
UNIVERSITY OF CATANIA

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND
COMPUTER ENGINEERING

PhD IN SYSTEM, ENERGY, COMPUTER AND
TELECOMMUNICATIONS ENGINEERING

XXXVI CYCLE

Integrating Deep Reinforcement
Learning in 6G Edge Environments:

Towards Intelligent Network
Optimization

Raoul Raftopoulos

Coordinator: Prof. Paolo Pietro Arena
Tutor: Prof. Giovanni Schembra

ABSTRACT

The rapid evolution of wireless communication technologies has led to the emergence of
6G networks, which promise unprecedented levels of connectivity, capacity, and intelli-
gence. Edge Intelligence, powered by Artificial Intelligence (AI) techniques, is considered
one of the key missing elements in 5G networks and will most likely represent a key en-
abler for future 6G networks to support their performance, new functions, and services.
To fully realize the potential of 6G networks, intelligent network optimization techniques
are required. This thesis presents studies on integrating AI in 6G environments toward
achieving intelligent network optimization.

Deep Reinforcement Learning (DRL) has shown remarkable success in various do-
mains, such as robotics and gaming, by enabling agents to learn optimal decision-making
policies through interactions with their environments. In the context of 6G networks,
the integration of DRL offers a promising approach to address complex challenges, such
as network resource allocation, dynamic spectrum management, and energy efficiency.

6G networks promise low-latency and high-bandwidth connectivity, enabling a wide
range of applications and services. However, the dynamic nature of these environments
poses significant challenges in terms of network optimization. Traditional optimization
methods struggle to adapt to the dynamic and complex nature of 6G edge environments.

The traditional approach to solving resource allocation problems is through mathemat-
ical modeling and optimization. In such a view, the first step is to model the dynamics
and performance of the network and to accordingly solve a mathematical problem. While
optimal, this approach proves impractical and/or unfeasible. If old-fashioned wireless
networks could be easily described and evaluated through mathematical models, the
same does not apply to modern networks, which can only be described with either
complex but intractable models or simple but inaccurate models. If the model-based
approach is doomed to fail, what could instead cope with the increased complexity and
variability of wireless networks is AI.

By leveraging the power of neural networks combined with reinforcement learning
algorithms, the frameworks proposed in this thesis allow network agents to learn and
adapt their behavior autonomously, leading to improved network performance and effi-
ciency. The integration of DRL in 6G environments opens up possibilities for intelligent
network planning, self-optimizing networks, and autonomous resource allocation.

The study investigates various aspects of integrating DRL in 6G networks, including
the design and training of DRL agents, the definition of suitable reward structures, and
the exploration of multi-agent systems for collaborative decision-making. Furthermore,
it addresses challenges associated with scalability, convergence, and real-time decision-
making in large-scale 6G network environments.

Through extensive simulations and evaluations, the proposed integration of DRL in
6G networks demonstrates promising results in terms of network performance, opti-
mization, and adaptability. By enabling intelligent decision-making and autonomous
network optimization, the presented research contributes towards unlocking the full po-
tential of 6G networks and paves the way for intelligent, efficient, and self-adaptive
communication systems.

Part I of this thesis explores integrating DRL in Flying ad-hoc Networks (FANETs)
6G Edge Environments for intelligent network optimization. In particular, single-agent,
multi-agent, and federated DRL techniques are exploited to enhance resource utilization,
horizontal offloading, and positioning.

1

In Part II we propose a distributed edge-computing multi-agent framework based on
Multi-Player Multi-Armed Bandit (MP-MAB) algorithms for latency- and energy-aware
job offloading in green vehicular networks.

Part III delves into the design of DRL agents in the context of Open Radio Access
Network (O-RAN) able to meet the requirements of different Service Level Agreements
(SLAs) while also enabling efficient resource allocation. The designed DRL agent has
been validated on the Colosseum platform, the biggest channel emulator in the world.

Keywords: 6G, Deep Reinforcement Learning, Network Slicing, Resources Orchestra-

tion, O-RAN.

2

List of publications

• C. Grasso, R. Raftopoulos and G. Schembra, "Deep Q-Learning for Job Of-
floading Orchestration in a Fleet of MEC UAVs in 5G Environments," 2021
IEEE 7th International Conference on Network softwarization (Netsoft),
Tokyo (Virtual), Japan, 2021, pp 186-190.

• C. Grasso, R. Raftopoulos and G. Schembra, "Smart Zero-Touch Manage-
ment of UAV-Based Edge Network," Published in IEEE Transactions on
Network and Service Management, March 2022, Volume 19, Issue 4.

• L. Galluccio, C. Grasso, G. Maier, R. Raftopoulos, M. Savi, G.Schembra,
S. Troia, "Reinforcement Learning for Resource Planning in Drone-Based
Softwarized Networks," 2022 Mediterranean Communication and Computer
Networking Conference (MedComNet), Paphos, Cyprus, 2022.

• C. Grasso, R. Raftopoulos and G. Schembra, "Tailoring FANET-based 6g
network slices in remote areas for low-latency applications," 2022 IFIP
Workshop: NI 2022: Network Intelligence, Catania, Italy, 2022.

• C. Grasso, R. Raftopoulos and G. Schembra, "Multi-Agent Deep Reinforce-
ment Learning in Flying Ad-Hoc Networks for Delay-Constrained Applica-
tions," 17th International Conference on Future Networks and Communi-
cations (FNC), Niagra Falls, Ontario, Canada, 2022.

• C. Grasso, R. Raftopoulos and G. Schembra, "Slicing a FANET for hetero-
geneous delay-constrained applications," Published in Computer Commu-
nications, September 2022, Volume 195, Issue 8.

• C. Grasso, R. Raftopoulos and G. Schembra, "Comparison of Deep Re-
inforcement Learning Approaches for FANET Optimization," 2022 61st
FITCE International Congress Future Telecommunications: Infrastructure
and Sustainability (FITCE), Rome, Italy, 2022.

3

LIST OF PUBLICATIONS

• C. Grasso, R. Raftopoulos and G. Schembra, "A FANET to Provide Blockchain
On Demand at the Extreme Edge of a 6G Network," 2022 61st FITCE In-
ternational Congress Future Telecommunications: Infrastructure and Sus-
tainability (FITCE), Rome, Italy, 2022.

• C. Grasso, R. Raftopoulos, G. Schembra, S. Serrano, "H-HOME: A learn-
ing framework of federated FANETs to provide edge computing to future
delay-constrained IoT systems," Published in Computer Networks, Novem-
ber 2022, Volume 2019, Issue 1.

• C. Grasso, R. Raftopoulos, G. Schembra, "OSCAR: a Contention Window
Optimization approach using Deep Reinforcement Learning," 2023 Interna-
tional Conference on Communications (ICC), Rome, Italy, 2023.

• F. Busacca, S. Palazzo, R. Raftopoulos, G. Schembra, "MANTRA: an
Edge-Computing Framework based on Multi-Armed Bandit for Latency-
and Energy-aware Job Offloading in Vehicular Networks," IEEE 9th Inter-
national Conference on Network softwarization (Netsoft), Madrid, Spain,
2023.

• R. Raftopoulos, G. Schembra, "Multi-Armed Bandit for Contention Win-
dow Optimization", Submitted to European Wireless (EW) 2023

• R. Avanzato, F. Beritelli, R. Raftopoulos, G. Schembra, "An DRL-based
UAV-Smallcell System for Efficiently Localizing Hidden Mobile Devices via
RSRP Measurements," Submitted to IEEE Access

4

Contents

1 Introduction 16

2 Extreme Edge Network Management in FANETs 24
2.1 Related Work . 26

2.1.1 FANET Edge Computing Frameworks 26
2.1.2 Flight Path Planning . 28
2.1.3 Contention Window in FANET 29

2.2 Smart Zero-Touch Management of UAV-Based Edge Network . . . 30
2.3 Slicing a FANET for heterogeneous delay-constrained applications 56

2.3.1 System Description . 58
2.3.2 KPI Description . 61
2.3.3 Use Case Description . 62
2.3.4 Performance Evaluation 64

2.4 Comparison of centralized and distributed DRL approaches for
FANET Optimization . 68
2.4.1 Framework . 69
2.4.2 Numerical Results . 70

2.5 A Learning Framework of Federated FANETs to Provide Edge
Computing to Future Delay-Constrained IoT Systems 72
2.5.1 System Description . 74
2.5.2 FANET Federation Manager 76
2.5.3 FANET Orchestrator . 78
2.5.4 A Use Case for Performance Evaluation 80
2.5.5 Simulation Results . 82

2.6 A DRL-based UAV-Smallcell System for Efficiently Localizing Hid-
den Mobile Devices via RSRP Measurements 87
2.6.1 Exploring the Synergy: Integrating Drones with 6G Networks 89
2.6.2 Isotropic Signal Propagation 90
2.6.3 Proposed Architecture . 91

5

CONTENTS

2.6.4 Markov Decision Process 92
2.6.5 RADAR Transfer Learning 94
2.6.6 Simulation Setup . 94
2.6.7 Numerical Results . 95

2.7 Resource Planning in Drone-Based Softwarized Networks 98
2.7.1 System Description . 99
2.7.2 Functional architecture . 100
2.7.3 FANET Resource Orchestration 102
2.7.4 Long-term FANET behavior optimization 103
2.7.5 VF Placement short-term Optimization 104
2.7.6 Numerical Results . 107

2.8 Contention Window Optimization in FANET 111
2.8.1 System Model . 113
2.8.2 The OSCAR algorithm . 116
2.8.3 OSCAR Execution Phases 116
2.8.4 System Setup . 118
2.8.5 Numerical Results . 119

3 Latency and Energy Management of VANETs 122
3.1 Related Work . 124
3.2 The Reference System . 125
3.3 Analytical Model . 127
3.4 The MANTRA Framework . 130

3.4.1 Multi-player Multi-armed Bandit 130
3.4.2 MANTRA Agents . 132

3.5 Simulation Setup . 133
3.6 Numerical Results . 136

4 Latency-aware Network Slicing in O-RAN 141
4.0.1 O-RAN Overview . 141
4.0.2 Related Work . 144
4.0.3 RIC Data collection and training 146

4.1 System Model . 146
4.2 Experiment Setup . 150

4.2.1 SCOPE: a Softwarized Cellular Open Prototyping Environ-
ment . 151

4.2.2 Cellular Scenarios in Colosseum 152
4.2.3 Cellular Scenario . 153

6

CONTENTS

4.3 Numerical Results . 155

5 Conclusion 162

References 164

Appendix 181
Appendix B: Markov Decision Processes 181
Appendix A: Deep Reinforcement Learning algorithms 182

7

List of Terms and Abbreviations

3GPP 3rd Generation Partnership Project

AI Artificial Intelligence

AP Access Point

API Application Programming Interface

BS Base Station

CE Computing Element

CL Centralized Learning

DL Deep Learning

DRL Deep Reinforcement Learning

DT Digital Twin

DDQN Double Deep Q-Network

E2E End-to-End

eMMB Enhanced Mobile Broadband

EN Edge Node

eNB eNodeB

ETSI European Telecommunication Standards Institute

FANET Flying Ad-hoc NETwork

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

8

LIST OF TERMS AND ABBREVIATIONS

FL Federated Learning

FO FANET Orchestrator

FRL Federated Reinforcement Learning

GD Ground Device

GDG Ground Device Group

IID Independent and Identically Distributed

IoT Internet of Things

IIoT Intelligent Internet of Things

IIoIT Intelligent Internet of Intelligent Things

LDO Local Drone Only

LSTM Long Short-Term Memory

LTE Long Term Evolution

LXC Linux Container

MAC Medium Access Control

MEC Multi-Access Edge Computing

MCHEM Massive Channel Emulator

MGEN Multi-Generator

ML Machine Learning

mMTC Massive Machine Type Communications

MNO Mobile Network Operator

O-RAN Open Radio Access Network

PCO Probabilistic Computation Offloading

PQ Priority Queueing

QoE Quality of Experience

9

LIST OF TERMS AND ABBREVIATIONS

QoS Quality of Service

RAN Radio Access Network

RF Radio Frequency

RIC RAN Intelligent Controller

RL Reinforcement Learning

RSU Road Side Unit

SDR Software Defined Radio

SLA Service Level Agreement

TGEN Traffic Generator

TL Transfer Learning

TO Telecommunications Operator

UE User Equipment

UAV Unmanned Aerial Vehicles

UVS Unmanned Vehicles System

URLLC Ultra-reliable and Low Latency Communications

US Uniform Selection

V2V Vehicular-to-Vehicular

V2X Vehicular-to-Everything

VF Virtual Function

WFQ Weighted Fair Queuing

ZSM Zero-touch network and Service Managenent

ZTM Zero-Touch Management

10

List of Figures

1.1 High-level Diagram of the Research 21

2.1 Reference System. 31
2.2 Smart Zero-Touch FANET Framework Architecture 33
2.3 Reward convergence behavior . 46
2.4 Average Total Delay vs. the number of UAVs. 47
2.5 Components of the Average Total Delay vs. number of UAVs. . . . 48
2.6 Delay Violation Probability vs. the number of UAVs. 48
2.7 Delay Jitter vs. the number of UAVs. 49
2.8 Average offloading statistics vs. the number of UAVs. 49
2.9 Average Total Delay vs. job processing rate µ̄P 50
2.10 Components of the Average Total Delay. 51
2.11 Delay Jitter vs. job processing rate µ̄P 51
2.12 Components of the Average Total Delay vs. job processing rate µ̄P . 52
2.13 Delay Violation Probability vs. job processing rate µ̄P 52
2.14 Delay performance vs. UAV-2-UAV link transmission rate. 53
2.15 Delay Jitter vs. UAV-2-UAV link transmission rate. 53
2.16 Average offloading probabilities vs. UAV-2-UAV link transmission

rate. 54
2.17 Delay Violation Probability vs. UAV-2-UAV link transmission rate. 54
2.18 Delay Violation Probability vs. delay threshold. 55
2.19 FANET flight autonomy vs. average total delay. 55
2.20 FANET management architecture. 59
2.21 Data-plane UAV model. 61
2.22 Actor and Critic Loss. 64
2.23 Average total delay. 64
2.24 Average computing delay. 65
2.25 Average offloading delay. 65
2.26 Delay Jitter. 66

11

LIST OF FIGURES

2.27 Job offloading ratio. 66
2.28 FANET profit. 67
2.29 Maximum profit gained with the best allocation of the CPU com-

putation power to the two slices, compared with the two heuristics. 67
2.30 FANET flight autonomy. 68
2.31 Episode Reward comparison among different DRL algorithms . . . 71
2.32 Delay comparison among different DRL algorithms 71
2.33 Reference System . 73
2.34 H-HOME Framework Architecture 75
2.35 Interaction between the FANET Federated Manager and the FANET

Orchestrators . 76
2.36 Timescales of FFM and FO inside H-HOME framework 77
2.37 Loss Function Convergence . 83
2.38 Episode Reward . 83
2.39 Average Delay . 84
2.40 Jitter . 84
2.41 Average Total Delay vs Processing Rate 85
2.42 Jitter vs. Processing Rate . 85
2.43 FANET Flight Autonomy . 86
2.44 FANET Flight Autonomy vs Average Total Delay 87
2.45 Power Consumption . 87
2.46 Architecture for 6G-enabled UAV Network [75]. 89
2.47 UAV-Smallcell System: Connection/communication scheme. . . . 91
2.48 Example of the simulated scenario. 92
2.49 RADAR agent training phase: (a) RADAR agent cumulative re-

ward, (b) RADAR agent mission length. 96
2.50 RADAR agent training phase: (a) RADAR agents Cumulative Re-

ward comparison, (b) RADAR agents mission length comparison. 97
2.51 Performance comparison. 97
2.52 System Description . 99
2.53 Functional architecture of a UAV 101
2.54 Average number of flying UAVs 110
2.55 Average number of VFs running on each UAV 110
2.56 Mean power consumption of active UAVs 111
2.57 Average flight time of each UAV 111
2.58 Average FANET processing delay 112
2.59 Throughput in the learning phase 119

12

LIST OF FIGURES

2.60 Throughput as the number of stations increase 120

3.1 Reference system . 125
3.2 MANTRA learning phase . 135
3.3 MANTRA Strategies and Performance 136
3.4 MANTRA vs Offloading-Only and Computation-Only 139

4.1 O-RAN architecture with the near-RT RIC functions, aside packet
core [152] . 142

4.2 Integration of the O-RAN infrastructure in Colosseum [27] 143
4.3 The O-RAN architecture and the workflow for the design, devel-

opment and deployment of ML applications [27] 145
4.4 Correlation analysis of several UE-specific metrics 148
4.5 The System Architecture . 151
4.6 Rome cellular scenario map. 153
4.7 Distribution of the actions during the training (Λ1 = 200ms, φ1 =

0.9) . 156
4.8 Convergence of the Episode Reward (Λ1 = 200ms, φ1 = 0.9) . . . 156
4.9 Convergence of the Entropy Regularization Loss (Λ1 = 200ms,

φ1 = 0.9) . 157
4.10 Mean Reward (Λ1 = 200ms, φ1 = 0.9) 157
4.11 Episode Reward (Λ2 = 100ms, φ2 = 0.9) 158
4.12 Ratio of packets that do not satisfy the latency requirements (Λ2 =

100ms, φ2 = 0.9) . 158
4.13 Distribution of the actions during the training (Λ2 = 100ms, φ1 =

0.9) . 159
4.14 Convergence of the Entropy Regularization Loss (Λ1 = 200ms,

φ1 = 0.99) . 159
4.15 Convergence of the Entropy Regularization Loss (Λ1 = 100ms,

φ1 = 0.99) . 160
4.16 Convergence of the Episode Reward (Λ1 = 100ms, φ1 = 0.99) . . . 160
4.17 Distribution of the actions during the training (Λ2 = 100ms, φ1 =

0.9) . 161
4.18 Ratio of packets that do not satisfy the latency requirements (Λ2 =

100ms, φ2 = 0.99) . 161

13

List of Tables

2.1 Setup Parameters for the Four Scenarios 44
2.2 DRL hyperparameters . 70
2.3 Simulation Parameters. 95
2.4 PPO Parameters. 95
2.5 Packet flow rate . 109
2.6 Simulation Parameters . 109
2.7 DRL Parameters . 119

3.1 Simulation Parameters . 134

4.1 Action Index to PRBs allocation 155

14

Chapter 1

Introduction

In recent years, the proliferation of new technologies has transformed the way
networks are built, accessed, and data is transmitted and stored. The Internet of
Things (IoT) paradigm has led to the widespread adoption of smart terminals,
devices, sensors, and video cameras, generating vast amounts of data for process-
ing. As a result, there has been a growing need to extend the centralized cloud
computing model toward the edge of the network [1].

The Edge computing paradigm, by bringing service-specific processing and data
storage closer to the data generation sources and end-users, has garnered signif-
icant interest in the context of 5G networks. Initiatives such as Multi-access
Edge Computing (MEC) within European Telecommunication Standards Insti-
tute (ETSI) are now focusing on performance improvements, traffic optimization,
and ultra-low-latency services that were previously unfeasible. However, meeting
these service requirements in an efficient and flexible manner still remains a chal-
lenge [2]. Among the several advantages of the edge computing approach, the
most noticeable ones are the following [3]:

1. an increase in the system responsiveness and latency reduction due to net-
work resources being moved closer to the users, thus resulting in smaller
communication delays, as well as in reduced network congestion (because
traffic is kept at the edge servers rather than processed at a single central
cloud node);

2. the ability to supply customized services based on the live user’s experience,
commonly referred to as context awareness. The edge servers can exploit the
physical proximity to capture useful real-time information, thus enabling a
plethora of applications at different levels of the stack, from the applica-
tion level (i.e., virtual reality [4, 5], content caching [6, 7] and computation

16

CHAPTER 1. INTRODUCTION

offloading [8, 9]), to the network level (i.e., load balancing [10, 11], and vir-
tual network function provisioning [12, 13]), down to the physical level (i.e.,
spectrum hole detection [14, 15] and radio fingerprinting [16, 17]).

Nevertheless, the edge infrastructure presents multiple constraints on several lev-
els. For instance, edge servers are not nearly as powerful as cloud servers and can
represent a computational bottleneck if the network resources are not properly
managed. For example, in mobile networks extended by Unmanned Aerial Vehi-
cles (UAVs), overloading one specific drone may lead to fast battery depletion,
thus causing service outages. This issue is also critical in IoT networks, where the
energy, computational, and communication resources are extremely constrained,
and proper management is required. In other words, the problem of resource man-
agement and allocation at the edge is of utmost importance, as it can drastically
improve the network throughput, efficiency, and lifetime.

Moreover, the concept of network slicing has emerged as a promising paradigm
to revolutionize the way modern communication networks operate. Network slic-
ing offers the ability to partition a physical network into multiple logically isolated
segments, each tailored to cater to specific services, applications, or user groups.
This approach holds the potential to deliver unprecedented levels of customiza-
tion, flexibility, and efficiency, thereby paving the way for the realization of diverse
and specialized use cases within a single physical infrastructure.

Central to the successful implementation of network slicing is the seamless or-
chestration of resources to meet the stringent Service Level Agreements (SLAs)
demanded by the distinct slices. These SLAs encompass a myriad of performance
metrics, with latency being a paramount concern in today’s real-time applications.
Achieving ultra-low latency is a fundamental requirement for various mission-
critical use cases such as industrial automation, augmented reality, and vehicular
communication. Reducing network latency while concurrently ensuring the Qual-
ity of Service (QoS) commitments for multiple slices remains an intricate challenge
that necessitates innovative and adaptive techniques.

One of the fundamental prerequisites of 6G networks is the realization of a
fully automated network and service management framework to rapidly deliver
services while ensuring the sustainability of heterogeneous service offerings. The
ETSI Zero-touch network and Service Managenent (ZSM) group was established
to address this requirement and accelerate the definition of the necessary archi-
tecture and solutions. Self-configuration, self-monitoring, and self-optimization,
without human intervention, form the foundation of all 6G networks.

6G is therefore expected to emerge with support from AI, ultra-reliability, and

17

CHAPTER 1. INTRODUCTION

zero-touch network management [18]. Edge Intelligence, powered by AI tech-
niques, is already recognized as a crucial element in 5G networks and will likely
serve as a key enabler for future 6G networks to support their performance,
new functions, and services. This evolving landscape presents new opportunities
for edge computing and Edge Intelligence in various industry domains [19]. The
evolution towards 6G networks entails distributing AI capabilities and moving
intelligence from the central cloud to edge computing resources. This transition
represents the ultimate shift towards the paradigm of the Intelligent Intelligent
Internet of Intelligent Things (IIoT), enabled by Edge AI [20, 21].

Among various machine learning techniques, Deep Reinforcement Learning (DRL)
stands out as the most widely employed approach for tackling intricate optimiza-
tion challenges within the context of networking in 5G/6G networks. This is due
to several key reasons:

• Adaptability to Dynamic Environments : 5G and 6G networks operate in
highly dynamic and evolving environments where network conditions, user
demands, and system configurations change rapidly. DRL’s ability to adapt
to these changes through learning and decision-making makes it well-suited
for such scenarios.

• Model-free approach: DRL is a model-free technique, meaning it doesn’t rely
on predefined models of the network or its components. This is advantageous
in situations where it’s challenging to create accurate mathematical models
due to the complexity and variability of the network.

• Handling Large State Spaces : 5G and 6G networks involve vast state spaces,
considering the numerous network parameters, devices, and connections.
DRL algorithms can handle large state spaces efficiently, enabling them to
make informed decisions in complex network settings.

However, in many scenarios, deploying 5G and beyond networks poses chal-
lenges in areas where networking and computing infrastructures are scarce or
absent. Unmanned Aerial Vehicles (UAVs) have emerged as a viable solution,
given their flexibility, on-demand provisioning, and ability to access remote and
challenging locations. In fact, fleets of UAVs can be grouped into Flying ad-hoc
Networks to further enhance the coverage, capacity, and reliability of wireless
cellular networks, as well as provide edge and fog computing capabilities. Other
key advantages of employing a FANET lie in its ease of on-demand deployment
and its flexibility to adapt to varying runtime needs. Moreover, the number of

18

CHAPTER 1. INTRODUCTION

Unmanned Aerial Vehicles in the FANET can be adjusted to accommodate the
extension and device density of the supported area.

However, ensuring efficient network and service management automation for
Flying ad-hoc Networks remains a crucial requirement for 6G networks. Although
one or more UAVs may have connections to the structured Internet, these connec-
tions are often insufficient to support the timely transmission of large-sized jobs
to data centers. Hence, the FANET assumes the role of the network edge, with
each UAV functioning as a 6G network access point that offers edge computing
facilities. To address this, the research is showing an increasing interest in zero-
touch management frameworks for edge networks, aiming at providing computing
and networking facilities to remote geographic areas hosting delay-sensitive ap-
plications, considering challenges such as limited flight duration, job scheduling,
and network optimization.

One of the most challenging application scenarios for the above technologies
is constituted by the Intelligent Transport System (ITS), enabled by the use of
vehicular networks for various applications, such as traffic management, safety
and entertainment [22–24]. These applications often have low latency and high-
reliability targets, whose achievement may be challenging in vehicular networks
due to their highly dynamic and resource-constrained nature. In fact, the lim-
ited processing and storage capabilities of the On-Board Units (OBUs), i.e. the
processing equipment installed on-board of the vehicles, are often insufficient to
guarantee such requirements.

One approach to address these challenges is to use job offloading, which involves
transferring some or all of the required computation to more powerful and/or
better-connected devices, typically the so-called Road Side Units (RSUs) installed
along the roadway. However, using job offloading in vehicular networks introduces
additional challenges, including balancing latency and energy consumption.

When deployed in remote roads and rural areas, RSUs do not have access to
a fixed Internet connection and/or the power grid. In such cases, the RSUs are
stand-alone, battery-powered devices that can only count on the local computing
units for processing and green energy harvesting as their power source.

In this perspective, for load balancing in the network, in order to reduce peaks of
latency and energy consumption, each RSU should also be able to further offload
the received jobs to nearby RSUs [25].

With this in mind, a new, challenging scenario emerges, where each RSU has to
autonomously find a proper trade-off between the energy consumption and the
processing delay requested by vehicular services. On the one hand, this goal can

19

CHAPTER 1. INTRODUCTION

be achieved by adequately tuning the amount of processing power employed and,
on the other, by choosing the optimal amount of jobs to offload to the nearby
RSUs.

Another hot area of research terrestrial network-wise lies in O-RAN, an inno-
vative network architecture that promotes programmability, virtualization, and
open interfaces to enhance the flexibility and agility of cellular networks [26]. The
O-RANs architecture leverages a disaggregated approach for the Radio Access
Network (RAN), splitting the base stations into functional units. Moreover, O-
RAN introduces machine learning (ML)-based network control and automation
algorithms through the so-called xApps, running on RAN Intelligent Controllers.
However, in spite of the new opportunities brought about by the Open RAN, ad-
vances in ML-based network automation have been slow, mainly because of the
unavailability of large-scale datasets and experimental testing infrastructure. This
slows the development and widespread adoption of DRL agents on real networks,
delaying progress in intelligent and autonomous RAN control [27].

Despite its remarkable potential, the application of DRL techniques to address
the intricate problem of network slicing optimization in O-RAN remains conspic-
uously underexplored.

In this context, this thesis aims to address critical aspects of network optimiza-
tion and management in three different scenarios: (1) the design and testing of
DRL-based zero-touch management framework in Flying ad-hoc Networks, (2)
the development of a distributed edge-computing framework for latency- and
energy-aware job offloading in green vehicular networks, and (3) to harness the
power of DRL in devising dynamic and data-driven resource allocation strategies
that satisfy network latency requirements for different network slices in O-RANs.
The challenges in deploying DRLs-based control solutions at scale are numer-
ous. Collecting datasets representative of real-world network behavior, testing
the robustness of ML-based control at scale, designing efficient ML agents with
unreliable input and constrained output, enabling generalization capabilities, and
selecting meaningful features are all critical considerations to ensure the successful
integration and deployment of DRLs in FANETs, VANETs, and O-RANs.

To achieve these objectives, this thesis proposes innovative solutions that ad-
dress the challenges faced in practical network deployments. By collecting datasets
at scale, accurately representing the intrinsic randomness and behavior of real-
world networks, we aim to develop robust ML-based control solutions. Rigorous
testing of these solutions at scale is vital to ensure their stability and prevent
suboptimal performance or outages. Additionally, the ability of ML agents to

20

CHAPTER 1. INTRODUCTION

Figure 1.1: High-level Diagram of the Research

generalize and adapt to unseen deployment configurations will be a key focus.
This thesis is structured into three parts. Part I focuses on the design and

implementation of a zero-touch management framework for FANETs, enabling
efficient network and service management in remote areas.

Part II delves into the design of a distributed framework based on multi-player
multi-armed bandit (MP-MAB) algorithms for latency- and energy-aware task
offloading in vehicular networks, with the main goal of supporting procedures of
job offloading in green vehicular networks in order to achieve a target trade-off
between energy consumption and the job processing latency trade-off.

Part III explores the application of DRLs in closed-loop network control sce-
narios within the O-RANs architecture, aiming to improve network performance
and adaptability. Throughout the thesis, extensive simulations and evaluations
will be conducted to assess the proposed frameworks’ effectiveness and compare
their performance against existing literature. The contributions of this thesis lie in
the development of novel methodologies and algorithms that enable efficient and
adaptive network management in FANETs and O-RANs through the integration
of DRLs techniques.

In the course of this extensive research journey, our initial foray into the uti-
lization of Deep Reinforcement Learning (DRL) techniques revolved around ad-
dressing an optimization challenge within the context of Flying Ad-Hoc Networks
(FANETs), specifically focusing on the optimization of horizontal offload among
drones within a FANET. We embarked upon this endeavor by initially employing
the well-established DQN technique. This initial step provided us with valuable

21

CHAPTER 1. INTRODUCTION

insights into engaging with DRL scenarios and underscored the existence of al-
gorithms far more potent than the conventional DQN [28], including its variants
[29].

Building upon this foundational knowledge, we ventured into more intricate
DRL approaches, such as actor-critic methods (e.g., A2C [30] and PPO [31]),
while also undergoing a paradigm shift from centralized orchestration to a dis-
tributed framework through the adoption of multi-agent DRL approaches, includ-
ing MAPPO [32] and A3C [33]. This made us realize that in the current state
of the art, purely centralized DRL approaches for orchestrating 6G networks do
not scale well when dealing with complex problems. Zero-touch automated or-
chestration will most likely be achieved by the cooperation of different intelligent
agents interacting with different parts of the networks, each with different scopes
and objectives. We have also found out that applying DRL in the context of
networking requires careful thinking to make the right decisions throughout the
design of the reinforcement learning problem, which includes the design of the
agents, the formulation of the Markov Decision Process, the choice of the data
(observations) required to make smart decisions (actions), and the design of the
reward function. Subtle changes in each of these elements may result in terrific
changes in the performance and stability of the training process. Piqued by the
prospect of integrating Federated Learning and DRL, we proceeded to explore
the realm of Federated Deep Reinforcement Learning (FDRL) [34] within an en-
vironment where multiple FANETs pooled their collective knowledge to enhance
performance in uncharted scenarios. This trajectory led us to revisit the roots
of Reinforcement Learning, notably Multi-Armed Bandits (MAB), stimulated
in part by publications such as [35], in which authors demonstrated that MAB
agents could learn and achieve near-optimal performance even in non-stationary
and non-i.i.d. settings. In particular, we were enticed to leverage the expertise
garnered from DRL problems to approach a system made up of multiple RSUs
with a Multi-Player Multi-Armed Bandit (MP-MAB) [36] framework, resulting
in insightful findings regarding the speed of convergence of MAB algorithms in
multi-agent non-stationary environments. Finally, adhering to the O-RAN speci-
fications, we embarked on the exploration of offline DRL, as mandated by O-RAN
for pre-training agents, which could subsequently be fine-tuned for real-world de-
ployments. This holistic journey allowed us to comprehensively survey various
DRL approaches and their integration in 5G and beyond systems, delving into
the primary techniques (DQN, A2C, PPO) within both single-agent and multi-
agent contexts while also experimenting with federated methodologies in both

22

CHAPTER 1. INTRODUCTION

online and offline training domains.
Fig. 1.1 shows a high-level diagram of the research discussed in this thesis. The

remainder of this thesis is organized as follows: Section II presents the research
works specific to FANETs. Section III delves into the design of an energy- and
latency-aware framework for VANETs. Section IV presents the latest work on
DRL-enabled Network Slicing SLA satisfactions in O-RAN. Finally, Section V
concludes the thesis, summarizing the key findings, discussing their implications,
and outlining future research directions in the field of DRLs-based network opti-
mization in FANETs, VANETs and O-RANs.

23

Chapter 2

Extreme Edge Network
Management in FANETs

In numerous instances, the envisioned 6G application scenarios pertain to areas
lacking nearby structured networks [37], resulting in the absence of network-
ing and computing infrastructures in close proximity to data-generating objects.
These scenarios encompass both extreme and remote zones, which are exceedingly
challenging to access via conventional structured networks. Additionally, they in-
clude areas where structured networks are vulnerable to disruptions caused by
natural disasters, terrorist attacks, and wartime actions.

In such scenarios, Flying Ad-hoc Networks (FANETs) present an effective solu-
tion to enhance the coverage, capacity, reliability, and energy efficiency of wireless
cellular networks [38–40]. The recent reduction in UAV costs has made this ap-
proach feasible, offering flexibility through on-demand service provisioning and
the ability to access extreme and remote areas that are otherwise challenging to
reach through conventional means.

The dynamic and decentralized nature of FANETs presents a unique set of
challenges and opportunities in the realm of network management and orchestra-
tion. As these aerial networks continue to find application in surveillance, disas-
ter response, and environmental monitoring, their efficient operation necessitates
intelligent and autonomous resource allocation strategies. This chapter explores
the utilization of DRL to enhance the management and orchestration of FANETs.
We delve into the intricacies of problem formulation, discuss the potential AI/ML
techniques, and highlight the key considerations for leveraging DRL in optimizing
resource allocation, offloading, and positioning in FANETs.

However, ensuring the continuous availability and activity of a FANET remains
a persistent challenge due to the limited autonomy of its UAVs [41]. Besides

24

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

its engines, each UAV within the FANET is equipped with two key elements: a
battery and a Computing Element (CE). The CE is responsible for executing one
or more Virtual Functions (VFs), delivering 5G services to ground users. Notably,
the power consumption of the CE is comparable to that of the UAV’s engines,
consisting of two primary contributions: 1) a constant power to maintain CE
activity and 2) a variable power linked to the amount of data processed by each
VF, expressed in terms of CPU usage [42–44].

Hence, a pivotal challenge to address is the minimization of power consump-
tion. Increased CE resource utilization leads to faster battery depletion, thereby
reducing the overall FANET service availability. Particularly critical is the sce-
nario where a UAV’s battery charge falls below a certain threshold, necessitating
temporary withdrawal from the FANET to access the nearest charging station.
During this period, the Virtual Functions running on the unavailable UAV must
be redistributed among the remaining UAVs, causing a surge in their energy con-
sumption and reducing their flight duration. If the number of operational UAVs
is insufficient, the FANET’s ability to deliver services to ground devices could be
compromised. Thus, effective power management and resource allocation strate-
gies are vital to ensure prolonged and reliable FANET operation in 6G networks.

The thesis rigorously delves into the multifaceted problem of power manage-
ment and resource allocation within the FANET framework, employing advanced
methodologies and innovative techniques to optimize the CE’s power consump-
tion, enhance overall network availability, and address the challenges posed by
UAV battery limitations, thereby ensuring the sustainable and efficient operation
of the FANET in the dynamic landscape of 6G networks.

Furthermore, several studies have dedicated their efforts to devising techniques
that enhance UAV performance while simultaneously minimizing energy con-
sumption. As UAVs often operate in unknown or partially observable environ-
ments, flight path planning emerges as a critical challenge, significantly influencing
the vehicle’s level of autonomy.

Given the absence of an exact mathematical model, researchers have turned to
integrating Deep Learning (DL) and Reinforcement Learning (RL) methodologies.
By combining these approaches, UAVs can autonomously learn their optimal flight
paths, enabling them to navigate through dynamic environments without the risk
of collisions [45–48]. This thesis delves into the exploration and evaluation of DL
and RL integration in the context of 6G FANET networks, investigating how these
technologies can significantly bolster UAV autonomy and performance, thereby
paving the way for safer and more efficient operations in complex and uncertain

25

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

environments.
Moreover, load balancing techniques, such as horizontal offload, can be effec-

tively employed among the UAVs within a FANET. Horizontal offload involves
transferring jobs from one UAV to another, enabling overloaded UAVs to offload
tasks to less-loaded counterparts. This load balancing mechanism ensures that
the computation delay of the FANET for each received job remains nearly inde-
pendent of the current activity state of the area covered by the receiving UAV [42,
49, 50]. Through an in-depth exploration of load balancing strategies, this thesis
investigates the impact of horizontal offload on enhancing the overall performance
and efficiency of 6G networks within FANETs, aiming to achieve seamless task
distribution and minimize computation delays across the network.

All of this requires a new architecture framework designed for closed-loop au-
tomation and optimized with data-driven machine learning and artificial intelli-
gence algorithms. The target of this research is to design a zero-touch management
framework for an edge network provided through a FANET constituted by a set
of UAVs.

2.1 Related Work

In the past, applications of single UAVs or fleets of UAVs have been widely used
in order to enhance coverage, capacity, reliability, and energy efficiency of wire-
less cellular networks with terrestrial equipment [51, 52], and to provide fog-
computing facilities to IoT systems in remote areas [53–59].

