario

First hydrodynamical description of QGPwas stated by Bjorken in Ref. [42]

with the aim to examine the time evolution of the energy density and other

thermodynamical variables for the hot and dense strong interacting system

created at central region of HICs. Due to the fact that the quanta forming the

fireball are created ensuing the reacting nuclei, they are affected by a strong

expansion in the longitudinal beam direction. Hence, in first approximation

one can assume to drop initially the transverse direction and apply ideal hy-

drodynamics to (1+1) dimensional system with coordinates z and t. Then,

one introduces the Milne system for the forward lightcone t > |z| where the

coordinates are the proper time and the space-time rapidity which as we have

seen in previous section are defined as

τ =
√

t2 − z2 , y =
1

2
ln

t + z

t − z
(2.38)

with the corresponding inverse transformations

t = τ cosh y , z = τ sinh y (2.39)

Bjorken’s model is constructed by making the following ansatz on the local

velocity of the perfect fluid

uµ(x) = (t/τ, 0, 0, z/τ) = (cosh y, 0, 0, sinh y) (2.40)

which is equivalent to the case where particles stream freely with velocity vz =

z/t away from the origin along the z direction. Imposing such longitudinal

boost-invariance or scaling flow on Euler equation Eq. (2.37) one obtains the

following statement
∂P(τ, y)

∂y
= 0 (2.41)
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Therefore, pressure field and other thermodynamical variables do not depend

on the space-time rapidity y, rather they are function only of the proper time

τ, meaning they are constant along the hyperbola represented in Fig. (2.11)

adapted from [33].

Figure 2.11: Fluid expansion within Bjorken’s model: drawn hyperbola in the for-

ward lightcone region t ≥ |z| corresponds to surface of constant τ =√
t2 − z2, while straight line from origin is the trajectory of free stream-

ing with constant velocity vz = z/t.

Entropy equation Eq. (2.36) reduces to the simple relation

s(τ) τ = s0τ0 (2.42)

with s0 being the entropy density at initial proper time τ0. That is precisely

the isoentropic expansion of the relativistic ideal fluid. The corresponding

energy equation which can be derived from Eq. (2.35) can be written as

dǫ

dτ
+
ǫ + P

τ
= 0 (2.43)

Finally, one can solve this equation for a particular state of matter by impos-

ing some EoS P(ǫ), for example Eq. (2.34) and derive the behavior for the

57



2.3. QGP phase at thermal equilibrium

thermodynamical variables within the scaling (1+1) ideal hydro framework

T (τ) = T0

(
τ0

τ

)λ

ǫ(τ) = ǫ0

(
τ0

τ

)λ+1

P(τ) = P0

(
τ0

τ

)λ+1

(2.44)

together with Eq. (2.42) and thermodynamic relation T s = ǫ +P with µB = 0.

2.3.2 Viscous Hydrodynamics

Viscous corrections are introduced by including additional terms on the

energy-momentum tensor, the baryon current and the entropy current which

depends on the derivatives of the flow velocity uµ(x) and the thermodynamical

variables

T µν(x) = T
µν

ideal
(x) + τµν(x) (2.45)

J
µ

B
(x) = n(x)uµ(x) + ν

µ

B
(2.46)

sµ(x) = s(x)uµ + σµ (2.47)

where T
µν

ideal
stands for the energy-momentum tensor of the ideal fluid given

in Eq. (2.33). Particle density n and energy density ǫ in the Local Rest Frame

(LRF) as well as isotropic pressure P related to n and ǫ through specific EoS

are defined in the same way as in Eq. (2.32)

n(x) = umJ
µ

B
, ǫ(x) = umT µνun , P(x) = (ηµν − uµuν)T

µν/3 (2.48)

Then, one can derive viscous hydrodynamics equations from same conserva-

tion laws ∂µT
µν = 0 and ∂µJ

µ

B
= 0 after proper definition of the fluid velocity

which in the presence of dissipative corrections becomes more arbitrary [33]

and coming to the following orthogonal constraints

uµτ
µν = 0 , uµν

µ

B
= 0 (2.49)
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Finally, one gets an explicit form and physical meaning of the viscous terms

by making an expansion order-by-order on the derivatives of the fluid ve-

locity. For this purpose, we follow a standard procedure by introducing a

so-called projector tensor transverse to the flow velocity

∆µν = ηµν − uµuν , uµ∆
µν = 0 , ∆µµ = 0 (2.50)

which we use to construct the covariant gradient ∇µ ≡ ∆µν∂ν. Then, at linear

order the explicit form of τµν and ν
µ

B
can be derived assuming they are func-

tions only of first derivatives ∂µuν and imposing the constraints in Eq. (2.49)

ν
µ

B
= −mB

T
σµ = κ

(
nT

ǫ + P

)2

(∂µ − uµu · ∂)
(
mB

T

)

(2.51)

τµν = πµν − Π∆µν (2.52)

where in the former equation µB is the baryon chemical potential, while the

entropy equation is obtained from the scalar contraction uµ∂νT
µν = 0 analo-

gously of the ideal hydrodynamics case

∂µsµ = ν
µ

B

(

∂µ − uµu · ∂
) (mB

T

)

+
1

T
τµν

(

∂µ − uµu · ∂
)

uν (2.53)

with a last condition that the right hand side of Eq. (2.53) has to be non-

negative because of the second law of thermodynamics generalized to rel-

ativistic systems: ∂µsµ ≥ 0. The coefficient κ ≥ 0 denotes the fluid heat

conduction which correspond to amount of energy dissipated without the par-

ticle flow. Focusing now on the latter equation, we observe that the dissipative

term of the energy-momentum tensor τµν is divided in two parts which can be

equivalently written as

τµν = ησµν + ζ∆µν (∇ · u) (2.54)

where we defined the traceless viscous stress tensor

σµν = [∂µuν + ∂νuµ − u · ∂(uµun)] − 2

3
∆µν (∇ · u) (2.55)
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and enclosed the remaining volume effect on the trace part of the viscous ten-

sor τµν in Eq. (2.54). In this equation the η ≥ 0 and ζ ≥ 0 coefficients denote

respectively the shear viscosity and the bulk viscosity. First order viscous hy-

drodynamics needs other four equations coupled to entropy Eq. (2.53) and

EoS that we obtain by performing the following contraction

∆ρν∂µT
µν = 0 (2.56)

from which we akin to the relativistic generalization of Navier-Stokes equa-

tion [50] which results as the first order viscous correction of Euler equation

for dissipative fluid in the classical non-relativistic fluid dynamics. How-

ever, differently to this case, the introduction of linear order corrections into

the entropy current violates causality, leading the solutions of Eq. (2.56) to

propagate acausal information and making first order Navier-Stokes viscous

hydrodynamics to be unconsistent with relativistic theory. Therefore, in order

to account dissipative effects within a hydrodynamical description of QGP, it

is necessary to go beyond the linear order. However, in this case there is

no unique picture and one has to deal with the developing of many theories,

starting for example from the Israel-Stewart method [52] and ending up with

advanced moment approximation [53] for deriving fluid dynamics equations

at truncated second order expansion with causality constraint. We mention

here that this problem is related also to a very controversial question how hy-

drodynamics as a whole can be consistently derived from kinetic theory and

how viscous corrections can be addressed in the form of deviation of single

particle phase-space distribution from the equilibrium expression Eq. (2.30)

f (x, p) = feq(x, p) + δ f (x, p) (2.57)

Despite the aim of this work is far from the hydrodynamics vs kinetic theory

quest, because we focus on the dynamics within the QGP of heavy quarks

which are out of equilibrium for reasons that we will explain later, we will go

back to part of this issue in the next chapter.
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2.4. Hadronization and rescattering phase

2.4 Hadronization and rescattering phase

Hydrodynamical simulations of the expanding system start at τ0 ∼ 0.6 f m

with ǫ0 ∼ 10 − 15GeV/ f m3 for RHIC energies [54] and at τ0 ∼ 0.3 f m with

ǫ0 ∼ 25−40GeV/ f m3 at LHC energies. The system spends a major time in the

QGP phase with lifetime of about τQGP ∼ 6 − 8 f m and τQGP ∼ 10 − 12 f m

respectively at RHIC and LHC, until the energy density drops down to the

critical value ǫc ∼ 1GeV/ f m3 that happens also when cooling brings temper-

ature close to the Tc value expected by lQCD. Then, the system undergoes

to the confinement phase transition, more precisely a crossover becoming

sharper first order phase transition at finite chemical potential (Chapter 1),

during which quarks and gluons are bounded again in colorless states and

finally the system emerges as a interacting gas of hadrons. Hydrodynam-

ics gives a continuous fluid description of essentially massless quanta, but at

the breaking-up it should turn into massive particles and in the meanwhile

conserve both momentum and energy. A method for this mechanism was for-

mulated by Cooper and Frye [55] [56] who derived an expression to get the

invariant hadron spectrum from the single particle distribution of a relativistic

gas. This is a very renowned result bearing the name of Cooper-Frye formula

E
dN

d3~p
=

∫

σc

f (x, p)pµdσµ (2.58)

where one imposes that at the freezout hypersurface σc the distribution func-

tion of the hadron gas f (x, p) corresponds to that of a thermal system at equi-

librium with local temperature T (x) and also that the particle momentum is

linked to the fluid velocity ~v(x) through the following pµ = Euµ. Then, in

Eq. (2.58) on can substitute f (x, p) = feq(E(~v(x),T )) and switch from hydro-

dynamics to a kinetic transport description of the hadronic phase. Beside the

hydrodynamical breaking, the hadronization process itself appears as a com-

plicated issue, because of the purely non-perturbative nature of QCD confine-

ment, which is also worsen by the fact that in HICs hard partons hadronize

surrounded by a strongly interacting medium, rather than what happens for

elementary proton-proton collisions. Among the possible phenomenological
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models, a diffused microscopic description of the hadronization mechanism

is based on the fragmentation and coalescence of quarks and gluons within

the confinement length d ∼ 1 f m.

2.4.1 Fragmentation

Hadron production in lepton-lepton, lepton-proton and proton-proton col-

lisions at energy
√

s can be treated within a common framework which is

based on the properties of QCD. In particular, given the momentum scale Q2

of the specific process, one can separate the pQCD production of a leading

parton c happening at high energy, i.e. small distance, from the subsequent

conversion into the final hadronic state h, that belongs to low energy, i.e.

high distance, non-perturbative QCD regime. This technique can be formally

casted into the so-called factorization theorem [57]. Then, the semi-inclusive

invariant cross section of hadron (h) production at mid-rapidity in pp colli-

sions for example can be written in the following form

Eh

dσp+p→h+X

d2~pT,hdy
=

∑

ab , cd

∫

dx1

∫

dx2 f p
a (x1,Q

2) f
p

b
(x2,Q

2)

· Ec

dσ̂a+b→c+d

d2~pT,cdy
· Dc→h

(

z, Q2
)

(2.59)

In Eq. (2.59) f
p

i
(x,Q2) denotes the Parton Distribution Function (PDF) of

i species inside the proton, while dσ̂a+b→c+d is the elementary pQCD cross

section of leading c particle production from a+b partonic scattering. Instead

the c → h conversion is encoded in the so-called Fragmentation Function

(FF) Dc→h(z,Q
2) defined as a dimensionless object which essentially gives

the probability of the parton c with momentum ~pc to hadronize by spraying

multiple soft gluons into the final tagged hadron h which in the end carries

a fraction z = ph/pc ≤ 1 of the initial fragmenting parton [58] [59]. At LO

pQCD level FFs do not depend on the specific value of Q2 involved in the

process, while it acquires such dependece already at NLO with consequent

violation of scaling law and energy evolution according to the Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [60, 61, 62] similarly to
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what happens for the PDFs. Therefore, one can writes

Q2∂Di(z,Q
2)

∂Q2
=

∑

j

∫ 1

z

dx
αs

2π
P ji(x, αs) · D j(x,Q

2) (2.60)

where the splitting process of a parton of species j with corresponding FFs

D j(x,Q
2) into a parton of species i with FFs Di(z,Q

2) in the end is considered

through the function P ji(x, αs) which has also a perturbative expansion over

αs/2π. FFs should satisfy also sum relations arising from total momentum

conservation and hadron multiplicity. In particular

∑

h

∫ 1

0

dz z Dc→h(z, Q2) = 1 ,
∑

c

∫ 1

0

dz [Dc→h(z) + Dc̄→h(z)] =
dNh

dy
(2.61)

FFs are usually provided through parametrized expressions accounting for the

universality of hadron production in elementary e+e−,ep and pp collisions and

they are also differentiated for light quarks and heavy quarks. For the former

we find interesting to mention KKP [63] and AKK parametrizations [64],

while for the latter we will give a detail description in the appropriate sec-

tion for describing the hadronization model for HQs. Finally, differences

in the factorization formula Eq. (2.59) when moving to hadron production

in nucleus-nucleus reactions due to the presence of initial bounded nucleon

PDFs rather than free colliding proton ones ( f
p

i
→ f A

i ) will be addressed

specifically for HQs but actually explained in a more general frame.

2.4.2 Coalescence

Since first observations of hadron production in HICs there was evidence

of the fact that hadronization occurs differently compared to the vacuum frag-

mentation which we have described previously. This is due to presence of the

medium, so quarks and antiquarks can merge with comoving partons of the

reservoir, thus forming baryons and mesons with final momentum given by

the sum of the combining partons, rather than keeping a fraction of the lead-

ing fragmenting one. The so-called covariant coalescence mechanism was

firstly introduced to describe recombination for nucleons binding with each
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other into deuterons and light nuclei [65] and later on extended to quarks and

antiquarks by treating the superposition of the partonic phase-space distribu-

tion functions to produce light hadron species at RHIC energy in a Wigner

formalism [66, 67, 68, 69].

Figure 2.12: Competition among coalescence vs fragmentation on the formation of

the final hadron pT distributions. Sketch is adapted from Ref. [70, 71]

The idea is rather simple: two or three comoving partons in the QGP

can combine with each other and produce a meson or a baryon with final

transverse momentum which is higher than the original partons themselves.

Therefore, the result is opposite with respect to the fragmentation of a high

pT parton where in that case the initial momentum is distributed among all

the fragments. Moreover, in the recombination process the total momentum

is conserved passing from the partonic species to the final hadronic state,

while in fragmentation the initial pT is not preserved by the produced hadron.

The competition between the two hadronization mechanisms is depicted in

Fig. (2.12) and it is subject of many studies. Since the probability to find

two or three partons close in the phase-space decreases as function of the mo-

mentum, it is common opinion that coalescence becomes less important at

high pT and fragmentation starts to overcome until becoming the dominant

hadronization mechanism at pT > 5GeV . On the other hand, coalescence is

preponderant at pT < 2GeV due to the high abundance of soft thermal par-

64



2.4. Hadronization and rescattering phase

tons. This condition may also change as function of the impact parameter. In

particular, models agree in the opinion that recombination has a significant

impact at central collisions, because the number of created partons is larger

compared to peripheral collisions where thus fragmentation should become

more relevant. The success of the coalescence scenario came up since the

first application of this model for studying the produced light hadrons in the

QGP [66] where it was found that it was not only possible to obtain a good

agreement with the experimental data in terms of pT spectra both at RHIC and

LHC energy, but also to correctly predict the baryon-to-meson ratios in the

light sector (p/π, p̄/π, Λ/K) [72]. The recombination model is also useful

for studying other observables of the QGP among which the collective flow

is one of the most interesting. Indeed the strong flow enhancement of the

transverse momentum spectra of hadrons at intermediate pT can be addressed

quite automatically within a coalescence approach which explains naturally

also the quark number scaling in the observed azimuthal anysotropy [73] (see

later in this Chapter). Above all this model has been rapidly developed to

calculate the production heavy meson [74] and heavy baryon production at

relativistic HICs aiming to describe the pT dependence of charmed baryon-

to-meson ratio for different energies and finding in agreement with the recent

experimental measurements Λc/D
0 at RHIC and LHC, that makes also suit-

able for predictions of Λb/B0 values. We will provide the theoretical skeleton

of our coalescence model later on in this Chapter, while we will postpone the

analysis of the results in the final chapter of this thesis. For both cases we will

refer specifically to our work [75]. After hadronization the produced baryons

and mesons continue to propagate and scatter either in an elastic or in a in-

elastic way. This phase of HICs is usually described by means of transport

models for an interacting hadron gas and collisions among particles treated

through effective theories. Within this framework inelastic collisions are re-

sponsible for the variation of the hadron species abundances and are the first

to drop out leaving the system to evolve in the so-called chemical freeze-out.

When also the probability of elastic collisions becomes negligible which is

believed to occur at T ≈ 120 MeV , the kinetic freeze-out is reached, meaning

that spectra do not change until hadrons are finally captured by the detectors.
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2.5 Heavy Quarks in the QGP

This section in now devoted to the main research topic of this thesis which

is the study of Heavy Quarks (HQs) production and dynamics in the QGP.

Before discussing in detail the theoretical framework which we adopt to de-

scribe HQs propagation (see next Chapter), here we will concentrate on the

main stages which characterize the evolution of HQs in the strong interacting

matter, from initial production to hadronization mechanism and final Heavy-

Flavor (HF) hadron detection. The aim is to demonstrate how HQs represent a

powerful probe of the QGP features and among the other possible hard probes

they maintain a kind of uniqueness. Historically such role has been consid-

ered already dawn to the exploration of the QCD phase diagram. Indeed,

the dissolution of charmonium states (J/ψ) arising from Debye screening ef-

fect which we mentioned in Chapter 1 has been proposed as a clean signa-

ture of the existence of QGP phase [76]. Nowadays, more phenomena have

been predicted to govern HQs interaction inside nuclear matter and to play a

significant role for the description of the correlations of HQ observables, as

summarized in very recent reviews [77] [78]. This opens a scenario where

the study of QGP within the HQs sector become more challenging both from

experimental and theoretical perspective, but also suitable for new progresses

and discoveries.

2.5.1 HQ production and initial stage evolution

Heavy Quarks (HQs), mainly charm c, bottom b and top t quarks have

respectively masses of about 1.3, 4.5 and 174GeV . Being so massive the top

quark have unique property that its mean lifetime (ttop ∼ 10−24 sec) is smaller

than the strong interaction time scale ∼ 1GeV−1. For this reason top quark

decays directly in t → bW before creating any hadronic bound states. In

such short lifetime top quark does emerge and decay before the deconfined

phase sets in and thus it is not useful for carrying information within the

plasma dynamics. It has proposed very recently the possibility to probe some

QGP properties through indirect analysis of top product decays [79], but such
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preliminary studies are beyond the main purpose of this work. Hence, in

discussing about HQs in QGP we refer exclusively to c and b flavors.

2.5.2 HQ production in pp collisions

Charm and bottom have masses larger than the QCD scale Mc,b ≫ ΛQCD.

Therefore, they are produced in hard scattering processes whose cross sec-

tions at partonic level can be suitably calculated within a Leading-Order (LO)

pQCD scheme. The resulting tree-level Feynman diagrams of these partonic

processes are represented in Fig. 2.13 and the related cross sections (σ̂i j→QQ̄)

expressions were firstly derived in Ref. [80] and we collect the correspond-

ing scattering matrices in the Appendix A. Partonic cross sections are em-

Figure 2.13: Associated production of HQs at LO pQCD level: starting from upper

left the first diagram describes HQ production by quark-antiquark anni-

hilation which in the high energy pp collisions conducted at RHIC and

LHC facilities is overcome by the gluon-gluon fusion process which is

represented by the last three diagrams in the picture.

ployed as kernel within a pQCD factorization scheme to calculate HQ yields
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in proton-proton (pp) collisions at center-of-mass energy
√

s

dσ
pp

QQ̄
(
√

s, pT , MHQ) =
∑

i, j

∫

dx1dx2 f
(p)

i
(x1,Q

2) f
(p)

j
(x2,Q

2)

× dσ̂i j→QQ̄(x1, x2, pT ,Q
2) (2.62)

In Eq. (2.62) f
(p)

i
(x1,Q

2) are the Parton-Distribution Functions (PDFs) de-

rived from phenomenological models and usually provided by parametrized

expressions from analysis over many physics phenomena where universality

law is assumed. Then the upper formula is coupled to an independent frag-

mentation function (FF) DHQ(z) which describes the non-perturbative transi-

tion of a HQ with transverse momentum pT or total momentum pHQ into a

corresponding HF hadron with momentum ph = zpHQ (z < 1). Detail expres-

sions of the employed FFs will be presented in the hadronization paragraph.

Hence, the cross section of heavy hadron (hHQ) production in pp collisions is

given by the following convolution

dσpp(hHQ) = dσ
pp

QQ̄
⊗ DHQ(z) (2.63)

with dσ
pp

QQ̄
defined in Eq. (2.62). The measured production yield of HF

mesons at RHIC and LHC energies is already well reproduced within LO

pQCD calculations. However, analytic extensions have been performed to

provide a precise description of the inclusive heavy hadron production at

Next-to-Leading-Order (NLO) and Next-to-Leading-Logarithm (NLL) pQCD

accuracy by resummation of contributions of order αn
s log

k(pHQ/MHQ). Mod-

els differ also in the choice of the renormalization scale µF and its relation

to the energy scale Q2 appearing explicitly in the PDFs and in the running

coupling constant αs(Q
2) inside the partonic cross section dσ̂i j→QQ̄. In the

Fixed-Flavor-Number Scheme (FFNS) [81, 82] a HQ is not considered as

an active parton within the proton structure, so the sum over all the possible

partonic pairs for charm production in Eq. (2.62) has to be performed only

considering the three light quark flavors u, d, s with corresponding antiquarks

and gluons g. The active flavor extends to c, c̄ for bottom production because
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2.5. Heavy Quarks in the QGP

renormalization scale has to be taken larger than charm mass (µF > Mc), even

if for simplicity one usually neglects the terms containing Mc in the hard

scattering cross sections. For this reason the FFNS scheme generally works

in the low pT region up to about 5MHQ. In order to extend the kinematical

range of validity a better approach is the General Mass Variable Fixed Num-

ber Scheme (GV-VFNS) [83, 84] in which the number of active flavors is

changed when µF crosses a transition scale fixed to the HQ mass. One of the

most widespread approach that is valid in the entire kinematical range is the

so-called Fixed Order Next Leading Logarithm (FONLL) [85, 86, 87] which

is based on the idea to match the NLO cross sections evaluated by retain-

ing HQ masses and tuning µF within the FFNS scheme to a massless NLO

calculation performed within the Zero Mass (ZM)-VNFS scheme. This is

equivalent to the previous GV-VFNS, but the fact that at high momenta MHQ

is discarded. We refer to [88] for a detail review. Experimental measure-

ments of D and B production at both RHIC pp collisions at
√

s = 200GeV

and LHC pp collisions from 2.76TeV up to 14 TeV are in agreement with the

upper limits of the FONLL predictions. For this reason we will adopt FONLL

central expectation values to derive charm and bottom initial spectra and per-

form convolution with appropriate FFs to derive heavy hadron spectra in pp

collisions that we employ as a baseline for simulation in AA collisions and

calculation of related observables (see Chapter 5). In conclusion the general

fine working of these pQCD scheme and the most recent measurements from

STAR, ALICE and CMS in pp collisions seem to confirm that both charm

and bottom can be consistently treated as heavy particles being produced at

hard scales and uncoupled to thermal excitation of the bulk matter, even if

for charm quark there are still uncertainties in the low pT regime. For bot-

tom quarks instead direct measurements have been obtained presently only

by LHC collaborations, while extrapolations at RHIC energies can be done

through unfolding procedures on D and B decay products.
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2.5. Heavy Quarks in the QGP

2.5.3 HQ production in HICs: Cold Nuclear Matter Effects

In nucleus-nucleus collisions the production of HQs at low momenta is in-

fluenced by various phenomena which originate from the presence of bound

states of nucleons rather than having free protons in the colliding beams.

These processes are overall denoted as Cold-Nuclear Matter Effects (CN-

MEs) in order to differentiate them from the follow-up modifications due to

the HQ propagation and interaction within the QGP phase. However, trying

to disentangle CNMEs from the whole effects resulting from the dynamical

evolution of HQs in QCDmatter is extremely hard and one way to study them

is looking at small system scenarios, like for example nucleon-nucleus col-

lisions in which a hot QGP medium should not be formed, or eventually be

held in shorter lifetime compared to HICs [89]. From a theoretical perspec-

tive CNMEs are considered by modeling phenomenological nuclear Parton

Distribution Functions (nPDFs) through the following expression

f A
i

(

x, Q2
)

= RA
i

(

x, Q2
)

f
p

i

(

x, Q2
)

(2.64)

RA
i (x, Q2) are called the Nuclear Modification Functions of the free proton

PDFs f
p

i
(x, Q2) for all parton species and for HQ production in HICs they

substitute the latter within the pQCD factorization formula Eq. (2.62). These

functions are usually provided in parametrized form at the lowest energy scale

corresponding to the charm quark mass Q2
0
= M2

c = 1.69GeV2 and baryon

number together with momentum sum rules are imposed:

∫ 1

xmin

dx
[

f A
uV
(x, Q2

0) + f A
dV
(x, Q2

0)
]

= 3
∑

i=g, q, q̄

∫ 1

xmin

dx f A
i (x, Q2

0) = 1 (2.65)

where xmin → 0 and on the left hand side of first expression of Eq. (2.65)

the valence u and d quarks nPDFs are considered within an isospin sym-

metry. Then, the evolution of the nPDFs at higher scales Q2 > Q2
0
is ob-

tained by solving the well known DGLAP equations within the same NLO

pQCD renormalization scheme adopted for regular PDFs. Finally all possible

cross sections for an extended set of phenomena are computed and analyzed
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2.5. Heavy Quarks in the QGP

in comparison with the experimental data, providing at the end an optimal

parametrization fit for the calculation of the process of interest. In Fig. (2.14)

we report the obtained Nuclear Modification Functions from the renowned

EPS09 package [90] which we will couple to the FONLL pp HQ spectra to

get initial charm and bottom pT spectra for our simulations in AA collisions.
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Figure 2.14: Nuclear Modification Functions RA
i
(x) for valence quarks (i = V , left

plots), see quarks (i = S , center plots) and gluons (i = G, right plots) in

lead nuclei (A = 297) obtained from EPS09 package [90] and evaluated

at Q2
0
= M2

c scale (upper) and Q2 = 100GeV2 scale (lower).

