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Abstract

The study of human-machine interaction as a unique control system has
been one of the first research interests in engineering, with almost a century
of years since the first works. At the same time, it is a crucial aspect of the
most recent technological developments in application fields concerning, for
example, collaborative robotics and artificial intelligence.

The cross-domain nature characterizing this field of study can cause dif-
ficulties in finding a guiding line that links motor control theory, modeling
approaches of physiological control systems, and identifying human-machine
general control models in manipulative tasks. For this reason, I chose to
start this thesis work by analyzing state-of-the-art linear models, from the
first crossover model defined in the frequency domain to the successive opti-
mal control model, to end with models including more detailed descriptions
of physiologic subsystems and biomechanics. The motivation behind this
effort is to have a complete view of the linear models that could be eas-
ily handled both in the time domain and in the frequency domain by using
the well-established methodology in the classical linear systems and control
theory.

Such model-based approaches aiming to characterize human behavior
have been, as said, practically applied in a wide variety of scenarios. Among
them, human-robot interaction is one of the most exciting, particularly in
tasks where a continuous physical interaction between humans and the con-
trolled plant is present. In this context, the human subject can adapt its
control behavior to the external sensed dynamics. This capability signifi-
cantly affects the control delay, making its characterization and prevision a
crucial aspect to understand. I will address this topic in the third chapter of
the thesis, where a linear modeling approach that uniquely describes human
and robot control actions will be proposed and experimentally validated in
a collaborative robotic task. Such manipulation task was performed by ten
different healthy subjects with a collaborative low-payload robot.

In Human-Robot interaction, the possibility of increasing the intelligence
and adaptability of the controlled plant by imitating human control behav-



ior has been an objective of many research efforts in the last decades. From
classical control-theory human control models to modern machine learning,
neural networks, and reinforcement learning paradigms, the common denom-
inator is the effort to model complex nonlinear dynamics typical of human
activity. This suggests that our analysis can’t be limited to the linear models
treated above but must proceed with nonlinear dynamics and the efforts that
have been made to reproduce them. The fourth chapter investigates state-of-
the-art nonlinear modeling techniques from the perspective of human control,
considering the different physiological districts involved as the starting point
and then proceeding with data-driven and model-based techniques able to
describe higher cognitive processes such as decision-making and the creation
of long-term strategy.

In the first place, transport systems are presented as an alternative tech-
nological scenario in which the discussed techniques have been mainly applied
with success recently. Successively, going back to human-robot interaction,
I propose a novel nonlinear modeling technique able to predict human force
generated during a cooperative task with a controlled robot. The proposed
Narmax model was constructed using an artificial neural network as a nonlin-
ear functional approximator and was trained on the same dataset as the one
used to validate the previous linear model. The same human model was then
tested online with different subjects and, most importantly, on an industrial
high-payload robot. This was done to demonstrate that the obtained perfor-
mance were not derived from data overfitting but that a good generalization
capability characterizes the model.

While a deep stability analysis of the system was not in the scope of
this work, to avoid unstable and dangerous behavior, the robot has been
controlled with an impedance control strategy characterized by a low stiffness
value, resulting in compliant and safe movements. Moreover, the framework
was controlled with a frequency higher than human motion by more than
one order of magnitude.

A further step forward in showing how the proposed modeling technique
can be useful can be pointed out by exploiting the partial knowledge that I
have of the system, with reference to robot control law and its dynamics, to
gain knowledge of the system from raw data in a simple and fast way. The
case of study was once again the system delay, which this time was extracted
from the human model’s output with the aid of simple approximated system
identification techniques. This process allows the user to easily extract the
delayed information without complicated data processing.

Moreover, by analyzing the characteristics of human response during the
proposed cooperative interaction with the controlled robot, a regular presence
of peak values is evident, as a first reaction to the external forcing function.



Such peak values represent the most important feature to be known by the
robot to anticipate human action, rather than having to estimate the whole
force response sample by sample. For this reason, Peak-to-Peak Dynamics
have been exploited to obtain a reduced-order model that is able to forecast
the peak of human response in a reliable way. The effort in this sense is
considerable, given that such techniques have been used in the past with
different kinds of chaotic systems characterized by known attractors, but not
to Narmax models.
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Chapter 1

Introduction

In any system characterized by a close human-machine physical interaction,
providing controlled elements with the ability to identify and understand
what the human operator is doing is crucial to increase efficacy and safety.
While this is an ability that humans naturally learn over time, machines
need to be explicitly trained on how to do this. Such recognition problem
is heightened by the dissimilarities between humans and controlled plants
from a mental, computational, and physical point of view. These differences
imply that, when faced with the uncertainty of the real world, machines
cannot always count on humans to behave as expected and cannot always
easily anticipate how they will react to an unexpected event [1]. One way this
challenge can be addressed is by equipping machines with explicit models of
their human teammates. Many different techniques are used to model human
cognition and behavior, spanning different timescales and levels.

Modeling of the human control action when interacting with a controlled
machine has become almost an independent research field over the years,
involving multiple disciplines and approaches. Neurophysiologists and cog-
nitive scientists have improved a lot in the understanding of human per-
ception, information processing, and control strategies with respect to prior
approaches, mainly focused on qualitative descriptions of possible human de-
cisions and actions. Since the instrumentation and measurement techniques
have dramatically improved, as well as the power of computational calcu-
lations, scientists have developed functional maps of neurons and identified
deep brain functions [2H4].

Still, the human brain’s dexterity and plasticity have a lot of mysteries,
and how humans can interact and adapt themselves to unknown external
dynamics is an open issue. Therefore, intense research was put into inves-
tigating motor control internal dynamics, perception, and learning. With
particular reference to the study of input-output characteristics of the motor



apparatus, the concept of the internal model allowed significant advances
for describing human adaptation to external dynamics and trajectory plan-
ning [5]. The concept underlying the internal model hypothesis found its
origin in robot control. In fact, a robot needs knowledge about its internal
kinematic model in order to perform any position or velocity control. The
same concept was extended to human physiology when Ito [6] proposed that
internal models of the limbs and connected brain regions are present in the
cerebellum. The acquisition of inverse dynamics of the motor efferent sys-
tems, along with the inverse dynamics of the controlled object, helped us to
explain how it is possible to perform fast and complex movements even if
time delays and low gains characterize biological feedback structures [7]. An
opposite approach for the same problem relies on equilibrium-point control
models [8], in which the central nervous system is able to control muscle
dynamics by simply acting on its threshold level.

Predictive simulations of human movement were also used to dissociate
the contributions of neural and musculoskeletal impairments to gait deficits
in cerebral palsy [9], evidencing the importance of a precise model of involved
body parts and physiological districts to improve the correspondence between
simulated and measured data [10]. The same was found in the rehabilitation
robotics field, where mechanical impedance control parameters of the upper
limbs of a human were identified in order to adapt the rehabilitation robot’s
training strategy [1112] accordingly. Modeling approaches of this type linked
mathematical descriptions typical of classical control theory with a functional
description of physiological systems acting during the control process. This
was able to link neurosciences with more practical engineering fields such
as robotics and aerospace. Aerospace researchers had the first application
scenario, which motivated an interest in this topic in the first decades of
the last century. Starting from World War II, engineers’ and psychologists’
efforts were directed towards the modeling of human behavior as an inanimate
feedback controller to improve the performance of pilots and bombardiers
[13]. The first approach was to consider the human controller as an inanimate
servomechanism, which can be represented in a simple feedback structure as
a block with well-defined input(s) and output(s). In a manual human-in-
the-loop control problem, the input of the human is an error signal, usually
visual. Its output is human control actions, which provide a command to
the controlled element (i.e., a gun, an aircraft, a vehicle, etc.). The same
consideration is still valid in physical human-robot interaction, especially
in those applications involving force or impedance control strategies. Here,
continuous and compliant physical contact is required in order to perform
cooperative kind of tasks, which can be reduced to mutual movement between
humans and robots. In this case, the human operator should be able to



deviate from the robot’s initial trajectory and impose a different one.

In such a context, the human operator will act as a proper motor con-
troller by internally deciding the goal trajectory to perform and imposing
an external force to achieve such an objective by manipulating the robot.
From this point of view, the performance of the human operator can be well
approximated as the action of an inanimate controller. This situation results
in a simple compensatory manual control system. In [14], Hess explained
this concept by giving the example of a human soldier performing a track-
ing task, attempting to keep a moving target within the gun’s field of view.
In this case, the angular error between the target and the azimuth of the
gun’s view fielder can be considered as input, while output control action
is a force acting on a simple gear mechanism. Since the soldier is mod-
eled as an inanimate servomechanism, the mathematical representation that
was used to describe him should be the same used to describe a linear ser-
vomechanism: a set of linear differential equations with constant coefficients,
or equivalently, as a transfer function in the frequency domain. The most
famous example of this kind of approach is McRuer’s crossover model, in
which the human is represented as a general quasi-linear describing function.
From this first approach, the development of mathematical descriptions of
human controllers with a control-theory fashion evolved along with new con-
trol techniques. For instance, the development of linear quadratic Gaussian
control systems (LQR), when applied to human operator’s modeling, led to
the "optimal control model.” The same concept is valid for recent modeling
techniques, such as fuzzy control models or models based on neural networks,
which followed the spread of these techniques in systems design.

However, human modeling efforts, which started from this applicative
scenario, successively have proved to be useful in many other domains of
the engineering field. Classic examples are the design of display and control
equipment interface based on man-machine environment system engineering
in various types of plants [15,/16], and more recently, service robotics applied
to healthcare [17,/18]. The understanding and prevision of human action
have been extensively investigated in human-robot interaction (HRI) in the
last years, being considered as input information to gather that enables a
compliant and adaptive behavior of the robot. In [19], a task-adaptation
framework was developed to allow robot compliance with respect to human
movements. Similarly, in [20], gesture-based HRI was discussed, allowing an
automatic task manager parametrization where the human can help or cor-
rect robot choices in collaborative assembly applications. While [21] and [22]
tried to analyze the psychological and emotional implications of continuous
interaction with a robot in a production setup. Behavioral criteria were also
considered in HRI in commercial vehicles |23], where a scheme of mental

3



state variables can be used to modulate driving velocity and breaking in dif-
ferent moments of the day and night. In a similar context, machine learning
techniques can also be applied to HRI intelligent transport systems [24].

Being most of these models the result of a very application-specific ef-
fort, their variability causes some difficulties when trying to find common
features and divide them into general categories. In other words, every effort
put into the definition of human control models originated from the need to
describe its behavior in a particular situation. This was done starting from
different perspectives and with different levels of abstraction. According to
Rasmussen |25, human behavioral models, when interacting with an aircraft,
can be grouped into three types: skill-based, rule-based, and knowledge-
based. In skill-based models, the human-machine system is continuously
controlled following a mission statement. Rule-based models provide a dis-
crete decision-making description of human behavior, which is guided by a
stored rule. The last category groups all the control strategies deriving from
unexpected events or unfamiliar environments in which the human operator
has to avoid dangers and risks. An example can be found once again in
the pilot’s control of an aircraft. Traditional control models are mainly part
of the first category, while the development of modern artificial intelligence
techniques has increased the use of models based on the other two. Xu et
al. [26] proposed a different classification, identifying human models based on
control theory, based on human physiology, and based on intelligence tech-
niques. Classical feedback control models, such as McRuer’s crossover model
and the optimal control model, fall into the first category.

Successive modeling techniques in which a better description of all the un-
derlying processes that determine the overall human control strategies were
the Hess structural model and Hosman’s descriptive model. Hess proposed a
detailed description of human perception processes and inner loop feedback,
while Hosman modeled the interaction between visual and vestibular inputs
and their influence on the overall control strategy. Additional models be-
longing which can be associated with this category are biodynamic models,
which try to include biomechanical effects of the body moving into an ac-
celerating environment such as an aircraft or a vehicle. Equivalently to the
previously described knowledge-based models, the models based on intelli-
gent techniques include approaches dealing with uncertainty, such as fuzzy
logic and neural networks.

In our analysis, the focus will be directed to models based on control
theory, including the involved physiological structures. Moreover, human
has both linear and non-linear behavior when interacting with a machine.
This aspect is reflected in the classifications of control models, where both
linear and non-linear dynamics are described.

4



In the first part of this work, the focus will be mostly on linear models.
The second chapter will be structured as follows: In the first section, the
main motor control theories will be addressed. Then, the second and third
sections will detail the modeling approaches of neuromuscular dynamics and
human sensory systems, respectively. The fourth and last section provides
a description of the most important human-machine interaction models, in
which the dynamics described in the previous sections are represented within
a general control structure.

In the third chapter, starting from the state-of-the-art models described
before, we propose a linear modeling strategy: the “Precision model of the
human-robot complex.” As it can be deducible from the given name, such
modeling technique described the response of the whole system comprising
both the human and the controlled robot. The simulated system response
was compared with the measured response and with the response obtainable
by simulating the system with a standard Crossover Model. Overall, the main
application in relation to which the model was studied was the experimental
identification of human reactive delay in a manual guidance task using the
small collaborative URS5 robotic arm, where an external virtual reference
(acting as a forcing function) was applied.

The second part of this work proceeds with the analysis by going into the
details of nonlinear modeling strategies. Despite the successes, linear models
lack in representing nonlinearities typical of human control behavior, espe-
cially when facing high-complexity scenarios. McRuer and Hess described
the evidence of a pulsive behavior of the pilot when the demanded task is
too complex, leading to the formulation of Dual Loop control models. They
describe human bimodal control behavior, focusing on the error compen-
sation (typical of classical crossover theory) and visual rate sensing (used
in pursuit tasks with predictable inputs) [27]. The dual-channel structure
proved to be more suitable for capturing nonlinear dynamics in the pilot sys-
tem during the information processing stage, represented by thresholds and
saturation elements, which were used for describing phenomena like Pilot
Induced Oscillations (PIO) [28] or Spatial Disorientation (SD) [29].

In such a modeling technique, the human is considered a controller, an
element part of the control loop (Human-in-the-loop control). Its sensing
elements and muscle actuators’ dynamics are related to the external stimuli,
the executed task, and the controlled element. While executing a specific
task, the human subject tries to optimize its behavior to achieve its goal
while reducing efforts. If the difficulty increases, nonlinear dynamics is in-
creasingly observable. Neuromuscular dynamics can be considered one of the
primary physiological sources of nonlinearity in human control action. Mod-
eling techniques in this context are often based on optimal control theory,



trying to identify the system’s objective function that the human tries to
optimize while executing a specific motion.

Aside from classical model-based approaches, a deeper focus on informa-
tion processing and learning abilities is necessary to have a complete overview
of the human as a controller. Different modeling and data-driven approaches
have been proposed with this goal in many research efforts, even resulting
in a combination of them. The model proposed by Xu et al. [30], for exam-
ple, studied the origin of nonlinear PIO, proposing a multi-loop human pilot
model during a multi-axis control task. Here, the pilot’s ability to sense a
changing situation, being based on experience and judgment, is represented
by a fuzzy logic control element, able to modulate his strategy and, indirectly,
the system input/output characteristics (through the variation of model pa-
rameters). Apart from multi-loop models, fuzzy logic techniques have been
used in association with other nonlinear system modeling approaches and
control techniques in order to deal with uncertainties in the external envi-
ronment [31] or in model parameters tuning [32]. For instance, Fuzzy systems
and Artificial Neural Networks (ANN) have been successfully used in hybrid
models in the past for human operator tuning [33] or parameter optimization
of the controlled plant [34]. The spread of such kind of hybrid models led to
the development of neuro-fuzzy systems, which will be discussed in detail in
Section [£.3.3l

Due to their simple mathematical structure and low computational cost
when implemented, ANNs have been successfully used in the presence of un-
structured data in learning, classification, and prediction algorithms in com-
puter vision [35], autonomous driving [36], medical [37,38], bio-informatics
[39], industrial |40] and rehabilitation [41,42] robotics.

In human-machine interaction, however, it may be important to cap-
ture temporal relationships between raw data in order to identify the system
model accurately. Special kinds of ANNs, such as the Recurrent Neural Net-
work (RNN) [43/44] and the Long Short-Term Memory network (LSTM) |45,
are very common for this purpose, thanks to their internal loops between the
hidden layers, which in the case of LSTM allows capturing even long-term
temporal relations. Further details on these two architectures will be given in
Section [4.4] as well as another data-driven approach, such as Reinforcement
Learning, useful to model human decision-making and the generation of its
internal goal. Classical supervised, unsupervised, and semi-supervised learn-
ing methods are introduced to represent how a ”"human controller” creates
a strategy to achieve a long-term goal, passing through several intermediate
steps. There is a wide variety of practical applications exploiting such tech-
niques [46-49]. Remarkably, the optimal control theory modeled the human
control action by identifying its internal cost function to minimize, similar



to the reinforcement learning approach. Indeed, in such a case, the hu-
man decision-making process is modeled by describing its objective function,
which is maximized by the subject during its actions.

The mentioned modeling techniques, from the classical control theory to
the modern data-driven approaches, have succeeded in representing a differ-
ent aspect of the human control strategy when interacting with a machine.
Application scenarios such as intelligent transport systems or human-robot
collaboration offered many examples of modeling and control techniques,
which have been developed by combining two or more of these approaches.

This latter concept has been used to construct a Nonlinear auto-regressive
model of the human subject, with moving average and Exogenous input
(NARMAX). Narmax models are the nonlinear evolution of the famous lin-
ear ARMAX models [50], and became a golden standard on how to construct
models from complex and partially unknown systems [51]. The proposed
Narmax model was constructed by using an Artificial Neural Network for
approximating the nonlinear functional relationship between input data, us-
ing the Universal Approximation property of NNs.

In Chapter 5, the human model was defined and trained in the first part
using the same dataset acquired in the previous proposed linear model of the
third chapter. In the second part of the chapter, the nonlinear human model
was applied in a different setup using a high-payload Comau NS16 robotic
arm. This way, the model performance with new and different data can be
discussed and compared to the ones obtained with the first dataset. Most
importantly, the model is now used online, also testing its speed and prac-
tical usability. The fact that the Comau arm is not a proper “collaborative
robot,” built exactly for the purpose of performing tasks with human sub-
jects around, makes this scenario the perfect case in which the controlled
plant would have a great benefit on gaining information about the human
user, to estimate its intention and better collaborate with him.

In the following chapter, we will see how the proposed model can be used,
due to its accuracy, to extract the delay information from data (as previously
done with the Precision Model) in a fast and simple way, exploiting the
knowledge that we have about the controlled element’s dynamics.

In the last chapter of this thesis, the model’s ability to forecast the next
peak of the output signal was analyzed. The regular presence of peaks in
human control output (which corresponds to its applied force) makes really
interesting to evaluate such aspect to study the eventual presence of Peak-
to-Peak Dynamics (PPD) [52]. As we will see more in detail in the last
chapter, PPD have been described and studied extensively in a wide range
of chaotic systems and models, being able when observed, to reduce model’s
order without loss of accuracy.



Chapter 2
Linear Models

2.1 Motor Control in the Central Nervous
system

Motor control dynamics in the human nervous system have been widely stud-
ied by neurophysiology researchers over the last few years with different ap-
proaches. One of the most promising assumes the existence of internal mod-
els of sensory-motor output dynamics in the central nervous system (CNS).
In [53], it is suggested that the cerebellum forms two different types of inter-
nal models. One of them is a forward predictive model of the motor apparatus
(e.g., limbs and muscles), providing a rapid prediction of the sensory conse-
quences of each movement. The second is a model of the time delays in the
control loop (due to receptor and effector delays, axons, conductances, and
cognitive processing delays). This second model delays a copy of the rapid
prediction so that it can be compared in the temporal register with actual
sensory feedback from the movement. Both models can coexist and form two
Smith predictors. In [54], it was experimentally verified that human subjects
were able to estimate the hand position without visual feedback and with
applied external disturbances, supporting the evidence that the central ner-
vous system internally simulates the dynamic behavior of the motor system
in planning, control, and learning. The existence of such internal models of
motor dynamics and temporal delays in the central nervous systems has been
discussed a lot in cognitive science and neurophysiology fields. The necessity
for internal models in motor control has been one of the central issues of
debate in relation to other approaches to motor control theory, such as the
equilibrium-point control [§].

In the equilibrium-point control or threshold control theory (TCT), mo-
tor actions are controlled by changing neuro-mechanical parameters, which
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Figure 2.1: Example of how a control structure based on internal models in the
Cerebellum can be used to explain human’s coordination of load and grip force in
a simple grasping task, as studied by Kawato in [55]

establish the steady state (equilibrium point), which is commanded to lower
levels (e.g., muscles and limbs) by descendent systems. The neural con-
trol variables that determine the equilibrium point are identified in the A
model [56]. As known, muscle activation by efferent neurons and motor units
is triggered by a variation in muscle length. When a muscle is quasi-statically
stretched, the potential in the motoneuron membrane increases, and after
that, a certain threshold value is reached, and the motoneuron starts to be
recruited. Physiological data indicates that such threshold length value com-
prises various factors besides its central component. If the central component
is A, the composite value is:

Ae = A — puw — p+ €(t) (2.1)

Where p is a temporal parameter related to the dynamic sensitivity of
muscle spindle afferents, w is the velocity of change in the muscle length,
p is the shift in the threshold resulting from reflex inputs (such as those
responsible for the inter-muscular interaction and cutaneous stimuli) and
€(t) represents temporal changes in the threshold resulting from intrinsic
properties of motoneurons. In equation , the CNS controls both A and
1 parameters. Therefore, according to the position TCT theory, high control
levels can control muscular activation minimizing the difference between the
actual length and the one established by the threshold. Let’s consider a
situation in which the human subject is asked to hold an object; according
to TCT theory, the gripping force is set in such a way that the difference
between the threshold length (established by the physical shape of the object)
and the actual, which is set to be virtually inside the object, is minimum.
This operation results in the object being held using the minimum quantity of
gripping force. The same situation, as shown in Figure [2.1] was considered



from another point of view by Kawato in [55]. Here, the coordination of
reaching and grasping, which allows using the minimum grasping force to
prevent slip when lifting an object, was considered proof of the existence
of the limbs’ internal inverse and forward models. When the arm grasps
an object, the inverse model of the combined dynamics of the arm, hand,
and object computes the necessary motor commands from the desired arm
trajectory. Such commands are sent to the arm muscles and to its forward
dynamic model, which can predict the future trajectory and establish the
grip force necessary to lift it, considering its friction and a certain safety
factor.