2.1.1 FANET Edge Computing Frameworks

A multitude of academic research papers have been dedicated to the refinement
of FANET Edge computing frameworks. These research endeavors are primarily
focused on the optimization of resource allocation efficiency and the establish-
ment of continuous functionality, particularly within dynamic and unpredictable
environments. A complex structured fleet of UAVs to provide edge computing
services by means of a FANET was studied in [49, 60, 61], but with a manage-
ment infrastructure that is too specific to the scenario in which it is used. In [62],
the authors give an overview of UAV-aided wireless communications, presenting
a basic networking architecture (with insights about channel characteristics and
system design) that allows the use of UAVs as wireless forwarders to improve
connectivity and coverage of GDs. In [63], coverage and rate performance using
UAVs as flying base stations are analyzed, providing downlink connectivity to

26

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

users placed in a zone in which other devices communicate with each other using
device-to-device (D2D) communications. The same authors, in [64], analyze the
possibility of using a framework for an optimized deployment and mobility of
UAVs to receive data from ground IoT devices, finding the optimal UAVs’ loca-
tion, the association of devices to UAVs and the uplink transmission power that
each device has to use to communicate with the UAV. In [57], the authors propose
a scenario in which the combined use of UAVs and fog computing techniques al-
lows to support IoT applications. Using one or more UAVFogs, a fog-computing
platform is created, providing storage, networking, and processing capabilities.
Each UAVFog also acts as a gateway between the UAV infrastructure and the re-
mote cloud. In [65], the authors propose a three-tier supply chain network model
to provide 5G network slices on demand to ground users using a FANET. In par-
ticular, ground users send service requests to a fleet of UAV controllers, which
redistribute these requests in an optimal way to a FANET in which the services
are active. To this purpose, the authors implement a constrained optimization
problem for which they derive the associated variational inequality formulation.

Computation offloading consists of migrating tasks generated by the applica-
tions to more powerful computing devices in order to satisfy some performance
requirements or simply speed up the applications. Computation offloading has re-
cently become of particular relevance in the context of mobile computing, where
devices may not have enough hardware capabilities to sustain the ever-increasing
application requirements [66]. In coarse-grained offloading or full offloading, the
whole computation is offloaded and processed by a cloud or MEC server. On
the contrary, in fine-grained or partial offloading, only a part of the computation
is processed locally, while the rest is offloaded to a cloud or some MEC servers.
When and where to offload some jobs is a very crucial decision in order to meet the
stringent requirements of some applications. In order to perform this intelligent
decision, recently, some AI-based algorithms have been introduced at the network
edge [67, 68]. When applied to scenarios of Mobile Ad-Hoc Networks (MANET)
or Vehicular Ad-Hoc Networks (VANET), these algorithms usually perform an
unbalanced offloading to devices with higher computational resources. In the con-
text of FANETs, this approach is not applicable because entities have all the same
features. This kind of horizontal offloading was just applied in several previous
works. In [69], for each task, based on some performance parameters, the source
UAV has to make the choice of whether to process the task locally or offload it
to a nearby UAV with available resources. In [70], horizontal offloading is applied
in a MEC-assisted vehicular network.

27

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Indeed, for each possible activity state of the covered zone, the intra-FANET
layer of the framework decides the probability that a job will be processed locally
or offloaded to the UAV with the least loaded queue. This way, the FANET is
able to adapt to the variability of the underlying environment in the short term,
also reducing the periods of under-use of some UAVs.

2.1.2 Flight Path Planning

Several studies have focused on devising techniques to improve drone performance
while minimizing energy consumption. UAVs are often used for operations in un-
known or partially observable environments. For this reason, flight path planning
is an essential issue in the use of UAVs as it is directly related to the level of
autonomy of the vehicle.

DL and RL are combined and used to allow UAVs to learn their paths au-
tonomously, allowing them to traverse changing environments without the risk of
collision [45–48].

In [71], an RL algorithm is introduced that enables UAVs to have direct and
continuous interaction with their surroundings. In particular, a combination of
Deep Reinforcement Learning (DRL) and a Long Short-Term Memory (LSTM)
network is proposed to increase the speed of the used learning algorithm. In ad-
dition, the authors in [72] propose the RL algorithm to circumvent obstacles with
a reward function and a penalty action to have a smoother trajectory. In [73],
several RL algorithms are used to improve UAV navigation. Moreover, UAVs can
provide wireless connectivity without network infrastructure or complement con-
ventional base stations (BSs), whose coverage may suffer from severe blockage due
to tall buildings or damages caused by natural disasters. Owing to the mobility
of UAVs, recent years have seen significant research progress on integrating UAVs
with MEC [74].

The emergence of 6G technology will bring UAVs to play an important role in
wireless networks and future smart cities with features like massive connectivity,
ubiquitous coverage, embedded artificial intelligence, efficient energy usage, and
adaptive network security. UAVs can act as vertical components in these net-
works, enhancing coverage, reliability, and energy efficiency. They are capable of
communicating with ground stations and satellites, creating a space-air-ground
network that fully integrates heterogeneous 6G networks [75].

However, for UAVs to fully leverage their potential in 6G networks, it is nec-
essary to extend their communication capabilities further. Traditional UAV net-
works are evolving into enhanced networks, where UAVs connect with each other

28

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

in an ad-hoc manner and can perform computation, communication, and control
functions. The integration of technologies such as quantum processing, terahertz
communication [76], fog/edge computing [77], and wireless optical communica-
tion [78] can contribute to improving the performance of UAV networks, including
service quality, energy efficiency, security, and fault management.

To integrate 6G networks with UAVs, it is essential to ensure security and pri-
vacy. UAVs are susceptible to various security vulnerabilities due to their limited
onboard processing and energy capacity. Therefore, the wireless research commu-
nity must pay particular attention to these aspects in the design of UAV networks
[79].

In summary, the utilization of UAVs in combination with emerging technologies
of 6G wireless networks offers significant opportunities to enhance the perfor-
mance, efficiency, and security of civil protection interventions and communica-
tion services in emergency and natural disaster scenarios [80].

2.1.3 Contention Window in FANET

As demonstrated in [81], the contention window (CW) is one of the parameters
that plays a key role in the MAC layer behavior, and as such has a significant
impact on the efficiency of Wi-Fi networks. In the basic channel access method
each station waits a certain number of time slots before accessing the channel.
This number is chosen at random between 0 and the CW value. To reduce the
probability of multiple stations selecting the same random number, the CW ,
starting from a minimum value, CWmin, is doubled after each collision, up until
a maximum value, CWmax. In IEEE 802.11, the CWmin is set to 16, while the
CWmax is set to 1024 [82]. This approach, while having low complexity in terms of
computation, can lead to poor network performance, especially in dense networks.
The optimization of CW has, therefore, a major impact on network performance
and as such is currently been the subject of multiple research activities.

Analytical approaches can provide optimal CW values. However, these ap-
proaches require a lot of assumptions, rarely encountered in real networks, and
quasi-static settings. For this reason, these approaches perform poorly when de-
ployed in real networks. For this reason, in the last few years, there has been an
increasing research effort to enhance network performance using machine learning
(ML) [83]. In the CW optimization problem, the most obvious ML technique to
use is Reinforcement Learning (RL). In RL, an agent takes actions in an environ-
ment while trying to maximize the long-term reward. RL, and especially Deep
Reinforcement Learning (DRL), has proved numerous times to be able to solve

29

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

complex problems in highly dynamic environments [84].
The CW optimization problem using Deep Reinforcement Learning has already

been investigated in [81], in which a centralized contention window optimization
approach (CCOD) predicts the best CW values to improve throughput in 802.11
wireless networks. CCOD uses the legacy binary backoff algorithm combined with
DRL. Although it succeeded in decreasing the collision rate, the amount of iter-
ations required to converge is very high (in the order of 1 · 104 iterations).

In [85], authors investigated the CW optimization problem in a multi-agent
scenario and designed SETL-DQN, in which agents cooperate to avoid network
performance degradation. However, despite achieving slightly better results than
CCOD in saturated network conditions, its solution requires an extremely higher
number of iterations (5 · 104 episodes) before giving acceptable results. This
means that its solution must be trained offline and deployed only after being
fully trained. Moreover, as soon as the underlying environment changes (for ex-
ample, if the number of stations increases), their approach has to be retrained.
Moreover, realistic network conditions have not been evaluated.

2.2 Smart Zero-Touch Management of UAV-Based

Edge Network

The next generation of wireless communications networks, namely 6G, will be
aimed at realizing a fully connected world and at providing ubiquitous connectiv-
ity to people and objects, even in remote areas that are very far from the struc-
tured Internet core network. These goals include the definition and the design of
intelligent communications environments mainly characterized by pervasive arti-
ficial intelligence and large-scale automation. The target of this research is the
design of a management framework for edge networks realized with FANETs con-
sisting of a set of UAVs to provide a remote geographic area with computing and
networking facilities for delay-sensitive applications.

2.2.1 System Description

As sketched in Fig. 2.1, we focus on geographic areas that are badly connected or
not directly connected with a core network infrastructure. To this purpose, when
an area requires edge-computing services, a FANET is used to provide it with
this service. The area covered by a FANET is subdivided into zones, each one
served by one of its UAVs. Each UAV is equipped with a CE to provide MEC

30

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.1: Reference System.

facilities to GDs belonging to the ground area it is serving. Each GD inside a zone
can generate data that have to be processed in order to perform specific tasks. In
this context, a job can be regarded as either a set of data, generated by a single
GD, to be processed together, or the collection of several sets of data generated
by many GDs, which are collected and aggregated by a sink. Each GD, taking
into account its amount of computation facilities, the energy that it should spend
to process the job locally, and the current state of its battery charge, decides
whether to offload the execution of each job to the FANET or not. In the sequel,
offload from GDs to UAVs of the FANET is referred to as vertical offload.

The definition of policies for decisions regarding whether offloading jobs to the
FANET or not are considered out of the scope of this research. For our purposes,
we limit ourselves to characterize vertical offload as a job arrival process to each
UAV of the FANET from the zone it is serving.

Undoubtedly, FANET performance hinges on two crucial factors: firstly, the to-
tal count of Ground Devices (GDs) within the area and the volume of offload
traffic they generate, and secondly, the number of UAVs deployed in the FANET.
While the former remains beyond the control of the FANET designer, the latter
allows the designer to influence the required number of UAVs to attain the de-
sired performance levels. Additionally, the computation power of the CE and the
battery capacity aboard each UAV significantly influence the mission duration of
the FANET, accentuating the importance of thoughtful design in both aspects.

The job-offloading rate to each UAV depends on the current state of the zone:

31

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

the higher the activity of a zone, the higher the job arrival rate. Time variation
of the job-offloading rate on each zone can occur because the number of GDs
populating that zone changes over time, for example, due to the regular traveling
related to working hours and/or holidays. In addition, even if the number of GDs
remains constant over time, the traffic generated by each GD can change, for
example, for the occurrence of a specific event or according to normal daylight
and night activities, but also to specific solicitations from social networks or event
broadcasting by live streaming. This dynamic behavior of each zone suggests
we introduce the feature of horizontal offload. It consists of intra-FANET job
offloading from one UAV to another one, giving overloaded UAVs the possibility
to offload jobs to other, less-loaded, UAVs, with a resulting load balancing.

For each job, we call Dwell UAV the UAV that has received it from the ground,
and Processing UAV the UAV where the job is processed. Each job that is locally
processed in its Dwell UAV suffers the delay for processing there. On the other
hand, an offloaded job suffers an overall delay that is the sum of the time spent
for transmission from the Dwell UAV to the Processing UAV and the time spent
in the latter for processing.

Job offloading has the following advantages:

• Although horizontal offload introduces an additional delay due to the trans-
mission from a UAV to another one, the overall delay can be reduced if job
processing is moved to less loaded UAVs;

• The delay jitter (i.e., the standard deviation of the delay) can be reduced
thanks to load balancing;

• The overall wasted time for the inactivity of the FANET CEs can be reduced
if offloaded jobs are moved to UAVs with idle CEs.

A scheduler running in each UAV, according to the above considerations, decides
whether an incoming job has to be processed locally or offloaded to another UAV.
This is a crucial task that has to be optimized by taking into account the state
of the whole FANET and, at the same time, forecasting the behavior of the job
generation process of all the zones in the short- and medium-time horizon.

Jobs to be processed locally are enqueued in the Processing Queue QP waiting
to be served by the local CE. On the other hand, jobs to be offloaded to other
UAVs are enqueued in the Offloading Queue QO that is served by the wireless
transmission link towards the other UAVs. Without loss of generality, we will
assume that all the UAVs inside a FANET have identical CEs.

32

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.2: Smart Zero-Touch FANET Framework Architecture

The architecture proposed in this research, represented in Fig. 2.2, allows using
any scheduling techniques for jobs waiting for processing in the QP queue, for
example, to manage jobs with different computation times and different priorities.
However, for the sake of simplicity, we assume a First-In-First-Out (FIFO) policy,
leaving the introduction of other scheduling techniques as future work. Likewise,
we assume that jobs enqueued in QO for horizontal offload towards other UAVs
are managed by a FIFO policy as well.

These decisions are not trivial because horizontal offload causes an additional
delay due to the time spent inside QO waiting for transmission and the propa-
gation time from the Dwell UAV to the Processing UAV. In the sequel, without
loss of generality, we assume that all the channels between each pair of UAVs
are characterized by a negligible propagation delay and the same transmission
rate. This assumption is supported by the small difference in relative distance be-
tween UAVs and by the stationary conditions of the related links (equal channel
bandwidth and noise conditions). Therefore, the overall delay suffered by each
offloaded job is the sum of the time spent in QO of its Dwell UAV (Offloading de-
lay) and the time spent in QP of its Processing UAV (Processing delay). Instead,
jobs that are not offloaded only suffer the Processing delay.

Decisions regarding horizontal offload are taken in each UAV by the local Sched-
uler according to a policy received by the orchestrator of its FANET, which uses
information on all the UAVs of the FANET regarding the state of their Processing

33

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Queues.
Horizontal offload is managed via a probabilistic approach: each Scheduler has

an array of probabilities, one for each possible activity state of the served zone.
Therefore, according to this state, the UAV Scheduler offloads jobs to another
UAV with the probability associated with that state. This set is periodically
broadcasted by the Fanet Orchestrator (FO) to all the UAVs of the FANET to be
applied according to the current activity state of the zone they are covering. To
this purpose, a Zone Activity Monitor is in charge of monitoring the state of the
served zone by observing the job arrival rate process coming from the ground and
communicating this information to the Scheduler that, as said so far, uses this
information to perform offload according to the current state of the zone activity.

Let us note that the values of the above probabilities play a crucial role in the
performance of the system. Indeed, high probability values cause an excessive
exchange of jobs among UAVs, with a consequent increase in the FANET pro-
cessing time due to the introduction of the time spent by the offloaded jobs in
the Offloading Queues. On the other hand, low probability values prevent the
system to leverage horizontal offload for load balancing, hence decreasing both
mean delay and delay jitter.

2.2.2 FANET Orchestrator

The FANET Orchestrator (FO) of each FANET resides in the Master UAV of the
FANET and has the objective of deciding the horizontal offloading probabilities
to be broadcasted to all the Schedulers in the FANET.

In order to solve the optimization problem of finding the best offloading prob-
abilities, a DRL agent is deployed inside the FO. As the number of UAVs inside
the FANET increases, traditional table-based RL becomes infeasible in solving
the problem due to its huge state space and the multidimensional discrete action
space. Therefore, DRL agents become mandatory to make the FO learn in un-
known environments and overcome the prohibitive computational requirements.

In this framework, the agent inside the FO interacts with its environment at
each decision epoch by observing the state of the environment and executing an
action that alters that state. This action is then evaluated against a performance
objective, and a reward is received by the agent. The reward is designed so that
maximizing the reward would achieve the desired goal. At each decision epoch n,
the agent selects an action an in the action space A . The state of the environment
perceivable by the agent at the decision epoch n is sn ∈ S (Σ), where S (Σ) denotes
the observable state space of the agent. After executing an action, the agent will

34

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

receive a reward rn. The goal of the agent is to maximize the total reward Gn it
receives with a discount factor γ. It is calculated as follows:

Gn =
+∞∑
k=0

γk · rn+k+1. (2.1)

The mapping between the state and the action is called the policy π of the agent.
Formally, the probability of the agent to choose an action an when it is in the
state sn is called the policy of the agent over all the action and state pairs:

π(a|sΣ) = Pr{an = a|sn = sΣ} ∀a ∈ A , ∀sΣ ∈ S (Σ). (2.2)

The state-value function vπ(sΣ) is defined as the expectation of future rewards
given the current state, that is:

vπ(sΣ) = E {Gn|sn = sΣ} ∀sΣ ∈ S (Σ). (2.3)

The action-value function qπ(sΣ, a) is defined as the expectation of the future
rewards given the current state sΣ if the action a is executed

qπ(sΣ, a) = E {Gn|sn = sΣ, an = a} ∀a ∈ A , ∀sn ∈ S (Σ). (2.4)

The relationship between the action-value and state-value functions is derived
from the Bellman optimality equation as:

qπ(sΣ, a) = rn + γvπ(sΣ) ∀a ∈ A , ∀sn ∈ S (Σ), (2.5)

where rn is the reward obtained when executing the action a in the state sn.
In our framework, in order to provide more transition samples for the whole

training, an experience buffer D has been introduced inside the FO of the FANET.
Any DRL algorithm can be used in this framework to support the FO operations.

One step of the local training of a generic DRL algorithm is summarized in
Algorithm 1. First, the experience buffer D is instantiated (lines 1-3). For each
epoch, we distinguish between two different phases, which are the start (lines 6-7)
and the end (lines 9-10) of the decision epoch. At the start of the decision epoch,
the agent observes the state and then executes an action based on the current
policy. Line 8 considers the environment evolving from one state to another one
until the next decision epoch is triggered. At the end of the epoch, as expressed in
lines 9-10, the agent receives the reward from the environment and observes the

35

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

next state. The experience is then stored in the experience buffer D (line 11), and
a gradient descent step is executed on a random minibatch of experience (lines
12-13).

Algorithm 1 Horizontal Offloading Training via DRL

1: Initialize Experience Buffer D to capacity M
2: Initialize Q(s, a) with random weights θ
3: Initialize Q̂(s, a) with weights θ− = θ
4: for each episode do
5: for each decision epoch n do
6: Observe state sn as in (2.7)
7: Execute random action with probability ϵ, otherwise execute an =

max{Q(sn, a; θ)}
8: Let the environment evolve
9: Calculate reward rn as in (2.11)

10: Observe state sn+1

11: Store state transition (sn, an, rn, sn+1) in Z
12: Get a random minibatch of state transition of size B from Z
13: Perform a gradient descent step on the loss with respect to the evaluation

network parameters θ
14: Soft update target network θ− = θ · τ + θ− · (1− τ)
15: end for
16: end for

The Markov Decision Process (MDP), including the state space S (Σ), the action
space A , the reward function rn, the state transition model, as well as details on
the environment, will be described in more detail in the next section.

2.2.3 Horizontal Offload Optimization

In this section, we introduce the optimization model used by the FO to decide
the horizontal offloading probabilities to be broadcasted to all the Schedulers in
the FANET. To this purpose, we first present the MDP used to support the FO
operations, and then we introduce the derivation of the transition rate matrix of
the MDP.

As said so far, each FANET implements horizontal offload for load balancing in
order to minimize average delay and delay jitter of job processing. More specifi-
cally, its FO is in charge of deciding the set of offloading probabilities that have
to be broadcasted to the UAV Schedulers to perform offload according to the
activity state of their zone. To this purpose, the FO applies an RL approach to
be able to follow the dynamics of the system it is orchestrating. The FO behaves

36

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

as an RL agent that iteratively interacts with the environment at each decision
epoch.

Let N be the number of UAVs of the FANET, and Ψ the number of possible
activity states of each zone covered by the FANET.

The environment of the agent of this FANET is represented by four types of
events:

1. job arrival : when a job arrives at one of the N UAVs of the FANET, it can
be either enqueued in the Processing Queue to be processed locally or in
the Offloading Queue, to be horizontally offloaded to the least-loaded UAV;

2. job processing : a job leaves the CE of the UAV where it has been processed;

3. job transmission for horizontal offload : a job leaves the Offloading Queue of
the Dwell UAV and arrives to the Processing UAV, entering its Processing
Queue;

4. activity-state change: one of the zones changes its activity state.

Therefore, the state of the environment, as seen by the agent in the FO of a
given FANET, is represented by the state of the UAV Processing Queues, the
state of the UAV Offloading Queues, and the activity state of the zones served
by the UAVs of the considered FANET:

S(P)(t) =
(
S(P,1)(t), S(P,2)(t), . . . , S(P,N)(t)

)
;

S(O)(t) =
(
S(O,1)(t), S(O,2)(t), . . . , S(O,N)(t)

)
;

S(Z)(t) =
(
S(Z,1)(t), S(Z,2)(t), . . . , S(Z,N)(t)

)
.

(2.6)

Thus, the behavior of the FANET environment is modeled with a multi-dimension
Markov chain defined as follows:

S(Σ)(t) =
(
S(P)(t), S(O)(t), S(Z)(t)

)
. (2.7)

Let us indicate the state space of the Markov chain S(Σ)(t) as S (Σ). The state
transition, described in the next section, is considered stochastic because the
next state does not depend only on the actions decided by the agent but also on
external factors that are not controlled by the agent, such as the arrival of new
jobs and changes of the zone activity states.

The agent observes the environment state defined in (2.7) at the beginning of
each epoch. Let tn be the starting instant of the epoch n, and sn be the state

37

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

observed at that instant, that is:

sn = S(Σ)(tn). (2.8)

Let P(O) be the set of horizontal offloading probabilities to be optimized by the
:

P(O) =
{
p(O)
σ1

, p(O)
σ2

, . . . , p(O)
σΨ

}
, (2.9)

where {σ1, . . . , σΨ} is the set of all possible activity states, while p
(O)
σi , for each

i ∈ [1,Ψ], represents the offloading probability to be used by the UAV Schedulers
when the zone they are covering is in the activity state σi.

The action, that is, the choice of the offloading probabilities, needs to meet the
following requirements. Since the higher the mean job arrival rate, the higher the
need for horizontal offload to avoid local overload and to balance the load in the
FANET, we impose that the higher the zone activity, the higher the offloading
probability. More, specifically, for two different activity states σi and σj , we apply
the following rules

if Λ(A)
[σi]

= Λ
(A)
[σj]
⇒ p

(O)
σi = p

(O)
σj ,

if Λ(A)
[σi]

> Λ
(A)
[σj]
⇒ p

(O)
σi ≥ p

(O)
σj ,

(2.10)

where Λ
(A)
[σi]

is the mean job arrival rate when the zone activity state is equal to
σi.

Finally, we recall that the objective of the proposed framework is to maintain
the FANET processing delay as low as possible and as equal as possible for all
the jobs, independently of the activity state of the zones where they have been
generated and thus independent of their access point to the FANET. To this
purpose, we define the random process array δ(n) whose generic element, δν(n),
for each ν ∈ [1, N], represents the mean value of the FANET delays suffered
during the decision epoch n by jobs processed by UAV ν. In order to minimize
both the mean delay and the jitter of the elements of δ(n), the reward is defined
as a function of the maximum delay value observed by the UAVs at the end of
the decision epoch n. Therefore, the reward function is defined as follows:

rn = −maxνE{δν(n)}. (2.11)

In order to calculate the term E{δν(n)} in (2.11), for each ν ∈ [1, N], the UAV ν

retrieves, for each job it has processed, the information regarding the time spent
by it in the FANET before being processed; this information is sent to the FO
with a beacon message so that the latter can keep track of the UAV with the

38

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

lowest processing queue, and update the probability distribution f
(δ)
ν (d) of the

FANET delay suffered by jobs served by the same UAV. At the end of the epoch,
the FO uses f

(δ)
ν (d) to derive E{δν(n)}, for each ν ∈ [1, N], as follows:

E{δν(n)} =
∑
∀d

d · f (δ)
ν (d) (2.12)

and therefore, using (2.11), it calculates rn.
Likewise, the delay jitter, defined as the standard deviation of the overall delay

suffered in the FANET, can be derived as follows:

Γ̄ =
1

N

N∑
ν=1

√∑
∀d

[d− E{δnν }]
2 · f (δ)

ν (d) (2.13)

In order to better analyze the behavior of the system, two more parameters
have been taken into account: the average delays suffered in the Processing and
in the Offloading Queues. These values can be derived from the average lengths
of these queues and applying the Little theorem as follows:

D̄P =
1

N

N∑
ν=1

[
Q̄(P)

ν /λ̄(P)
ν

]
(2.14)

D̄O =
1

N

N∑
ν=1

[
Q̄(O)

ν /λ̄(O)
ν

]
(2.15)

where the values λ̄
(P)
ν and λ̄

(O)
ν are the actual arrival rates to the Processing

and Offloading Queues of the UAV ν. Of course, their sum is equal to the whole
mean arrival rate λ̄

(IN)
ν from the zone the UAV ν is covering. Moreover, we define

the job offloading ratio for the UAV ν as the portion of the job flow the UAV ν

offloads. It can be calculated as follows:

ων =
λ̄
(O)
ν

λ̄
(IN)
ν

(2.16)

Let us stress that ων is not exactly equal to the average value of the offloading
probabilities provided by the FO to the UAV ν because, when the length of the
Processing Queue of the UAV ν is the lowest among all the UAVs in the FANET,
it does offload any job. Finally, a KPI that measures the system’s unreliability is
the probability that a given delay threshold, Dmax, is violated. It can be easily
derived from the pdf of the overall delays for flows leaving the FANET through
the UAV ν as follows:

39

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Θ(Dmax) =
1

N

N∑
ν=1

∑
∀d>Dmax

f
(Df)
ν (d) (2.17)

The behavior of each zone ν of a FANET, for each ν ∈ [1, N], is modeled by a
Markov Modulated Poisson Process (MMPP) Aν(t) [86]. The process changes the
vertical job-offloading rate according to the state of an underlying Markov chain.
The MMPP permits us to represent both first- and second-order statistics of the
real job arrival process. These statistics are sufficient to capture the behavior
of queueing systems loaded by the real job arrival process [87]. The MMPP is
characterized by a 2-uple

(
Q(A),Λ(A)

)
, where:

• Q(A) is the transition rate matrix of the underlying Markov chain; consid-
ering two generic states σi and σj, its generic element, Q(A)

[σi,σj]
, ∀i, j ∈ [1,Ψ],

represents the transition rate from σi to σj;

• Λ(A) is the array of the job arrival rates; its generic element, Λ(A)
[σi]

, ∀i ∈ [1,Ψ],
represents the mean value of the Poisson process modeling the job arrival
rate when the underlying Markov chain of Aν(t) is in the state σi.

Defining Π(A) as the steady-state probability array of the underlying Markov
chain, the mean job arrival rate for each UAV can be evaluated as

λA = Λ(A) ·
(
Π(A)

)T
. (2.18)

Indicating the average transmission bit rate of each link as rL (bit/s), and the
mean job size, expressed in bits, as J , the mean transmission rate for horizontal
offload between two UAVs of the FANET is:

µO =
J

TO

(job/s). (2.19)

Likewise, the mean processing rate in the CE of a UAV depends on the clock
frequency of the CE CPU, φCE, and the mean number of CPU operations required
to process a job, γ, as follows:

µP =
φCE

γ
(job/s). (2.20)

The above two rates are the serving rates of the two queues QO and QP , respec-
tively.

Now, let us derive the transition rate matrix Q(Σ) of the Markov chain modeling

40

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

the FANET behavior. To this purpose, let us consider two generic states:

s′Σ = (s′P , s
′
O, s

′
Z) ∈ S (Σ),

s′′Σ = (s′′P , s
′′
O, s

′′
Z) ∈ S (Σ),

(2.21)

where s′P , s′O and s′A are three arrays whose generic elements, s′(P,ν), s
′
(O,ν) and

s′(A,ν), for each ν ∈ [1, N], respectively represent the state of the Processing Queue,
the Offloading Queue and the zone activity of the UAV ν. The same holds for the
arrays s′′P , s′′O and s′′Z .

The generic element of Q(Σ), representing the transition rate from s′Σ to s′′Σ, can
be expressed as follows:

Q
(Σ)

[s′Σ,s
′′
Σ]
=



λ
(P,ν)

s′Σ
if s′′(P,ν) = s′(P,ν) + 1

µP if s′′(P,ν) = s′(P,ν) − 1

λ
(O,ν)

s′Σ
if s′′(O,ν) = s′(O,ν) + 1

µO if s′′(O,ν) = s′(O,ν) − 1

Q
(A)
[s′

(A,ν)
,s′′

(A,ν)
] if s′′(A,ν) ̸= s′(A,ν)

−
∑

∀sΣ ̸=s′Σ
Q(Σ)[s′Σ, sΣ] if s′′Σ = s′Σ

0 otherwise

(2.22)

In the above equation, for the sake of simplicity, we have indicated only the
variables of the whole system state that have changed. So, for example, the first
condition indicates that the variable S(P,ν)(t) has changed from s′(P,ν) to s′′(P,ν),
while s′′(P,z) = s′(P,z),∀z ̸= ν, s′′(O,ν) = s′(O,ν),∀ν, and s′′(A,ν) = s′(A,ν),∀ν.

The terms λ
(P,ν)

s′Σ
and λ

(O,ν)

s′Σ
represent, respectively, the mean job arrival rate to

the Processing and to the Offloading Queues of the UAV ν. The first one can be
calculated as the sum of the following three terms:

• the arrival rate from the zone ν of jobs that are not horizontally offloaded
according to the non-offloading probability 1− p

(O)

s′
(A,ν)

:

α1 =
(
1− p

(O)

s′
(A,ν)

)
· λ(Aν)

s′
(A,ν)

(2.23)

• the arrival rate of the jobs from the zone ν that, although belonging to
the set of jobs that should be offloaded according to the probability p

(O)

s′
(A,ν)

41

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

imposed by the FO, are enqueued in the local Processing Queue of the
UAV ν because this queue has the shortest length among the UAVs in the
FANET:

α2 = I(P)(ν) · p(O)

s′
(A,ν)
· λ(Aν)

s′
(A,ν)

(2.24)

• the arrival rate of jobs coming from other UAVs in the case the Processing
Queue of the UAV ν has the shortest length among the UAVs in the FANET:

α3 = I(P)(ν) ·
N∑

z = 1

z ̸∈ ∆(P)(ν)

p
(O)

s′
(A,z)

Ξ(P)(ν)
· λ(Az)

s′
(A,z)

(2.25)

,

where:

• I(P)(ν) is an indicator function which is equal to 1 if the Processing Queue
length of the UAV ν is the shortest one among the N , otherwise it is equal
to 0. Formally, we have:

I(P)(ν) =


1 if s(P,ν) ≤ s(P,z) ∀z ̸= ν

0 otherwise
(2.26)

• ∆(P)(ν) is the set of UAVs which have the same Processing Queue length
of the UAV ν:

∆(P)(ν) =
N⋃

z = 1

s(P,z) = s(P,ν)

{z} (2.27)

• Ξ(P)(ν) is the number of UAVs that have the same Processing Queue length
of the UAV ν. It matches the number of items inside the set ∆(P)(ν), that
is:

Ξ(P)(ν) =
∣∣∆(P)(ν)

∣∣ (2.28)

Therefore, the overall mean arrival rate of jobs to the Processing Queue of the
UAV ν is:

λ
(P,ν)

s′Σ
= α1 + α2 + α3. (2.29)

The mean job arrival rate to the Offloading Queue of the UAV ν can be derived
as the rate of the remaining part of the job arrival flow that is not sent to the

42

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Processing Queue, that is:

λ
(O,ν)

s′Σ
=
(
1− I(P)(ν)

)
· p(O)

s′
(A,ν)
· λ(Aν)

s′
(A,ν)

(2.30)

2.2.4 Numerical Results

In this section, we present some numerical results to evaluate the performance of
the proposed FANET management framework and to compare it to some tech-
niques previously proposed in other works in the literature. More specifically, we
first present the reference scenario we considered for performance evaluation, and
we describe the setup of the parameters we used to simulate its behavior. Then we
illustrate numerical results collected in the considered scenario, describing some
analyses against three parameters that play a key role in the behavior of the
system and deriving some guidelines for system design.

We consider a FANET with 6 UAVs that cover an area where a number of video
surveillance cameras are installed as the main use case. The vertical application
to support consists in elaborating video streams for image recognition purposes,
and this must be performed in less than DMAX = 50ms. Moreover, let us suppose
that this requirement has to be fulfilled 0.9999% of the time. Each job is an image
with an average size of J = 900 kbytes. To process each image, we considered
the MobileNet convolutional neural network [88] that, trained on the CIFAR-10
dataset [89], uses an average number ϵ = 12 · 106 of CPU operations. In order
to statistically characterize the arrival rate process of jobs vertically offloaded by
GDs, for one week, we collected measurements in a real video surveillance testbed
deployed at the University of Catania Campus with video cameras generating
high-definition video streams. Processing the data trace constituted by the stream
of jobs offloaded to the FANET by each zone, each covered by one UAV, we
identified two main activity states of each zone, hereinafter referred to as low-
activity (L) and high-activity (H), i.e., the set of activities is S = {σL, σH}. The
transition rate matrix and the job-arrival rate array calculated through this data
analysis for each zone as the solution of an inverse eigenvalue problem [90, 91]
from the traces, are:

Q(A) =

[
−5.5 · 10−3 5.5 · 10−3

5.1 · 10−2 −5.1 · 10−2

]
(2.31)

Λ(A) = [1, 6] kjob/s (2.32)

43

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Table 2.1: Setup Parameters for the Four Scenarios

Analysis 1 Analysis 2 Analysis 3

N [4, 9] 6 6

µp (kjob/s) 2.35 [1.6, 2.35] 2.35

µo (kjob/s) 4.2 4.2 [1.2, 7.2]

KP = KO 500 500 500

µL (kjob/s) [0.67, 1.5] 1 1

µH [4, 9] 26 6

According to (2.18), this means that the mean job arrival rate is λ̄A =1.5 kjob/s.
UAVs are equipped with an INTEL NUC 10 Barebone Core i7 CE with a clock
frequency φCE = 28.2 GHz, meaning that the job processing rate is µP = 2.35
kjob/s, and energy consumption required to process one job is equal to ς =

59.1mJ . Let us notice that we neglect the computation load due to the presence
of the FO running on the Master-UAV because it requires a number of operations
of about 3.5 · 104 (due to the forward pass in the FO neural network), which is
negligible compared to the average number ϵ = 12 · 106 of operations needed to
process a job. Let the link transmission rate of the UAV-2-UAV links be equal
to rL = 30 Mbit/s, consequently, the job transmission rate is µO = 4.2 kjob/s.
Beacon messages sent by each UAV to the Master-UAV have a payload size of 2
bytes. These messages are generated each time a job is enqueued in the processing
queue and each time a job is served by the CE. Therefore, the transmission rate
required to transmit beacon messages from each UAV, including the overhead
due to the protocol headers (assuming that some header compression technique
is used [92, 93] is equal, on average, approximately to 50 kbit/s. Let us notice
that this value is negligible if compared with the link transmission rate rL of the
UAV-2-UAV links, and therefore we can neglect any effect of beacon messages on
the UAV-2-UAV data transmission for horizontal offload.

The resulting utilization coefficient of the FANET is ρ(F) = 0.638. Let KP =

KO = 500 jobs be the size of the Processing and the Offloading Queues of each
UAV. On top of that, we have performed three different analyses, each based on
the reference scenario described so far, by varying some relevant FANET con-
figuration parameters, specifically the number of UAVs covering the area, the
computation power of the CE mounted onboard UAV, and the link transmission
rate of the UAV-2-UAV links. The simulation parameters for each performance
analysis are summarized in Table 2.1. For performance comparison purposes, we

44

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

consider the management policy that is, to the best of our knowledge, the most
appropriate one in the current literature to use for performance comparison. This
is the Probabilistic Computation Offloading (PCO) proposed in [70]. Moreover,
we compare our framework with two heuristic algorithms, i.e., Local Drone Only
(LDO) and Uniform Selection (US), commonly used in similar works for perfor-
mance comparison. The details are described as follows:

• PCO tries to achieve the optimal scheduling solution by enabling each UAV
to independently make online offloading decisions based on a certain offload-
ing probability, which is determined by parameter settings and adapted to
different service scenarios. The optimal probabilities are achieved in an iter-
ative way using the ADMM optimization method [94]. Using the PCO policy
in scenarios like the one considered in this research, in which the system
behavior is highly dynamic because the activity of zones changes frequently,
requires that offload probabilities have to be recalculated at each change by
using the ADMM method. Since the ADMM method is computationally
and timely demanding, the only solution that allows the PCO to work in
real-time is an offline calculation of the optimal offloading probabilities for
each UAV. This, of course, is suitable for our comparison purposes but is
not efficient in real scenarios where the FO has to follow system dynamics
to achieve good performances;

• LDO policy never offloads any job to other UAVs, hence each job is com-
puted by the Dwell UAV;

• US policy randomly chooses the horizontal offloading probability each time
a job is received from a UAV.

The experiments were performed using a simulator based on OpenAI Gym [95]
and Pytorch [96]. We trained each DDQN model for 10.000 steps. Let us point
out that this value ensured that the neural network received enough experience
regardless of the dynamics of the environment on which the network has been
trained on. In some of the trained models, the DDQN loss converges long before
the end of the training phase. To diversify the experience obtained and dras-
tically reduce the time required for the network convergence, each Agent was
trained simultaneously on 10 environments with different random seeds but the
same settings in terms of the number of UAVs, CE processing rate, and link
transmission rate. The DDQN neural networks have two fully connected layers,
each with 128 neurons. To balance exploration and exploitation, we applied an
adaptive ϵ-greedy policy.

45

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

The ratio of exploration is initialized to 1 and gradually decreased down to 0.01.
We use the Adam optimizer with a learning rate α = 10−3, and with β1 = 0.9

and β2 = 0.999 to update θ. To avoid a correlation between the action values
and the target values, instead of copying the weights of the evaluation network
θ to the target network, we performed a soft update of the weights of the target
network by having them slowly track the learned networks, with τ << 1. This
means that the target values are constrained to change slowly, greatly improving
the stability of learning. We also set the replay buffer capacity to 5 · 105, and the
batch size to B = 32.