2.5.4 HQ dynamics in pre-equilibrium phase

As we discussed previously in this Chapter, initial conditions of high en-

ergy pp, pA and AA collisions can be treated within the effective Color-Glass-

Condensate (CGC) theory [43, 44, 45, 46] in which fast partons in the nuclei

can be divided into large-x partons that serve as color sources of the radiat-

ing chromo-electric and chromo-magnetic fields and into small-x partons that

are essentially the gluons in the hadron wavefunction, since the gluon PDF

dominates at small x values. The collision between two color glass sheets

leads to the formation of strong gluon fields in the forward light-cone region
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2.5. Heavy Quarks in the QGP

named as the Glasma system [91, 92, 93]. In the weak coupling regime the

Glasma is constituted of longitudinal color-electric and color-magnetic fields

Fa
µν(x) which are characterized by large occupation number Aa

µ ≃ 1/g. Hence

they can be described by Classical Yang-Mills (CYM) theory with quantum

fluctuations entering as corrections at higher order in the expansion over the

coupling g. Theoretical studies based on the CGCmodel with dynamical evo-

lution into CYM Glasma predict that this pre-equilibrium phase should form

at about τglasma ≃ 0.1 f m after the collision. Since HQs are produced in hard

pQCD processes with characteristic formation time τ f ≃ 1/2MHQ ≤ 0.1 f m

they can actually probe the Glasma phase in the background without disturb-

ing its evolution because of their small number and their large mass which

make HQs a negligible source of color currents. However, the investigation

of HQ dynamics at initial or pre-equilibrium stages of HICs has been always

tarnished compared to the standard description of their propagation within the

hydro QGP phase. That is because the expected effect occurring in the initial

phase may be washed out by the longer dynamics in the QGP in the case of

AA collisions. The study of HQ dynamics in the Glasma phase started with

simplified models that attempted to interpret it similarly to the evolution in the

thermally equilibrated medium [94, 95]. In this paragraph we would like in-

stead to focus on the development of a recent approach in which HQs, specif-

ically charm quarks, propagate firstly in the Glasma modeled from a SU(2)

CYM theory and then at τ0 ≃ 0.3 − 0.6 f m their dynamics is shifted consis-

tently to the standard description within the QGP. As discussed in Ref. [96],

when charm quarks move under the effect of Lorentz force due to the inter-

action of their color charge with the evolving CYM fields of the Glasma Fa
µν,

with index a = 1, 2, 3 and structure constants f abc = ǫabc (ǫ123 = 1), they

follow precise equations of motion known as Wong equations [97]

dxi

dt
=

pi

E
(2.66)

E
dpi

dt
= QaFa

iνpν (2.67)
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where i = x, y, z and E =
√

p2 + M2
c is the energy of the charm quark with

momentum p. Moreover, this set of equations are coupled also to the evolu-

tion of the HQ color charge Qa which is determined from the conservation

law of gauge theory
[

Dµ, J
µ
]

= 0 that we can write explicitly as

E
dQa

dt
= −Qcǫ

cba Ab(x) · p (2.68)

provided an initial charm color charge Qa which is distributed randomly be-

tween (-1,1) for each component and where the fields Ab(x) with its conjugate

momenta Eb(x) satisfying the SU(2) CYM equations of motion [98] [99]

dAb
i
(x)

dt
= Eb

i (x) (2.69)

dEb
i
(x)

dt
=

∑

j

∂ jF
b
ji(x) +

∑

d,c, j

ǫbcdAc
j(x)F

d
ji(x) (2.70)

These equations are consistently solved in a three dimensional space given

some initial conditions from CGC model [43, 44, 45].

This approach has been firstly applied to describe the evolution of HQs in

the initial stages of pA collisions and it has been found that the propagation

of charm inside the Glasma lead to an average acceleration which can be in-

terpreted as a cathode tube effect [98, 100]. Hence, the charm pT spectrum

is tilted in such a way that their yield is reduced below one at low pT , while

it is enhanced at intermediate pT , in agreement with what has been experi-

mentally measured at LHC pPb
√

s = 5.02TeV collisions by ALICE [101]

and LHCb [102] collaborations. The goal of this study was to offer a quali-

tative description of what is observed in pA collisions in order o give some

alternative explanation regarding the standard use of CNMEs to the depletion

of the charm spectrum at low pT . In Ref. [96] the model has been extended

for carrying out simulations for LHC PbPb collisions at
√

s = 5.02 ATeV .

The main result was to show that HQ interaction with the glasma fields in-

duces a dynamics that is opposite to the standard in medium scattering with

thermal partons of the bulk (see Chapter 3). As a consequence there exists an

anti-correlated behavior among the suppression factor and the collective flow
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of charm quarks which is then washed out during the propagation of HQs

in the QGP. On the other hand the tilted effect on the charm pT distribution

leads to the necessity of a more interacting HQ evolution within the equili-

brated plasma which results in a more effective coupling of HQs to the bulk

anysotropies. We will not proceed further in discussing the HQ dynamics

in the pre-equilibrium phase, just we point out that this novel study shows

that HQs actually can keep memory of the initial dynamics, hence being sen-

sitive to both initial E.M. fields [36] and vorticity effects, a prediction that

appears to be confirmed by early experimental results both at RHIC [103]

and LHC energies [104].s A chronological description about the propagation

of HQs along the evolving fireball created at the center of HICs would lead

us to discuss now about their dynamics and interaction within the thermal

equilibrium phase, namely the QGP. However, since this represents the main

topic of this thesis, we will postpone it to Chapter 3. There we will discuss

about our transport approach to treat HQ energy loss and coupling with bulk

anysotropies until the transition phase occurs and HQs fragment or recombine

with light quarks of the medium to form the corresponding HF hadrons. We

will address now about the description of such hadronization mechanisms.

2.5.5 Hadronization mechanisms for HQs

In the previous section we discussed about the general hadronization pro-

cess by which partons are converted into corresponding hadrons. In partic-

ular, we focused on the idea that in medium hadronization at T ∼ Tc dif-

fers from that in vacuum, because instead of fragmenting into hadron sprays

comoving partons in the QGP can combine in the phase-space and produce

hadrons with final energy and momentum given by the sum of the two par-

ton ones. Due to the fact that MHQ ≫ Tc, HQs can preserve their identity

at hadronization both for recombination by picking-up a light quark of the

bulk and for independent fragmentation. In this paragraph we present a detail

analysis of a hybrid fragmentation plus coalescence model which we couple

at the final stage of our HQ transport evolution to obtain the yield of heavy

mesons and baryons with corresponding flow observables (see Chapter 5).
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This model is described in Ref. [75] where it is applied for predictions of HF

baryon-to-meson ratio which represent a genuine measure of the impact of

hadronization by coalescence.

Coalescence for HQs

In the Wigner formalism [66, 67, 68, 69] the pT -spectrum for Heavy-

Flavor (HF) hadrons is given by the

(

dNh(HQ)

d2pT dy

)

coal.

= gh

∫ n∏

i=1

d3pi

(2π)3Ei

pi · dσi fqi
(xi, pi)

× fh(HQ)(x1, ..., xn; p1, ..., pn) δ



pT −
n∑

i=1

pT,i



 (2.71)

where dσi denotes an element of a space-like hypersurface, fqi(q̄i)(xi, pi) is the

single quark (antiquark) phase-space distribution functions with spin 1/2 and

gh is the statistical factor to form a colorless hadron. In particular, we use

gh = 1/36 for D and B mesons, while for Λc and Λb we fix gh = 1/108. The

number of multiple integrations is equivalent to n = 2 for mesons and to n = 3

for baryons. Finally fh(HQ)(x1, ..., xn; p1, ..., pn) is the Wigner function which

describes the spatial and momentum distribution of quarks (antiquarks) inside

the hadron and that can be related directly to its quantum wave function. In

agreement with other models [105, 106] we adopt for fh(HQ)(x1...xn, p1...pn) a

Gaussian shape in coordinate and momentum space. In particular, for mesons

we use

fM(x1, x2; p1, p2) = AW exp



−
x2

r1

σ2
r

− p2
r1
σ2

r



 (2.72)

where xr1 and pr1 are the relative coordinate and momentum of the heavy-light

quark (HQ-q) pair

xr1 = x1 − x2 , pr1 =
mq p1 − MHQ p2

mq + MHQ

(2.73)
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while σr is a covariant width parameter that is linked to the size of the HF

meson, i.e. to the root mean square charge radius, by the following formula

〈

r2M

〉

ch
=

3

2

QHQm2
q + QqM2

HQ

(mq + MHQ)2
σ2

r (2.74)

In Eq.(2.72) AW is a normalization constant that guarantees that in the limit

p → 0 all HQs hadronizes through recombination. Similarly we construct the

Wigner function for baryons through a double Gaussian profile

fB(x1, x2, x3; p1, p2, p3) = AW exp



−
x2

r1

σ2
r1

− p2
r1
σ2

r1





× AW exp



−
x2

r2

σ2
r2

− p2
r2
σ2

r2



 (2.75)

In this case the coalescence mechanism is brought consecutively combining

first two particles, regarding it is a light or heavy quark, and then collecting

the third one with the resulting pair. Relative coordinates and momenta are

so generalized as

xr1 = x1 − x2 , pr1 =
m2p1 − m1p2

m1 + m2

(2.76)

for the first couple and

xr2 =
m1x1 − m2x2

m1 + m2

− x3 , pr2 =
m3(p1 + p2) − (m1 + m2)p3

m1 + m2 + m3

(2.77)

with the same normalization constant AW in Eq.(2.75) and the two width pa-

rameters σr1 and σr2 related to the baryon root mean square charge radius

〈

r2B

〉

ch
=

3

2

Q1m
2
2
+ Q1m

2
2

(m1 + m2)2
σ2

r1

+
3

2

(Q1 + Q2)m
2
3
+ Q3(m1 + m2)

2

(m1 + m2 + m3)2
σ2

r2
(2.78)

The width parameters σr and σr1,2 appearing respectively in the Wigner func-

tion for mesons Eq. (2.72) and baryons Eq. (2.75) depend on the hadron
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species and we calculated using the charge radius values taken from the quark

model [107, 105]. The multi-dimensional integrals appearing in the coales-

cence spectrum are numerically evaluated by means of a Monte-Carlo test-

particle method which has been firstly developed in Ref. [66] and it is de-

scribed in detail in the Appendix of Ref. [75]. This method consists of in-

troducing a large number of test partons distributed uniformly in momentum

in the phase-space but associated probability Pq(i)(Pq̄(i)) for thei quark (anti-

quark) with corresponding transverse momentum pT . Then this probability is

normalized by requiring that the sum over the all parton probabilities equals

to the total quark (antiquark) number

∑

i

Pq(i) =
dNq

d2pT

,
∑

i

Pq̄(i) =
dNq̄

d2pT

(2.79)

Within this test-particle method the coalescence formula Eq. (2.71) is mapped

for HF mesons and baryons into the following expressions

(

dNM

d2pT dy

)

coal.

= gM

∑

i, j

Pq(i)Pq̄( j) δ(pT − pi,T − p j,T )

× fM(xi, x j; pi, p j) (2.80)

(

dNB

d2pT dy

)

coal.

=gB

∑

i, j,k

P)q(i)Pq( j)Pq(k)δ
(2)(pT − pi,T − p j,T − pk,T )

× fB(xi, x j, xk; pi, p j, pk) (2.81)

with Wigner functions fM and fB taken respectively from Eq. (2.72) and

Eq. (2.75). In Fig. (2.15) we show the coalescence probability Pcoal for charm

and bottom quarks that is defined as the probability that a single HQ with

transverse momentum pT hadronize into a HF meson or baryon according to

hadronization mechanism. We point out that for charm quarks a difference

in Pcoal passing from RHIC to LHC is visible in the high pT tail, while for

bottom quarks it is almost washed out due to the more hardness of the pT

distribution.
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Figure 2.15: Coalescence probability Pcoal for charm (upper) [75] and bottom

(lower) as function of transverse momentum pT . The various colors

indicate the different hadron species, while black line represents the to-

tal probability that charm or bottom quarks hadronize by coalescence

into all possible HF hadrons. The solid lines refer to LHC energies

while dashed ones are for the RHIC case.

Fragmentation for HQs

After in medium evolution in the QGP phase, Heavy Quarks (HQs) which

do not hadronize through recombination with light quarks of the bulk, convert

to the corresponding Heavy-Flavor (HF) hadrons by fragmentation mecha-

nism. From the coalescence probability Pcoal(pT ) we assign the fragmentation

probability defined as P f ragm(pT ) = 1− Pcoal(pT ) and compute the HF hadron
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pT spectrum in the following manner

dNh(HQ)

d2pT dy
=

∫

dz

(

dNHQ

d2pT dy

)

f ragm.

D(HQ → hHQ)(z, Q2)

z2
(2.82)

In Eq.(2.82) the momentum spectrum of HQs which do not undergo to

coalescence is indicated as (dNHQ/d
2pT dy) f ragm. and it is convoluted with

the fragmentation functions (FFs) D(HQ → hHQ)(z, Q2), which give the

probability of charm or bottom quark to fragment into a corresponding HF

hadron carrying away a fraction z = ph/pc of the total momentum of the

leading HQ. Fragmentation process into a HF hadron is evaluated at momen-

tum scale Q2 = (ph/2z)2 and FFs are chosen within a universality class as in

vacuum fragmentation mechanism with Q2 evolution obtained through gen-

eral DGLAP equations. In particular, for hadronization at HQ mass scale we

employ Peterson FFs parametrization [108]

D(HQ → hHQ)(z) =
1

z
[

1 − 1
z
− ǫc

1−z

]2
=

z(1 − z)2

[

(1 − z)2 + ǫcz
]2

(2.83)

which are characterized by a peaked shape at z → 1 and so can feasible

model the property of HQs to have a harder fragmentation with respect to

light partons. In Fig. (2.16) we present Peterson FFs for charm and bottom

quarks. As we will discuss in Chapter 5 the ǫc parameter is determined by

tuning fragmentation from initial HQ spectra to reproduce the experimental

HF mesons and baryons yields in pp collisions measured at RHIC and LHC.

Before introducing the main QGP observables in the HQ sector, in the

next paragraph we will give a brief description of how the analysis of HQ

interaction within the QCD medium can be treated by means of the non-

perturbative lQCD approach (see Chapter 1).

2.5.6 Heavy quark diffusion in Lattice QCD

Transport properties of strongly interacting matter can be explored in lat-

tice QCD (lQCD) by analyzing the current-current correlations. Given some

79



2.5. Heavy Quarks in the QGP

 0

 5

 10

 0  0.2  0.4  0.6  0.8  1

D
H

Q
(z

)

z

c -> D
c -> Λc

 0

 5

 10

 15

 20

 25

 0  0.2  0.4  0.6  0.8  1
D

H
Q

(z
)

z

b -> B
b -> Λb

Figure 2.16: Peterson Fragmentation Functions (FFs) of charm (left) and bottom

(right) quarks as function of hadron momentum fraction z. The param-

eter ǫc in Eq. (2.83) is tuned to fragmentation either into HF mesons

(solid lines) or into HF baryons (dashed lines).

current J(τ, ~x) we can define the Eucildean space-time correlator [109]

G
αβ

J
(τ, ~x) =

∫

d3~x ei~p~x < Jα(τ, ~x)Jβ(0, ~0) >=

∫

dω

2π
ρ
αβ

J
(ω, ~p)K(ω, τ) (2.84)

where in the last step of Eq. (2.84) we introduced the spectral representa-

tion of the euclidean space-time correlation functions. Spectral functions

ρ
αβ

J
(ω, ~p) are actually difficult objects to calculate but rather very important,

because at high frequencies, i.e. large ω, they provide information about in-

medium formation of bound states, like resonances and quarkonia, while for

small values ω they give access to the response of the medium trough per-

turbations. This can be done in order to calculate electric conductivity σel in

case the system is perturbed by an external external Electro-Magnetic (E.M.)

field, or for example if we consider a HQ propagating in a thermodynami-

cally equilibrated plasma whose properties are thus probed through the HQ

interaction with the strong QCD fields. According to Kubo formulas in lin-

ear response theory, transport coefficients can be extracted from the spectral

function in equilibrium thermodynamics by calculating its slope in the limit
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of vanishing energy. Hence, if we identify the fermionic current with the vec-

tor current of HQ fields J
µ

V,HQ
(τ, ~x) = ψ̄HQ(τ, ~x)γ

µψHQ(τ, ~x) the corresponding

spectral function the vector channel is related to the diffusion coefficient Ds

of HQs inside the QGP by the following expression [110]

Ds =
1

6χHQ

2

lim
ω→0

lim
p→0

3∑

i=1

ρii
V,HQ

(ω, ~p,T )

ω
(2.85)

where χHQ

2
is the HQ number susceptibility which is defined through the ze-

roth component of the temporal meson correlator in vector (V) channel. This

is equivalent to the net charm number susceptibility calculated through an

expansion of thermodynamic variables (P/T 4) in lQCD at small non-zero

chemical potential [111]. The interest of calculating Ds in lattice QCD is mo-

tivated by the heavy quark energy loss puzzle [112, 113, 114]. Unexpectedly

HQs are found to lose significant energy and meanwhile strongly couples to

medium anysotropies. This results into measured observables which are not

describable by pQCD scheme, rather they need the formulation of more com-

plex non-perturbative interaction framework to be implemented within some

transport approach. Then, it is possible to compare the obtained Ds from

such phenomenological models to lQCD expectations of the same quantity

with the aim to investigate directly the properties of the dynamical system in-

teracting with the HQS with what QCD theory is indicating. That is actually

a goal of this thesis, hence we will postpone a more quantitative discussion to

the final Chapter.
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2.6 QGP and HQ Observables

2.6.1 Nuclear Modification Factor

Particles with high transverse momentum pT are produced at early-stages

of HICs and propagate through the QGP phase loosing a significant amount

of energy which is soon dissipated in the plasma. This phenomenon, com-

monly named as jet quenching of energetic partons [115], reflects into the

suppression of hadron distributions at high pT and is quantitatively estimated

through the nuclear modification factor RAA(pT ) which is defined as follows

RAA (b, pT ) =
d2Nhad

AA
/(d2pT dη)

Ncoll(b) d2Nhad
pp /(d

2pT dη)
=

d2Nhad
AA
/(d2pT dη)

TAA(b) d2σhad
pp /(d

2pT dη)
(2.86)

Experimentally the RAA corresponds to the ratio between hadron pT spectra

in nucleus-nucleus collisions and the same spectra measured in pp collisions,

properly scaled by the number of binary nucleon-nucleon collisions calcu-

lated from the Glauber model (Eq. (2.11)). Equivalently the RAA may be

defined as the measured hadron yield in AA collisions at mid-rapidity divided

by the production cross section of the same hadron species in pp collisions

(Eq. (2.59)) scaled by the overlap function for the estimated centrality class

(Eq. (2.3)). Hence, particles like photons which do not strongly interact with

the system and instead leave the central region almost unaffected have by

construction RAA ≃ 1 as it is experimentally demonstrated by PHENIX data

in Fig. (2.17) within the uncertainty bars. In the meantime this proves that

the measured deviation of RAA of π and η mesons from 1 at high pT hap-

pens because of the scattering processes happening within the dense QCD

plasma. There are many theoretical models which attempt to describe jet

quenching in terms of opacity expansion performed at the beginning for static

medium [116, 117] and later developed to included also the dynamical evolu-

tion of the medium [118, 119]. We refer to [120] for more details. First data

on suppression of Heavy-Flavor (HF) hadrons were collected at RHIC exper-

iments with the measurements of non-photonic single electrons e± coming

from the combined decay of D and B mesons quenched distributions [122].
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Figure 2.17: Picture from Ref. [121]: the nuclear modification factor of π0 and η

mesons at RHIC AuAu central collisions at
√

s = 200 AGeV is com-

pared to the measured RAA of direct photons. PHENIX data are quite

well reproduced within the parton jet quenching description through

Gyulassy-Levai-Vitev (GLV) model [115].

Still at RHIC the upgrade of STAR detectors lead to direct measurement of

RAA of prompt D0 in AuAu collisions at
√

s = 200GeV [123]. Both experi-

mental results are shown in Fig. (2.18) adapted from the recent review [88].

During the drawing up of this thesis STAR collaboration announced a re-

analysis of the measured D meson nuclear modification factor with conse-

quent correction of the experimental data [124]. Compared to previous results

the new data present significant suppression at low pT with a discrepancy

larger than their uncertainty bars, while they stay quite in agreement with the

old ones at high pT . With the beginning of the LHC era measurements of

the nuclear modification factor were carried out both for charged and neu-

tral light particles as well as for the HF hadrons where in this case the larger

charm production cross section σcc̄(LHC) ≈ 100 · σcc̄(RHIC) allowed for a

sufficient statistics for D meson detection quite immediately. In Fig. (2.19)

we report ALICE results for average D meson RAA in a wide range of pT

measured at LHC PbPb collisions at
√

sNN = 2.76TeV for central (left) and

peripheral collisions (right) compared to some models where charm quarks

lose energy either by only elastic collisions or where also energy loss by in

medium gluon radiation is accounted. Nowadays, also data for D meson pro-

duction at LHC most energetic HICs are available both from ALICE and also
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Figure 2.18: Left: Suppression of single e± from HF decay measure at RHIC central

collisions by PHENIX (black dots) and STAR (blue squares) collabo-

rations compared to some jet quenching theoretical models (see [88]

and references therein). The opaque region corresponds to the exper-

imental normalization factor from experiments. Right: Measured RAA

of prompt D0 meson from STAR at RHIC AuAu central collisions at√
sNN = 200GeV compared to transport approaches.

s

CMS collaborations [125] [126]. Let us focus on the problem arising from

this experimental results. It was quite surprising to observe such significant

suppression charm spectra with a value of the measured RAA comparable with

that for light hadrons. Such unexpected result is an indication that HQs prop-

agate in a strongly interacting QGP and at least for charm quarks can achieve

thermalization condition. This is the reason why preliminary models based

on a pQCD interaction of HQs (see Ref. [127]) completely fails to reproduce

the observed suppression with also a too large estimated thermalization time

τeq(pQCD) ∼ 15 − 20 f m for charm quarks. Moreover the majority of theo-

retical models develop jet quenching kernel with a mass hierarchy condition,

motivated for example by QED analogy of bremsstrahlung difference from

electrons to muons whose, ∆Eµ ≃ ∆Ee(me/mµ)
4, or from QCD assumptions

on color factors as firstly calculated in Ref. [128]. In the high pT region

where radiative energy loss is dominant, one should expect for the various

partonic species such behavior ∆Eb < ∆Ec < ∆Eq ≤ ∆Eg, the gluon being

larger than the light quarks due to splitting contributions. However, this is not

observed experimentally at least from the comparison of charm to charged

suppression, while for a mass hierarchy condition between charm and bottom
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Figure 2.19: Average D meson RAA experimentally measured at LHC central col-

lisions and compared to transport approaches. For central collisions

(left) initial charm spectra in PbPb accounts for CNMEs as pointed

out by the red solid curves which come from the EPS09 parametriza-

tion [90]. For semi-peripheral collisions (right) shadowing is included

within some models resulting in an integrated RAA smaller than 1. Pic-

ture is adapted from Ref. [78]

a final conclusion cannot be established yet due to the large uncertainties in

the available data form B mesons which at LHC lack of a significant amount

of statistics, while at RHIC energies they can only be inferred by undirect

unfolding extrapolations from D mesons measurements. That, of course, rep-

resents a very interesting puzzle which is also is conditioned by the fact of

how interacting HQs then couple to the bulk anisotropies to the develop an

observed large elliptic flow as we will soon discuss. We mention here that

most part of this work is devoted to solve such puzzle and based on previous

investigation which brought towards a solution of this problem we faced up

with new unexpected phenomena which seem to us strongly correlated to the

challenging of HQ observables. That relates for example to the inclusion of

what hadronization of HQ tell us about the final produced HF mesons and

baryons. We will focus on this discussion in Chapter 5.
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Figure 2.20: Schematic representation of collective flow formation. The Reaction

Plane (RP) is identified by the impact parameter b and the longitudinal

direction along the beam axis z.