Actually, alternative explanations of how such predictive capabilities can
be possible without internal models also exist. They are linked to biologi-
cal systems’ “strong predictive” and anticipatory properties. In [57], strong
predictive systems are defined as those in which predictive properties are
inherent in the systems’ natural dynamics and thus do not rely on internal
models. At the same time, weak predictive systems are based on internal
models of themselves. Another motor-control case study that was analyzed
to highlight the differences between the two approaches is the formation of an
arm trajectory [58]. It is known that muscles and peripheral reflexes control
loops have spring-like characteristics, which can pull back the limb’s joints
to their equilibrium positions. This is done by generating a force directed
against the sensed external perturbations. Such viscoelasticity can be con-
sidered as the static gain of the peripheral feedback control loop and can be
adjusted by properly setting the associated muscle co-contraction level and
the reflex gain.

The equilibrium-point control hypothesis implies that through this vis-
coelasticity, the brain can control the movements of the limbs by simply
setting a series of stable equilibrium positions aligned along the desired tra-
jectory [59,(60]. An experimental study of this concept has been presented
in [61], where the data of |62] were reinterpreted in an equilibrium control
fashion with a straight equilibrium trajectory. However, this approach re-
quires viscoelastic forces to increase proportionally to the movement speed
since the dynamic forces exerted on multi-joint links depend on the square
of the velocity. Differently, the alternative explanation implying the internal
model control allows the realization of accurate and fast movements even
considering low viscoelastic forces [63-65]. Experimental evidence of a rela-
tively low stiffness observed during movements performed by a well-trained
subject has supported the latter hypothesis [66,67]. Another step forward
was integrating the two approaches, muscle viscoelasticity and internal mod-
els, through computational models to learn the behavior and applications of
internal models efficiently [68,69]. For example, in [66], the authors showed
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Figure 2.2: Model of subsystems contributing to neuromuscular dynamics in
manipulative control tasks, as studied by McRuer et al. [70]

that intrinsic muscle stiffness is not strong enough to stabilize upright pos-
ture; using internal models was suggested as an alternative explanation.

2.2 Neuromuscular Dynamics Model

The neuromuscular system dynamics model has been widely investigated in
manipulation tasks starting from the early ’60s. Typically, muscles and ma-
nipulators are considered as a unique function. An example of what can be
involved in the muscle-manipulator dynamics was studied in [70]; a simple
block scheme of neuromuscular subsystems is shown in Figure 2.2l Retinal
and central equalization transfer function changes according to the consid-
ered forcing function dynamics. This block was represented by simple gain
and delay factors in 70| for a rate stimulus, but changes for other controlled
elements. The alpha motor neuron command ¢, is the command input from
higher centers down to the spinal cord. There, the change in the average firing
rate of the alpha motor neurons involved is proportional to the effective driv-
ing force. The commanded force signal then goes to the muscle/manipulator
block, whose dynamics, as said, are represented by a unique transfer function
that consists of a third-order system with one real root and a quadratic pair
plus a time delay, being:

—Ke e

(14 7ys)(1+ %s) + 2)

2
wa

The muscle characteristics are functions of the steady-state isometric ten-
sion of the muscle system operating point. The changes in this average ten-

11



sion are caused primarily by changes in the gamma motor neuron system
discharge. The effects of the gamma neuron bias signal, while not shown
explicitly in Figure 2.1], is used to set up the spindle feedback operating
point equalization, whose block also approximates the Golgi ten-don force
feedbacks, and the corresponding describing function is:

Ky (s + Zgp)e ™r*
(s + Psyp)

The effective joint sensor provides A second feedback loop, represented
by a gain factor and a time delay Kj;e”™*, operating in the frequency region
of interest. Therefore, the closed-loop neuromuscular system has third-order
dynamics plus a zero due to the spindle pole in the feedback loop. Data ob-
tained by McRuer et al. [27] indicate that the muscle/manipulator dynamics
for rudder pedals and hand manipulators are similar in form and numerically,
despite the difference in limb size and function. In [71], Van Paassen et al.
suggested an extension to the model in which the manipulator and the hu-
man arm are not unique blocks anymore, but their interaction is considered.
Such kind of analysis is useful in application scenarios in which the human
subject is operating while subjected to accelerations (i.e., in a moving ve-
hicle) or it is using active manipulators in which an active servo element is
used to provide feedback from the controlled system or from other sources in
the environment.

Research efforts have also been addressed towards analyzing the rela-
tionship of human performance in manipulative tasks and muscle fatigue
dynamics. An example of such muscle fatigue and recovery models is pro-
posed in [72], which links the maximum voluntary contraction (MCV) to the
output isometric force in a cycling application. Liang et al. |[73| proposed a
model in which the muscle capacity after a certain number of contractions is
evaluated and put in relation to the external load force. A further extension
of this analysis also considered the relationship of MCV with brain effort,
distinguishing between fatigued and non-fatigued motor units [74]. Other
research activities that rely on different types of modeling techniques were
used, such as in |75] and [76], where a bond graph mathematical model was
used to describe biomechanical characteristics of upper limbs tendons during
grasping. In [77], bond graphs were used to describe the extensor mechanism
of a finger, being represented as deformable strings, and assumed to pass
through hooks fixed at predetermined points on rigid phalanges.

However, all the descriptive models of neuromuscular dynamics in the
literature operate in high frequencies. This consideration leads to the fact
that when neuromuscular dynamics are considered as an element of a more
general control model, such as the ones that will be analyzed in the next

H,, = (2.3)
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section, often only their low-frequency effects are taken into account. Such
effects can be simplified as a delay element.

2.3 Sensory Dynamics

Although all sensory organs are well known individually, as well as their dy-
namic behavior, their joint role with CNS in perception has been of interest
to further investigation even recently [54]. One example that motivates re-
cent interest in sensory dynamics modeling is the operator’s disorientation.
Although it is commonly taken for granted that reality can be accurately per-
ceived, situations in which a human is subject to continuous rotations may
lead to spatial disorientation. Spatial disorientation occurs when the human
operator fails to perceive his correct position, motion, or attitude correctly.
Research works in this field date back to the latest decades of the eighteenth
century, initiated by Ernst Mach and his colleagues with a study on vestibu-
lar and acoustic perception. However, true progress will be obtained only
after almost a century, in the 1990s, when mathematical modeling of spatial
disorientation was proposed [7§].

2.3.1 Visual System

The human visual system is our sensory system’s primary information source.
It was vastly studied as a mathematical model with reference to computer
vision techniques or the development of simulators for vehicles or aircraft.
The importance of this sensory modality in the last-mentioned application
scenario is confirmed by the fact that such a simulator very often relies on
a fixed-base structure, thus not stimulating the vestibular system. Human
vision can operate mainly in two modalities: ambient or focal mode.

The ambient mode mainly intervenes with human’s spatial orientation
capabilities and relies on several inputs from the central and peripheral vi-
sion systems, such as motion, perspective, texture, and brightness gradients.
The most interesting characteristic of this visual mode is its capability to
subconsciously process if there is any disturbance over the aforementioned
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input signals and provide a stable perception covering a large spatial range.
This is done by sending low-frequency, robust signals to the CNS, which
uses this information to determine spatial orientation. Oppositely, other
sensory systems provide high-frequency transient signals to help stabilize the
perceived surrounding environment immediately after motion. The ambient
mode is very useful for perceiving distance and the angle between the op-
erator’s plane and the ground (i.e., slant). Lone and Cooke well described
the possible sources contributing to the spatial disorientation (SD) of a pilot
guiding a vehicle [29]. Visual perception of both slant and splay angles, being
respectively the relative orientation in the vertical and horizontal plane, can
lead to misjudgments about human’s estimation of the controlled element’s
actual position.

The focal mode is linked to object identification and relies mainly on
binocular signals coming from the central visual field. It provides very de-
tailed information at high spatial frequencies and is usually represented in
conscious states [80]. Figure represents the visual perception model that
Hess proposed in [79], providing a simple way to model visual observation.
Saturation limits can be set by considering two times the value of the variance
of the random number generator input. Consequently, the variance deter-
mines visual signal quality and is related to the relationship between usable
cue environment (UCE) and visual cue rating (VCR) [81,[82]. Its value can
be selected between the following ranges:

0<dy;g<01 if UCE=1 :
0.1<6t,6<02 if UCE=2 (2.5)
02 < 6t;6<03 if UCE=3, (2.6)

Such parameter has been extended to task-dependent variance related to
vision with multiple axes:

0.0ln if n>1
Opste = . 2.7
task {0 if n=0 ( )
Being n the number of controlled axes. The two terms can be incorporated

into the following factor:
f =1+ 10(5\2/15’ + 5t2ask) (28)

Along with the global view of vision modalities, human vision was also
studied in relation to object tracking, particularly in computer vision and im-
age processing fields. Nguyen et al. [83] recently developed a tracking model
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that utilizes the spa-tial-temporal context information to increase tracking
accuracy level. Further improvements in visual tracking research were the
widespread adoption of discriminative learning methods [84]. These types of
classifiers are tasked with distinguishing between the target and surrounding
environment, often used in order to ensure target tracking in the presence of
occlusions [85]. The latest trend in the field is multiple object tracking [86];
the challenge, in this case, relies upon locating multiple objects, maintaining
their identities, and yielding their individual trajectories given an input video
(in the case of computer vision applications). Object to label in this case can
be pedestrians [87] or vehicles [88] in the road safety management field.

2.3.2 Vestibular system

The vestibular system is responsible for human equilibrium, postural control,
and the proprioceptive sense of body motion. Anatomically, it is housed in
the inner ear and can be divided into semicircular and otolith canals. The
otoliths perceive a sense of tilt and force, while semicircular canals help
provide the sense of angular acceleration. Accurate analysis and estimation
of their dynamic response have been crucial for human perception modeling
when interacting with any mobile-controlled machine.

Angular motion, characterized by low amplitude, is limited by inherent
thresholds, which are a function of the stimulus magnitude and its duration.
Mulder’s law describes angular accelerations with a duration inferior to 10
seconds as the product of angular acceleration, and its duration is approx-
imately equal to 2.5 deg/s. This means that a weaker acceleration requires
more time to be perceived from vestibular canals. In the aerospace domain,
experimental studies on human sensory thresholds for angular velocities and
accelerations characterized by prolonged duration have been done [89]. It
is suggested that such thresholds can vary depending on the nature of the
controlled elements. For example, flight can be slightly higher with respect
to a car due to more stress and, consequently, the pilot’s attention level and
allocation. The pilot’s experience and training contrast this effect; in this
case, the human has an accurate internal model of the machine’s dynamics,
allowing him to have a certain degree of knowledge in advance and lower
the threshold. In summary, the workload, stress level, and training level
strongly impact the human sensing abilities of a rotational motion. Being
very difficult parameters to quantify, an accurate model of threshold dynamic
variation is very hard to obtain. The main role of otoliths relies on the sense
of linear accelerations and vertical motions, with threshold levels of 0.1g and
2 degrees. Otolith canals cannot differentiate between acceleration caused
by gravity and other linear accelerations. The sensed motion should always
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be considered as an apparent vertical motion since there is no difference in
the way humans can perceive tilt and linear accelerations.

Further attempts to model the vestibular system led to the development
of Hosman’s descriptive model, whose main purpose was to integrate visual
and vestibular dynamics, which will be better discussed in Section 5.

2.3.3 Proprioceptive systems

One of the first senses to develop in a human being, are without doubts
tactile and proprioceptive senses, since they are mandatory for determining
the gravity vector and consequently develop the necessary anti-gravity group
of muscles, which allow us to walk.

Proprioception, which is also called kinesthesis, refers to such sensory
modality which uses muscles spindles to determine the position of body and
limbs of the subject, as well as their movements and the joint torques required
to start a motion or maintain a steady position against resistive loads. In
human-machine interaction, the role of tactile and proprioceptive systems is
linked mostly to the force and pressure feedback that the operator has due
to the physical contact with an aircraft inceptor, a vehicle steering wheel, or
a robot’s end-effector.

Pressure receptors are located within the skin all over human body and
are of primary interest in the development of modern haptic feedback devices,
able for example to provide information about a surface texture belonging to
an unknown external environment in teleoperation frameworks.

The modeling of this system is difficult because of the huge number of
physical stimuli which trigger its response. Classical factors that trigger an
output of the proprioceptive system directed to the CNS are for instance:
relative linear and angular velocity, muscle tension and its orientation with
respect to the gravity vector. Usually, all these inputs are sensed and elab-
orated simultaneously. Since, as it is noticeable, some of these factors also
stimulate other sensory systems, the CNS combines in case of conflict the
multiple received sensory information to develop its own proprioceptive sense.
For this reason, proprioception cannot be seen as a unique sensorial system
like visual and vestibular ones but should be considered more like a sense
developed as a combination of different sources of information. Hess pro-
vided a transfer-function representation of proprioceptive dynamics in his
"structural model”, which will be discussed in detail in Section 5.
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2.3.4 Inter-sensory models

A relatively recent field of study is the human cognition associated with
multi-sensory stimuli. The first steps in this context were provided, once
again, by neuroscientists such as Halligan [90] and Lotto [91], even if the
considered interaction between senses were limited and focused on forms of
synesthesia and go towards a brain function associated with a high level of
complexity.

Multi-sensorial perception is mostly modeled as a simple linear summa-
tion of inputs, or as a weighted sum, with an almost arbitrary selection of
weights. The most complex developed model is Hosman’s descriptive model,
which has a non-linear combination of visual and vestibular stimuli.

Telban and Cardullo proposed a model able to capture the perception
of rotational motion, parametrized in order to match latencies experimen-
tally observed in [93] and [94]. This model is able to analyze inputs coming
from peripheral and central visual fields, as well as vestibular inputs. The
rotational perception model, which is represented in Figure [2.4] provides the
computation of the perceived angular velocity, given the actual inputs com-
ing from the two considered sensory systems, where the semicircular canals
represent the vestibular one. A similar model is the translational perception
model, in which the perceived velocity and acceleration are obtained given
the actual specific force. Vestibular dynamics in the latter case are repre-
sented by the otolith canals, which respond to specific force stimuli, while
the visual system processes the velocity information, which is mathematically
represented as an integrated acceleration. Back to the rotational perception
model, peripheral and central vision are considered time delays, respectively
set to 90 ms and 150 ms [95]. Further psycho-physical experiments have
given evidence that visual perception of self-movements can induce an arti-
ficial vestibular response [29]. The opposite process can also happen, even if
to a limited degree. This model’s main feature is the capability to represent
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such influenced esteems of self-movements. Optokinetic influence compo-
nents provide both a nonlinear gain element and a fist order low pass filter.
The gain element is able to represent the weight given to vestibular and visual
perceptions and is calculated from a cosine-bell function, which links it to
the difference between them. The low-pass filter models the semicircular and
otoliths canals, implicitly assuming that the CNS compares the visual stim-
ulus with its estimation of vestibular response. For what concerns vestibular
models, a certain degree of correspondence can be noticed between the model
proposed by Fernandez et al. [94], Telban et al. [94], and Hosman [95]. In all
of these models, the otolith organs respond to a specific force, defined as:

f=9—an (2.9)

Here, ¢ represents the local gravitational force vector, while a; is the
acceleration of the head of the human operator with respect to a fixed refer-
ence frame. Assuming, for the sake of simplicity, that the operator’s head is
aligned with the fixed frame axes, it is possible to obtain the transfer function
between sensed and actual force:

f(s) 0.4(13.2s + 1)
= (2.10)
f(s)  (5.33s+1)(0.66s + 1)
While for what concerns the perceived and actual angular rotations, the

transfer function can be expressed as:

( 4565
ws) _ i (2.11)
w(s) (5.7s+1)(80s+ 1)
Providing a reliable representation of vestibular canal dynamics. The
adaptation operator element indicates the maximum time for which it is
possible to have a conflict between vestibular and visual inputs. This is done

by relating the inter-cue error to the washed-out error:

ew(s TwS
wl9) = — (2.12)
le(s)]  Tws+1
where 7, represents a time constant. Simulation results of the model [29)
showed that the model is capable of representing the difference between the
transient nature of the vestibular response and the constant presence of visual

stimuli in human motion perception.
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ulative compensatory tasks according to crossover model

2.4 Human-machine control models

In this section, human models will be discussed from a global point of view,
with a control-theory approach. In the presented models, the human-machine
system is described with a task-dependent approach, typical of control sci-
ence. Here, significant variations can be noticed regarding the contribution
of physiological structures described in the previous sections as subsystems
in the overall model, as well as the abstraction level of their mathematical
representation.

2.4.1 McRuer’s Crossover Model

From the very beginning of the studies in this field, McRuer et al. [70] an-
alyzed human control action in compensatory tasks by randomly changing
the target reference trajectory which the human had to follow. The result
was one of the most common and simple examples of a human control model,
McRuer’s Crossover (CO) model, also known as the quasi-linear model. The
quasi-linear model hints at how humans adapt to different plants to elicit
stable and effective control responses.

It can be convinced that such a model exhibits the behavioral invari-
ance of the human in its adaptation to the controlled machine, offering a
consistent human-machine behavior where the functional block diagram can
be described as a simple compensatory manual control system. Due to its
simplicity, the model proposed aim is to avoid common problems related to
higher complexity systems.

It was observed that when an external disturbance is introduced in the
system, measured human operator responses were different for different trans-
fer functions of the controlled plant, but the combined human-machine be-
havior is approximately the same for all the experiments. The following
equation can describe the transfer function of the combined human-machine
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system:

Y, (jw)Ye(jw) = “ee (2.13)
Jw

Where w, is the crossover frequency of the system, and 7 is the overall
delay in human response. Such an equation indicates that the behavior of
the human-machine complex can be described as a simple integrator and
a delay in the crossover region. If we isolate the human controller from
the controlled element, the whole system relating a voluntary motion can
be simplified into three components: a linear controller inside the brain, a
neuromuscular dynamic, and a reaction time delay.

After the learning phase of the machine dynamics is sufficiently finished,
the human can be considered as a simple feedback controller which moves
the controlled element to the target position, in case of a point-to-point- task
(PTP), by watching the reference target point.

The neuromuscular dynamics, as said, can often be approximated by a
first-order lag, as demonstrated also in [96], and the simplest human con-
troller was modeled as a PD controller in [97]; therefore, the human transfer
function Y, (s) can be described as follows:

1
Yy(s) = Ko

P TIS + 1

where parameter K, is the pilot’s gain, 71 is the lead time constant,
77 is the lag time constant, and 7, is the pilot’s reaction time delay. The
parameter selection is carried out by using the adjustment rules. According
to the model, the reaction time delay should be constant for each human
subject [98], with small variabilities due to task and environmental variables.

In the quasi-linear model represented in Figure 2.5, McRuer introduced
the remnant noise term n, to account for the non-stationary effects of the
pilot behavior. The remnant was described as a random process, linearly
uncorrelated with the control input. Normally, the remnant is related to the
error signal e(t). Therefore it is here considered as the observation noise.

Although being born to describe pilot dynamics, the crossover model
has become a benchmark in human control models for a variety of applica-
tions and controlled elements. For instance, a generalization of the crossover
model is proposed in [99], characterizing the human control of systems with
both integer and fractional-order plant dynamics. Or, in teleoperated sur-
gical robotic systems [100], it can be used for a detailed characterization of
operational delay in order to improve control precision.

e (2.14)
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2.4.2 Optimal Control Model

The optimal control model has been developed by Kleinman et al. [101,102]
and Wierenga [103] in the first place, in consequence of the advances in
optimal control theory, which can be observed between the seventies and
the eighties. The main concept behind it is that after a certain level of
training and motivation, a human operator can control a machine in an
optimal manner, even if it remains subject to physical and psychological
limitations. The first observable difference from the crossover model is that
the optimal control model was expressed using state space variables, which
makes it easier to extend human-machine analysis to multi-loop control tasks.

Figure shows the first simple version of the Optimal Control Model
(OCM). If we consider a visual input reference y, the first process to consider
is the pilot’s reactive time delay, while the signal y, is the perceived input
signal, namely the internal image of the actual input y in the CNS of the
human pilot.

Neuromuscular dynamics make the pilot execute the optimal control and
can be expressed by a first-order lag TNi —7- Moreover, u is the output hu-
man’s control action, x is the internal state vector of the controlled element,
w is an external disturbance and y is the vector containing external sensed
measurements. The elements of estimation and decision consist of the fol-
lowing:

e Kalman filter, which is used to model human’s ability to deduce a
system state from perceived information

e Kalman predictor, which represents the compensation for inherent time
delay

e Optimal feedback, which builds optimal control u. based on y, input.

All of these elements require a model of the controlled machine and,
therefore, can be considered as the human’s internal representation of the
machine’s dynamics, with all the deriving linearization processes and other
psychological limitations [105].

The order of the model is dependent on the human training level and ex-
pertise and can include limited models of actuation systems. The validation
of OCM can only be performed with a black-box approach, comparing its
output to real human control outputs. In systems in which a single input is
considered, the performance index reflecting human control strategy can be
expressed as the following quadratic cost function:
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Figure 2.6: Optimal control model of the human operator, as defined by
Kleinman et al. in [102] Modified version of the Optimal control model for

pilot-vehicle dynamics [104]
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where F is the expected value, Q is the weight coefficients matrix, while
g is a real weigh coefficient chosen so that ¢ > 0. In manual control com-
pensatory experiments, the element y? Qy is usually set in order to minimize
mean squared error; here, the determination of () was performed only by
using empirical methods. Moreover, the factor gi? sets a superior threshold
on the total energy which can be used in a control task. The inclusion of
such a term into the cost functional results in a first-order lag, which is of-
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ten associated with neuromuscular dynamics [101]; in fact, given the other
parameters of the model, there is a direct proportionality between g and
Tn. Moreover, along with empirical methods, the values of model parame-
ters were also numerically computed by identifying the OCM model in [96]
and [106].