Figure 2.3: Reward convergence behavior

In order to evaluate the convergence of the proposed algorithm, in Fig. 2.3 we
show the cumulative episode reward as the number of UAVs increases from 4 to 9.
In Fig. 2.3 we can note that the reward converges in about 50 episodes. Since each
episode lasts 10 s, we can deduce that a DDQN trained from scratch on random
initial weights needs about 8 mins to fully adapt to the environment dynamics.
However, transfer learning techniques could also be applied to train each DDQN
model using pre-trained weights of models trained on different environments to
speed up training. Therefore, we can conclude that the proposed management
model, thanks to the application of DDQN, is able to easily adapt to highly
dynamic systems that change their behavior in the time scale of a few seconds.

The system performance of ZTM is collected during the evaluation phase of
the DQN. For performance evaluation, we consider three different analyses. In
the first analysis, presented in Section VI-B1, we compare the performance of
the proposed ZTM approach as the number of FANET UAVs increases from 4 to
9. Subsequently, we evaluate the performance of the FANET as the processing
rate of the UAV CE increases. This strongly affects the power consumption, the
maximum time of each UAV battery charge lifetime, and, consequently, the max-

46

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

imum duration of the FANET mission. Finally, in the third analysis, we evaluate
how the performance of UAV-2-UAV channels affects the FANET behavior. For
all the scenarios, we compare the performance of the proposed ZTM approach
against the LDO, US, and PCO policies previously described. We also provide
some considerations to provide the system designer with some guidelines.

Figure 2.4: Average Total Delay vs. the number of UAVs.

1. Impact of the Number of UAVs : This scenario is used to evaluate the per-
formance of the proposed framework as the number of FANET UAVs varies
in the range [4, 9]. The other parameters that characterize the FANET are
left as described so far. This analysis can also be used to size the number
of UAVs in the entire fleet. Let us note that the average input-flow rate for
each UAV decreases as the number of UAVs increases, and consequently,
the utilization coefficient of each UAV decreases as well. In this analysis,
we compare our framework with the PCO, LDO, and US policies. Fig. 2.4
shows the average total delay, derived as in (2.12). As expected, it decreases
as the number of UAVs increases. This figure allows us to get a general idea
of the FANET performance. The number of UAVs needed to obtain cer-
tain performances can be obtained by looking at the minimum number of
UAVs whose performances satisfy the requested ones. Notice how using the
proposed ZTM algorithm, by efficiently leveraging the horizontal offloading
probabilities based on the state of the FANET, improves the average delay
compared to PCO and the other heuristics.

Figs. 2.5a and 2.5b present the average values of the delay suffered in the
Processing Queues and in the Offloading Queues, respectively, calculated
as in (2.14) and (2.15). The total delay measured for the ZTM policy is
lower than the other policies, thanks to the ZTM’s ability to identify and

47

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

(a) Average Processing Delay (b) Average Offloading Delay

Figure 2.5: Components of the Average Total Delay vs. number of UAVs.

prevent critical states. This explains why, on average, the offload delay is
higher than PCO while the processing delay is the lowest. In this framework,
PCO cannot achieve better performance than ZTM as (i) it cannot follow
the time-varying dynamics of the system and (ii) it makes offloading deci-
sions based on partial information of the system. PCO needs the average
job arrival rate to optimize the offloading probabilities: this means that the
average job arrival rate must be periodically estimated; moreover, it is desir-
able that the estimated average job arrival rate accurately matches the real
network dynamics as much as possible. On the other hand, our approach
does not need to know the average job arrival rate, hence it achieves better
results in scenarios with real network dynamics and real data to process,
without requiring any previous knowledge.

Figure 2.6: Delay Violation Probability vs. the number of UAVs.

The total average delay, however, does not give us any information regarding
the probability of matching certain delay requirements. For this reason,
Fig. 2.6 depicts the delay violation probability, i.e., the probability that the

48

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

delay of the system exceeds the delay threshold of Dmax, already defined
in (2.17) as a measure of the system unreliability. In our case, considering
that Dmax = 50 ms and the probability of it being violated must be not
higher than 1 ·10−4, then the appropriate minimum number of UAVs would
be N = 6.

Figure 2.7: Delay Jitter vs. the number of UAVs.

Fig. 2.7 shows the measured delay jitter. We note how ZTM is not only the
one that achieves the best delay performance but also the framework that
presents the lowest jitter, and this allows to almost guarantee, for certain
values of N , that the delay perceived by the jobs at a given moment is
almost independent from the activity of the zone, that is, from the GD job
generation frequency in the area where the job is generated.

(a) Job offloading probabilities (b) Measured job offloading ratio

Figure 2.8: Average offloading statistics vs. the number of UAVs.

Figs. 2.8a and 2.8b depict the average offloading probabilities used by the
FO Agent and the average offloading ratio. The values of the two graphs do
not coincide as the scheduler inside each UAV cannot offload if its Processing
Queue is the smallest among all the UAVs. This means that as the number

49

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

of UAVs increases and the utilization coefficient of each UAV decreases,
the load is almost balanced among all the UAVs, and it becomes more
likely that more UAVs do not need to offload to other UAVs because their
Processing Queue is often the lowest one. This is the reason why, despite
the probability of offloading increasing, as shown in Fig. 2.8a, the average
performed offload ratio remains almost constant. Furthermore, by using
higher offloading probabilities than the other policies, the ZTM achieves the
goal of not only maintaining low total delay values but also decreasing the
jitter. If, on the one hand, as the number of UAVs increases, the utilization
coefficient of the system decreases so that avoiding offloading could reduce
the total delay, in practice, this is not the case. In fact, the presence of more
UAVs guarantees more computational capacity that would remain unused
if offloading is not frequently performed: this is, in fact, observable from the
performance of the LDO algorithm, which tends to improve as the number
of UAVs increases, but still performs worse than all the other policies.

Figure 2.9: Average Total Delay vs. job processing rate µ̄P .

2. Impact of the CE Processing Rate: In this section, we analyze how the
FANET performance is influenced by the CE processing rate µP ranging in
the interval [1.60, 2.35] kjob/s, while the number of UAVs in the FANET is
maintained constant and equal to N = 6. Increasing the CE processing rate
implies decreasing the lifetime of the battery charge of each UAV in the
FANET, and, therefore, the maximum duration of the FANET mission it-
self, as discussed later. Obviously, as the available processing rate increases,
the overall system performance improves, as shown in Fig. 2.9 for the av-
erage total delay. It will therefore be necessary to find the right tradeoff
between performance and power consumption.

In Figs. 2.10a and 2.10b we show the performance of the FANET in terms of

50

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

(a) Average Processing Delay (b) Average Offloading Delay

Figure 2.10: Components of the Average Total Delay.

processing and offloading delays. As already seen in the previous analysis,
the ZTM policy achieves better results by leveraging the offloading prob-
abilities in the most critical moments, thus achieving a better processing
delay among all at the cost of a greater offloading delay.

Figure 2.11: Delay Jitter vs. job processing rate µ̄P

The delay jitter of the ZTM turns out to be the lowest of all policies, too,
as shown in Fig. 2.11. We then show in Figs. 2.12a and 2.12b the offloading
probabilities used by the Agent and the actual offloading ratio. As expected,
the offloading probabilities increase as the CE processing rate decreases and,
therefore, as the utilization coefficient of each UAV increases. This is a dif-
ferent behavior compared to the one considered in the previous analysis,
where instead, the offloading probabilities increased as the utilization fac-
tor decreased because in the latter, the presence of a greater number of
UAVs, and therefore of overall processing queues and computing elements,
allowed the ZTM to intelligently take advantage of the greater computa-
tional capacity available, which instead in this case does not increase nor

51

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

(a) Job Offloading Probabilities (b) Measured Job Offloading Ratio

Figure 2.12: Components of the Average Total Delay vs. job processing rate µ̄P .

decrease, since the number of UAVs is fixed at N = 6.

Figure 2.13: Delay Violation Probability vs. job processing rate µ̄P .

We then show in Fig. 2.13 the delay violation probability. More specifically,
it increases as the processing rate decreases. However, since as the processing
rate decreases, the battery charge duration increases, the most appropriate
processing rate should be the smallest for which the delay requirements
are fulfilled with a certain probability so that both the battery duration is
maximized while fulfilling delay requirements.

3. Impact of the UAV-2-UAV Link Transmission Rate: The third analysis we
carried out on the reference system regards the impact of the UAV-2-UAV
link transmission rate on the overall performance. As expected, the delay
decreases as channel conditions improve. The ZTM manages to obtain bet-
ter performances than the other approaches, as shown in Figs. 2.14a, 2.14b
and 2.14c. The processing delay for the ZTM remains almost the same even
for low link transmission rate values; on the other hand, the performance
of the other policies suffers from the poor capacity of the bit rate.

52

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

(a) Average Total Delay (b) Average Processing Delay

(c) Average Offloading Delay

Figure 2.14: Delay performance vs. UAV-2-UAV link transmission rate.

Figure 2.15: Delay Jitter vs. UAV-2-UAV link transmission rate.

The lower channel capacity is also reflected in the performance of the de-
lay jitter, which, as expected, increases as the transmission rate decreases,
as shown in Fig. 2.15. Also, this metric shows better performance for the
proposed ZTM policy. As expected, the average job offloading probabili-
ties (Fig. 2.16.a) and the average offloading ratio (Fig. 2.16.b) decreases as
the link transmission rate decreases both in the cases of ZTM and PCO,
demonstrating how a worse channel capacity makes the delay perceived by

53

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

(a) Job Offloading Probabilities (b) Measured Job Offloading Ratio

Figure 2.16: Average offloading probabilities vs. UAV-2-UAV link transmission
rate.

the offload queues more relevant to the total job delay, which therefore
causes to lessen the offloading queues usage w.r.t the reference scenario.

Figure 2.17: Delay Violation Probability vs. UAV-2-UAV link transmission rate.

Finally, in Fig. 2.17 we show how the delay violation probability drastically
decreases for the ZTM as the link transmission rate increases; however, the
same is not valid for the other policies, in which the probabilities remain
relatively high.

4. Further Considerations : We conclude the numerical analysis by presenting
some final considerations that can provide a system designer with some
guidelines to design the FANET in order to fulfill user requirements. To this
purpose, let us refer again to the reference system described in Table 2.1, i.e.,
with N = 6, µP = 2.35 kjob/s and a UAV-2-UAV link bit rate of 30 Mbit/s.
First, we analyze the impact of the latency-requirement level of vertical
applications that use the proposed system, specifically the impact of the
maximum value of tolerated delay, Dmax, on the delay violation probability.

54

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.18: Delay Violation Probability vs. delay threshold.

To this purpose, Fig. 2.18 depicts delay violation probability as a function
of Dmax for the considered setup. As expected, reliability guaranteed by
the system increases for applications that tolerate higher delays, given that
the violation probability decreases. We can observe that the best tradeoff is
achieved by ZTM. If this tradeoff does not satisfy applications, then some
configuration parameters should be modified, as for example the number of
UAVs in the FANET. If this is not compliant with the design constraints,
increasing the processing rate of the CEs mounted onboard may be another
viable solution. However, this has a strong impact on the maximum duration
of the FANET mission, because this increases power consumption. In order
to analyze this issue, as an example, we assumed that the FANET is realized
with quadcopter UAVs with an engine power consumption φ(EN) = 66 W,
and with a Lithium battery with a capacity of 60 Wh.

Figure 2.19: FANET flight autonomy vs. average total delay.

The total power consumption of each UAV, φ(TOT), is calculated as the
sum of φ(EN) and the power consumption of the CE, φ(CE), which can be

55

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

calculated as follows:

φ(CE) = ς · µ̄P (2.33)

The maximum FANET flight autonomy depends on φ(TOT) and the battery
capacity, βC , as follows:

χ =
β

φ(TOT)
(2.34)

Fig. 2.19 combines the average total delay (for example, refer to the one
shown in Fig. 2.4, for N = 6) with the maximum duration of the FANET
mission, calculated as in (2.5.5), to analyze how the maximum duration of
the FANET mission is related to the average total delay suffered in the
FANET. Choosing a point in this figure means deciding the policy (ZTM,
PCO, LDO, or US) and a specific CE computation rate, µ̄P . First, we can
observe that our proposed ZTM policy maximizes the FANET mission du-
ration for a given average total delay requirement. Indeed, the ZTM policy
improves the average delay over PCO by 23% and over US by 47% on av-
erage. Then, for example, for the ZTM, if the vertical application tolerates
a FANET delay of 80 ms, we can use a CE with a µ̄P = 1.47 kjob/s, which
is with a frequency clock of 17.64 GHz. In this case, the FANET will have
a flight autonomy of about 24 minutes. However, if the vertical application
requires the FANET delay to be not higher than 15 ms, then the CE clock
frequency should be increased at least to the value of 21.12 GHz to be able
to process jobs with a rate of µ̄P = 1.76 kjob/s; however, this leads to an
increase of the CE power consumption and thus reducing the FANET flight
autonomy to about 21 minutes.

2.3 Slicing a FANET for heterogeneous delay-constrained

applications

Slicing is a key enabler to provide the network with the flexibility needed to ad-
dress the requirements of all the possible vertical services supported by 5G. In
[30], Yang et al. address the problem of how to satisfy different types of services
using a unique UAV network, avoiding the creation of an individual network so-
lution for each service. For this reason, the UAV network resources are virtually
isolated and divided into two types of slices (i.e. URLLC and MBB). In [31],

56

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Xilouris et al. discuss on the extension of network slicing in the case of UAV-
based 5G-network deployment, while in [32] the problem of jointly allocating
CPUs and VNFs for network slicing applications is addressed. In [33] Van Huynh
et al. present a framework that maximizes a provider’s reward and allows reducing
cases in which an over-provisioning of the resources is performed, choosing which
slices have to be admitted. In [34] Castellano et al. propose a framework with
the purpose of implementing a heterogeneous resource orchestration. Liu et al.
in [35] study the cross-domain resource orchestration and management problems
regarding the implementation of a dynamic network slice in mobile networks.
By developing a distributed cross-domain resource orchestration protocol, they
optimize the cross-domain resource orchestration and provide the performance
and functional isolations among network slices. Finally, in [36], D’Oro et al. de-
scribe Sl-EDGE, a MEC slicing framework to help network operators to create
heterogeneous slice services on common edge devices.

Given the requirement for future networks to provide a full e2e automation of
network and service management, the literature is still missing studies regarding
the possibility of using a FANET to provide MEC facilities to users interested
in the services offered by two or more slices, finding a tradeoff between the re-
quirements characterizing each slice and the MEC resources installed on board
UAV.

A possible solution to improve performance inside a slice dedicated to time-
critical vertical applications could be increasing the amount of computing power
of the CEs dedicated to that slice, but this worsens the performance of the other
slices. So, besides deciding the best inter-slice sharing of computation resources,
it is necessary to optimize intra-slice performance. By means of horizontal offload-
ing, overloaded UAVs have the possibility to send jobs, received for processing
from ground devices, to other UAVs, hence avoiding unbalanced situations in
which some UAVs introduce high processing delays, while others are just flying
and not contributing with their computing capabilities. However, offloading jobs
between UAVs introduces an additional delay due to the limited capacities of the
wireless links. Therefore, achieving a tradeoff between energy consumption and
processing delays and balancing performance among different slices according to
user requirements is critical and needs to be carefully considered.

With all this in mind, we propose a zero-touch management framework for the
above FANET. An inter-slice orchestrator is introduced to split the computation
power of the CE of each UAV between the different slices, while an intra-slice
orchestrator is in charge of managing horizontal offload among UAVs to obtain

57

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

load balancing among UAVs, so minimizing both mean delays and delay jitter.
We introduce an extensive simulation campaign for performance evaluation, in
order to demonstrate the power of the proposed framework and provide designers
with some guidelines in optimizing some key system parameters

2.3.1 System Description

We propose a FANET-based framework providing 5G network slicing to a remote
area for heterogeneous vertical applications. As already defined in the previous
sections, we consider a huge number of devices, referred to as GD, that generate
jobs to be processed with stringent requirements in terms of delay. We assume
that the geographic area where these devices are deployed is not covered by any
network infrastructure that is able to provide them with edge computing facilities.
For this reason, a FANET is used to provide this area with edge computing on
demand. This way, GDs can offload jobs to the FANET for processing. In the
sequel, for the sake of simplicity, we refer to a group of homogeneous devices as a
Ground Device Group (GDG). Therefore, each GDG is characterized by a specific
job-offloading rate and a specific set of QoS requirements, expressed in terms of
mean delay and delay jitter. For this reason, the FANET is required to provide
different network slices, one for each GDG.

One of the main challenges in the proposed system is constituted by the duration
of the battery charge of each UAV. To this purpose, let us notice that increasing
the capacity of the battery, on the one hand, tends to extend the UAV flight
autonomy but, on the other hand, increases the UAV payload, and therefore may
cause an increase in power consumption during flight. Therefore, the choice of
the battery to be mounted on board is crucial but also out of the scope of this
research. Moreover, let us note that to mitigate the above problem of short UAV
flight duration and obtain a sufficient duration of the mission, the latter is not
entrusted to a single UAV but to a fleet of UAVs organized in FANET. In order
to make the system zero-touch, i.e. with no human intervention, and even make it
work in areas not supplied by the electrical grid, a Charge Station is installed close
to the geographic area where the network service is requested. The Charge Station
could even be mobile, to be easily installed when needed, and easily removed when
the FANET ends its mission. With the aim of minimizing the service downtime
due to flat batteries, we assume that the Charge Station is equipped with an
automatic battery swap mechanism to replace the batteries of UAVs very quickly
and with no human intervention. Moreover, we assume that a sufficient number of
charged batteries is always present in the Charge Station, such that a landed UAV

58

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.20: FANET management architecture.

can replace its battery and return to the FANET immediately. The Charge Station
is also equipped with a renewable energy generator (e.g., a wind power microeolic
system or a photovoltaic power generator) to supply pads where flat batteries
are connected for recharging. In addition, if a connection with the structured
Internet is needed, a communication module is installed, for example, for satellite
communications. The Charge Station is also the place where UAVs are loaded
with the edge capabilities they offer (i.e. edge computing applications they run).
Let N be the number of UAVs in the FANET. The geographic area covered by
the considered FANET is subdivided in zones, each assigned to one UAV of the
FANET. Therefore, N is also the number of zones to be served by the FANET.
In order to provide GDs with edge computing, each UAV is equipped with a CE.
The vertical offloading process is time-variant according to the current state of
activity of each GDG in each zone: the higher the activity, the higher the emission
rate of jobs offloaded to the FANET to be processed. Let M be the number of
network slices the FANET has to provide. Therefore, each CE is sliced in M
portions, each dedicated to serving one slice. Wireless links between UAVs are
sliced in M portions as well with the aim of providing communication channels
that are isolated from each other. Moreover, in order to guarantee isolation in
accessing the CE of each UAV, one queue is associated with each CE slice. In this
way, jobs of a given slice that find the slice CE busy to serve previous jobs are
accommodated in the specific queue of that slice.

The management architecture of the FANET is shown in Fig. 2.20. The CE
Scheduler is in charge of assigning a portion of the whole CE computing rate to
each slice. In order to provide slices with priorities, the CE Scheduler can apply
Weighted Fair Queuing (WFQ) and Priority Queuing (PQ) techniques [40]. As
shown in Fig. 2.20, for the generic UAV i, we will indicate the whole CE computing

59

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

rate of its CE as µ
(P)
i , while µ

(P,σ)
i represents the portion of CE computing rate

assigned to the slice σ, for σ ∈ [1,M]. Of course, we have:
∑M

σ=1 µ
(P,σ)
i = µ

(P)
i .

For each job, we name the UAV that has received it from the ground as the
Dwell UAV, and the UAV where the job is processed as the Processing UAV. The
decision on whether to process a job received in a slice by a UAV locally or offload
it to another UAV is made according to an offloading scheduling policy that is in
charge of a local entity named Offload Controller. If it decides to offload a job, it
has also to select the Processing UAV for it. M Offload Controllers, i.e. one for
each slice, are available in each UAV.

As shown in Fig. 2.20, the FANET Orchestrator is hierarchically structured in
two layers:

• Inter-slice Orchestrator;

• Intra-slice Orchestrators.

The Inter-slice Orchestrator is in charge of deciding the amount of the comput-
ing rate, µ(P,σ)

i , of the CE in the UAV i that has to be assigned to the slice σ. This
decision is communicated to the CE Scheduler of UAV i for all the slices. Each
Intra-slice Orchestrator, on the other hand, is in charge of deciding the offloading
probabilities to be used by the Offload Controllers of all the UAVs for the slice it
manages.

The decision problem of the horizontal offloading probabilities being sent by the
Intra-slice Orchestrator of each slice to the Offload Controllers running in all the
UAVs for the same slice is the same as the one defined in the previous sections.

Fig. 2.21 shows the data-plane model of the generic UAV i for a given slice σ

and the settings it receives by the FANET Orchestrator. More specifically, for the
generic slice σ, let us define:

• S
(P,i,σ)
i : the state of the Processing Queue of the UAV i, representing the

current number of jobs in the Processing Queue, including the one being
served in the CE;

• S
(O,i,σ)
i : the state of the Offloading Queue of the UAV i, representing the

current number of jobs in the Offloading Queue, including the one being
transmitted on the wireless TX interface;

• S
(A,i,σ)
i : the activity state of the zone the UAV i is covering.

The Intra-slice Orchestrator of the considered slice is in charge of deciding a set
of offloading probabilities, one for each possible zone activity state.

60

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.21: Data-plane UAV model.

During each epoch, each UAV will offload jobs coming from the GDG of a given
slice σ with probability pσa that depends on the activity state a of its zone. By so
doing, the job arrival rate entering the FANET through the UAV i is split by the
Offload Controller between the Processing Queue and the Offloading Queue.

2.3.2 KPI Description

In this section, we define the main KPIs that can be used to evaluate the proposed
framework against other baselines. The first set of KPIs regards delay performance
for each slice. Then, we define a profit parameter to evaluate how the choices of
the system designer, implemented in the Inter-slice Orchestrator, affect the overall
revenue achieved from all the slices.

The average total delay suffered (2.12), in the FANET by the jobs offloaded
by the GDG, the delay jitter (2.13), and the delays of the Processing (2.14) and
Offloading queues (2.15) for each slice σ are considered.

We also introduce a KPI aimed at quantifying the behavior of the system as a
whole, joining the performance achieved on the single slices. To this purpose, we
define a profit parameter that depends on the ability to satisfy a given target of
delay for each slice. For this reason, we assume that the FANET providing service
to slice σ gains a profit that increases as the average delay in this slice decreases.
Therefore, the FANET Manager has to decide the amount of computing rate to

61

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

allocate to each of the slices in order to maximize its profit. Let us define D̄
(σ)
F,TGT

as the target average delay required by the slice σ. It represents the maximum
average delay that it can tolerate. The profit achieved for this slice is proportional
to the distance of the actual average delay from the target average delay:

φσ = uσ ·
(
D̄

(σ)
F,TGT − D̄

(σ)
F

)
(2.35)

where the multiplicative constant uσ, measured in PU/ms (PU: price unit), is
the profit gained by the FANET Manager to provide its service to the slice σ.
Notice that, as the value of uσ increases, the FANET will be more disposed to
allocate more resources to slice σ. The total profit obtained from the FANET can
be calculated as follows:

φF =
M∑
σ=1

φσ (2.36)

2.3.3 Use Case Description

We consider a FANET with N = 6 UAVs that covers an area where M = 2

different slices must be provided. The transition rate matrix and the job-arrival
rate array calculated through this data analysis for each zone as the solution of
an inverse eigenvalue problem from the traces for the first slice are:

Q
(A)
1 =

[
−5.48 · 10−3 5.48 · 10−3

5.17 · 10−2 −5.17 · 10−2

]
(2.37)

Λ
(A)
1 = [0.98, 6.03] kjob/s (2.38)

The transition rate matrix and the job-arrival rate array for the second slice
are:

Q
(A)
2 =

[
−5.51 · 10−3 5.51 · 10−3

1.49 · 10−2 −1.49 · 10−2

]
(2.39)

Λ
(A)
2 = [0.6, 4.0] kjob/s (2.40)

This means that the mean job arrival rate is λ̄A1 = 1.46 kjob/s for the first

62

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

slice, and λ̄A2 = 1.51 kjob/s for the second slice. Let KP = KO = 500 jobs be
the size of the Processing and the Offloading Queues of each UAV. As far as
the CE computing power, we have carried out two different analyses. In the first
analysis, we have studied the two slices separately, by varying the CE computing
amount assigned to each slice, µ(P)

1 and µ
(P)
2 , respectively, in the interval [1.75,

2.75] kjob/s, and taken equally for all the UAVs. The utilization coefficient of
each slice of the FANET is defined as the ratio between the whole job arrival rate
from all the zones and the total computing rate of all the UAV CEs. Therefore,
since the computing rate assigned to each FANET is varied in our analysis in the
interval [1.75, 2.75] kjob/s, the utilization coefficient of slice 1 has ranged in the
interval [0.53, 0.83], while the one of the slice 2 has ranged in the interval [0.55,
0.86].

A second analysis has been done against the total computing rate of each CE
ranging in the interval [4, 5] kjob/s, and assuming a target average delays of
D̄

(1)
F,TGT = 40 PUs for slice 1 and D̄

(2)
F,TGT= 80 PUs for slice 2. When the fraction

of the CE computing rate for one slice increases, the computing rate for the other
slice decreases. Therefore, in this case, the analysis has regarded the impact of
the overall computing rate and of its distribution between the two slices on the
profit gained by the FANET Manager, calculated for u1 = 2 PUs and u2= 1 PU.
As far as the transmission link between UAVs is concerned, we assumed a total
job transmission rate muO= 5.4 kjob/s, which is subdivided to the two slices as
follows: mu

(O)
1 = 1.2 kjob/s for the first slice and mu

(O)
2 = 4.2 kjob/s for the

second slice.
We compare our framework with two heuristic algorithms, i.e., Local Drone Only

(LDO), commonly used in similar works for performance comparison [19,20], and
Uniform Selection (US), already described in the previous sections.

To ensure that each model converged to its maximum value, we trained each
A2C model for 100.000 steps. To diversify the experience obtained and drastically
reduce the time required for network convergence, we leveraged the capability of
the A2C method to train multiple agents on multiple environments with different
random seeds simultaneously. This enabled us to speed up the convergence time
and to avoid the need for a replay buffer. Moreover, the final policy is more robust
to changes in the environment, especially when compared to agents trained on a
single scenario. Moreover, pre-trained models can be deployed to further speed
up the convergence of the agent in new, previously unseen scenarios.

To evaluate the convergence of the proposed method, in Fig. 2.22 we show the
smoothed losses of both the Actor and Critic networks, calculated for slice 1 in

63

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.22: Actor and Critic Loss.

an episode of 10.000 s, with mu
(P)
1 = 2.35 kjob/s, mu

(O)
1 = 1.2 kjob/s. As we

can see in the figure, the loss is able to converge, and this happens only in about
5 · 104 steps. System performance, collected during the evaluation phase of the
network, will be presented in the next section.

(a) Slice 1 (b) Slice 2

Figure 2.23: Average total delay.

2.3.4 Performance Evaluation

In this section, we evaluate the performance of the proposed FANET manage-
ment framework, referred to in the figures as the Zero-Touch Management (ZTM)
framework, through some simulation experiments. The system performance of
ZTM is collected during the evaluation phase of the A2C method. For perfor-
mance evaluation, we measured the performance the FANET provides to each
slice as the computing rate of the UAV CE allocated to that slice increases in the
range [1.75 2.75] kjob/s. As expected, as the available computing rate for each
slice increases, the overall performance improves, as shown in Fig. 2.23, where
the average total per-slice delay is exhibited. The computing rate needed for each

64

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

slice to obtain a certain target performance can be obtained by looking at the
minimum computing rate whose performance satisfies the requested ones. Con-
sidering the two heuristics LDO and US for performance comparison, notice how
using the proposed ZTM algorithm, the average delay is improved by efficiently
leveraging on the horizontal offloading probabilities based on the state of the
FANET. It is also possible to notice in Fig. 2.23a, i.e., for slice 1, that LDO starts
to perform better than US for computing rates higher than 2.55 kjob/s, which re-
veals how, for high computing rate values, offloading may not be the right answer
for reducing the overall delay.

(a) Slice 1 (b) Slice 2

Figure 2.24: Average computing delay.

(a) Slice 1 (b) Slice 2

Figure 2.25: Average offloading delay.

Figs. 2.24 and 2.25 present the average values of the delay suffered in the Pro-
cessing Queues and in the Offloading Queues, respectively, calculated as in (2.14)
and (2.15). The total delay measured for the ZTM policy is lower than the other
policies thanks to the ZTM’s ability to identify and to prevent critical states. On
one hand, the processing delay of the ZTM policy is always lower than the other
policies. On the other hand, the offloading delay is higher when the available

65

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

computing rate is low, and starts to decrease as the computing rate increases.

(a) Slice 1 (b) Slice 2

Figure 2.26: Delay Jitter.

(a) Slice 1 (b) Slice 2

Figure 2.27: Job offloading ratio.

Fig. 2.26 shows the measured delay jitter. As we can see in the figure, ZTM is
not only the one that achieves the best performance in terms of average delay but
also the policy that presents the lowest jitter. Hence, the delay perceived by the
jobs at a given time is almost independent from the GD job generation rate where
the jobs are generated, that is, from the activity of the zone. We then show, in Fig.
2.27, the job offloading ratio. As expected, the offloading ratio decreases using the
ZTM policy as the CE computing rate increases and, therefore as the utilization
coefficient of each UAV decreases. This happens because as the CE computing
rate increases, UAVs process the incoming jobs on their own more easily, without
the help of other UAVs. On the other hand, both the offloading rate for the US
and LDO policy do not change as the CE computing rate increases.

Finally, we present some results regarding the impact of both increasing the
overall CE computing rate and its distribution between the two slices.

66

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.28: FANET profit.

First, in Fig. 2.28, we considered a CE computing rate of µ(P) = 4.4 kjob/s, and
presented the FANET profit, calculated as in 2.36, by varying the CE computing
rate assigned to each slice, µ(P)

1 and µ
(P)
2 , in the interval [1.95, 2.45] kjob/s. The

non-monotonic trend is due to the fact that, increasing the CE computing rate for
a slice improves profit gain for that slice, but reduces profit gain for the other slice.
Therefore, for a given overall CE computing rate, there is a 2-uple (µ

(P)
1 , µ

(P)
2)

that maximizes the profit for the FANET Manager.

Figure 2.29: Maximum profit gained with the best allocation of the CPU compu-
tation power to the two slices, compared with the two heuristics.

Fig. 2.29 compares the maximum profit gained with the best allocation of the
CE computing rate to the two slices achieved by ZTM with the two considered
heuristics. In this figure, we can appreciate another time the gain achieved by the
proposed ZTM framework. The CE computing rate strongly affects the power con-
sumption, consequently the maximum time of each UAV battery charge lifetime,
and therefore the maximum duration of the FANET mission. For this reason, in
Fig. 2.30 we show the FANET flight autonomy as a function of the computing

67

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.30: FANET flight autonomy.

rate of the UAV CE. As expected, the FANET flight autonomy increases as the
battery capacity increases and the CE computing rate decreases. From a joint
analysis of Figs. 2.28–2.30, the system designer can decide the CE computing
rate that maximizes profits for the FANET owner and the battery capacity that,
given the CE computing rate, allows missions with a given time duration. Then,
the analysis carried out in Fig. 2.28, allows the Inter-slice Orchestrator to share
the total CE computing rate with the slices to obtain the target maximum profit.

2.4 Comparison of centralized and distributed DRL

approaches for FANET Optimization

The model-free feature of DRL makes it easier to map the high-dimension action
space to a specific action without the convexity of objective or reward functions.
However, these DRL algorithms do not perform all in the same way. Adopted in
several optimization problems for FANET systems, from trajectory optimization
in three-dimensional space to channel-powered joint optimization with pre-defined
trajectories [97, 98], Multi-Agent Q-learning usually performs poorly in complex
environments [99]. As the number of UAVs in the FANET increases, sometimes
Single-Agent DRL approaches fall short of achieving reasonable performance due
to the exponential increase in the state and action space. On the other hand,
Multi-Agent DRL approaches have already demonstrated their capabilities on
training sets of AI agents that can collaborate to solve complex tasks [100, 101].

For this reason, we investigate both centralized and decentralized DRL ap-
proaches, i.e., Single-Agent and Multi-Agents frameworks, based on DQN [102],

68

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

A2C [30] and PPO [103], in which each agent chooses the best offloading prob-
abilities to forward incoming jobs to neighboring UAVs. The horizontal offload
decision problem is defined as a Markov Decision Process (MDP) that is solved
via Multi-Agent DRL (MADRL).

2.4.1 Framework

In this framework, N agents interact with the environment, one in each UAV
of the FANET, and are characterized by a set of states, S, and each of them
periodically take an action from a set, A. The state of the environment as a whole
at time t, that is st ∈ S, consists of the state of the Processing and Offloading
Queues of all the UAVs and the activity state of all the N zones served by the
FANET.

At the beginning of each decision epoch e (let us indicate that instant as te),
each agent obtains its private observation on,te and takes its own action an,te .
Then, the environment will evolve into a new state. Finally, at the end of the
same epoch, each agent sends its own new observation to the neighboring agents
and obtains a reward rn,e.

Thus, we define the observation, action and reward function for each agent
during decision epoch e as follows:

1. Observation on,te : the observation is constituted by the Processing and
Offloading queues of the local UAV, that is, Q

(P)
n (te) and Q

(O)
n (te), and

the Processing queues {Q(P)
m (te),∀m ∈ N,m ̸= n} and Offloading queues

{Q(O)
m (te),∀m ∈ N,m ̸= n} of the neighboring UAVs. Additionally, we also

include the set of the total number of job requests arrived to each UAV
during the previous decision epoch.

2. Action an,te : the action is the choice of the n-th UAV’s offloading probability,
that is the probability to offload jobs received from the zone that it is serving
to a neighboring UAV. It is defined as an,te ∈ P, where P is the discrete set
of possible offloading probabilities. Of course, we have 0 ≤ an,te ≤ 1, ∀n,∀e.

3. Reward rn,e: we use the same reward function already defined in 2.11

Then, we can define the state of the entire environment, ste , and the whole
action ate at decision epoch e, which are also the state space and action space in
the single-agent scenario, as follows:

1. State ste : the state consists of the observations of all the agents, which is
expressed as ste = {on,te ,∀n ∈ N}

69

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Table 2.2: DRL hyperparameters

Algorithm Learning Rate Layers Batch Size Runtime

DQN 1e-4 2x128 32 8m55s

A2C 7e-4 2x128 40 11m19s

PPO 3e-4 2x128 64 14m42s

2. Action ate : the action consists of the actions of all the agents, which is
ate = {an,te ,∀n ∈ N}

2.4.2 Numerical Results

In this section, we evaluate the performance of the proposed framework by show-
ing some numerical results.

We consider a FANET with N = 4 UAVs, that provide on-demand MEC ser-
vices. To characterize the job offload process by GDs in the area covered by
the FANET, we collected measurements at the University of Catania campus, in
which different GDs are deployed and require different services. By processing the
measured job generation traces, we identified two main activity states, hereinafter
referred to as low-activity (L) and high-activity (H), i.e. the set of possible ac-
tivity states for each zone is S = {σL, σH}. The transition rate matrix and the
job-arrival rate array calculated through this data analysis for each zone as the
solution of an inverse eigenvalue problem [104] from the traces for the geographic
area are:

Q(A1) =

[
−5.5 · 10−3 5.5 · 10−3

1.6 · 10−2 −1.6 · 10−2

]

Λ(A1) = [1.3, 2.3] kjob/s

We present two different analyses. In the first analysis, we show the gain of
distributed DRL approaches compared to a centralized approach, in terms of
both convergence speed and average latency. Then, in the second analysis, we
compare the model performance in an evaluation phase of 100 episodes, in which
we keep track of the cumulative episode reward and mean delay.

The main hyperparameters of the DRL algorithms are summarized in Table
2.2. We trained each agent for 5 · 103 epochs in a server with two NVIDIA GPU
RTX 3070. We used the Adam [105] optimizer to train the neural networks.
The experiments were performed via a simulator based on OpenAI Gym [95] and

70

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Stable Baselines3 [106]. After the training phase, both the model and the network
parameters are saved for testing.

(a) Episode Reward (b) Evaluation Phase Episode Reward

Figure 2.31: Episode Reward comparison among different DRL algorithms

(a) Episode Mean Delay
(b) Evaluation Phase Episode Mean
Delay

Figure 2.32: Delay comparison among different DRL algorithms

First, in Figs. 2.31a and 2.32a, we compare the training performance of Single-
Agent approaches based on A2C and PPO with Multi-Agent approaches based
on DQN, A2C and PPO. DQN could not be deployed in the Single-Agent mode
since it is not able to emit multiple actions each time step. Observe from Fig. 2.31
that the cumulative episode reward achieved by PPO, and especially the Multi-
Agent version, achieves better performance compared to the other algorithms in
both terms of convergence speed and mean episode reward at convergence. As
shown from the shaded region in Fig. 2.31a, PPO gives better and stable results
when compared to other algorithms. PPO also resulted to be more robust to the
hyperparameters choice, while on the other hand A2C results varies drastically
with minor hyperparameters changes. Fig. 2.32a shows that the average delay
decreases as the reward increases, indicating that the reward function is well

71

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

designed. The convergence speed-up of the Multi-Agent algorithms, especially
PPO, is appreciable compared to the Single-Agent approaches, which are not
able to reach the same performance of Multi-Agent algorithms. This may be due
to the fact that Single-Agent approaches have a much bigger action space, whereas
each agent in the Multi-Agent scenario has fewer actions to emit every step (one
action per agent, compared to N actions in the Single-Agent scenario). Moreover,
PPO seems to achieve good performance even in the Single-Agent scenario. This
may be due to the PPO feature of having a clipped loss function, that has a very
strong impact on the overall robustness and stability of the algorithm. Specifically,
PPO clips the affect of the advantage such that an actor’s action distribution for
a particular state doesn’t move too much during training. On the other hand, in
A2C there can be issues where a particular training trajectory can significantly
influence an actor’s preferred action, causing it to be bad at exploration. PPO
solves this issue by preventing itself from being too much influenced from any
particular training round.