2.6.2 Elliptic Flow

In non-central (b , 0) nucleus-nucleus collisions the overlapping region is

characterized by a large anisotropy in coordinate space that can be quantified

in terms of spatial eccentricity

ǫx (b) =
〈y2 − x2〉
〈y2 + x2〉 (2.87)

The initial value of such eccentricity can be calculated through Glauber

Model or Color Glass Condensate [129] where x and y in Eq. (2.87) are

the positions of the participating nucleons in the transverse plane, while the

brackets denote an average over their number. In hydrodynamical descrip-

tion matter in this region is characterized by high density and temperature

with pressure gradients that make it more compressed along the direction of

impact parameter b with respect to the orthogonal direction in the transverse

plane (∂xP > ∂yP). Such pressure gradients generate collective flows which

drive the expansion and cooling of the fireball to reach thermal equilibrium at

estimated timescale of the order of 1 f m. A schematic illustration is given in

Fig. (2.20). During this phase, the initial spatial deformation is converted by

particle interaction to anysotropies in momentum space which experimentally

can be analyzed in terms of Fourier expansion of the azimuthal momentum

distribution of particles with respect to the Reaction Plane (RP). Hence, the
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invariant momentum distribution can be written as

E
dN

d3~p
(b) =

dN

2πpT dpT dy
·


1 +

∞∑

n=1

vn(b; pT , y) cos (n(φ − ΦRP))



 (2.88)

where φ is the azimuthal angle of the particle and ΦRP is the azimuthal angle

of the reaction plane in the laboratory frame that is determined experimentally

with sophisticated techniques [130, 131]. The magnitude of the anysotropic

flows is encoded in the Fourier coefficients vn in Eq. (2.88) which are defined

with respect the angle of the reaction plane. In particular, if the evolution of

the fireball starts from an initial almond shape as represented in Fig. (2.20),

the largest harmonic flow is represented by the second coefficient of the den-

sity expansion which is known as elliptic flow and it is determined through

the following formula

v2(b; pT , y) = 〈cos (2 (φ − ΦRP))〉 =
〈

p2
x − p2

y

p2
x + p2

y

〉

(2.89)

Measurements of elliptic flow have been extensively conducted both at RHIC

and LHC experiments. Since the angle of the reaction plane in Eq. (2.89)

can not be directly measurable, the estimate of v2 passed through the analy-

sis of two and four-particle azimuthal correlations with the aim to suppress

non-flow contributions generated by resonance decays and jets reconstruc-

tion [132]. In Fig. (2.21) experimental measurements of v2 at RHIC AuAu

collisions at
√

sNN = 200GeV are compared with hydrodynamical calcula-

tions for different values of constant shear viscosity starting from perfect fluid

simulations (η/s = 10−4) and increasing the value of η/s with integer steps

of the lowest bound conjecture η/s = 1/4π that is computed through the cor-

respondence of the Anti-de Sitter Conformal Field Theory (AdS/CFT) to a

SU(4) supersymmetric Yang-Mills theory [135]. Indeed since the expansion

of the system and the build-up of collective motion depend on the velocity

of sound cs =
√
∂P/∂ǫ, then elliptic flow is an observable that provides ex-

perimental information on the EoS of the expanding matter. In particular, if

evolving matter is characterized by high density and large interaction cross
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Figure 2.21: Measured elliptic flow for charged particles by STAR [133] as function

of transverse momentum compared to viscous hydrodynamical calcu-

lations from [134].

section with reduced dissipative effects, i.e. low viscosity, is able to carry

higher anysotropic correlations among particles, resulting in a large elliptic

flow and indicating that system rapidly can reach thermalization. However,

probing the EoS of QCD through the magnitude of the v2 is affected by uncer-

tainties in the initial spatial eccentricity as well as in the temperature depen-

dence of the η/s coefficient. Another important property of the elliptic flow

has been pointed out by measurements of correlations among charged parti-

cles at RHIC energy. In Fig. (2.22) we report experimental taken from PHO-

BOS [136] where the elliptic flow of identified mesons and baryons is plotted

as function of transverse momentum divided by nq which stands for the num-

ber of valence quarks within each hadron species (nq = 2 fora mesons, nq = 3

for baryons). One observes a scaling property which cannot be addressed

within hydrodynamical description, while it finds a natural explanation in a

coalescence hadronization model, which predicts that the v2 of any hadronic

species is related to the partonic flow of the recombining quarks in the fol-

lowing way

vhad
2 (pT ) ≃ nqv

q

2
(pT/nq) (2.90)

Such scaling property clearly indicates that collective flow is developed at the

partonic level, hence it is a signature of the deconfined QGP phase. However,

88



2.6. QGP and HQ Observables

Figure 2.22: Picture from Ref. [136]: (a) scaled v2/nq as function of pT/nq where nq

is the number of constituent (recombined) quarks, no more large differ-

ence between baryon and meson v2 is visible; (b) same v2/nq plotted as

function of transverse kinetic energy KET = mT −m =

√

p2
T
+ m2−m,

where also mass ordering is reabsorbed.

such results is spoiled since at RHIC energy a breaking of the scaling relation

is already observed, that becomes stronger (≈ 20%) at LHC energy where

hadronization by coalescence plays a secondary role.

The elliptic flow of charmed mesons and their decay products has been

investigated for the first time at RHIC experiments, where PHENIX collected

azimuthal anysotropic correlations for single non-photonic e± [122] while

STAR recently achieved to measure the flow magnitude of prompt D0 in min-

imum bias AuAu collisions [137]. In both cases the observed v2 value was

large and almost comparable with the one of light hadrons, meaning that HQs

are strongly coupled to the bulk anysotropies and indicating the possibility of

HQS to reach thermalization at low pT . The same trend was observed also

at LHC PbPb collisions at
√

s = 2.76 ATeV from ALICE detector, while at

higher energy experimental results are available both from ALICE and CMS

collaborations [138, 139] where also different techniques are employed to get

rid of the dependence on the reaction plane and to measure the v2 and higher

flow harmonics vn by means of event shape engineering [140]. These experi-

mental results open a scenario where the observed high suppression of HQs is

linked to their strong coupling with the bulk flow. This represents a challenge
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Figure 2.23: (a) Average D meson v2(pT ) measured at LHC collisions PbPb periph-

eral collisions at
√

sNN = 2.76TeV by ALICE and compared to some

transport approaches. Picture is adapted from Ref. [78]. (b) Elliptic

flow of prompt D0 measurements from ALICE and CMS in PbPb col-

lisions at
√

sNN = 5.02TeV compared to the v2 of identified charged

hadrons at lower energy and represented as function of transverse mass

scaled by the number of valence quarks. Picture is taken from [77].

for theoretical framework which attempt to describe HQ propagation in the

QGP by means of pQCD driven interaction or in a non-perturbative fashion.

Models which are able to reproduce the measured RAA usually predicts too

small v2, while models which attempt to describe the observed v2, generally

they do despite a resulting too strong suppression. This puzzling problem has

been addressed in different ways, among which the possibility to relate the

correlation among these two observables to the dependence of HQ interac-

tion on some physical properties of the medium. We will discuss in detail

about this issue in Chapter 4.
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CHAPTER 3

TRANSPORT THEORY AND HEAVY QUARK

DYNAMICS IN QGP

3.1 Classical Relativistic Transport Theory

We introduced the concept of phase-space distribution function for a dy-

namical system constituted of many classical (relativistic) particles already in

Chapter 2 when discussing about the QGP thermal phase before rapidly shift

to formulation of hydrodynamics. Through the function f (x, p) also called as

Lorentz scalar phase density [141] we can define an appropriate probability

in the phase space volume in the following way

dP(x, p) ≡ f (x, p)d4x d4p (3.1)

In Eq. (3.1) dP(x, p) denotes the probability of finding a particle in the space-

time volume d4x = dt d3~x centered at position x = (t, ~x) and with four-

momentum in the range (p, p + d4p). In case of a system formed by rela-

tivistic on-shell particles we take into account the dispersion relation which

fixes the first component of the four-momentum p to the particle energy, i.e.

p0 = E =
√

|~p|2 + m2 where m is the particle mass. To construct a rela-

tivistic kinetic theory we need to derive an evolution equation for f (x, p) in
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terms of the proper time τ of the system. In the case the system is a gas of

non-interacting particles the uniqueness of Newton’s equations in their rel-

ativistic generalization ensures that particle number remains constant within

each phase-space volume whose size is also a constant integral of motion.

Collecting both conditions and applying them directly on Eq. (3.1) we come

up with the Liouville’s theorem which states that the in the presence of only

conservative forces the phase-space distribution function f (x, p) is constant

of motion
d f (x, p)

dτ
= 0 (3.2)

In order to work out with Liouville’s statement we need to provide an explicit

expression for the phase-density f (x, p). In particular, with the meaning of

single-particle distribution function f (x, p) can be represented in terms of

dynamical test-particles

f (x, p) =

N∑

i=1

δ(4) (xi(τ) − x) δ(4) (pi(τ) − p) (3.3)

where in Eq. (3.3) each particle of the whole sample N is labelled by the index

i and its motion trajectory in the space-time is indicated as xi(τ) with four-

momentum p(τ). Then, substituting Eq. (3.3) in Eq. (3.2) and using definition

of relativistic four-velocity dxµ/dτ = pµ/E and external or self-consistent

internal four-force Fm = dpµ/dτ we obtain

d f (x, p)

dτ
=

N∑

i=1

{
∂x

µ

i

∂τ

∂

∂xµ
+
∂p

µ

i

∂τ

∂

∂pµ

}

δ(4) (xi(τ) − x) δ(4) (pi(τ) − p)

=

{

pµ

m

∂

∂xµ
+ Fµ(x)

∂

∂pµ

}

f (x, p) = 0

(3.4)

which is known under the name of Relativistic Vlasov Equation. General-

ization of transport theory should incorporate dissipative phenomena for the

description of classical interacting gases. When we introduce scattering pro-

cesses within the system, we have to consider Liouville’s theorem as invalid

because the number of particles within the phase-space volume is not constant
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3.1. Classical Relativistic Transport Theory

anymore. This can be addressed by adding on the right hand side of Eq. (3.4)

a dissipative term which accounts for the four-momentum variation through

particle collisions

{

pµ

m

∂

∂xµ
+ Fµ(x)

∂

∂pµ

}

f (x, p) = C[ f ](x, p) (3.5)

Eq. (3.5) is the well-known Relativistic Boltzmann Equation (RBE) and the

interaction kernel C[ f ](x, p) is called collision integral. In general C[ f ](x, p)

is a nonlinear functional of the density functions of each particle species k in

the gas, being responsible of the coupling among the following equation of

motions

{

pµ

m

∂

∂xµ
+ Fµ(x)

∂

∂pµ

}

fk(x, p) = C[ fk, fh, ...](x, p) k, h = q, q̄, g (3.6)

in the case for example we consider Boltzmann equations for an interacting

plasma of quarks and gluons. Moreover, the collision integral includes all

possible kind dissipative phenomena, usually divided into elastic and inelas-

tic processes, while it could also account for two or higher particle correla-

tions which are encoded within appropriate phase density distributions like

for example f2(x1, p1; x2, p2) for the two-particle case. As a consequence the

derivation of an explicit formula for C[ f ](x, p) can be done only in advance

of certain assumptions. In particular, we will make use of the relativistic

equivalent statements [142]

1) The collision probability decreases as the number of particles involved

in the reaction increases. Hence, we can expand the collision integral

as a series on microscopic process and retaining for our work only the

two-body scattering term.

C[ f ] = C22[ f ] +C23[ f ] +C32[ f ] + · · · ≈ C22[ f ] (3.7)

This corresponds to the original assumption made by Boltzmann when

he derived his own equation for non-relativistic dilute gases where he

considered only elastic binary collisions between on-shell particles.
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2) The distribution function f (x, p) varies slowly on a time period which

is comparable with the characteristic mean free path of the collision

λm f p|∇x log f (x, p)| ≪ 1. This means that within the duration of a scat-

tering process we can consider f (x, p) as a constant.

3) The particles’ momenta and spatial coordinates are uncorrelated vari-

ables which means that in a uniform plasma the probability of finding

two particles located at positions x1 and x2 having momenta respec-

tively of p1 and p2 can be written as the product of the corresponding

single-particle distribution functions

f2(x1, p1; x2, p2) = f (x1, p1) · f (x2, p2) (3.8)

This statement is named as Boltzmann’s Stosszahlansatz (molecular

chaos) which implies also that the binary collision term C22[ f ](x, p) is

proportional to the product of the phase densities of the two scattering

particles f (x, p) f (x, p′).

3.2 Quantum Transport Theory

3.2.1 Non-Relativistic Wigner formalism

In the previous paragraph we have derived transport equations in clas-

sical kinetic theory provided a consistent definition of the density function

f (x, p). Now, considering some physical observable which is defined by a

proper function O in the phase-space, its average value can be calculated

through the following expression

O =

∫

dxdp O(x, p) f (x, p) (3.9)

involving the one-body density function f (x, p). We may ask whether there

exists in quantum mechanics a correspondence of the phase-space distribu-

tion function which yields to calculate the expectation value of the hermitian

operator Ô related to the same physical observable in terms of a phase space
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3.2. Quantum Transport Theory

integral similar to the classical form Eq. (3.9). One possible answer is pro-

vided by the formalism based on the Wigner function. In quantum theory

the time evolution of a system can be described by formulating a hermitian

density matrix

ρ̂ =
∑

i

wi |ψi〉 〈ψi| (3.10)

where {ψi} forms a complete orthonormal set and the real expansion coeffi-

cients are non-negative values wi ≥ 0 and fulfill the normalization condition
∑

i wi = 1. The time evolution of the density ρ̂, given the Hamiltonian opera-

tor Ĥ of the quantum mechanical system , can be derived through the Schrö

equation for the state vectors

|ψi(t)〉 = e−iĤt/~ |ψi(0)〉 (3.11)

where we indicate explicitly the ~-dependence arising in the (unitary) time

evolution operator. Then, plugging Eq. (3.11) in the ρ̂ definition Eq. (3.10)

we obtain straightforwardly

∂ρ̂(t)

∂t
=

i

~

[

ρ̂(t), Ĥ
]

(3.12)

which differs from the usual equation for the time evolution of the operator Ô

(in Heisenberg representation) by an additional minus sign on the right hand

side. Consistently we can compute the expectation value of any observable

as

〈Ô(t)〉 = Tr
[

ρ̂(t)Ô
]

=
∑

i

〈ψi(t)| Ô |ψi(t)〉 (3.13)

For any quantum mechanical operator Â it is possible to define its Weyl trans-

form [143]

Ã(x, p) =

∫

dy

2π~
eipy/~ 〈x+| Â |x−〉 (3.14)

where x± = x±y/2 and which given another operator B̂ leads to the following

relation

Tr
[

ÂB̂
]

=

∫

dxdp Ã(x, p)B̃(x, p) (3.15)

95



3.2. Quantum Transport Theory

The Weyl transform of the density matrix ρ̂ is known as Wigner function

W(x, p) =

∫

dy

2π~
eipy/~ 〈x+| ρ̂ |x−〉 =

∫

dy

2π~
eipy/~Ψ(x+)Ψ

∗(x−) (3.16)

where in the last step we introduced the pair of wave functions Ψ(x+)Ψ
∗(x−)

which has univocal expansion with respect to the orthonormal states entering

in the definition of the ρ̂ operator Eq. (3.10). Then, using Eq. (3.16) into the

expectation value formula, it follows

〈Ô(t)〉 =
∫

dxdp Õ(x, p)W(x, p) (3.17)

which compared to Eq. (3.9) implies that the Wigner function in quantum the-

ory plays in many aspects the same role that phase space density f (x, p) has

in classical statistical mechanics. The problem of quantum transport theory is

encoded in the time evolution equation for the density matrix Eq. (3.12) and

for the expectation values for the operators Eq (3.13) which through Ehren-

fest’s theorem obeys the laws of classical mechanics. Therefore, a quantum

version of the Vlasov equation for the evolution of theWigner function can be

obtained by Weyl transforming these equations. In particular, starting from

Eq. (3.12) with specific Hamiltonian Ĥ = p̂2/2m + Û and applying Wigner

transformation, we get

∫

dy

2π~
eipy/~ 〈x+|

(

∂ρ̂(t)

∂t
− i

~
[ρ̂,

p̂2

2m
+ Û]

)

|x−〉 = 0 (3.18)

Then, after introducing coordinate and momentum unitary relations and per-

forming some calculations we obtain what can be considered an equation of

motion for the Wigner function

∂W(x, p)

∂t
+

p

m

∂W(x, p)

∂x
+

∑

k=0

1

(2k + 1)!

(

~

2

)2k

U(x)

(←−∇ x ·
−→∇ p

)2k+1

W(x, p) = 0

(3.19)

with gradients operator acting along the direction of the arrows. We have

done no approximations so far, hence this result is exactly equivalent to the

Schrödinger equation for the quantum wavefunction. At this point, if the
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gradient of the potential is not too strong, the summation over k index can

be truncated at the first term. This implies that the ~-dependence does not

appear explicitly, but still quantum dynamical effects are accounted within

the Wigner function. Such truncation leads to the following result

∂W(x, p)

∂t
+

p

m

∂W(x, p)

∂x
+ ∇xU(x) · ∇pW(x, p) = 0 (3.20)

which has the same form of the classical transport equation that can be derived

from Eq. (3.4) in the non-relativistic limit

{

∂

∂t
+ ~v · ∇x + F · ∇p

}

f (t, ~x, ~p) = 0 (3.21)

However, we notice that Eq. (3.20) remains exact in case of linear and quadratic

(harmonic) potentials, since the original expression Eq. (3.19) contains only

odd derivative of the potential.

3.2.2 Transport of Quantum Fields: The sigma model

In order to extend the Wigner formalism previously introduced to the rela-

tivistic quantum fields we employ as an example the O(4) linear sigma model

which among its various applications it undergoes a finite temperature second

order phase transition through a spontaneous broken and restored symmetry

phases which is very similar to the chiral properties of QCD [144, 145] (see

Chapter 1). The Lagrangian density of the model is given by

Lσ =
1

2
(∂φ(x))2 − 1

2
µ2φ2(x) − λ

4!
φ4(x) (3.22)

where φ is a four-component scalar field parametrized as φ = (σ, vecπ) and

the mass term is chosen with the wrong sign µ2 < 0, such that the potential

V(φ) = 1
2
µ2φ2 + λ

4!
φ4 is equivalent to the Mexican-hat form which leads the

system to spontaneously brake symmetry already at three level. In partic-

ular, fluctuations of the σ(x) field around the vacuum expectation value σ0

97



3.2. Quantum Transport Theory

obtained as a minimum of the potential

dV

dφ
=

(

µ2 +
λ

3!
φ2

)

φ→ σ0 =
√

−6µ2/λ (3.23)

causes the shifted field σ → σ − σ0 field to acquire a non-zero mass, while

the pion fields ~π correspond to the three massless Goldstone modes each one

related to a generator of the unbroken O(3) symmetry. This is visible in the

equation of motions of the corresponding Heisenberg operators

∂2~π(x) + m2
π~π(x) +

λ

3!
|~π|2~π(x) = 0

∂2σ(x) + m2
σσ(x) +

λ

2
σ0σ

2(x) +
λ

3!
σ3(x) = 0 (3.24)

with defined mass parameters

m2
π =

λ

3!
(σ2 + 2σ0σ) , m2

σ =
λ

3!
(|~π|2 + 2σ2

0) (3.25)

where we can see that in the limit σ → 0, we get mπ → 0 and m2
σ → λσ2

0
/3.

In order to solve the equation of motions of the field operators Eq. (3.24), we

need to define a proper density matrix operator ρ and compute the expectation

values, such as 〈σ〉 = Tr(ρσ), which evolve consistently with the classical

quantities. However, taking the expectation value of Eq. (3.24) determines a

coupling among the general n-point correlation (Wightman) functions which

generates a hierarchy of equations similar to the Bogoliubov-Born-Green-

Kirkwood-Yvon (BBGKY) set [142] which couples the n-body distribution

functions and truncated at first order with molecular chaos assumption on f2

leads to classical kinetic Boltzmann theory. In QFT the simplest truncation

of such hierarchy of Wightman function equations is realized through Hartree

approximation which is realized by factorizing the higher order expectation

values of fields into products of one- and two-point functions. Then, for ex-
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ample for the bracket 〈...〉 of three sigma fields we have

〈σ1σ2σ3〉 = 〈σ1〉〈σ2σ3〉 + 〈σ2〉〈σ1σ3〉 + 〈σ3〉〈σ1σ2〉 + 〈σ1〉〈σ2〉〈σ3〉
= σ1〈σ2σ3〉 + σ2〈σ1σ3〉 + σ3〈σ1σ2〉 + σ1σ2σ3 (3.26)

where the subscripts refer to different space-time points and in the last chain

we interpret expectation values of the σ(x) field shifted with respect the the

mean field σ(x) = 〈σ(x)〉. Similar equations holds for the Wightman func-

tions of the pion fields for which we assume 〈~π(x)〉 = 0. Within this procedure

we can write down the dynamical equations for the mean field and the two-

point correlation function



∂
2
1 + m2

σ1
+
λ

2





σ2
1

3
+ σ0σ1 + 〈σ2

1〉






σ1 +
λ

2
σ0〈σ2

1〉 = 0

[

∂22 + m2
σ2
+ λσ0σ2 +

λ

2

(

σ2
2 + 〈σ2

2〉
)]

〈σ1σ2〉 = 0 (3.27)

In order to derive transport equations we define now a suitable Wigner oper-

ator as following [141]

Wab (x, p) =

∫

d4y

(2π~)4
e−ipy/~〈: Φ̂a(x+)Φ̂b(x−) :〉 (3.28)

where with the capital Φ̂ we indicate the four-component field
(

σ,~π
)

sub-

tracted by the mean field σ(x), while the colons denote normal ordering to

neglect the vacuum properties. The Wigner operator can be used straight-

forwardly to calculate the energy-momentum tensor T µν of the sigma O(4)-

model and to write expectation values of the two-point correlation functions,

such as

〈σ2(x)〉 =
∫

d4pWσσ(x, p) (3.29)

We can plug this relation directly in the second Eq. (3.27) to obtain

(

~
2

4
∂2x − p2 + i~pµ∂

µ
x + exp

(

−i
~

2
∂x∂p

)

(m∗(x))2
)

Wσσ(x, p) = 0 (3.30)
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where the x-derivative in the exponential acts on the quantity (m∗(x))2 which

is defined as following

(m∗(x))2 = m2
σ(x) + λσ0σ(x) +

λ

2

(

σ2
(x) + 〈σ2(x)〉

)

(3.31)

We can handle this equation with its complex adjoint to derive the transport

equation
[

p · ∂x −
1

~
sin

(

~

2
∂x · ∂p

)

(m∗(x))2
]

Wσσ(x, p) = 0 (3.32)

together with a generalized mass-shell condition

[

p2 − ~
2

4
cos

(

~

2
∂x · ∂p

)

(m∗(x))2
]

Wσσ(x, p) = 0 (3.33)

Finally, we can perform a systematic semiclassical expansion in powers of ~

which at leading order results into a form of a Vlasov equation constrained

with a mass-shell relation

[

p · ∂x −
1

2
∂x · ∂p(m

∗(x))2
]

Wσσ(x, p) = 0 (3.34)

The Eq. (3.34) does not contain any collision term as we expect, since the

Hartree approximation leads to an effective non-dissipative evolution of the

quantum system [146]. On the other hand, difficulties arise because the effec-

tive mass m∗(x) has to be calculated self-consistently by solving the dynami-

cal equation for the mean field which involves integrals of the kind Eq. (3.29).

Through relation between the Wigner function and the one-body phase space

distribution f (x, p) = W(x, p)/m∗(x) we obtain

(

pµ∂
µ
x + m∗(x) ∂µxm∗(x) ∂p,µ

)

f (x, p) = 0 (3.35)

which describes the evolution of f (x, p) for particles under a λφ4 interaction.
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3.3. Boltzmann approach for QGP dynamics

3.3 Boltzmann approach for QGP dynamics

A realistic description of the QGP evolution by means of transport ap-

proaches has to deal with two important issues. The first one is that Lattice

QCD (lQCD) calculations predict that the energy density deviates from the

Stefan-Boltzmann limit of a perfect gas by about 15 − 20% resulting in a

value of the interaction measures 〈Θµ
µ〉 = ǫ − 3P significantly different from

zero [23]. In this scenario of course perturbative QCD treatment completely

fails in reproducing lQCD expectations within the temperature range explored

by HICs, while the agreement occurs at T ≥ 4 − 5Tc. The second one is

that by means of effective field theory based on a resummation over the soft

gauge fields at the scale gT , the so-called Hard Thermal Loop (HTL) expan-

sion [147], one is able to reproduce the trace anomaly down to T ≈ 2Tc al-

ready at next-to-leading order. What is important for our discussion is that the

HTL approach motivates a QGP picture based on weakly interacting quasi-

particle modes. A successful way to account the non-perturbative QCD ef-

fects at non-zero temperature which exhibit within the lQCD thermodynam-

ical expectations is to encode part of these features within effective particle

masses by prescription of a Quasi-Particle Model (QPM). In this section we

provide a brief introduction of our Quasi-Particle Model (QPM) and its im-

plementation within our Boltzmann transport framework for the description

of dynamical evolution of the bulk matter above the critical temperature Tc.

We stress here that even our focus is projected towards a transport approach

for Heavy Quarks (HQs), a realistic evolution of the background medium is

mandatory to achieve a correct description of HQs dynamics and their related

observables.

3.3.1 Quasi-Particle Model for bulk interaction

The origin of quark and gluon masses can be explained as the energy

contribution coming out from the particle correlations within the strongly

interacting QCD medium [148]. If large part of the interaction can be ab-

sorbed into these effective masses, then we can treat the dynamical system
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as a gas formed by massive free quasi-particles and recast the dissipative ef-

fects within a Boltzmann-like collision kernel. In agreement with other ap-

proaches [149, 150, 151], we provide the expressions of these partonic masses

according to their thermal pQCD evaluation at zero chemical potential which

results for gluons and quarks respectively to the following temperature de-

pendence

m2
g(T ) =

2Nc

N2
c − 1

g2(T )T 2

m2
q(T ) =

1

Nc

g2(T )T 2

(3.36)

where Nc = 3 is the number of colors, N f = 3 is the number of flavors and

we consider the strength coupling g as general T-dependent function, rather

than constraining it to the pQCD expectation which would not permit the

match with lQCD thermodynamics. We refer briefly to the effective quasi-

particle masses in Eq. (3.36) as QPM masses. In the end the model has to

be completed by introducing a bag pressure contribution B(T ) which takes

into account further non-perturbative effects like for example the formation

of gluon condensate in a pure gauge theory [152]. Moreover, we consider

a T-dependent bag contribution B(T ) in order to preserve thermodynamical

consistency and preserve the entropy expression of an ideal gas s(T ) = ∂P/∂T

[148]. In this framework the pressure of the system is given by

P(mg,mu,md,ms,T ) =
∑

i=u,d,s,g

νi

∫

d3~p

(2π)3
p2

3Ei(p)
fi(Ei) − B(T ) (3.37)

where νi are the internal color and spin degrees of freedom, i.e. νg = 16

for gluons and νq = 2 × 6 for quarks (plus antiquarks), Ei(p) =

√

p2 + m2
i

is the dispersion relation with QPM masses from Eq. (3.36) and fi(p) =
[

1 ± exp(Ei(p)/T )
]−1

are the equilibrium Fermi (+) and Bose (-) distribution

functions. Thermodynamic consistency is imposed by minimizing the pres-

sure Eq. (3.37) with respect to the QPM masses at fixed temperature, i.e.