However, the model accuracy when matching real data has not been sig-
nificantly improved with respect to traditional control models, which indi-
cates a certain over-parameterization. For this reason, OCM has been im-
proved to the form of a modified optimal control model (MOCM) developed
by Davidson and Schmidt in [104] and represented in Figure 2.6b] Another
modification developed in parallel led to the fixed-order OCM [107]. Both of
them offer transfer function representations with frequency domain analysis.
This work can be considered as the transition phase between the classical
frequency domain and more recent time domain approaches. However, the
simplification process which motivated their development was contrasted by
their complexity. Evidence of this concept is that Schmidt himself chose to
use the full parameter model for capturing the effect of aircraft elasticity in
his human-in-the-loop simulation and analysis [108].

A revised optimal control model (ROCM) of a pilot, which is based on the
aforementioned modified version, was also presented in |[109]. This model was
later extended for the analysis of different aspects in further research works:
human decision-making in [110], its monitoring behavior in [111], the execu-
tion of multiloop tasks in [112], and multimodality in [113], where models
of semicircular and otolith canals of the vestibular apparatus were provided.
Overall, the optimal control model was used to solve a number of applicative
control issues, mainly in pilot-aircraft interaction tasks, such as the prediction
of flying qualities [81] and the use of such predictive capability in refueling
tasks [114]. Other research activities were dedicated to the definition of a
relationship between Cooper-Harper ratings and the cost function expressed
by equation (2.15) in both single and multi-loop tasks |115,[116]. More-
over, the optimal control model was used for many other applied research
activities, such as the simulation of pilot control strategy when encountering
wake vortex |117], the assessment of loads in airframe flights [118]/119], or
the investigation of display dynamics on the control loop, in order to ob-
tain relationships between display types [120}/121] and ratings of the human
operator [106], as well as many other research, works [122-127].

2.4.3 Structural Model

In spite of the successes of linear models described in the previous sections in
investigating the relationship between human control dynamics and handling
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qualities, as well as their application to analysis/design problems, they both
lack an accurate description of the underlying physiological control structure
contributing to human pilot dynamics [128]. Moreover, further research done
in the same period showed that when the difficulty of a control task increases,
the human control behavior becomes highly nonlinear.

Hess’s studies were motivated by two main observations: (i) human opera-
tor control strategies often seemed to result in discrete or impulsive motions,
and (ii) such experimental evidence was not linked to any feature of the
classical linear control models. The main assumption of such investigation
was that the operator, when associated contemporarily with a high-order-
dynamics vehicle and a difficult task, tends to reduce the overall complexity
load associated with the time integration of multiple sensory inputs [129)].
This simplification is done by simply adopting a nonlinear strategy relying
on a limited number of parameters (rather than a linear strategy associated
with a high complexity level and the number of parameters).

The first development of these assumptions can be found in the isomor-
phic model |130], which can be considered the father of the successive struc-
tural model described by Hess. The main idea relying on them is to bet-
ter describe human signal processing by determining feedback paths from
the sensory modalities involved in perception and motor control. The hu-
man equalization process, namely human’s ” proprioceptive” feedback, occurs
through this simulated feedback path, whose parameters were tuned to match
the performance of the quasi-linear model near the crossover region [131132].

Figure shows a block scheme representation of the structural model.
Here, the element Y, is the transfer function of visual dynamics when per-
ceiving its input signal from a display. Moreover, n, represents the remnant
noise and, as in the quasi-linear model, is considered as an observation noise
(and, therefore, put in the human’s output), while d is an external distur-
bance that acts on the controlled element. The parameters K, and K, are
the gains of the central processing stage, while 7y and 7 represent the cor-
respondent time delays. In this model, the pulsing logic Y,, = 1 [133] and
element

Y, = Ko
(s+1/T,) k —1)

describes the aforementioned pilot inner-loop feedback. The key aspect is
the selection of parameter k, which can be interpreted as the pilot’s internal
model of the controlled element dynamics and reflects the adaptive charac-
teristics of the human pilot. It will mainly depend upon its transfer function
around the crossover frequency.

In the crossover region, it becomes Y,, o sY.. Therefore, the following
general considerations can be made:
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Figure 2.7: Hess structural model of an adaptive human pilot

e k = 0: the controlled element is a constant
e k= 1: the controlled element is an integrator

e k = 2: the controlled element is a square integrator

The representation of the pilot neuromuscular system includes both front
and feedback channels. The describing function

w2

_ n

Y., —
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represents the open-loop dynamics of the limb which is driving the manip-
ulator, while Y; = ﬁ represents the muscle spindles. After its early
definition, the structural model was modified, extended, and applied to dif-
ferent scenarios. For instance, the simple application of a structural model in
a tracking and regulation task resulted in a motion cue model [134]. Further
experimental activities were directed toward the determination of time delay
effects in manual control systems dynamics. In the subsequent analytical
work, changes in human equalization performance were observed because of
such time delay [135].

Following several modifications done to the original version of the struc-
tural model, Hess developed his revised model in [136], willing to include
the effects of the pilot’s neuromuscular system characteristics in the aircraft
control process, along with its ability to perceive forces. Further exten-
sions of the structural models are intended to better specify motion and
force feedback [137]. Still, in the aeronautic domain, it was developed the
Task-Pilot-Vehicle (TPV) model in [13§], which is a simple extension of the
structural model in tracking and regulating tasks applied to fast system de-
sign. These modifications proved to have a good match with the real data
of human describing function [139]. Such kinds of modified versions of the
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Figure 2.8: Hosman’s descriptive model of human control behavior (1996)

model were used in many practical control problems, such as the design of a
predictive display that also considers motion cues [139] or the development
of an analytical method to assess pilot’s fidelity in flight simulators [140],
including multi-loop tasks [141],142]. The procedure which led to the pilot’s
assessment was performed in [143], where a flight was simulated using a six-
degree-of-freedom controller of a rotary wing aircraft, which was executing
a vertical maneuver. A structural model of the human was also used to ex-
plore the closed-loop nature of a pilot’s control behavior when determining
a target direction and the analysis of the characteristics of pedal feedback to
the pilot [144]. Finally, evaluations of the qualities of aircraft handling were
proposed in |145] and [146]. Their prediction, along with the estimation of
pilot-induced oscillations, were applied to different controlled elements in the
following years [147-149].

2.4.4 Descriptive Model

In Europe during the 1970s, technological development such as the Fly-By-
Wire (FBW) aircraft has arisen again research interest in man-machine inter-
action for aeronautic scientists. Researchers started to consider their human
modeling effort as a means to better understand flying handling qualities
and performance [150,/151] and to improve the accuracy of flight simulation.
For this purpose, better integration of visual and vestibular systems into the
control model seemed necessary. Later in the 1990s, Hosman led extensive
research efforts with the aim of understanding the influence of the visual
and vestibular systems on human perception and, consequently, on its con-
trol behavior [95,|152]. This investigation resulted in the definition of the
descriptive model, to do so, Hosman presented different experimental works
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in which the case study used was a pilot’s landing maneuver with an aircraft
using a moving-base flight simulator |153]. There, systematic variations of
sensory inputs were the base that led to the definition of the descriptive
model [154]. Results were applied in closed-loop control tasks where the hu-
man was considered as a single-channel information processor with multiple
inputs from the sensory systems.

The descriptive model, represented in Figure 2.8, has a multimodality
structure, reflecting physiological subsystems that link the states of the con-
trolled element to his perceived states. Here the element of visual perception
of displacement is expressed in the time delay H,q(s) = e ™#° where the
attitude perception delay 7,4 resulted in being around 50ms [89]. The visual
perception of a velocity is Hq(s) = e ™7* where the delay parameter
varies in the case of central or peripheral vision. In particular, the peripheral
system is able to sense only rates, therefore, its dynamic is described by the
second equation, but with a shorter time delay (60ms) with respect to the
one measured in the central vision system (110ms) [95]. Such as the delay
referred to by McRuer in his crossover model is the sum of the delay asso-
ciated with the detection of the stimulus in the eye and the one associated
with the information processing.

For what concerns the vestibular system, both the semi-circular and oth-
olit canals are modeled respectively as an over-damped torsion pendulum
and an accelerometer with over-damped mass-spring-damper characteristics.
They both can be represented by second-order differential equations, having
the following transfer functions:

B (1+7ps)
Hucel®) = (0 003001 4 79)
Hyp(s) = — L F ) (2.16)

(14 748)(1 4 79)

In his model, Hosman assumed that tactile and proprioceptive senses
were implicitly considered within the vestibular dynamics model. Moreover,
the descriptive model assumes that processing in the perception and deci-
sion stages by the Central Nervous System and neuromuscular dynamics can
be combined and represented by a unique ”information processing” transfer
function:

Hz‘p(S) = Kipe_”Ps . (217)

Here, the CNS contributes both to the gain and delay elements, while the
neuromuscular dynamics low-frequency effects are approximated by only a
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delay factor; thus, 7;, is the sum of delay contributions of both factors. Func-
tion f converts the displacement caused by the input stimulus to a specific
force output. The descriptive model has been applied in numerous studies
in the transport engineering field, focused on the identification of human pi-
lot’s dynamics, such as the implementation of optimal forcing functions for
identifying human model parameters [155], the investigation of the use of
visual information by the operator while controlling of an aircraft [156], or
the study of the influence of translational movements on pilot’s performance
and perception [157,/158].

2.4.5 Biodynamic Models

The biodynamic models were developed to represent the effects of the body
dynamics on the human’s desired control input in a situation in which it is
subject to an accelerating environment. This way, the effects of this kind of
motion on human health, comfort, or performance can be predicted [159].
Human control actions can be divided into two general categories: voluntary
and involuntary [160]. The models studied in the previous sections were all
part of the first category. All of them focused on translating into mathemat-
ical expressions the process which converts an idealized voluntary human
action into an actual control action. This process takes into consideration
aspects such as bandwidth limitations and the delays in human dynamics,
put in relation to rigid-body movements and human-induced oscillations.

An alternative kind of modeling technique aims to describe the involun-
tary human actions, being the direct consequences of the vibrations coming
from the environment, which are filtered by the human’s body and become
an involuntary input into its control system [161H164].

The modeling of biomechanics can be categorized into three types: contin-
uum, discrete, and lumped parameter models. The main difference between
them is the way in which the spine is modeled.

In continuum models, the spine is considered a flexible beam; its responses
to vertical accelerations were studied by Griffin et al. [159]. In discrete mod-
els, the spine is described as a series of interconnected mass-spring-damper
elements. The dynamic response can be studied by determining its equation
of motion. With respect to the continuum modeling approach, discrete mod-
els succeed in representing the human body as a composite of elements (i.e.,
organs), each one with its own resonance frequency.

In lumped parameter model, the body itself is modeled as an equivalent
mass-spring-damper system. Of course, this approach cause models of this
type to have only one or two degrees of freedom. Moreover, the efficacy
of its analysis is limited to the response to vertical stimuli [165] and is not
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able to capture the complex dynamics of the human body, as evidenced
by Sirouspour et al. when attempting to model lateral dynamics of a
seated subject. This kind of approach was able to avoid instabilities and
cancel dynamic feedthrough [167]. Further efforts in biodynamic modeling
are the whole-body transmissibility [168],[169], being the ratio between the
vibration measured in a certain point of interest and the base vibration (both
are functions of frequency).

The area which produced the most research activities in this field was,
once again, the aerospace domain. In [170], it was implemented a simulated
biodynamic model able to predict both the human dynamic response and
tracking performance in vibrating environments, allowing gathering data for
whole-body vibration. Based on this model, further experiments were con-
ducted to simulate the transmissibility of vertical base vibrations to lateral
and roll accelerations [165,[171,[172]. One of the first important studies on
biomechanical effects associated with human-manipulator interaction in high
frequencies was carried out by Johnston et al. in 1988 .

Modern technological developments of this century, characterized by higher
speed of transport systems, motivated further research investigation on the
effect of structural vibrations of civil transports and supersonic air-
craft . Later, muscular damping and stiffness parameters were studied
in relation to the urgency of the performed task , suggesting that dur-
ing tasks that are perceived with a higher urgency level, the body stiffness
increase, such as the pilot’s grip force. Moreover, in , it was defined a
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three-dimensional human body model which relied on collected experimen-
tal data. While in [178], the error between the intended and actual control
action of the human was investigated and put in relation to biomechanical
models of the limbs.

2.5 Final considerations

The study of models representing human control behavior when interact-
ing with a controlled machine has played a crucial role in many engineer-
ing fields. Emerging technical challenges, such as the development of new
robots, aircraft, and vehicles or the spread of advanced simulation frame-
works, have motivated through the years the rise of more and more complex
mathematical representations. Along with the rise of the application’s com-
plexity, the abstraction level of human behavior skill-based description has
also increased, making it more difficult for the objective to include accurate
functional modeling of the involved physiological structures. For this reason,
the parallel research efforts which were performed in motor control theory
and sensory feedback description were reviewed in this work. The open dis-
cussions in cognitive-science-related research activities were also detailed, for
what concerns the presence of internal models of external dynamics with
whom a human is interacting in its central nervous system. Correspondent
differences in the functional description of the motor apparatus were also
identified.

For what concerns the review of human sensory modeling, there were in-
cluded subjects such as visual perception errors and their modeling, vestibu-
lar and proprioceptive sensory dynamics.

Neuromuscular dynamics representations completed the discussion on the
control theory representation of involved physiological districts, considering
modeling efforts of internal feedback loops provided by tendons and spin-
dles, forward muscular activation dynamics, and their approximation in the
frequency range of a manipulative control task.

Passing to a task-based description of the human-machine complex, the
aforementioned physiological dynamics were included in more general con-
trol structures in which different higher-level human features were also repre-
sented. Thus, the human capability to behave in an optimal manner after a
certain level of training was represented in the optimal control model, while
its adaptability to the machine dynamics is well captured by the classical
crossover model or by Hess’ structural model.

The degree of integration of underlying physiological processes and mission-
based strategies within these models is indeed really variable, being the
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advantage of approaches of the structural model and Hosman’s descriptive
model with respect to previous classical quasi-linear approaches. The ongoing
development of the higher-level representation of human control strategies
and decision-making, which includes techniques taken from robust control
theory, uncertainty propagation, and probabilistic methods, is motivated by
the increasing complexity of the application tasks. Therefore, maintaining a
bond within the developed models from both a physiological and a control-
theory point of view will be increasingly challenging.

Having to get focused on the linear models, in accordance with the rele-
vant research efforts of the last years directed to the description of non-linear
dynamics in man-machine interaction, the reader could be prompted to face
this topic starting from the simple models overviewed that have the advan-
tages that could be handled by using the classical approach of linear system
theory and automatic control methods.

Despite the limitations, these linear models showed good approximation
capabilities and easiness of use in practical applications; in the next chapter,
we will present a novel linear modeling strategy applied to human-robot
interaction.
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Chapter 3

Precision Model for control
delay identification in robotic
manipulation

Human-robot collaboration offers advantages in terms of flexibility in many
industrial applications. New generations of intelligent collaborative robots
are used without fences, usually in a shared space with human operators,
which adds a mutual advantage to classical robotic cells. In complex human-
robot collaboration scenarios characterized by continuous physical interac-
tion, analyzing human behavior and control action is crucial to investigate
as a base to build any predictive technique. The previous chapter showed
how modeling the human control action when interacting with a controlled
machine has become an independent research field involving multiple disci-
plines and approaches over the years. This chapter investigates and applies
a linear Precision Model to human-robot interaction, focusing on identifying
human reactive delay in a collaborative task.

3.1 Human-in-the-loop control

Several studies regarded human and robot performance evaluation in coop-
erative work. In [179] human factor was evaluated in virtual scenarios using
agent modeling with a discrete transition between blocks. Sadrfaridpour et
al. [180] built a trust model in which the performance of the robot and hu-
man operator in repetitive collaborative tasks are evaluated, considering the
human muscular fatigue and recovery model.

Different modeling approaches have applications in human intention es-
timation and robot imitation algorithms. For example, Obo et al. [18]]
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proposed a human-like robot posture generation method based on a steady-
state genetic algorithm (SSGA). Huber et al. [182] tried to dynamically un-
derstand the joint action of groups of humans working together and transfer
such behavioral pattern to human-robot interaction. Erlhagen et al. [183]
have developed high-level joint action strategies for human-human interac-
tion. Such approaches either assume perfect rationality or smooth over hu-
man idiosyncrasies and noisy observations by providing general accounts and
mathematical functions of human performance.

Recently, promising approaches to describe the information transfer re-
lating external dynamics to the human controller were proposed using con-
volutional neural networks or other machine learning techniques. In [184] a
transfer learning approach based on a Convolutional Neural Network (CNN)
with raw EMG input data, was used to classify motor control difficulty in a
human-robot collaborative scenario. Chen et al. [185] used LSTM networks
to learn the characteristics of strongly nonlinear external dynamics of Van
der Pol and Lorenz systems. Mu et al. [186] used a reinforcement learning al-
gorithm coupled with two neural networks to implement an event-triggering
dynamic strategy for partially unknown systems.

Concerning this kind of black-box approach, other model-based tech-
niques achieved the same goal while developing a better description of the
underlying physiological processes which determine the overall human control
strategies. The underlying mathematical representation for human control
action should be the same used to describe a linear servomechanism [187].
Specifically, a set of linear differential equations with constant coefficients, or
equivalently, a transfer function in the frequency domain. In 1965, McRuer et
al. in [70] introduced the most famous example that follows such an approach.
The model foresaw an integrator and a simple delay element to model the
human operator adaptation during the interaction with the machine. The hu-
man action was studied with different controlled elements and represented a
quasi-linear describing function. In [188] Kleinman et al. developed the ”op-
timal control model” (OCM). Its primary assumption is that a well-trained,
well-motivated human behaves optimally while subject to psycho-physical
limitations. Unlike the crossover model, the OCM is expressed in state-space
variables, facilitating the extension of human-machine analysis to multi-loop
control tasks. Here, a Kalman filter represented the human’s ability to de-
duce a system state from perceived information. Concerning pilot aircraft
control applications, Hess structural model [189] proposed a detailed descrip-
tion of human perception processes and inner loop feedback. While Hosman’s
descriptive model [95] studied the interaction between visual and vestibular
inputs and their influence on the overall control strategy.

Research in this direction in the robotics domain often investigates the
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exploitation of collaborative robot applications using virtual environments.
In [190] for example, a neuroadaptive controller is used in a collaborative
application with a robotic arm to analyze the human control action. The
target point was shown in a virtual environment and randomly changed for
each trial. Whereas in [98], a similar virtual setup was combined with a
haptic device. The identified human control parameters were the input of
a human intention estimator, able to adapt the impedance of the controlled
device according to human actions.

However, these approaches do not investigate the effect of the learning
process of external dynamics on human control delay. The classical quasi-
linear model is the most suitable approach for this while focusing on the de-
scription of physiological background processes [98] [191] [133]. The crossover
model has often been used in literature for this purpose in the aeronautic
domain, characterized by a high-frequency range that facilitates a frequency-
domain analysis of the model.

The present work describes and applies such a modeling approach to
different human-robot collaboration scenarios using a time-domain approach.
The chapter will be structured as follows: in the second section, the model
theoretical background will be described in detail; in the third sectionthe
proposed application scenario will be presented; in the fourth section, the
obtained results will be analyzed and discussed; and in the final section the
system identification process implemented in simulation will be illustrated.

Human model

Hes) y(s) >

Y

P(s)

Figure 3.1: Block scheme representing the structure of human-robot control
system during a compensatory task, as described by the Crossover Model. Here,
H (s) represents the human control dynamics, which is used along with the remnant
noise ne(s) to build the human model. P(s) represents the controlled element’s
dynamics (in our case, a robot).
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3.2 Precision Model of the Human-Robot Com-
plex

Let us recall the McRuer’s Crossover (CO) model [70] introduced in the
previous chapter. The CO model hints at how humans adapt to different
plants to elicit stable and effective control responses. Due to its simplicity, the
model proposed aims to avoid common problems related to higher-complexity
systems.

It was observed [70] that when an external disturbance is introduced in
the system, measured human operator responses were different for different
transfer functions of the controlled plant. However, the combined human-
machine behavior is approximately the same for all the experiments.

As said in the model introduction, the central theoretic hypothesis rely-
ing upon this approach is that the transfer function modulus bode plot has
a -20dB per decade slope around the crossover frequency in the frequency
domain. The remnant noise n. (see Figure models the non-stationary
effects of the pilot behavior. A random process models such a linearly un-
correlated noise with the control input. Usually, the remnant is related to
the error signal e(t). It is, therefore, considered as an observation noise.

Given a controlled element, in [27] it was proposed a more detailed Pre-
cision model of human control action, which can be described in the Laplace
domain by the following equation:

Hs)= K, 1 o (3.1)
718+ 175+ 1

Here, we have mainly four factors: a simple static gain element K, a lead-
lag equalization term %ﬂ, a time constant relative to the neuromuscular
system 7, and the so-called ”effective time delay”, being e™*7.

Neuromuscular system dynamics have been extensively discussed in [133],
showing additional second-order characteristics typical of spindle and tendon
organ ensembles. However, these effects are observable only in very high
frequencies. Therefore, they can be neglected for most application scenarios,
resulting in the first-order lag term in Equation .

Moreover, the human operator sets the equalization term to achieve the
-20dB decade slope required by the Crossover theory. At the same time,
the static gain is used to pilot the crossover frequency value. According to
McRuer, the sensitivity of the closed-loop stability on 77, and 7; should be
very low, leaving the crossover frequency and the effective time delay as the
main parameters to consider to ensure stability and minimize the error.

The crossover frequency mainly depends on human adaptation to the
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controlled element and, in a minor way, to the input bandwidth w;. Therefore,
if we try to implement the same general concept expressed by Equation ([2.13])
by including the controlled element dynamics into the Precision model, we
will have that the man-machine complex would be equivalent to

H(s)P(s) = K, 25t 1 o (3.2)
Ties+171,s+1
Here, 7, and 77¢ are the lead-lag equalization parameters considered af-
ter the initial training phase when the human learned the controlled machine
dynamics and adapted its behavior to respect the crossover hypothesis. The
gain K. is now a general expression of the gain of the man-machine transfer
function and is equivalent to the crossover frequency.
The effective time delay 7. results from transport delays of the sensory
information to the central nervous system and high-frequency neuromuscular
dynamics. In [192], it was given the following empirical relationship:

Te = To — AT(wy) (3.3)

Here, the first term 7y is the primary time delay when w; = 0, depending
on the controlled element Y,. In contrast, the second term A7 decreases the
effective delay with the input bandwidth with a slope entirely independent
of the controlled element. Such relation is referred to as the scenario that
led McRuer’s research activities in the aeronautic domain, where the human
controller operates in high-frequency ranges. However, a constant behavior
is expected if we focus on the primary delay term dependent on human
adaptation to the controlled external dynamics.