2.5 A Learning Framework of Federated FANETs

to Provide Edge Computing to Future Delay-

Constrained IoT Systems

In realistic scenarios, each time a FANET is deployed to provide service provi-
sioning, the dynamics of the network traffic in the underlying area covered by the
UAVs could be very different from the ones experienced in previous deployments.
In the example shown in Fig. 2.33, we have two FANETs, the former deployed
in a rural area, and the latter deployed in a city area. Since the two geographic
areas are characterized by different vertical offloading activity behaviors, the neu-
ral networks optimizing horizontal offload in the two above FANETs are deeply
different. If one of these FANETs will be involved in another mission, to provide
edge computing to a new geographical area presenting different activity behavior,
or in the case that the same area a FANET is covering changes its activity behav-
ior abruptly for an unexpected event, the neural network trained on the previous
behavior has to be re-trained to readjust the policy to the new scenario. This
would be done from scratch, based on never seen underlying activity conditions.
This, in turn, can lead to unacceptable and unstable performance. This is also
due to the fact that the RL agents overfit their policies to their environments and
therefore are usually not able to generalize to different environments.

72

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.33: Reference System

Instead, it would be more efficient if each FANET could benefit from the knowl-
edge acquired by other FANETs in order to: 1) react faster to changes of the
underlying activity conditions, especially when these are similar to other dynam-
ics already experienced in the past, even in different geographical areas covered
by a different FANET; 2) quickly adapt to new underlying activity conditions of
different geographical areas. Indeed, the same FANET can carry out its missions
in areas with substantial differences in terms of traffic conditions of the covered
zones: consider, for example, a FANET, usually covering a rural area, that has to
be deployed in a metropolitan area due to sudden destruction of the infrastructure
network of the city.

In order to perform insightful analytics of several underlying activity conditions,
Centralized Learning (CL) algorithms could be applied. CL algorithms were re-
cently successfully used in the context of intelligent end-to-end management and
orchestration of network resources. CL requires the aggregation of operational
data from various data sources belonging to single or multiple domains. In the
context of this research, multi-domain can either mean multiple FANETs managed
by a single Mobile Network Operator (MNO) or multiple FANETs (e.g., dealing
with inter-operator Service Level Agreements) managed by several MNOs. Either
way, in order to use the same approach with FANETs owned by single or different
MNOs, a common solution is required.

In both contexts, aggregating the data in a central network entity able to execute

73

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

the CL algorithm causes several drawbacks due to regulatory restrictions, sharing
of sensitive data by the MNO, high bandwidth resources required to transfer raw
data, and increased risk associated with a single point of failure. Specifically, in
a multi-domain ecosystem, it is crucial to ensure isolation among domains with
the purpose of ensuring sensitive data secrecy when one domain possesses access
to data of other domains.

On the other hand, Federated Learning (FL) [107] is a distributed machine
learning approach where data from multiple domains can be processed and ana-
lyzed in a distributed manner in order to obtain the sharing of knowledge. This
way, each federated entity can benefit from the acquired knowledge of the other
ones. FL algorithm exchanges model updates among the participants. This entails
two main advantages over CL: (i) privacy among the participating domains and
(ii) significant reduction of the occupied network bandwidth, an aspect that has
great importance in scenarios where communications between different FANETs
are very hard. Both advantages occur because only the model updates are sent
to the centralized aggregator during the training process rather than the stream
of raw data like in CL.

2.5.1 System Description

The training phase of the DRL model is heavily affected by the dynamics of the
area covered by the FANET. If a FANET will be involved in another mission or
if the same area covered by a FANET changes its activity behavior abruptly for
an unexpected event, the neural network trained on the previous behavior has
to be re-trained. To this purpose we propose a two-layer Hierarchical Horizontal-
Offload ManagEment (H-HOME) framework based on a FRL approach, which
leverages experience obtained by all the FANETs during their missions, in order
to obtain a federated model working in any new situation.

H-HOME is a two-layer framework for a scalable and efficient management of
horizontal job offload performed by each FANET. It is based on a FRL approach
to leverage experience obtained by all the FANETs during their missions to obtain
a federated model that is suitable to any new situation. The H-HOME architec-
ture is represented in Fig. 2.34, and is made up of a Job Processing Layer and an
Orchestration Layer.

The Job Processing Layer of the H-HOME architecture is constituted by a
number M of FANETs that provide edge-computing service to their geographical
areas. As already described in previous sections, each area is subdivided into
zones, each assigned to one UAV of the FANET. Therefore, each zone generates a

74

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.34: H-HOME Framework Architecture

job offloading flow directed to the UAV associated to it. We assume that all GDs
are homogeneous in terms of both requirements and priorities. As already said so
far, we introduce horizontal offload among UAVs to balance the load, offloading
jobs to less-loaded UAVs. The decision whether processing a job locally in the
Dwell UAV that has received it from the ground, or offloading it to another UAV,
here referred as Processing UAV, is in charge of the Scheduler, as depicted in Fig.
2.34. In case of offload decision for a job, the Scheduler has also to decide the
Processing UAV for it.

75

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Jobs to be processed locally are enqueued in the Processing Queue QP waiting
to be served by the local CE. On the other hand, jobs to be offloaded to other
UAVs are enqueued in the Offloading Queue QO that is served by the wireless
transmission link towards the other UAVs.

The H-HOME Orchestration layer is represented in Fig. 2.35. According to a
Federated Learning approach, it is constituted by the FO of all the federated
FANETs and a FANET Federation Manager. The FOs train their DRL models
locally using the federated model received by the FANET Federation Manager as
their starting point and then exploiting the data received by each UAV of their
FANET. On the other hand, the FANET Federation Manager trains a federated
model to be periodically sent to the FOs of the federated FANETs. The behavior
of these entities will be detailed in the following subsections.

2.5.2 FANET Federation Manager

The FANET Federation Manager (FFM) is a centralized entity whose objective
is to periodically compute a new federated model by executing a gradient descent
step with the average of the gradients received by the FO of each FANET, as
sketched in Fig. 2.35. To this purpose, the FFM can be run, for example, in a
low-orbit satellite, a high altitude long endurance (HALE) UAV, a UAV Balloon,
etc.

Figure 2.35: Interaction between the FANET Federated Manager and the FANET
Orchestrators

In more detail, we consider M FANETs working in parallel in M different geo-
graphic areas.

This means that there are M local FOs, indicated as FO1, FO2, ..., FOM in
Fig. 2.35. They perform a DRL algorithm, each one in its area, and share their
parameters with the FFM. The FFM, for its part, collects information received

76

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

by each FO and updates the global model parameters via Federated Stochastic
Gradient Descent (FedSGD).

The FO of each FANET and the FFM work at two different timescales, as
shown in Fig. 2.36. The behavior of the FFM evolves according to the so-called
FFM episodes, each with a duration equal to T . At the beginning of the generic
episode l, in the FO timescale, during the first short interval, with duration τC ,
the FFM sends θ(FFM)

l , i.e. the parameters of the federated model, to all the FOs
that, at the end of the previous episode, have sent their parameters to the FFM.
Then, in the timescale of the FOs, each FO starts its FO Training Phase that is
constituted by U consecutive epochs, each of duration τ , as described in Section
2.2. In the last short interval of the episode l, with time span τC , the FFM waits
for gradients gm(θ

(m)
l) of the model trained by each FOm, for each m ∈ [1,M],

during the episode l.

Figure 2.36: Timescales of FFM and FO inside H-HOME framework

Algorithm 2 shows the pseudocode of the proposed H-HOME framework to
manage the generic episode l. In more detail, at the beginning of the episode, the
FFM starts from the model θ(FFM)

l calculated at the end of the previous episode
and broadcasts it to all the FOs (Line 1), as shown in Fig. 2.35. In the first
episode, the FFM broadcasts a pre-trained model, if available, otherwise a new
federated model will be initialized.

After that (Lines 3-7), each FO simultaneously receives the federated model in
the first short interval of duration τC , and runs the Algorithm 2 for all the U

epochs. In this way, each FO updates the federated model received by the FFM
and, after the end of the last FO epoch, sends the gradient gm(θ

(m)
l) to the FFM.

The gradient equation is dependent on the algorithm used by each local in the
framework, which will be described in detail in Section 2.2.

77

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Finally (Lines 9-10), the FFM calculates the new gradient as follows:

Γ =
1

M

M∑
m=1

gm(θ
(m)
l). (2.41)

This allows the FFM to derive the new model θ(FFM)
l+1 following a Stochastic

Gradient Descent (SGD) approach:

θ
(FFM)
l+1 = θ

(FFM)
l − η · Γ, (2.42)

where η is the FFM model learning rate.
The complexity of Algorithm 2 is O(M+M ·U ·OA2+M+1+1) ≈ O(M ·U ·OA2),

where M is the number of UAVs, U is the number of epochs inside an FFM
episode, and OA2 is the complexity of the Algorithm 3, which will be described
in the next section.

Algorithm 2 FRL-Based H-HOME Episode Management
Input: Initial model θ(FFM)

l

Output: New model θ(FFM)
l+1

Data: gm(θ
(m)
l), ∀m ∈ [1,M]

1: FFM sends θ
(FFM)
l to the FOm, ∀m ∈ [1,M];

2: #region Parallel Tasks executed by ∀FOm,m ∈ [1,M]

3: In the first short interval: θ(m)
l ← θ

(FFM)
l ;

4: for epoch n ∈ [1, U] do
5: Training according to Algorithm 2;
6: end for
7: In the last short interval, FOm sends gm(θ

(m)
l) to FFM

8: #endregion
9: FFM calculates the new gradient Γ as in (2.41)

10: FFM calculates the new model θ(FFM)
l+1 as in (2.42)

11: return θ
(FFM)
l+1

2.5.3 FANET Orchestrator

As already described in the previous chapters, the FANET Orchestrator (FO) of
each FANET has the objective of deciding the horizontal offloading probabilities
to be broadcasted to all the Schedulers in the FANET.

In our framework, in order to provide more transition samples for the whole
training, an experience buffer Dm has been introduced into each local model
inside the FO of each FANET m, indicated as FOm, for m ∈ [1,M].

78

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Any DRL algorithm can be used in this framework to support the FO operations.
One step of the local training of a generic DRL algorithm is summarized in
Algorithm 3. First the experience buffer Dm is instantiated (lines 1-3). For each
epoch, we distinguish between two different phases, which are the start (lines 4-5)
and the end (lines 7-8) of the decision epoch. At the start of the decision epoch,
the observes the state and then executes an action based on the current policy.
Line 6 considers the environment evolving from one state to another one until the
next decision epoch is triggered. At the end of the epoch, as expressed in lines
7-8, the of FOm receives the reward from the environment, and observes the next
state. The experience is then stored in the experience buffer Dm (line 9). Every
U epochs, the FO sends the gradient to the FMM, calculated as follows:

gm(θ) =
1

|Dm|
∑
d∈Dm

∇f(θ, d), (2.43)

where ∇f(θ, d) depends on the DRL algorithm chosen to solve the MDP. Details
on how to calculate ∇f(θ, d) for the most popular DRL algorithm, used in the
simulation campaign to support the FO decisions, are depicted in Appendix A.

Accordingly, the complexity of Algorithm 3 is O(M +K +1+1+ 1+ 1+ 1) ≈
O(K), where K is the number of operations executed in the forward pass of
the DRL neural network, and is much greater than M , that is the number of
UAVs in the FANET. Therefore, we can rewrite the complexity of Algorithm 2
as O(M · U ·OA2) ≈ O(M · U ·K)

Algorithm 3 Local Intra-FANET Online Training via DRL
Input: Initial model θ(m)

l

Output: Gradient gm(θ
(m)
l)

1: if n == 1 then
2: Initialize experience buffer Dm

3: end if
4: Observe state sn as in (??)
5: Generate and execute action an from πθ(s)
6: Let the environment evolve
7: Calculate reward rn as in (2.11)
8: Observe state sn+1

9: Store sn, an, rn in Dm

10: if n == U then
11: Calculate gm(θl) as in (2.43)
12: Discard the experience in Dm

13: end if

79

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

2.5.4 A Use Case for Performance Evaluation

In this section, we establish and conduct extensive simulations to evaluate the
performance of the H-HOME framework proposed in this research. First, we de-
scribe the simulation setup, and then present our evaluation metrics. Finally, we
illustrate the results of performance comparison between H-HOME and other
approaches.

We consider three different FANETs, each with N = 6 UAVs, that provide
on-demand MEC services in three different geographic areas. To characterize
these geographic areas, we collected measurements in three different scenarios
deployed at both the University of Catania and University of Messina campuses,
in which different GDs required different services. By processing the measured
job generation traces, we identified for each scenario two main activity states,
hereinafter referred to as low-activity (L) and high-activity (H), i.e. the set of
activities is S = {σL, σH}. The transition rate matrix and the job-arrival rate
array calculated through this data analysis for each zone as the solution of an
inverse eigenvalue problem [104, 108] from the traces for the first geographic area
are:

Q(A1) =

[
−5.5 · 10−3 5.5 · 10−3

1.6 · 10−2 −1.6 · 10−2

]
Λ(A1) = [0.5, 4] kjob/s

The transition rate matrix and the job-arrival rate array for the second geographic
area are:

Q(A2) =

[
−1.1 · 10−2 1.1 · 10−2

3.3 · 10−2 −3.3 · 10−2

]
Λ(A2) = [1.3, 3.3] kjob/s

Finally, the transition rate matrix and the job-arrival rate array for the third
geographic area are:

Q(A3) =

[
−1.6 · 10−2 1.6 · 10−2

5.1 · 10−2 −5.1 · 10−2

]

Λ(A3) = [1.5, 2] kjob/s

We have carried out two different analyses. In the first analysis, we study the
effectiveness of the proposed H-HOME federated training approach against the
traditional local training approach. The DRL algorithm used to support the FO
decisions is the A2C algorithm. Each UAV in the FANET has a CPU processing

80

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

rate µP = 2.15 kjob/s and a job transmission rate µO = 3.2 kjob/s. Let KP =

KO = 250 jobs be the size of the Processing and Offloading Queues inside each
UAV. We deploy three FANETs to cover the above three different geographic
areas. Each FO has locally trained its model by interacting with the environment
for 105 epochs. We therefore refer to as LT-SCx s every time a FO has been
trained via local train in the geographic area x, with x ∈ {1, 2, 3}.

Afterwards, we deploy the H-HOME framework, in which FANETs collaborate
with each other by joining a federation, orchestrated by the FFM, and coopera-
tively train a new federated model, for 103 federated episodes, each with U = 10

epochs.
The epoch duration τ is set to 0.1 s. We considered that all the UAVs are

equipped with an INTEL NUC 10 Barebone Core i7 with a clock frequency of
2.8 GHz. The neural network forward pass requires 3.5 · 10−4 Floating Point
Operations (FLOP). Therefore, the time required for the forward pass is in the
order of 10−5s, which is far smaller than the epoch duration τ = 0.1s, and this
ensures that all local computation is completed within the epoch. On the other
hand, each model is saved as a .pth file, and uploaded to the FFM every U epochs.
The size of this file is 25 KB. Therefore, considering a 1 MB/s transmission rate,
the time required for uploading and downloading the model is equal to 25 ms.
Finally, the minimum time slot T will then have to be equal to Tdownload+Tupload+

(τ · U − 1) = 25 + 25 + (100 · 9) ms = 0.95 s
We then compare these two different approaches by deploying four FANETs,

i.e. three FANETs with the locally-trained LT-SCx model and one FANET using
the federated H-HOME framework model, in a new evaluation scenario, where
the activity state of the geographic area is described by the following transition
rate matrix and job-arrival rate array:

Q(A4) =

[
−5.5 · 10−3 5.5 · 10−3

1.25 · 10−2 −1.25 · 10−2

]

Λ(A4) = [0.8, 2.5] kjob/s

During deployment we allow each model to be re-trained using the newly col-
lected experience, and we compare how much experience each model requires
before reaching the optimal performance in the new scenario. In this analysis
we will then compare the performances against another algorithm, LOCAL, that
represents the agent that has been specifically trained only in the evaluation
scenario, and is supposed to be the best agent in terms of performance.

81

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

In the second analysis, we analyze the performance of the H-HOME framework
in the scenario characterized by the matrices Q(A4) and Λ(A4), taken as reference,
against the CPU processing rate of each UAV increasing in the range [1.95, 2.35]

kjob/s. We compare it with the performance of the LT-SCx and LOCAL FANETs.
In contrast to the first analysis, the layers in each FO neural network are frozen.
This allows us to analyze the generalization capabilities of the H-HOME approach
against the LT-SCx. Even in this case, all UAVs have a total job transmission
rate µO = 3.2 kjob/s, and let KP = KO = 250 jobs be the size of the Processing
and Offloading Queues inside each UAV.

The experiments were performed via a simulator based on OpenAI Gym [95]
and Pytorch [96]. We used the A2C algorithm, and implemented both Actor
and Critic networks with two fully connected layers, each with 128 neurons. As
opposed to a value-based algorithm, such as DQN, where some policy has to be
defined and applied to balance exploration and exploitation (such as the ϵ-greedy
policy), the A2C has a stochastic policy function. This means that, by default, it
will occasionally explore all the actions since, at every decision epoch, each action
will have a non-zero probability to be executed; hence, there is no need for other
additional techniques to enable exploring. We also used the Adam optimizer with
a learning rate η = 10−4 and set a discount factor γ = 0.9.

For performance evaluation, we consider three evaluation metrics, i.e., loss func-
tion, average total delay (2.12) and delay jitter (2.13).

The loss function is used to indicate the convergence performance of each model.
The smaller the loss function is, the better the estimation performance the model
will have.

2.5.5 Simulation Results

In this section, we evaluate the performance of the proposed H-HOME framework
through two different simulation analyses.

In the first analysis, we show the effectiveness of the proposed Federated Learn-
ing training approach against the traditional local training approach by compar-
ing the training speedup obtained using the H-HOME approach against three
LT-SCx FANETs. We therefore show in Fig. 2.37 the loss function of the H-
HOME model, the three LT-SCx models and the LOCAL model, in the reference
scenario, which is the one characterized by Q(A4) and Λ(A4). This figure shows
that the loss function of H-HOME decreases closely to 0 after 120 FFM episodes.
This convergence indicates that this model has rapidly learned the hidden rules
for evaluating actions. In contrast, the first of the other models to converge is

82

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.37: Loss Function Convergence

the LT-SC1 after other 150 FFM episodes, which means that the other models,
compared to the H-HOME framework, require as much as double experience. The
LOCAL model is the one, among all the models, that is having the most diffi-
culty to converge: this is due to the fact that it has not been previously trained
on another scenario, and therefore has just started collecting its first MDP expe-
riences. We can conclude that H-HOME is more robust to sudden changes of the
job arrival rate with respect to the other algorithms.

In the following we will refer to a FANET mission as a RL episode, or simply
episode. The length of the FANET mission depends on the flight autonomy of
each UAV. Fig. 2.38 shows the cumulative reward at the end of each episode,
calculated as in (2.1).

Figure 2.38: Episode Reward

We can notice how the H-HOME is able to obtain the highest cumulative reward
among all the s. Since the reward has been shaped to lower both the average delay
and the jitter, we expect the H-HOME framework to achieve the lowest average
delay and jitter. Fig. 2.39 illustrates the average delay in the reference scenario. It

83

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.39: Average Delay

is clear to see that the H-HOME framework, by having a faster convergence speed,
quickly achieves the lowest average delay among all the models. This also means
that the learning speed is adequate. Fig. 2.40 shows that H-HOME achieves the
lowest jitter in most episodes as desired, meaning that the federated model has
been trained to well utilize the limited resources of UAVs and avoiding computa-
tional waste by offloading the right amount of jobs among the UAVs.

Figure 2.40: Jitter

In the second analysis, we exhibit the performance of the H-HOME as the CPU
processing rate inside each UAV increases in the interval [1.75, 2.55] kjob/s in
terms of average total delay, jitter and flight autonomy. Each LT-SCx model is
trained in its own geographical area, whereas the H-HOME model is trained in
a federated fashion.In contrast to the first analysis, we do not allow each model
to be re-trained in the reference evaluation scenario. Instead, we evaluate each
model performance by freezing all the layers in the network. This allows us to
analyze the generalization of each model. Contrary to the LT-SCx and H-HOME
models, the LOCAL model has been trained in the evaluation scenario, but with

84

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

a restricted number of iterations, equal to 30 episodes.
As expected, as the available processing rate for each slice increases, the over-

all performance of each FANET improves, as shown in Fig. 2.41. However, the

Figure 2.41: Average Total Delay vs Processing Rate

FANET that reaches the best values is the one with the H-HOME model: this is
due to the fact that, since it has been trained on different scenarios via federated
learning, it is able to generalize better in new scenarios.

Fig. 2.42 shows the measured delay jitter. As we can see in the figure, H-HOME

Figure 2.42: Jitter vs. Processing Rate

is not only the one that achieves the best performance in terms of average delay,
but also the model that presents the lowest jitter for considered each processing
rate. Moreover, let us note that, thanks to the FANET federation approach, the
delay perceived by the jobs at a given time is almost independent of the GD job
generation rate where the jobs are generated, that is, from the activity of the
zone.

The CPU computation power strongly affects the power consumption, conse-
quently the maximum time of each UAV battery charge lifetime, and therefore

85

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

the maximum duration of the FANET mission. For this reason, in Fig. 2.43 we
show the FANET flight autonomy as a function of the CPU computation power
of the UAV CE. We assumed that the FANET is realized with quadcopter UAVs

Figure 2.43: FANET Flight Autonomy

with an engine power consumption P(EN) = 66 W, and we consider different
Lithium batteries with capacity βc increasing in the range [40, 70] Wh. The total
power consumption of each UAV, P(TOT), is calculated as the sum of P(EN) and
the power consumption of the CE, P(CE), already derived in 2.33 From measure-
ments on a real testbed, we have used ω = 59.1 mJ. The FANET flight autonomy
depends on P(TOT) and the battery capacity, βc, and has already been derived
in : As expected, the FANET flight autonomy increases as the battery capacity
increases and the CPU processing rate decreases. From a joint analysis of Figs.
2.41, 2.42 and 2.43, the system designer can decide the CPU computation power
that maximizes profits for the FANET owner and the battery capacity that, given
the CPU computation power, allows missions with a given time duration.

As an example, Fig. 2.44 combines the average total delay with the maximum
duration of the FANET mission, calculated as in (2.5.5), to analyze how the
maximum duration of the FANET mission is related to the average total delay
suffered in the FANET, with βc = 60 Wh. Choosing a point in this figure means
deciding the framework to use and a specific CE computation rate, µP . We can
observe that our proposed H-HOME framework maximizes the FANET mission
duration for a given average total delay requirement. Finally, we show in Fig. 2.45
that the H-HOME framework manages to reduce the FANET energy consumption
by achieving lower average delay with less CE power consumption compared to
the other models.

86

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.44: FANET Flight Autonomy vs Average Total Delay

Figure 2.45: Power Consumption

2.6 A DRL-based UAV-Smallcell System for Effi-

ciently Localizing Hidden Mobile Devices via

RSRP Measurements

The last decades years have been characterized by various catastrophic events
such as earthquakes, floods, etc. In these scenarios, civil protection interventions
have to be fast and precise. This can be enabled by improving the current inter-
vention techniques by exploiting the latest technological innovations. In the last
few years, UAVs have been increasingly used in various scenarios, especially when
communications infrastructure is not available [42, 50, 109–113].

For this reason, several studies have focused on devising techniques to improve
drone performance while minimizing energy consumption. UAVs are often used
for operations in unknown or partially observable environments. For this reason,
flight path planning is an essential issue in the use of UAVs as it is directly related
to the level of autonomy of the vehicle.

87

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Since no exact mathematical model is available, DL and RL are combined and
used to allow UAVs to learn their paths autonomously, allowing them to traverse
changing environments without the risk of collision [45–48].

In [71], an RL algorithm is introduced that enables UAVs to have direct and
continuous interaction with their surroundings. In particular, a combination of
DRL and a Long Short-Term Memory (LSTM) network is proposed to increase
the speed of the used learning algorithm. In addition, the authors in [72] propose
the RL algorithm to circumvent obstacles with a reward function and a penalty
action to have a smoother trajectory. In [73], several RL algorithms are used
to improve UAV navigation. Moreover, UAVs can provide wireless connectivity
without network infrastructure or complement conventional base stations (BSs),
whose coverage may suffer from severe blockage due to tall buildings or damages
caused by natural disasters. Owing to the mobility of UAVs, recent years have
seen significant research progress on integrating UAVs with MEC [74].

In this work, we consider a case study where several missing people have to
be localized in the shortest amount of time possible in earthquake-affected ar-
eas. In particular, it is assumed that the missing persons have a mobile device
switched on, and the terminal’s location can be estimated using UAV-Smallcell
systems, i.e., a low-range low-powered base station installed on a flying UAV.
This approach has recently been proposed in [114–116]. In these studies, several
localization techniques and algorithms have been applied to locate mobile devices,
such as the “Cluster-based Fast Proximity Algorithm” in [116] and a cooperative
localization technique in [114] in which two UAVs leverage Game Theory (GT)
techniques.

In this research, we design a DRL-based UAV-Smallcell system for localizing
hidden mobile devices using RSRP measurements and propose RADAR, a Rein-
forcement leArning based mobile Device locAlization approach via RSRP mea-
surements algorithm that can quickly and efficiently localize hidden mobile de-
vices in large areas. RADAR also exploits Transfer Learning (TL) techniques to
leverage the knowledge acquired in simpler missions to solve complex, challenging
environments.

The rest of this chapter is structured as follows: Section 2.6.1 discusses the
synergy between 6G technology and drones. In Section 2.6.2, the main principles
of free-space radio signal propagation are reviewed and how the power received
by mobile devices is calculated in scenarios where there is isotropic attenuation
in free space. The proposed architecture is described in Section 2.6.3, where the
UAV-Smallcell System and Markov Decision Process (MDP) are illustrated. The

88

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.46: Architecture for 6G-enabled UAV Network [75].

system setup is described in Section 2.6.6. Finally, in Section 2.6.7, we evaluate the
performance of the proposed system through an extensive simulation campaign
and demonstrate that our approach can significantly improve the effectiveness of
mobile device localization compared to other state-of-the-art approaches.

2.6.1 Exploring the Synergy: Integrating Drones with 6G

Networks

6G offers a range of advantages compared to previous generations of mobile net-
works, such as ultra-high data density, high-speed and low-latency communica-
tions, and ubiquitous ultra-wideband mobile connectivity [117]. In the context
of UAV networks, 6G enables drones to interconnect and communicate with the
fixed infrastructure. With cloud computing capabilities enabled by 6G technology,
drones can perform complex tasks, overcoming onboard resource limitations. The
integration of satellites in 6G enables global coverage and precise positioning,
while advanced antenna techniques address challenges related to UAV’s three-
dimensional mobility.

6G also provides additional positioning services through beamforming and trian-
gulation. Overall, 6G offers significant opportunities for UAV networks, improving
their efficiency and enabling the introduction of new revolutionary applications
and services [75] (see Figure 2.46).

89

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

In terms of applications, drones can be divided into three main categories: UAV
as Base Station (BS), UAV as relay, and UAV as data collector/disseminator [79].
In the first category, the drone serves as a communication infrastructure, allowing
ground nodes to communicate and connect to 5G/6G core networks through the
onboard BS module. The fleet of drones can self-organize to form a network and
provide seamless coverage. In case of terrestrial BS failures, the UAV can act
as a BS and quickly restore service after infrastructure failure. Some common
applications in this category include emergency support, temporary coverage for
terrestrial users, and high-density hotspot applications.

UAV as a relay utilizes a UAV with a radio access node that connects to the
terrestrial BS and the main 5G/6G network. The UAV acts as a relay to extend
communication infrastructure and can connect to nearby UAVs to expand its
coverage.

Lastly, UAVs as data collector/disseminator is used for data collection and dis-
semination in remote locations where human presence is challenging. These drones
enable wireless sensors to gather and transmit data, providing an inexpensive and
easily deployable solution for data transfer. This application is particularly useful
for periodic sensing and information multicasting for ground sensors and vehicles,
as well as data collection operations in hostile and difficult terrains.

Among all the discussed application contexts, this study focuses on implement-
ing an algorithm based on Unmanned Vehicles Systems (UVSs), RL, and local-
ization algorithms to identify the position of devices under rubble in earthquake
scenarios.

2.6.2 Isotropic Signal Propagation

Electromagnetic signal propagation can be hindered and/or limited by several
factors. There are different types of signal propagation:

1. Signal propagation in a vacuum;

2. Signal propagation within the Earth’s atmosphere;

3. Signal propagation within the Earth’s atmosphere and in the presence of
materials.

In this study, the first case is considered in which the attenuation of the signal
(A0) occurs due to empty space and is expressed via the formula in (2.44):

A0 = 20 · log(d) + 20 · log(f) + 92.45, (2.44)

90

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.47: UAV-Smallcell System: Connection/communication scheme.

where d is the distance between the UAV-Smallcell system and the mobile device
or, more generally, the distance between the transmitting and receiving antenna,
expressed in kilometers, while f is the carrier frequency expressed in GHz. Thus,
the transmitting power of the signal is expressed by the formula in (2.45) (in dB),
and referred to as the “Friis Transmission equation”:

PR = PT +GT +GR − A0, (2.45)

where PT [dBm] is the transmission power of the Smallcell (or any transmitter);
PR [dBm] is the receiving power of the mobile device (or any type of receiver);
GT and GR [dB] are the transmitting and receiving antenna gain, respectively.

In our system, vo PT , GT , GR and A0 are known values. In LTE systems, PR is
known as the RSRP value. A device is considered as localized when the measured
RSRP reaches a predefined threshold.

2.6.3 Proposed Architecture

The system illustrated in Fig. 2.47 involves the use of one (or more) UAVs car-
rying a Smallcell and a processing unit (e.g., a Raspberry Pi). The RSRP values
measured by each terminal are received by the Smallcell via a common control
channel and sent to a processing unit using a point-to-point link. The UAV has to
reach different positions within the monitoring area to make RSRP measurements.
The processing unit is connected to the UAV’s GPS coordinate system using an
Ethernet cable. This way, it is possible to associate the position assumed by the
UAV with the RSRP value that the Smallcell receives at that particular location.
Within the processing unit, an RL algorithm is executed. The RL agent, com-

91

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.48: Example of the simulated scenario.

bined with a localization algorithm based on the proximity criterion, is able to
localize the mobile devices in the shortest amount of frame.

The estimated location and total time required to locate all devices are then
sent to a client via a wireless network obtained by the WiFi module installed
into the processing unit, which also acts as an access point for the clients. An
example of an area to be monitored is shown in Figure 2.48. We divide the area
into several 3× 3 meters smaller areas. This division results in a 9× 9 grid where
the UAV can move. Each time a UAV has to change its position, it will move
from one center of a small area to the next one.

2.6.4 Markov Decision Process

In the RADAR system, there is a set of hidden mobile stations that needs to be
located. In the UAV, an RL agent is deployed to choose, at runtime, the optimal
movement to be executed by the UAV to track and localize all the devices. At the
beginning of the mission, we consider the hidden device with the highest received
RSRP as the tracked device, i.e., the device that the UAV tries to localize. If and
when the tracked device is localized, the (old) tracked device will be considered
to be fully localized, and the (newly) tracked device will be chosen between the
yet-to-be-localized devices with the highest RSRP.

To optimize the movements, the RL agent learns the optimal policies using
an RL approach. In RL, an MDP provides a framework for modeling decision-
making in situations where outcomes are partly random and partly under the
control of a decision-maker, which in our system is the RL agent. Formally, an
MDP is a mathematical framework for modeling decision-making problems under

92

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

uncertainty. It consists of a set of states, actions, and a transition model that
specifies the probabilistic transitions between states as a function of the current
state and the chosen action. The MDP also includes a reward function that assigns
a reward to each state-action pair.

A MDP is formally defined as a tuple (S,A, T,R, γ) in which S is the state
space, A is the action space, T is the set of transition probabilities among states,
r is the reward function, and γ is the discount factor.

In the context of a UAV localization system that finds hidden mobile devices
by measuring their RSRP, we define the MDP as follows.
States : The state sn at decision epoch n of the MDP, sn ∈ S, represents the

location of the UAV and the RSRP of the tracked device. Moreover, to increase
the agent’s performance, we stack the last k observations together. Each time a
UAV has to take a new action, a decision epoch n is triggered. Therefore, at each
decision epoch n, the most recent agent observation is the following:

on = [x(UAV)
n , y(UAV)

n , RSRP (DEV−TR)
n] (2.46)

where x
(UAV)
n and y

(UAV)
n are the coordinates of the UAV in the area, whereas

RSRP
(DEV−TR)
n is the RSRP of the tracked device. After stacking the observa-

tions, the new agent state will have the following shape:

sn = [on, on−1, ..., on−k−1] (2.47)

Actions : The action of the MDP an ∈ A includes the UAV’s movement com-
mands, such as go left, go right, go up, go down. Therefore, the action space A

is defined as A = {left, right, up, down}. After moving, the UAV measures the
devices’ RSRPs at its current location.
Transition model : The transition model T specifies the probability of transition-

ing from one state to another based on the current state and the chosen action.
However, if, the UAV location at the next step may be easily modeled, the same
cannot be said for the RSRP of the devices. This is why we adopt a model-free
RL approach, in which the transition probabilities are unknown.
Reward function: The reward function rn assigns a reward to each state-action

pair based on the success of the UAV in finding the hidden mobile devices. Specifi-
cally, if the UAV measures an RSRP higher than a predefined threshold, the agent
receives a positive reward, and the mobile device is considered localized; other-
wise, the reward is zero. Therefore, we can write the reward the agent receives at
decision epoch n as:

93

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

rn =

{
1 a device has been localized during decision epoch n

0 otherwise
(2.48)

2.6.5 RADAR Transfer Learning

TL techniques are leveraged in the RADAR framework to transfer knowledge
gained from solving previous missions and applying it to later ones. TL in RL
refers to applying knowledge acquired in a source task, T (S), to a target task,
T (T). In mathematical terms, this can be achieved by using the learned represen-
tation in T (S) to initialize the parameters of the policy or value function in T (T).
In RADAR, this is accomplished by transferring the model and optimized pa-
rameters of both PPO Actor and Critic networks between consecutive missions.
We can therefore use the knowledge learned from a previous mission, Mm, and
transfer it to speed up the learning process in the next mission, Mm+1. This way,
the agent can leverage the knowledge gained in the source mission to quickly
adapt to the new mission, reducing the amount of data and training time. In the
following sections, we refer to the RADAR agents whose models have been pre-
trained on another mission as RADAR-TL. In contrast, we refer to the RADAR
agents without a pre-trained model as RADAR.

2.6.6 Simulation Setup

We implemented the RADAR agent in Python using the stable-baselines3 library
[106]. The UAVs have been modeled in a simulator written in Python to include
their physical properties (such as size, weight, and propulsion system) and their
sensor and communication capabilities (such as their range and accuracy for mea-
suring RSRP). The simulator also includes a model of the environment in which
the UAV operates, based on a customized version of minigrid [118]. The simu-
lator also has a user interface that allows one to specify the parameters of the
simulation (such as the starting location of the UAV, the locations of the hidden
mobile devices, and any obstacles), monitor the progress of the simulation, and
view the results. Randomness was incorporated into both agent behavior and the
location of the devices. As previously mentioned, TL techniques have leveraged
prior knowledge from previous UAV missions to help reduce the amount of train-
ing data and computational resources required to train the model and improve
its overall accuracy and robustness.

In our simulation campaign, we consider a 48m × 48m area, which results in

94

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Table 2.3: Simulation Parameters.

Parameter Value
Number devices to local-
ize

[10, 15, ..., 30]

δf 10 s
δp 30 s
Matrix Size 16× 16
Area size 48m× 48 m
Cells size 3m× 3 m
RSRP threshold −70.5 dBm
Transmission antenna
gain, GT

2 dB

Receive antenna gain,
GR

1 dB

Carrier frequency, f 2.4 GHz
Smallcell transmission
power, PT

20 dBm

Table 2.4: PPO Parameters.

Parameter Value
Optimizer AdamOptimizer
Actor Learning rate, αθ 3 ·10−4

Actor Hidden Layers [128,128]
Critic Learning rate, αw 4 ·10−3

Critic Hidden Layers [128,128]
Batch size, b 64
Discount Factor, γ 0.99
Number of previous observa-
tions to stack, k

4

a 16 × 16 grid. The initial position of the drone is in the top left vertex of the
monitoring area.

The main simulation parameters are summarized in Table 2.3, where the flight
time, δf , is the time required by the drone to move along one side of a basic cell,
while the processing time, δp, is the time required by the drone to acquire a stable
power value.

The main DRL parameters are summarized in Table 2.4.

2.6.7 Numerical Results

In this section, we analyze the performance of the RADAR framework. It has been
evaluated for different numbers of hidden devices to localize. We first compare

95

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

(a) (b)

Figure 2.49: RADAR agent training phase: (a) RADAR agent cumulative reward,
(b) RADAR agent mission length.

the performance of the systems with and without leveraging TL. Specifically, we
consider one pre-trained RADAR-TL model that has been trained in an area
with one hidden device for 5 million steps. This agent is then deployed on the
evaluation scenarios where 5 to 30 devices have to be localized. We refer to this
agent as RADAR-TL. Whereas the agent that does not use any pre-trained model
is referred to simply as RADAR. This agent is only trained on the evaluation
scenario for 15 million steps.

First, we show in Fig. 2.49a and Fig. 2.49b that a RADAR agent can track and
localize the devices by plotting its cumulative reward during the training phase
in a scenario where one hidden device has to be localized as quickly as possible.
Each red data point in the figure corresponds to the Cumulative Episode Reward
for one mission, whereas the black curve is the smoothed Cumulative Episode
Reward obtained with a Simple Moving Average with a window size equal to 100.
This scenario also produces the neural network models whose knowledge is used
to pre-train the RADAR-TL models in the consequent scenarios.