(∂P/∂mi)T = 0, giving rise to the following set of equations for the bag pres-
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sure
∂B

∂mi

+ νi

∫

d3~p

(2π)3
mi

Ei(p)
fi(Ei) = 0 (3.38)

which however are not independent, because the T-dependence of the partonic

masses through the strength coupling g(T ) is constrained to the QPM expres-

sions in Eq. (3.36). Finally, we derive the energy density from pressure by

means of thermodynamics relationship ǫ(T ) = T (∂P/∂T ) − P(T ), obtaining

the following expression

ǫ(T ) =
∑

i=u,d,s,g

νi

∫

d3~p

(2π)3
Ei(p) fi(Ei) + B(mi(T )) (3.39)

In the model B(T ) and ǫ(T ) are two unknown functions but they are not in-

dependent, because they are related through the thermodynamic consistency

Eq. (3.39). Hence, we need to determine only one function and we choose to

do so by fixing the energy density Eq. (3.39) to the expectations from lQCD,

i.e. imposing

ǫQPM(T ) = ǫlQCD(T ) (3.40)

We solve this condition by treating the strength coupling g(T ) as a free pa-

rameter and adopt for T > Tc the following parametrization

g2(T ) =
48π2

(11Nc − 2N f ) ln
[

λ
(

T
Tc
− Ts

Tc

)]2
(3.41)

which is in agreement with other quasi-particle approaches [150, 153]. In

Eq. (3.41) the parameter values are fitted to reproduce the lQCD energy den-

sity from Wuppertal-Budapest collaboration [154]. In particular, we obtain

λ = 2.6 and Ts/Tc = 0.57 for critical temperature Tc = 0.155GeV . For a

detail description of the derivation of the QPM strength coupling Eq. (3.41)

and the subsequent derivation of the EoS tuned to the available expectations

from the various lQCD collaborations we refer to [148].

In the picture below we present our results for the behavior of the strength

coupling g(T ) and the resulting thermal masses Eq. (3.36) that from this mo-

ment on will constitute our QPM interaction to be included in our Boltzmann
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transport framework both for the bulk and heavy quark dynamics. We will

address this issue in the next sections. We focus here on the fact that the in-
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Figure 3.1: The T-dependence behavior of effective thermal masses Eq. (3.36) for

gluons (blue line) and quarks (black line) is plotted on the left plot, while

the QCD strength coupling αs = g2/4π is shown on the right one. The

QPM interaction represented by the solid black line of the right plot in-

creases higher when T → Tc compared to the running pQCD formula

represented by the orange dashed line. Both results are obtained by tun-

ing the calculated QPM energy density Eq. (3.39) to lQCD expectations

provided by Wuppertal-Budapest collaboration [154].

clusion of non-perturbative effects by means of QPM prescription leads to an

enhancement of the strength coupling towards Tc that can be interpreted as the

arising of a confining force which addresses also the increasing of the quasi-

particle masses, while at higher temperatures the QPM interaction tends to the

asymptotic pQCD behavior as we can see on the right hand side of Fig. (3.1)

where we plot the defined coupling constant αs = g2/4π resulting the QPM

fit Eq. (3.41) compared to the pQCD formula Eq.(1.14) in Chapter 1 where

we used Q2 ∼ (πT )2. For sake of completeness, other approaches encode the

confinement remnants within a gluonic mean field procedure coupled to the

same quasi-particle masses [152] and obtain a decreasing behavior of mg(T )

as T → Tc in agreement with the melting expectation in a valence gluon

model.
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3.3.2 Transport approach for quasi-particles

In the previous paragraph we have introduced a Quasi-Particle Model

(QPM) for describing the properties of a strongly interacting QGP at equi-

librium in a wide range of temperatures and, in particular, we have shown

that with the QPM microscopic description we can describe correctly the

QCD thermodynamics in agreement with lQCD expectations. The goal is

now to develop a kinetic theory for describing the dynamical evolution of the

QPM distribution functions within a Boltzmann transport approach. In order

to extend the quasi-particle picture to a non-equilibrium system we need to

account for two considerations. The first one is that in the regime where lo-

cal thermodynamic equilibrium is valid the dispersion relation for the quasi-

particles becomes space-time dependent Ei(p, x) =
√

p2 + m2
i
(x) and the x

dependence of the QPM masses Eq. (3.36) is given through the estimated

temperature T (x) in the local region of the fireball. The second one is that the

distribution functions for the various partonic species fi(p) (i = g, q) appear-

ing for example in Eq. (3.37) (3.38) (3.39) are not at once equivalent to the

equilibrium Fermi or Bose expressions, rather they have to be considered as

time dependent functions of the non-equilibrium expanding system. In order

to do that in a rigorous way we should derive the equation of motions start-

ing from an effective lagrangian which describes the system in terms of the

quasi-particle fields and then trace back the same calculation we have done

for the case of the linear sigma model with the final result to get the exact

equation of motions for the QPM distribution functions. A similar procedure

has been applied for example in the case of the NJL model [155] [156], which

we described in Chapter 1. However, for our case we may place in a so-called

Mean Field Approximation and view the QPM masses as arising from the

contribution of a scalar field which has the well known effect to generate ef-

fective space-time dependent masses. Then, what we have to do is simply

write the Boltzmann equation starting from a free Lagrangian coupled to a

scalar field, that is exactly the result obtained for the linear sigma model case

just including the collision integral to the Vlasov equation Eq. (3.35). Hence,
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we have

(

pµ∂
µ
x + m∗(x)∂µxm∗(x)∂p,µ

)

fg,q,q̄(x, p) = C[ fg, fq, fq̄](x, p) (3.42)

In the QPM m∗(x) is linked to the bag pressure B(x) through the constraint

Eq. (3.38) which account for thermodynamic consistency, but in the more

general case of non-equilibrium this relation can be derived by constructing

the energy-momentum tensor for the quasi-particle system [157]

T µν(x) =
∑

i=g,q,q̄

νi

∫

d3~p

(2π)32Ei(p, x)
pµpν fi(x, p) + ηµνB(m∗(x)) (3.43)

where Ei(p, x) =
√

p2 + m∗(x) and the sum is carried over the gluons and all

the quark (antiquark) flavors. Then, imposing the conservation law ∂µT
µν(x) =

0, one gets an expression which links the effective mass m∗(x) to the distribu-

tion functions of the bulk partons

∂B

∂m∗ = −νi

∫

d2~p

(2π)3
m∗(x)

Ei(p, x)
fi(x, p) (3.44)

which we have to solve self-consistently with eq. (3.42) and for the validity of

the approach we have to assure the this space-time dependent mass is equiv-

alent to the QPM mass Eq. (3.36) calculated at the equilibrium temperature,

i.e. m∗(x) = mi(T ). A detail description of this check with the consequent

result to get a self-consistent non-equilibrium generalization of the stationary

QPM thermodynamics followed by the correct meaning of the distribution

functions in Eq. (3.42) is described in [158].

3.3.3 Transport theory at fixed η/s

Long last we have built our kinetic transport theory to describe from

a microscopic point of view the dynamical evolution of the QGP and we

could compare it to the hydrodynamics prescriptions which are based in-

stead on macroscopic conservation laws as we discussed in the paragraphs

of Sec. (2.3). However, it is not our aim to pull out differences among these
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approaches, because the only thing we need is to setup a realistic picture

of the bulk properties to layout the dynamics of Heavy-Quarks (HQs) on it.

The analysis of the main QGP properties, among which the evidence a large

elliptic flow v2(pT ), through the use of both hydrodynamical and transport

calculations to study the dynamics of HICs have shown that theoretical pre-

dictions are in agreement on the evaluation of a very small shear-viscosity

to entropy-density ratio η/s, very close to the conjectured lower-bound limit

η/s = 1/4π calculated in the infinite strongly interacting regime AdS/CFT.

Moreover, it appears that the T-dependence of the viscosity coefficient is a

key ingredient to which collective properties of the system are very sensitive

and to reproduce the experimental observations at RHIC and LHC energies

(REF.) Hence, within our Boltzmann approach we need to account very care-

fully for these dissipative effects and the only way to do that is handling with

the collision term on the right hand side of Eq. (3.42). Rather than making

an expansion of the C[ fg, fq, fq̄](x, p) kernel over the microscopic processes,

we explore the possibility to gauge the collision integral to viscous hydrody-

namics by means of the Chapman-Enskog approximation [50] which allows

to construct a relativistic Boltzmann transport approach at fixed η/s [159].

Once the transport theory is directly linked to hydrodynamics, it still main-

tains its powerful applicability to investigate the non-equilibrium features of

the system. As proved in Ref. [160] [161] by means on an analytic calcu-

lation with Green-Kubo formulas of transport coefficients, such as electric

conductivity [39] or bulk and shear viscosity from correlators of the corre-

sponding fluxes or tensors at thermal equilibrium, the choice of the Chapma-

Enskog method ensures an accurate estimate of the shear viscosity compared

to the Relaxation Time Approximation (RTA) or other methods which de-

velops non controlled ansatz on the collision integral to cast directly in the

kinetic equations [155] [162] [163]. In Ref. [164] the shear viscosity at first

order of Chapman-Enskog theory is evaluated for the general case of a rel-

ativistic gas of massive particles colliding with a non-isotropic and energy

dependent cross section. Main formulas can be manipulated to get the fol-
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lowing expression taken from Ref. [161]

ηI
CE =

0.8

g(z, a)

T

σtot

(3.45)

where z = m/T and the function g(z, a) is given by the following expression

g(z, a) =
32

25

z

K2
3
(z)

∫ ∞

1

dy
(

y2 − 1
)3

h(2zya)

×
[

(z2y2 + 1/3)K3(2zy) − zyK2(2zy)
]

h(a) = 4a(1 + a)
[

(2a + 1) log(1 + 1/a) − 2
]

(3.46)

with the microscopic parameter a = T/mD controlling the grade of anisotropy

of the cross section. Indeed by introducing the Debye screening mass mD =
√
4παsT and employing a standard pQCD differential two-body elastic cross

section
dσ

dt
∝

πα2
s

(

t − m2
D

)2

(

1 +
m2

D

s

)

(3.47)

normalized to the proper color factors regarding the interacting partonic species

of the bulk, we see that a larger value of a ≫ 1, i.e. mD ≫ T , corresponds

to a more isotropic cross section. The idea is to invert the Chapman-Enskog

relation Eq. (3.45) as done in [165] and to compute the total cross section for

bulk interaction as function of the shear viscosity and the local temperature

T (x) and density of the system. Referring to Eq. [48] we write the inverted

formula in the following way

σtot (n(x),T (x)) =
1

15

< p >

g(z, a)n(x)

1

η/s
(3.48)

where < p >∼ 3T is the average momentum of the bulk partons. In our

approach the temperature is not provided as in the hydrodynamics case, rather

it is estimated from the particle density n(x) and the energy density ǫ(x) which

are calculated through the distribution functions. By assuming local thermal
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equilibrium statement for massive particles, we have [166]

n(x) = λ
νQGP

2π2
T 3z2K2(z) , ǫ(x) = λ

νQGP

2π2
m2

[

3
K2(z)

z2
+

K1(z)

z

]

(3.49)

where the introduced fugacity λ addresses the remaining non-equilibrium ef-

fects and νQGP =
∑

i=q,q,q̄ vi represent the QGP internal degrees of freedom. As

in Eq. (3.46) the modified Bessel functions of the second kind [167] appears

as function of the mass parameter z = m/T . Finally, the local temperature

T (x) is derived by inverting the expression we obtain through Eq. (3.49) for

the energy per particle

e ≡ ǫ

m · n
= 3T + m

K1(m/T )

K2(m/T )
(3.50)

We see that in the massless limit Eq. (3.50) reduces to the simplified relation

T = m · e/3. Collecting the results we infer from eq. (3.48) that the local

cross section for bulk interaction behaves like σtot ∼ T−2/(η/s) as function

of temperature at fixed η/s.

3.4 Transport Theory for Heavy Quarks

3.4.1 Derivation of Fokker-Planck Equation

In Chapter 2 we presented the main properties of Heavy-Quarks (HQs)

in the QGP. Among these the condition stated on charm and bottom masses,

i.e. MHQ ≫ ΛQCD,T , have been considered useful for simplify the transport

framework with which describing HQ dynamics in the plasma. The starting

point for the description of dynamical evolution of HQs in the QCD medium

is the Boltzmann equation Eq. (3.5) for the HQ phase-space distribution fHQ

where we consider no mean field interaction and considering a two-body col-

lision kernel.

pµ∂
µ
x fHQ(x, p) = C[ fHQ, fg, fq, fq̄](x, p) (3.51)

109



3.4. Transport Theory for Heavy Quarks

With simple manipulation this equation may be also written as [127]

[

∂

∂t
+

~p

Ep

· ∂
∂~x

]

fHQ(t, ~x, p, t) = C[ fHQ] (3.52)

where the dividing Ep =

√

p2 + M2
HQ

has been reabsorbed into the defini-

tion of the collision integral C[ fHQ]. If HQs are distributed uniformly in the

plasma, we can integrate fHQ over the space volume V

fHQ(p, t) =
1

V

∫

d3~x fHQ(t, ~x, ~p) (3.53)

and thus obtain an evolution equation for the HQ distribution as function only

of the momentum
∂

∂t
fHQ(p, t) =

1

V

∫

d3~x C[ fHQ] (3.54)

Let us concentrate now on the dissipative term appearing on the right hand

side of Eq. (3.54). We consider HQs interacting by two-body elastic scatter-

ing with light quarks (antiquarks) and gluons of a thermal bulk at temperature

T . We label the equilibrium distribution of the heat bath partons with a f̂i for

(i = g, q, q̄) and assume it does not depend on time and position. Then, the

collision integral takes the following form [168]

C[ fHQ] =
1

2Ep

1

γHQ

∑

i=g,q,q̄

∫

d3~k

(2π)32Ek

∫

d3 ~p′

(2π)32Ep′

∫

d3~k′

(2π)32Ek′
|MHQ,i|2

×(2π)4 δ(p + k − p′ − k′
)

(

fHQ(p, t) f̂i(k) − fHQ(p
′, t) f̂i(k

′)
)

(3.55)

In Eq. (3.55) |MHQ,i|2 is the spin-color summed matrix element for a scat-

tering process of type HQ(p) + g, q(k) → HQ(p′) + g, q(k′) which we can

express in terms of the total cross section

σHQ+i(p, k) =
1

γHQ · γi

1

4F

∫

d3 ~p′

(2π)32Ep′

∫

d3~k′

(2π)32Ek′

× (2π)4 δ
(

p + k − p′ − k′
) |MHQ,i|2

(3.56)
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where γHQ · γi are the spin -color statistical factors of the initial state and the

flux factor and its relation to the relative velocity is given by

Fi =

√

(p · k)2 − (MHQ · mi)2 = EpEk · vrel (3.57)

Then, we can manipulate Eq. (3.55) using Eq. (3.56) and Eq. (3.56) in order

to express the collision integral

C[ fHQ] =
∑

i=g,q,q̄

∫

d3~q

(2π)3
[

ωi(p + q, q) fHQ(p + q) − ωi(p, q) fHQ(p)
]

(3.58)

in terms of the transition rate for collisions between a HQ and a i-flavor parton

of the heat bath occurring with some momentum transfer q

ωi(p, q) = γi

∫

d3~k

(2π)3
f̂i(k)vrelσHQ+i(p, k) (3.59)

where γg = 16 and γq = 6, the sum in Eq. (3.58) carried out for all possible

quark (antiquark) flavors. Accordingly to this definition [127] the first term of

the collision integral in Eq. (3.58) corresponds to a gain contribution, because

it describes the transition rate of a HQ scattering from a state of momentum

p + q to a momentum state p, while the second term is a loss contribution

describing the scattering out of a HQ with initial momentum p.

The derivation of the Fokker-Planck Equation starts from the evolution

equation for fHQ(p, t) with collision term in Eq. (3.58) and it is based on the

so called Landau approximation by one assumes that the relevant momentum

transfer of the elastic scattering obeys the condition q ≪ |~p|. Then, the gain

term of the collision integral in Eq. (3.58) can be expanded with respect to q
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up to the second order1

ω(p + q, q) fHQ(t, p + q) ≃ ω(p, q) fHQ(t, p) + qi

∂

∂pi

[

ω(p, q) fHQ(t, p)
]

+
1

2
q jqh

∂2

∂p j∂ph

[

ω(p, q) fHQ(t, p)
]

(3.60)

Plugging this expansion in Eq. (3.58), the collision integral simplifies to

C[ fHQ] ≃
∑

∫

d3~q

(2π)3

[

qi

∂

∂pi

+
1

2
q jqh

∂2

∂p j ph

]

[

ω(p, q) fHQ(t, p)
]

(3.61)

where the sum accounts for all possible elastic scattering channels. In the end,

we have reduced the integro-differential Boltzmann equation Eq. (3.51) into

a diffusion equation for fHQ(p, t) which contains only differential operators

and it is known as Fokker-Planck Equation

∂

∂t
fHQ(p, t) =

∂

∂p j

[

A j(p) fHQ(p, t) +
∂

∂ph

[

B jh(p) fHQ(p, t)
]
]

(3.62)

In Eq. (3.62) the dissipative interaction of HQs with the heat bath is encoded

in the drag and diffusion coefficients which are given according to Eq. (3.61)

in terms of the transition rate as

A j(p) =
∑

∫

d3~q

2π3
q jω(p, q)

B jh(p) =
∑ 1

2

∫

d3~q

2π3
q jqhω(p, q)

(3.63)

Using Eq. (3.59) these HQ transport coefficient can be written as function of

the total cross section for elastic scattering of HQ with any parton species

1From what follows we drop the index i which labels the flavor of the bulk parton scat-

tering with the HQ.
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i = g, q, q̄ in the bulk system

A j(p,T ) =
∑

i=g,q,q̄

γi

∫

d3~k

2π3
f̂i(k)vrelσHQ+i(p, k)

(

p − p′
)

j

B jh(p,T ) =
∑

i=g,q,q̄

γi

∫

d3~k

2π3
f̂i(k)vrelσHQ+i(p, k)

(

p − p′
)

j

(

p − p′
)

h

(3.64)

In particular, we have explicitly expressed the dependence on the heat bath

temperature coming from the equilibrium distribution functions f̂i and used

a delta function to fix the transfer momentum q knowing the initial and final

momentum of the HQ. Then, if we consider the heat bath to be isotropic,

with such condition together with local equilibrium implying that transport

coefficient are defined in the rest frame of the background medium, rotational

symmetry allows for the following simplification of Eq. (3.64)

A j(p,T ) = A(p,T )p j

B jh(p,T ) = B1(p,T )P
||
jh
(p) + B0(p,T )P⊥

jh(p)
(3.65)

where the projection operators on the longitudinal and transverse HQ mo-

mentum component are given by

P
||
jh
(p) =

p j pk

|~p|2 , P⊥
jh(p) = δ jk −

p j pk

|~p|2 (3.66)

and the corresponding scalar drag and diffusion (longitudinal and transverse)

coefficients read

A(p,T ) =

〈

1 − ~p · ~p′
|~p|2

〉

B0(p,T ) =
1

4

〈

|~p′|2 − (~p · ~p′)2
|~p|2

〉

B1(p,T ) =

〈

(~p · ~p′)2
|~p|2 − 2~p · ~p′ + |~p|2

〉

(3.67)

By means of the notation 〈X(p)〉 we indicate for a general function X(p) the
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following integration

〈X(p,T )〉 ≡
∑

i=g,q,q̄

γi

∫

d3~k

(2π)3
f̂i(k)vrelσHQ+i(p, k) X(p)

=
1

2Ep

1

γHQ

∑

i=g,q,q̄

∫

d3~k

(2π)32Ek

∫

d3 ~p′

(2π)32Ep′

∫

d3~k′

(2π)32Ek′

× (2π)4 δ
(

p + k − p′ − k′
) |MHQ,i|2 X(p)

(3.68)

where the second line is obtained plugging the definition of the total cross

section according to Eq. (3.56). Moreover, one can associate to the transport

coefficients in Eq. (3.67) the other two quantities defined as

〈1〉 = Γ(p,T ) ,
〈

Ep − E′
p

〉

= ê(p,T ) (3.69)

which correspond respectively to the rate and HQ energy loss associated to the

elastic scattering processes. Eq. (3.67) (Eq. (3.68)) is suitable to be solved by

multi-dimensional MonteCarlo integration [168] as we will show in the next

Chapter. This provides us with a tool to investigate both the temperature and

the momentum dependence of HQ transport coefficients related to the interac-

tion kernel (M) implemented in our transport model. Indeed one of the goal

of this work is to show that regarded the effects encoded within the transport

coefficients, they can have a strong effect on the measured observables, hence

enlightening on the properties of the QCD medium [169] [170].

3.4.2 The role of HQ Transport Coefficients

The aim of this thesis is to describe the HQ dynamics in the QGP by

means of a Boltzmann approach where the non-perturbative effects are evalu-

ated by means of the Quasi-Particle Model (QPM) whose interaction strength

is tuned to reproduce lQCD thermodynamics and bulk observables. In com-

parison to Fokker-Planck approach we can extract from our Boltzmann colli-

sion kernel an effective definition of drag and diffusion coefficients according

to Eq. (3.67) and compare their momentum and temperature dependence to

pQCD expectations and other models. Before doing this, we find important
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to understand the physical meaning of such coefficient. In order to do that we

still keep the diffusion approximation and in particular, we consider the limit

of small HQmomentum p → 0. In such non-relativistic regime both drag and

diffusion coefficients Eq. (3.67) become constant values at a fixed temperature

T of the heat bath, usually indicated respectively as A(p → 0,T ) ≡ γ(T ) and

B0(p → 0,T ) = B1(p → 0,T ) ≡ D(T ). Then, the Fokker-Planck Eq. (3.62)

simplifies to

∂

∂t
fHQ(p, t) =

∂

∂p j

[

p jγ fHQ(p, t) +
∂

∂ph

[

δ jhD fHQ(p, t)
]
]

= γ
∂

∂p j

[

p j fHQ(p, t)
]

+ D
∂2 fHQ(p, t)

∂p2

(3.70)

whose solution starting from an initial condition fHQ(~p, 0) = δ(~p − ~p0) takes

the following Gaussian profile

fHQ(p, t) ∝ exp



−
γ

2D

[

~p − ~p0 exp(−γt)
]2

1 − exp(−2γt)



 (3.71)

Eq. (3.70) describes the evolution of the HQ momentum distribution func-

tion fHQ(p, t) undergoing 3-dimensional Brownian motion which involves the

combined effect of a drift force coupled to random scatterings at small angles.

From the equation of average HQ momentum

〈

~p
〉

= ~p0 exp(−γt) (3.72)

we can see that the coefficient γ relates exactly to the friction or drag force

which determines the relaxation rate of the HQ three-momentum to its equi-

librium value ~p. We notice that in Eq. (3.72) ~p tends asymptotically to zero

as a vector, resulting in the isotropization of the HQ momentum distribution

while converging to equilibrium. Instead for the variance equation and using

Eq. (3.72) we obtain

〈

(~p − ~p0)
2
〉

=
〈

~p2
〉

− 〈

~p
〉2
=

3D

γ

[

1 − exp(−2γt)
]

(3.73)
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from which we observe that the coefficient D represents precisely the diffu-

sion part governing the HQ momentum fluctuations around the equilibrium

value. In the limit t → ∞ HQs must reach thermal equilibrium with the heat

bath, meaning that the solution Eq. (3.71) should asymptotically approach

to the non-relativistic Maxwell-Boltzmann distribution with temperature T .

Such condition implies that drag and diffusion coefficients should satisfy the

well known Einstein fluctuation-dissipation relation

D = γMHQT (3.74)

At sufficient large time compared to the relaxation time of HQ momentum

that from the mean Eq. (3.72) we can identify with the inverse of the drag

τeq = γ−1, the diffusion in momentum space has converted into a 3-dimensional

broadening in the position distribution at time t ≫ τeq

〈

~x2(t)
〉

− 〈

~x(t)
〉2
= 3

T 2

D
= 6Ds(T )t (3.75)

governed by the so defined spatial diffusion coefficient Ds(T ) which in the

validity of the Einstein relation is related to the drag, i.e. to the HQ thermal-

ization time, through the following expression

2πT Ds =
2πT 2

MHQγ
=

2πT 2

MHQ

τeq (3.76)

In natural unit [γ] ∼ f m−1, [D] ∼ GeV2 f m−1, so in Eq. (3.76) it results

that the introduced 2πT Ds coefficient on the left hand side is dimensionless.

Moreover, since in kinetic theory the HQ relaxation time is expected to be

proportional to MHQ, from Eq. (3.76) we can infer that Ds is instead mass

independent. This leads to the possibility to measure HQ interaction within

the QCD medium without any mass scale constraint and to construct phe-

nomenological models which by extracting the spatial diffusion coefficient

and comparing to quenched lQCD expectations can directly probe the QGP

properties.
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3.5 Numerical solution of Boltzmann equation

In this last section we discuss about the numerical implementation of the

transport equations Eq. (3.45) and Eq. (3.51) which we use for describing the

dynamics of respectively bulk partons i = g, q, q̄ and Heavy Quarks (HQs). In

order to solve the Relativistic Boltzmann Equation (RBE), we divide the co-

ordinate space V into a 3D lattice constituted by Ncells of volume ∆3~x and we

employ test-particle method to sample the bulk parton or the HQ phase-space

distribution function f (x, p) within a sufficient small time-step ∆t as done

firstly by Wong [171] and performed in many transport appraoches .Usually

test particles are chosen to be fictitious point-like objects, hence f (x, p) can

be written as a sum over Ntest coordinates and momenta on-shell δ functions

(see Eq. (3.3))

f (~x, ~p, t) = ω

Ntest∑

i=1

δ(3)(~x − ~ri(t))δ
(3)(~p − ~pi(t)) (3.77)

where ~ri(t) and ~pi(t) indicate respectively the position and the momentum of

the i- particle, whileω is a normalization factor which relates the integral of

phase distribution to the real particle density.