Therefore, the reaction time delay should be constant for each human
subject, with a small variability attributable to task and environmental vari-
ables. In particular, typical values of 0.5s of the primary time delay 7, were
obtained in [27] for second-order functions of the controlled element.

In this work, the Precision human-machine model has been applied to
a human-robot collaboration scenario to understand how to identify better
human control characteristics concerning its adaptation to the controlled
robot’s dynamics. This adaptation process will be translated into properly
tuning the model parameters, allowing the embedding of robot and human
dynamics into a single transfer function, as done in the general CO model
in [70]. Such modeling effort will mainly focus on reactive delay, an easily
measurable parameter in which the discussed human behavior is expected to
have an effect.
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Figure 3.2: Time derivative of the position error signal in a performed experi-
ment. Orange crosses represent local maxima, while green dots the first successive
time instant where a sign change is observable.

3.3 Design of Experiment

A simple manual guidance situation was considered, where humans and
robots performed a typical point-to-point motion task with continuous phys-
ical interaction.

In this scenario, the reactive delay can be derived from the time displace-
ment between the reference position signal and the actual measured position.
The point-to-point task is the situation in which this displacement is primar-
ily evident because it is constituted by a sequence of different target points
that the human-robot complex has to reach.

Here, the reference signal to consider as the input r(s) in Figure is
composed of a sum of steps being the series mentioned above of constant
reference target points.

Figure shows the position error derivative signal é(¢) during a per-
formed point-to-point task, being e(t) = r(t) — p(t) the position error, r(t)
the reference position, and p(t) the actual position. As noticeable, é(t) is
characterized by a series of local maxima, represented by the orange crosses.
Each maximum corresponds to the time frame for the maximum variation in
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Figure 3.3: Scheme of the experimental setup : The disturbance signal
causes a displacement from the initial reference position, and the human reacts by
exerting a compensatory force towards the opposite direction.

Picture of the small URb robotic arm

Table 3.1: Average delay values for all the human subjects, considering the ten
performed experimental trials of each one.

Human subject 1 2 3 4 5 6 7 8 9 10
Average delay 0.6234 | 0.4075 | 0.4777 | 0.4308 | 0.446 | 0.626 | 0.4494 | 0.5701 | 0.4086 | 0.6469
Generated ref points | 128 142 130 130 132 132 136 128 151 122

the reference position signal r(t), i.e., corresponding to a target point varia-
tion, as will be better detailed in the next section. The green dots represent
the following instant in which the error derivative becomes negative, caused
by a variation in the actual position p(t) in consequence of the human control
action. Therefore, the difference between these two points can be considered
a reliable experimental measure of the reactive time delay of the subject.

A cartesian impedance controller was implemented on the robot side, de-
picted as the controlled element P(s) in Figure[3.1] In the impedance control
strategy, a virtual mass-spring-damper element is attached to the robot’s
end-effector’s actual and reference positions. This way, when following a
reference trajectory, any interaction with external forces causing deviations
from the current path is managed by the system in a compliant way, depend-
ing on the parameters set on the virtual mass, spring, and damper.

To reproduce the best conditions to identify the human reactive delay, a
simple compensation task was executed following the scheme depicted in Fig-
ure 3.3, The human operator had a continuous physical interaction with the
robot. A constant low stiffness was set in the Cartesian impedance controller
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to ensure a compliant behavior of the robot.

In particular, the proposed experimental setup consisted of a URb robotic
arm with a gripper in the end-effector, which the operator must hold. A
virtual robot arm model was shown to the human operator on a screen using
the Rviz software tool [193]. The reference target area, represented by a
red square of 2cm in such a virtual environment, was shown. Its position
was randomly changed in the x-y plane (in the robot’s base frame). The
human operator was asked to: reach the target point by manually guiding
the robot gripper, holding it for At = 3s, and bringing the robot back to the
initial position. If the subject could not hold the robot end-effector within
the reference target area for 3s, the counter was reset, and the following
virtual reference was not generated until the condition mentioned above was
respected.

This operation was continuously repeated with different target points for
60 seconds. Each experiment was performed ten times by ten human subjects
with the same random target values. Before recording the experiments, a
training phase was performed by executing the described operations until a
high level of comfort with the environment was reached and confirmed by
the subject.

3.4 Experimental Results

The recorded signals included many step motions since the human subject’s
reaction in both directions was considered when reaching the random tar-
get reference and returning to the initial position. The number of generated
references depends on the subject’s reaction delay and the precision when
holding the robot into the target area. The total number of generated vir-
tual references for each subject is indicated in the second row of Table
ranging from a minimum of 122 to a maximum of 151, considering all the
ten performed experimental trials.

To measure the reaction time delay, it was considered the displacement
between each step of the reference position signal and the subsequent change
of the actual position. This interval corresponds, in other words, to the
difference between the time frame in which the system generates a new virtual
reference point, and the time frame in which the human subject starts to
move the robot’s end-effector.

Figure shows a box and whiskers plot representing the range of varia-
tion of the measured reaction time delay for each human subject. Here, the
vertical axis represents seconds. The mean value for each experiment of 60
seconds was computed to have a robust measure of such value. Then the
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Figure 3.4: Ranges of variation of mean reaction delay values considering the 10
performed experimental trials, for each human subject

series of 10 mean values per subject were considered, and the resulting mean
delays are summarized in Table

As noticeable, only two outliers are present in all the measured values.
Instead, most subjects display a narrow range distributed around the mean
values, describing a constant delay around all the experiments. Moreover,
such constant mean values significantly differ between one subject and an-
other, confirming what was expected from the theoretical models.

In three cases, the ranges of values presented more consistent variations
to the majority done by the other subjects. However, rather than being
dependent on environmental or task variables, such behavior can be explained
as an effect of the subject training and better adaptation to the external
dynamics. This consideration is confirmed if looking at the values in detail.

Figure for example, shows the series of measured data for subject 1
(Figure and subject 2 (Figure [3.5b), corresponding to the blue and
orange boxes in Figure [3.4, Here, the data trend confirms the above consid-
eration, represented in its linear approximation by the dotted blue line. A
narrow range corresponds to the expected constant behavior in the first case.
At the same time, the wider range of the orange box in Figure [3.4]is caused
by the descending trend observable in Figure [3.5b which testifies the effect
of the learning process of the external dynamics done the subject.

The range of variation of the measured delays is between 0.4 and 0.6 s,
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Figure 3.5: Detail of the measured delays for the first two subjects, boxes in
blue and orange in Figure 3.4 The blue dots represent the mean value for each
experimental trial, while the dotted line is the best linear approximation of the
data trend.

which is compatible with the values obtained by the model. Further details
will be given in the following section.

3.5 System Identification

All subjects’ experimental data were compared with the simulated Man-
Machine Precision Model results, as expressed in Equation (3.2)). The con-
sidered human model is constituted by five parameters: the gain element
K., time constants 7.¢, Tr¢ and 7,, the effective time delay 7.; each one
having a different influence on the model simulated output. The static gain
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Table 3.2: Parameters of the human control model defined in Equation
resulted in optimizing the Prediction Performance Index in the performed sim-
ulations. All the values are expressed as an average between the ten performed
experiments for all the human subjects. The last raw reports the experimentally
obtained effective delay 7. to be compared with the simulated ones.

Human Subject 1 2 3 4 5 6 7 8 9 10
Crossover Frequency | 2.13 2.367 | 2.249 | 2.452 | 2.245 | 2.037 | 2.45 2.134 | 2.519 | 1914
Tn 1.46 1.34 1.384 | 1.151 | 1.427 | 1.594 | 1.29 1.548 | 1.252 | 1.905
TLC 0.86 0.912 | 0.865 | 0.908 | 0.877 | 0.871 | 0.89 0.818 | 0.947 | 0.741
TIC 0.996 | 0.994 | 0.991 | 0.991 | 0.991 | 0.996 | 0.99 0.995 | 0.996 1
Simulated delay 7. 0.511 | 0.351 | 0.417 | 0.331 | 0.415 | 0.541 | 0.366 0.53 0.32 0.7
Measured delay 7. | 0.6234 | 0.4075 | 0.4777 | 0.4308 | 0.446 | 0.626 | 0.4494 | 0.5701 | 0.4086 | 0.6469

is responsible for the crossover frequency value, and the time constants give
the model response the typical second-order characteristics. In contrast, the
effective time delay is the actual output parameter of interest to be compared
with the measured values to check the model precision.

The same reference position signal, recorded from the performed exper-
imental trials, was used as input of the simulated system, whose transfer
function was implemented using the python control system library. Being
p(t) the simulated time forced response of the model, we will have a predic-
tion error:

e(t) =p(t) —p(t) (3.4)
Where p(t) is the actual position recorded from the experiments, rep-

resenting the ground truth in this case. For each simulated response, the
following Prediction Performance Index (PPI) was defined:

PP[:/OS]é(t)] (3.5)

Here, the integral of the error modulus was computed within the time
window between 0 and t,, corresponding to the maximum simulated time
frame.

The five parameters were varied within reasonable intervals. Specifically,
we used 0-10 Hz for the crossover frequency, 0-2 seconds for the three-time
constants, and 0-1 second for the effective time delay 7.. The simulation
was run for each value of the five parameters, each run with one variable
parameter and the other four fixed until the minimum prediction performance
index was reached.

The results are summarized in Table [3.2] where the average values of the
ten experimental trials for each subject are reported for all the considered
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Figure 3.6: Simulated position outputs considering: the identified Precision
model (in green), standard CO Model (dashed orange line), and measured po-
sition output (in blue). Despite the error in this example seems to be averagely
greater in the Precision model, it is also evident how it succeeds in simulating
more accurately the first-peak responses that the human generates after each step
of the forcing function, which is the most important feature that is necessary for
obtaining the human reaction delay.
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parameters. The crossover frequency of the model is generally set around
2-2.5 Hz, confirming the low-frequency operational range of the model. The
measured reaction delays obtained from the experiments are reported in the
last row of the table. Comparing these values with the simulated reaction
delays reported in the previous raw, we can observe an error below 0.1s. This
result confirms the match between the identified model and the data.

Another reliable indicator of the model accuracy is the comparison be-
tween the measured and simulated outputs, in our case, the actual position
of the robot end-effector. Figure compares the responses of the iden-
tified model (in green) and standard CO model (in orange), overlapped to
the measured ground truth (in blue) recorded from the experiment, always
considering the simulated parameters when the optimal PPI value has been
reached. It is noticeable that, despite the good performance, CO model first-
order characteristics fail to represent the first peak observable at each step
of the real system response well.

On the other hand, the identified model response presents these second-
order characteristics observable in the experimental data due to its lead-lag
equalization term. Moreover, model response is completely overlapped with
the measured one in the transient phase of each step, which is crucial for
obtaining precise esteem of human reaction delay.

3.6 Final considerations

The linear approach of the proposed Precision model was able to accurately
describe human-robot physical interaction during a compensatory control
task composed of different point-to-point motions to be performed under
manual guidance by the human subject. Experimental trials involving ten
healthy subjects of different ages were conducted to characterize human con-
trol delay according to the studied modeling approach.

The human effective reaction delay parameter was esteemed and extracted
from raw post-process data to be reliable and invariant with task variables not
dependent on the considered subject. The obtained results were within the
expected values of 0.4 to 0.6 seconds, confirming the model’s validity. More-
over, the system was identified by simulating a human-robot control model
using the recorded experimental data. The model parameters were itera-
tively updated for each simulation to minimize a performance index defined
for this purpose. The simulated results corresponded with the experimental
data for the computed effective delay and the raw position output.

Despite the encouraging results, some aspects must be further investi-
gated. For instance, for better practical applicability of this approach, the
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human control model should be improved for an online human intention
estimation to allow the controlled robot to update its control behavior ac-
cordingly during the task. This last consideration was taken into account for
the second nonlinear model, which will be proposed later in this work.
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Chapter 4

Nonlinear Models

Until now, we have investigated and applied linear modeling techniques for
characterizing human behavior when interacting with a controlled machine
(in our case, a robot). Such techniques have proved to be useful in accurately
representing the various physiological districts involved in the perception,
interaction, and control processes. Moreover, in the previous chapter, we
have shown how such a model can accurately simulate human response and
experimentally identify the reaction delay when an external forcing function
is applied to the system. However, linear models are not able to describe all
the high-level processes that are involved in complex scenarios. To describe,
in a deeper way, human adaptation to the plant when the complexity level of
the task increases and to model also higher-level processes, such as decision-
making, which are not correlated to traditional physiological subsystems,
nonlinear models have to be necessarily investigated.

The investigations of human nonlinear dynamics when controlling a ma-
chine are so diversified that finding a common point between them is difficult.

: Human control modeling techniques: enhance machine's
i ability to interact with a human and imitate its control strategy

‘ Model-Based Techniques ‘

Information Processing and Decision Making

‘ Data-Driven Approaches ‘

Human 0 H Machine
H ' (Controlled Element)

Nonlinear Dynamics in Human-Machine
Systems

Figure 4.1: Graphical abstract representing the structure of this chapter: how
the study of nonlinear dynamics, with different approaches and from different
perspective, can be used to represent human behavior and increase the adaptability
between human subject and controlled machine
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This chapter aims to give a structured overview of the existing techniques,
focusing on the underlying physical and physiological human processes.

In this chapter, a human-centered review of the existing efforts will high-
light the strengths and limitations of the presented techniques in their effort
to model the intrinsic nonlinear dynamics in the human-machine system.
Such nonlinearities will be referred to as spatial and temporal variables of
functionals which are identifiable within the human physiological control dis-
tricts involved in sensing and information processing, but also deriving from
the interaction with controlled element dynamics and/or the external en-
vironment [194]. With respect to the existing review works relative to each
research field, this effort will help find a guiding line between more traditional
control modeling techniques and modern learning algorithms.

The chapter is structured as follows, in Section discusses the Dual
loop control model, giving an overview of the human controller when in-
teracting with a controlled machine. Section investigates the nonlinear
muscular dynamics models. Then in Section [4.3] the focus will be directed
toward modeling techniques particularly useful for representing human infor-
mation processing stages. Then machine learning efforts to model the human
decision-making process are investigated in Section Lastly, in Section
practical examples of human-machine schemes in which the described
techniques are applied to model complex nonlinear dynamics are considered.

4.1 Dual Loop Control

In the last decades of the last century, Hess investigated human control
strategies when interacting with a machine, resulting in his first ”structural
model” [189]. After the first linear version, Hess noted that often human op-
erators’ control strategies resulted in pulsive behavior, which was not linked
to any feature of classical linear models. In [129], the pulsive behavior was
linked to McRuer’s quasi-linear model hypothesis in the frequency-domain
context. The assumption was that when faced with a demanding task com-
bined with the controlled element’s high-order dynamics, the human operator
avoids the computational effort and reduces the number of parameters by us-
ing a less computationally-demanding nonlinear strategy rather than a linear
one.

The above assumption was applied to the early version of the Hess model,
resulting in the Dual Model depicted in Figure 4.2 Such a model resulted
from an effort to link the hypothesis behind the crossover theory with the
optimal control approach.

The described nonlinear factor results in the various switching elements
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Figure 4.2: Dual model of the human operator in a compensatory task

in Figure [1.2] The first one (S1) allows selecting error or error rate tracking
and is supposed to operate in unison with S2, which enables or disables
the proprioceptive feedback loop. The physiological reason behind this is
that after a triggering event, the pilot control strategy regresses to simple
tracking behavior, where the error rate is controlled without the help of
proprioceptive feedback. Right after the two described sensing channels,
there is a time delay element due to the information processing occurring in
the central nervous system, present right before the neuromuscular actuation
and internal feedback stages.

Moreover, switch S3 allows modeling both displacement and force sensing
inceptors. Ultimately, S4 allows using vestibular rate or acceleration inputs
for control, with gain elements dependent on the perceived velocity K, or
acceleration Ky [95]. Ultimately, only neuromuscular and proprioceptive
elements need parametrization, lowering the model complexity level. The
neuromuscular block is often represented using second-order dynamics [195].

The neuromuscular force output is sensed and transformed into an esti-
mation of the output rate of the controlled element using an internal model
of its dynamics. This process is done by the proprioceptive system, which
can be described in the Laplace domain using the following equation:

Kos(s +a)
Hys(s) = § Kps ; (4.1)

Kps
(s+a)

where s is the Laplace variable in the complex plane, and a € R. In other
words, the proprioceptive system transfer function Hps can be defined, de-
pending on the controlled element dynamics, as a derivative term multiplied
by a gain element K (first case), through a simple proportional relationship
(second case); or as integration (third case). If we indicate the controlled el-
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ement transfer function as Hc, the proprioceptive system’s dynamics would
be chosen in order to satisfy the following relationship around the crossover
frequency:

Hs(s) o< sHe(s) . (4.2)

This concept well represents the operator’s adaptability to external dy-
namics. This human’s internal representation of machine dynamics expresses
the hypothesis behind the crossover model and is equivalent to the Kalman
estimator in the optimal control model [101].

The last case of Equation (4.1)), in which the inner loop feedback signal is
generated by integrating the force applied to the controlled element, is the one
in which the effect of the pulsive control behavior on the time integrability of
the human is more evident. In fact, the integration of a pulsive input signal
can be approximated by

Yoo = 3 AT, (4.3)
=1

being A; and AT; the equivalent calculated amplitude and time duration
of the ith pulse, and Y, the resulting proprioceptive output signal. The
computational burden of such an operation, if compared to integration over
time, is significantly lower. In order to represent the discussed pulsive control
effect on the inner loop feedback in the most simple and realistic way, the
following logic can be added before the neuromuscular system dynamics:

dq
Z_o it |2
; 0 1 |dt]<a

. dq
q = f |—=|>ca. 4.4
q ﬁq 1 ‘dt|_a ( )

Where ¢ and ¢ represent input and output variables, respectively, o and
[ are the only parameters that must be tuned to reproduce pulsive behavior.
The dependence of the model on just two parameters allows it to avoid its
over-parametrization and simplifies its adaptability to experimental data.
This nonlinear element’s action causes the output ¢ to remain constant until
a sufficiently rapid change in the input ¢ occurs.

Pulsive control due to the ”ease of integrability” principle, as hypothe-
sized by Hess, found a physiological interpretation in [196]. In particular,
while proportional and derivative control feedback can be actuated using di-
rect sensing organs, such as muscle spindles and Golgi tendon organs, integral
control does not have similar sensing input sources and requires higher-level
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cognition in the central nervous system [129]. Consequently, when perform-
ing acceleration control, the human operator tends to generate a pulsive force
rather than a continuous one to facilitate the integration process, being the
computational cost of the latter much higher. Different explanations of the
same phenomena are possible, for example, linked to energy saving strategy
when the required force peak value is low enough.

4.2 Neuromuscular dynamics

The latter consideration suggests the importance of neuromuscular actuation
mechanisms as a source of nonlinearity in the human controller. Several dy-
namical system modeling approaches of the neuromuscular system have been
proposed in the literature, starting from simple state-space descriptions [197].
Neuromuscular dynamics are typically nonlinear; for instance, we consider
the model of a human limb, and its characteristics can be described in state-
space form as

Xei1 = f(Xg, t,0) + w(t)
Vie1 = h(xe, t) +€(t). (4.5)

Where x is the state vector representing two angles and two angular ve-
locities, u is the control input corresponding to the two applied joint torques,
w is the process noise, while € the observation noise. The general solution
adopted in this nonlinear problem has been to linearize the nonlinear dy-
namics around a specific operating point in state space. The resulting linear
time-varying dynamics can be used only in a small interval around the op-
erating point; in the case of the above example, neglecting the noise terms
would be equivalent to

Yir1 = Hexy. (4.6)

Here, A is the state transition matrix and B the control transition matrix,
while H represents the output measurement matrix.

Most control-theory-based neuromuscular modeling approaches aim to
find the correct series of control inputs u;...ur, corresponding to muscle forces
and joint torques, making the system execute the desired trajectory in the
time horizon ¢ = T'. Such a control system is an open loop; thus, if suscepti-
ble to disturbances, the controller would fail to reach the desired state, not
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sensing any state change. Moreover, the direct measurement of trajectories
in state space can be problematic in high-dimensional systems, where part
of the state may not be directly observable.

To overcome such shortcomings, optimal control approaches have been
proposed [198] [199], where the dynamical system is controlled by optimizing
an objective function. According to optimal control theory, the controller
can directly access output and state variables or estimate their values to
implement an optimal control law to maximize the system’s performance.
A general mathematical expression of the objective function to optimize to
achieve this goal is

J(x) = min, (gb(xtN) + /tN [q(x) + %uTRu] dt) : (4.7)

to

The system variables are u, the control torques, forces, or neural com-
mands, and x, often expressed as joint angles, velocities, or muscle activation.
Moreover, ¢ is the cost term dependent on the state, describing how a given
target was reached. At the same time, ¢ is a state-dependent cost term con-
sidered over the whole time horizon ty, and u? Ru is the cost dependent on
the control input (also considered over the time horizon tx). The velocity
value and the control effort used to perform a given trajectory can be good
examples of the last two mentioned cost terms in a practical application.

Optimal control approaches for adapting classical linear techniques, such
as Linear Quadratic Gaussian Regulator (LQG), have been proposed for non-
linear dynamics typical of muscles and multi-body limbs. In [200], an Itera-
tive Linear Quadratic Regulator (ILQR) was introduced based on linearizing
nonlinear muscular dynamics. An advantage of this approach is that it does
not need any predefined target trajectory in the state space to work. ILQR
method was also extended in [201] for nonlinear stochastic systems charac-
terized by state-dependent and control-dependent noise. Here, the ILQR
technique permitted the description of the nonlinear relation between muscle
force, fiber length, and contraction velocity. Further developments led to
the use of Extended Kalman Filters (EKF) in systems with additive noise in
sensory feedback loops [202}203].