As illustrated in Fig. 3.2a and Fig. 2.50b, RADAR performance, represented by
the smoothed cumulative reward curves, is substantially higher when leveraging
the pre-trained RADAR-TL model that leverages TL than the RADAR agents
that do not use it. Even if in the RADAR agent some learning seems to be oc-
curring, its cumulative reward after 15 million is nowhere near the cumulative
reward of RADAR-TL, as shown in Figure 3.2a. These performances are directly
related to the amount of time required to complete a mission. A mission is con-
sidered completed once all the hidden devices have been localized. Figure 2.50b
shows that the amount of time required to complete a mission, in terms of the

96

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

(a) (b)

Figure 2.50: RADAR agent training phase: (a) RADAR agents Cumulative Re-
ward comparison, (b) RADAR agents mission length comparison.

Figure 2.51: Performance comparison.

number of RL steps, is much lower for RADAR-TL than RADAR. Hence, TL
can be considered mandatory for the proposed framework to learn to track and
localize all the hidden devices.

Finally, in Figure 3.4, we show the performance comparison among RADAR-
TL and the Cluster-based Fast Proximity Algorithm approach proposed in [116]
in terms of minutes required to localize all the devices. The Cluster-based Fast
Proximity Algorithm (CFPA) leverages the assumption that the mobile devices
are not uniformly distributed within the monitoring area, and, therefore, there
will be one section of the area with higher mobile devices density. By doing so,
it iteratively chooses the best path to localize all the devices in the subsection of
the area in the least amount of time.

The results show that CFPA performance linearly degrades as the number of
hidden devices increases. On the other hand, RADAR-TL optimizes its move-

97

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

ments to localize all the devices quickly. Specifically, the gap between RADAR-
TL and CFPA, in terms of the reducing the average time all the devices, ranges
between 24% for ten devices to 52% for 30 devices.

2.7 Resource Planning in Drone-Based Softwarized

Networks

As said in the previous sections, keeping a FANET available and active is an
ongoing challenge as the autonomy of its UAVs is limited [41].

The minimization of the power consumption represents the main challenge to
be addressed. The more resources the CE consumes, the faster the battery runs
out, thus reducing the overall FANET service availability.

Specifically, when the battery charge of a UAV is below a certain threshold, the
UAV must temporarily leave the FANET to reach the nearest charging station.
During this period, the VFs that were running on that UAV need to be placed
within the remaining UAVs, causing an increase of their energy consumption and
the consequent reduction of the flight duration. If the number of flying UAVs is
not sufficient, the FANET could not be able to deliver services to the ground
devices.

In this research, we present an optimization framework capable of increasing
the overall duration of the FANET. To do this, we act on two fronts: the first, in
the long-term, is to optimize the percentage of available CPU resources for VF
computing; the second, in the short-term, consists in optimizing the VF placement
inside the active UAVs of the FANET.

The proposed optimization framework uses a DRL approach, based on Double
Deep Q-Networks (DDQN) [119], with the goal of setting the amount of available
CPU, and an Integer Linear Programming (ILP) algorithm to optimize the VF
placement.

The rest of the research is organized as follows. Section 2.7.1 gives an overall
description of the system, specifically of the considered scenario and the func-
tional architecture of the main elements. Then, in Section 2.7.3, we introduce the
proposed orchestration framework, describing the long-term FANET behavior op-
timization, which is based on RL, and the short-term VF placement optimization.
Section 2.7.6 proposes a use case for performance evaluation. Finally, Section ??
draws conclusions.

98

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.52: System Description

2.7.1 System Description

The system we consider in this research is depicted in Fig. 2.52. We consider a
fleet of 5G-enabled UAVs that is used to create a FANET. The FANET is de-
ployed in support to Application Services (ASs) that are dynamically requested
by users in a given ground area, and typically spans up to few squared kilome-
ters. More specifically, each UAV acts as an NFV Infrastructure Point-of-Presence
(NFV-PoP), that is, as a micro-datacenter where both virtual network functions
and virtual application functions (related to given ASs) are executed as Virtu-
alized Functions (VF). Each UAV can be interconnected to other UAVs and to
users by means of standalone 5G technology [120]. This way, each UAV provides
application flows generated by ground devices with the required VFs. To this
purpose, each VF has to be run on a UAV to manage the aggregated flow coming
from ground (specifically, from the devices that require it) taking into account
the performance requirements specified for that VF.

Being the battery charge of UAVs limited, a Charging and Coordination Station
(CCS) is assumed to be deployed on the ground, within a range of few kilometers
from the FANET. When the battery charge of a UAV is below a given threshold,
the UAV has to temporarily leave the FANET and fly to the CCS for recharg-
ing. Every time a UAV leaves the FANET, the FANET has to be re-configured,
meaning that the VFs currently executed by that UAV must be migrated to other
UAVs, with the goal of guaranteeing service continuity to the users. However, if
not done appropriately, such a re-configuration may impact on battery consump-

99

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

tion and, consequently, on flight duration of the UAVs involved in VF migration,
with a potential impossibility for the FANET to guarantee service continuity
if too few UAVs are present in the FANET at the same time. A energy-aware
FANET re-configuration needs thus to be performed. A Re-Configuration Module
(RCM) that runs on a dedicated computing node placed in the CCS and named
Computing Remote Node (CRN) is in charge of this task.

CCS-UAVs communication is guaranteed by the most appropriate wireless net-
work technology, such as a Private 5G Network [121] or a Low-Power Wide-Area
Network (LPWAN) (e.g. based on LoRaWAN) [122]. The latter case is preferable
from a UAV energy consumption minimization perspective, but (i) it requires
that each UAV is equipped with a LoRaWAN TX/RX module and (ii) the avail-
able bandwidth is limited. The former case is more energy-hungry but does not
need any additional TX/RX hardware, as the already-available 5G antenna is
enough to enable the UAV-CCS communication. A thorough analysis aimed at
identifying the most appropriate solution is out the scope of this research, and
strongly depends on the considered context.

2.7.2 Functional architecture

The main architectural elements of the system, as shown in Fig. 2.52, are the
UAVs and the CCS. Their functional architecture and components are described
in the following. The four main components of any UAV are (see Fig. 2.53) the
Engines, the Computing Element, the TX/RX Module and the Battery. A UAV
Local Manager is in charge of coordinating the behavior of the above modules,
as specified below.

The Battery is used to supply all the three former modules. Its current charge
level is communicated to the UAV Local Manager such that it can take its deci-
sions regarding the amount of CE computing power using and when landing for
battery recharging.

The CE is the core component of the UAV, since it ensures that the UAV can
act as a NFVI-PoP, being able to execute VFs inside Virtual Machines (VM). For
this reason, a hypervisor (e.g. CentOS) is installed on each CE to provide VMs
hosting VFs with a virtualization of the underlying hardware resources.

The TX/RX Module includes a 5G antenna, and may also include a LoRaWAN
module as specified in the previous subsection. Since power consumption of this
module is few hundred mW, while power consumption of engines and CE is dozens
of Watt, we can neglect the former, considering in the sequel only the latter in
the overall power load of the UAV Battery.

100

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.53: Functional architecture of a UAV

As already pointed out in previous work [42–44], the amount of energy consumed
by the CE is comparable with that consumed by the engines. For this reason,
a careful optimization of the CE power management and VF placement (i.e.,
FANET (re)-configuration) is needed to avoid an unsustainable reduction of flight
duration. This task is one of the main duties of the CCS. In addition, it is needed
that FANET management guarantees that the number of UAVs does not decrease
too much in order to limit the possibility of not being able to guarantee the service
to the requesting flows.

The UAV Local Manager of each UAV interacts with the CCS at each re-
configuration instance by sending the current level of battery of all the UAVs
that are active in the FANET, and receiving updates on both the computation
power to be set in the CE and the VFs to be run until the next re-configuration
instance.

The CCS is the place where UAV batteries are re-charged and where FANET re-
configuration decisions are taken. It includes two main components: the Charging
Station and a Computing Remote Node. With respect to the Charging Station,
the CCS is designed in such a way that the outage period of UAVs with residual
low battery power is minimized. There, for this reason, backup batteries are over-
provisioned and a sufficient number of electrical plugs is available to charge all the
spare batteries. When a UAV lands, it thus always finds an available battery that
can replace the discharged one. The replacement is done fast by an automated
system without human intervention [123], and the UAV can fly to its spot in the
FANET back right after. In this way, the outage period for a UAV is only related

101

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

to the time needed for replacing the battery at the CCS and the time to fly to
the CCS and back.

The Computing Remote Node (CRN) is a powered computing device, with
TX/RX capabilites, that runs the Re-Configuration Module. RCM is able to
periodically retrieve all the relevant information from the UAVs (i.e. the battery
status cited so far, together with the currently-executed VFs and the amount
of traffic towards VFs) needed for taking energy-aware decisions on the best
FANET re-configuration, and for communicating its decisions to the UAVs for
re-configuration execution. Typically, the best re-configuration is that minimiz-
ing the FANET energy consumption as a whole while ensuring service continuity
to all Application Services over time. RCM is re-ran each time the FANET status
changes. This may happen for some different reasons: (i) The FANET topology
changes after that a UAV leaves the FANET to fly to CCS or a UAV comes back
after battery replacement at the CCS; (ii) The input traffic towards one or more
VFs has considerably changed, and current configuration is not energy efficient
anymore; (iii) New VFs have to be executed by the FANET upon ground devices’
requests. In all these cases, the RCM uses its TX/RX module (a 5G antenna +
virtualized 5G core capabilities, or a LoRaWAN Gateway) to send to UAVs the
new configuration to be implemented.

2.7.3 FANET Resource Orchestration

Orchestration of FANET resources aims at minimizing the service downtime. To
this purpose, it is realized according two successive steps that are executed at the
occurrence of each event that modifies the FANET composition. This happens
when one UAV leaves the FANET for battery recharging or comes back to the
FANET after battery recharging, when a flow requests a new VF service, or when
a flow already using a VF service changes its behavior (e.g. its mean bitrate).
Artificial intelligence for decision-making is applied by the RCM running in the
CRN to take the following decisions, which are communicated to the active UAVs
in the FANET:

1. the fraction ηRL,i of the computing power µ(P)
i , to be made available by each

UAV i on its CE;

2. the set Fi of VFs that each UAV i has to execute.

The target is twofold. On one side, in the short term, the overall service request,
that is, all aggregated flows, each requesting a given VF with a given Quality of

102

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Service (QoS) requirement in terms of maximum tolerated latency, should be
satisfied. On the other side, service downtimes due to a too low number of active
UAVs in the FANET should be minimized in the long term.

These objectives are strictly correlated to each other. In fact, a myopic place-
ment of the VFs on any UAV should minimize energy consumption and service
downtime at the short time, but could cause that some UAVs consume their bat-
tery charge very soon, in the same time interval. In this case, they are forced to
land almost simultaneously, so leaving the FANET with too few UAVs to provide
all the flows with the required services.

For this reason, the RCM makes the following two decision steps at each event:
first, the fraction ηRL,i of the computing power µ(P)

i is calculated for each UAV i

by means of RL, in order to minimize service downtime at the long-term. These
values are used as input of an (instantaneous) optimization problem to decide
VF placement with the constraint that latency for packet processing for the ag-
gregated flow requesting the VF f be less a given delay threshold Df .

The long-term optimization based on RL will be described in Section 2.7.4, while
the short-term optimization, which is approached by means of Integer Linear
Programming (ILP), will be introduced in Section 2.7.5.

2.7.4 Long-term FANET behavior optimization

In this section we describe the MDP used to support the RCM in taking the best
energy-aware decisions that minimize the FANET service downtime. Specifically,
a RL agent is deployed inside the RCM to choose the best reduction factor ηRL,i

of each UAV computing hardware mounted on board.
Let us define the MDP used by the RL agent to achieve this goal. A MDP can

be defined by its environment, space state, action space and reward function.
The environment in which the agent takes action is the system described so far,

as seen by the RCM. It is constituted by the state of charge of the battery of each
UAV in the FANET, which is used to supply the engines, the computing element
and the TX/RX Module. Its current charge level is communicated to the UAV
Local Manager such that it can take its decisions regarding the amount of CE
computing power using and when landing for battery recharging.

The state observations are the system state observed by the agent at the begin-
ning of each decision epoch. Specifically, each time a UAV leaves the FANET to
fly to the CCS or a UAV comes back after battery replacement, a decision epoch
is triggered, and each UAV computing hardware reduction factor ηRL,i is chosen.

The action space is the set of reduction factors to be applied to each UAV in the

103

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

FANET, HRL. Specifically, at each decision epoch the agent chooses one reduction
factor ηRL,i for each UAV in the FANET, from a discrete set of values ranging
from 0 to 1 with a constant step of 0.25:

HRL = {ηRL,0, . . . , ηRL,N} , for ηRL,i ∈ [0, 1],∀i. (2.49)

Finally, we recall that the objective of the long-term reconfiguration is to ensure
service continuity to all Application Services over time. For this reason, we design
the reward so that its maximization would minimize the total service downtime.
Therefore, at the end of each decision epoch n, the RCM will retrieve the amount
of time in which some VF could not be deployed, and therefore users experienced
service downtime, Sdown(n). Let us set the reward rn as the opposite of the service
downtime:

rn = −Sdown(n) (2.50)

Recall that the goal of the agent is to maximize the total reward Gn it receives
with a discounting factor γ, calculated as:

Gn =
+∞∑
k=0

γk · rn+k+1 (2.51)

Therefore, the long-term goal of the agent is to minimize the amount of service
downtime experienced over a large time horizon.

2.7.5 VF Placement short-term Optimization

Let V be the set of UAVs, including both the ones that are flying in FANET, so
providing service, and the ones that are temporarily left the FANET for battery
recharging. Let i ∈ V be the generic UAV, and F the set of available VF instances
to be deployed on the FANET as a whole. We refer to an aggregated flow as
the superposition of all the flows that require the same VF with the same QoS
requirement. Let λf be the packet rate of the aggregated flow requiring the VF
f .

The short-term optimization problem consists in deciding the VF placement
while minimizing the total power consumption and the percentage of flows not
served because the required VF has not been placed. To this purpose, we define
an optimization problem as follows.

Let ui be the variable representing whether the UAV i is used to host at least

104

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

one VF or not:

ui =

{
1 if the UAV i hosts at least one VF
0 otherwise

(2.52)

Let vf,i be the variable representing whether the VF f is assigned to the UAV
i or not:

vf,i =

{
1 if the VF f is assigned to the UAV i

0 otherwise
(2.53)

Let pf be the variable representing whether the VF f is placed on a UAV or not.
Since each VF is placed at most on one UAV only, this variable can be defined
as follows:

pf =
N∑
i=1

vf,i. (2.54)

The objective function weighing the contribution of the overall power consump-
tion, PT , and the lack of service, LT , is defined as follows:

Ψ = γF · PT + γL · LT ; (2.55)

where γF and γL are two constants that are used to give different importance to
the two components of the objective function.

The term PT is the overall power consumption of the FANET, defined as follows:

PT =
N∑
i=1

ui

[
P

(E)
i + ηRL,i · P (CE)

i + (2.56)

+
∑
f∈F

vf,i

(
P

(VM)
f + P

(V F)
f

)]
;

where:

• P
(E)
i is the power consumption due to the engines of the UAV i; it is aways

present if the UAV i is involved in the FANET mission;

• P
(CE)
i is the power absorbed by the computing hardware mounted on board

of UAV i, independently of the number of running VFs; it is reduced by
a factor ηRL,i decided by the RCM, which calculates it by RL to minimize
service downtime, as described in Section 2.7.4.

• P
(VM)
i is the additional power consumption due to the execution of the VM

where the VF f is executed;

105

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

• P
(V F)
f is the power consumption absorbed to process the flow requiring the

VF f . It depends on the packet flow rate, λf , and the energy e
(P)
f needed

by the VF f to process one packet as follows:

P
(V F)
f = λf · e(P)

f (2.57)

The term LT in (2.55) represents the deployment capability of all the VFs, de-
fined as the fraction of flows that the FANET is able to serve. It can be calculated
as follows:

LT =
∑
∀f∈F

pf · λf (2.58)

Each queue associated with a VF instance (see Fig. 2.52) is modeled as a M/M/1
system, which is a single-server queueing system with Poisson-distributed arrivals
and exponentially-distributed packet service times.

Let Ξi be the processing rate of the CE installed onboard UAV i, expressed in
FLoating point Operations Per Second (FLOPS), and ηRL,i the reduction factor
decided by the RCM installed on the CCS on ground. Assuming that all VFs
are provided with no priority, i.e. the overall processing power is equally shared
among the VFs running on the UAV i, the packet processing rate for the generic
VF f , coinciding with the service rate of the M/M/1 queue assigned to it, is:

µf,i =
Ξi · ηRL,i

Φi

· 1

Ωf

(2.59)

where Ωf is the number of floating-point operations required by the VF f to
process a packet, while Φi is the number of VFs placed on the UAV i, that is:

Φi =
∑
∀f∈F

vf,i (2.60)

According to the M/M/1 queueing theory, the average response time or sojourn
time (i.e. total time a packet spends in the M/M/1 queueing system) suffered by
packets of the flow requiring the VF f , if deployed on the UAV i, is:

df =
1

µf,i − λf

. (2.61)

Now, we can formulate the optimization problem that maximizes the objective
function defined in (2.55). We find the optimum set of UAVs to be included in
the placement, U = [ui]1×N , and the optimum placement, i.e. V = [vf,i]|F |×N , |F |
being the cardinality of F , that is, the number of all the VFs requested to the

106

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

FANET.
The optimization problem is formulated as follows:

min
U,V

Ψ (2.62)

s.t. C1: ĩ = 0, ∀̃i ∈ S̃ (2.63)

C2: 0 ≤ ui ≤ min{1,Φi}, ∀i ∈ V (2.64)

C3:
∑
∀f∈F

λf · vf,i < µf,i, ∀i ∈ V (2.65)

C4: δf < D
(MAX)
f ∀f ∈ F (2.66)

where S̃ is a subset of S containing non-available UAVs. Constraint C1 imposes
that no VF can run in non-available UAVs. Constraint C2 shows that the Boolean
variable ui, for each UAV i, is upper-bounded by the number Φi of VFs running
on the UAV i. In other words, ui cannot assume the value 1 if Φi = 0. Constraint
C3 imposes that the overall packet rate arriving to any VFs deployed on each
UAV i is less than the fraction µf,i assigned to the VF f on the UAV i. Finally,
constraint C4 imposes that the processing delay suffered by packets of the flow
using the VF f is less than the maximum tolerable delay for that flow, D(MAX)

f .

2.7.6 Numerical Results

In this section, we will present a use case to evaluate performance of the proposed
framework.

The experiments were performed in a simulator based on OpenAI Gym [124]
and Stable-Baselines3 [106]. We used a Proximal Policy Optimization (PPO) [125]
agent, which is based on the Actor-Critic architecture, and is one of the most
powerful RL algorithms in the current literature, by providing consistency and
stability with little parameter tuning. In our agent both actor and critic networks
have two fully connected layers with 64 neurons each. We also used the Adam
Optimizer with a learning rate of 3 · 10−4 and set the discount factor γ = 0.95.

Let us stress that, for network sizes like the ones considering in this research and
characterizing FANET scenarios, derivation of the solution of the optimization
problem defined in (2.62) by means of an entry-level computing hardware requires
few minutes. Also, consider that it does not need to be executed at runtime, but it
can be run on the Computing Remote Node offline to save the results on a table
that should be modified each time the FANET behavior changes, on a larger
timescale.

Let us consider a FANET composed by |V | = 5 UAVs, and |F | = 10 VFs that

107

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

have to be allocated in the FANET to provide functionalities to end users or
ground devices.

The packet flow rate λf , as well as the additional power consumption P
(VM)
f to

maintain the VMs hosting the VFs switched on, and the energy e
(P)
f needed by

the VF f to process one packet, are listed in Table 2.5. These parameters were
estimated on a real deployment of a softwarized network at the UniCT 5G&B
Lab of the University of Catania, where a set of VNFs implemented by students
for teaching purposes are running to execute different functions. Flow statistics
have been achieved during some measurement experiment on flows generated by
groups of users during their normal academic activities.

Regarding the UAVs, we consider five small equal quadcopters, consuming a
total power for the engine P

(E)
i equal to 66.56W, and each UAV is equipped with

an INTEL NUC miniPC working as CE with a maximum execution capacity Ξi

equal to 8.32 GigaFLOP/s. Finally, all the considered VFs have to guarantee the
same requirement in terms of maximum tolerable processing delay suffered by
each packet D

(MAX)
f . In our experiments, we set this delay equal to 1ms [126].

Finally, the two weights of the objective function Ψ are set as γF = 0.5 for the
overall power consumption of the FANET, and γL = 0.1 for the deployment
capabilities of all VFs.

Performance of the framework is evaluated by varying the mean value tCS of
the round-trip time needed by a UAV to reach the Charging Station, replace the
battery and come back to the place of the mission, and the maximum battery
capacity B. The actual value of round-trip time is randomly generated as a Gaus-
sian random variable with average tCS and standard deviation equal to 10% of
tCS. Results are provided with a 95% confidence interval on the third decimal
place. In Table 2.6, there is a summary of all the variables and the corresponding
value considered during the experiments.

In Fig. 2.54, the average number of flying UAVs is represented. It is easy to
understand that, as the round-trip time increases, each UAV remains more time
away from the FANET, and therefore there are fewer flying UAVs. Obviously,
the maximum battery capacity has an influence on the average number of flying
UAVs, since the greater the battery capacity, the less time each UAV is forced to
return to the Charging Station for battery replacement.

Another consequence of the longer round-trip time is the need to place the VFs
hosted by the UAV that has temporarily left the FANET on those UAVs remained
active in flight. This causes an increase in the average number of VFs that each
flying UAV will have to host to ensure that the FANET is able to satisfy the

108

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Table 2.5: Packet flow rate

Function λf (packet/s) P
(VM)
f (W) e

(P)
f (mJ)

f1 4688 8.63 6.04
f2 4276 10.78 4.24
f3 3896 1.22 4.63
f4 3164 15.41 5.55
f5 5100 20.01 4.9
f6 4521 3.69 5.31
f7 3786 1.22 8.74
f8 3520 2.78 7.44
f9 5021 4.13 6.18
f10 3762 10.16 4.1

Table 2.6: Simulation Parameters

Parameter Value
|V | 5
|F | 10

P
(E)
i 66.5 W, ∀i ∈ V
Ξi 8,32 gigaFlop/s, ∀i ∈ V
tCS [40,90,140,190,240,290,340] s
B [40,60,80]Wh
ηRL 0, 0.25, 0.5, 0.75, 1
γF 0.5
γL 0.1

D
(MAX)
f 1ms

Layer of the networks 2
Number of neurons for each layer 64

Learning Rate 3 · 10−4

γ 0.95

requests coming from users as much as possible (see Fig. 2.55). Also in this case,
the maximum battery capacity has its impact: as the battery capacity increases,
more UAVs are active in the FANET simultaneously, each one having to host a
smaller number of VFs.

Since the total energy consumption also depends on the consumption due to the
instantiation of the VMs that host the VFs (P (VM)

f) and the processing load due
to the input flow of each VFs, it is evident that the higher the number of VFs
allocated on the same UAV, the greater the average consumption of it. The UAV
will be forced to use a higher percentage of CPU in order to process a higher
input load if compared to the case in which the UAVs are all present within the
FANET and the VFs are distributed more uniformly. In Fig. 2.56, the average

109

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.54: Average number of flying UAVs

Figure 2.55: Average number of VFs running on each UAV

power consumption suffered by each UAV remaining active in the FANET is
shown. The curves clearly justify what has just been said.

Coming back to what is shown in the previous figures, the possibility of having a
higher battery capacity means that the UAVs are forced to return to the Charging
Station less frequently. Accordingly, remaining more UAVs in flight, the VFs do
not weigh down individual UAVs, which are not forced to increase the percentage
of CPU to use, and therefore consume less.

As already said in the Introduction, the more resources the CE consumes, the
faster the battery of the UAV runs out, thus reducing the overall FANET service
availability. In Fig. 2.57, the average flight time of each UAV is represented. This
trend is obviously correlated with the power consumption shown in Fig. 2.56,
since the more a UAV consumes, the less its battery charge will be, and therefore
the less its flying time inside the FANET.

Fig. 2.58 shows the average processing delay offered by the FANET to each
packet. As we can see, in all the performed simulations, the FANET is able to
satisfy the maximum acceptable delay requirement D(MAX)

f . However, we can see

110

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.56: Mean power consumption of active UAVs

Figure 2.57: Average flight time of each UAV

that as the time of absence of the UAV from the FANET increases, the delay
undergoes a gradual increase. This is due to the fact that, as there are fewer
UAVs available, the VFs will be concentrated on those that remain active. This
implies that even if the UAV increases the percentage of used CPU, it will have
to partition this CPU to a higher number of VFs. Consequently, as the compu-
tational resources available to the single VF are smaller, the delay introduced
during packet processing will increase. The difference in behavior depending on
the maximum battery capacity is justified by what has already been said so far.

2.8 Contention Window Optimization in FANET

From the communication point of view, the design of a FANET should involve the
definition of the communication architecture, the routing protocol and the MAC
protocol. The communication architecture specifies the rules and mechanisms that
determine how information flows between GCS and multiple UAVs or between

111

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Figure 2.58: Average FANET processing delay

UAVs. We can distinguish:

• UAV direct communication: each UAV is connected to the GCS; communi-
cation between UAVs occurs via the GCS (by means of a double hop); this
centralized scheme is not robust as it suffers the vulnerability of GCS;

• UAV communication via satellite networks: each UAV is connected to the
GCS by a satellite link (or network); communication between UAVs can
occur via the satellite network; the major drawback of this approach is the
high latency of satellite communications but costs and transceiver power
consumption should be considered too;

• UAV communication via cellular networks: each UAV is connected to a base
station (BS) of a cellular network; the GCS is a specific node reachable from
the cellular network; communication between UAVs can occur via the cellu-
lar network; this approach is not applicable when FANET missions includes
natural disaster, war scenarios or terrorist attacks where the operativity of
cellular infrastructure can not be guaranteed;

• UAV communication via Ad-Hoc networks: this network architecture pre-
dict that nodes communicate between them without the need for a central
infrastructure; UAV to UAV and UAV to GCS communications can oc-
cur directly or by means of multi-hop; this architecture appears the most
flexible for FANETs.

In order to satisfy the specific characteristics of nodes in FANET like transmis-
sion bandwidth, shortage of energy and rapid changes in links between them, most
routing protocols used in MANET/VANET cannot be directly applied. Adapted

112

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

protocols based on static, proactive, on-demand, hybrid and geographic cate-
gories have been proposed in the literature. An exhaustive description of routing
protocols mostly used in FANET can be found in [127].

The planning of FANET MAC layer protocol is primarily affected by the possi-
ble varying distances between the different UAVs and, secondarily, by them high
mobility. The target is to guarantee a high throughput also in poor link quality
and a bounded packet latency (specifically for real time applications). Accord-
ingly to [128], the possible MAC protocols used in FANET can be selected based
on communication range: for distances shorter than 10 m IEEE 802.15.1 (Blue-
tooth) can be used; for higher distances shorter than 250 m, one of the different
amendment of IEEE 802.11 is usually applied; when higher distances should be
covered (shorter than fifty km) the choice can involve IEEE 802.16 (WiMAX) or
cellular 3G/4G/LTE; finally to cover higher distances a satellite access is manda-
tory. Anyway, the IEEE 802.11 technology appears the mostly used in FANETs
involving the use of small UAVs which constitutes the majority of currently used
installations. The IEEE 802.11 employs a Carrier Sense Multiple Access with col-
lision avoidance CSMA/CA mechanism with binary exponential backoff (BEB)
rules, called Distributed Coordination Function (DCF). DCF defines a basic ac-
cess method, and an optional four-way handshaking technique, known as request-
to-send/clear-to send (RTS/CTS) method [129]. The DCF makes use one of the
parameters that plays a key role in the MAC layer behavior: the contention win-
dow size (CW). As demonstrated in [81], CW has a significant impact on the
efficiency of Wi-Fi networks.

Therefore, in this research we propose the Online Smart Collision Avoidance
Reinforcement learning (OSCAR) algorithm, a DRL approach that can be de-
ployed online to quickly and efficiently find the best CW value that maximizes
the throughput in the context of a FANET which implements an IEEE 802.11
protocol at MAC layer. For this purpose, it is based on Deep Deterministic Policy
Gradient (DDPG) [130], that significantly enhances the performance of the net-
work, with a fast convergence speed that does not require any previous knowledge
of the system.

2.8.1 System Model

In our system, we consider a set of UAVs, denoted as M, that communicate to
each other through the same Wi-Fi Access Point (AP), sharing the same channel.
In the UAV, inside the AP, an OSCAR agent is deployed to choose, at runtime,
the optimal CW to be used by all the stations. In order to optimize the CW , the

113

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

OSCAR agent learns the optimal policies using an RL approach. In RL, a MDP
is used to provide a framework for modeling decision-making in situations where
outcomes are partly random and partly under the control of a decision maker,
that in our system is the OSCAR agent.

In order to optimize the CW using RL, we, therefore, need to frame the problem
as a MDP. Specifically, we need to define the environment state, the action space,
and the rewards that the agent will receive upon executing the actions. A MDP
is formally defined as a tuple (S,A, T,R, γ) in which:

• S is the state space,

• A is the action space,

• T is the set of transition probabilities among states,

• R is the reward function,

• γ is the discount factor.

In a MDP, the agent has access to all the information of the environment state,
which means that the environment state and the agent state coincide. However,
in our problem, the environment state consists in the state of all of the UAVs
connected to the network. This is a piece of information impossible to collect.
For this reason, we shift from MDPs to Partially Observable Markov Decision
Processes (POMDP), which do not assume that the agent can observe the en-
vironment’s state perfectly. A POMDP is formally a (S,O,A, T,R, γ) tuple in
which O is the observation space. In POMDP, an observation is what the agent
sees from the environment in order to execute actions.

Each time the agent has to make a decision, a new decision epoch n is triggered.
The agent observation on ∈ O is the frame loss rate calculated at the end of the
decision epoch n− 1, defined as:

ρcn =
F s
n−1

F s
n−1 + F r

n−1

(2.67)

in which F s
n−1 is the number of frames sent by all the UAVs to the AP during the

decision epoch n− 1, and F r
n−1 is the number of frames correctly received by the

AP during the decision epoch n− 1.
In particular, F s

n can be calculated as:

F s
n =

∑
∀t∈n−1

f s
t (2.68)

114

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

where f s
t is:

f s
t =

{
1 a frame has been transmitted at time t

0 otherwise
(2.69)

On the other hand, F r
n can be calculated as:

F r
n =

∑
∀t∈n−1

f r
t (2.70)

where f r
t is:

f r
t =

{
1 a frame has been received by the AP at time t

0 otherwise
(2.71)

For each decision epoch n, the agent action consists in choosing a new CW

value, CWn. Each UAV uses this value for the whole duration of the epoch as the
upper bound of the range in which the random numbers represent the waiting
times before transmissions are extracted. To this purpose, the agent uses the
following standard equation:

CWn = ⌊2an − 1⌉ (2.72)

However the IEEE 802.11 standard mechanism increments an at each collision in
the discrete range [4, 10], such that the CW is doubled in the interval between
15 and 1023. On the other hand, the OSCAR agent chooses an in the continuous
interval A = [4, 10] and keeps it constant for the whole duration of the epoch. The
mechanism is then implemented by setting the minimum and maximum values of
the CW range for the whole decision epoch both equal to the CWn value decided
by the agent, i.e., CWn,min = CWn,max = CWn.

Since the agent in the system is model-free, the transition probabilities of the
environment state are unknown to the agent. This reflects what happens in real
network scenarios, and therefore allows our agent to be deployed in real networks.
Finally, recalling that the objective of the system is to decrease the number of
collisions to increase the network throughput, the reward is defined as the number
of frames correctly received during the current decision epoch, that is:

rn = F r
n =

∑
∀t∈n−1

f s
t (2.73)

To summarize, at the beginning of each decision epoch, the agent in the AP

115

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

observes the current frame loss rate, then chooses an action, transmits the chosen
CW to all the connected UAVs, and then receives the reward right before the
start of the next decision epoch.
The goal of the agent is to maximize the total received reward Gn discounted by
γ, calculated as:

Gn =
+∞∑
k=0

γk · rn+k+1 (2.74)

The parameter γ ∈ [0, 1] is the discount factor. It determines the importance of
future rewards over immediate rewards.

2.8.2 The OSCAR algorithm

In the definition of OSCAR, we use a continuous action space with a policy-
based approach. As regards the first choice, in a discrete action space, the agent
decides which action to perform from a finite action set, while in a continuous
action space, actions are expressed as a single real-valued vector. In our system, a
continuous action space can lead to better performance, since it allows the agent
to choose the CW from a much larger set of values than the one in a discrete
action space. The second choice i.e. using a policy-based method is due to value-
based methods not performing well in continuous action space.

Moreover, we cannot allow the agent to take random actions through random
exploration since it might lead to unexpected and undesired network performance.
If, on the one hand, this might not be an issue in a simulated network, especially
during the training phase, our goal is to design an agent able to be immediately
deployed in a real network, even during the agent’s training phase.

Therefore, in our system, we use a state-of-the-art deterministic policy-based
method called DDPG.

2.8.3 OSCAR Execution Phases

Usually, DRL agents for Contention Window Optimization operate in two distinct
phases: the learning phase and the operational phase.

In the learning phase the agent chooses the CW value according to what the
agent has seen so far in terms of experience and, to enable exploration, each
action is usually modified by a noise factor, sampled from a Gaussian distribution,
which decays over the course of the learning phase. This learning phase is usually
executed in controlled simulations. Occasionally, a pre-learning phase is required,
in which the Wi-Fi network is controlled by legacy 802.11: this is done in order

116

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

to start storing some experience in the Experience Replay Buffer.
After the algorithm converges, the operational phase starts, the noise factor is

set equal to zero, and the agent is deployed in the real network. The algorithm
convergence is usually determined by a user-set time limit, which usually depends
on the number of training steps required by the agent to usually converge.

However, in real networks, the agent cannot simply stop to learn, because the
underlying environment (the network) is always evolving. The operational phase
may cause some issues due to the environment being different from the one the
agent has been trained on, and may lead to bad performance. For this reason, in
our system, we do not distinguish between a learning phase and an operational
one. In fact, the agent is always learning to be able to fastly adapt to new network
conditions, triggered, for example, by new UAVs joining or leaving the FANET.
To make this possible, we need to make sure that the agent learns good policies in
a very short amount of training steps. We, therefore, consider the OSCAR agent
execution phase in Algorithm 4.

The performance of DRL algorithms depends on the hyperparameters of the
neural networks, such as their learning rates αθ and αw, the number of hidden
layers, and the number of neurons in each hidden layer. Since the learning is done
using mini-batch stochastic gradient descent, choosing the correct batch size b is
also critical. Moreover, an Experience Replay Buffer B records every interaction
between the agent and the environment (up to a size limit Zmax, that is another
hyperparameter to be chosen), and serves as a base for mini-batch sampling.
Finally, since in both Actor and Critics we have two neural networks, the target
and the main networks, another important hyperparameter is the soft-update
period τ .

After an initial phase in which the agent and the environment are initialized,
the agent observes the current state of the environment, as in line 11, and chooses
an action, in line 12, that is then converted into a CW using (2.72) and broad-
casted to all the stations in the network, as in line 13. Then, all the UAVs in the
network use that CW until a new decision epoch is triggered, that is, after de

seconds. The agent then receives a reward, calculated as in (2.73), then observes
the environment, pushes the experience tuple into the Experience Replay Buffer
B, and then trains both the Actor and Critic networks, as in lines 14-19. Lines
9-20 loop indefinitely, or until a specific user-set time limit that can be manually
set in line 5 by substituting the while True command line with the desired control
loop.

117

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Algorithm 4 OSCAR Algorithm
1: Initialize Experience Replay Buffer B with max size Zmax

2: Initialize batch size, b, and learning rate, γ
3: Initialize Actor and Critic main networks with weights θ and w
4: Initialize Actor and Critic target networks with weights θ′ and w′

5: Initialize Actor and Critic learning rates, αθ and αw

6: Initialize decision epoch length, de
7: Initialize decision epoch n
8: while True do
9: F s

n ← number of transmitted frames
10: F r

n ← number of received frames
11: on ← P c

n calculated as in (2.67)
12: an ← actor_target.predict(on)
13: on+1, rn+1 ← env.step(an) let the environment evolve for de milliseconds
14: B.push(on, an, rn+1, on+1)
15: b← sampled minibatch from Experience Replay Buffer
16: actor.train(b) train the Actor main network
17: critic.train(b) train the Critic main network
18: actor_target.update()
19: critic_target.update()
20: n← n+ 1
21: end while

2.8.4 System Setup

We implemented OSCAR in ns3-gym [131], a framework that allows the network
simulator 3 (ns3) [132] environment to be compatible with the OpenAI Gym [124]
interface. Gym is the interface commonly used by RL algorithms. We implemented
DDPG in Pytorch [133]. The ns-3 simulation settings were the following: error-free
radio channels, IEEE 802.11ax, 1024-QAM modulation with a 5/6 coding rate,
single-user transmissions, a 20 MHz channel, frame aggregation disabled, and
constant bit rate UDP uplink traffic to a single AP with 1500B packets and equal
offered load calibrated to saturate the network. The transfer of data required by
the observation to the agent requires an overhead of 100B/s, sent from each UAV
to the UAV-AP, and the dissemination of the newly chosen CW values by the
AP is done through periodic beacon frames. The DRL agent hyperparameters are
described in Table 2.7. Randomness was incorporated into both agent behavior
and network simulation. Each experiment was run for 12 rounds of 15 seconds
simulations.