1

V

∫

d3~x

∫

d3~p

(2π)3
f (~x, ~p, t) =

ω

(2π)3
Ntest

V
= n(x) (3.78)

Then, plugging Eq. (3.77) into the corresponding RBE for the bulk partons

or the HQs, the solution of the transport system reduces to solve the classical

Hamilton equation of motion for each test particle which are written below

d~ri(t)

dt
=
~pi

mi

,
d~pi

dt
= −∇~rEi(~r, t) +

(

∂~pi

∂t

)

coll

(3.79)

where in the first equation mi corresponds to the QPM mass Eq. (3.36) for the

case of bulk partons, or it is equivalent to the value mi = MHQ = Mc,Mb

(see Chapter 2) for the case of charm and bottom quarks. In the second

equation, on the right hand side the second term accounts for the momen-

tum variation due to the dissipative effects encoded in the collision inte-
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gral, while the first term is the mean field contribution coming from the spa-

tial dependence of the generalized non-equilibrium QPM dispersion relation

Ei(~r, t) =
√

p2
i
(t) + mi(~r, t)2. Applying the spatial gradient on this last expres-

sion, we can express the equation of motions in the following form

d~ri(t)

dt
=
~pi

mi

,
d~pi

dt
= −mi(~r, t)

Ei(~r, t)
∇~rmi(~r, t) +

(

∂~pi

∂t

)

coll

(3.80)

The mean field contribution is originated from the space-time dependence of

the bulk masses which are related to the QPM expressions Eq.(3.36) through

the condition mi(~r, t) = mQPM,i(T (~r, t)) for i = g, q where T (~r, t) is the temper-

ature of the local cell centered at position ~r and calculated at time t from the

energy and particle densities Eq. (3.50). On the other hand HQs propagate

with constant mass MHQ, meaning that we do not consider any mean field in-

teraction, rather the variation of HQ momentum occurs due to the scattering

collision term. In order to perform the complete simulation algorithm, from

the initial conditions setup to the subsequent test propagation and collision of

test particles, we use a partonic cascade code which is written in the FOR-

TRAN programming language and it is mainly composed of four routines:

1) The cascade head routine where initial parameters and tables are read

and the volume environment is built up, whether there is the intention to

create a uniform static box for test performances or to set up a realistic

event simulation for RHIC and LHC Heavy-Ion Collisions (HICs).

2) The init routine where all initial particle’s spectra in coordinate and

momentum space are initialized respectively according to the Glauber

profile (see Sec.Eq. (2.2)) or uniformly and by means of parametrized

distributions. Test particles of each flavor, whether they are partons of

the bulk or HQs, are randomly sampled in each volume cell, thus we

can follow their trajectory along the entire simulation period.

3) The prop routine where test particle positions and momenta coordi-

nates with respect to some fixed environment frame are updated after

each mesh time ∆t by solving the equation of motion Eq. (3.80) which
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3.5. Numerical solution of Boltzmann equation

are numerically implemented in the following way






~pi(t + ∆t) = ~pi(t − ∆t) − 2∆t
[

mi(~ri(t))

Ei(t)

]

D~rmi(~ri(t)) + 2∆t ·
(
∂~pi

∂t

)

coll

~ri(t + ∆t) = ~ri(t − ∆t) − 2δt ·
[
~pi(t)

Ei(t)

]

(3.81)

where D~r corresponds to some proper discretized form of the gradient

operator ∇~r. These equations must be solved for each test particle i

of a given flavor, either it is a heavy quark or a gluon or a light quark

(antiquark) of the HQ. For the latter case Eq. (3.81) must be solved

self-consistently with the gap equation Eq. (3.44) which plugging the

expression Eq. (3.77) becomes

∂B

∂mi

+ νi

ω

(2π)3
mi

V

Ncell∑

j=1

E j (3.82)

In order to study HQs dynamics within our Boltzmann approach we

simplify the transport setup of the bulk system by choosing a constant

mass value mg = mq = 0.5GeV which in the end gives us an EoS still

in agreement with lQCD thermodynamics.However, we do not account

for this approximation for what concerns HQ interaction which is built

up consistently with the QPM prescriptions. Of course, we have the

possibility to choose between a QPM collision kernel to a pQCD one

which is done conjointly with a switch from a massive to a massless

bulk. The jump to the new trajectory’s point of each test particle is

evaluated by knowing at first the momentum and energy at time t and

the variation of their values after ∆t. All particles must satisfy on-shell

condition Ei(t) =

√

pi(t)2 + m2
i
which is checked at every time step.

We choose a sufficient small ∆3~r and ∆t and secure that the solution

obtained by test-particle method tends asimptotically to the exact solu-

tion of the RBE.

4) The coll routine where the numerical implementation of the Boltzmann

collision integral C[ f ] is pursued. In order to solve numerically the
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3.5. Numerical solution of Boltzmann equation

collision integral we make use of the stochastic method introduced for

the first time by Greiner and Xu [172] and nowadays employed by

many transport codes.In contrast to more widespread geometrical al-

gorithms which do not preserve explicitly Lorentz covariance and con-

sequently violate causality in relativistic frames leading to a sort of

artifacts in particle’s spectra, facing particle collisions with a proba-

bilistic approach appears to be the right method and thus overcomes

such numerical problem. We give a brief description of the stochastic

algorithm for implementing two-body elastic collisions between glu-

ons and light quarks of the medium or HQs and bulk partons in the

following paragraph.

3.5.1 Stochatic algorithm for the collision integral

Let us consider the two-body collision integral given by [172]

C22 =
1

2E1

∫

d3p2

(2π)32E2

1

ν

∫
d3p′

1

(2π)32E′
1

d3p′
2

(2π)32E′
2

f ′1 f ′2

|M1′2′→12|2(2π)4δ(4)(p′1 + p′2 − p1 − p2)

− 1

2E1

∫

d3p2

(2π)32E2

1

ν

∫
d3p′

1

(2π)32E′
1

d3p′
2

(2π)32E′
2

f1 f2

|M12→1′2′ |2(2π)4δ(4)(p1 + p2 − p′1 − p′2)

(3.83)

This represent the dissipative kernel of the RBE for the distribution function

f1 ≡ f (~r1, ~p1, t) and analogous notation we use for the integrated functions

f2, f1′ , f2′ . In Eq. (3.83) the statistical factor ν is set to 2 when considering

double counting in case particles 1’ and 2’ are identical, otherwise ν is set

to 1. The two terms in C22 expression are respectively the gain term which

enriches the number of particles in the state 1 because it accounts for colli-

sions of type 1 ′2′ → 1 2, while the loss term describes the inverse scatter-

ing 1 2 → 1′ 2′ which brings particles out of the considered volume of phase

spaces. The four-delta function accounts for total energy and momentum con-
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3.5. Numerical solution of Boltzmann equation

servation. The main microscopic ingredient in Eq. (3.83) is represented by the

scattering amplitude of the two-body process, which is usually symmetric for

time reversal, i.e. M1′2′→12 = M12→1′2′ . Then, the total cross section of the

two-body scattering process is given by [1]

σ22 =
1

2F

1

ν

∫
d3p

′

1

(2π)32E
′
1

d3p
′

2

(2π)32E
′
2

|M12→1′2′ |2(2π)4δ(4)(p1 + p2 − p
′

1 − p
′

2)

(3.84)

where we defined the invariant flux factor of the initial particle state

F =

√

(p1 · p2)2 − m2
1
m2

2
(3.85)

and also the relative particle velocity which is obtained in the following way

vrel =
F

E1E2

=

√

[s − (m1 + m2)2][s − (m1 − m2)2]

2E1E2

(3.86)

being the Mandelstam variable s = (p1 + p2)
2 equivalent to the square of the

collision energy in the center-of-mass frame of the scattering particles. The

basic idea of the algorithm is to sample stocastically the scattering processes

of the two particles according to a collision probability P22 by comparing the

value of this probability with a random number which is uniformly chosen

between 0 and 1. For evaluating the P22 we refer directly to the collision

integral term Eq. (3.83). Indeed if we assume that two test particles 1 and 2 at

time t are in the same unit cell of volume ∆3x and have respectively momenta

lying in the range (~p1, ~p1 + ∆3p1) and (~p2, ~p2 + ∆3p2) we can express the

collision rate per unit of phase space of such pair as

∆N2→2
coll

∆t 1
(2π)3

∆3x∆3p1

=
1

2E1

∆3p2

(2π)32E2

f1 f2 ×
1

ν

∫
d3p

′

1

(2π)32E
′
1

d3p
′

2

(2π)32E
′
2

×|M12→1′2′ |2(2π)4δ(4)(p1 + p2 − p
′

1 − p
′

2)

(3.87)

By definition (see Eq. (3.1)) the distribution function fi is the number of par-

ticles of the same species located in the i cell with unit phase space volume
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3.5. Numerical solution of Boltzmann equation

∆~x∆~pi/(2π)
3, so we can write it as

fi(~x, ~p, t) =
∆Ni

∆3x
∆3pi

(2π)3

(3.88)

Inserting Eq. (3.88) for i = 1, 2 in Eq. (3.87) and using the definition of the

two-body cross section Eq. (3.46), the formula for the collision rate becomes

∆N2→2
coll =

(

f1
∆3p1

(2π)3

) (

f2
∆3p2

(2π)3

)

vrelσ22 ∆
3x∆t (3.89)

Finally the absolute collision probability P22 is obtained by considering such

interaction rate among all particles in the state 1 and 2. Hence, we have

P22 =
∆N2→2

coll

∆N1∆N2

= vrelσ22

∆t

∆3x
(3.90)

where for calculating ∆N1,2 we used the inverted expression of Eq. (3.50).

The probability has to be divided by Ntest if test particle method for sampling

the phase space distribution is used (P22 → P22/Ntest). Since in Eq. (3.90)

the probability is proportional to σ22 the latter condition is equivalent to scale

the total scattering cross section by Ntest (σ22 → σ22/Ntest) [171] [173]. We

point out that from Eq. (3.84) the definition of σ22 is provided as function of

generic scattering amplitudes. Specifically, for the case of an elastic collision

involving only gluons and light quarks (antiquarks) of the medium we con-

sider the Chapman-Enskog formula Eq. (3.48) where T (x) = T (cell, t) and

n(x) =
∑

i=g,q,q̄ Ni/∆
3~x are respectively the temperature and the bulk density

calculated in the cell where the collision occurs at time t. On the other hand, if

we sample a scattering process between a bulk parton and a heavy quark, the

total cross section is derived according to the QCD scattering matrices, the

same we use to calculate HQ transport coefficient (see Eq. (3.64)), thus re-

sulting in the correct description of drag and diffusion forces we expect either

in the pQCD or in the QPM framework (see Chapter 4). In the limit ∆t → 0

and ∆3p → 0 the numerical solution with the stochastic method converges

to the exact solutions of the Boltzmann equation. A reasonable convergent

result is obtained when ∆t and ∆3x are taken smaller than the typical time and
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3.5. Numerical solution of Boltzmann equation

spatial inhomogeneity of the particle densities. The stochastic procedure has

to be carried out among all pair of particles which belong to the same cell

and for the entire space grid. It means that for a single cell the number of

random extractions equals the possible pairs Npair = N(N − 1)/2, where N

corresponds to the total particle’s number in the cell. In order to reduce the

computational time we use the scheme in Ref. [174] [175] and used also in

Ref. [172]. We randomly choose N < Npair among all possible pairs in each

cell and, in order to perform the stochastic method only for theN sample, we

correct the collision probability in the following manner

P22 → P
e f f

22
= P22

Npair

N = P22

N(N − 1)/2

N (3.91)

where in Eq. (3.91) P22 has been already scaled by Ntest according to the test-

particle prescriptions [171] [173]. Further improvement of the method, that

avoids in particular the possibility of P
e f f

22
to exceed one and thus break the

stochastic implementation, is done by choosing N differently for each cell

(N(cell)) in the following way. Initially we calculate the maximum effec-

tive probability achievable in the cell under consideration. This value can be

derived from the previous definition

max
(

P
e f f

22

)

= Pmax
22

N(N − 1)/2

N(cell)
(3.92)

where Pmax
22

= vmax
rel

σmax
22

Ntest

∆t

∆3x
is the maximum real probability in the cell (scaled

by test particle number). Subsequently the maximum of collision probabil-

ity in Eq. (3.92) is normalized to 1 and from this condition we obtain the

following unique condition to calculate N(cell)

N(cell) = Integer
[

Pmax
22 N(N − 1)/2

]

(3.93)

Using the value of N(cell) provided by Eq. (3.93) we ensure that our effective

probability Eq. (3.91) will not exceed 1 in any case and in the meanwhile we

achieve to minimize the calculation time of the collision algorithm up to the

maximum limit allowed by the method itself.
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CHAPTER 4

HQS’ TRANSPORT COEFFICIENTS

4.1 Boltzmann approach for HQ dynamics

The propagation of Heavy Quarks (HQs) in the QGP is described by

means of the Relativistic Boltzmann Eq. (3.51) for the on-shell single HQ

phase-space distribution function fHQ that we write again here

pµ∂
µ
x fHQ(x, p) = C[ fHQ, fg, fq, fq̄](x, p) (4.1)

and which we solve numerically through test-particle method in the same

manner we have done for the bulk partons. In Eq. (4.1) the collision integral

C[ fHQ, fg, fq, fq̄](x, p) encodes the dissipative part governing the evolution of

HQs inside the hot QCD medium. In this work we consider only elastic two-

body scattering processes between a HQ and either a gluon or a light quark

(antiquark) of the bulk, i.e. HQ(p1) + i(g, q)(p2) → HQ(p′
1
) + i(g, q)(p′

2
).
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4.1. Boltzmann approach for HQ dynamics

Therefore our collision integral takes the expression

C[ fHQ, fq, fq̄] =
1

2E1

∑

i=g,q,q̄

∫

d3p2

2E2(2π)3
1

ν

∫
d3p′

1

2E′
1
(2π)3

∫
d3p′

2

2E′
2
(2π)3

× |MHQ,i|2(2π)4δ4(p1 + p2 − p′1 − p′2)

× [

fHQ(p
′
1) fi(p

′
2) − fHQ(p1) fi(p2)

]

(4.2)

which in each unit cell of volume ∆~x and in each time step ∆t we map by

means of the stochastic algorithm described in Chapter 3 into a probability of

collision Eq. (3.90) which is proportional to the total cross section

σ22 =
1

4vrelE1E2

∫
d3p′

1

2E′
1
(2π)3

∫
d3p′

2

2E′
2
(2π)3

× |MHQ,i|2(2π)4δ4(p1 + p2 − p′1 − p′2) (4.3)

Within the Boltzmann dynamics we choose to implement two different mod-

els for describing HQ interaction inside the QGP

[pQCD] In the first one we calculate the scattering cross section through Leading-

Order (LO) pQCD Feynman diagrams depicted in Appendix B employ-

ing the scattering matrices from Ref. [80] in which we consider mass-

less partons of the bulk and the value of the coupling constant αs either

as a constant or running in accordance to Eq. (1.14) with Q2 = (2πT )2.

As a praxis of this approach we introduce also a Debye screening mass

mD ∼
√
4παsT to regularize the IR divergence in the massless gluon

propagator.

[QPM] In our second scheme we account for QCD non-perturbative contribute

to HQ interaction by means of the Quasi-Particle Model (QPM). Hence,

light quarks and gluons are dressed with T -dependent effective masses

mg,q ≃ g(T )T whose exact expressions are written in Eq. (3.36), while

the strength coupling g(T ) follows the QPM logarithmic formula in

Eq. (3.41) with parameter values fitted to the results of Wuppertal-

Budapest lQCD collaboration [154]. in agreement also with other mod-
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4.1. Boltzmann approach for HQ dynamics

els [176] [177]. To calculate the total cross section of HQ interac-

tion Eq. (4.3) we start from the same Feynman diagrams of the pQCD

scheme with slight modifications in order to include the QPM masses

with the T-dependent coupling constant αs(T ) = g2(T )/4π from QPM

interaction.

The complete expressions of the scattering matrices for the various channels

are collected in the Appendix B where it is possible to check that in the mass-

less limit mg,q → 0 and at high temperature T ≥ 3Tc the QPM interaction

matches with the pQCD paradigma.

4.1.1 Monte-Carlo calculation for drag and diffusion

In Sec. (3.4) we derived the Fokker-Planck equation which describes the

propagation of HQs in a thermal medium within the approximation of Brown-

ian motion. In particular, we saw that the interaction kernel is encoded inside

some transport coefficients which in general depend on the HQ momentum

p and on the temperature T of the heat bath and whose expression can be

expressed by means of the following expectation value (see eq. (3.68))

〈X(p,T )〉 ≡
∑

i=g,q,q̄

γi

∫

d3~k

(2π)3
f̂i(k)vrelσHQ+i(p, k) X(p)

=
1

2Ep

1

γHQ

∑

i=g,q,q̄

∫

d3~k

(2π)32Ek

∫

d3 ~p′

(2π)32Ep′

∫

d3~k′

(2π)32Ek′

× (2π)4 δ
(

p + k − p′ − k′
) |MHQ,i|2 X(p)

(4.4)

where f̂i(k) indicates the thermal equilibrium distribution function of the bulk

partons i = g, q, q̄. Then, depending on the function X(p) one derives the

definition for the collision rate or the energy loss Eq. (3.69) and above all the

formula for the drag and diffusion coefficients Eq. (3.68) that we write again
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4.1. Boltzmann approach for HQ dynamics

here

A(p,T ) =

〈

1 − ~p · ~p′
|~p|2

〉

B0(p,T ) =
1

4

〈

|~p′|2 − (~p · ~p′)2
|~p|2

〉

B1(p,T ) =

〈

(~p · ~p′)2
|~p|2 − 2~p · ~p′ + |~p|2

〉

(4.5)

These coefficients are usually provided as external input to the Fokker-Planck

equation which is numerically solved through differential stochastic Langevin

equation where HQs propagate under the effect of a drag force and a random

force which is directly linked to the diffusion part [169, 178, 179, 180]. Then,

this framework is coupled to some description of the QGP evolution that can

be obtained either by a hydrodynamical model or by relativistic Boltzmann

approach to build up a full package and carry out realistic simulations of

HICs provided also some initial conditions and a hadronization mechanism.

As discussed in Chapter 3 our transport model is set in the domain of a full

Boltzmann description for what concerns the bulk part and also the propaga-

tion of charm and bottom. However, for the aim of this work we need to have

knowledge about the expected behavior of the drag and diffusion coefficients

for our QPM and pQCD model.

For this reason inspired by Ref. [168] we have developed a Monte-Carlo

code written in FORTRAN language for calculating HQ transport coefficient

within different interaction schemes that is based on the numerical solution

of the multiple-integrals appearing in Eq. (4.4). In order to implement such

expression in a computer program, we have to perform some simple steps that

in the end brings to the following result

〈X(p,T )〉 =
∑

i=g,q,q̄

1

(2π)3

∫

dk k2 f̂i(k)

∫

dcos χ

×
∫

dt vrel

(

dσ

dt

)

HQ+i

∫

dφcm X (. . .) (4.6)

In Eq. (4.6) the first two integrations refer to the bulk parton i = g, q, q̄ kine-
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4.1. Boltzmann approach for HQ dynamics

matics, while the last two belong to the final HQ state evaluated in the center-

of-mass (cm) frame of the colliding particles. In particular, φcm is the az-

imuthal angle, while the Mandelstam variable t is defined from the diffusion

angle θcm through the following relation

t = −2p̂2 (1 − cos(θcm)) , p̂2 =
1

4s

[

(s − M2
HQ − m2

i )
2 − 4m2

i M2
HQ

]

(4.7)

where we have indicated as p̂ the absolute HQ momentum in the cm frame

and derived its expression in terms of the Mandelstam variable s = (p + k)2,

i.e. the total collision energy in the cm frame. In Eq. (4.6) the differential

cross section for HQ interaction and the relative velocity are

(

dσ

dt

)

HQ+i

=
1

64π p̂2s
|MHQ,i|2 (4.8)

vrel =
2s

[

(s − M2
HQ − m2

i )
2 − 4M2

HQm2
i

]1/2

(s + M2
HQ

)(s − M2
HQ

+ m2
i
)

(4.9)

This are quite generalized expression to consider also a massive bulk made of

quasi-particles with thermal QPM masses taken from Eq. (3.36) and scatter-

ing matrices entering in Eq. (4.8) that can be read in Appendix B. It is easy

to check that in the limit of a massless bulk (mi → 0) valid for our pQCD

scheme all these relations reduce to the original work [168].

Transport coefficients for charm and bottom quarks resulting from the cal-

culations within the Monte-Carlo code both for the pQCD running coupling

scheme and the QPM are collected in the plots below. We notice that as T in-

creases the drag coefficient from QPM tend to the pQCD results and also that

at all temperature we recover the non-relativistic condition for the diffusion,

i.e. B0 = B1 at p → 0.

4.1.2 Test transport coefficients in a box

In the stochastic method the Boltzmann-like collision integral is mapped

into a scattering probability Pcoll which in the end is proportional to the total

cross section σ22. For the HQ interaction σ22 is equivalent to σHQ+i regarding

128



4.1. Boltzmann approach for HQ dynamics

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  5  10  15  20

A
(p

) 
[f
m

-1
]

p [GeV]

charm T=200 MeV

pQCD gc
pQCD qc
pQCD tot
QPM tot

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  5  10  15  20
A

(p
) 

[f
m

-1
]

p [GeV]

charm T=300 MeV

pQCD gc
pQCD qc
pQCD tot
QPM tot

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  5  10  15  20

A
(p

) 
[f
m

-1
]

p [GeV]

charm T=500 MeV

pQCD gc
pQCD qc
pQCD tot
QPM tot

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0  5  10  15  20

A
(p

) 
[f
m

-1
]

p [GeV]

bottom T=200 MeV

pQCD gb
pQCD qb
pQCD tot
QPM tot

 0

 0.02

 0.04

 0.06

 0.08

 0  5  10  15  20

A
(p

) 
[f
m

-1
]

p [GeV]

bottom T=300 MeV

pQCD gb
pQCD qb
pQCD tot
QPM tot

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  5  10  15  20

A
(p

) 
[f
m

-1
]

p [GeV]

bottom T=500 MeV

pQCD gb
pQCD qb
pQCD tot
QPM tot

(b)

Figure 4.1: Drag coefficient within pQCD and QPM interaction for charm (a) and

bottom (b) as function of HQ momentum p calculated for three different

temperatures of the heat bath. In each plot dashed black curves are the

contribution from pQCD gluon-HQ scattering, while dash-double dotted

curves are the one from light quark-HQ scattering. Colored lines indi-

cate the sum gc(b) + 2N f ∗ qc(b) where N f = 3 is the number of flavor

and the factor 2 stands for the doubling from antiquarks.

the flavor of the particle which scatters with the HQ, i.e. i = g, q, q̄. In addi-

tion, when a collision between a HQ and a bulk parton occurs, the final mo-

mentum space of the process is sampled through a random extraction of the

diffusion angle in the center-of-mass frame of the pair, namely θcm, according

to the differential cross section dσHQ+i/dt. We remind that the Mandelstam

variable t is directly linked to the variable θcm through the relation

t = −2 p̂2 (1 − cos(θcm)) , p̂2 =
1

4s

[

(s − M2
HQ − m2

i )
2 − 4m2

i M2
HQ

]

(4.10)
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Figure 4.2: Diffusion coefficient within QPM interaction for charm (a) and bottom

(b) as function of HQ momentum p calculated for three different tem-

peratures of a heat bath constituted of gluons and quarks plus antiquarks

with N f = 3. Curves refer to the total contributions from all these

species; transverse diffusion B0(p) is represented as solid line, while

longitudinal diffusion B1(p) is in dashed font.

where again p̂ is the absolute HQ momentum in the cm expressed in terms

of the Mandelstam variable s = (p + k)2 on the right hand side. Instead the

azimuthal angle φcm is sampled uniformly. Since this procedure is exactly

equivalent to perform the integration in Eq. (4.6), it certainty must happen

that the distributions for drag and diffusion coefficients extracted from the

Boltzmann code agree with the functional behavior obtained by MC integra-

tion. In order to perform this check, we carried out simulations for a static

QCD medium at fixed temperature T . We chose a volume of the box of

V = 125 f m and we distributed homogeneously a number of bulk quarks and
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4.1. Boltzmann approach for HQ dynamics

gluons according to their values at equilibrium

Ng,q = V
νg,q

2π2
m2

g,qT 2K2

(mg,q

T

)

→ V
νg,qT 3

π2
(mg,q = 0) (4.11)

After doing this, we initialize NHQ = 1000 HQs inside the box by distributing

them homogeneously in space and with some general power law spectrum

and let them propagate inside the medium at fixed T for a sufficient amount

of number of time steps of range ∆t = 0.02 f m each. In the end we finalize

the extraction of drag and diffusion coefficients through proper distributions

that we derive with the few steps below. Indeed substituting the test-particle

expansion Eq. (3.77) to the phase-space function appearing in the transport

coefficients definition Eq. (3.68) we get

〈X(p,T )〉 = 1

2π

∑

test

vrelσtot(s)

[

1

σtot(s)

∫

dt
dσ

dt

∫

dφX(. . . )

]

(4.12)

where (. . . ) indicate both the p and T parameters, as well as other integrated

kinematic variables. In Eq. (4.12) we explicitly inserted the total cross section

for HQ scattering σ22 ≡ σtot(s) which plays the role of collision probability in

the stochastic algorithm. Therefore, we recognize inside the square brackets

a sort of expectation value that we can write by means of a Monte-Carlo

importance sampling as

〈X(p,T )〉 =
∑

test

vrelσtot(s)
∑

h(σ),k

Xσ (s, uh, φk) (4.13)

where we indicated as Xσ (s, th, uh, φk) the random variable associated to the

observable X(. . . ) and whose values are determined by extracting theMandel-

stam variable t, meaning the diffusion angle θcm, according to the differential

cross section (that explains the extra σ label), while the angle φ is an uni-

form random variable. Thus, the 1/2π coefficient can be absorbed within the

integration over the angle φ. The formula in Eq. (4.13) can be recast into a

sum series over the number occurring in the all box cells and for the total

simulation events. Finally, since transport coefficients X(p,T ) are defined for

a single HQ given its momentum p we have to divide the resulting formula
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4.1. Boltzmann approach for HQ dynamics

by the momentum distribution of HQs at each time-step, namely NHQ(p), and

average by the density of bulk partons ρi(T ) in each cell. Hence, the mean

expression is given by

〈X(p,T )〉BOX =
∑

events

∑

cell

∑

i=g,q,q̄

(

vrelσtotX
σ (. . .) ρi(T )

NHQ(p)ρi(T )

)

(4.14)

In the following plots we show all our extracted transport coefficients for our

two different models, pQCD and QPM, obtained performing simulations for

charm and bottom propagation within a static medium at equilibrium for two

different temperatures. In this check, there was no need to tune the HQ in-

teraction to some precise suppression amount, hence we did not consider any

enhancement of the interaction through a constant K factor.
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Figure 4.3: Drag coefficient A(p) from pQCD model of charm quarks in a static

box at T = 250 MeV (left) and T = 350 MeV (right) compared to

semi-analytic calculations from MC integration. Semi-analytic results

are represented with black lines: dashed is the contribution from only

gc scattering, dash-dotted is the one from qc interaction with number of

flavor N f = 3, while solid curve is the sum over the two ones, assuming

double contribution for the case of quarks (antiquarks). Extracted Boltz-

mann distributions follow the same font but with colored curves.
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Figure 4.4: Extracted transverse diffusion coefficient B0(p) from pQCD model of

charm quarks in a static box at T = 250 MeV (left) and T = 350 MeV

(right) compared to semi-analytic calculations from MC integration.