4.3 Decision-Making and Information Process-
ing

The discussed models helped describe the human-machine system dynamics
in a control-theory fashion. The involved physiological districts, sensing, and
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actuation systems were put in relation, considering the human as an element
of the control loop, and the nonlinear dynamics present in motion command
actuation and feedback were put in evidence. However, to understand how
human beings act as a controller when interacting with a controlled machine,
a deep focus on the information processing stage is crucial to understand how
its central nervous system integrates pieces of information to make decisions,
learn, and generate commands.

4.3.1 Fuzzy control models

Processes such as human decision-making, inference, and judgment are chal-
lenging to characterize precisely. A modeling technique specifically meant to
capture this concept is Fuzzy control modeling. If we represent a human con-
troller as a fuzzy subsystem, the core of its control model would be described
by the fuzzy rules it will set. Specifically, fuzzy rules describe the human
decision-making process starting from formulating a hypothesis and succes-
sively mapping the fuzzy set from an input to an output space [204]. Such
a mapping process can be defined as the ”fuzzification process,” while the
reverse transformation will be called the ”defuzzification.” The physiologi-
cal equivalent of this process is when the neuromuscular system receives an
abstract decision from the central nervous system and consequently emits a
force to the controlled device/machine. Fuzzy logic control models have been
used to represent various human control activities in many research works,
achieving good results in overcoming the limitation of approaches relying on
a strict categorical division, especially in classification problems. In [205],
fuzzy logic classification was used to represent radiologists’ reasoning and
decision-making process when recognizing breast cancer types from the anal-
ysis of medical images. While in [206], a fuzzy architecture was implemented
for malware detection and classification in IoT applications. In the aeronau-
tic domain, fuzzy control is suitable for developing a mental model of the
pilot during a flight activity [207,[208|, primarily referring to a compensatory
type of sub-tasks [137]. The fuzzy logic control model was applied to study
changes in simulated activity fidelity in aircraft control and Dynamic Multi-
attribute Decision Making (DMADM) applications [209]. Additionally, fuzzy
control theory was used for the safety evaluation of landing operations con-
sidering aircraft [210,211] and rotorcraft [212]. However, the computational
efficiency of fuzzy control systems is limited in cases in which a vast number
of rules is present [213]. Moreover, it can be challenging to determine the
rules when their number is high, and subjective model tuning will make its
validation more challenging.

52



4.3.2 Artificial Neural Networks

For nonlinear dynamical system modeling, Artificial Neural Networks have
grown significantly in many research activities in the last years due to their
flexibility and ability to imitate human learning, and decision-making. More-
over, when building a model from unstructured data, ANNs proved to be
useful to build a reduced low-order model [214] and for their classification
capability [215]. Artificial Neural Networks are composed of a linear com-
bination of fundamental units (i.e., neurons), which can provide a linear
transformation from the input data x to output y through several interme-
diate hidden layers. Each ANN scheme can vary significantly if the input
vector dimension is known. The user usually chooses the dimensionality of
the hidden and output layers. The input-output relationship of a single-layer
neural structure with m inputs (being m a positive integer greater than 1)
and single output would be, in the linear case:

Yy = inwi +q. (4.8)
i=1

Where variable x;(i € (1,2,...,m)) represents the input signal of the model,
y represents the output signal, w;(i € (1,2,...,m)) is the weight of each
input signal and ¢ is the threshold of the activation function f. Nonlinear
activation functions can be used to represent a wider range of dynamics.
The more general definition of an ANN constituted by M layers, providing a
nonlinear mapping between input and output data, would be:

Yy = fu(Awm, - - -, fo(Az, fi(A1,X))...). (4.9)

Here, the A, to A; matrices contain the weight coefficients w; that map
each variable from one layer to the next. The weights are chosen to fit the
function:

argming (fu(An, ... fo(Az, fi(A1,%))) + Ag(Aj)) . (4.10)

Human behavior and information processing representation are based on the
weights of neural networks. Such modeling technique is advantageous in aero-
nautical applications, for example, when mapping pilot control in research
works where extensive data to process are available [216]. In [217], ANN and
quasi-linear approaches are confronted in a two-axis tracking task, verifying
neural network accuracy in describing nonlinear pilot behavior in aircraft
control. In [218], an adaptive neural network controller is used by combining
the trained network and a proportional-integral controller in an attempt to
find a model-based method for control determination of unknown dynamics.

33



4.3.3 Neuro-fuzzy systems

Generally, neuro-fuzzy systems can be defined as all the modeling techniques
involving artificial neural networks and fuzzy logic. These techniques can
be categorized into three classes, depending on the combination of the two
elements |219]:

e Cooperative neuro-fuzzy systems
e Concurrent neuro-fuzzy systems
e Hybrid neuro-fuzzy systems

In a cooperative system, the neural component is only present in an initial
phase and determines the blocks composing the subsequent fuzzy system
using training data. After this stage, only the fuzzy system will be executed.

In concurrent systems, on the other hand, the neural and the fuzzy compo-
nents work simultaneously. This means that the information is pre-processed
by one of the two components and then given in input to the other.

The most promising and utilized models belong to the hybrid systems
category. A hybrid neuro-fuzzy system can be imagined as a fuzzy system in
which parameters, such as fuzzy sets and fuzzy rules, are determined using
a learning algorithm inspired by the neural network theory. Such a neuro-
fuzzy system can be entirely created starting from measured input-output
data without the a-priori knowledge needed to develop fuzzy rules with the
traditional approach.

An example of a commonly used model of this type is the Adaptive-
Network-Based Fuzzy Inference System (ANFIS), which was proposed for
the first time in 1993 [220]. Its structure is composed of five layers. The
first hidden layer maps the input variable relative to each membership func-
tion. The output layer calculates the global output as the summation of all
the signals coming in the input. In particular, input membership function
parameters are determined using back-propagation learning algorithms, and
the least mean square method is used to determine the consequent parame-
ters. The first advantage is to show both characteristics of neural networks
and fuzzy logic, comprising if-then statements more suitable for human-like
decision-making logic. In addition, its structure is not a black box, as in
the case of neural networks, and therefore can be more easily debugged and
improved. Moreover, it has smaller parameters to be determined to provide
faster training without loss of generality [221]. Such model recently found
diverse domains of application aside from human-machine interaction, such
as electric distribution systems [222,223], speech recognition [224], and eco-
nomics [225]. In [226], the ANFIS model was used for human fall detection
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in comparison with other neuro-fuzzy techniques, such as the Local Linear
Model Trees (LOLIMOT) model |227].

In LOLIMOT models, each neuron is a local linear model (LLM) and
an associated validity function determines the region of validity of the LLM.
The normalized validity functions form a partition of unity for any model
input z are:

Z(pi(z) —1. (4.11)

While the output of each LLM is calculated as follows:

M

Y= (Wio + Wit + oo + WinaTna)$i(2) (4.12)
=1

where x = [z1, 9, ..., Tnz| T . Here, the local linear models depend on x, while
the validity functions depend on z and are typically chosen as normalized
Gaussian. The overall LOLIMOT network output is computed as a weighted
sum of the LLMs outputs, where the ¢;(0) can be interpreted as the operating
point-dependent weighting factors. The network interpolation between dif-
ferent LLMs is performed with the validity functions, where weights w; ; are
linear network parameters. Again, LOLIMOT models were used in various
domains of application, such as transportation [228], medicine [229], complex
systems [230] and identification of time-variant nonlinear dynamics [231].

A dual fuzzy neural networks (DFNNs) model constituted by two equal
neural networks has been used to simulate the physical nervous system
in [232]. The advantage of dual fuzzy neural networks (DFNNs) is related
to their close similitude to functioning and flexibility typical of humans. As
in the case of ANNs, DFNNs can choose a suitable nonlinear mapping of
input /output features through an iterative learning phase, in which neuron
weights are updated. Such a model was implemented to simulate the rela-
tionship between the control signal and human perceived input [233]. Its per-
formance were evaluated to provide insight into the pilot’s decision-making
process [234]. Moreover, [235] proposed a risk evaluation procedure founded
on ANNs with the fuzzy control approach.

Even though in the Neuro-fuzzy model, neural networks and fuzzy logic
are integrated, its drawback is to increase the computation and tuning time
potentially. Besides, the experimental validation of the obtained model pa-
rameters may be tricky.
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Figure 4.3: General structure of a Recurrent Neural Network and its internal
feedbacks

4.4 Data-Driven Approaches

Data-driven approaches have attracted more and more attention in recent
years in various application scenarios in nonlinear dynamical system mod-
eling and identification [236]. In human-machine interaction, learning pro-
cesses starting from unstructured data using different types of Artificial neu-
ral networks (ANN) have been used for their processing classification by
imitating human learning capability and decision-making, often combined
with other learning algorithms, as we will discuss later in this section. A
widely used type of network is the Convolutional Neural Network (CNN),
traditionally used for capturing spatial relations in data, valid for applica-
tions with robust image processing, which are very common in human-robot
collaboration [237] or autonomous system navigation [238].

However, for the study of nonlinear dynamics introduced by the human
into the system during its control activity, aspects such as its temporal de-
lay [239], or temporal relations in general within the given data series, might
be more relevant. Recurrent neural networks (RNNs) are the primary ANNs
suitable for processing time series and other sequential data types. RNNs can
extract a sequence’s contextual information by defining the mutual depen-
dencies between various time stamps. As shown from the scheme represented
in Figure 4.3 standard RNN is composed of numerous successive recurrent
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Figure 4.4: Internal structure of an LSTM unit [185]

layers and has a lot of feedforward and feedback connections in the time di-
rection, allowing it to sequentially model its layers to map a sequence with
other sequences. This makes it a good choice for dynamic system identifica-
tion and control.

Concerning its structure, an RNN can be defined as an extension of feed-
forward ANN with internal loops in hidden layers. The activation of the
state of a recurrent hidden layer at each time instant is dependent on that of
the previous one. At a given time frame, each non-input unit computes the
current activation as the nonlinear function of the weighted sum of all the ac-
tivations of every connected unit [240]. They have been successfully applied
in natural language processing (NLP), image captioning, speech recognition,
and other fields. In [241], the authors investigated the approximation capa-
bility of continuous-time RNNs to the time-variant dynamical systems. They
proved that such network performance for approximating any finite time tra-
jectory of a time-variant system were high. However, despite its suitability to
model temporal variations present in the input, depending only on the cur-
rent information and the previous output, a standard RNN may encounter
difficulties when it comes to capturing long-term dependencies of time se-
quences.

To overcome this limit, a popular type of RNN which was proposed in a
lot of research works is the Long Short-Term Memory network (LSTM), An
LSTM network is a modified RNN, mainly designed to improve its ability to
capture long-term relationships by avoiding premature gradient disappear-
ance in error back-propagation algorithms through time.

LSTM is composed of a combination of units, representing internal struc-
ture in Figure 4.4l Each unit simultaneously receives an input vector x®
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and the state of the hidden layer in the previous time instant h®~Y and
updates, as output information, the cell state C) and the current state of
the hidden layer h®. This operation is done through three embedded layers
in each LSTM unit: the input, output, and forget gates. The three gates
have different roles and work in coordination: the forget gate f(*) determines
the probability that certain information has to be canceled from the cell
state vector; the input gate i® identify the new information to be stored,
while the output gate o® controls the output of the current hidden state
h® . Translated into mathematical expressions, LSTM unit operations are
the following:

fO = ¢(Weh"™Y + Upx® + by)

i = o(W;h*Y + U;x® + by)

C® = tanh(Wch®™ + Uex® + be)

Cc® = ct-b o f® L i® o CH

o) = g(Woh* Y 1 Ux® 4 b,)

h®™ = 0 ® tanh(CWY) . (4.13)

Where W, U, and b represent respectively the recurrent matrix, input
weight matrix, and bias vector, ¢ and tanh are sigmoid and hyperbolic tan-
gent functions, and © represent the element-wise Hadamard product.

Yeo et al. [242] implemented LSTM networks to build a simulation model
of noisy nonlinear dynamical systems using experimental data. Their goal
was to identify the best fit of the probability density function of a given
stochastic process and to represent the underlying nonlinear dynamics. Chen
et al. [185] used LSTM networks to learn the characteristics of strongly non-
linear external dynamics of Van der Pol and Lorenz systems.

As said, neural networks used for unstructured learning have increased
their potential by combining them with other learning algorithms. The most
promising technology in this sense is Reinforcement Learning.

Unlike supervised and unsupervised learning, reinforcement learning has
arisen as the third kind of machine learning paradigm. Using computational
Reinforcement Learning algorithms allowed us to quantitatively describe sev-
eral previously abstract concepts in neuroscience, cognitive, and behavioral
science [243].

As detailed in [244], reinforcement learning (RL) can rely on Markov
Decision Processes as a learning framework in which a learning agent interacts
with an external environment and perceives its state, choose its actions to
maximize a numerical reward function. The reward function is a simple
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numerical value for each time stamp, which can increase or decrease by one
unit in the future due to the agent’s actions. Therefore, the goal to maximize
the reward function can be translated into maximizing the expected value of
the cumulative sum of the scalar reward signal. Being defined from external
information acquired from the environment through sensory inputs (in the
case of a human operator), the goal to achieve is always defined outside the
learning agent. In the case of a human being, that means that the learning
agent can be defined as only the subsystem deputed to process the external
inputs to define a control strategy (i.e., the central nervous system). The
sensory subsystems can be considered part of the environment. In real-world
complex situations in which humans are confronted with a challenging task,
their duty is to derive efficient representations of the environment from high-
dimensional sensory inputs and use them to generalize past experience and be
able to use it in new situations [245]. If we consider an episodic task in which
the agent-environment interaction can be decomposed into sub-sequences of
repeated interactions, there is also a final time step, T. In this case, for a
given timestamp ¢, the reward function to maximize is:

T—-t—-1

Gi= Y YR (4.14)
k=0

Where v, being 0 < v < 1, is the discount rate. This parameter determines
the present value of future rewards. When ~ is close to zero, the weight of
immediate rewards is higher and mostly taken into account by the agent; as
it approaches 1, the goal takes future reward values more strongly weighted.
If we have a continuous interaction in which there are neither definable in-
termediate steps nor a known final time frame, the above equation can be
rewritten with 7" = oc.

Reinforcement learning algorithms were extensively used in many research
works relating to humans interacting with a machine, with many reward
functions designed and more suitable for the different application scenar-
ios. In [246], a Deep Deterministic Policy Gradient (DDPG) reinforcement
learning algorithm is used to estimate human intentions in a human-robot
interaction framework using EMG sensory inputs. At the same time, [247]
integrated RL into the robot motion planning in a multi-robot collaborative
manufacturing plant to implement human-in-the-loop control in teleoperated
robots through augmented reality and digital twin techniques.

In the transport field, [248| adopted microscopic traffic simulation and re-
inforcement learning to implement the lane-changing strategy in connected
and automated vehicles (CAVs). Reinforcement Learning has been success-
fully used with model-based techniques for systems identification in [249).
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This was done to estimate the reward function from online data by acquiring
and processing linear and nonlinear external dynamics. Mu et al. [186] used
a reinforcement learning algorithm for partially non-modeled nonlinear sys-
tems, coupled with two neural networks, to implement an event-triggering
dynamic strategy. In robotics, Deep Reinforcement Learning can be used for
motion planning in cooperative applications with a human subject, learning
how the human interacts with a specific environment and adaptively com-
puting the best way to interact with him [250].

4.5 Nonlinear dynamics in human-machine sys-
tems

The discussed modeling techniques and data-driven approaches have been
successfully used for describing nonlinear dynamics in many application do-
mains where humans interact with a controlled element.

Transport systems, for example, are a particularly relevant field of ap-
plication for nonlinear dynamics modeling in human-machine interaction for
what concerns the nonlinear dynamics deriving human decision-making, from
the nonlinear nature of the controlled element and/or the system, and from
human body physical coupling with the controlled system.

For what concerns the first point, connected and automated vehicle (CAVs)
development has gained more and more attention from companies and re-
search centers in the last few years. In studies dealing with automated
lane changing, machine learning techniques were extensively used for human
decision-making modeling and its use in automatic control strategies.
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Figure 4.5: Connected Automated Vehicles represented in a lane-change scheme

Let us consider the situation described by Figure [4.5] in which Vehicle
1 (V1) has to choose a lane-change strategy and is followed by vehicles 2,3,
and 4. If we discretize the CAV travel as a series of time steps t, and S; is
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the state of the external environment at each step t, we would have that:
St - {6’1L7 leJ EL2L7 EL4R, 6‘37 ﬂln ﬂR? &La &R}(t) . (415)

Here, a represents the acceleration difference of the considered vehicles
(in the subscripts, numbers represent the vehicle and the letter the lane
change direction) after V1 lane change; I represents the mean acceleration
difference between the central and the left or right lanes; ¢ represents the
difference between the standard deviations of the acceleration differences.
From a learning agent perspective, these acceleration differences represent
the gain obtained after a lane change. Therefore, the reward function could
be formulated as follows:

Ry =aith. (4.16)

The subscript number stands for vehicle 1, and ¢ + 1 represents two consec-
utive simulation time stamps.

A lot of research efforts on this topic used simulation environments such
as Matlab toolboxes [251,/252] to represent vehicles’ behavior, or robotic
toolkits using partially observable Markov decision processes (POMDPs),
such as in [253].

A connected and automated vehicle does not rely on any external super-
visor but must autonomously learn with a trial-and-error approach to decide
when to make a lane change and how to execute it. One of the most chal-
lenging aspects is that the vehicle must evaluate the long-term benefit of
such an action and become farsighted in its strategy to maximize the travel’s
efficiency. For this challenge, reinforcement learning seems to be the prefer-
ential approach (as noticeable from its formulation described in the previous
section). For instance, in a high-fidelity simulation environment, [254] used
a deep reinforcement learning training program for car following. In [24§],
the authors also used reinforcement learning in a microscopic traffic simula-
tion environment [255] calibrated using actual highway data. Li et al. [256]
used an evolutionary learning approach for lane change tested in a highway
simulation environment. The optimization problem objective is to maximize
the velocity while minimizing the disruption to the following vehicle; if it is
impossible to reach this goal in the current lane, a change-lane decision is
taken.

In this case, the reward r; depends on the difference between desired ve-
locity v4 and actual velocity v; ¢ of the controlled vehicle and the acceleration
of the following one (ax4):

rit = —[Vig — Va| + aks - (4.17)
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Figure 4.6: Reward values during the system training in evolutionary learning
adopted in [256].

If the velocity difference overcomes a certain threshold, the lane is changed.
The decision-making process has indeed a purely nonlinear behavior, also
reflected by the resulted reward values during the training of the system,
shown in Figure

However, the lane change has not a time-driven structure but an event-
driven one, described as a discrete dynamic process, which can be well rep-
resented as a Markov Decision Process. In [257], POMDPs were also used
for an automatic lane change in long-distance road experimental trials using
automated vehicles. Here, the decision-making process is modeled, referring
not only to the controlled vehicle but also to the surrounding environment,
inspired by the consideration that human drivers change their behavior when
interacting. Reaction modeling is performed by measuring the temporal evo-
lution of the vehicle state, including in it also a reaction and a deviation
parameter.

Figure represents the differences between the traditional hidden goal
method, which applies only to specific regions of interest, and the reactive
method, which models the group of vehicles in general and their deviation.

A further aspect of human decision-making in a lane-changing applica-
tion is related to risk propensity. In , the authors proposed a decision
model that considered the driver’s perception, reasoning, and emotions. Risk
propensity considers two mental processes: regret biasing and probability
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Figure 4.8: Modeling of regret biasing (a) and probability weighting (b) at a
cognitive level as studied in [258].
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weighting, corresponding to the emotional aspect and cognitive reasoning.
Both functions’ nonlinearity increases proportionally to the emotional bias
and cognitive weighting. The proposed model was tested with a dataset
from a naturalistic driving database. Figure represents the obtained fit-
ted functions without considering regret biasing and probability weighting
(purple line) and with the two terms (green dashed line). Figure 4.8a rep-
resents the regret g-functions, which resulted in being linear, indicating the
regret influence is not evident in all cases. On the other hand, Figure
shows a w-function divided into three intervals; in two of them, the function
overweights the objective probability (dot-dashed line), indicating a general
optimism and bent to take risks.

As said, aside from human decision-making representation, the source of
nonlinearity in the human-machine complex may be related to the dynamics
of the controlled element. If the human subject continuously controls such
devices, this will raise an essential challenge concerning system modeling and
control.

In cooperative teleoperated robotic systems, for instance, many nonlinear
control approaches have been developed in order to deal with non-passive
(and therefore unstable [259]) factors such as the uncertainty of the envi-
ronment, the presence of variable communication delays, kinematics, and
dynamics parametric uncertainty. Such kinds of systems have found vast
applications in healthcare [260], space [261], and exploration in dangerous
environments [262] and disaster scenarios [263]. Even if Linear control ap-
proaches have been successfully developed for robust stability achievement in
the presence of uncertain system dynamics, nonlinear controllers proved to
guarantee good stability and performance through the exploitation of special
properties of nonlinear rigid body dynamics of master and slave manipula-
tors [264].

In [265], nonlinear bilateral control of a teleoperation system with a
flexible-link slave manipulator is performed by designing a robust tip po-
sition tracking controller for the slave manipulator. The desired trajectory
is determined based on the master’s position signal, and a force controller
for the master robot, which should track the environmental force exerted on
the slave manipulator. While [266] proposes a control strategy able to estab-
lish position-position kinematic correspondence between master and slave by
incorporating in the adaptive controller the models of operators, controlled
robots, tools, and environment, as well as their parametric uncertainty. Fur-
ther approaches, as in [267], enlarged this concept by mapping the human
arm stiffness references in a bilateral teleoperation framework, building a
"teleimpedance control”, later extended with a semi-autonomous contact de-
tection strategy in [268]. Moreover, another challenging aspect of bilateral
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teleoperation systems control is related to the presence of communication
time delays, which may cause the system to degrade its performance and
even result in unstable behavior. The time delays should therefore be con-
sidered in the design stage of the controller. In [269], this problem is faced by
considering adaptive neural synchronization control of bilateral teleoperation
systems with backlash-like hysteresis, one of the most important nonlinear-
ities in robots. While in [270], a finite-time synchronization control method
is proposed based on fuzzy approximation of system uncertainties.