118

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

Table 2.7: DRL Parameters

Parameter Value
Decision Epoch length, de 10 ms
Actor Learning rate, αθ 3 ·10−4

Actor Hidden Layers [128,128]
Critic Learning rate, αw 4 ·10−3

Critic Hidden Layers [128,128]
Batch size, b 64
Discount Factor, γ 0.9
Experience Replay Buffer size, Bmax 1× 106

Soft update period, τ 1× 10−1

(a) Mean Episode Network Throughput (b) Instantaneous Network Throughput

Figure 2.59: Throughput in the learning phase

2.8.5 Numerical Results

OSCAR was evaluated for different numbers of UAVs in the FANET, in order
to assess various performance aspects. We used two baselines for comparison:
(a) the current operation of 802.11ax, denoted as standard 802.11, and CCOD
w/DDPG [81], that is currently, at the best of our knowledge, the best DRL ap-
proach for optimizing the CW. The first baseline represents the current operation
of 802.11ax, while the latter estimates the current upper bound in terms of per-
formance. In CCOD, authors also analyzed the performance of CCOD w/DQN,
but since its performance was worst than CCOD w/DDPG, we did not consider
it in our performance evaluation campaign.

CCOD uses Recurrent Neural Networks with long-short term memory layers
to address the possibility that older observation might be useful to the agent to
make intelligent decisions to optimize the long-term network throughput. To do
this, a wide history window of size 300 allowed the algorithms to take previous
observations into account. Then a preprocessing phase is executed, which consists

119

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

(a) Mean Network Throughput as the
number of UAVs increases at OSCAR con-
vergence

(b) Mean Network Throughput as the
number of UAVs increases at CCOD con-
vergence

Figure 2.60: Throughput as the number of stations increase

of calculating the mean and standard deviation of the history of recently observed
collision probabilities H(Pc) of length h using a moving window of a fixed size
and stride. This operation changes the data’s shape from one- to two- dimensions,
since each step of the moving window yields two data points. This collection
can then be interpreted as a time series, which means it can be analyzed by a
Recurrent Neural Network. The preprocessing window length was set to h/2 with
a stride of h/4, where h is the history length.

Twelve rounds of OSCAR’s 15-second execution phase, simulated on two NVIDIA
3070 RTX, lasted approximately 10 minutes. However, GPUs are not required to
run the OSCAR algorithm since, as opposed to CCOD, OSCAR does not re-
quire complex networks such as Recurrent Neural Networks (RNN), which are
usually much slower than traditional neural networks, i.e., Feed-Forward Neural
Networks (FNN), especially when not supported by GPU acceleration. On top of
that, OSCAR does not need any additional buffer nor data preprocessing, that is
instead used in CCOD to store and preprocess the previously observed collision
probabilities H(Pc) in the history window, that will then be fed to the agent.

First, we evaluate how fast the OSCAR algorithm is able to recognize the op-
timal CW value with respect to the current state-of-the-art algorithm and what
is the improvement over the standard 802.11 approach. The results show that
802.11 performance degrades as the number of UAVs in the FANET increase,
while on the other hand, both OSCAR and CCOD can optimize the CW value in
static network conditions, as shown in Fig. 2.59. However, as shown by the blue
dashed vertical line in Fig. 2.59b, the OSCAR algorithm converges to the optimal
solution in about 300 decision epochs (iterations), while CCOD requires 11000
decision epochs, as depicted by the green vertical line. Considering that each de-
cision epoch lasts 0.01 seconds, this means that our approach is able to adapt to

120

CHAPTER 2. EXTREME EDGE NETWORK MANAGEMENT IN FANETS

the current dynamics of the network in about 3 seconds, while CCOD requires
about two minutes. This means that OSCAR learns the optimal values 36 times
faster than the current state-of-the-art DRL approach, while still reaching the
same optimal results.

In Fig. 2.60, for each data point, a fixed number of UAVs has been connected
to the UAV-AP throughout the simulations. In theory, a constant value of CW

should be optimal in these conditions. Fig. 2.60 shows the mean network through-
put right after the algorithms’ convergence. Specifically, Fig. 2.60a shows the
network performance after 3 seconds of the learning phase, that is when OSCAR
converges to the optimal policy. On the other hand, Fig. 2.60b shows the net-
work performance after 110 seconds of learning, that is at CCOD convergence.
As shown by Fig. 2.60a, after 3 seconds, the OSCAR improvement over standard
802.11 ranges between 11% for 15 UAVs and 40% for 50 UAVs, while the im-
provement over CCOD ranges between 30% for 15 UAVs and 15% for 50 UAVs.
As the number of UAVs increases, CCOD mean network throughput improves:
this is due to the fact that CCOD convergence tends to be quicker for a higher
number of UAVs. Nonetheless, CCOD is still not able to reach the same perfor-
mance as OSCAR. After 110 seconds, as shown in Fig. 2.60b, CCOD converges,
and thus the performance of OSCAR and CCOD is basically the same. However,
this higher convergence time means that CCOD cannot reach optimal values if
the number of UAVs changes every less than 2 minutes, while on the other hand,
OSCAR is able to adapt to new network conditions in about 3 seconds.

experiments have shown that OSCAR achieves state-of-the-art results 36 times
faster than the other DRL approaches, while also lowering the agent’ computa-
tional cost.

121

Chapter 3

Latency and Energy Management
of VANETs

In recent years, thanks to the advent of 5G technologies, network softwarization
and programmability [61, 134–136], which have guaranteeing ultra-low latency,
high reliability and energy saving as one of the main objectives, there has been
a significant increase in deployment delay-constrained scenarios not achievable
with the previous generations of mobile networks [52, 137–140]. One of the most
challenging application scenarios for the above technologies is constituted by the
Intelligent Transport System (ITS), enabled by the use of vehicular networks
for various applications, such as traffic management, safety and entertainment
[22–24]. These applications often have low latency and high-reliability targets,
whose achievement may be challenging in vehicular networks due to their highly
dynamic and resource-constrained nature. In fact, the limited processing and
storage capabilities of the OBUs, i.e. the processing equipment installed on-board
of the vehicles, are often insufficient to guarantee such requirements.

One approach to address these challenges is to use job offloading, which involves
transferring some or all of the required computation to more powerful and/or
better-connected devices, typically the so-called RSUs installed along the road-
way. However, using job offloading in vehicular networks introduces additional
challenges, including balancing latency and energy consumption.

When deployed in remote roads and rural areas, RSUs do not have access to
a fixed Internet connection and/or the power grid. In such cases, the RSUs are
stand-alone, battery-powered devices that can only count on the local computing
units for processing and green energy harvesting as their power source.

In this perspective, for load balancing in the network, in order to reduce peaks of
latency and energy consumption, each RSU should also be able to further offload

122

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

the received jobs to nearby RSUs [25].
With this in mind, a new, challenging scenario emerges, where each RSU has to

autonomously find a proper trade-off between the energy consumption and the
processing delay requested by vehicular services. On the one hand, this goal can
be achieved by adequately tuning the amount of processing power employed and,
on the other, by choosing the optimal amount of jobs to offload to the nearby
RSUs.

Hence, the main motivation of this work is to develop a distributed edge-
computing framework based on Multi-Player Multi-Armed Bandit (MP-MAB)
algorithms for latency- and energy-aware job offloading in green vehicular net-
works.

Multi-Armed Bandit (MAB) algorithms [141] are a class of online learning al-
gorithms widely used to solve resource allocation problems in various contexts,
including wireless communication networks and online advertising. MAB algo-
rithms work by allowing a decision-making agent to explore different options (or
"arms") to learn which option is the best in a given context. MP-MAB algorithms
[142] extend this idea to the case where multiple decision-making agents must co-
ordinate their actions to achieve a common goal. In the context of our work, these
agents reside in the RSUs and are responsible for the offloading decisions and the
proper tuning of the employed processing power.

Distributed multi-armed bandit frameworks have been recently proposed as a
practical approach for optimizing job offloading in vehicular networks [143–145].
These algorithms aim to maximize the network’s overall performance by intel-
ligently allocating tasks to the most suitable RSUs, taking into account factors
such as latency and energy consumption.

The distributed nature of the framework allows the RSUs to share information
with each other and coordinate their actions to collectively optimize the network’s
performance. This can lead to significant improvements in the effectiveness of job
offloading in terms of energy consumption and job processing latency.

Overall, distributed bandit frameworks offer a promising solution for addressing
the challenges of job offloading in vehicular networks and have the potential to
impact a wide range of applications significantly.

We hereby summarize the main contributions of our work:

• we derive the mathematical model of a vehicular network infrastructure
based on green, stand-alone RSUs and supported by two-level offloading
capabilities, as well as of the system performance in terms of outage prob-
ability and job processing latency;

123

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

• we design MANTRA (Multi-AgeNT Rsu mAnagement), a distributed frame-
work based on MP-MAB, to support autonomous offloading and energy-
saving decisions on the RSU devices;

Moreover, we prove the effectiveness of MANTRA through an extensive numer-
ical analysis, and demonstrate how our solution can quickly converge towards the
global optimum despite its decentralized and fully-scalable nature.

The chapter is organized as follows. Section 3.1 is devoted to the revision of
existing literature in the field of job offloading in vehicular networks. In Section
3.2, we explain the system model and formulate the problem. In Section 3.3, we
introduce the mathematical formulation of the problem. Section 3.4 describes
the proposed MANTRA framework. In Section 3.5, we discuss the setup of the
simulation campaign, while in Section 3.6, some numerical results are presented.

3.1 Related Work

Authors in [144] propose a MAB-based offloading framework to support job of-
floading in vehicular networks. In particular, edge servers in the network can
exploit Utility-table based Learning (UL) algorithms to optimally offload the re-
ceived jobs to the other edge servers in the network or a remote cloud. In such a
way, the authors leverage the offloading mechanism to minimize the service delay
and balance the computation-intensive jobs among MEC/cloud servers in a dis-
tributed manner. However, the authors do not consider the possibility of having
battery-powered, flexible edge servers and only focus on the problem of latency
minimization and load balancing. The issue of energy saving, instead, is not taken
into account.

In [145], the authors devise a two-level offloading scheme for vehicular networks,
where both vehicles and RSUs act as MAB agents. In particular, the former can
offload their jobs to the RSUs and cloud servers installed near the network’s 5G
base stations (gNB). Instead, the RSUs can choose to process the received jobs
locally or perform a further offloading towards the available gNBs. Hence, the
whole offloading framework relies on the MAB algorithm to explore and learn the
best actions to minimize the average completion latency for the jobs. As in the
previous case, the authors do not take the energy consumption of the system into
account and work with traditional, fixed RSUs.

As opposed to the works mentioned above, this research explores the usage of
flexible, portable, battery-powered RSUs. For this reason, not only do we consider
the problem of latency minimization, but we also consider the crucial trade-off

124

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

Figure 3.1: Reference system

between latency and energy consumption in the system. The idea of resorting
to portable RSUs stems from our previous work in [25]. However, this research
also explores an entirely new idea as i) it resorts to a lightweight, dynamic MAB
framework to optimize the system performance, whereas the work in [25] leverages
on model-based reinforcement learning which, on the one hand, is more precise
and accurate, but may fail in adapting to a dynamic vehicular system; ii) This
research introduces the idea of fully-distributed decision-making systems with
local information only, as opposed to the previous work [25], where the RSUs had
full knowledge over the system state.

3.2 The Reference System

In the following, we describe the scenario addressed in this work. Here, intelligent
vehicles flow along both directions of a stretch of road. Each vehicle is equipped
with several sensors and runs one or more smart tasks, ranging from safety to info-
tainment applications, from traffic improvement to cooperative, and autonomous
driving [146, 147].

The tasks can be split into one or more jobs. Each job can be either processed by
the local OBU installed on the vehicles where that job is generated or, leveraging
on edge computing facilities, offloaded to the MEC-in-a-box (M-Box) stations
placed along the road [25]. Each M-Box includes a RSU to communicate and
process the jobs offloaded by the vehicles, a battery to supply the communication
and processing devices, and a microeolic turbine acting as a power generator to
recharge the battery.

As depicted in Fig. 3.1, the stretch of road is covered by a setM = {0, 1, . . . ,M−
1} of M-Boxes, where each M-Box m manages a specific portion of the road, or

125

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

Area, that is, its radio coverage area. Hence, each M-Box m will receive and
process the jobs generated by the vehicles in the coverage Area m.

Clearly, the possibility of offloading jobs can help relieve the processing burden
from the vehicles. Still, in case of intense traffic conditions in specific areas, the
corresponding M-Boxes may be overloaded by the high volume of generated jobs,
with a severe impact on the system performance (quick battery drain and/or high
processing latency).

For this reason, together with the traditional offloading procedure from the
smart vehicles to the M-Box (vertical offloading), in the reference system, the
M-Box devices are provided with the possibility to further offload the jobs to the
other M-Boxes in the system (horizontal offloading).

The horizontal offloading procedure proves fundamental, as it introduces the
possibility to balance the load in the network. Overloaded M-Boxes can leverage
the horizontal offloading procedure to transfer part of the received jobs to their
neighbors. In particular, two M-Boxes are considered neighbors whenever they are
in radio visibility with each other. Hence, we introduce the definition of Neigh-
borhood, where a Neighborhood m is correspondingly centered on the M-Box m.
Accordingly, all the M-Boxes included in the Neighborhood m belong to the set
Nm, i.e., the set of M-Boxes directly reachable from the M-Box m for horizontal
offloading. For the sake of simplicity, we assume that each M-Box has only two
neighbors, i.e., the next and previous M-Boxes along the road. The first and the
last M-Boxes represent an exception, as they only have one neighbor (the next
and the previous M-Box, respectively).

Finally, to offload their jobs, the M-Boxes have to incur one or more costs of
heterogeneous nature (an energy cost, a monetary cost, or both).

The horizontal offloading can, therefore, crucially improve the load distribution
in the system, with a significant impact on the processing delay and, thus, the
system responsiveness.

Energy saving is another crucial aspect for the mobile and battery-powered M-
Boxes. In such a perspective, M-Boxes are provided with the possibility to turn on
and off their processors, here referred to as Computing Elements (CEs). Hence,
whenever the job load is minimal, the M-Boxes can turn off most of their CEs,
thus saving energy. Vice versa, in case of intense loads, the M-Boxes can turn on
all the available CEs in response to the massive amount of processing requests.

Therefore, a trade-off emerges between the system energy consumption and the
system latency. Indeed, depending on the specific system application and the
system state, the M-Boxes could decide to either accept a more significant job

126

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

latency to save energy or, instead, reduce the system latency as much as possible
by turning on more CEs.

With all this in mind, each M-Box can decide i) the number of CEs to keep active
and ii) the percentage of jobs to offload to its neighbors. The decision depends
on several constraints/requirements, such as the residual system autonomy, the
desired job processing latency, and the offloading cost. These requirements must
be appropriately formalized and modeled in the form of specific reward functions.

3.3 Analytical Model

In this section, we provide the mathematical formulation of the system perfor-
mance. For the sake of scalability and simplicity, we treat the decision on offload-
ing (offloading problem) and the one on the number of active CEs (CE problem)
as separate, though intertwined issues.

As regards the CE problem, the reward function for a generic M-Box m can be
defined as follows:

F
(CE)
RW,m = α

log pL,m − log ϵL
log ϵL

H(log pL,m − log ϵL) +

(1− α)
log pD,m − log ϵD

log ϵD
H(log pD,m − log ϵD)

(3.1)

where:

- pL,m is the so-called latency threshold violation probability, that is, the prob-
ability that the waiting time for a job in the M-Box m queue exceeds a given
threshold τth;

- ϵL is the target value for pL,m;

- pD,m is the battery depletion probability or, equivalently, the outage prob-
ability for the M-Box m;

- ϵD is the target value for pD,m;

- α is a weighing parameter to set the relative importance of the function
components;

- H(·) is the Heaviside unit step function.

Note how both the components of the reward function are properly normalized
in the interval [0,1] to be properly comparable. Since both pL,m and pD,m depend

127

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

on the number of active processors on the M-Box m, a proper choice of the number
of active CEs proves crucial to achieving the desired trade-off between energy
consumption and system latency. Before defining the mathematical expression
for pL,m and pD,m, let us first introduce the reward function for the offloading
problem. Again, for a generic M-Box m, we define the reward function for the
offloading problem as:

F
(OL)
RW,m = β

log pL,m − log ϵL
log ϵL

H(log pL,m − log ϵL)+

(1− β)
σm

σm,max

(3.2)

where:

- σm is the sum of energy and/or monetary costs that the M-Box m has
to pay whenever a job is offloaded. In particular, it can be calculated as
σm = [σ(e) + σ(f)] · λmom, where λm is the job generation rate for Area m,
om is the offloading probability for the M-Box m, and σ(e) and σ(f) are the
offloading energy cost and the monetary offloading fee, respectively.

- β is a weighing parameter to set the relative importance of the function
components.

As in the previous case, all the components are normalized in the interval [0,1].
Let us delve into the calculations of pL,m and pD,m. To simplify the notation,

in the following, we will omit the subscript m. Without loss of generality, we
assume job generation and job processing to be Poisson processes. The latter is
distributed with parameter µCE, identical for all the M-Boxes in the system (i.e.,
all the M-Boxes are equipped with identical hardware).

The job generation process strictly depends on the underlying vehicular traffic
distribution. In particular, let us note how very different time scales characterize
the job generation and traffic variation processes. Indeed, while jobs are usually
generated and processed in time scales of tens or hundreds of milliseconds, the
traffic distribution can take minutes, and even hours, to change over time. For
this reason, we assume the vehicular traffic distribution to be "static". Hence, we
model the M-Boxes as stationary M/M/CE/QC systems, with Poisson-distributed
arrival and service processes, a variable number of servers equal to the active CEs
on the M-Box, and a maximum job queue length equal to QC .

The mean rate of arrivals to the queue of the M-Box m is equal to the sum
of the job generation rate of the Area m and the rates of jobs offloaded by the
neighboring M-Boxes, minus the rate of jobs offloaded by the M-Box m.

128

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

Accordingly, the overall arrival rate to the queue of the M-Box m can be calcu-
lated as:

λin,m = λm(1− om) +
∑
i∈Nm

λi→m (3.3)

The term λi→m in (3.3) represents the job offloading rate from the M-Box i to the
M-Box m and depends on the offloading mechanism. In principle, the offloading
decision specifies the portion of incoming jobs to be offloaded but does not specify
the destination M-Box. For the sake of fairness and load balancing, offloaded jobs
are proportionally split among the neighboring M-Boxes. Accordingly, λm→n can
be derived as:

λm→n = λmom

(
1− ρn∑

i∈Nm
ρi

)
with n ∈ Nm (3.4)

In other words, the idea is to evaluate the average load for each neighboring
node and to distribute the offloaded jobs in a balanced way, where the most
underloaded M-Boxes receive the most significant portion of offloaded jobs.

Now, the term pL, representing the probability that waiting time W in the job
queue is higher than the latency threshold τth, can be derived as the sum of the
probabilities of the queue states causing this condition, that is pL =

∑QC

q=0 gq,
where:

gq = Pr{W > τth} =

{
πq if

1

µCE

(⌈ q

CE
⌉+ 1) > τth

0 otherwise

}
(3.5)

Here, πq is the stationary probability of having a queue length of q jobs. It can be
derived using the well-known queueing theory of the M/M/m/K systems. The
above condition can be explained as follows: when a job enters the queue, it has
to wait for ⌈ q

CE
⌉ service times before being processed, plus an additional service

time for the processing operation. Hence, the waiting time in the system for a job
is equal to the total number of service times divided by the average processing
rate.

Likewise, pD can be derived using the queueing theory. As done in [25], the M-
Box battery can be modeled as an M/M/CE/QB queue, where each element in the
queue represents a battery charge quantum, namely uB. In particular, the battery
queue length can be calculated as QB = Bc

uB
, where Bc is the battery capacity

in Ah. The queue arrivals are determined by the battery recharge process and
strictly depend on the wind conditions. The service process, instead, depends on
the number of active CEs: the more active CEs, the bigger the energy consumption
and the faster the battery discharge rate.

129

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

The condition qB = 0, where qB is the current queue length, corresponds to a
fully depleted battery. Hence, pD is equal to π0, i.e., the stationary probability of
being in the queue state 0. Once again, π0 can be calculated from the queueing
theory applied to the system M/M/m/K systems.

3.4 The MANTRA Framework

In this section, we introduce MANTRA, the proposed distributed framework
based on MP-MAB to address the challenge of balancing latency and energy con-
sumption in the reference system. In MANTRA, each M-Box acts as a decision-
making agent that chooses which job offloading strategy to use according to both
the current network conditions and the performance of past offloading decisions.
Contextually, each M-Box is also responsible for choosing the number of CEs to
be turned on.

3.4.1 Multi-player Multi-armed Bandit

MP-MAB algorithms [142] are online learning algorithms widely used to solve re-
source allocation problems in various contexts, including wireless communication
networks and online advertising. MAB algorithms work by allowing a decision-
making agent to explore different options (or "arms") in order to learn which is
the best in a given context. MP-MAB algorithms extend this idea to the case
where multiple decision-making agents must coordinate their actions in order to
achieve a common goal. From a high-level perspective, MP-MAB algorithms can
be thought of as a game played between the decision-making agents and the en-
vironment. The decision-making agents take actions by selecting arms, and the
environment responds by providing a reward. The game’s goal is to maximize the
total reward of the agents over time.

More formally, we can define an MP-MAB algorithm as:

• there are K arms, and each arm has an associated reward distribution; there
are N decision-making agents, and each agent has a set of actions, A, that
it can take;

• at each time step t, each agent i selects an action ai from its set of actions;

• the environment responds by providing a reward ri to each agent based on
its action and the reward distribution of the selected arm.

130

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

Algorithm 5 MANTRA Learning Algorithm

1: UCB
(CE)
k,m = 0, ∀m ∈ M, ∀k ∈ {1, 2, ...,K(CE)

m } <Initialize computing agents
UCB values for each M-Box m>

2: UCB
(OL)
k,m,CEm

= 0, ∀m ∈ M, ∀k ∈ {1, 2, ...,K(OL)
m }, ∀CEm <Initialize

offloading agents UCB values for each M-Box m>
3: t = 0 <Initialize time step>
4: env.reset() <Initialize environment>
5: while True do
6: a

(CE)
m = [] <Initialize computing agents action vector>

7: a
(OL)
m = [] <Initialize offloading agents action vector>

8: for m ∈M do
9: select k

(CE)
m as in (3.7) <the computing agent pulls an arm>

10: push k
(CE)
m into a

(CE)
m <the selected arm is inserted into the

computing action vector>
11: end for
12: for m ∈M do
13: Retrieve context CEm from a

(CE)
m <the offloading agent retrieves the

number of active CEs for each M-Box in its neighborhood>
14: select k(OL)

m as in (3.9) based on CEm <the offloading agent pulls an arm
based on the context>

15: push k
(OL)
m into a

(OL)
m <the selected arm is inserted into the

offloading action vector>
16: end for
17: r

(CE)
m , r

(OL)
m = env.step(a(CE)

m , a
(OL)
m) as in (3.6) and (3.8) <execute actions

into the environment and retrieve the rewards>
18: for m ∈M do
19: Update r

(CE)
k,m and r

(OL)
k,m,CEm

of each k
(CE)
m and k

(OL)
m arm in a

(CE)
m and a

(OL)
m

<the pulled arm mean rewards are updated>
20: end for
21: t← t+ 1
22: end while

One variant of the MP-MAB algorithm is the Multi-Player Independent MAB
(MP-IMAB) algorithm. In MP-IMAB, each agent is treated as an independent
decision-maker, and the rewards of the different agents are assumed to be inde-
pendent.

Actually, in the addressed reference system, the rewards of different agents can-
not be assumed to be independent. This requires leveraging another class of MP-
MAB algorithms, called Multi-Player Correlated MAB (MP-CMAB) algorithms,
which take into account the correlations between the rewards of the different
agents. In MP-CMAB algorithms, each agent is still treated as an independent
decision-maker, but the rewards of the agents are no longer assumed to be inde-
pendent.

131

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

3.4.2 MANTRA Agents

In the following, we describe the two types of agents that are deployed in each
M-Box m ∈M: one that optimizes the number of computing elements, called the
CE agent, and one that optimizes the offloading strategy, the offloading agent.

The CE agent is responsible for determining the optimal number of computing
elements for each task based on the performance of past decisions. This agent
exploits the Upper Confidence Bound 1 (UCB1) [148] algorithm to learn the
relationship between the number of CEs used and the resulting latency and energy
consumption.

The offloading agent is responsible for determining the best offloading strategy
to use according to the current network conditions, i.e., the number of active
CEs, and the performance of past offloading decisions. This agent implements
the Contextual UCB1 algorithm to learn the relationship between the different
offloading strategies and the corresponding latency and energy consumption.

Specifically, each M-Box is provided with a certain number of CEs that can
be turned on. Let C be the maximum number of CEs in an M-Box. Therefore,
K

(CE)
m = C is the number of arms of the CE agent in the M-Box m. Then, at

each time step t, when arm k
(CE)
m ∈ {1, 2, ..., K(CE)

m } is pulled, k
(CE)
m CEs are

accordingly powered on.
Afterward, each CE agent receives a reward based on the latency of the whole

neighborhood and its own outage probability. For this reason, we can define the
reward of each CE agent in the M-Box m as follows:

r(CE)
m = min

i∈Nm

α
log pL,i − log ϵL

log ϵL
H(log pL,i − log ϵL) +

(1− α)
log pD,m − log ϵD

log ϵD
H(log pD,m − log ϵD)

(3.6)

At each timestep t, each CE agent in M-Box m pulls the arm with the highest
UCB, that is:

k(CE)
m = argmax

k∈{1,...,K(CE)
m }

r
(CE)
k,m + c ·

√
log(t)

nk

 (3.7)

where r
(CE)
k,m , k ∈ {1, ..., K(CE)

m }, is the mean reward of each arm k, nk is the
number of times arm k has been selected, and c is a positive constant that gauges
the exploration/exploitation trade-off.

On the other hand, the offloading agents determine the probability of offloading

132

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

incoming jobs to the other neighbors, as explained in Section ??. However, since
MAB algorithms do not work well when provided with a large number of arms, we
limit the set of offloading probabilities to O = {0%, 10%, ..., 100%}. More specif-
ically, when the offloading agent in M-Box m pulls an arm k

(OL)
m ∈ {0, 1, ..., 10},

it accordingly sets the offloading probability to om = (k
(OL)
m · 10)%. Contrary to

the CE agents, the offloading agents resort to contextual information to choose
the arm to pull. In our system, the context consists of the number of CEs ac-
tive in each M-Box of the neighborhood. This means that the offloading agent
in the M-Box m is aware of the set of active CEs of its neighborhood Nm, i.e.,
CENm = {k(CE)

i },∀i ∈ Nm. For the sake of conciseness, we will afterward refer
to CENm as CEm. Similarly to what happens with the CE agents, the offload-
ing agents receive a reward based on their neighborhood performance and the
amount of offloading they perform. We define the reward of the offloading agent
m as follows:

r(OL)
m = min

i∈Nm

β
log pL,i − log ϵL

log ϵL
H(log pL,i − log ϵL)+

+(1− β)
σm

σm,max

(3.8)

Then, at each time step t, each offloading agent in M-Box m pulls the arm which
offers the highest UCB according to the current context CEm, that is:

k(OL)
m = argmax

k∈{1,2,...,K(OL)
m }

(
r
(OL)
k,m,CEm

+ c ·

√
log(t)

nk,CEm

)
(3.9)

where r
(OL)
k,m,CEm

and nk,CEm are respectively the mean reward of each arm and the
number of times each arm has been selected in context CEm.

By having both of these agents running in each M-Box, the MANTRA frame-
work can dynamically optimize the number of used CEs and the offloading strat-
egy, leading to improved performance in terms of latency and energy consumption.
We show the MANTRA learning phase in Algorithm 5.

3.5 Simulation Setup

This section describes the simulation setup for evaluating the proposed MANTRA
framework. Our simulation includes several intertwined key components, namely
the network model, the set of MAB algorithms, the task offloading model, and
the evaluation framework.

The network model describes the topology and characteristics of the vehicular

133

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

Table 3.1: Simulation Parameters

Parameter Value
Number of M-Boxes 4
Computing Agents UCB1 constant, c(CE) 1

2

Offloading Agents UCB1 constant, c(OL) 1
2

Computing Agents max number of arms, K(CE)
m varied in [1, 6]

Offloading Agents max number of arms, K(OL)
m 10

Computing reward weighing parameter, α 0.75
Offloading reward weighing parameter, β 0.75
CE service rate, µCE 1250 packets/s
Vehicular traffic distribution, λm [1.4, 0.4, 2.2, 0.8] · µCE

Queue waiting time target, τth 8 ms
Queue waiting time violation probability, ϵL 1 · 10−8

Outage target probability, ϵD 4 · 10−2

Maximum job queue size, QC 100
Battery Capacity, Bc 6.2 Ah
Battery size, QB 100
Battery recharge rate, λB 0.186 Ah/s
Battery discharge rate, µB 0.062 · k(CE)

m Ah/s
Energy cost, σ(e) 0.125
Monetary cost, σ(f) 0.125

network, including the capabilities of the M-Boxes and the offloading rate of the
vehicles. In particular, in our simulation campaign, we consider M = 4 M-Boxes
deployed in a straight road.

The second component is the set of multiple bandit algorithms that learn
through a trial and error process based on the network’s feedback and the task
offloading model. In our framework, we deploy 4 UCB1 computing agents and
4 Contextual UCB1 offloading agents, i.e., one UCB1 computing agent and one
Contextual UCB1 offloading agent for each M-Box. We study the system’s per-
formance for a variable number of K(CE)

m , i.e., the maximum number of available
CEs. In particular, we let K(CE)

m vary from 1 to 6. On the other hand, we fix the
maximum number of arms for the offloading agent to K

(OL)
m = 10. The reward

weights α and β in (3.1) and (3.2) are both set to 0.75. We also set the gauge
constant that controls the exploration/exploitation trade-off, c, to 0.5.

The task offloading model simulates the process of offloading tasks from one
M-Box to another, taking into account factors such as the available bandwidth,
the distance between the M-Boxes, and the cost of offloading. Generally speaking,
each M-Box can communicate with the other M-Boxes in its neighborhood. In

134

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

(a) MANTRA Agents’ Cumulative Reward (b) MANTRA Agents’ Regret

Figure 3.2: MANTRA learning phase

our specific setting, each M-Box m is, therefore, able to communicate with M-
Boxes m− 1 and m+ 1, with m = 0 and m = M − 1 being the only exceptions.
In fact, m = 0 is the first M-Box, and can only offload tasks to the M-Box 1.
Similarly, m = M − 1 is the last M-Box and can only offload to M-Box M − 2.
The battery capacity, BC , is set to 6.2 Ah, while a battery charge quantum uB

is equal to 0.062 Ah. Therefore, the battery queue length, QB, is equal to 100
energy quanta. Moreover, the maximum job queue length, QC , is set to 100 jobs.
As regards the energy and monetary costs σ(e) and σ(f), they are both set to 0.5.
The M-Box are recharged with a rate equal to λB = 3uB = 0.186 Ah per second,
and discharged with a rate µB = uB = 0.062 Ah per second for each active CE.

Regarding the latency requirement, we take Ultra-Reliable Low-Latency Com-
munication (URLLC) [149] as the reference case study. In URLLC use cases, the
maximum probability that the latency requirements are not met is usually set be-
tween 1× 10−5 and 1× 10−8. For this reason, we set the target latency threshold
violation probability to ϵL = 1 · 10−8. Moreover, according to the typical URLLC
requirements, we set a maximum latency threshold equal to 8 ms. Finally, we set
the outage target probability, ϵD, to 4 · 10−2.

The job generation process, which depends on the vehicular traffic distribution,
λm, is different for each Area m: [λ0, λ1, λ2, λ3] = [1.4, 0.4, 2.2, 0.8] · µCE.

Finally, the evaluation framework leverages the Weights and Biases [150] and
Stable Baselines3 [151] libraries to run simulations and collect data on the sys-
tem’s performance. The evaluation framework implements algorithms for mea-
suring latency, energy efficiency and offloading cost metrics throughout the sim-
ulation. In general, these components enable the evaluation of the performance
of the bandit algorithms and provide feedback to these components.

These components are implemented in Python using appropriate data structures

135

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

(a) MANTRA Computing Agents Action (b) MANTRA Offloading Agents Action

(c) MANTRA M-Boxes Latency Thresh-
old Violation Probabilities

(d) MANTRA M-Boxes Outage Probabil-
ities

Figure 3.3: MANTRA Strategies and Performance

and algorithms. They are integrated into a proper interface that allows the user
to specify the simulation’s parameters, monitor the simulation’s progress, and
view the results. Table 3.1 summarizes the simulation parameters.

3.6 Numerical Results

MANTRA has been evaluated for different numbers of available CEs in each
M-Box to assess various performance aspects. We compare the performance of
MANTRA against an ideal oracle policy, that is, the optimal policy that could
be achieved if the M-Boxes had a perfect knowledge of the system, thus making
a fully centralized decision possible. Figure 3.2 shows that the agents achieve
near-optimal performance.

More specifically, as visible in Figure 3.2a, the performance of the MANTRA
agents steadily approaches the one offered by the oracle. In other words, the
rewards achieved by the fully decentralized MANTRA algorithms (solid lines)
are almost as efficient as the oracle rewards (dashed lines), and converge after

136

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

a relatively short learning period. Notably, the agents do not need to communi-
cate directly with each other and do not possess any knowledge of the system
parameters. Note how the total reward is the sum of the computing agent’s and
offloading agents’ rewards. Similarly, in Figure 3.2b, we show the so-called regret,
which is the difference between the expected reward of the best action, i.e. the
oracle action, and the expected reward of the action chosen by the algorithm. It
is clearly shown that MANTRA agents’ regret quickly approaches zero, proving
that the agents can learn almost optimal policies.

Figure 3.3a and 3.3b show the strategies adopted by the M-Boxes for an in-
creasing number of the available CEs. Let us now analyze the behavior of each
M-Box. As depicted in Figure 3.3a, M-Box 0 only needs up to two CEs, with
the only exception being the case where the number of available computing el-
ements is equal to three. At a first glance, this behavior seems counterintuitive,
as the underlying job generation rate due to the vehicular traffic distribution in
Area 0 is the second highest in the system. However, in most cases, the amount
of jobs offloaded from M-Box 1 to 0 is quite low. Consequentially, two CEs are
sufficient to handle the incoming traffic in almost all cases. As already stated,
the only exception is represented for three available CEs. In that case, in fact,
M-Box 1 exhibits a high offloading probability, and offloads most of the incoming
jobs towards M-Box 0. The latter, in turn, reduces its offloading probability, and
chooses instead to turn on three CEs to cope with the increased job load.

As regards M-Box 1, let us note that, despite its high offloading probability (see
Fig 3.3b), its actual offloading rate is small. The job incoming rate λ1 is in fact
the lowest among all areas, as visible in Table 3.1 On the other hand, we can see
how M-Box 1 tends to increase the number of active CEs as the CEs availability
increases. In fact, M-Box 1 is the main recipient of the jobs offloaded from M-Box
2. This is due to the high amount of jobs generated by the vehicles in Area 3;
as a consequence, M-Box 3 is highly overloaded and, therefore, cannot affort to
support M-Box 2.

M-Box 2, on the contrary, has the highest incoming job rate among all the M-
Boxes and is therefore highly loaded. Accordingly, this M-Box tends to power the
maximum amount of available CEs, up to four CEs. On the other hand, it does
not set very high offloading probabilities, as this would inevitably deteriorate the
performance of its neighbor nodes.

Note how M-Box 3 already has to deal with a high job rate incoming from its
area and, for this reason, cannot afford to fully support M-Box 2. The latter, in
turn, relies on M-Box 1 to offload most of its jobs.

137

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

For what concerns M-Box 3, it powers up to 2 CEs but tends to keep the
offloading probabilities high. The reason for this behavior is the following: as
already stated, M-Box 2 is overburdened by a high volume of incoming jobs, but
tends to turn on a lot of CEs, and can rely on the help of the M-Box with the
lowest incoming job rate, M-Box 1. Hence, M-Box 3 offloads most of the incoming
jobs to M-Box 2, and can accordingly keep most of its CEs off, while M-Box 2,
in turn, further offloads part of those jobs to M-Box 1.

Finally, Figures ?? and 3.3d depict the latency threshold violation probability,
pL,m, and the M-Boxes battery outage probability, pD,m. As expected, the system
cannot satisfy the latency requirements of ϵl = 1×10−8 when there are less than 4
CEs in each M-Box. This is due to the system being unable to handle the demand
without requiring additional hardware. You can also clearly see how the agents
are cooperating by the fact that the M-Box with the highest incoming job rate,
i.e., M-Box 2, is not always the one with the highest latency threshold violation
probability since it is frequently helped by the other M-Boxes. Similarly, the M-
Box with the lowest incoming job rate, i.e., M-Box 1, is not always the one with
the lowest latency threshold violation probability since it assists other M-Boxes
by offering its CEs to process their jobs.

Figure 3.4 depicts the comparison between the performance of MANTRA versus
two main baseline heuristics. In particular, the first baseline, Offloading-only (O-
O), acts over the amount of offloaded jobs while keeping all the available CEs
active. Performance improvements over this baseline are achievable only if the
CE MANTRA agents learn the appropriate amount of CES to keep active. On
the contrary, the second baseline, Computing-only (C-O), can dynamically power
on and off the available CEs, but does not rely on any offloading procedure
and therefore keeps all the processing local instead. The comparison between
MANTRA and C-O highlights the capabilities of the MANTRA offloading agents
to effectively cooperate with each other, and also demonstrates that, at least in
certain scenarios, the latency requirements can only be satisfied by leveraging the
offloading procedure.