Fonts and colors are the same used for the corresponding drag.

4.2 Model comparison for HQ transport coeffi-

cients

The dynamical evolution of HQs in QGP has be described by means of

many transport models based either on relativistic Botlzmann equation [181]

[182] [183] [184] or on Fokker-Planck/Langevin paradigma [185][186] [187],

some of them also including radiative energy loss along with a collisional ker-

nel. However, in the original setup to describe the final HQ observables which

are measured in high-energy HICs with the use of proper parameters, the ex-

tracted HQ transport coefficients from these models have a large discrepancy

that can vary by a factor of over 5. In order to investigate the origin of this

large uncertainty, we join a working group [188] for the systematic compari-

son of HQ transport coefficients by with various transport models. On behalf

this collaboration we carried out calculations for our pQCD and QPM mod-

els, the former within a Langevin approach, while the latter implemented in

the full Boltzmann code as discussed at the beginning of this Chapter.
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Figure 4.5: Extracted drag coefficient A(p) from QPM interaction of charm quarks

in a static box at T = 250 MeV (left) and T = 350 MeV (right) compared

to semi-analytic calculations. The font and color notation is the same as

the pQCD case in the previous plot.
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Figure 4.6: Extracted drag coefficient A(p) from pQCD model of bottom quarks in

a static box at T = 250 MeV (left) and T = 350 MeV (right) compared

to semi-analytic calculations. The font and color notation is the same as

the previous check for charm. The total contribution of drag coefficient

for bottom quarks (solid green line) is also compared to the one of charm

quarks (solid orange line).
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Figure 4.7: Drag coefficient A(p) from QPM interaction of bottom quarks in a

static medium (box) at fixed temperature T = 250 MeV (left) and

T = 350 MeV (right) compared to semi-analytic calculations. The font

and color notation is the same as the pQCD case in the previous plot.

Similarly the total contribution of drag coefficient for bottom quarks

(solid blue line) is also compared to the one of charm quarks (solid red

line).

4.2.1 Suppression of HQs in a “brick” problem

At the beginning of this procedure we setup our box framework devised

for the analysis of the nuclear modification in a so-called “brick” medium of

QGP. In this scheme charm quarks are distributed inside a homogeneous and

thermal equilibrated plasma at defined temperature T consisting gluons and

light quarks with N f = 3 flavor with total number given by Eq. (4.11). In par-

ticular, we initialize charm quarks with a simplified power-law parametriza-

tion for the transverse momentum pT spectrum that is inspired by LO pQCD

calculations [189] (see also [127])

d2N

d2pT

∝ 1
(

p2
T
+ Λ2

)α (4.15)

with parameters α = 3.52, Λ = 1.85GeV , while we set their starting lon-

gitudinal momentum pz = 0. Then we let charm quarks evolve through the

“brick” medium at fixed T = 250 MeV and we calculate the suppression fac-
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4.2. Model comparison for HQ transport coefficients

tor RAA(t) defined as the ratio between the momentum spectra at certain time

t with the initial momentum spectrum at t = 0. Indeed the distributions are

analyzed at the partonic level in order to exclude contributions to the final

observables coming from the hadronization mechanism. Within this “brick”

setup we follow the common baseline established for all transport models by

tuning the charm interaction as to obtain a RAA = 0.3 at pT = 15GeV and at

t = 3 f m. In our Boltzmann QPM framework, we do this by multiplying the

charm cross section by a constant factor K = 3.4 and then extracting the drag

and diffusion coefficients in the way discussed in the previous paragraph. In-

stead for the Langevin pQCD approach the parameter K is included directly

within the input drag, while the diffusion is derived by means of the FDT

scheme which here is implemented as the inverse of the generalized relativis-

tic Einstein relation Eq. (3.74).

In Fig. (4.8) the RAA(pT ) of charm quarks obtained in our calculations,

labeled as “Catania QPM” and “pQCD”, is presented along with the results

from the other transport models. The single plot on the left reports the com-

mon baseline for the suppression at time t = 3 f m, while the three plots on

the right describe the time evolution of the charm RAA in the“brick” setup.

In the complete work Ref. [188] the choice of this common baseline derives

from a second phase of tuning of the parameters, that is why it is indicated

in the figures with a “tune 2” label, and it is settled on the following consid-

erations. First that a box temperature of T = 250 MeV should be reasonable

approximation of the average temperature over an average distance of 3 f m

for he QGP created in realistic Pb − Pb collisions. On the other hand the

value of RAA = 0.3 is close to the experimentally measured suppression of D

mesons in central collisions at LHC energy [190]. In this way it was possi-

ble to reduce all the theoretical uncertainties arising from initial conditions

and dynamical bulk which are treated differently within the original transport

frameworks and hence along with the hadronization mechanism can have a

strong impact on the estimate of HQ transport coefficients as it was observed

in a “tune 1” phase of this work and later investigated detailly in Ref. [191].
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4.2. Model comparison for HQ transport coefficients

(a)

(b)

Figure 4.8: (a) The common baseline of charm quark nuclear modification factor

RAA(pT ) in the “brick” medium. (b) The evolution profile of charm RAA

in the “brick” at three different times: from left to right t = 1, 2, 3 f m.

Pictures are taken respectively from Fig. 7 and Fig. 8 of Ref. [188]

where it is given a brief description of the various transport models with

references therein.

4.2.2 Analysis of HQ transport coefficients in the “brick”

In this study the extracted drag and diffusion coefficients are defined as

follows

A(p) =
∆〈pL〉
∆t

, q̂(p) =
∆〈p2

T 〉
∆t

(4.16)

In eq. (4.16) A(p) is the mean charm momentum loss along the longitudinal

direction of propagation, hence it can be derived by multiplying the expec-
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4.2. Model comparison for HQ transport coefficients

tation value Eq. (4.14) of the original drag definition [168] (see first relation

of Eq. (3.67)) by the charm momentum itself. Instead the parameter q̂ quan-

tifies the broadening of the p distribution per unit of time in the direction

orthogonal to the charm momentum, thus it is equivalent to the diffusion co-

efficient and in particular, q̂ = 4B0(p). Despite the presence of transport ap-

proaches which include both elastic and inelastic processes, among this work

those that in Fig. (4.8) are marked by solid lines, the transport coefficient q̂

is conventionally defined through the elastic part only, since the momentum

broadening which is related to the HQ energy loss kernel [192] for in medium

gluon radiation at LO pQCD is regulated by collisions. The q̂ coefficient is

also viewed as a “jet” parameter, because it can be formally related to the

coupling between a energetic parton or HQ and the medium density at the

energy scale typical scattering processes that lead the high pT jet parton or

HQ to split into a spray of emitted gluons [193]. Then, it is possible to prove

that in the limit of jet parton approaching to thermal momentum p → T , the

q̂ is directly linked to the bulk properties and specifically to shear viscosity

as η/s ≈ 1.25T 3/q̂ [194].

In Fig. (4.9) we present the results for the A(p) coefficient extracted by

the various transport models involved in the common “brick”.

Figure 4.9: Extracted total drag coefficient A(p) from the common baseline setup

for charm suppression in “brick” medium at T = 250 MeV . Picture is

taken from Fig.98(a) of Ref. [188].
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We observe that through this systematic study we achieve to reduce the

uncertainty band of the extracted drag within a factor of about 2, which is the

smallest intrinsic error available for such quantity at present time. Meanwhile

we get an idea about the remaining differences among the models that may

arise because the HQ RAA is determined not only by the average energy loss,

i.e. the drag, but especially at high pT it is also an inference of the fluctua-

tions in the momentum distribution, i.e. of the broadening of the spectrum.

This means that a small variation for the extracted drag by constraining the

total charm suppression does not lead to a small difference in the resulting

diffusion and also that a larger discrepancy in the drag may arise between the

models which are purely elastic compared to those which account also for

inelastic processes. This is visible in Fig. (4.10) where we report the values

for both A(p) and q̂/T 3 coefficients from the separated contribution of pure

elastic energy loss, meaning that for A(p) the results are the same except for

the solid cases which belong to models where inelastic processes are taken

into account, while for q̂/T 3 they represent the whole estimated transverse

momentum broadening.

In this issue also the analysis of more differential distributions can reveal

other sources of uncertainty between the transport models. Hence, as last plan

of this work we modify the initial spectrum of charm quarks inside the “brick”

medium by distributing them according to a delta function with pz = 0 and

carrying out simulations for two different initial energy, Einit = 5 , 30GeV .

Then we let charm quark evolve in the thermal heat bath and we calculate the

average energy loss 〈E〉, the transverse momentum broadening 〈k2
T 〉 and the

longitudinal fluctuations 〈k2
L〉−〈kL〉2 as function of time t. All these results are

depicted in Fig. (4.11) taken from Ref. [188]. We notice that while all mod-

els agree quite well for what concerns the total amount of quenching in the

“brick”, quantitatively estimated by 〈E〉, they show significant a difference in

the transverse and longitudinal fluctuations which increase from a factor 2 to

about a factor 5 when the charm initial energy passes from Einit = 5GeV to

Einit = 30GeV . Moreover, we observe that such discrepancy is maintained

also within a pure elastic energy loss scenario and may arise in the case of

charm quark due to the divergence of Langevin dynamics from the full Boltz-
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(a)

(b)

Figure 4.10: Extracted drag coefficient A(p) (a) and transverse momentum broad-

ening q̂/T 3 = 4B0(p)/T
3 (b) for the pure elastic energy loss kernel of

the various transport models tuned to the common baseline for charm

RAA in “brick” medium at T = 250 MeV . Picture are taken respectively

from Fig.98 (b) and (c) of Ref. [188]

mann. For a detail discussion about this topic we refer to [195].

As stated in Ref. [188] we conclude that the analysis of the HQ dynamics

within a “brick” QGP medium with a common baseline for the suppression

factor RAA can have an impact on constraining the total amount of energy loss,

i.e. the drag coefficient, since it reduces uncertainties coming from initial

conditions, bulk evolution and hadronization scheme. On the other hand, the

intrinsic fluctuations coupled to the HQ propagation shatter the final agree-

ment among the different transport approaches which seem to converge into

the following three groups.
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4.2. Model comparison for HQ transport coefficients

(1) Models which incorporates both elastic and inelastic energy loss (like

Duke, LBL-CCNU) at high momentum estimate the largest drag coeffi-

cient A(p) correlated with the smallest value of the diffusion parameter

q̂(p) which is roughly constant as function of momentum.

(2) Models which contain only pQCD-driven collisions (like TAMU, Nantes

coll.+rad. and “Catania pQCD”) follow in the middle, since they to the

extraction intermediate A(p) and q̂.

(3) Models which account for elastic non-perturbative interaction through

quasi-particle formalism (PHSD and “Catania QPM”) are character-

ized by a large A(p) along the entire momentum range correlated by

the largest transverse broadening q̂.
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(a)

(b)

(c)

Figure 4.11: Time evolution of (a) average energy (b) transverse momentum broad-

ening (c) longitudinal fluctuation of charm quark in the “brick” setup

with initial energy Einit = 5GeV (left) , E = 30GeV (right). Picture is

taken from Fig. 10 of Ref. [188]
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CHAPTER 5

HQS’ SUPPRESSION AND ELLIPTIC FLOW

In this chapter we collect the whole results obtained by performing simu-

lations for realistic HICs both at RHIC and LHC scenarios within our Boltz-

mann Quasi-Particle Model (QPM). In particular, we will first discuss briefly

about the setup of initial conditions for HICs and QGP evolution tuned to re-

produce final multiplicity distributions and collective flow. Then, we will

focus on the initialization of Heavy Quarks (HQs) both in pp and in AA

collisions by looking at the Heavy-Flavor (HF) mesons and baryons spec-

tra in comparison with experimental measurements. In the main section of

the chapter we will collect our results for charmed meson nuclear modifici-

ation factor RAA(pT ) and elliptic flow v2(pT ) for RHIC and LHC simulations

within the dynamical Boltzmann evolution with QPM interaction described

in detail in Chapter 3 and 4. We will analyze the obtained suppression and

elliptic flow of D mesons by means of our hybrid fragmentation plus coales-

cence hadronization model introduced in Chapter 2 and in the wake of the

following works [75] [196]. Meanwhile, we will provide our first predic-

tions of B meson production in HICs and present interesting results of bottom

observables compared to experimental measurements (if available). Starting

from the cited papers, our final study will be concentrated on two specific

topics. In the first one we will address some questions regarding the descrip-

tion of D suppression along with the evidence of an enhanced production of
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Λc baryons both at RHIC and LHC energies and we will concentrate on the

formulation of a new method for constructing the RAA of D mesons at small

pT through a constrain on the hadronization of charm quarks, specifically to

the ratio Λc/D
0 measured at RHIC and LHC. Through this procedure we can

also infer on the suppression of Λc baryon itself and have a robust theoretical

apparatus to study B and Λb production in HICs. In the second one we will

focus on the investigation of charm and bottom thermalization in the QGP

by estimating the HQ spatial diffusion coefficient Ds(T ) which can compare

to lQCD expectations and other phenomenological models. In particular, we

will emphasize on the fact the analysis of HQ transport coefficients at the

bottom mass scale will lead to benefits that can be summarize in a reduction

of the uncertainties coming from the adopted transport model (Langevin vs

Boltzmann) and in a better agreement with lQCD quenched approximation.

5.1 Initial conditions for HICs

We performed simulations for RHIC AuAu collisions at center-of-mass

energy
√

s = 200 AGeV and for LHC PbPb collisions at
√

s = 2.76 −
5.02 ATeV with the possibility to choose among different centrality classes

by fixing of the initial impact parameter b and employing standard Glauber

model to calculate Ncoll(b) and Npart(b). However, our transport code is al-

ready settable for starting with initial conditions from MC Glauber model

which includes event-by-event fluctuations [197]. In our calculations we

start with total number of massive bulk partons dN/dy0 = 1400 at RHIC

and dN/dy0 = 2870 − 3480 at LHC @2.76 − 5.02 ATeV fixed for the cen-

trality range 0 − 5% corresponding to b ≃ 2.5 f m. Then, assuming lon-

gitudinal boost invariance we distribute with uniform pseudo-rapidity η =

y = 1/2 ln((t + z)/(t − z)) within a range of η ∈ [−2.5, 2.5] for RHIC and

η ∈ [−3.5, 3.5] for LHC binned with ∆η = 0.1. At more peripheral central-

ities, i.e. b > 2.5 f m, the number of partons is scaled according to a two
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component model [198]

dN

dy
(b) = α

[

(1 − x)
Npart(b)

2
+ xNcoll(b)

]

(5.1)

where α = (dN/dy0)/[0.5 · (1− x) ·Npart(b)+ x ·Npart(b)] is the normalization

factor in such a way that at b = 2.5 f m we get back to the values dN/dy0 =

1400 at RHIC and dN/dy0 = 2870 − 3480 at LHC. For Npart(b) and Ncoll(b)

we employ parametrized expressions as function of b which reproduce the

expectations from standard Glauber model (see Eq. (2.11), Eq. (2.12) and the

average lines in Fig. (2.8)). The parameter x is chosen according to some

constraints of the initial spatial eccentricity of the fireball. In particular, we

set x = 0.15 for RHIC and x = 1.0 at LHC, meaning that for the former case

the bulk is distributed mostly in accordance to Npart, while for the latter case

it follows essentially the Ncoll distribution. The change of initial eccentricity

through the variation of the x parameter has quite strong impact on the final

elliptic flow of the light partons, however we have not analyzed such behavior

in detail since we are mostly interested in the HQ observables which need a

reasonable but not so precise description of the bulk observables.

5.1.1 Transverse distributions for soft and hard partons

The number of initial partons obtained from Eq. (5.1) is distributed be-

tween gluons and light quarks (antiquarks) according to equilibrium condi-

tion, i.e. through the ratio of internal degrees of freedom νg/νq with νg = 16

and νq = 6N f with number of quark flavors N f = 3. Then, partons of the

various species are divided into a soft and a hard component by randomly

sampling their initial transverse momentum pT and comparing it with a pa-

rameter cut which is fixed in order to ensure the continuity of the partonic

pT spectra. In particular, we fix p0 = 2.0GeV at RHIC and p0 = 3.5GeV

in agreement with some pQCD approaches [199] [200]. Soft partons of the

bulk have pT ≤ p0 and are distributed in the transverse plane according to the
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participant distribution at given impact parameter b

dNpart(b)

ds
= TA(s, b)

[

1 − exp
(

−σin
NNTB(s, b)

)]

− TA(s, b)
[

1 − exp
(

−σin
NNTA(s, b)

)]

(5.2)

where σin
NN

is the inelastic nucleon-nucleon cross section which we choose

to be equivalent to the inelastic contribution of proton-proton collisions with

values of 40mb at RHIC and 70mb at LHC energy. For Eq. (5.2) we calculate

also the nuclear thickness functions

TA(s, b) =

∫

dz ρA

(

s − b

2
, z

)

, TB(s, b) =

∫

dz ρB

(

s +
b

2
, z

)

(5.3)

employing the Wood-Saxon expression of nuclear density profile given in

Eq. (2.1) (see Fig. (2.4)) with parameter values taken from Ref. [32]. In-

stead the distribution of hard partons in the transverse plane is obtained from

binary nucleon-nucleon collisions in the Glauber model at the same impact

parameter b
dNcoll(b)

ds
= TA(s, b)TB(s, b)σ

in
NN (5.4)

5.1.2 pT spectra for soft and minijet partons

Soft and hard partons of the bulk differ also for the initial distribution

in transverse momentum pT , the former consisting of a plasma of quarks and

gluons at local thermal equilibrium, the latter being equivalent to the products

of initial binary pQCD collisions, named as minijets. Soft partons are so

distributed according to the exponential formula

dN j

d2pT

=
ν jmT

(2π)3
exp

(

−mT

T

)

(5.5)

where ν j is the color-spin degenerancy factor for j = g, q, q̄ and the trans-

verse mass mT =

√

m2 + p2
T
is calculated using constant quasi-particle mass

both for light quarks and gluons fixed at the value m = 0.5GeV [201], since

already at this stage we are able to reproduce with quite good approximation
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the EoS of lQCD [154]. In Eq. (5.5) T refers to the initial temperature of the

local cell (rT , η) in coordinate space where soft partons are localized. Know-

ing the density of soft partons inside each cell we can calculate T (rT , η) by

making use of the following expression

T (rT , η) = T0

(

ρ(rT , η)

ρ(rT , η)

)1/3

(5.6)

Then, the temperature profile is scaled with respect to the value in the cen-

tral cell which is fixed to the value T0 = 0.365GeV and T0 = 0.55GeV

respectively at RHIC and LHC as is usually done in hydrodynamical sim-

ulations [54, 202, 203, 204]. From the condition T0τ0 ∼ 1 we also fix the

starting time of the QGP phase. In particular, with τ0 = 0.6 f m at RHIC and

τ0 = 0.3 f m at LHC we try to follow the recent estimates based on models of

initial stages of HICs implemented both in hydrodynamics and in transport

frameworks. Corrections to Eq. (5.6) arise from the fact that soft partons are

massive particles, hence temperature should be derived from proper inversion

of density formula with Bessel functions included. In order to do that we

start by calculating T (rT , η) from the massless relation Eq. (5.6) and perform

Newton-Rhapson algorithm until we match with the massive behavior.

Transverse momentum distributions of minijets at mid-rapidity can be de-

rived from pQCD calculations within the factorization theorem, meaning that

these partonic pT spectra should be multiplied with tabled PDFs and the result

convoluted with proper FFs for fragmentation of light partons to get semi-

inclusive hadron spectra at mid-rapidity in agreement with the measured ones

in pp collisions (see Eq. (2.59)).

In our calculations we employ the following power-law expression for

parton species j = g, q, q̄

dN j

d2pT

=

(

A

1 +
pT

B

)n

(5.7)

with parameter values A = 4.0157(g) − 2.6724(q), B = 1, n = 8.4 at RHIC as

used in Ref. [66] and A = 2.43059, B = 4.07368, n = 6.72689 at LHC from

ALICE report [205]. The total number of minijets for quarks and gluons
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5.2. QGP evolution and bulk observables

is given by the integral of Eq. (5.7) properly scaled by Ncoll(b) for the fixed

impact parameter b. We checked that actually this parametrization of minijets

are in agreement with recent pQCD updates used for example in Ref. [200]

and that convoluted with NLO Kniehl-Kramer-Potter (KKP) FFs [63] lead

to an acceptable description of measured charged particle spectra at LHC as

shown in Fig. (5.1).
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Figure 5.1: Charged pion pT spectrum at high pT obtained from initial minijet dis-

tribution Eq. (5.7) with parameter values of LHC and convoluted to

FFs parametrized with NLO KKP [63] compared to charged particle pT

spectra measured by ALICE at pp collisions and center-of-mass energy√
s = 7TeV . Minijet distribution is properly scaled in order to match

with the experimental total cross section of production of charged parti-

cles which at so high pT are mostly dominated by pions.

5.2 QGP evolution and bulk observables

The dynamical evolution of the fireball is described by means of the Rel-

ativistic Boltzmann Equation (RBE) Eq. (3.42) that we write again here

(

pµ∂
µ
x + m∗(x)∂µxm∗(x)∂p,µ

)

fg,q,q̄(x, p) = C[ fg, fq, fq̄](x, p) (5.8)

Since we consider a massive bulk of light quarks and gluons with constant

m∗(x) = m = 0.5GeV the mean field term on the left hand side of the RBE is
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5.2. QGP evolution and bulk observables

actually zero and also the gap equation for the bag pressure B(x) Eq. (3.43)

is automatically solved. The collision integral C[ fg, fq, fq̄] encoding the in-

teraction between the bulk partons is tuned to a fixed value of η/s(T ) that is

realized by computing the local cross section according to the Chapmann-

Enskog (CE) formula Eq. (3.48) as discussed in detail in Chapter 3 and re-

ferring to [161] [48]. In this way we gauge the whole dissipative effect to

the desired η/s(T ) and simulate the evolution of the fluid in analogy to what

is performed in hydodynamics [54, 202, 203, 204]. For the partonic phase

we choose the constant value η/s = 1/4π and model the increasing of η/s

at the freezout transiton towards the hadronic phase by means of a Maxwell

construction. We solve numerically Eq. (5.8) by sampling Ntest = 300 test-

particles for each real parton as described in Sec. (3.5) and map the collision

integral C[ fg, fq, fq̄] by means of the improved stochastic method (see Chap-

ter 3). Time evolution of the QGP is followed till a proper of τmax ∼ 9 f m at

RHIC and τmax ∼ 14 f m at LHC which is much larger than the QGP lifetime,

but in this way we ensure that elliptic flow v2 of the bulk system is satu-

rated and freezout condition is established in the whole fireball. To conclude

this section we present our results for two main bulk observables, mainly the

final (pesudo-)rapidity distribution dNch/dy(η) for specific centrality classes

(where ch indicates the contribution from only charged particles) and the el-

liptic flow v2(pT ) of light quarks and gluons averaged with respect to their

initial number. In Fig. (5.2) we present the results for the bulk at RHIC AuAu

collisions at
√

sNN = 200GeV , showing on the left the final dNch/dη ob-

tained in simulations with increasing impact parameter b, while on the right

the v2(pT ) at specific b = 7.5 f m. In the same manner in Fig. (5.3) we show

results for LHC PbPb collisions at
√

sNN = 5.02TeV with the final dNch/dη

for various centrality classes and v2(pT ) at impact parameter corresponding

to semi-peripheral collisions. All these partonic results are compared with

the relative experimental data which are of course at hadronic level. In order

to make this comparison reasonable we are implicitly assuming quark-hadron

duality and even though we should consider the contribution coming from the

hadronization in the light sector. In particular, we should take care of the fact

that an enhancement of about a factor 20% on the final particle multiplicity
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5.3. Initial conditions for HQs in pp and in AA collisions

comes when going from partons to hadrons as well as the v2(pT ) increases

at low pT due to coalescence [68]. However, for the aim of this work we

are more interested in HQ observables providing a rough description of QGP

evolution which in the meantime is in agreement with hydrodynamics for

what concerns for example the dissipative effects (η/s) and also the entropy

density.
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Figure 5.2: (a) Final time pseudo-rapidity distributions of bulk partons obtained

at RHIC simulations and compared to experimental data for dNch/dη

at various centralities from BRAHMS [131]. Initial time τ0 = 0.6 f m

pseudo-rapidity distribution at most central collisions (b = 3 f m) is

indicated with dashed black line. (b) Elliptic flow v2(pT ) for averaged

massive bulk m = 0.5GeV of gluons and quarks with N f = 3 obtained

at RHIC minimum bias b = 7.5 f m collisions compared to charged

v2{4} measured at STAR [133]. Uncertainty bars correlated to the

experimental data are too small to be visible in the plots.