Another example of highly nonlinear controlled systems interacting with
an unknown external environment consists in multirotor remote control. Mul-
tirotor applications were carried out in several research activities, with prac-
tical applications like surveillance, photography, video-making, grasp or mo-
tion of an object, or military [271]. The equation of motion of a multirotor
with a mass m and inertia tensor J can be written as:

mx = —mges + fRes
R = RQ
JIQ=—-QxIQ+T. (4.18)

Where f and 7 are the force and torque inputs, x is the multirotor position
with respect to the inertial frame, Q = [pg, @, rp]7 is the angular velocity
vector in the body frame, g is the gravity force, ez = [0,0,1]7 and R is the
transformation matrix from the body to an inertial frame.

The hat superscript indicates the transformation map between a vector
in R3 and a 3 x 3 matrix. The translational dynamics will be:

f f f
m m m

Where ¢, § and ¢ are yaw, pitch and roll respectively; and u, = (cosy, sing cos, + siny, sing)
and wu, = (siny sing cos, — cosy sing) and w, = (cosg cos,)
If v =[1,0,¢]", T, is the Jacobian to convert Q to &, and J, = T,”JT,
the rotational inertia tensor, the rotational dynamics can be expressed with
a Lagrangian formulation as

JUv+Clvvw=r. (4.20)

Where C is the Coriolis matrix. If the roll and pitch angles are small, (4.20))
can be simplified into
. Ty

¢ = :[Xyz'lbgz'5 + &76 = Ixyz(bd.} +

Lix Lyy

. .. T
,¢;::Ixyz¢9-%iﬁi, (4.21)
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Trajectory tracking control for such systems is not accessible due to its
nonlinearity, under-actuation, and highly coupled states. Although simple
linear controllers such as PID or LQR have been successfully proposed in the
past [272H275] for a limited number of non-agile movements, controllers us-
ing feedback linearization, backstepping or geometric control techniques are
more suitable to handle with the nonlinearity of the system. Various types
of Feedback Linearization (FL) techniques were used for multirotor, such as
input-output and state-space linearizations [276] have been used for finding
the rotor’s dynamics linear approximation. For instance, such a linear rela-
tionship can be obtained by differentiating and ¢ in equation (4.21))
until the control input terms are explicitly expressed. Controllers designed
with this kind of procedure, however, will present high-order derivative terms,
which might cause the controller to be less robust for what concerns sensor
noise. To derive the input of the position controller, for example, is
differentiated until the 4th order until the control input term shows up. At-
titude controllers in roll, pitch, and yaw angles can be designed similarly.
These high-order derivative terms cause performance degradation of the con-
troller as a consequence of disturbances such as the model’s uncertainty.
Despite this, feedback linearization showed promising results for finding the
rotor’s dynamics linear approximation. In [277], FL performance were com-
pared with an adaptive sliding mode control technique. While in [278] FL
controller was combined with a Luenberger observer.

However, the rotorcraft nonlinearity cannot be eliminated if a modeling
error is present in feedback linearization. Thus its stability is not guaranteed.
Therefore, backstepping control strategies with sliding mode techniques have
been increasingly used to overcome these problems, associated with sliding
mode techniques in [279-281]. A backstepping controller with sliding mode
techniques is used in [279,[280}282], based on the nonlinear translational
and the rotational simplified . When roll and pitch angles were
high, such as in [283,[284], the Lagrangian formulation was preferred, even
at a higher computational cost. Xian et al. [285] proposed a different ap-
proach in which an energy-based passivity controller controlled a quadrotor
with a suspended payload. Also, neural networks were used in multiagent
trajectory tracking applications, such as in |286], where an online RNN-based
controller enabled the formation of a multiagent system characterized by a
leader-follower structure. Such a control strategy allowed each agent to have
the same output even with a different number of inputs, facilitating the sys-
tem task planning.

Extensive research efforts were also directed through modeling unwanted
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human control behavior in transport systems, particularly to Rotorcraft-
Pilot Coupling (RPC) [287]. For evaluating human-rotorcraft interaction in
aspects such as comfort and handling qualities, some performed modeling
efforts present in literature were directed towards studying the dynamical
behavior of the human body. Understanding such body dynamics, in this
case, the upper body is fundamental to identifying potentially dangerous
nonlinearities in RPC. These approaches vary significantly and can be clas-
sified into two main categories, such as finite element models (FEM); and
multibody dynamics (MBD) or lumped parameter models (LPM).

Lumped parameter models are composed of elementary mechanical sub-
systems, such as lumped masses and viscoelastic elements with linear or non-
linear properties. In the linear case, parameters are relatively easy to identify,
with a low associated computational cost and can be easily tuned to fit the
biomechanical characteristics of a specific subject. However, in LPM where
nonlinear viscoelastic elements are used, the cost of identifying its character-
istics may increase, depending on the applied force or displacement. In [288],
the authors used a piecewise LPM as an analytical tool to perform a prelimi-
nary analysis of vehicle crashworthiness in order to reduce the time required
to assemble and tune FEMs and perform a nonlinear finite element analysis
in crash testing. In the proposed LPM, the spring and damping coefficients
are defined as piecewise linear functions of input displacement and veloc-
ity. Lumped parameters nonlinear models are also present in works such
as [289], in which a one-degree-of-freedom model was applied for analyzing
human body dynamic response during a helicopter landing. In works such
as [290,291], previous state-of-the-art linear models were optimized using
a genetic algorithm to capture the nonlinear effects of passengers’ dynamic
response when subjected to vibrations.

In [292], a multibody model of the upper body was designed by con-
necting a model of the pilot’s arms to a model of the spine. Such a spine
model, as well as the scaling procedures, was used for studying seat-to-head
transmissibility. This coupled spine-arms model can be used to evaluate the
biodynamic response of the human operator in terms of involuntary motion
induced on the control inceptors, including the related nonlinearities.

Finite element models have been successfully used in recent research to
represent human body behavior during an impact, often in relation to in-
jury risk prediction and vehicle safety. The Total Human Model for Safety
(THUMS) is a famous finite element human body model intended for injury
analysis [293]; it has been used in association with a model of a vehicle’s
internal structure, with the purpose of simulating human body kinematics in
response to a large impact in a car crash. The geometries of the structurally
complex human body parts, including the head, torso, ligaments, joints, and
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internal organs, are represented by finite element meshes, and their impact
responses have been studied separately. Moreover, in relation to transport
safety, within the context of the European project "Human model for safety
two” (HUMOS2) [294] human body numerical body models were constructed
in order to create a database able to represent the European population with
high fidelity. Portions of HUMOS2 models have been used in many research
efforts, such as [295] for which thoracic accidents and [296] for head injuries in
motorcycle crashes. Another example of FEM used to provide kinematic and
kinetic data of the human body in a computationally efficient way has been
proposed in [297] by the Global Human Body Models Consortium (GHBMC).

4.6 Final considerations

The presented modeling research efforts of nonlinear dynamics in human-
machine interaction successfully captured many aspects of the human learn-
ing process, information processing, and control action. From the classi-
cal control-theory fashion of dual-loop control to the more recent machine-
learning techniques, many advances have been made in identifying the sources
of nonlinearity in human control behavior and in implementing models able to
transfer such ability to the controlled machines. Modeling and data-driven
techniques were presented in a human-centered way in order to show how
they succeeded in representing different aspects of the human as a controller.
For instance, the decision-making process directed toward achieving an in-
ternal goal is well described by reinforcement learning approaches, while op-
timal control models of the neuromuscular system or biodynamical models
are most useful for nonlinear dynamics deriving from human body actuation
districts or from its coupling with the controlled element. Moreover, data-
driven techniques associated with control systems were analyzed in relation
to nonlinearities that derive from the controlled element dynamics and/or the
external environment. As proved by the discussed man-machine systems, the
discussed algorithms can be combined to increase the level of autonomy and
the usability of machines even in complex scenarios such as connected vehi-
cles, automatic lane changes, teleoperation, or remote control of rotorcraft.
This is done while acting in an environment surrounded by humans, with
consequent potential issues regarding safety and adding unexpected physical
interaction that requires a level of adaptability, which is typical of human be-
ings and constitutes one of the reasons that motivated such modeling efforts.
Despite the successes concerning classical control theory models discussed in
the first sections, modern machine learning frameworks struggle to capture
the physiological context relying upon the human learning process. Neural
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networks and algorithms based on reinforcement learning or optimal control
paradigm still have almost a black-box approach to what concerns this as-
pect. Advances in understanding the human brain are still a challenge that
motivates many research activities.

However, this way of combining different machine learning and model-
based techniques seems to be perfect for our human-robot interaction ap-
plication scenario. Here, we have partial knowledge of the system and the
dynamics involved during a continuous physical interaction. Machine learn-
ing frameworks, such as Artificial Neural Networks, can be combined with
models characterized by an autoregressive part, a moving average, and ex-
ogenous inputs. Their characteristics seem perfect to be used in the presence
of noisy and unstructured data. In the next chapter, we will see how the
use of ANNs and Narmax models can be used to accurately represent human
control behavior when controlling a robot.
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Chapter 5

Narmax Model for Human
Intention Estimation

5.1 Narmax models

Nonlinear Autoregressive models with Moving Average and Exogenous Input
(NARMAX) have been proposed for the first time by Stephen A. Billings
[51] Many state-of-the-art research efforts have been widely used to identify
nonlinear systems with partially unknown features with good results. As may
be deductible from the acronym, NARMAX models derive from the mostly
known linear ARMAX models and their variations like AR, ARX, ARMA,
and ARIMA.

In [298], Billings considers NARMAX as not only the name of a model
but a proper philosophy of nonlinear system identification that consists on
five steps:

e Structure detection: Identify the terms present in the model

e Parameter estimation: Estimate its coefficients

e Model validation: Check eventual errors and biases in the model
e Prediction: Forecast model output in several steps in the future

e Analysis: Analyze the dynamical properties of the system

The first step, Structure detection, constitutes the crucial part of Nonlin-
ear model identification. While in the linear case determining model order
is relatively easy and is often between the first and third order (making the
computations even faster and more efficient), things are far more complicated
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and computationally demanding in the nonlinear case, where the number of
candidate terms can arise easily if we want, for example, to approximate lag
terms with polynomial expansions [299].

Let us consider the experimental setup proposed in Chapter [3] in which
our model has to predict the force actuated by a human subject into the robot
end-effector when an external reference has been applied to the system. If we
indicate the force signal we want to predict as y and the external reference
(or exogenous input) as z, the model would be:

y(t) = F(y(t=1), . ylt=na) a(t=d),... a(t—d=m),e(t=1), .. et-n,))

(5.1)

Where n,, ny, and n. indicate the maximum lag for system output and

input and for noise, respectively, and define the order of the model, while d
indicates an additional transport delay between input and output.

5.1.1 Polynomial Approximation

The nonlinear function f(-) can be approximated using different strategies,
we will focus on them: Polynomial algorithms and Neural Networks. The
first one aims to find a piecewise linear equivalent of the nonlinear func-
tion. The following equation can describe a polynomial Narmax model with
asymptotically stable equilibrium points [300]:
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(5.2)

where ), and all the terms with © indicate constant parameters, and [
is the degree of polynomial nonlinearity. Polynomial algorithms will select
a subset of the terms of equation (5.2, also called regressors, which will
minimize the error between estimated ¢(¢) and real y(¢). Examples of these
kinds of algorithms are the Forward Regression Least Squares (FROLS) [301],
Meta-Model Structure Selection (MetaMSS) [302], Accelerated Orthogonal
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Least Squares (AOLS) [303] and Entropic Regression [304,305]. Most of
them use information theory for order selection and select the best regressors
and least-squares-based algorithms, in the case of FROLS and AOLS, for
parameter estimation. This kind of strategy, as explained in [300], has a
critical aspect in required computational time that can become very high
due to the fact that the possible model structures to be tested are 2. Here
n, is the number of candidate regressors that depends on the maximum lag
n = ng + ny + n. and on the order of the nonlinearity [, that determines the
number of polynomial combinations between all input and output terms. In
particular:

(n+1)!

[n!l!]

For each model regressor, then, it is still necessary to estimate each single
parameter value with the chosen optimization technique. These considera-
tions make it difficult to apply polynomial techniques to the human-robot
system, characterized by a high degree of nonlinearity and impulsive force.

n, =

5.1.2 Neural-Network Approximation

The second strategy is to approximate the f(-) by using an Artificial Neural
Network (ANN). As stated in the universal approximation theorem, “a neural
network with a single hidden layer can accurately approximate any nonlinear
continuous functional.” This consideration makes ANNs the obvious choice
for our scope, even if more complex structures rather than the simple single-
layer one indicated in the theorem, are used nowadays [306]. In mathematical
terms, we have that [307]:

Theorem 1 Let ¢(-) be an arbitrary activation function. Let X C R and
X be compact. The space of continuous functions on X is denoted by C(X).
Then Vf € C(X), Ye > 0: 3n € N, a;5, b;, w; € R, i € {1...n}, j €
{1...m}:

m

(Anf)(l‘l, e ,l’m) = Z wqu(z (lijl’j + bj)

J=1

as an approximation of the function f(-); that is

| f=Anf ll<e

Therefore, The universality property is independent of the chosen acti-
vation function but is a consequence of the multilayer feedforward architec-
ture, as proved by Hornik et al. in [308]. This concept led researchers to
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extend such property to different network structures to gain an advantage in
modeling different kinds of systems and functionals, as in the case of [309],
where the authors starting from the work of Hornik, developed RNNs to map
open-loop dynamical system. In [310], the authors derived an approximation
error bound with explicit prefactor for Sobolev-regular functions using deep
convolutional neural networks (CNNs), while in [311], the approximation
performance have been improved by using a multiresolution approach which
increases network robustness.

5.1.3 Results

Going back to our setup, the first step to do is the preparation of the dataset
in order to correctly feed the network with the correct autoregressive, input,
and error elements. The dataset used for training the network is the same
used in Chapter [3, previously used for linear model identification. All the
signals have been processed considering x and y components and have been
normalized between -1 and 1 before being fed to the network. The consid-
ered input signal was the randomly generated wave square, which was the
reference that human subjects had to follow, while the output signal is, as
said, the generated force.

In each time frame ¢, we ask the network to predict the signal y(t) by
finding the optimal internal connections (represented by the network weights
values) starting from a window of input data which is composed by:

o y(t—1),...,y(t — n,) force samples
o 2(t—d),...,x(t — d— ny) reference signal samples
e c(t—1),...,e(t — n.) noise terms

This window has to change for each sample of the force signal we want
to predict and must be built in both the training, validation, and test sets.
In our model, n, = ny = n. = 10, the window comprises 31 elements.

Noise terms, in particular, have an important role in system modeling.
As seen in the linear case in Chapter [2, the human controller itself intro-
duces noise into the system, to which the Crossover model refers as “remnant
noise.” McRuer used to model such noise as a random process linearly un-
correlated with the control input. Physically speaking, such a process is
related to the error perceived by the human between the reference signal and
perceived feedback and should be treated as an observation noise to add to
the system input; the validity of this assumption was experimentally verified
in [27]. To stick with this important physical aspect of the human controller
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Figure 5.1: Schematic representation of how the proposed Narmax model was
constructed by building an input data window at each time ¢ and using an Artificial
Neural Network to approximate the nonlinear functional element.

that we want to model, the noise terms e(t — 1)...e(t — n.) and reference
signal x(t — d) ... z(t — d — ny), which is our control input, were added. The
resulting terms were used, along with the n, force samples, as input to the
network when building the data window illustrated above.

The final network structure that was chosen is a 4-layer ANN with recti-
fied linear unit (ReLU) activation function, apart from the last layer, which
was set as a linear layer as traditionally done not to restrict the output range
of variation [311]. The network was trained with a learning rate of 0.001 and
mean squared error loss function, which predicted most accurately each time
instant of the y(t) signal. The dataset was split into 50% used for training,
25% for validation, and 25% for testing. During the model training phase,
the time instant of the force signal whose value has to be predicted has been
randomly chosen within the range of indices between [d + ny, L,|, where L,
indicates the sample size of the signal. This process has to be repeated for
each of the three aforementioned subsets, adapting L, size according to the
corresponding indicated percentages.

After the training stage has been completed, to test the model, the force
values y(t) € [d+np, L], have been forecasted this time following a chronolog-
ical order, to correctly reconstruct the force signal during the whole duration
of the experiment. Figure [5.2] shows the resulting de-normalized predicted
force versus the measured one; the brown part represents the portion where
the two signals are overlapped. The figure shows a summary of the dataset
used for training, constituted of 200 elements, 100 for x and 100 for y com-
ponents. The chosen experiment was randomly chosen so that there is 1 for
each subject for both components, so 1 each decade of the dataset. As evi-
dent from the plots, the model is capable of forecasting force samples with
an outstanding degree of accuracy, since the overlapped part is almost the
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entire amount of the two signals, despite the huge variability between the
acquired signals that constitute the dataset in terms of noise and periodicity
of the vectors.

To quantitatively evaluate the model’s performance, Root Mean Squared
Error and R2 score were computed for each predicted signal from the 100
experiments that were used for collecting the dataset. As noticeable, the
model’s good performance are shown by the very low Root Mean Squared
Error, which was preferred to normal Mean Squared Error for its higher
interpretability, being of the same unit of measure of input data (in this case
Newton).

As noticeable from the data shown in Table the RMSE, which as said
shows de-normalized data in Newton, is close to 0. The value of the R2
score, which is a numeric value not constituted by a unit of measure and still
considers normalized data, is close to its maximum value of 1. It is worthy of
a remark on the fact that the R2 score does not have, instead, a lower limit:
a model with bad performance could have as low values as possible from its
physical characteristics! Both indices testify to the really high performance
obtained by the model and its validity.

A concern that may arise from the shown results, is that the model over-
fits the dataset, being so accurate in the approximation of every generated
force in all the noise conditions. If that is true, it would mean that the model
is not generally applicable when varying human subjects and the other ex-
perimental conditions.

To have an answer to this question, in the next Section, we will test the
model generalization capabilities by applying it to a different dataset, with
a different forcing function, and with a different robot with respect to what
had been used here.

Index | RMSE x RMSE y | R2 score x | R2 score y
1 0.472036235 | 0.521664149 | 0.956724633 | 0.960830384
2 0.489941946 | 0.642806454 | 0.960653648 | 0.949716232
3 0.519541718 | 0.554902738 | 0.960189219 | 0.959170756
4 0.601814676 | 0.669788111 | 0.955643017 | 0.961106611
5 0.574182629 | 0.658225902 | 0.96087635 | 0.96252835
6 0.585448684 | 0.627132843 | 0.960482329 | 0.961794969
7 0.530537037 | 0.662696702 | 0.963967534 | 0.963649709
8 0.617680061 | 0.724884097 | 0.964767234 | 0.962247245
9 0.551281783 | 0.699222684 | 0.966718266 | 0.958319885
10 0.540838129 | 0.628847549 | 0.961557462 | 0.962917097
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11

1.001928234

1.632743179

0.960195286

0.946946818

12 0.879766609 | 1.122209997 | 0.954856202 | 0.953832129
13 0.839163153 | 1.111029515 | 0.95914142 | 0.945890859
14 0.773373836 | 1.203074269 | 0.955129589 | 0.951072734
15 0.891532239 | 1.158637026 | 0.949615224 | 0.950984968
16 0.755985785 | 1.084383216 | 0.952572305 | 0.957884578
17 0.685293479 | 0.921445126 | 0.953228398 | 0.954294241
18 0.573845426 | 0.980308637 | 0.950972863 | 0.957289423
19 0.515555599 | 0.853679632 | 0.951384536 | 0.958947792
20 0.732953844 | 1.276626686 | 0.941025365 | 0.937022948
21 0.779908125 | 1.032217524 | 0.957220077 | 0.955973842
22 0.717266276 | 1.013400762 | 0.951455669 | 0.936464505
23 0.659451419 | 0.813392031 | 0.968066462 | 0.960385522
24 0.595282446 | 0.714604865 | 0.948058756 | 0.946671776
25 0.580491582 | 0.689179515 | 0.952205569 | 0.948194036
26 0.637227825 | 0.80138281 | 0.96229403 | 0.963255591
27 0.641417839 | 0.795405533 | 0.965880499 | 0.963530068
28 0.653279451 | 0.820438478 | 0.958745918 | 0.957266842
29 0.696505807 | 0.931492427 | 0.954515885 | 0.97026166
30 0.633404694 | 0.823071262 | 0.960112106 | 0.963946552
31 0.653850802 | 0.638911347 | 0.936389479 | 0.952612566
32 0.527259381 | 0.633462448 | 0.941242301 | 0.946880339
33 0.648364611 | 0.760147021 | 0.9448306 0.9525119

34 0.531802732 | 0.668122088 | 0.954120572 | 0.959334652
35 0.496948157 | 0.959522604 | 0.955091424 | 0.937008427
36 0.469225642 | 0.766567706 | 0.941583529 | 0.951641584
37 0.412226024 | 0.597905458 | 0.958859779 | 0.956849482
38 0.513679866 | 0.541526516 | 0.951304856 | 0.957271993
39 0.488406263 | 0.580186734 | 0.956285987 | 0.957061112
40 0.537667398 | 0.689487665 | 0.953796888 | 0.958131693
41 0.810000726 | 1.001200503 | 0.959480548 | 0.967295193
42 0.816242923 | 1.08466761 | 0.960760813 | 0.967652903
43 0.838387612 | 0.965088842 | 0.967119422 | 0.958562475
44 0.756781692 | 1.113235316 | 0.961284896 | 0.958956991
45 0.909424742 | 1.005840925 | 0.959332263 | 0.963989186
46 0.63409503 | 0.969677432 | 0.957599245 | 0.966572981
47 1.057900284 | 1.351292111 | 0.961301498 | 0.956206088
48 0.71832515 | 0.785362473 | 0.956490612 | 0.963244864