MANTRA outperforms both baseline strategies, as shown in Figures 3.4a and
3.4b. On the one hand, the first baseline offers generally low latency threshold
violation probabilities. It is also characterized by a much higher outage probabil-
ity, as compared with the other two approaches. MANTRA, instead, is capable of
keeping the latency threshold violation probability low with substantially lower
energy consumption. On the other hand, the second baseline forces the M-Boxes
to power on most of the available CEs, due to the fact that it doesn’t exploit any

138

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

(a) Latency Threshold Violation Probabil-
ities

(b) Outage Probabilities

(c) Average Latencies (d) Average Battery Charge

Figure 3.4: MANTRA vs Offloading-Only and Computation-Only

offloading among M-Boxes. This results in both high outage probabilities and
high latency threshold violation probabilities, especially in the case of overloaded
M-Boxes, such as M-Box 2. MANTRA can instead adequately balance the net-
work load among the available M-Boxes, thus reducing the energy consumption in
the network and the latency threshold violation probability. Finally, Figures 3.4c
and 3.4d depict the average delay and battery charge of the different strategies.
Specifically, for the sake of readability, we choose to show the performance of the
strategies only when both the latency and outage requirements are satisfied. For
this reason, for instance, the boxes for the case with only one and two computing
elements are set to zero, as two CEs are never sufficient to satisfy the latency
requirement. Clearly, as soon as the number of available computing elements is
above two, MANTRA is the only strategy that is able to consistently satisfy the
requirements. On the other hand, O-O is only able to satisfy the requirements
in the case of three and four available computing elements. Moreover, while the
latency performances of MANTRA and O-O average delays are comparable, the
average battery charge in O-O is instead 36% and 90% lower than MANTRA
for three and four available computing elements, respectively. Conversely, C-O is

139

CHAPTER 3. LATENCY AND ENERGY MANAGEMENT OF VANETS

able to meet both the target requirements only when six computing elements are
available. However, in this scenario, MANTRA’s battery charge is, on average,
57% higher than the one in C-O. This shows how MANTRA agents can effectively
reduce the M-Boxes energy consumption

140

Chapter 4

Latency-aware Network Slicing in
O-RAN

The advent of O-RAN architectures has redefined the way cellular networks are
organized and deployed. Network slicing within the context of O-RAN holds the
promise of delivering tailored services to diverse use cases, each with distinct Ser-
vice Level Agreements (SLAs). This section focuses on the application of DRL
techniques to address the intricate challenge of satisfying different SLAs for net-
work slices in an O-RAN environment. We delve into the complexities of ensuring
low latency and optimal resource allocation across multiple network slices.

4.0.1 O-RAN Overview

The forthcoming iterations of cellular networks must possess intrinsic adaptabil-
ity and adaptiveness to effectively cater to a wide spectrum of application-specific
and user-centric demands. To accomplish these aspirations, the future Radio
Access Networks must combine three pivotal elements [153]: (i) programmable
and virtualized protocol stacks with clearly defined open interfaces; (ii) closed-
loop network control mechanisms; and (iii) data-driven modeling and ML. Pro-
grammability will facilitate agile RAN adaptation, enabling the provisioning of
tailor-made services to cater to the precise requirements of distinct deployments.
Closed-loop control will leverage telemetry measurements from the RAN to re-
configure cellular nodes, adapting their behavior to current network conditions
and traffic. In tandem, data-driven modeling will leverage recent advances in
ML and large-scale data analysis, thereby enabling real-time, closed-loop, and
dynamic decision-making processes grounded in techniques like DRL. It is note-
worthy that these very principles constitute the foundational principles of the

141

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

Figure 4.1: O-RAN architecture with the near-RT RIC functions, aside packet
core [152]

emergent Open RAN paradigm, which has recently garnered substantial momen-
tum as a pragmatic enabler of algorithmic and hardware innovation in the future
of cellular networks [154, 155].

In the pursuit of catalyzing the evolution towards open RAN architectures, the
3rd Generation Partnership Project (3GPP) has standardized the disentangle-
ment of base stations into discrete functional units, as shown in 4.1: the Central
Unit (CU), Distributed Unit (DU), and Radio Unit (RU). The O-RAN Alliance,
a consortium of industry stakeholders, is actively engaged in standardizing open
interfaces that serve to connect the various disaggregated functional units to a
shared control overlay, denoted as the RAN Intelligent Controller (RIC). This RIC
is capable of executing custom control logic via so-called xApps. These efforts will
render the monolithic RAN “black-box” obsolete, favoring open, programmable
and virtualized solutions that expose status and offer control knobs through stan-
dardized interfaces [153].

However, while developing new software solutions for open architectures might
be considerably easier than before, demonstrating their effectiveness, efficiency,
reliability, and robustness in a host of varying scenarios becomes a necessity. This
imperative arises from the essential need to safeguard the operational perfor-
mance, stability, and security of both the network itself and the services dispensed
to a vast user base. It is therefore imperative for Telecommunications Operators

142

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

(TOs) to require that all networks algorithms and software components are ex-
tensively tested prior to actual deployment on the commercial infrastructure.

In the capacity of infrastructure owners, Telecommunications Operators theoret-
ically possess the prerogative to subject new software solutions to experimentation
within the established network framework. However, this decision is fraught with
complexities and cost implications, as the deployment of novel solutions within
the commercial network introduces the potential for inadvertent and unfavorable
behavioral consequences, leading to unanticipated service disruptions and finan-
cial ramifications. As an alternative, new solutions could be first tested in smaller
laboratory setups. These trials, however, can only capture a limited number of
radio frequency (RF) scenarios and would merely model small-scale deployment
configurations, limiting their effectiveness and extent.

Figure 4.2: Integration of the O-RAN infrastructure in Colosseum [27]

Consequently, the imperative arises for methodical and expansive testing on a
broader scale. Notably, endeavors in the realm of wireless testing at scale are
progressively advancing. Initiatives such as the Colosseum, the world’s largest
network emulator [156], provides researchers with testing at scale through a fully
controlled, programmable, and observable environment with hardware in the loop.
Colosseum comprises a substantial matrix of 256-by-256-channel RF simulation,
incorporating programmable Software Defined Radios (SDRs) that facilitate the
emulation of end-to-end communications inclusive of abundant computational ca-
pabilities. In Colosseum, each node, or Standard Radio Node (SRN), consists of a
GPU-endowed server connected to one USRP X310. SRNs are fully programmable
and serve as virtualized environments running LXC. This makes it possible to use
them as either compute-only (e.g., edge or cloud servers) or compute-and-transmit
(e.g., UE or BS) nodes. A high-level diagram showing how O-RAN is integrated
inside the Colosseum emulator is shown in Fig. 4.2

Intelligent, dynamic network optimization via xApps is clearly a key enabler for
future network automation. However, it also introduces novel practical challenges
concerning, for instance, the deployment of data-driven ML control solutions at

143

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

scale. Domain-specific challenges stem from considering the constraints of stan-
dardized RANs, the very nature of the wireless ecosystem, and the complex in-
terplay among different elements of the networking stack. These challenges, all
yet to be addressed in practical RAN deployments, include:

1. Collecting datasets at scale: Datasets for ML training at scale need to be
collected and curated to accurately represent the intrinsic randomness and
behavior of real-world RANs

2. Designing ML agents capable of generalizing : Agents should be able to gen-
eralize and adapt to unseen deployment configurations not part of the train-
ing set.

3. Selecting meaningful features : Features should be accurately selected to pro-
vide a meaningful representation of the network status without incurring
dimensionality issues.

To address these key challenges, in this research, we describe the design of DRL-
based xApps for closed-loop control in O-RAN with the objective of satisfying
different SLAs for different network slices while also minimizing the amount of
PRBs to be allocated to do so.

We develop an xApp for closed-loop control of RAN slicing policies. We propose
an innovative xApp design based on the combination of a unified interface to
the near-real-time RIC for data and control messaging and a data-driven unit
with the DRL agent. This simplifies the design and prototyping of xApps, which
share the same interface but are equipped with different intelligent logic. We
train the agents over a 1.5 GB dataset with more than 20 hours of live RAN
performance traces. The results of our large-scale experimental evaluation include
new understandings of data analysis, feature selection, and modeling of control
actions for DRL agents, and insights on design strategies to train ML algorithms
that generalize over different SLAs.

4.0.2 Related Work

The concept of Network Slicing has gained significant attention in recent years as
a pivotal enabler for the efficient deployment of 5G and beyond networks. In the
context of O-RAN, the realization of network slicing holds paramount importance
due to its potential to revolutionize how mobile networks are designed, deployed,
and managed. This section provides an overview of the existing research and
developments pertaining to network slicing within the O-RAN ecosystem.

144

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

Figure 4.3: The O-RAN architecture and the workflow for the design, development
and deployment of ML applications [27]

The foundation for network slicing within O-RAN builds upon earlier research
in 5G and future-generation networks. Researchers have extensively explored the
fundamental principles and architectural frameworks for network slicing. Sev-
eral surveys discuss research directions and challenges on network slicing, dis-
cussing various aspects, including architecture, orchestration, and resource man-
agement [157, 158]. These studies serve as valuable references for understanding
the broader context of network slicing deployment in O-RAN.

The O-RAN Alliance has played a pivotal role in advancing the adoption of open
and intelligent RAN technologies. Their technical specifications and whitepapers
provide critical insights into the integration of network slicing within the O-RAN
architecture. Several O-RAN Alliance documents outline how network slicing is
envisaged as a part of the O-RAN framework. It highlights the importance of
flexibility, scalability, and adaptability of slices to meet diverse service require-
ments.

Effective orchestration and management of network slices are key challenges in
realizing the potential of O-RAN network slicing. Several works have focused on
orchestration frameworks and methodologies. Several novel approaches like the
one in [159] have been proposed to orchestrate and manage network slices in
multi-vendor O-RAN environments efficiently. These studies emphasize the need
for standardized interfaces and intelligent orchestration algorithms to optimize
resource allocation.

Ensuring the security and isolation of network slices is a critical concern in
O-RAN network slicing. Some research [160, 161] addresses security challenges
associated with network slicing, proposing mechanisms to protect slice instances
from unauthorized access and malicious attacks. These studies are essential for
establishing the trustworthiness of O-RAN network slicing.

Evaluating the performance of network slices and optimizing resource allocation

145

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

is crucial for delivering high-quality services. Several studies, such as in [162, 163],
have focused on performance evaluation metrics and optimization techniques for
O-RAN network slicing, enabling efficient resource utilization and QoS assurance.

4.0.3 RIC Data collection and training

The O-RAN specifications include guidelines for the management of ML mod-
els in cellular networks. The specifications describe the ML workflow for O-RAN
through five steps (Fig. 4.3): (1) data collection; (2) model design; (3) model
training and testing; (4) model deployment as xApp, and (5) runtime inference
and control. First, data are collected for different configurations and setups of
the RAN, e.g., large/small scale, different traffic (step 1). Data are generated
by the RAN nodes, i.e., CUs, DUs, and RUs, and streamed to the non-real-
time RIC through the O1 interface, where it is organized in large datasets. After
enough data have been collected, an ML model is designed (step 2). This entails
the following: (i) identifying the RAN parameters to input to the model (e.g.,
throughput, latency, etc.); (ii) identifying the RAN parameters to control as out-
put (e.g., RAN slicing and scheduling policies); and (iii) the actual ML algorithm
implementation. Once the model has been designed and implemented, it is trained
and tested on the collected data (step 3). This involves selecting the model hy-
perparameters (e.g., the depth and number of layers of the neural network) and
training the model on a portion of the collected data until a (satisfactory) level
of convergence of the model has been reached. After the model has been trained,
it is tested on an unseen portion of the collected data to verify that it is able
to generalize and react to potentially unforeseen situations. Then, the model is
packaged into an xApp ready to run on the near-real-time RIC (step 4). After
the xApp has been created, it is deployed on the O-RAN infrastructure. In this
phase, the model is first stored in the xApp catalog of the non-real-time RIC and
then instantiated on demand on the near-real-time RIC, where it is interfaced
with the RAN through the E2 interface to perform runtime inference and control
based on the current network conditions (step 5).

In this research, we focus on steps 1 to 3 for the design and development an
xApp able to satisfy specific SLA requirements in terms of latency.

4.1 System Model

In our system, we consider a radio access network consisting of a set of BSs,
denoted as B, and a set of UEs for each BS, denoted as UB that send data

146

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

through the BSs. Each BS b has capacity Cb, i.e., a discrete number of physical
resource blocks (PRBs) with a fixed bandwidth. Moreover, in each BS there are
deployed several network slices, and we denote the set of network slices as I. The
available resources are divided into subsets of PRBs and dynamically allocated
to each network slice in accordance with their real-time traffic demands and
SLA requirements. Let us assume a system that operates in time slots, each
representing a "decision epoch", denoted by n ∈ N = 1, 2, ..., N . In this system,
decisions about PRB allocation can only be made at the start of each decision
interval. The length of each decision interval, denoted by ϵ, can be determined
based on the policies of the infrastructure provider and can range from a few
seconds to several minutes.

We see the allocation of radio resources to end-users as a two-step process, as
described in [164]. First, once network slices are admitted into the system, the
infrastructure provider schedules the assignment of radio resource slots for each
tenant. Then, based on the available resources, each tenant may choose to im-
plement their own scheduling solutions for their end-users based on their specific
needs and requirements. In light of the various user-to-base station associations
and scheduling algorithms available for allocating resources to end users, our fo-
cus is on correctly and fairly dimensioning the allocation of resources between
slices rather than addressing the issue of intra-slice scheduling.

In each BS, the optimal amount of PRBs to allocate to each slice in i ∈ I is
chosen by the RIC. In order to optimize the number of PRBs to allocate to each
slice, the RIC learns the optimal policies using an RL approach. In RL, an MDP
is used to provide a framework for modeling decision-making in situations where
outcomes are partly random and partly under the control of a decision-maker.

To achieve this goal, we utilize the variable a a(b,i)(n) to indicate the decision
regarding the allocation of PRBs to the i-th slice under the b-th BS during the
n-th decision time interval. Altogether, we formulate the local optimization task
of satisfying some SLA requirements in terms of latency inside BS b for slice i as:

min
N∑

n=1

[∑
i∈I

d(b,i)(n)

]
(4.1)

which is subject to the capacity constraint, which means that the sum of allo-
cated PRBs cannot exceed the total capacity:

∑
i∈I

a(b,i)(n) ≤ Cb (4.2)

147

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

We also want to make it so that each slice incurred latency is less or equal to
the latency requirements of that slice, Λi.

The abovementioned optimization task can be solved by invoking by means of
DRL. Therefore, need to frame the problem as a specific class of MDP, called

Partially Observable Markov Decision Processes (POMDP), which do not as-
sume that the agent can observe the environment’s state perfectly. A POMDP
is formally a (S,O,A, T,R, γ) tuple in which S is the state space (not fully ob-
servable by the agent)), O is the observation space (what the agent sees from the
environment in order to execute actions), A is the action space, T is the set of
transition probabilities among states (can be unknown), R is the reward function
and γ is the discount factor.

Figure 4.4: Correlation analysis of several UE-specific metrics

O-RAN does not indicate which KPMs should be considered for the design of ML
algorithms. The O-RAN E2SM KPM specifications allow the generation of more
than 400 possible KPMs, listed in [165]. These KPMs range from physical layer
metrics to base station monitoring statistics. Therefore, the bulk set of data may
not be useful to represent the network state for a specific problem. Additionally,
reporting or collecting all the metrics via the E2 (fronthaul interface between
the RU and the DU) or O1 (control and management interface in which the
interactions between various components within the O-RAN architecture occur)
interfaces introduces a high overhead and a high dimensional input may lead to
suboptimal performance for ML-driven xApps.

To choose the most valuable metrics, it is necessary to analyze the metrics
through a correlation analysis [27], as shown in Fig. 4.4. Specifically, while down-
link and uplink metrics exhibit a low correlation, most downlink KPMs positively
or negatively correlate with each other (the same holds for uplink KPMs). For

148

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

example, the downlink Modulation and Coding Scheme (MCS) and buffer oc-
cupancy have a negative correlation. Similarly, the number of Transport Blocks
(TBs) and symbols in the downlink have a strong positive correlation. Two down-
link metrics that do not correlate well, instead, are the number of TBs and the
buffer occupancy. Indeed, the amount of data transmitted in each TB varies with
the MCS and, therefore, cannot be used as an indicator of how much the buffer
will empty after each transmission.

To summarize, since the number of downlink symbols and TBs, or the MCS and
the buffer occupancy, are highly correlated, using them to represent the state of
the network only increases the dimensionality of the state without introducing
additional information. Conversely, the buffer occupancy and the number of TBs
enrich the representation with low redundancy. Therefore, the DRL agents for
the xApps in this research consider as input metrics, for each slice i, the number
of TBs tb(b,i), the ratio of PRB granted and requested rt(b), and the downlink
rate dl(b,i). Moreover, since the objective of the agent is to satisfy some latency
requirements, we also include the minimum, maximum, and average latency of the
packets for all the UEs of BS b, d(b,i)min, d

(b,i)
max, d

(b,i)
mean. These metrics are periodically

sent from the BSs and UEs to the RIC before the start of a new decision interval t.
More information on how these metrics have been collected and processed before
being fed to the DRL agent will be discussed in the next section.

Each time the agent has to make a decision for a BS b ∈ B and a slice i ∈ I, a
new decision epoch n is triggered. The agent observation o(e,b,i) ∈ O at decision
epoch n is defined as:

o(e,b,i)(n) =
[
tb(b,i)(n), rt(b,i)(n), dl(b,i)(n), d

(b,i)
min(n), d

(b,i)
max(n), d

(b,i)
mean(n)

]
(4.3)

For each decision epoch, the agent action consists in choosing a new PRB value
for each slice and for each base station, ab,i(n). Each BS b ∈ B uses this value for
the whole duration of the epoch.

Since the agent in the system is model-free, the transition probabilities of the
environment state are unknown to the agent. This reflects what happens in real
network scenarios and therefore allows our agent to be deployed in real networks.
Finally, recalling that the objective of the system is to satisfy the SLAs in terms
of latency while also ensuring that the minimum amount of PRBs required to do
so is allocated, we define φsla as the ratio of packets whose latency is less than Λ,
and corresponds to the target ratio the agent needs to maintain in order to satisfy
the SLA requirements. For example, φsla = 0.99 means that 99% of the packets
need to have their latency less than a predefined latency threshold. Moreover,

149

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

we define the actual ratio of packets that satisfy the SLA as φenv. The latency
threshold to be satisfied is Λi.

With all of this in mind, the reward for slice i and BS b is defined as:

ri,b(n) =


1

1 + ek·(φsla(n)−φenv(n))
if φsla(n) > φenv(n)

1

1 + ek·(φsla(n)−φenv(n))
+

(
1− a(b,i)(n)

Cb

)
otherwise

(4.4)

We use a sigmoid-like function of the difference between the SLA requirements,
φsla, and the actual ratio of packets that satisfy the SLA, i.e., φenv. This allows the
agent to learn how to satisfy the SLA first, no matter the number of PRBs used in
the process. Then, as soon as the agents learn how to satisfy the SLA, the agent
is rewarded even more if he is able to allocate fewer PRBs while still satisfying
the latency requirements. To normalize the components of the reward function
between 0 and 1, we divide the number of PRBs allocated by the maximum
amount of PRBs that can be allocated.

To summarize, at the beginning of each decision epoch, the agent observes, for
each BS, a set of relevant metrics collected through the E2 and O1 interface, then
chooses an action, transmits the chosen amount of PRBs for each slice to the BSs,
and then receives the reward right before the start of the next decision epoch.

4.2 Experiment Setup

The system architecture consists of a distributed multi-agent optimization frame-
work. A DRL agent runs on each cellular BS and makes control decisions on its
slicing policies. Fig. 4.5 shows the architecture of the DRL-based framework. This
is formed by three components: (i) The agent; (ii) the BS protocol stack, and (iii)
the BS connector.

Each agent is equipped with the DRL implementation of a state-of-the-art al-
gorithm like [31], a Data Processing module, and a Reward Calculator module.
Periodically the agent receives MGEN reports from the UEs (step 1). Then, at
each decision epoch t, these reports, together with other metrics collected from
the O1 and E2 interfaces, are processed from the Data Processing module to
obtain the observation of the DRL agent (steps 2 and 3), which reflects the per-
formance of the BS on which the agent is deployed, and of the UEs served by it.
Then (step 4), the DRL network(s) outputs the action to be executed in the BS

150

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

Figure 4.5: The System Architecture

(i.e., the number of PRBs to allocate for each slice). The DRL tuple, made up of
the observation, action, and reward can periodically forwarded to the other BSs
(step 5). This can be useful if the DRL agents are required to be retrained on
fresh data coming from multiple BSs.

The BS connector allows communication between the BSs of the network, while
The BS protocol stack implements the softwarized cellular BS, including layers
such as PHY, MAC, RLC, PDCP, and RRC. This enables communication with
the UEs of the network and can be implemented through open-source software
solutions, as discussed in the next section. Regardless of the specific implemen-
tation, this element provides the network data that is fed to the Data Processing
and Reward Calculator modules to obtain the current observation (from decision
epoch n) and the last reward (from the previous decision epoch n− 1).

4.2.1 SCOPE: a Softwarized Cellular Open Prototyping En-

vironment

In our research, both BSs and UEs have been run inside Colosseum as customized
SCOPE containers. SCOPE [166] is an accessible and software-driven prototyping
platform designed for the advancement of Next Generation (NextG) systems. It
encompasses (i) a ready-to-use transportable open-source container, facilitating
the instantiation of programmable cellular network elements such as base stations
and user devices; (ii) an emulation module that accommodates a diverse array
of authentic real-world deployments, channels, and traffic conditions, thereby en-
abling the rigorous evaluation of novel solutions; (iii) a data collection module

151

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

tailored to the support of applications rooted in artificial intelligence and machine
learning paradigms; and (iv) a suite of open Application Programming Interfaces
(APIs) which endow users with the capability to exercise real-time control over
network element functionalities.

In particular, SCOPE includes an open-source implementation of a 3GPP-
compliant softwarized cellular BS, which includes capabilities such as RAN slic-
ing and Medium Access Control (MAC) and Physical (PHY)-layer functions. To
make SCOPE platform-independent, Scope is developed as ready-to-deploy Linux
Containers (LXCs).

The SCOPE network slicing implementation facilitates the concurrent existence
of multiple distinct slices, each meticulously tailored to accommodate specific
traffic classes and User Equipments (UEs) within a shared infrastructure. Our
implementation empowers the division of the available spectrum at each Base
Station (BS) and exercises authority over the allocation of resources for each
individual network slice. Slicing is implemented in the SCOPE framework by
applying PRB masks during the scheduling process, and it is possible to control
the number of PRBs for each slice. As slices represent a specific type of service
the operators agree to provide to their subscribers (e.g., as part of SLAs), they
are pre-instantiated on the base stations, and users are statically assigned to one
of such slices based on the purchased service level.

SCOPE also includes a data collection module for automatically recording the
performance of the network. Network run-time metrics are saved in CSV format
in the metrics and performance dataset. These can either be queried at run time
(e.g., using it as a feedback loop) or downloaded at the end of the experiment
to refine the control logic. Detailed statistics (e.g., throughput, MCS, buffer size,
slice PRBs) on the performance of each BS and UE are periodically logged by the
SCOPE data collection module and stored in a CSV-formatted dataset. These
metrics have been used, in conjunctions with the packet-related metrics collected
from MGEN reports (which will be discussed in the next section), to create the
dataset used to train the agents.

4.2.2 Cellular Scenarios in Colosseum

During the experiment configuration, we set up the experiment to run on Colos-
seum by selecting the desired RF and traffic scenarios and the duration of the
experiment. This means specifying which nodes act as BSs and which as UEs, and
creating a customized instance of SCOPE with user-defined control logic. Once
the experiment begins, the user-customized SCOPE container is automatically

152

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

deployed on the corresponding Software Radio Node (SRN), and SCOPE RF and
traffic scenarios of choice are executed by Colosseum Massive Channel Emulator
(MCHEM) and Traffic Generator (TGEN).

Each Colosseum scenario consists of two macroblocks: he RF scenario and the
traffic scenario.

The RF scenario specifies the channel conditions that each node experiences in
the experiment. For each SRN, the scenario defines channel impulse responses
that model path loss, fading, and multipath effects. These channel coefficients
are updated every millisecond and can be generated in different ways. Colosseum
supports scenarios with channel coefficients generated via analytical models, ray
tracing software, or obtained via real-world measurements/channel sounders. Co-
efficients are then fed to MCHEM, which applies the corresponding channel taps
to signals to/from each SRN.

The Traffic scenario specifies and configures the traffic flows among BSs and
UEs. Traffic scenarios are handled by the Colosseum TGEN, which is built on
top of Multi-Generator (MGEN), an open-source software that generates and
controls realistic TCP/UDP traffic [167]. MGEN supports a variety of different
classes of traffic with diverse QoS requirements, probability distributions, data
rates, and types of service. MGEN is the tool that also allowed us to collect
packet-related metrics in order to calculate the latencies.

4.2.3 Cellular Scenario

Figure 4.6: Rome cellular scenario map.

In this section, we give an overview of the SCOPE cellular scenario from which
the metrics used to train the DRL agents have been collected. In particular,

153

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

SCOPE contains the Rome urban setup (as shown in Fig. 4.6), in which the loca-
tions of the BSs reflect real cell tower deployments extracted from the OpenCelliD
[168] database. The numbered blue circles in the figure mark the locations of the
BSs on the map

The Rome scenario captures the dynamics of the city center of Rome, Italy. A
total of 50 nodes are involved: 10 BSs and 40 UEs. This is the densest Colosseum
scenario, and it covers an area of 0.5 km2. We leveraged TGEN and MGEN
to generate dedicated traffic scenarios that model uplink and downlink video
streaming traffic flows among UEs and BSs.

We consider the default SCOPE configuration where all UEs generate the same
type of traffic, belong to the same slice, and are served via a round-robin schedul-
ing algorithm.

We considered a network with two different slices. The agent is required to select
how many PRBs to allocate to each slice. The actions taken by the agent are then
enforced via SCOPE, which reconfigures the BSs in real-time. The state of the
agent is generated by periodically reading the dataset entries corresponding to
the most recent 250ms of the experiment.

To train the DRL agents, we performed large-scale data collection experiments
on Colosseum. The large-scale RF scenario mimics a real-world cellular deploy-
ment in downtown Rome, Italy, with the positions of the BSs derived from the
OpenCelliD database. We instantiated a softwarized cellular network with ten
base stations through the SCOPE framework. Each base station operates on a 10
MHz channel (50 PRBs) which can be dynamically assigned to the two slices. We
also considered a uniform traffic scenario in which the bitrate is 1.5 Mbit/s for all
users. Finally, the base stations serve a total of 100 users equally divided among
the two slices. In our data collection campaign, we gathered 1.5 GB of data, for
a total of more than 20 hours of experiments. In each experiment, the BSs (and
UEs through the BSs) periodically report RAN KPMs to the non-real-time RIC.
The complete dataset features more than 30 metrics that can be used for RAN
analysis and ML training. Following O-RAN specifications, training is performed
offline on the dataset. In our case, this is achieved by randomly selecting instances
in which the network reaches the state s1 that results from the combination of
the previous state s0 and the action to explore a0.

154

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

Table 4.1: Action Index to PRBs allocation

Action Index Number of PRBs

0 6

1 9

2 12

3 15

4 18

5 21

6 24

7 27

8 30

4.3 Numerical Results

In this section, we show some preliminary results. Our agents have been evaluated
for different slices with different SLA requirements in terms of latency in order
to assess various performance aspects. Specifically, we consider two slices, with
Λ1 = 200ms and Λ2 = 100ms respectively. We consider two different scenarios:
one with φ1 = φ2 = 0.90 and the second with φ1 = φ2 = 0.99. The training of each
agent lasted about 13 hours on an NVIDIA V100 32GB. We show that the DRL
agents are able to converge to good policies and satisfy the SLA requirements. In
the following figures, we show some histograms representing the actions’ id taken
by the DRL agents to clearly understand what each agent is doing and to what
policy it converges, if any. Specifically, each action index corresponds to a specific
amount of PRBs that are then allocated, as shown in Table 4.1

We first show the convergence of the agent for the first network slice, with
latency requirements Λ = 200ms and φ = 0.9. Recall that, at the beginning
of the training, the agent is initialized with random weights. Figure 4.7 reports
the evolution of the distribution of the actions chosen by the DRL agent for the
Colosseum offline training. During training, the distribution of the actions evolves
from uniform (in yellow) to more skewed, multi-modal distributions at the end
of the offline training (in red). This means that actions computed in the first
few epochs are taken randomly and are generally sub-optimal. As the training
goes on, the agent learns how to select strategies that satisfy the slice-specific SLA
requirements effectively (in this scenario, the action with a lower index seems to be
the one that gives good results). After 8000 episodes of training, for instance, the

155

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

Figure 4.7: Distribution of the actions during the training (Λ1 = 200ms, φ1 = 0.9)

agent is already capable of selecting actions that result in improved performance
and is prone to not choosing actions with a higher index (which corresponds to
actions that allocate a higher amount of PRBs).

Figure 4.8: Convergence of the Episode Reward (Λ1 = 200ms, φ1 = 0.9)

Figures 4.8 and 4.9 show how quickly the agent is able to converge. Specifically,
Fig. 4.9 reports the entropy regularization loss as a function of the training step of
the agent. This metric correlates with the convergence of the training process: the
smaller the absolute value of the entropy, the more likely the agent has converged
to a set of actions that maximize the long-term reward [169]. We stop the training
when this metric (and the mean reward, Fig. 4.10) plateaus.

We now show some results for the other network slice, i.e., the one with Λ =

100ms and φ = 0.9. This has been a much harder task to accomplish since the

156

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

Figure 4.9: Convergence of the Entropy Regularization Loss (Λ1 = 200ms, φ1 =
0.9)

Figure 4.10: Mean Reward (Λ1 = 200ms, φ1 = 0.9)

latency requirements are much more strict than the first slice.
Fig. 4.11 shows the episode reward. This clearly shows that, compared to the

first network slice, the agent is much slower at finding a good policy. In fact, after
a few good episodes during the first 1000 episodes (in which the agent policy is
still mostly random but apparently achieved somewhat good results), the agent
episode reward stagnates in the range 0 from to 500 for about 12000 episodes.
Then, starting at episode 16000 the episode reward starts to increase rapidly. This
coincides with the agents being able to satisfy the SLA constraints, as shown in
Fig. 4.12, where it is clear that the ratio of packets that doesn’t satisfy the latency

157

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

Figure 4.11: Episode Reward (Λ2 = 100ms, φ2 = 0.9)

requirements, i.e., 1− φ, is less than the requirements, φ2.

Figure 4.12: Ratio of packets that do not satisfy the latency requirements (Λ2 =
100ms, φ2 = 0.9)

Accordingly, notice how the action distribution, shown in Fig. 4.13 is much
more complex than the one of the first slice, shown in Fig. 4.7. This reflects the
fact that achieving the target latency requirements is much more complicated in
this second scenario and that the PRB allocation is required to change often (in
contrast to the first slice in which one specific PRB allocation, to which the policy
converged, seemed to be enough to satisfy the requirements).

We now show the results of the training phase when the SLA requirements

158

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

Figure 4.13: Distribution of the actions during the training (Λ2 = 100ms, φ1 =
0.9)

decrease from φ1 = φ2 = 0.9 to φ1 = φ2 = 0.99.

Figure 4.14: Convergence of the Entropy Regularization Loss (Λ1 = 200ms, φ1 =
0.99)

For both network slices, both the entropy regularization loss and episode reward
converge to good values, as shown in Figs. 4.14 and 4.15. As expected, the training
process for the second slice seems to be more unstable than for the first slice.

Fig. 4.17 shows the distribution of actions during the training process for the
second slice. Compared to Fig. 4.13, the policy that the agent learns is more
focused towards a lower amount of PRBs right from the start of the training
process, while in Fig. 4.13 a higher amount of PRBs has been allocated even

159

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

Figure 4.15: Convergence of the Entropy Regularization Loss (Λ1 = 100ms, φ1 =
0.99)

Figure 4.16: Convergence of the Episode Reward (Λ1 = 100ms, φ1 = 0.99)

during later stages of the training.
However, Fig 4.18 clearly shows that the SLA requirements are met even for

the second slice after around 8000 training episodes, after which the training is
stopped. This means that the agent is able to satisfy the requirements even though
the training phase is much more unstable when faced with harder constraints.

160

CHAPTER 4. LATENCY-AWARE NETWORK SLICING IN O-RAN

Figure 4.17: Distribution of the actions during the training (Λ2 = 100ms, φ1 =
0.9)

Figure 4.18: Ratio of packets that do not satisfy the latency requirements (Λ2 =
100ms, φ2 = 0.99)

161

Chapter 5

Conclusion

Throughout this thesis, we embarked on a journey to address critical aspects of
network optimization and management in diverse scenarios, namely: (i) DRL-
based Zero-Touch Management in FANETs, in which We proposed frameworks
that leverage Deep Reinforcement Learning to automate management tasks in
Flying ad-hoc Networks. These frameworks showcased significant potential in
improving network efficiency and adaptability; (ii) Distributed Edge-Computing
Framework for Green Vehicular Networks, in which we developed a distributed
framework utilizing Multi-Player Multi-Armed Bandit (MP-MAB) algorithms to
optimize task offloading, achieving a crucial trade-off between energy consump-
tion and job processing latency; (iii) DRL for Network Slicing in O-RAN, where
we explored the application of DRL in closed-loop network control scenarios,
with the aim of enhancing network performance and adaptability, especially in
the context of Network Slicing Service Level Agreement (SLA) satisfaction.

The contributions of this thesis extend beyond the development of these frame-
works. We address several challenges that arise when deploying DRL-based con-
trol solutions at scale, including dataset collection, robustness testing, agent de-
sign, generalization, and feature selection. These challenges are paramount to
ensure the successful integration and deployment of DRLs in FANETs, VANETs,
and O-RANs.

Moreover, our work demonstrates the potential of DRL techniques in reshaping
the landscape of network management and optimization. The novel methodologies
and algorithms developed here enable more efficient, adaptive, and autonomous
network management, with profound implications for the reliability and perfor-
mance of future wireless networks.

Overall, this thesis has demonstrated why AI and ML will play a key role in
5G and beyond networks. These techniques will indeed enable fully-distributed

162

CHAPTER 5. CONCLUSION

and model-free management of the resources available at the network edge, to
the benefit of the network latency, throughput, and lifetime. The importance of
AI and ML will become crucial and will therefore stimulate a shift towards the
paradigm of AI-centric. networks.

It is also important to acknowledge the ever-evolving nature of the field and to
identify avenues for future research:

1. Real-World Deployments: Transitioning from simulations to real-world de-
ployments remains a significant challenge. Future research can focus on
practical implementations and the development of frameworks that bridge
the gap between theory and practice.

2. Security and Robustness: As networks become increasingly autonomous,
ensuring the security and robustness of DRL-based solutions is paramount.
Future work should delve into fortifying these solutions against adversarial
attacks and unforeseen scenarios.

3. Multi-Domain Optimization: Network management often spans multiple do-
mains. Future research can explore methods to optimize networks that tra-
verse FANETs, VANETs, and O-RANs, considering inter-domain dynamics.

4. Ethical Considerations: The ethical implications of autonomous network
management deserve careful consideration. Research into the ethical aspects
of DRL in network management is crucial as these technologies become more
pervasive.

In closing, this thesis represents a significant step forward in the integration
of DRL techniques for network optimization. It is our hope that the findings
and methodologies presented here will serve as a foundation for future research
and contribute to the continued evolution of network management in FANETs,
VANETs, and O-RANs.

163

References

[1] Corrado Rametta et al. “An open framework to enable NetFATE (Network
Functions at the edge)”. In: Apr. 2015. doi: 10.1109/NETSOFT.2015.
7116179.

[2] Mostafa Zaman Chowdhury et al. 6G Wireless Communication Systems:
Applications, Requirements, Technologies, Challenges, and Research Di-
rections. 2019. arXiv: 1909.11315 [cs.NI].

[3] Wazir Zada Khan et al. “Edge Computing: A Survey”. In: Future Gener.
Comput. Syst. 97.C (Aug. 2019), pp. 219–235. issn: 0167-739X. doi: 10.
1016/j.future.2019.02.050. url: https://doi.org/10.1016/j.
future.2019.02.050.

[4] Lin Wang et al. “Service Entity Placement for Social Virtual Reality Ap-
plications in Edge Computing”. In: IEEE INFOCOM 2018 - IEEE Con-
ference on Computer Communications. 2018, pp. 468–476. doi: 10.1109/
INFOCOM.2018.8486411.

[5] Xiao Yang et al. “Communication-Constrained Mobile Edge Computing
Systems for Wireless Virtual Reality: Scheduling and Tradeoff”. In: IEEE
Access PP (Mar. 2018), pp. 1–1. doi: 10.1109/ACCESS.2018.2817288.

[6] Sunitha Safavat, Naveen Naik Sapavath, and Danda B. Rawat. “Recent
advances in mobile edge computing and content caching”. In: Digital Com-
munications and Networks 6.2 (2020), pp. 189–194. issn: 2352-8648. doi:
https://doi.org/10.1016/j.dcan.2019.08.004. url: https://www.
sciencedirect.com/science/article/pii/S2352864819300227.

[7] Ke Zhang et al. “Cooperative Content Caching in 5G Networks with
Mobile Edge Computing”. In: IEEE Wireless Communications 25 (June
2018), pp. 80–87. doi: 10.1109/MWC.2018.1700303.

[8] Zhiqing Tang et al. “Dependent Task Offloading for Multiple Jobs in Edge
Computing”. In: Aug. 2020, pp. 1–9. doi: 10.1109/ICCCN49398.2020.
9209593.

164

REFERENCES

[9] Haichuan Wang et al. “Joint Job Offloading and Resource Allocation for
Distributed Deep Learning in Edge Computing”. In: 2019 IEEE 21st In-
ternational Conference on High Performance Computing and Communi-
cations; IEEE 17th International Conference on Smart City; IEEE 5th
International Conference on Data Science and Systems (HPCC/SmartC-
ity/DSS). 2019, pp. 734–741. doi: 10.1109/HPCC/SmartCity/DSS.2019.
00109.

[10] Chen Khong Tham and Rajarshi Chattopadhyay. “A load balancing scheme
for sensing and analytics on a mobile edge computing network”. In: June
2017, pp. 1–9. doi: 10.1109/WoWMoM.2017.7974307.

[11] Shichao Li, Gang Zhu, and Siyu Lin. “Joint Radio and Computation Re-
source Allocation with Predictable Channel in Vehicular Edge Comput-
ing”. In: Nov. 2018, pp. 3736–3741. doi: 10.1109/ITSC.2018.8569271.