5.3 Initial conditions for HQs in pp and in AA

collisions

At given impact parameter b of the simulation charm and bottom quarks

are initially distributed in transverse coordinate space according to the binary

nucleon-nucleon collisions Eq. (5.4) from Glauber model, while in the mo-
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Figure 5.3: (a) Final time pseudo-rapidity distributions of bulk partons obtained at at

LHC PbPb@5.02TeV collisions and compared to dNch/dη experimen-

tal data from Ref. [206]. Initial time τ0 = 0.3 f m pseudo-rapidity dis-

tribution at most central collisions (b = 2 f m) is indicated with dashed

black line. (b) Elliptic flow v2(pT ) for mixed bulk m = 0.5GeV of glu-

ons and quarks with N f = 3 obtained at LHC simulations at b = 9.25 f m

and compared to charged v2{2} from ALICE [207].

mentum space we employ the following power-law spectrum

(

dNHQ

d2~pT

)

0

=
x0

(

1 + x3 · p
x1
T

)x2
(5.9)

fitting the parameter to reproduce Fixed Order + Next-to-Leading Logarithm

(FONLL) pT distributions in pp collisions at mid-rapidity for RHIC [85] [86]

and LHC [87] (highest) [208] energies. The value of these parameters are

collected in the two tables below and in Fig. (5.4) we show the corresponding

behavior of the fit with respect to the central value of FONLL predictions. In

this case we normalize our distributions Eq. (5.9) to the FONLL cross section

of cc̄ and bb̄ production in pp collisions at mid-rapidity and for the various

energies. In particular, we have σcc̄ = 256 µb and σbb̄ = 1.86 µb at RHIC
√

s = 200GeV from Ref. [85], while we have σcc̄ ≃ 5mb and σbb̄ ≃ 75 µb at

LHC
√

s = 7TeV from Ref. [87]. A useful parametrization of σcc̄(
√

s) cross

section fitted to the experimental data for charm production in pp collisions

can be found in Ref. [209].
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5.3. Initial conditions for HQs in pp and in AA collisions

Charm FONLL
pp
√

s [GeV] x0 x1 x2 x3

200 0.011 1.524 6.119 0.162

2760 18.887 1.785 3.654 0.096

5500 20.284 1.951 3.137 0.075

7000 21.284 2.039 2.916 0.065

(a)

Bottom FONLL
pp
√

s [GeV] x0 x1 x2 x3

200 0.018 1.875 4.772 0.030

2760 0.302 1.709 3.605 0.035

5500 0.468 1.838 3.076 0.030

7000 0.592 1.651 3.607 0.035

(b)

Table 5.1: Parameter values of pT spectrum for bare charm (a) and bottom (b) ob-

tained from power-law fit Eq. (5.9) of FONLL calculations for pp colli-

sions at various center-of-mass energies
√

s.

D and B meson production in pp collisions

Measurements in pp reactions represents our baseline for analyze HQ

production and suppression in AA collisions. We convolute charm and bottom

pT distribution given in Eq. (5.9) to Peterson [108] functions (see Eq. (2.83))

to obtain respectively the D and B mesons spectra

dNh

d2pT

=

∫

dz

(

dN

d2pT

)

0

DHQ→h(z)

z2
, DHQ→h(z)=



z

(

1 − 1

z
− ǫc

1 − z

)2


−1

(5.10)

where as done also in Ref. [196] for charmed mesons we fix the parameter

ǫc = 0.06 in the fragmentation functions in the right Eq. (5.10) in comparison

to the measured D0 and D∗ yield in pp collisions at RHIC energy measured by

STAR [210] and to reproduce also the production of D0, D+, D∗ or their av-

erage spectrum at LHC energy for the available experimental data [211]. The

resulting D mesons spectra are shown in Fig. (5.5) and in Fig. (5.6) respec-

tively for RHIC and LHC where our results are scaled with the proper frag-

mentation fractions c → D0, D+, D∗ taken from Ref. [212] (see also [213])
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Figure 5.4: Transverse momentum distributions of charm (blue) and bottom (red)

from the fit of FONLL calculations in pp collisions at RHIC energy√
s = 200GeV and LHC energies

√
s = 2.76 , 5.5 , 7TeV . Dots refer

to FONLL central predictions at mid-rapidity |y| < 0.5, while solid lines

correspond to power-law expression Eq. (5.9) for initializing HQs within

the transport code.

in order to get the approximate conversion from the total σcc̄ to the value of

the cross section for the various hadronic channels and take into account also

different rapidity intervals.

Since the bottom production cross section at RHIC energy is very small,

the only way to constraint the pT distributions should pass from a study of

the single electrons from the decay of B and D mesons trying to unfold the

contribution coming from the former to the one originated from the latter.

That would require the implementation of the semi-leptonic decay process

after the hadronization of HQs in pp collisions [215], while in HICs that

should be followed by a hadronic re-scattering phase which it is currently not

realized in our transport approach. However, for the purpose of this thesis
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Figure 5.5: Transverse momentum distribution of D mesons obtained from the

fragmentation of charm quarks in pp collisions at
√

s = 200GeV and

compared with the experimental data from STAR collaboration [210].
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Figure 5.6: pT distribution of D mesons at mid-rapidity obtained from the fragmen-

tation of charm quarks in pp collisions at
√

s = 7TeV . This result is

compared with experimental points for prompt D0 (red filled circles) and

average D0 + D+ + D∗ (red filled triangles) measured at ALICE [214].

we still work fine when we focus directly on the production of bottom at

LHC energies. Indeed when convoluting the bottom FONLL spectrum to the

Peterson function we fix the fragmentation parameter ǫc = 0.01 to reproduce

the pT spectrum of B0 and B± mesons measured in pp collisions at
√

s =
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5.3. Initial conditions for HQs in pp and in AA collisions

7TeV by CMS collaboration [216]. In Fig. (5.7) we show the obtained result

in comparison with the experimental data. We notice that with respect to the

case of D mesons by normalizing our spectrum to the total FONLL cross

section we underestimate the measured yield.
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Figure 5.7: pT distribution of B mesons obtained from the fragmentation of bottom

quarks in pp collisions at
√

s = 7TeV (red line) and compared with

experimental data from CMS collaboration [216]. The dashed orange

curve is the expected pT spectrum of B mesons at RHIC energy.

Λc yield in pp collisions

The production of prompt Λ+
c baryon has been recently measured at LHC

in pp collisions at
√

s = 7TeV [217] and in PbPb collisions at
√

sNN =

5.02TeV [218] with corresponding ratios

(

Λ+
c

D0

)

pp

≃ 0.6 ,

(

Λ+
c

D0

)

PbPb

≃ 1 (5.11)

The former is almost constant in the analyzed range of pT and has a value

which is much higher than previous measurements carried out in e− + e+ and

ep collisions. This issue has not been addressed yet, even if some explana-

tions can be drawn within the general idea about the possible existence of a

QGP phase in small system as indicated for example by the large collective

flow which is studied within hydrodynamics [219] [220]. Then, if a medium
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5.4. Suppression and Elliptic flow of HQs

is formed also in high multiplicity pp events, a coalescence mechanism for

charm quarks like the one we use in HICs can be applied to address the ob-

served enhancement of the ratio at low pT which cannot be described within a

only fragmentation scenario [71]. For the latter, instead, a solution relative to

its order of magnitude (Λc/D
0) ∼ 1, actually observed both at RHIC and LHC

energies, as well as its pT dependence can be found with quite certainty by

looking at the strong impact of coalescence. Basing on the hybrid hadroniza-

tion approach for HQs which we described in Chapter 2 and referring espe-

cially to our paper [75], we will present some quantitative estimates for D

and Λc suppression factor in HICs later in this Chapter. In this paragraph

we make use of the available Λc data to tune once more the fragmentation

function Eq. (5.10) of charm quarks in pp collisions in order to fix our base-

line for the later study of Λc suppression. In Fig. (5.8) we show that with a

value of ǫc = 0.12 we are able to fit the shape of the pT distribution measured

by ALICE [217] and also we find an agreement with the statement done in

Ref. [221], meaning that fragmentation function becomes softer going from

meson to baryon, because more energy is needed to pop-up two quarks from

the vacuum. That results into a value of the parameter ǫc for Λc which is

roughly two times larger than the one for D mesons.

5.4 Suppression and Elliptic flow of HQs

After initializing the HQs with the proper pT distributions we follow their

propagation and let them interact inside the expanding medium by sampling

stochastically their collisions with the QPM partons as described at begin-

ning of Chapter 4 and at each small time step ∆t we update their coordi-

nate and momentum values. Finally, when freezout condition for energy and

particle density is established, we collect the final spectra and anysotropic

distributions of both HQs and bulk partons and couple them within our hy-

brid hadronization framework for HQs described in Chapter 2 to construct in

the end the RAA(pT ) and the v2(pT ) of the corresponding Heavy-Flavor (HF)

hadrons. In the following paragraphs we present our results for these two

observables and compare them with the experimental data at RHIC and LHC.
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Figure 5.8: pT distribution of Λc baryon (orange lines) in pp collisions at
√

s =

200GeV (dash-dotted),
√

s = 5.02TeV (dashed) and
√

s = 7TeV

(solid) obtained from the fragmentation of charm quarks and compared

with previous results form pT spectrum of D meson (black lines) as well

as with the experimental data from ALICE collaboration [217] for the

highest energy case (orange squares). We choose normalization factor

to match with the measured ratio (Λc/D
0)pp ≃ 0.6.

5.4.1 Results at RHIC

The nuclear modification factor of D mesons at RHIC AuAu@200 AGeV

most central collisions corresponding to an impact parameter b = 3.25 f m are

represented in Fig. (5.9) and compared to the updated experimental data of

D0 production from STAR [124].

The dashed orange line is the RAA obtained by considering only fragmen-

tation into D mesons of all charm quarks evolved within the Boltzmann ap-

proach. Instead the solid line is the result for the scenario of fragmenta-

tion plus coalescence hadronization mechanism. In this case the RAA is con-

structed by imposing the total number of charm quarks Ncharm
AA

plugged into

the hadronization code, that we calculate by integrating their pT distribution,

to be equivalent to the expected number of D mesons produced by charm frag-

mentation in pp collisions, namely ND
pp, scaled by the proper Ncoll(b) factor.
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Figure 5.9: Nuclear modification factor RAA of D mesons in RHIC AuAu collisions

at
√

sNN = 200GeV and centrality 0 − 10% compared to STAR old

data [123] and new data from update analysis [124].

Hence, we can formally write the RAA definition as

RD0

AA(pT ) =

(

dN/d2pT

)D0

AA coal+ f ragm

Ncharm
AA

ND
pp

(

dN/d2pT

)D0

pp f ragm

(5.12)

where the following relations are considered

Ncharm
AA =

∫

d2pT

(

dN

d2pT

)charm

AA

, ND
pp =

∫

d2pT

(

dN

d2pT

)charm

pp

⊗ Dc→D (5.13)

where Dc→D corresponds to the parmetrized Peterson expression [108] (see

Eq. (2.83)) with tuned parameter ǫc = 0.06 [196] [75] and the pT spectrum

at denominator of Eq. (5.12) includes also the proper fragmentation frac-

tion FF into D0 among all the other possible D states. In particular, we use

FF(D0) = 0.6 taken from the combined analysis in Ref [212]. Through the

results at RHIC in this paragraph as well as thos for LHC in the next one

we will use the definition of RAA as stated in Eq. (5.12). In agreement with

the results of Ref. [196] the effect of coalescence implies an increasing of

the RAA at pT > 1GeV , hence a decreasing of the suppression because D

mesons formed from recombination get the charm momentum gained with
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the light quark one, whereas D mesons coming from fragmentation have al-

ways smaller momentum with respect to the original charm quark. This ex-

plains also the decreasing of RAA at pT < 1GeV as a consequence of the

depletion of the final spectrum of D mesons at low pT where coalescence is

the dominant mechanism and also the fact that such spectrum does not scale

linearly with the final pT distribution of charms. We obtain similar result also

for the RAA at RHIC peripheral collisions b = 7.5 f m where after we achieve

a good description of D meson suppression we can look also at the produced

elliptic flow v2(pT ) both for charm and D mesons. The results for the two

observables are depicted respectively in Fig. (5.10) and in Fig. (5.11) along

with the experimental measurements from STAR available at same centrality.
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Figure 5.10: Nuclear modification factor RAA of D mesons in RHIC AuAu collisions

at
√

sNN = 200GeV and centrality 10 − 40% compared to STAR old

data [123] and new data from update analysis [124].

We observe in Fig. (5.11) that the v2 of D obtained within a only frag-

mentation scenario (dashed orange line) is equal to that of charm quarks (dot-

ted black line), except for a little shift at low pT arising from the fact that

the anysotropy in the distribution of D mesons at given pT comes directly

from the anysotropy in the distribution of bare charms at slight larger trans-

verse momentum. Instead an enhancement of the produced v2 of D mesons

is provided by coalescence, since charm quarks by recombination with the
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Figure 5.11: Elliptic flow v2 of D mesons obtained within various hadronization

mechanisms and compared to the measured v2 of D0 at minimum bias

from STAR [137].

light partons acquire also their collective flow. As we can see in Fig. (5.11)

when charm anysotropies from Boltzmann evolution are coupled to the frag-

mentation plus coalescence mechanism, the resulting v2 (solid red line) is

about 20% larger than the charm v2 at freezout, the latter being substantially

equivalent to the v2 from fragmentation. Similarly to what has been done in

Ref. [196] the impact of coalescence on the formation of elliptic flow can be

estimated by considering also a scenario where D mesons are produced only

via recombination, meaning that in our hadronization model we switch off the

fragmentation probability. We observe that the developed v2 for D mesons

(dash double-dotted green curve) can increase by a factor 2 with respect to

the v2 from fragmentation, since in this case all charm quarks couple with the

anysotropies of the bulk partons and thus gain much more in collective flow.

Within our Boltzmann QPM transport approach coupled to the hybrid

hadronization model we are able to perform simulations for studying the

dynamical evolution of bottom quarks and the consequent suppression and

elliptic flow of B mesons. In Fig. (5.12) we show also our predictions for

the B meson RAA at RHIC central collisions with b = 3.25 f m. Our results

for the RAA are derived with analogous expression of Eq. (5.12), but in this

case we do not account for the various possible final states, rather we assume
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5.4. Suppression and Elliptic flow of HQs

that all bottom quarks evolve in a single B species. We observe that with a

final pT spectrum of B mesons originated by only fragmentation (dashed teal

line) we already describes quite well the estimated shape of the suppression

factor which by the effect of a larger mass has a smooth decreasing at low

pT with respect to the charm behavior (see Fig. (5.9)). On the other hand

the RAA ofB tends asymptotically to the value for D mesons at high pT where

the dependence on the HQ mass in the collisional energy loss kernel becomes

negligible. In the same we show also the RAA of B mesons resulting from both

fragmentation plus recombination mechanism. We notice that at the level of

suppression the effect of coalescence is much less significant compared to

what we have seen for the charm case. An explanation on this fact can be

related to the different stiffness of the final pT distribution. Bottom quarks

are expected to finish their dynamical evolution in the QGP with a harder

spectrum compared to charms and since ǫc(b) < ǫc(c) fragmentation tends to

preserve this hierarchy. Coalescence instead will lead to a gain in momentum

which in percentage is smaller when the starting HQ spectrum is harder, like

the one of bottom.
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Figure 5.12: Predictions for B meson RAA at RHIC most central collisions compared

to previous results for D meson RAA. Green triangles refer to prelim-

inary measurements from non-prompt D0 suppression at STAR with

points taken from Fig. 36 in Ref. [77].
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5.4.2 Results at LHC

Within the same Boltzmann QPM framework we carried simulations for

LHC PbPb collisions at
√

s = 2.76 ATeV and also
√

s = 5.02 ATeV . In

most central reactions at such high energies we have to take into account for

CNMEs which we include in terms of shadowing function S (pT ) multiplying

the initial pp distributions of charm and bottom quarks

(

dNHQ

d2~pT

)shadowing

0

=

(

dNHQ

d2~pT

)

0

∗ S (pT ) (5.14)

while for more peripheral collisions b ≥ 5 f m we brutally switch off this

effect by imposing S (pT ) = 1. The behavior of S (pT ) at b < 5 f m is extracted

from a fit to EPS09 package [90]. Theoretical and experimental groups which

adopt the EPS09 parametrization to include initial conditions usually assume

in addition some functional dependence of the (anti)shadowing effect both

on the impact parameter b and also on the transverse position rT at which

the HQ pair is produced such that it is strong in central collisions and in the

central region of the fireball, while decreasing in peripheral collisions and

on the fireball surface. This results essentially in a smooth variation of the

initial HQ pT spectrum which at small b and rT it is affected by the maximum

(anti)shadowing (enhancement)depletion like in Eq. (5.14), while at larger

values of these parameters it reduces to the pT distribution in pp collisions

(5.9). We have not included such effect in this work yet, but in future we plan

to do by coupling the EPS09 package to some b and rT functional expression

which is self-consistently derived from the initial Glauber profile, rather than

being implemented as external source.

In this section we present our results for HF RAA and v2 obtained per-

forming simulations within our Boltzmann approach set up for LHC PbPb

collisions at the center-of-mass energy of
√

s = 5.02 ATeV . In Fig. (5.13)

the suppression of D mesons at impact parameter b = 3.25 f m is compared

to experimental measurements and related uncertainties from ALICE [125]

and CMS collaborations [126] that in the plot are indicated respectively with

black squares ad red circles. We carried out calculations without CNMEs and
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5.4. Suppression and Elliptic flow of HQs

preliminary ones including the same parametrization of the shadowing func-

tion S (pT ) we used at lower energy PbPb collisions at LHC. The former are

depicted with dashed font, while the latter are represented with solid lines.

Black lines correspond to the case where D mesons are produced only by

fragmentation, while colored lines are the results where full hadronization by

coalescence plus fragmentation is included.

By switching to a coalescence plus fragmentation hadronization, the effect

of recombination on the D suppression is less significant at LHC compared to

the previous RHIC result. This is due to the fact that the impact of coalescence

strongly depends on the slope of the final charm pT distribution which is given

as an input to the hadronization [196] [75]. Indeed HQs which, after being

quenched by medium interaction end up still with a harder distribution, do

not gain so much in percentage from the momentum of bulk partons as if they

have started with a softer one. This reflects into a smaller increase of the

slope of the LHC spectrum of D mesons from recombination with respect to

the RHIC one which comes a faster decreasing of the charm pT distribution.
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Figure 5.13: D meson RAA in LHC PbPb collisions at
√

sNN = 5.02TeV for cen-

trality 0−10% compared to experimental meassiurements for averaged

D0 + D+ + D∗ from ALICE [125] and prompt D0 suppression from

CMS [126].

The suppression of D mesons at higher centrality range (b = 9.25 f m) is

depicted in Fig. (5.14) along with the resulting elliptic flow obtained within
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our Boltzmann framework coupled with the hybrid fragmentation plus coales-

cence model [75]. In this calculation we have not included (anti)shadowing.
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Figure 5.14: RAA(pT ) of D mesons at LHC PbPb
√

sNN = 5.02TeV peripheral col-

lisions (b = 9.25 f m) compared to ALICE experimental data [125].
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Figure 5.15: v2(pT ) of D mesons at LHC collisions for centrality 30−50% compared

to ALICE measurements [138].

Since we are able to describe quite well the RAA of D mesons measured

at ALICE [125], we can move to a comparison at level of produced elliptic

flow v2(pT ). Our results are shown in Fig. (5.15) along with the experimental

data [138]. We notice that charm quarks appear to build up large collective

flow also at LHC energies, as we can infer by looking at the v2 of D mesons
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produced by fragmentation (dashed black line) which is equivalent to the v2

of original charms (dotted black line), expect for the slight shift at small pT .

Again adding coalescence within the hadronization mechanism enhances the

final elliptic flow of D (solid red line) of a factor about 20% compared to

the v2 from fragmentation. Hence, despite the small effect on suppression,

coalescence is still effective when coupling the anysotropies of the bulk to

the HQ distributions. As a proof we show in Fig. (5.15) the elliptic flow

of D mesons produced within hadronization by only recombination (dash-

double dotted green line) that is about a factor 1.8 larger than the v2 from

fragmentation.

Finally, we collect also our preliminary predictions for bottom suppres-

sion and elliptic flow at LHC energy. In particular, the RAA of B mesons for

PbPb collisions at
√

sNN = 5.02 ATeV and impact parameter b = 9.25 f m is

presented in Fig.(5.16) along with the suppression of D mesons taken from

Fig. (5.13). Our results indicate that within the explored pT range a mass hi-

erarchy effect within the amount of dissipated energy ∆Ec > ∆Eb is visible

through the RAA of B mesons that results higher than the RAA of D mesons.

Moreover, at high pT the former tends to become equivalent to the latter, indi-

cating that at pT ≥ 10 eV this mass dependent effect should vanish. We could

compare this results to available experimental data from CMS collaboration,

where the production of HQs at bottom level is being under investigation

through the analysis of non prompt J/ψ [222] and non prompt D0, but also

by means of measurement of B± suppression [223]. However, data points are

located in a high pT region where it is supposed that energy loss by medium-

induced radiation is the dominant effect, so a direct comparison among the

quantities is not feasible. The dashed teal line refers to the RAA of B meson

produced within only hadronization by fragmentation, where the parameter

ǫb = 0.01 is tuned to the B spectrum in pp collisions (see Fig. (5.7)). In-

stead the full hadronization by fragmentation and recombination is depicted

with dash-dotted blue line. We observe the same small impact of coalescence

on the RAA formation, except at values of pT ≤ 2GeV , for the reason dis-

cussed before. For what concerns the elliptic flow, we show our predictions

in Fig. (5.17) from which we infer that the bottom quarks couple with bulk
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5.4. Suppression and Elliptic flow of HQs

anysotropies with a mass effect that seems to vanish at pT ≥ 5GeV where

we obtain v2(B) ≈ v2(D) for the fragmentation case, as we can see comparing

the dashed curves, black for D mesons and teal for B mesons. The scenario

should be maintained within a fragmentation plus coalescence scenario, be-

cause the former hadronization mechanism overcomes the latter at such high

energies.
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Figure 5.16: B meson RAA(pT ) in LHC collisions at
√

sNN = 5.02GeV for centrality

30 − 50% compared to D meson RAA taken from Fig. (5.13).

5.4.3 Effect of Λc production in the nuclear modification

factor

In our recent work [75] we used our hybrid fragmentation plus coales-

cence hadronization model for HQs described in Chapter 2 to calculate the

charmed baryon-to-meson ratio both at RHIC and LHC energies. In this case

the coalescence model is tuned in such a way that the sum of the probabilities

over all possible hadronic species becomes 1 in the limit pT → 0, as it is pos-

sible to see in Fig. (2.15). What we found is that within a fragmentation plus

166



5.4. Suppression and Elliptic flow of HQs

0 2 4 6 8 10 12
p

T
 [GeV]

0

0.1

0.2

0.3

0.4

v
2
(p

T
)

average D mesons ALICE  |y|<0.8
D Fragm. Only
D Coal. + Fragm.
B Fragm. Only
B Coal. Only

LHC PbPb @5.02 TeV 30-50%

Figure 5.17: B meson v2(pT ) from either only fragmentation (dashed orange

line) or only coalescence mechanism (solid red line) compared to

previous results for D meson elliptic flow with various hadronization

scenarios and together with the measured ALICE data for the average

D0 + D+ + D∗ taken from Ref. [138].

coalescence model we were able to reproduce the enhancement of Λc pro-

duction in HICs and quantitatively estimate a value of Λc/D
0 ratio which was

in agreement with the single experimental point available from STAR at that

time [224]. In Ref. [75] we also noticed that in our hadronization scenario the

pT dependence of the baryon-to-meson ratios is sensitive to the masses of the

coalescing quarks in a rather different way compared to other models. Moti-

vated by these results we carried out simulations also at LHC PbPb collisions

at
√

sNN = 5.02TeV and came up with predictions which indicate the en-

hancement of Λc production with the same order of magnitude of the one ob-

served at RHIC. To summarize this work we present our estimated Λc/D
0 as

function of transverse momentum in Fig. (5.18) both for RHIC (left) and LHC

(right) collisions where solid lines refer to a scenario where charm quarks

hadronize by only coalescence mechanism (dashed-dotted black curve), while

dashed lines are the case where we account for coalescence plus fragmenta-

tion. In the same figure we show also a comparison with the updated data

from STAR and the measurements made by ALICE [218].
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Figure 5.18: The baryon-to-meson ratio form charmed hadrons as function of pT

predicted from the hybrid fragmentation plus coalescence model [75]

and compared to experimental measurements at RHIC (left plot) and

LHC (right plot). STAR and ALICE data are respectively from

Ref. [225] and Ref. [218].

We believe that one of the possible observables that can be affected by

the enhancement of Λc production in AA collisions is the nuclear modifica-

tion factor. In pp collisions charm quarks still hadronize preferably into D

mesons, because the probability to fragment into a baryon state is very low.