76




49

0.690414144

0.84771881

0.964459701

0.946220406

50 0.613183623 | 0.764978636 | 0.969409659 | 0.966009687
o1 0.742447286 | 0.960810155 | 0.960201052 | 0.956050056
52 0.751854625 | 0.914295651 | 0.957280078 | 0.952400024
23 0.811494761 | 1.238216424 | 0.942534553 | 0.954774985
o4 0.801926757 | 1.147018492 | 0.935714128 | 0.956892106
35 0.800856941 | 1.033023894 | 0.948548094 | 0.955067056
56 0.858715064 | 1.075729024 | 0.939555377 | 0.967784763
o7 0.776043582 | 1.036302229 | 0.963472345 | 0.955151007
28 0.755968542 | 1.033446737 | 0.948050068 | 0.966379937
29 0.949616911 | 1.375363849 | 0.933001818 | 0.962863828
60 1.016029316 | 1.455973209 | 0.938462374 | 0.957735294
61 0.44272718 | 0.451795379 | 0.935553434 | 0.969999585
62 0.502331117 | 0.493711302 | 0.936199774 | 0.958587934
63 0.542155534 | 0.603473038 | 0.927183852 | 0.946375419
64 0.490480574 | 0.555177238 | 0.951736575 | 0.954753754
65 0.466246555 | 0.54974428 | 0.945880337 | 0.956059571
66 0.438220919 | 0.468733171 | 0.947413566 | 0.956953769
67 0.423949319 | 0.480391149 | 0.950661121 | 0.954565105
68 0.48883597 | 0.535027873 | 0.931848345 | 0.956498211
69 0.481457007 | 0.57267078 | 0.947277832 | 0.951858001
70 0.52182963 | 0.618782586 | 0.938644815 | 0.938375534
71 0.491386615 | 0.607104793 | 0.937202986 | 0.945512594
72 0.463411188 | 0.597224165 | 0.951821046 | 0.947026245
73 0.532284003 | 0.648179002 | 0.95797053 | 0.955360121
4 0.53142484 | 0.649036079 | 0.954641615 | 0.958479429
5 0.585957896 | 0.734377326 | 0.961540867 | 0.961957569
76 0.601249499 | 0.842698817 | 0.954111628 | 0.953575918
77 0.619303016 | 0.637448297 | 0.966617421 | 0.934785461
78 0.687656891 | 0.743184784 | 0.961381829 | 0.927876761
79 0.592401816 | 0.658418071 | 0.953752515 | 0.946422712
80 0.628193068 | 0.664767329 | 0.942279814 | 0.936807898
81 0.742072066 | 1.083717746 | 0.949598424 | 0.957108816
82 0.850080368 | 1.206421153 | 0.921889782 | 0.94543225

83 0.922698646 | 1.220767547 | 0.918371174 | 0.952035447
84 0.894367366 | 1.402564313 | 0.917593521 | 0.94120114

85 1.133547374 | 1.820029435 | 0.948960106 | 0.94123321

86 0.938934707 | 1.359940352 | 0.917720283 | 0.934916194
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87 1.060884229 | 1.73831993 | 0.910323347 | 0.940331842
88 1.14246511 | 1.507356616 | 0.917072358 | 0.940996278
89 0.90528934 | 1.223504068 | 0.92624921 | 0.946063163
90 0.955415892 | 1.14667481 | 0.941171141 | 0.937761062
91 0.390547613 | 0.410679524 | 0.954216646 | 0.95810864
92 0.415624598 | 0.427568629 | 0.956806357 | 0.948533138
93 0.486593196 | 0.409988808 | 0.935246045 | 0.942162937
94 0.458686577 | 0.427382061 | 0.945552973 | 0.948642137
95 0.440944996 | 0.411954816 | 0.940034109 | 0.951950269
96 0.439976922 | 0.348811568 | 0.949425666 | 0.96367613
97 0.456322357 | 0.407657337 | 0.948594671 | 0.954207793
98 0.429119011 | 0.34507542 | 0.949096734 | 0.9616144

99 0.465654266 | 0.395928492 | 0.943786995 | 0.952985548
100 0.450937512 | 0.415887569 | 0.936107923 | 0.948991599
Table 5.1: Root mean square error (in Newton) and R2 Score considering the
predicted versus the measured human force. RMSE index, being expressed with
the same unit of measure of input data, considers de-normalized values. R2 score
is a numeric value with the upper bound of 1 and still uses normalized values.
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Figure 5.2: Measured vs. predicted force values of both x and y components.
Chosen experiments are a summary of 20 experiments extracted (1 every 10) from
the original dataset of 100 experiments.
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Figure 5.3: Comau NS16 industrial robot

5.2 Human intention estimation

5.2.1 Experimental Setup

The human model described in Section .1l was used to estimate human
intention in a collaborative manipulation task, whose setup was similar to
the one proposed in Chapter [3] The experimental setup has some differences
with respect to what was proposed for the first time in the linear case and
then used for building the nonlinear model in the previous section, where the
model was built offline starting from the collected experimental data.

The model has now been tested online in a similar setup but with a
different robot and different randomly generated reference signals.

In particular, a Comau nsl6 robotic arm was chosen. This was done
for two main reasons; the first is the weight difference: ns16 weighs 335 Kg
against the 20 Kg of the UR5 robotic arm previously used. The difference
in the mass of the robot is reflected in the inertia that the arm has during a
motion; when a human operator is performing a manipulation task manually
guiding the nsl16 robot, suddenly stopping its movement when the target
point is reached requires more effort respect when URJS is used. This aspect
increases the importance of the proposed human intention estimation frame-
work to help the robot anticipate its stop or start movement according to
what the operator wants.

The second reason is also related to the added value of the model. Comau
robot, unlike the Universal Robot, is not built to be collaborative but is
an industrial robotic platform imagined to perform assembly tasks, lifting
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Figure 5.4: Schematic representation of the hardware and software components
constituting the robot control logic.

medium-sized payloads (its payload limit is 16 Kg) in an isolated workspace.
This means that, since the manufacturer did not give the robot collaborative
capabilities in the first place, they can be reached, thanks to the proposed
framework, by increasing its intelligence and adaptability.

Figure represents the control logic structure of all the robotic plat-
form’s components. The robot controller communicates via Power Line with
the arm on one side and via MQTT protocol with the PC client on the other.
PC client is equipped with ROS Melodic software framework, which proved
to be useful for sensor fusion and robot control with high-level architecture
in many applications and ROS Control library. In the ROS laptop, two soft-
ware components were implemented to allow communication with the robot
and its control with real-time performance:

e robot hardware interface Responsible for managing the communication
between the robot and ROS Control.

e robot ROS controller where the proper high-level control logic is present.

The robot hardware interface had the duty of managing outbound com-
munication with the robot, implemented in the write method, and inbound
communication, which gives robot feedback to the high-level controller, present
in the read method. On one side, as said, the robot communicates with the
MQTT protocol; on the other, ROS Control frameworks work with shared
memory variables. For this reason, within the software component of the
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hardware interface, a C++ client MQTT library was implemented for con-
verting the content of memory cells (message payload) into JSON messages,
which were sent to the robot through Mosquitto MQTT broker and vice-
versa.

The robot controller, similar to what was described in Chapter [3] con-
tained the high-level admittance controller, which decided robot behavior
during physical interaction with the human subject. Again, the Robotiq
FT300 force-torque sensor was mounted in the robot end-effector to read the
external force applied by the human. Once known the force F.,;, the position
error Ax, and cartesian velocity x vectors, the acceleration commanded to
the robot by the controller will be:

% = Lyiny(Fer — KAx — DX) (5.3)

Where I, represents the pseudo-inverse of the inertia matrix, while K
and D are the stiffness and damping matrices, respectively. Since the Comau
robot can be controlled in position only, the computed acceleration x has to
be integrated twice, before being sent.

To avoid numerical errors due to the excessive number of computations
and numerical approximation of data, before being processed by equation
, a deadband was applied to the external force vector, considering as
null all the forces between -2 and 2 Newton. Moreover, for what concerns
the velocity x, the following exponential filter was applied:

Xf = CX + (1 — C)Xf (54)

Where c is a constant parameter that has been set to 0.8.

However, the admittance controller and the necessary data pre-processing
are not the main peculiarities of this work. The main difference with re-
spect to the previously proposed controller consists of an additional software
component that communicates with the robot controller: the Python script
containing the human model predictor.

The human model described in the first section has been loaded into a
ROS node using the Pickle Python library. First, the force and the actual
position vectors have been acquired from the FT sensor and the robot, re-
spectively. Both signals have been stored in queues of a fixed size of 50
samples, a trade-off between having queues as short as possible and having
a safety margin of at least ten samples in case of failure from one of the two
considered sources of information. Secondly, both queues have been normal-
ized between -1 and 1, necessary to be processed by the model, which has
been trained with normalized values. Then both queues were used to build
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the input data window, as explained in the first section, and the model fore-
casted the next x and y force components. Finally, the predicted values have
been de-normalized and sent to the main admittance controller.

On its side, the controller needs a position value to consider as the next
reference position and anticipate human motion. For this reason, before being
used, the predicted human force was converted into velocity by multiplying
its value by a factor of 1 , which corresponds to the reciprocal of a virtual
damping constant d,,, and then integrated into the final position value.

Even though the application scenario in which this work is focused is the
continuous physical interaction and a proper trajectory planner is not needed,
a state-machine motion planning stage was necessary to avoid unstable and
dangerous behavior:

e State 0: The current reference is the starting position, and the motion
is disabled. A new reference is received, and the controller checks if
such reference is between an interval comprised between 1 mm and 0.3
m. If such a condition is verified, the motion is enabled.

e State 1: motion is enabled; the robot’s goal is to minimize the position
error between actual and reference positions with a speed depending
on the stiffness value set to the controller.

e State 2: The new goal position has been reached, the current position
is set as the new starting position, and motion is disabled.

As said, the experimental setup was similar to the one described in the
second Chapter, with a different reference signal for each experiment. Again,
the reference signal was generated as a sequence of points randomly chosen
with x and y components between [—0.1,0.1] meters from the starting posi-
tion, which was set as a reference point in the sequence between every two
random points. This way a complete step is performed for every generated
point; the resulting forcing reference function is a square wave consisting of
a sequence of steps.

Human subjects were asked to manually guide the robot towards the next
reference position, displayed as a yellow dot on a screen showing the x-y plane
also containing the robot model. The resulting experimental setup is shown
in Figure [5.5]

The model, as said, was used to forecast the next human force online.
For this reason, a fast computational time is required, so both the human
estimator node and the ROS robot controller node (using the same nomen-
clature indicated in Figure were synchronized to run with a loop period
of 0.00125s, which corresponds with good approximation to 800H z.
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Figure 5.5: Experimental setup with a human subject performing a manual
guidance task with the robot, following the virtual reference displayed on a screen.
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In some experiments, the state machine, which converted the predicted
force to a position reference for the robot, was used; in others, it was not.

5.2.2 Results

The obtained results in the case in which only the admittance controller was
used are shown in Figure [5.6, while Figure shows the results observed
when the forecasted force was converted first to a velocity, and then to a po-
sition reference which was sent to the robot using the state-machine approach
described above. Below each force plot is also shown the correspondent po-
sition tracking error, one for each component.

In all the plots, the first rows, showing two superimposed vectors, repre-
sent the force’s x and y components, respectively. The blue curve represents
the measured force acquired by the FT300 force sensor, while the orange
curve is the force forecasted by the model.

The first observable thing is that all the force curves present an initial
temporal shift, which in some cases is of 3—5s. Going on with the experiment,
the time delay between the two force signals kept decreasing until it became
negligible in the last ten seconds of the experiments. This happens due to
the fact that the two queues used as input windows from the model were
initialized with null values in all their elements at the beginning of each
experiment. This caused a “temporal offset” since the model needed some
time to fill its two queues of 50 samples each with the real measured values.
This requires 0.0625s only to fill the queues and more time to reflect this
change in the model output, which is obviously zero at the beginning.

Despite this, the signal produced by the model accurately reflects the
measured force even in the first “tuning part” of the experiments where the
time delay was considerable and kept being high until the last part, in which
the two signals are almost superimposed.

Another consideration is that in the majority of cases, the robot ROS
controller failed to distinguish between unwanted external contact, which
has to be managed in a compliant way according to the admittance control
law of equation (5.3)), and force produced by the human subject, which has
to be converted to a position reference as quickly as possible. The state-
machine algorithm and the model alone appear insufficient to perform such
a complex task.

However, when the human reference was correctly recognized, such as in
Figure a — d, and in part of Figure [5.7]¢ — [, the advantages in terms of
performance are evident. In fact, the force signals present only the first peak,
after which the robot reaches the position desired by the human operator;
the successive noisy part of the force signal, which was observable in the
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previously used data, is not present anymore.

Also the position tracking error indicates a visible improvement, decreas-
ing from over 0.1m present in other cases to the maximum of 0.42m observ-
able in Figure ¢ and the 0.29m in d. Even the central part of Figure
k and [, where the characteristic impulsive behavior is noticeable, confirms

this consideration.
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Figure 5.6: Measured vs. predicted force values (first rows) and position tracking
error (second rows) of both x (first columns) and y (second columns) components
for each experiment. Differently from what was previously done, force value is now
forecasted online.
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Figure 5.7: Measured vs. predicted force values (first rows) and position tracking
error (second rows) of both x (first columns) and y components (second columns)
for each experiment, using the state-machine approach to convert it to a position
reference.
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Chapter 6

Control Delay Estimation in
Human-Robot Interaction

As mentioned in Section [5.1], complex impulsive and highly nonlinear dynam-
ics observable in human-robot interaction struggle to be completely repre-
sented in all its aspects by techniques assuming to approximate the system to
known simple linear equivalents, such as in the case of the Crossover model
experimentally studied in detail in Section [3.2] For this reason, the use of
a more complex technique, such as Narmax models, which are able to deal
with unknown dynamics, helped to increase the level of the model’s accuracy.

However, in cases where the system is partially known, its complexity can
be reduced with different strategies. In the next chapter, the use of Peak-to-
Peak Dynamics for this scope will be explored, while here we will see how the
knowledge of part of the system can help to extract from raw experimental
data useful information which instead would require more complicated and
time-demanding techniques.

The example will be, once again, the time delay. As we saw in chapter
estimating time delay, considering different subjects can require a certain
effort. In the proposed modeling technique, in fact, it was necessary to
perform preliminary data processing to obtain the derivative of the position
error useful to approximate the reaction time heuristically; then the use of
identification techniques to optimize the model’s parameters so that it would
be able to simulate the human-machine system’s response.

Now, having a reliable model of the human response only, producing an
output force signal, which is the input of the robot control law expressed in
equation , the knowledge of the controlled element’s dynamics will allow
us to obtain all the system’s parameters in a fast and equally reliable way:.

In order to better investigate the control delay of the model in the context
of human-robot interaction, the transport delay was considered as the time
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Figure 6.1: Schematic representation of the delay estimation algorithm.

lag between the instant in which the human subject receives the stimulus
from the forcing function and generates a force and the instant in which
the robot receives such force. So, if we consider a simple block scheme of
the system in which human and robot elements are sequentially connected,
such as in the case of the linear CO model of Chapter [2| we ideally are now
between the two blocks.

First of all, we have to estimate the robot transfer function. In our
collaborative manipulation task, robot dynamics can be approximated as a
second-order transfer function with a gain k, a natural frequency w,, and
damping ratio e:

k

s2 + 2ew, s + w?

F(s) =

As shown in Figurel6.1], it is necessary to extract the frequency and damp-
ing parameter values from the human output y(s) to build the robot transfer
function. To do so, the force signals have been segmented into sections of
5 seconds duration each. For each window of signal, the oscillation period
T was identified as the ratio between the window duration and number of
oscillations, then

(6.1)

T
Wy = 2—.

T

Knowing the natural frequency, the € parameter was derived from the settling
time formula:

3.9
ls = -
€Wy,
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where 7 = i in the system time constant and ¢, is the settiling time ap-

proximated after 3.97.

Once the transfer function F(s) of the robot controller is built, its output
signal Y (s) can be expressed as Y (s) = F(s)U(s), where the input signal
U(s) is:

1 1 —s0
U(s) = T e (6.2)

Here, 0 represents the delay itself. A 4th-order Padé polynomial can well
approximate the exponential part of the function. This way, being the input
of the robot function directly calculated from the delay #, and the robot func-
tion itself dependent only on the gain k, the optimal k, and # parameters can
be estimated by an iterative algorithm that minimizes the root mean squared
error between the simulated Y (s) signal and the output of the human model
y(s). This final stage is represented in Figure |6.1{ by the error minimization
block and the subsequent loop. In other words, this process is equivalent to
anticipating the robot model’s output until it coincides with an acceptable
degree of accuracy with the output of the human model.

The results are shown in Table[6.Il It can be noticed that the oscillations
of optimal parameters value between each experiment are almost negligible
for the gain k£ and small for the time delay 6, which is distributed around the
value of 0.3 seconds.

Index | Period | Epsilon | Omega | Gain | Delay | RMSE
1 0.1555 | 0.0193 52.181 2.5 0.298 | 2.2475

0.1296 | 0.0161 56.634 2.5 0.29 2.4750

3 0.1334 | 0.0166 53.437 2.5 0.278 | 2.4905

4 0.1548 | 0.0192 51.724 2.4 0.296 | 3.1595

5 0.1517 | 0.0188 51.953 2.5 0.267 | 3.0525

6 0.1546 | 0.0192 50.468 2.5 0.287 | 2.9547

7

8

9

0.1658 | 0.0206 49.669 24 0.286 | 2.9653
0.1636 | 0.0203 52.866 2.5 0.29 3.3834
0.1519 | 0.0189 51.839 24 0.281 | 3.2193
10 0.1551 0.0193 53.209 2.5 0.283 | 2.9257
11 0.1450 | 0.0180 52.181 2.6 0.325 | 5.3826
12 0.1217 | 0.0151 57.662 2.5 0.327 | 4.6006
13 0.1194 | 0.0148 57.433 2.5 0.334 | 4.3815
14 0.1155 | 0.0143 60.402 2.5 0.326 | 4.5168
15 0.1182 | 0.0147 58.004 2.5 0.326 | 4.4452
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16 0.1098 | 0.0136 60.174 2.5 0.326 | 3.9863
17 0.1268 | 0.0158 54.921 2.5 0.338 | 3.5094
18 0.1253 | 0.0156 54.579 2.5 0.327 | 3.6054
19 0.1046 | 0.0130 62.229 2.5 0.306 | 3.2054
20 0.2161 | 0.0268 56.977 2.5 0.321 | 3.8185
21 0.1010 | 0.0125 66.111 2.7 0.335 | 3.5022
22 0.1026 | 0.0127 64.513 2.6 0.326 | 3.1613
23 0.1028 | 0.0128 64.513 2.6 0.327 | 3.4248
24 0.1106 | 0.0137 61.087 2.5 0.315 | 2.6977
25 0.1262 | 0.0157 58.575 2.5 0.321 | 2.6062
26 0.1054 | 0.0131 63.599 2.5 0.32 3.4739
27 0.1202 | 0.0149 59.032 2.5 0.313 | 3.7603
28 0.1154 | 0.0143 58.804 2.5 0.299 | 3.6272
29 0.1129 | 0.0140 60.174 2.5 0.324 | 4.1181
30 0.1161 | 0.0144 58.804 2.5 0.296 | 3.5908
31 0.1232 | 0.0153 57.890 2.6 0.315 | 2.5276
32 0.1428 | 0.0177 53.780 2.5 0.308 | 2.2940
33 0.1294 | 0.0161 57.662 2.5 0.3 2.9136
34 0.1425 | 0.0177 51.839 2.5 0.321 | 2.8352
35 0.1504 | 0.0187 50.240 2.5 0.297 | 3.0548
36 0.1676 | 0.0208 53.437 2.5 0.336 | 2.7918
37 0.1377 | 0.0171 54.465 2.5 0.311 | 2.3276
38 0.1938 | 0.0241 50.925 2.5 0.301 | 2.1996
39 0.2804 | 0.0348 52.524 2.5 0.32 2.3290
40 0.1643 | 0.0204 50.583 2.5 0.296 | 2.9647
41 0.1232 | 0.0153 95.378 2.5 0.352 | 4.2927
42 0.1188 | 0.0148 56.177 2.5 0.308 | 4.4177
43 0.1214 | 0.0151 595.721 2.5 0.332 | 4.5774
44 0.1270 | 0.0158 56.063 2.5 0.314 | 4.5013
45 0.1338 | 0.0166 51.153 2.5 0.306 | 4.8120
46 0.1249 | 0.0155 55.607 2.6 0.311 | 3.9243
47 0.1307 | 0.0162 93.951 2.5 0.321 | 5.8130
48 0.1181 | 0.0147 57.548 2.5 0.312 | 3.2490
49 0.1455 | 0.0181 49.441 2.5 0.329 | 3.8370
50 0.1197 | 0.0149 97.433 2.5 0.305 | 3.5187
51 0.1177 | 0.0146 59.375 2.5 0.309 | 3.8801
52 0.1200 | 0.0149 57.890 2.5 0.314 | 3.6323
53 0.1228 | 0.0153 55.721 2.5 0.311 | 4.4842
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54 0.1213 | 0.0151 58.918 2.5 0.313 | 4.2957
55 0.3149 | 0.0391 49.212 24 0.338 | 4.2891
56 0.1286 | 0.0160 54.807 2.5 0.32 4.5250
57 0.1211 0.0150 57.890 2.5 0.312 | 4.1196
o8 0.1240 | 0.0154 53.894 2.5 0.323 | 4.0612
59 0.1312 | 0.0163 53.437 2.5 0.313 | 5.2791
60 0.1283 | 0.0159 58.918 2.5 0.311 | 5.4367
61 0.1356 | 0.0168 55.264 2.6 0.307 | 1.8006
62 0.1333 | 0.0166 56.292 2.7 0.309 | 1.7296
63 0.1204 | 0.0150 59.603 2.6 0.312 | 1.9298
64 0.1324 | 0.0165 55.264 2.6 0.298 | 2.0855
65 0.1266 | 0.0157 54.465 2.6 0.316 | 1.9340
66 0.1326 | 0.0165 56.063 2.6 0.314 | 1.7050
67 0.1574 | 0.0195 49.212 2.6 0.304 | 1.8004
68 0.1215 | 0.0151 57.890 2.6 0.31 1.9447
69 0.1150 | 0.0143 62.115 2.6 0.31 1.9713
70 0.1224 | 0.0152 56.977 2.6 0.304 | 1.9737
71 0.1295 | 0.0161 54.465 2.6 0.317 | 2.1282
72 0.1371 0.0170 52.980 2.6 0.323 | 2.0923
73 0.1326 | 0.0165 55.264 2.5 0.321 | 2.5884
74 0.1397 | 0.0174 53.894 2.5 0.311 | 2.6593
75 0.1443 | 0.0179 52.295 2.5 0.307 | 3.2107
76 0.1227 | 0.0152 56.748 2.5 0.295 | 3.3325
7 0.1312 | 0.0163 52.866 2.5 0.324 | 2.8992
78 0.1250 | 0.0155 56.977 2.5 0.322 | 2.9160
79 0.1382 | 0.0172 50.240 2.5 0.308 | 2.7119
30 0.1271 0.0158 55.835 2.5 0.312 | 2.4921
81 0.3345 | 0.0415 52.752 24 0.29 4.1356
82 0.1163 | 0.0144 59.831 24 0.293 | 4.1216
83 0.1165 | 0.0145 59.260 24 0.292 | 4.4143
84 0.1121 0.0139 61.430 24 0.29 4.4727
85 0.1109 | 0.0138 62.115 2.5 0.282 | 5.8097
86 0.1116 | 0.0139 58.918 24 0.296 | 4.3111
87 0.1170 | 0.0145 58.233 2.3 0.275 | 5.9275
88 0.1149 | 0.0143 62.914 24 0.267 | 5.3416
89 0.1123 | 0.0140 61.658 24 0.281 | 4.5463
90 0.1169 | 0.0145 60.288 24 0.282 | 4.4289
91 0.1315 | 0.0163 58.918 2.7 0.33 1.4029
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92 0.1324 0.0164 56.177 2.7 0.33 1.5262
93 0.1239 0.0154 58.119 2.7 0.341 1.3392
94 0.1267 0.0157 54.807 2.7 0.32 1.4988
95 0.1134 0.0141 60.060 2.7 0.328 1.3432
96 0.1333 0.0166 55.721 2.7 0.327 1.3807
97 0.1380 0.0171 51.839 2.7 0.329 1.4723
98 0.1595 0.0198 49.327 2.7 0.326 1.3727
99 0.1752 0.0218 48.756 2.7 0.315 1.4545
100 0.1438 0.0179 50.925 2.7 0.322 1.4086
Table 6.1: Identified parameters for the controlled element’s transfer function
and delay estimation.
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Chapter 7

Peak-to-Peak Dynamics

7.1 Peak dynamics in complex systems

A continuous system is said to have Peak-to-peak dynamics (PPD) if we can
determine the value of its next peak starting from the values of the past m
peaks, where m is a finite number called “memory.” In the presence of peak-
to-peak dynamics, the system can be described by reduced order models,
gaining an advantage in computational time.

PPD property was pointed out for the first time by Lorenz in his famous
model of forced dissipative nonperiodic flow [312]. Lorenz discovered that,
given a chaotic system producing an output y(t), it will exist a set:

Sppp = (Yk, Yk—1) (7.1)

called “Peak-to-Peak-Plot” (PPP), which maps the pairs of consecutive
peaks in the feature space. Moreover, Lorenz discovered that the blob of
points of these peak pairs in the feature space can be approximated with a
high degree of accuracy by one or more curves in the relevant plane. This
property is strictly related to the geometrical characteristics of the chaotic
attractor of the system, which has to be nearly two-dimensional [313].

Since Lorenz’s first description of this property, systems with PPD have
been studied in many fields and formalized more in detail. As explained by
Candaten et al. in [52], a system is said to present PPD when:

Yi+1 = Y(yiu cee )yi—m—l-l) (7-2)

Where m is the “memory” number defined above. When the memory factor
is 1, PPD is said to be “simple”; in all other cases it is “complex.”

This means that when PPD is present, the occurrence of the next peak of
a system, which may be potentially constituted by a considerable number of
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differential equations, can now be obtained by usually at most two previous
peaks, obtaining a reduced-order model.

When PPD is complex, the prediction of the next peak can’t be obtained
only from the last peak; in this case, extra information is needed. To answer
this question, Candaten et al. introduced the concept of “pointer” x; €
1,2, ..., k, which indicates the input states x; that can influence y;; value.
If we add this new consideration to the previous PPD definition, we obtain
the so-called “peak-to-peak canonical form”:

Yir1 =Y (yi, ;)

Where A* is a function which is piecewise constant with respect to y;.

The canonical form equation of PPD tells us that the system describing
the dynamics of the peaks is only slightly more complex than a first-order
discrete-time system but definitely less complex than a second-order one.
On the other hand, it is known that in a generic single-output nth-order
system, n samples of the output variable are equivalent to a single sample
of the n-dimensional state vector [314]. The implication of this is that as
said, the knowledge of a single peak y; can’t be considered, generally speak-
ing, sufficient to forecast the peak y;11. To do so, it is needed at least the
knowledge of (y;—1,y;) (m = 2 in the first equation). Such consideration is
restricted to the dynamics within the system’s attractor, i.e., involving the
peaks yi1, Yi, Yit1-

PPD has been successfully applied to state space models with piecewise
linearized functional [315], Rosenzweig-MacArthur prey-predator model [52]
and prey-predator model applied to dynastic cycles [316}317].

In [318], a parameter estimation method for chaotic systems based on
PPD is proposed. The method consists on finding the best match between the
aprioristic continuous-time model, the 1-D map generated with a parameter-
dependency, and the 1-D map derived from the data.

This shows how studying the presence of PPD in a system can be useful for
deriving methods and modeling techniques to estimate parameters from data
or constructing control methods, even in complex scenarios characterized by
chaotic oscillations [319].

7.2 Peak forecasting in Narmax models

In order to verify the presence of PPD in our system, the model was re-
trained to predict the output signal only in correspondence with its peaks.
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First, the dataset was analyzed to find automatically only the highest peak,
both positive and negative: each force signal was rectified, and the peaks
were identified with a simple iterative algorithm able to find local maxima.

First of all, for the sake of simplicity, the dataset was slightly modified to
let the model work with one signal each time. To do so, a new “flattened”
dataset was created by listing the x and y components of the original dataset
used previously.

The new dataset, which now has 200 elements, was iteratively processed
to find peak values and their indices. Two thresholds have been set to exclude
lower local peaks: the first to put a lower limit on the sample distance between
peaks and the second for setting their minimum amplitude to 10 Newton.

Due to the system’s complexity, simple PPD is not expected; it is there-
fore necessary to consider the aforementioned vector of input states, which
helps the system forecast the next peak. The starting structure we are con-
sidering is the Narmax model defined in chapter [5 which already considers
input states x for its own structure.

Therefore, with reference to the Narmax model scheme depicted in Figure
the input data window to use for the model to forecast the y; peak is
now constituted of

(Yic1s s Yienas Ticd + €21, -« s Tid—p, + €in,) -

Here, the inputs z;_q...%;_4_n, are summed to the noise elements before
being fed to the model, as explained in Chapter [5], while y;_1, ... y;—,, are the
corresponding model’s outputs. As expected, the model order was reduced
from 10 to 5, and the computational time required for processing each epoch
during the training phase has been reduced.

The obtained results are shown in Figure [7.1], which similarly to what
was done in chapter [o| is a summary of 1 element extracted from each 10
(so that all the participating subjects are represented at least once). The
predicted peak value is marked with a cross, while ground truth is depicted
with a circle.

It is noticeable that, despite the reduced model’s order, which now uses
only five samples to forecast the next peak, the accuracy of the model’s
predictions is still high, as testified numerically in Table [7.1, which shows
RMSE and R2 scores for all the dataset elements. Again, RMSE values are
de-normalized raw data in Newton, while the R2 score is a pure number with-
out a unit of measure, which considers normalized data and has a maximum
value of 1 but no minimum value. The model accuracy is not the same as
the one obtained by the complete order model; this is evident by looking at
both indices, but the difference is not significant in most cases if we consider
that the model order has been halved.
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Index

RMSE

R2 score

—_

0.788339991

0.984102289

2 0.725375491 | 0.993396867
3 1.079683635 | 0.986859713
4 1.609704872 | 0.982254959
bt 1.08281791 | 0.991408623
6 1.008284119 | 0.988558621
7 0.931611907 | 0.99322937
8 1.728268578 | 0.985502424
9 1.018048423 | 0.994210846
10 1.003195685 | 0.990444132
11 1.459309264 | 0.985108439
12 2.363259029 | 0.972155156
13 1.508443645 | 0.989092005
14 1.494334458 | 0.982399077
15 2.064005666 | 0.9764583
16 1.447664974 | 0.981804595
17 1.535668639 | 0.983054394
18 1.33286821 | 0.977115116
19 1.178677982 | 0.980116781
20 2.201940923 | 0.972528222
21 1.562160761 | 0.979179375
22 1.082219691 | 0.984050921
23 0.984120028 | 0.990432938
24 1.232267544 | 0.95421644
25 0.900772997 | 0.98501785
26 1.623998854 | 0.979499231
27 1.715041214 | 0.983190894
28 1.465886765 | 0.978817114
29 1.788331704 | 0.983938895
30 1.67177289 | 0.976332122
31 0.837577763 | 0.989210803
32 0.74601141 | 0.986216124
33 1.186428466 | 0.981827996
34 1.237821331 | 0.972808293
35 1.355472768 | 0.975913031
36 1.297130116 | 0.967902326
37 1.522094272 | 0.975370036
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38

1.383624688

0.972180932

39 1.010817197 | 0.988343303
40 1.00870708 | 0.988077678
41 1.659605218 | 0.979847703
42 1.520351736 | 0.988210014
43 1.529860854 | 0.990129081
44 1.841965508 | 0.986852834
45 2.689196992 | 0.981592561
46 1.679639479 | 0.980152297
47 2.975631008 | 0.986071534
48 1.504156687 | 0.852564616
49 1.381148568 | 0.983825904
20 1.58623922 | 0.985105352
o1 2.157918914 | 0.9754759

92 2.61490871 | 0.971331842
23 2.836532672 | 0.96159056
o4 1.937992672 | 0.960898201
95 1.533815737 | 0.987320403
26 2.53052834 | 0.967247676
o7 1.415935605 | 0.983044513
o8 1.829277589 | 0.967035857
99 2.341216934 | 0.966440844
60 2.460776101 | 0.977637881
61 0.757814533 | 0.985042217
62 1.091056101 | 0.973323797
63 1.14141269 | 0.948349373
64 0.974553309 | 0.986800137
65 1.253143445 | 0.96020847
66 0.929401379 | 0.978523722
67 0.862626962 | 0.983112412
68 1.049272752 | 0.954620193
69 1.08079809 | 0.97823663
70 0.968355499 | 0.964750538
71 0.718978771 | 0.987028876
72 0.710409281 | 0.990405616
73 1.450555337 | 0.973428614
74 1.120832433 | 0.986586709
75 1.452150649 | 0.988459512
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76 1.296102417 | 0.986753456
77 1.471494369 | 0.987067883
78 1.464810797 | 0.988061197
79 1.351577868 | 0.986105979
80 1.528646248 | 0.966779776
81 2.285519768 | 0.978410232
82 2.03922869 | 0.979159903
83 2.545457207 | 0.969702104
84 1.95652686 | 0.966975999
85 2.744755774 | 0.969720866
86 3.303986123 | 0.948482713
87 3.439728692 | 0.939132387
88 4.151723825 | 0.966321736
89 2.258075221 | 0.973300637
90 2.255182412 | 0.989172831
91 0.971004542 | 0.960111735
92 0.862135661 | 0.979907123
93 0.816984419 | 0.962556275
94 0.837133309 | 0.977655702
95 0.752242931 | 0.97321827
96 1.112011206 | 0.919645687
97 0.921000959 | 0.957066871
98 0.921810967 | 0.956699177
99 0.737493315 | 0.98718053
100 1.06874344 | 0.948608385
101 1.13996848 | 0.974152566
102 | 1.641845252 | 0.977262103
103 | 1.135011829 | 0.990018743
104 | 1.620401248 | 0.987409852
105 | 1.753576499 | 0.98268228
106 | 1.647318109 | 0.983117082
107 1.50197268 | 0.989466314
108 | 1.459769153 | 0.991593147
109 | 1.806381987 | 0.98759626
110 2.01952643 | 0.955048411
111 | 4.815407612 | 0.973012232
112 | 2.340010225 | 0.983713935
113 | 3.092741323 | 0.96563548
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114

2.692527757

0.986940272

115 | 2.238865373 | 0.979425785
116 | 1.874865709 | 0.987931003
117 | 2.418547449 | 0.969258482
118 | 2.071027145 | 0.984671081
119 | 1.774527604 | 0.98353061

120 | 3.841984175 | 0.979696259
121 1.915991022 | 0.935322235
122 | 1.863168099 | 0.982459119
123 | 1.222474116 | 0.988615719
124 | 1.417796029 | 0.972952924
125 1.19244136 | 0.980851094
126 | 1.810652062 | 0.976067762
127 | 1.364983567 | 0.990800968
128 | 1.949633316 | 0.979571538
129 | 2.069876918 | 0.983577529
130 | 1.592419362 | 0.987348357
131 1.146598459 | 0.951497941
132 | 1.414019224 | 0.969827181
133 | 1.247394212 | 0.991370042
134 | 1.241090754 | 0.988778735
135 2.24550043 | 0.980680135
136 | 1.444770464 | 0.98218391

137 | 1.428562051 | 0.979813778
138 | 1.370777508 | 0.982038859
139 | 1.035363207 | 0.992980075
140 | 1.222805204 | 0.990162584
141 | 2.224625371 | 0.968883479
142 | 2.054135658 | 0.987936138
143 1.96443072 | 0.986842866
144 2.54560456 | 0.988778346
145 | 2.298085647 | 0.978966382
146 | 1.911381202 | 0.982550392
147 | 3.289867689 | 0.990561465
148 | 1.754870473 | 0.973634474
149 | 1.584504532 | 0.982275816
150 | 1.764032442 | 0.987473683
151 | 2.795055958 | 0.960781695
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152

1.971200564

0.989225206

153 | 2711882133 | 0.987154963
154 | 2.456913946 | 0.984797367
155 | 2.195676238 | 0.985811117
156 | 2.292469824 | 0.983266292
157 | 2.850358671 | 0.982820434
158 | 1.978433391 | 0.984263818
159 | 3.023687404 | 0.984168236
160 3.98407289 | 0.985796984
161 | 1.353618974 | 0.978789886
162 0.64816183 | 0.990290071
163 | 1.266052149 | 0.977586218
164 | 1.059784346 | 0.985009721
165 1.9077246 | 0.951594648
166 | 0.761334038 | 0.984881957
167 | 1.168835592 | 0.98107986

168 | 0.971689551 | 0.989914382
169 | 0.998288251 | 0.983312646
170 | 1.383867045 | 0.977346606
171 | 1.010725284 | 0.990169455
172 | 1.176041741 | 0.98549683

173 | 1.428250885 | 0.986669631
174 | 1.220689798 | 0.978542547
175 | 1.492783939 | 0.985418007
176 | 1.801209095 | 0.980552903
177 1.47687845 | 0.972900573
178 | 1.711189456 | 0.979119171
179 | 1.999302332 | 0.970044578
180 | 1.723981168 | 0.964440686
181 | 2.400796282 | 0.98665399

182 | 3.114271727 | 0.985664649
183 | 2.631438752 | 0.991785954
184 | 2.760578719 | 0.984032109
185 | 4.200163696 | 0.985407384
186 | 3.081537786 | 0.986950575
187 | 4.937921452 | 0.986064218
188 | 3.321557961 | 0.991983014
189 | 2.388344044 | 0.986569583
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190 | 2.413074624 | 0.991536574
191 | 0.747572904 | 0.961423518
192 0.57412443 | 0.970306154
193 | 0.971716943 | 0.870003885
194 | 0.977127922 | 0.951678867
195 | 0.756831961 | 0.968787903
196 | 0.445994275 | 0.976850096
197 | 0.485708516 | 0.982915193
198 | 0.608354906 | 0.980008811
199 0.9440247 | 0.964636603
200 | 0.663964704 | 0.961805728

Table 7.1: Results of peak forecasting of the proposed Narmax model for all the
listed elements of the dataset. Root mean square error is expressed in Newton
and is calculated by de-normalizing data, while the R2 Score considers normalized
data.
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Figure 7.1: Measured vs. predicted peak values (respectively indicated as dots
and crosses) displayed in a summary of 20 experiments extracted (1 every 10)
from the original dataset of 200 listed elements (100 for x and 100 for y signal
components).
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Conclusion

In this thesis a vast variety of human models aiming to represent its con-
trol behavior when interacting with a controlled machine were investigated
and, most importantly, used to create custom modeling approaches inspired
by such vast state-of-the-art techniques that were applied in the context of
human-robot interaction.

In the first part of this work, the linear modeling techniques were inves-
tigated. Such approaches proved to be able to represent well human physi-
ological control districts, which are involved in the perception, control, and
actuation processes. Moreover, we saw how such physiological representa-
tions can be linked to higher-level control-theory fashioned models like the
Crossover Model, Structural Model, Optimal Control Model, etc.

The aforementioned linear approaches, with particular reference to the
Crossover Model, were used to propose a Precision Model of the human-
robot complex when performing a cooperative manipulation task with a col-
laborative robot, which in the first proposed experimental study was the
Universal Robot’s UR5 manipulator. The proposed model proved to be able
to accurately represent human reaction when an external forcing function is
applied to the system. This consideration was verified from two perspectives:
the experimental identification of human reaction delay time with particu-
lar attention to intra-subject constancy and inter-subject variability and the
model’s capability to simulate well the position vector of the human-robot
complex offline after the experiment.

In the work’s second part, we focused on nonlinear dynamics and mod-
eling efforts directed towards their representation. Nonlinear models proved
to be able to represent complex processes involved in the human control
strategy such as decision-making, the creation of a long-term strategy able
to overcome short-term goals, and the ability of humans to transform their
behavior from a linear one to a nonlinear impulsive one when the complexity
level of the demanded task increases.

Such techniques were studied in the first place in a different applica-
tion scenario: the transport systems. Such a field, in fact, is one of the
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first in which artificial intelligence frameworks were successfully applied to
represent human decision-making and its ability to deal with complex prob-
lems. This led to the development of systems able to perform automatic
lane-changing, as said finding a long-term strategy based on reinforcement
learning framework, and the control of quadrotors facing highly nonlinear
external dynamics.

In the study of nonlinear state-of-the-art models, a focal point of our
study was how data-driven and model-based techniques can be combined
to represent partially unknown dynamics. Such consideration led us to the
definition of a nonlinear Narmax model, able to describe human response
with a precision level that would not be possible with any linear technique.

The proposed Narmax model was able to simulate and forecast human
control behavior and estimate its intention during an interaction task with a
compliant collaborative robot. The model was trained and tested in the first
place with the same experimental data acquired and used in the previously
proposed linear model. This time, the model was used to represent human
force output, which, from a control block scheme point of view, is the robot’s
input. Highly impulsive components characterize such force signal, it is noisy,
and present high variability between each experiment and each subject.

Despite this, both the RMSE and the R2 score value testify to the out-
standing model performance when forecasting x and y force components at
each instant. The plots also testify to this consideration, where the ground
truth and the prediction signals are superimposed almost entirely.

To verify model generalization capabilities, it was tested with new data
produced by a different experimental setup and using a different robot, the
Comau NS16. This time, a further step was performed: to let the robot know
the human intention nearly in real-time, the model was used to forecast
human-generated force online. Position and force signals were acquired in
order to let the model forecast the x and y components of the force reference
that the human will generate after the next 12 milliseconds, which is the time
required by the model to compute a new prediction.

With respect to state-of-the-art approaches like [190] and [98], the pro-
posed modeling and control techniques proved to be able, despite the simplic-
ity of their structure, to replicate and forecast highly nonlinear and impulsive
output dynamics of the human control behavior during a continuous inter-
action.

This consideration is confirmed by the generated force plots, where the
predicted force samples reproduce the ground truth vector with high fidelity
at each instant. The “real-time” performance of the proposed framework
proved to have a slow initial tuning phase and a reliable and fast second
phase, where the time delay became almost negligible.
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The robot high-level controller showed some difficulties in distinguishing
human-generated reference force, which had to be converted to a position
reference to let the robot anticipate human motion from unwanted external
contacts. The state-machine approach alone has some limitations in per-
forming such a complex duty, which will have to be performed by another
dedicated framework. Despite this, in the few cases in which the human
reference was recognized, the advantages seemed to be important by looking
at both force outputs and the position tracking error.

Aside from the human model, the robotic platform’s model can also be
approximated. In this case, the admittance controller and its virtual mass-
spring-damper system can be modeled as a second-order transfer function.
The knowledge of both the system’s main components allowed us to extract
the information about control delay from empirical data, obtaining a mean
delay value of 0.3 seconds. The optimization and identification techniques
were relatively simple if compared to more complex approaches which have
been proposed [320},321] when less information on the system dynamics was
available.

The optimal model used to obtain predictions at every time frame in
which the human interacted with the robot was a narmax model of the 10th
order. However, as known, several interesting techniques have been proposed
in the past to lower model order and complexity. In particular, Peak-to-
Peak Dynamics (PPD) have been successfully studied and applied in the
past for complex systems characterized by chaotic behavior. To exploit their
applicability in our model, the latter was re-trained to forecast only the peak
values of the system’s output, but reducing its order as much as possible,
without excessively affecting its accuracy. The results showed prediction
performance comparable to the ones obtained with the complete order model,
but the order was reduced from 10 to 5, further reducing model complexity
and required computational time. To the best of our knowledge, this was the
first attempt to study PPD in Narmax models.
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