On the other hand in a hadronization scenario where the production of Λc is

comparable to the one of D0 mesons and considering the conservation of the

total charm quarks, the suppression factor of D0 at low momenta decreases

significantly. In Fig. (5.19) we present our predictions for RAA of D0 mesons

obtained from charm evolution in the QGP within a Boltzmann QPM trans-

port framework coupled to hadronization by fragmentation plus coalescence

model where the effect of the enhancement charmed baryon production is

treated in such a way to reproduce the measured Λc/D
0 ∼ 1 (see left plot

Fig. (5.18)). In particular, our new results (thick green lines) are compared

with our previous results for the RAA of D0 mesons (thin red line). The effect

of Λc production follows a pT trend which is governed by the coalescence

model, having the strongest impact for pT ≤ 2GeV , while reducing at higher

momenta where both results converge to the fragmentation value.
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Figure 5.19: The nuclear modification factor RAA(pT ) of D0 mesons at RHIC central

(a) and peripheral (b) collisions obtained within a fragmentation plus

coalescence scenario with enhancement of Λc/D
0 ratio and compared

to experimental measurements from STAR collaboration [124].
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5.5 HQ’s thermalization in the QGP

5.5.1 Spatial diffusion coefficient for charm

After we constraint the total HQ interaction with the bulk by reproducing

the experimentally observed nuclear modification factor RAA and the elliptic

flow v2 both at RHIC and LHC energies, our Boltzmann approach is suitable

for extracting the charm spatial diffusion coefficient Ds(T ). We remind that

in kinetic theory we related the Ds to thermalization time of HQs through

Eq. (3.76) that we write again

2πT Ds(T ) =
2πT 2

MHQA(T, p → 0)
=

2πT 2

MHQ

τth (5.15)

where in Chapter 3 we used the notation A(T, p → 0) ≡ γ = τ−1
th

to indi-

cate the drag coefficient in the non-relativistic limit p → 0. Then, since we

are looking at HQ interaction at low pT , we can be sure that our result will

not be affected by the absence of a radiative energy loss mechanism within

our interaction kernel. The goal of this work is provide a phenomenolog-

ical estimate of 2πT Ds similarly to other transport models for HQs and in

particular, to compare our result to the expectations from lQCD where the

Ds is calculated from the spectral functions (see (2.85)). We start with the

charm Ds by presenting results obtained within our QPM approach imple-

mented within the Boltzmann transport framework that can be compared to

those obtained in the case the same QPM interaction kernel is setup within a

Fokker-Planck/Langevin model [196]. For our estimate we employ Eq. (5.15)

with Mc = 1.3GeV and T-dependent drag coefficient A(T, p = 0.1GeV) from

QPM interaction multiplied by the proper constant K factor used to repro-

duce the measured RAA and v2 at RHIC and LHC. Our final value is set to

K = 2.4. We observe that the extracted 2πT Ds(T ) from our phenomenolog-

ical approach matches with lQCD expectations. This is an important result,

meaning that by means of HQ dynamics we are probing properties a strong

interacting system which has the properties of the expected QGP phase. In

particular, from Eq. (5.15) the spatial diffusion coefficient Ds is directly linked

170



5.5. HQ’s thermalization in the QGP

0.5 1 1.5 2 2.5
T/T

c

10

100

(2
π
T

)D
s

lQCD [Banerjee et al. (2012)]

lQCD [Kaczmarek (2014)]

D-meson TAMU [Rapp et al. (2011)]

PHSD [Song et al. (2015)]

BM - QPM (charm)

LO pQCD, α
s
=0.4

LO pQCD, α s
(T)

τ c
≈ 4 fm/c

τ
th

≈ 1.5 fm/c

τ
th

≈ 15 fm/c

τ
th

≈ 8.5 fm/c
τb

≈ 10 fm/c

τb
(RHIC)≈ 10 fm/c

τ
th

≈ 15 fm/c

Figure 5.20: Spatial diffusion coefficient as function of temperature obtained within

the QPM Boltzmann (green solid) transport approach tuned to repro-

duce experimental RAA and v2 of D mesons at RHIC and LHC en-

ergies. Both results are compared with quenched lQCD expectations

from Ref. [112] (circles) and Ref. [113] (squares), along with estimates

from other phenomenological models both for the Ds of charm [209]

(dashed double dotted blue) and also for the Ds coefficient of D meson

hadronic matters [226] (dash dotted red). In the picture calculations

based on LO pQCD with constant αs (solid black line) and running

αs(T ) (dashed brown line) are shown as well as AdS/CFT value scaled

to match the energy density of QCD plasma [227] (light blue blank).

to the HQ relaxation time τth, hence it is a measure of the QCD interaction.

Quantitatively τth can be estimated by inverting Eq. (5.15) and writing in the

following way

τth =
MHQ

2πT 2
(2πT Ds) ≃ 1.3 · MHQ

2πT Ds

(T/Tc)2
[ f m] (5.16)

At the temperature of QGP created at RHIC collisions T ≃ 2Tc with our

Botlzmann result for Ds is close to the lQCD point a 2πT Ds ≈ 10 at T ≃ 2Tc

and if we apply Eq. (5.15) to get charm thermalization time we obtain τth ≈
4 f m with Mc = 1.3GeV .
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5.5.2 Spatial diffusion coefficient for bottom

In the previous section we presented our results for RAA and v2 of HQs

obtained within our Boltzmann approach and showed up that, after reproduc-

ing both observables for charmed hadrons, with the same parameter K = 2.4

we are able to reproduce with quite good approximation the measure sup-

pression factor for bottom quarks as well as predicting a reasonable elliptic

flow in agreement with the few data available. Then, our transport framework

is setup already to extract the 2πT Ds coefficient at the bottom scale lead-

ing us to the possibility to investigate the HQ thermalization at larger mass

scale. If we base only on the assumption coming from kinetic theory, then

what we expect is that τth should depend linearly on MHQ and this would

lead to a comparison between charm and bottom relaxation time of the form

τth(b) = Mb/Mc ∼ 3.2τth(c), with respectively Mb = 4.2GeV , Mc = 1.3GeV .

Using the τth(c) ≈ 3.5 f m value obtained from the Boltzmann estimate of

charm Ds at T ≃ 2Tc, our first estimate would be τth(b) ≈ 11.3 f m, which

means correctly that thermalization of bottom is quite excluded at RHIC.

Since our estimate of HQ τth comes from a phenomenological prediction of

the 2πT Ds, we could accept this result only in the case the latter coefficient

is truly mass independent, allowing us to directly compare our predictions to

lQCD expectations which we remind are evaluated in quenched approxima-

tion. We provide a quantitative estimate of this issue for the QPM interaction

in the following way. In Fig. (5.21) the ratio between the spatial diffusion co-

efficient Ds as function of temperature is derived from the drag coefficient of

the QPM interaction at p = 0.1GeV where we use the HQmass MHQ as a free

parameter and fix it at the values MHQ = 1.3 , 4.2 , 12GeV , being respectively

the first Mc, the second Mb, while the third one we label as M∗ and it corre-

sponds to the mass of a fictitious super-heavy partner with increased mass of

the same order of the charm to bottom step. The constant mass ratios Mb/Mc

and M∗/Mb are sketched in Fig. (5.21) respectively with blue and red dashed

lines. Similarly the ratios for spatial diffusion coefficients among charm and

bottom (Ds(c)/Ds(b)) and bottom super-heavy quark (Ds(b)/Ds(M
∗)) are rep-

resented respectively by blue solid and dash-dotted red line. As we can see
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Figure 5.21: Ratio among spatial diffusion coefficient Ds calculated within a QPM

interaction for three different MHQ values.

within a mass difference of Mb/Mc ≈ 3.2 the resulting discrepancy between

Ds(b) and Ds(c) within the QPM interaction is about 50% at T ≈ Tc and not

smaller than 30% at higher temperatures. On the other hand, the ratio be-

tween Ds(b) and the Ds calculated with M∗ ≈ 3Mb stays almost constant at a

value of about 1.2 as function of temperature. Then, we conclude that at the

bottom mass scale we are closer to the quenched limit with a discrepancy of

the order of 20% which it is quite reasonable approximation if we takes into

account the uncertainties on the lQCD points. At this benefit we must add the

condition MHQ ≫ gT which at the level of Mb is still valid, hence ensuring

a small difference between Langevin and Boltzmann dynamics and resulting

in a almost negligible uncertainty coming from the adopted transport model

to estimate the bottom Ds. [195] The extracted bottom 2πT Ds(T ) from Boltz-

mann QPM approach is represented in Fig. (5.22) and compared to lQCD and

AdS/CFT expectations as well our results for the charm case.
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Figure 5.22: Predictions of spatial diffusion coefficient for bottom quark obtained

within the Boltzmann QPM approach (magenta solid line) and com-

pared with the Ds of charm obtained with the same theoretical frame-

work (solid green line) as well as with lQCD quenched points from

Ref. [112] (circles) and Ref. [113] (squares), LO-QCD with constant

or running αs(T ) and AdS/CFT expectation [227].
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In this thesis we have studied the dynamical expansion of the Quark-

Gluon Plasma (QGP) created in ultra-relativistic Heavy-Ion Collisions (HICs)

by means of a microscopic transport model. In particular, we have focused

on the propagation of Heavy Quarks (HQs), mainly charm and bottom, which

due to their large masses are produced by hard binary collisions at early stages

τ f ≤ 0.1 f m, so they can probe the entire phase-space evolution of the QGP

fireball. Moreover, since the thermalization time of HQs is larger than the

one of light partons and eventually comparable with the lifetime of the QGP,

they can preserve key information of their dynamical evolution. The study

of HQ propagation through the QGP is subject of many theoretical and phe-

nomenological models which aim to provide a simultaneous description of

the nuclear modification factor RAA(pT ) and the elliptic flow v2(pT ) which

have been widely measured in the experiments conducted at RHIC and LHC

facilities. The goal of our work is to develop a consistent approach for HQ dy-

namics and hadronization that leads towards an understanding of the RAA − v2

“puzzle” and is suitable to tackle new challenges in this interesting sector.

With this purpose we have implemented a 3+1 dimensional transport frame-

work based on the numerical solution of the Relativistic Boltzmann Equation

(RBE) both for HQs and bulk matter partons (gluons and light quarks) where

the phase-space distribution functions are sampled by test-particle method,

while the collision integral is mapped stochastically through the scattering
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cross section. In particular, we have focused on the low transverse momen-

tum region by including only elastic processes between HQs and light par-

tons, while neglecting the possible radiative energy loss mechanisms which

become effective at pt ≥ 10GeV . In the low pT region the interaction of

HQs, parametrized in terms of the drag coefficient γ, appears to differ from

the expected pQCD behavior. In transport models this translates in the use of

a momentum dependent K parameter multiplying the pQCD scattering cross

section. We have accounted for non-perturbative effects by prescription of

a Quasi-Particle Model (QPM) where light quarks and gluons of the QCD

medium are dressed with effective thermal masses mg,q ∼ g(T )T and the T -

dependence of the coupling g(T ) is tuned to fit the Equation of State (EoS) of

lattice QCD (lQCD). This results into an enhancement of the strength interac-

tion towards the critical temperature Tc which gives rise to an approximately

constant drag coefficient γ(T ) near Tc, reflecting a behavior typical of a liq-

uid rather than a gas system. We believe that such temperature dependence

of the HQ interaction is a key ingredient to achieve a simultaneous descrip-

tion of both RAA and v2, since it traces the different time evolution of these

observables.

In the first part of this thesis we have focused on the analysis of HQ trans-

port parameters, namely drag and diffusion coefficients, that we studied thor-

oughly by performing numerical simulations in static QCD medium at fixed

temperature and by comparing the results for charm quark dynamics among

various transport models in order to reduce the systematical uncertainty of the

extracted drag force.

In the second part we have carried out simulations of realistic HICs at

RHIC and LHC energies employing a formulation of relativistic kinetic the-

ory with fixed value of η/s rather than concentrating on specific microscopic

processes. In this way, we can gauge our transport approach for the QGP evo-

lution to the language of hydrodynamics, but in addition we can extend our

study including non-equilibrium features such as minijet distributions at in-

termediate pT . For HQs instead we have used our QPM interaction kernel and

absorbed other non-perturbative effects within a constant K factor. In order

to compare our results with the experimental Heavy-Flavor (HF) RAA and v2
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measurements, we have coupled the final charm and bottom Boltzmann evo-

lution to a hybrid fragmentation plus coalescence hadronization model. This

framework has been used in related works where it was found that it is possi-

ble to obtain the correct pT dependence of the measured D meson spectra both

at RHIC and LHC and describe also the absolute yield of the charmed baryon-

to-meson ratio in agreement with the observed value of Λc/D
0 ∼ 1. For what

concerns our analysis, we have computed the D meson nuclear modification

factor RAA(pT ) and elliptic flow v2(pT ) and provided our results within two

possible scenarios: one considering only hadronization by fragmentation and

another including also coalescence. It arises that the latter mechanism inverts

the relation between the two observables established during the dynamical

evolution in the QGP and maintained by the former, implying an increasing

of the RAA conjointly with the rising of the v2. We have seen that at RHIC

energy the coalescence mechanism plays a fundamental role in order to re-

produce the observed D suppression and above all it strongly couples charm

anysotropies to the collective motion of the bulk to get a final D meson ellip-

tic flow in agreement with the experimental measurements. Instead at LHC

the coalescence is still effective for the formation of v2, while its effect on the

RAA is reduced because hadronization by fragmentation is more dominant.

A novelty of our work is represented by the possibility to study the impact

of strong Λc production on the the nuclear modification factor of D mesons.

We have presented for the first time a quantitative estimate of the evolution

of the RAA(pT ) constraining the charm hadronization within a scenario where

baryon enhancement is addressed in agreement with the measuredΛc/D
0 ≃ 1.

We have shown that at RHIC energy such effect is everything-but-marginal.

Indeed it reduces the characteristic peak of RAA at pT ∼ 1GeV by a factor 1.5

and it leads our results to a better agreement with the experimental data in the

explored pT range.

Within the same Boltzmann framework we have studied also the produc-

tion of B mesons in HICs and we have presented our results for RAA com-

pared with the available experimental data. We notice that we have achieved

to obtain a reasonable description of bottom suppression without changing

the K factor which we fixed for charm interaction. From the point of view of
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hadronization, we have seen that coalescence does not change significantly

the RAA, because bottom quarks have harder pT spectrum compared to charm,

implying a smaller gain in transverse momentum when they recombine with

the light quarks of the medium. On the other hand, we have found that a fast

conversion of the initial bulk eccentricity to momentum anysotropy leads to

the formation of v2 which is comparable between charm and bottom and later

it is risen up by coalescence showing a mass dependent effect. We point out

also that our results for B meson v2 and RAA are more properly predictions,

due to the lacking of experimental data for the former and the large statistical

uncertainties related to the latter observable. Such predictions will be useful

for the future measurements in the B sector which it could be explored in the

planned high luminosity LHC facility.

Finally, we have investigated the thermalization of charm quarks in the

QGP by calculating the spatial diffusion coefficient 2πT Ds(T ) which we ex-

tract from our Boltzmann QPM approach after reproducing the observed RAA

and v2 of D mesons. In particular, we have found that our estimate of Ds(T )

is in agreement with expectations from lQCD and other phenomenological

models and from the relation τth = MHQDs(T )/T it leads to a charm thermal-

ization time τth ≈ 4 f m at T ≃ 2Tc to be compared with the overastimated

pQCD value of τth ≈ 15 f m. Our predictions of RAA and v2 of D mesons

indicate the possibility to discriminate among the different T dependence of

the drag coefficient γ(T ) = τ−1
th

and to probe the strong non-perturbative QGP

properties within the present lQCD uncertainties. Moreover, in accordance

with kinetic theory the thermalization time should scale linearly with MHQ,

thus resulting in Ds parameter which is a mass independent measure of the

QCD interaction. As final goal of this work we have checked this issue by car-

rying out predictions for spatial diffusion coefficient of bottom quark within

the same Boltzmann approach. Within the QPM interaction the mass differ-

ence among charm and bottom leads to a discrepancy in the ratio Ds(c)/Ds(b)

of about 50% at T ≃ Tc and decreasing slightly to 30% at higher temperatures.

This means that at the mass scale of charm quark the quenched limit used in

lQCD is not reasonable. Moreover, it has been pointed out that in the strong

interacting QGP (g ∼ 2) the condition MHQ > gT is challenging at least for
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charm quark, implying a difference within the Fokker-Planck/Langevin and

the Boltzmann dynamics. For this reason we conclude that our estimate of

the spatial coefficient 2πT Ds(T ) at the bottom mass scale can reduce the dis-

crepancy arising from the adopted transport model and it is also closer to the

lQCD quenched paradigma.

In conclusion, the results presented in this thesis represent a starting point

for future developments and investigations. In an upcoming work we will

include initial state fluctuations to study the impact of T -dependence of the

charm drag coefficient on higher anysotropic flows v3, v4, v5 and looking at the

correlations between heavy and light harmonics vn(heavy) − vn(light) which

are planned to be measured at RHIC and LHC experiments. The improve-

ment of our Boltzmann approach by implementing an in-medium gluon radi-

ation mechanism consistent with our QPM interaction will allow to push our

analysis of D meson RAA and v2 at higher transverse momentum and it will

be important for the study of more differential observables, like azimuthal

D − D̄ correlations. These are eventually measurable more in pA than in AA

collisions, hence a comprehension of the initial stage phenomena affecting

the dynamical evolution of HQs will be a fundamental task. In this direction

we are working also to couple our Boltzmann transport model with a realis-

tic description of initial vorticity and strong Electro-Magnetic fields created

in HICs with the aim to study the formation of the directed flow v1 and the

possible splitting between matter and anti-matter D0 − D̄0 which if measured

would represent a clear signature of the deconfined partonic phase.
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CHAPTER 6

APPENDIX

6.1 Appendix A

We report the scattering cross section for Heavy Quark (HQ) pair pro-

duction which at hadron colliders such as RHIC and LHC happens through

two main processes, namely the quark-antiquark annihilation and the gluon

fusion. For the calculation we employ scattering pQCD matrices at Leading-

Order (LO) which are represented by the Feynman diagrams in Fig.(2.13) and

we neglect the masses of light partons as done also in Ref. [80]. Hence, the

Lorentz invariant cross section can be written as following

dσ

dt
=

M2

16πs2
(6.1)

where we introduced the Mandelstam variables s, t and u = M2
HQ − s − t

for the partonic kinematics (usually indicated with a “hat” notation). The

quark-antiquark annihilation corresponds to the single Feynman diagram in

Fig. (2.13) on the upper left and its related scattering amplitude is given by

|Mqq̄|2 =
1

γqq̄

∗
256π2α2

s

s2

[

(t − M2
HQ)

2 + (u − M2
HQ)

2 + 2sM2
HQ

]
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where αs is the QCD coupling constant and γqq̄ = 36 are the spin-color de-

grees of freedom of the initial quark-antiquark pair. Instead the gluon fu-

sion process involves three possible channels (t, u, s) related to three different

Feynman diagrams at tree level. Starting from the upper right plot depicted

in Fig.(2.13) and going to the diagrams below, the corresponding scattering

amplitudes are

|Mt|2 =
1

γgg

∗
256 ∗ (8/3)π2α2

s

(t − M2
HQ

)2

[

(M2
HQ − t)(M2

HQ − u) − 2M2
HQ(M

2
HQ + t)

]

|Mu|2 =
1

γgg

∗
256 ∗ (8/3)π2α2

s

(u − M2
HQ

)2

[

(M2
HQ − t)(M2

HQ − u) − 2M2
HQ(M

2
HQ + u)

]

|Ms|2 =
1

γgg

∗
256 ∗ (12)π2α2

s

s2

[

(M2
HQ − t)(M2

HQ − u)
]

where γgg = 256 are the color-polarization degrees of freedom of the initial

gluon pair. Together with these contributions one has to include the mixed

interference terms. Hence, we get

2Mt M∗
u =

1

γgg

∗
256 ∗ (2/3)π2α2

s

(t − M2
HQ

)(u − M2
HQ

)

[

M2
HQ(4M2

HQ − s)
]

2Ms M∗
t =

1

γgg

∗
256 ∗ (6)π2α2

s

s(t − M2
HQ

)

[

(M2
HQ − t)(M2

HQ − u) + M2
HQ(u − t)

]

2Ms M∗
u =

1

γgg

∗
256 ∗ (6)π2α2

s

s(u − M2
HQ

)

[

(M2
HQ − t)(M2

HQ − u) + M2
HQ(t − u)

]

6.2 Appendix B

We summarize the scattering matrices for HQ + g(q) → HQ + g(q) pro-

cess calculated at Leading-Order (LO) pQCD and compared with the results

reported in Ref. [80] where bulk partons are considered as massless particles,

while HQ mass is indicated as M. We also include the full extension consid-

ering non-zero masses for gluon or light quarks that we employ in the case

non-perturbative interaction is treated within a Quasi-Particle Model (QPM)

prescription. These scattering matrices are related to the Feynman diagrams
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g

QQ

g

(a)

Q Q

gg

(b)

Q Q

gg

(c)

q q

Q Q

(d)

Figure 6.1: Feynman diagrams for heavy quark (Q) scattering off gluons (g) and

light quarks (q) at tree level [127].

at tree level depicted in Fig. (6.1) and indicated with corresponding subscript

letters. Firstly we report the three contributions t,s and u-channel coming

from HQ scattering off gluons along with the interference terms. Secondary

we evaluate the single t-diagram for the scattering between HQ and light

quarks. We point out that the dominant contribution arises from the t-channel

exchange due to the divergent behavior of the gluon propagator towards the

forward scattering t → 0. In the pQCD case we treat such infrared singularity

by introducing a regulator µ which we identify with the Debye in medium

screening mass mD = gT where g =
√

4παs(Q2) denotes the pQCD coupling

constant running with the momentum transfer Q2 = (πT )2 in according with

Eq. (1.14). Instead in the QPM case the gluon propagator is consistently regu-

larized by means of the in medium self-energy arising from the resummation

of higher order corrections that is approximately equivalent to its effective

mass mg ∼ gT where g(T ) follows the QPM parametrization in Eq. (3.41).

The gluon t-channel exchange diagram in Fig. (6.1)(a) has square amplitude

|Ma|2 =
1

γa

∗
(∑

MaM∗
a

)

=
1

γa

∗
3072π2α2

s

(t − µ2)2

[

(s − M2)(M2 − u) + m2
g

(

5m2
g + 2(4M2 − s − u)

)]

→
︸︷︷︸

mg→0

1

γa

∗
3072π2α2

s

(t − µ2)2

[

(s − M2)(M2 − u)
]

where the initial state average constant γa is the product over the initial gluon

and HQ spin-color degrees of freedom, i.e. = γi
g · γi

Q
= 16 · 6 = 96. Similarly
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the s-channel in Fig. (6.1)(b) is given by

|Mb|2 =
1

γb

∗
(∑

MbM∗
b

)

=
1

γb

∗
2048π2α2

s

3(s − M2)2

[

(s − M2)(M2 − u) + 2M2(s + M2) + m2
g(4M2 + m2

g)
]

→
︸︷︷︸

mg→0

1

γb

∗
2048π2α2

s

3(s − M2)2

[

(s − M2)(M2 − u) + 2M2(M2 + s)
]

while the scattering amplitude Mc for the u-channel in Fig.. (6.1)(c) is ob-

tained by replacing the initial gluon momentum with minus the final gluon

momentum in the matrix Mb (crossing symmetry). In terms of Mandelstam

variables this corresponds to the s ↔ u exchange when evaluating |Mb|2 from
|Mc|2 or viceversa. Hence, one gets

|Mc|2 =
1

γc

∗
(∑

McM∗
c

)

=
1

γc

∗
2048π2α2

s

3(u − M2)2

[

(s − M2)(M2 − u) + 2M2(u + M2) + m2
g(4M2 + m2

g)
]

→
︸︷︷︸

mg→0

1

γc

∗
2048π2α2

s

3(u − M2)2

[

(s − M2)(M2 − u) + 2M2(M2 + u)
]

where γc = γb = γa = 96. Then, one has to derive the interference terms over

the three possible channels. Starting from the b-c mixing, one has

1

γb,c

∗
(∑

MbM∗
c

)

=
1

γb,c

∗
(∑

M∗
bMc

)

=
1

γb,c

256π2α2
s

3(s − M2)(M2 − u)

[

M2(4M2 − t) + 2m2
g(M

2 − t)
]

→
︸︷︷︸

mg→0

1

γb,c

256π2α2
s

3(s − M2)(M2 − u)

[

M2(4M2 − t)
]
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and in a similar way one can calculate the a-b interference channel

1

γa,b

∗
(∑

MaM∗
b

)

=
1

γa,b

∗
(∑

M∗
aMb

)

=
1

γa,b

768π2α2
s

(s − M2)(t − µ2)

[

(2M2s − su − M4) + m2
g

(

5m2
g + 2(4M2 − s − u)

)]

→
︸︷︷︸

mg→0

1

γa,b

768π2α2
s

(s − M2)(t − µ2)

[

(s − M2)(M2 − u) + M2(s − u)
]

as well as the a-c one which is obtained from the last one by applying the

s ↔ u symmetry with extra −1 factor since a fermionic pair is crossed

1

γa,c

∗
(∑

MaM∗
c

)

=
1

γa,c

∗
(∑

M∗
aMc

)

=
−1
γa,c

768π2α2
s

(M2 − u)(t − µ2)

[

(2M2u − su − M4) + m2
g

(

5m2
g + 2(4M2 − s − u)

)]

→
︸︷︷︸

mg→0

−1
γa,c

768π2α2
s

(M2 − u)(t − µ2)

[

(s − M2)(M2 − u) + M2(u − s)
]

where γb,c,γa,b,γa,c are all equal to γa = 96. Instead the HQ scattering off

light quarks occurs through the t-channel diagram represented in Fig. (6.1)(d)

which leads to the following square amplitude1

|Md|2 =
1

γd

N f ∗
(∑

MdM∗
d

)

=
1

γd

N f ∗
256π2α2

s

(t − µ2)2

[

(s − M2 − m2
q)

2 + (M2 + m2
q − u)2 + 2t(M2 + m2

q)
]

→
︸︷︷︸

mq→0

1

γd

N f ∗
256π2α2

s

(t − µ2)2

[

(s − M2)2 + (M2 − u)2 + 2tM2
]

where N f is the number of light quark flavors and µ denotes the IR regula-

tor of the gluon propagator singularity which is treated analogously to the

t-exchange diagram in Fig. (6.1). The corresponding total cross sections de-

rived from Eq.(3.56) within the QPM and pQCD model are depicted below.

1The same calculation happens for the elastic scattering between HQs and light anti-

quarks q̄, that can be addressed by multiplying by a factor 2.
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Figure 6.2: Scattering cross section for pQCD interaction between charm (left) or

beauty (right) with massless gluons and light quarks at T = 300 MeV ,

corresponding to coupling constant αs = 0.4 and Debye screening mass

mD = 0.67GeV .
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Figure 6.3: Scattering cross section for pQCD interaction between charm (left) or

beauty (right) with massless gluons and light quarks at T = 400 MeV ,

corresponding to coupling constant αs = 0.35 and Debye screening mass

mD = 0.84GeV .
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Figure 6.4: Scattering cross section for QPM interaction between charm (left) or

beauty (right) with massive gluons and light quarks at T = 300 MeV ,

corresponding to QPM coupling constant αs = 0.81 and thermal masses

mg = 0.70GeV , mq = 0.47GeV .
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Figure 6.5: Scattering cross section for QPM interaction between charm (left) or

beauty (right) with massive gluons and light quarks at T = 400 MeV ,

corresponding to QPM coupling constant αs = 0.42 and thermal masses

mg = 0.79GeV , mq = 0.53GeV .
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