[12] Richard Cziva, Christos Anagnostopoulos, and Dimitrios P. Pezaros. “Dy-
namic, Latency-Optimal VNF Placement at the Network Edge”. In: IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications. Hon-
olulu, HI, USA: IEEE Press, 2018, pp. 693–701. doi: 10.1109/INFOCOM.
2018 . 8486021. url: https : / / doi . org / 10 . 1109 / INFOCOM . 2018 .

8486021.

[13] Panpan Jin et al. “Latency-Aware VNF Chain Deployment with Efficient
Resource Reuse at Network Edge”. In: IEEE INFOCOM 2020 - IEEE
Conference on Computer Communications. Toronto, ON, Canada: IEEE
Press, 2020, pp. 267–276. doi: 10.1109/INFOCOM41043.2020.9155345.
url: https://doi.org/10.1109/INFOCOM41043.2020.9155345.

[14] Haoran Qi, Xingjian Zhang, and Yue Gao. “Low-Complexity Subspace-
Aided Compressive Spectrum Sensing Over Wideband Whitespace”. In:
IEEE Transactions on Vehicular Technology PP (Oct. 2019), pp. 1–1. doi:
10.1109/TVT.2019.2937649.

[15] Surendra Solanki, Vasudev Dehalwar, and Jaytrilok Choudhary. “Deep
Learning for Spectrum Sensing in Cognitive Radio”. In: Symmetry 13.1
(2021). issn: 2073-8994. doi: 10.3390/sym13010147. url: https://www.
mdpi.com/2073-8994/13/1/147.

[16] Amani Al-Shawabka et al. “DeepLoRa: Fingerprinting LoRa Devices at
Scale Through Deep Learning and Data Augmentation”. In: Proceedings
of the Twenty-Second International Symposium on Theory, Algorithmic

165

REFERENCES

Foundations, and Protocol Design for Mobile Networks and Mobile Com-
puting. MobiHoc ’21. Shanghai, China: Association for Computing Ma-
chinery, 2021, pp. 251–260. isbn: 9781450385589. doi: 10.1145/3466772.
3467054. url: https://doi.org/10.1145/3466772.3467054.

[17] Amani Al-Shawabka et al. “Exposing the Fingerprint: Dissecting the Im-
pact of the Wireless Channel on Radio Fingerprinting”. In: IEEE IN-
FOCOM 2020 - IEEE Conference on Computer Communications. 2020,
pp. 646–655. doi: 10.1109/INFOCOM41043.2020.9155259.

[18] Helin Yang et al. “Artificial Intelligence-Enabled Intelligent 6G Networks”.
In: IEEE Network PP (Oct. 2020), pp. 1–9. doi: 10.1109/MNET.011.
2000195.

[19] Ella Peltonen et al. “6G white paper on edge intelligence”. In: arXiv
preprint arXiv:2004.14850 (2020).

[20] Bharti Nathani and Rekha Vijayvergia. “The Internet of Intelligent things:
An overview”. In: 2017 International Conference on Intelligent Commu-
nication and Computational Techniques (ICCT). 2017, pp. 119–122. doi:
10.1109/INTELCCT.2017.8324031.

[21] Harish Viswanathan and Preben E. Mogensen. “Communications in the
6G Era”. In: IEEE Access 8 (2020), pp. 57063–57074. doi: 10.1109/

ACCESS.2020.2981745.

[22] Lei Liu et al. “Vehicular edge computing and networking: A survey”. In:
Mobile networks and applications 26.3 (2021), pp. 1145–1168.

[23] Ignacio Soto et al. “A survey on road safety and traffic efficiency vehicular
applications based on C-V2X technologies”. In: Vehicular Communications
33 (2022), p. 100428.

[24] Lion Silva et al. “Computing paradigms in emerging vehicular environ-
ments: A review”. In: IEEE/CAA J. of Automatica Sinica 8.3 (2021),
pp. 491–511.

[25] Fabio Busacca et al. “A smart road side unit in a microeolic box to provide
edge computing for vehicular applications”. In: IEEE Trans. on Green
Comm. and Networking (2022).

[26] Michele Polese et al. “Understanding O-RAN: Architecture, interfaces, al-
gorithms, security, and research challenges”. In: IEEE Communications
Surveys & Tutorials (2023).

166

REFERENCES

[27] Michele Polese et al. “ColO-RAN: Developing machine learning-based xApps
for open RAN closed-loop control on programmable experimental plat-
forms”. In: IEEE Transactions on Mobile Computing (2022).

[28] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning.
2013. doi: 10.48550/ARXIV.1312.5602. url: https://arxiv.org/abs/
1312.5602.

[29] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement
Learning with Double Q-learning. 2015. doi: 10.48550/ARXIV.1509.

06461. url: https://arxiv.org/abs/1509.06461.

[30] Vijay Konda and John Tsitsiklis. “Actor-Critic Algorithms”. In: Society
for Industrial and Applied Mathematics 42 (Apr. 2001).

[31] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv
preprint arXiv:1707.06347 (2017).

[32] Chao Yu et al. “The surprising effectiveness of ppo in cooperative multi-
agent games”. In: Advances in Neural Information Processing Systems 35
(2022), pp. 24611–24624.

[33] Mohammad Babaeizadeh et al. “GA3C: GPU-based A3C for deep rein-
forcement learning”. In: CoRR abs/1611.06256 (2016).

[34] Hankz Hankui Zhuo et al. “Federated deep reinforcement learning”. In:
arXiv preprint arXiv:1901.08277 (2019).

[35] Rémi Bonnefoi et al. “Multi-Armed Bandit Learning in IoT Networks:
Learning helps even in non-stationary settings”. In: International Con-
ference on Cognitive Radio Oriented Wireless Networks. Springer. 2017,
pp. 173–185.

[36] Chengshuai Shi et al. “Decentralized multi-player multi-armed bandits
with no collision information”. In: International Conference on Artificial
Intelligence and Statistics. PMLR. 2020, pp. 1519–1528.

[37] Marco Giordani et al. “Toward 6G networks: Use cases and technologies”.
In: IEEE Communications Magazine 58.3 (2020), pp. 55–61.

[38] İlker Bekmezci, Ozgur Koray Sahingoz, and Şamil Temel. “Flying Ad-
Hoc Networks (FANETs): A survey”. In: Ad Hoc Networks 11.3 (2013),
pp. 1254–1270. issn: 1570-8705. doi: https://doi.org/10.1016/j.
adhoc.2012.12.004. url: https://www.sciencedirect.com/science/
article/pii/S1570870512002193.

167

REFERENCES

[39] Muhammad Asghar Khan et al. “Flying ad-hoc networks (FANETs): A
review of communication architectures, and routing protocols”. In: 2017
First International Conference on Latest trends in Electrical Engineer-
ing and Computing Technologies (INTELLECT). 2017, pp. 1–9. doi: 10.
1109/INTELLECT.2017.8277614.

[40] Corrado Rametta and Giovanni Schembra. “Designing a Softwarized Net-
work Deployed on a Fleet of Drones for Rural Zone Monitoring”. In: Future
Internet 9.1 (Mar. 2017), p. 8. issn: 1999-5903. doi: 10.3390/fi9010008.
url: http://dx.doi.org/10.3390/fi9010008.

[41] Giuseppe Faraci et al. “Green wireless power transfer system for a drone
fleet managed by reinforcement learning in smart industry”. In: Applied
Energy 259 (Feb. 2020). doi: 10.1016/j.apenergy.2019.1.

[42] Giuseppe Faraci, Christian Grasso, and Giovanni Schembra. “Reinforcement-
Learning for Management of a 5G Network Slice Extension with UAVs”.
In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS). 2019, pp. 732–737. doi: 10.
1109/INFCOMW.2019.8845316.

[43] Giuseppe Faraci, Christian Grasso, and Giovanni Schembra. “Fog in the
Clouds: UAVs to Provide Edge Computing to IoT Devices”. In: ACM
Trans. Internet Technol. 20.3 (2020).

[44] Giuseppe Faraci, Christian Grasso, and Giovanni Schembra. “Design of a
5G Network Slice Extension With MEC UAVs Managed With Reinforce-
ment Learning”. In: IEEE Journal on Selected Areas in Communications
38.10 (2020), pp. 2356–2371.

[45] Shaowei Li et al. “Collaborative Decision-Making Method for Multi-UAV
Based on Multiagent Reinforcement Learning”. In: IEEE Access 10 (2022),
pp. 91385–91396. doi: 10.1109/ACCESS.2022.3199070.

[46] Zeyi Xi et al. “Energy-Optimized Trajectory Planning for Solar-Powered
Aircraft in a Wind Field Using Reinforcement Learning”. In: IEEE Access
10 (2022), pp. 87715–87732. doi: 10.1109/ACCESS.2022.3199004.

[47] Ghada Afifi and Yasser Gadallah. “Cellular Network-Supported Machine
Learning Techniques for Autonomous UAV Trajectory Planning”. In: IEEE
Access 10 (2022), pp. 131996–132011. doi: 10 . 1109 / ACCESS . 2022 .

3229171.

168

REFERENCES

[48] Jihoon Lee et al. “Multi-level Indoor Path Planning and Clearance-Based
Path Optimization for Search and Rescue Operations”. In: IEEE Access
(2023), pp. 1–1. doi: 10.1109/ACCESS.2023.3269981.

[49] Christian Grasso and Giovanni Schembra. “A fleet of MEC UAVs to extend
a 5G network slice for video monitoring with low-latency constraints”. In:
Journal of Sensor and Actuator Networks 8.1 (2019), p. 3.

[50] Christian Grasso, Raoul Raftopoulos, and Giovanni Schembra. “Deep Q-
Learning for Job Offloading Orchestration in a Fleet of MEC UAVs in 5G
Environments”. In: 2021 IEEE 7th International Conference on Network
Softwarization (NetSoft). 2021, pp. 186–190. doi: 10.1109/NetSoft51509.
2021.9492638.

[51] Mohammad Mozaffari et al. “A tutorial on UAVs for wireless networks:
Applications, challenges, and open problems”. In: IEEE communications
surveys & tutorials 21.3 (2019), pp. 2334–2360.

[52] Christian Grasso and Giovanni Schembra. “Design of a UAV-based video-
surveillance system with tactile internet constraints in a 5G ecosystem”.
In: 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft). IEEE. 2018, pp. 449–455.

[53] Giuseppe Faraci, Christian Grasso, and Giovanni Schembra. “Fog in the
Clouds: UAVs to Provide Edge Computing to IoT Devices”. In: ACM
Transactions on Internet Technology (TOIT) 20.3 (2020), pp. 1–26.

[54] Fuhui Zhou et al. “UAV-enabled mobile edge computing: Offloading opti-
mization and trajectory design”. In: 2018 IEEE International Conference
on Communications (ICC). IEEE. 2018, pp. 1–6.

[55] Lei Wang and Meng Hua. “Optimal bit allocation for UAV-enabled mobile
communication”. In: 2017 3rd IEEE International Conference on Com-
puter and Communications (ICCC). IEEE. 2017, pp. 474–478.

[56] Gilsoo Lee, Walid Saad, and Mehdi Bennis. “Online optimization for UAV-
assisted distributed fog computing in smart factories of industry 4.0”. In:
2018 IEEE Global Communications Conference (GLOBECOM). IEEE.
2018, pp. 1–6.

[57] Nader Mohamed et al. “UAVFog: A UAV-based fog computing for Internet
of Things”. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence & Comput-
ing, Advanced & Trusted Computed, Scalable Computing & Communica-
tions, Cloud & Big Data Computing, Internet of People and Smart City In-

169

REFERENCES

novation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE.
2017, pp. 1–8.

[58] Giuseppe Faraci, Christian Grasso, and Giovanni Schembra. “Design of a
5G network slice extension with MEC UAVs managed with reinforcement
learning”. In: IEEE Journal on Selected Areas in Communications 38.10
(2020), pp. 2356–2371.

[59] Giuseppe Faraci et al. “Green wireless power transfer system for a drone
fleet managed by reinforcement learning in smart industry”. In: Applied
Energy 259 (2020), p. 114204. issn: 0306-2619. doi: https://doi.org/
10.1016/j.apenergy.2019.114204. url: https://www.sciencedirect.
com/science/article/pii/S0306261919318914.

[60] Corrado Rametta and Giovanni Schembra. “Designing a softwarized net-
work deployed on a fleet of drones for rural zone monitoring”. In: Future
Internet 9.1 (2017), p. 8.

[61] Fabio D’Urso et al. “The Tactile Internet for the flight control of UAV
flocks”. In: 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft). IEEE. 2018, pp. 470–475.

[62] Yong Zeng, Rui Zhang, and Teng Joon Lim. “Wireless communications
with unmanned aerial vehicles: Opportunities and challenges”. In: IEEE
Communications Magazine 54.5 (2016), pp. 36–42.

[63] Mohammad Mozaffari et al. “Unmanned aerial vehicle with underlaid
device-to-device communications: Performance and tradeoffs”. In: IEEE
Transactions on Wireless Communications 15.6 (2016), pp. 3949–3963.

[64] Mohammad Mozaffari et al. “Mobile unmanned aerial vehicles (UAVs) for
energy-efficient Internet of Things communications”. In: IEEE Transac-
tions on Wireless Communications 16.11 (2017), pp. 7574–7589.

[65] Gabriella Colajanni and Daniele Sciacca. “An Optimization Model for Ser-
vice Requests Management in a 5G Network Architecture”. In: Optimiza-
tion and Data Science: Trends and Applications. Ed. by Adriano Masone,
Veronica Dal Sasso, and Valentina Morandi. Cham: Springer International
Publishing, 2021, pp. 81–98. isbn: 978-3-030-86286-2.

[66] Li Lin et al. “Computation Offloading Toward Edge Computing”. In: Pro-
ceedings of the IEEE 107 (July 2019), pp. 1584–1607. doi: 10.1109/

JPROC.2019.2922285.

170

REFERENCES

[67] Bin Cao et al. “Intelligent offloading in multi-access edge computing: A
state-of-the-art review and framework”. In: IEEE Communications Maga-
zine 57.3 (2019), pp. 56–62.

[68] Gonçalo Carvalho et al. “Computation offloading in Edge Computing en-
vironments using Artificial Intelligence techniques”. In: Engineering Ap-
plications of Artificial Intelligence 95 (2020), p. 103840.

[69] Abdelhamied A Ashraf Ateya et al. “Energy-and latency-aware hybrid
offloading algorithm for UAVs”. In: IEEE Access 7 (2019), pp. 37587–
37600.

[70] Penglin Dai et al. “A probabilistic approach for cooperative computation
offloading in MEC-assisted vehicular networks”. In: IEEE Transactions on
Intelligent Transportation Systems 23.2 (2020), pp. 899–911.

[71] Yun Lin et al. “Dynamic spectrum interaction of UAV flight formation
communication with priority: A deep reinforcement learning approach”. In:
IEEE Transactions on Cognitive Communications and Networking (2020),
pp. 892–903.

[72] Bohao Li and Yunjie Wu. “Path planning for UAV ground target track-
ing via deep reinforcement learning”. In: IEEE Access (2020), pp. 29064–
29074.

[73] Sang-Yun Shin, Yong-Won Kang, and Yong-Guk Kim. “Obstacle avoidance
drone by deep reinforcement learning and its racing with human pilot”. In:
Applied sciences 9.24 (2019), p. 5571.

[74] Christian Grasso, Raoul Raftopoulos, and Giovanni Schembra. “Smart
Zero-Touch Management for 6G UAV-Based Network Slices”. In: IEEE
(2021).

[75] Muhammad Asghar Khan et al. “Swarm of UAVs for Network Manage-
ment in 6G: A Technical Review”. In: IEEE Transactions on Network and
Service Management 20.1 (2023), pp. 741–761. doi: 10.1109/TNSM.2022.
3213370.

[76] Theodore S. Rappaport et al. “Wireless Communications and Applications
Above 100 GHz: Opportunities and Challenges for 6G and Beyond”. In:
IEEE Access 7 (2019), pp. 78729–78757. doi: 10.1109/ACCESS.2019.
2921522.

171

REFERENCES

[77] Shangwei Zhang et al. “Envisioning Device-to-Device Communications in
6G”. In: IEEE Network 34.3 (2020), pp. 86–91. doi: 10.1109/MNET.001.
1900652.

[78] Nan Chi et al. “Visible Light Communication in 6G: Advances, Challenges,
and Prospects”. In: IEEE Vehicular Technology Magazine 15.4 (2020),
pp. 93–102. doi: 10.1109/MVT.2020.3017153.

[79] Rojeena Bajracharya et al. “6G NR-U Based Wireless Infrastructure UAV:
Standardization, Opportunities, Challenges and Future Scopes”. In: IEEE
Access 10 (2022), pp. 30536–30555. doi: 10.1109/ACCESS.2022.3159698.

[80] Amartya Mukherjee et al. “DisastDrone: A Disaster Aware Consumer In-
ternet of Drone Things System in Ultra-Low Latent 6G Network”. In:
IEEE Transactions on Consumer Electronics 69.1 (2023), pp. 38–48. doi:
10.1109/TCE.2022.3214568.

[81] Witold Wydmański and Szymon Szott. “Contention window optimization
in IEEE 802.11 ax networks with deep reinforcement learning”. In: 2021
IEEE Wireless Communications and Networking Conference (WCNC).
IEEE. 2021, pp. 1–6.

[82] B.P. Crow et al. “IEEE 802.11 Wireless Local Area Networks”. In: IEEE
Communications Magazine 35.9 (1997), pp. 116–126. doi: 10.1109/35.
620533.

[83] Mowei Wang et al. “Machine Learning for Networking: Workflow, Ad-
vances and Opportunities”. In: IEEE Network 32.2 (2018), pp. 92–99. doi:
10.1109/MNET.2017.1700200.

[84] OpenAI et al. Dota 2 with Large Scale Deep Reinforcement Learning. 2019.
arXiv: 1912.06680 [cs.LG].

[85] Chih-Heng Ke and Lia Astuti. “Applying multi-agent deep reinforcement
learning for contention window optimization to enhance wireless network
performance”. In: ICT Express (2022). issn: 2405-9595. doi: https://
doi . org / 10 . 1016 / j . icte . 2022 . 07 . 009. url: https : / / www .

sciencedirect.com/science/article/pii/S2405959522001060.

[86] Mahdokht A Farahani and Mohsen Guizani. “Markov modulated Pois-
son process model for hand-off calls in cellular systems”. In: 2000 IEEE
Wireless Communications and Networking Conference. Conference Record
(Cat. No. 00TH8540). Vol. 3. IEEE. 2000, pp. 1113–1118.

172

REFERENCES

[87] S-Q Li and C-L Hwang. “Queue response to input correlation functions:
Discrete spectral analysis”. In: [Proceedings] IEEE INFOCOM’92: The
Conference on Computer Communications. IEEE. 1992, pp. 382–394.

[88] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications”. In: arXiv preprint arXiv:1704.04861
(2017).

[89] Alex Krizhevsky and Geoff Hinton. “Convolutional deep belief networks
on cifar-10”. In: Unpublished manuscript 40.7 (2010), pp. 1–9.

[90] San-qi Li and Chia-Lin Hwang. “On the convergence of traffic measurement
and queueing analysis: a statistical-matching and queueing (SMAQ) tool”.
In: IEEE/ACM transactions on networking 5.1 (1997), pp. 95–110.

[91] Alfio Lombardo, Giacomo Morabito, and Giovanni Schembra. “An accu-
rate and treatable Markov model of MPEG-video traffic”. In: Proceedings.
IEEE INFOCOM’98, the Conference on Computer Communications. Sev-
enteenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. Gateway to the 21st Century (Cat. No. 98. Vol. 1. IEEE.
1998, pp. 217–224.

[92] John B Kenney. “Dedicated short-range communications (DSRC) stan-
dards in the United States”. In: Proceedings of the IEEE 99.7 (2011),
pp. 1162–1182.

[93] Khiem Le et al. “Efficient and robust header compression for real-time
services”. In: 2000 IEEE Wireless Communications and Networking Con-
ference. Conference Record (Cat. No. 00TH8540). Vol. 2. IEEE. 2000,
pp. 924–928.

[94] Stephen Boyd et al. “Distributed optimization and statistical learning
via the alternating direction method of multipliers”. In: Foundations and
Trends® in Machine learning 3.1 (2011), pp. 1–122.

[95] Gym: a toolkit for developing and comparing reinforcement learning algo-
rithms. https://gym.openai.com/. Accessed Jan 2022.

[96] Pytorch: an open source machine learning framework. https://pytorch.
org/. Accessed Jan 2022.

[97] Nan Zhao, Zehua Liu, and Yiqiang Cheng. “Multi-Agent Deep Reinforce-
ment Learning for Trajectory Design and Power Allocation in Multi-UAV
Networks”. In: IEEE Access 8 (2020), pp. 139670–139679.

173

REFERENCES

[98] Yu Zhang et al. “UAV-Enabled Secure Communications by Multi-Agent
Deep Reinforcement Learning”. In: IEEE Transactions on Vehicular Tech-
nology 69.10 (2020), pp. 11599–11611. doi: 10.1109/TVT.2020.3014788.

[99] Ryan Lowe et al. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments. 2017. doi: 10.48550/ARXIV.1706.02275. url: https:
//arxiv.org/abs/1706.02275.

[100] Oriol Vinyals et al. “Grandmaster level in StarCraft II using multi-agent
reinforcement learning”. In: Nature (2019), pp. 1–5.

[101] Christopher Berner et al. Dota 2 with Large Scale Deep Reinforcement
Learning. 2019. doi: 10.48550/ARXIV.1912.06680. url: https://

arxiv.org/abs/1912.06680.

[102] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. doi:
10.48550/ARXIV.1707.06347. url: https://arxiv.org/abs/1707.
06347.

[103] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement
Learning with Double Q-learning. 2015. doi: 10.48550/ARXIV.1509.

06461. url: https://arxiv.org/abs/1509.06461.

[104] A. Lombardo, G. Morabito, and G. Schembra. “An accurate and treat-
able Markov model of MPEG-video traffic”. In: Proceedings IEEE INFO-
COM’98 Conference on Computer Communications Seventeenth Annual
Joint Conference of the IEEE Computer and Communications Societies
Gateway to the 21st Century. Vol. 1. Los Alamitos, CA, USA: IEEE Com-
puter Society, Apr. 1998, pp. 217–224. doi: 10 . 1109 / INFCOM . 1998 .

659657.

[105] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2014. doi: 10.48550/ARXIV.1412.6980. url: https://arxiv.
org/abs/1412.6980.

[106] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learn-
ing Implementations”. In: Journal of Machine Learning Research 22.268
(2021), pp. 1–8. url: http://jmlr.org/papers/v22/20-1364.html.

[107] Qiang Yang et al. “Federated machine learning: Concept and applications”.
In: ACM Transactions on Intelligent Systems and Technology (TIST) 10.2
(2019), pp. 1–19.

174

REFERENCES

[108] Chia-Lin Hwang and San-qi Li. “On the convergence of traffic measurement
and queueing analysis: a Statistical-MAtch Queueing (SMAQ) tool”. In:
Proceedings of INFOCOM’95. Vol. 2. 1995, 602–612 vol.2. doi: 10.1109/
INFCOM.1995.515927.

[109] Christian Grasso and Giovanni Schembra. “Design of a UAV-Based Video-
surveillance System with Tactile Internet Constraints in a 5G Ecosystem”.
In: 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft). 2018, pp. 449–455. doi: 10.1109/NETSOFT.2018.8460024.

[110] Yassine Yazid et al. “UAV-enabled mobile edge-computing for IoT based
on AI: A comprehensive review”. In: Drones 5.4 (2021), p. 148.

[111] Fabio D’Ursol et al. “The Tactile Internet for the flight control of UAV
flocks”. In: 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft). 2018, pp. 470–475. doi: 10.1109/NETSOFT.2018.
8458493.

[112] Giuseppe Faraci et al. “A 5G platform for Unmanned Aerial Monitoring in
Rural Areas: Design and Performance Issues”. In: 2018 4th IEEE Confer-
ence on Network Softwarization and Workshops (NetSoft). 2018, pp. 237–
241. doi: 10.1109/NETSOFT.2018.8459960.

[113] Mohammad Mozaffari et al. “A Tutorial on UAVs for Wireless Networks:
Applications, Challenges, and Open Problems”. In: IEEE Communications
Surveys & Tutorials 21.3 (2019), pp. 2334–2360. doi: 10.1109/COMST.
2019.2902862.

[114] Roberta Avanzato et al. “Optimization of UAV-Femtocell Systems Po-
sitioning via Game Theory to Geolocate Mobile Terminals in a Post-
Earthquake Scenario”. In: 2021 11th IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing Systems: Technol-
ogy and Applications (IDAACS). Vol. 2. 2021, pp. 785–790. doi: 10.1109/
IDAACS53288.2021.9660873.

[115] Roberta Avanzato and Francesco Beritelli. “An innovative technique for
identification of missing persons in natural disaster based on drone-femtocell
systems”. In: Sensors 19.20 (2019), p. 4547.

[116] Roberta Avanzato and Francesco Beritelli. “A smart UAV-femtocell data
sensing system for post-earthquake localization of people”. In: IEEE Access
8 (2020), pp. 30262–30270.

175

REFERENCES

[117] Vu Khanh Quy et al. “Innovative Trends in the 6G Era: A Comprehensive
Survey of Architecture, Applications, Technologies, and Challenges”. In:
IEEE Access 11 (2023), pp. 39824–39844. doi: 10.1109/ACCESS.2023.
3269297.

[118] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. “Minimal-
istic Gridworld Environment for Gymnasium”. In: (2018). url: https:
//github.com/Farama-Foundation/Minigrid.

[119] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement
Learning with Double q-Learning”. In: AAAI Conference on Artificial In-
telligence. Vol. 30. 1. 2016.

[120] Guangyi Liu et al. “5G Deployment: Standalone vs. Non-Standalone from
the Operator Perspective”. In: IEEE Communications Magazine 58.11
(2020), pp. 83–89.

[121] Adnan Aijaz. “Private 5G: The Future of Industrial Wireless”. In: IEEE
Industrial Electronics Magazine 14.4 (2020), pp. 136–145.

[122] “A Comparative Study of LPWAN Technologies for Large-scale IoT De-
ployment”. In: ICT Express 5.1 (2019), pp. 1–7.

[123] Danny Lee, Joe Zhou, and Wong Tze Lin. “Autonomous Battery Swapping
System for Quadcopter”. In: IEEE International Conference on Unmanned
Aircraft Systems (ICUAS). 2015, pp. 118–124.

[124] Greg Brockman et al. “OpenAI Gym”. In: CoRR abs/1606.01540 (2016).
arXiv: 1606.01540. url: http://arxiv.org/abs/1606.01540.

[125] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv
preprint arXiv:1707.06347 (2017).

[126] Dinh C. Nguyen et al. “6G Internet of Things: A Comprehensive Survey”.
In: IEEE Internet of Things Journal 9.1 (2022), pp. 359–383. doi: 10.
1109/JIOT.2021.3103320.

[127] Amira Chriki et al. “FANET: Communication, mobility models and secu-
rity issues”. In: Computer Networks 163 (2019), p. 106877.

[128] Ashish Srivastava and Jay Prakash. “Future FANET with application and
enabling techniques: Anatomization and sustainability issues”. In: Com-
puter Science Review 39 (2021), p. 100359.

176

REFERENCES

[129] IEEE Computer Society LAN/MAN Standards Committee and others.
“IEEE Standard for Information technology-Telecommunications and in-
formation exchange between systems-Local and metropolitan area networks-
Specific requirements Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications”. In: IEEE Std 802.11ˆ (2007).

[130] Lillicrap et al. Continuous control with deep reinforcement learning. 2015.
doi: 10.48550/ARXIV.1509.02971. url: https://arxiv.org/abs/
1509.02971.

[131] Piotr Gawłowicz and Anatolij Zubow. “ns-3 meets OpenAI Gym: The
Playground for Machine Learning in Networking Research”. In: ACM In-
ternational Conference on Modeling, Analysis and Simulation of Wire-
less and Mobile Systems (MSWiM). Miami Beach, USA, Nov. 2019. url:
http://www.tkn.tu- berlin.de/fileadmin/fg112/Papers/2019/

gawlowicz19_mswim.pdf.

[132] George F. Riley and Thomas R. Henderson. “The ns-3 Network Simula-
tor”. In: Modeling and Tools for Network Simulation. Ed. by Klaus Wehrle,
Mesut Güneş, and James Gross. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2010, pp. 15–34. isbn: 978-3-642-12331-3. doi: 10.1007/978-3-
642-12331-3_2. url: https://doi.org/10.1007/978-3-642-12331-
3_2.

[133] Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Sys-
tems 32. Curran Associates, Inc., 2019, pp. 8024–8035. url: http://

papers.neurips.cc/paper/9015-pytorch-an-imperative-style-

high-performance-deep-learning-library.pdf.

[134] Giuseppe Faraci, Christian Grasso, and Giovanni Schembra. “Reinforcement-
learning for management of a 5G network slice extension with UAVs”. In:
IEEE INFOCOM 2019. IEEE. 2019, pp. 732–737.

[135] H Koumaras et al. “A network programmability framework for vertical
applications in the beyond 5G era”. In: 2022 EuCNC/6G Summit. IEEE.
2022, pp. 375–380.

[136] Dimitrios Fragkos et al. “5G Vertical Application Enablers Implementation
Challenges and Perspectives”. In: IEEE MeditCom 2021, pp. 117–122.

[137] Francesco Licandro, Alfio Lombardo, and Giovanni Schembra. “Multipath
routing and rate-controlled video encoding in wireless video surveillance
networks”. In: Multimedia Systems 14 (2008), pp. 155–165.

177

REFERENCES

[138] Sahrish Khan Tayyaba et al. “5G vehicular network resource management
for improving radio access through machine learning”. In: IEEE Access 8
(2020), pp. 6792–6800.

[139] Shashank K Gupta, Jamil Y Khan, and Duy T Ngo. “A 5G-Based Ve-
hicular Network Architecture to Enhance Road Safety Applications”. In:
2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). IEEE.
2021, pp. 1–7.

[140] Giuseppe Faraci et al. “A 5G platform for unmanned aerial monitoring in
rural areas: Design and performance issues”. In: 2018 4th IEEE Conference
on Network Softwarization and Workshops (NetSoft). IEEE. 2018, pp. 237–
241.

[141] Aleksandrs Slivkins. Introduction to Multi-Armed Bandits. 2019. doi: 10.
48550/ARXIV.1904.07272. url: https://arxiv.org/abs/1904.07272.

[142] Rémi Bonnefoi et al. “Multi-Armed Bandit Learning in IoT Networks:
Learning helps even in non-stationary settings”. In: Intern. Conference on
Cognitive Radio Oriented Wireless Networks. Springer. 2017.

[143] Yuxuan Sun et al. “Task Replication for Vehicular Edge Computing: A
Combinatorial Multi-Armed Bandit Based Approach”. In: 2018 IEEE Global
Communications Conference (GLOBECOM). 2018, pp. 1–7. doi: 10 .

1109/GLOCOM.2018.8647564.

[144] Penglin Dai et al. “Multi-armed bandit learning for computation-intensive
services in MEC-empowered vehicular networks”. In: IEEE Transactions
on Vehicular Technology 69.7 (2020), pp. 7821–7834.

[145] Nang Hung Nguyen et al. “Multi-Agent Multi-Armed Bandit Learning
for Offloading Delay Minimization in V2X Networks”. In: 2021 IEEE 19th
International Conference on Embedded and Ubiquitous Computing (EUC).
IEEE. 2021, pp. 47–55.

[146] Nehad Hameed Hussein et al. “A Comprehensive Survey on Vehicular
Networking: Communications, Applications, Challenges, and Upcoming
Research Directions”. In: IEEE Access 10 (2022), pp. 86127–86180. doi:
10.1109/ACCESS.2022.3198656.

[147] Santi Agatino Rizzo, Giovanni Susinni, and Francesco Iannuzzo. “Intru-
siveness of Power Device Condition Monitoring Methods: Introducing Fig-
ures of Merit for Condition Monitoring”. In: IEEE Industrial Electronics
Magazine 16.1 (2022), pp. 60–69. doi: 10.1109/MIE.2021.3066959.

178

REFERENCES

[148] Volodymyr Kuleshov and Doina Precup. Algorithms for multi-armed ban-
dit problems. 2014. doi: 10.48550/ARXIV.1402.6028. url: https://
arxiv.org/abs/1402.6028.

[149] Petar Popovski et al. “Wireless access in ultra-reliable low-latency com-
munication (URLLC)”. In: IEEE Trans. on Comm. 67.8 (2019).

[150] Lukas Biewald. Experiment Tracking with Weights and Biases. Software
available from wandb.com. 2020. url: https://www.wandb.com/.

[151] Ashley Hill et al. Stable Baselines. https : / / github . com / hill - a /

stable-baselines. 2018.

[152] Andrea Lacava et al. “Programmable and Customized Intelligence for Traf-
fic Steering in 5G Networks Using Open RAN Architectures”. In: IEEE
Transactions on Mobile Computing (2023), pp. 1–16. doi: 10.1109/TMC.
2023.3266642.

[153] Leonardo Bonati et al. “Open, programmable, and virtualized 5G net-
works: State-of-the-art and the road ahead”. In: Computer Networks 182
(2020), p. 107516.

[154] Solmaz Niknam et al. “Intelligent O-RAN for beyond 5G and 6G wireless
networks”. In: 2022 IEEE Globecom Workshops (GC Wkshps). IEEE. 2022,
pp. 215–220.

[155] Hao Zhou, Medhat Elsayed, and Melike Erol-Kantarci. “RAN resource
slicing in 5G using multi-agent correlated Q-learning”. In: 2021 IEEE 32nd
Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC). IEEE. 2021, pp. 1179–1184.

[156] Colosseum. .https://www.colosseum.net/. [Online; accessed 2023].

[157] Shalitha Wijethilaka and Madhusanka Liyanage. “Survey on Network Slic-
ing for Internet of Things Realization in 5G Networks”. In: IEEE Com-
munications Surveys Tutorials 23.2 (2021), pp. 957–994. doi: 10.1109/
COMST.2021.3067807.

[158] Yulei Wu et al. “A survey of intelligent network slicing management for
industrial IoT: Integrated approaches for smart transportation, smart en-
ergy, and smart factory”. In: IEEE Communications Surveys & Tutorials
24.2 (2022), pp. 1175–1211.

[159] Mojdeh Karbalaee Motalleb et al. “Resource allocation in an open ran sys-
tem using network slicing”. In: IEEE Transactions on Network and Service
Management 20.1 (2022), pp. 471–485.

179

REFERENCES

[160] Ramraj Dangi et al. “Ml-based 5g network slicing security: A comprehen-
sive survey”. In: Future Internet 14.4 (2022), p. 116.

[161] CT Shen et al. “Security threat analysis and treatment strategy for ORAN”.
In: 2022 24th International Conference on Advanced Communication Tech-
nology (ICACT). IEEE. 2022, pp. 417–422.

[162] Nasim Kazemifard and Vahid Shah-Mansouri. “Minimum delay function
placement and resource allocation for Open RAN (O-RAN) 5G networks”.
In: Computer Networks 188 (2021), p. 107809.

[163] Han Zhang, Hao Zhou, and Melike Erol-Kantarci. “Federated deep rein-
forcement learning for resource allocation in O-RAN slicing”. In: GLOBE-
COM 2022-2022 IEEE Global Communications Conference. IEEE. 2022,
pp. 958–963.

[164] Xenofon Foukas, Mahesh K Marina, and Kimon Kontovasilis. “Orion: RAN
slicing for a flexible and cost-effective multi-service mobile network archi-
tecture”. In: Proceedings of the 23rd annual international conference on
mobile computing and networking. 2017, pp. 127–140.

[165] 5G performance measurements. Tech. rep. June 2021.

[166] Leonardo Bonati et al. “SCOPE: An open and softwarized prototyping
platform for NextG systems”. In: Proceedings of the 19th Annual Inter-
national Conference on Mobile Systems, Applications, and Services. 2021,
pp. 415–426.

[167] MGEN. .https://www.nrl.navy.mil/itd/ncs/products/mgen. [On-
line; accessed 2023].

[168] OpenCelliD. .https://opencellid.org/. [Online; accessed 2023].

[169] Tuomas Haarnoja et al. “Reinforcement learning with deep energy-based
policies”. In: International conference on machine learning. PMLR. 2017,
pp. 1352–1361.

[170] Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine
Learning 8.3 (May 1992), pp. 279–292. issn: 1573-0565. doi: 10.1007/
BF00992698. url: https://doi.org/10.1007/BF00992698.

[171] Vijay Konda and John Tsitsiklis. “Actor-Critic Algorithms”. In: Advances
in Neural Information Processing Systems. Ed. by S. Solla, T. Leen, and K.
Müller. Vol. 12. MIT Press, 1999. url: https://proceedings.neurips.
cc/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa- Paper.

pdf.

180

Appendix

Appendix A: Markov Decision Processes

Markov Decision Processes (MDPs) are a mathematical framework for modeling
sequential decision-making problems under uncertainty. They are a fundamental
concept in RL, as they provide a formal way to represent the environment, the
agent’s actions, and the rewards associated with those actions.

An MDP is defined by the tuple (S,A, T,R, γ), in which:

• States (S): A set of possible states of the environment.

• Actions (A): A set of possible actions that the agent can take.

• Transition probabilities (T): A set of probabilities that determine the like-
lihood of transitioning from one state to another given an action.

• Rewards (R): A function that assigns a reward to each state-action pair.

• Discount factor (γ): A value between 0 and 1 that determines the impor-
tance of future rewards relative to immediate rewards.

The goal of an agent in an MDP is to learn an optimal policy, which is a mapping
from states to actions that maximizes the expected cumulative reward over time.

In an MDP, the agent has complete information about the current state of the
environment. This means that the agent knows exactly where it is and what its
options are. In a Partially Observable Markov Decision Processes (POMDPs), the
agent does not have complete information about the current state of the environ-
ment. This means that the agent has to make decisions based on its observations
of the environment, which may be noisy or incomplete.

POMDPs are therefore a generalization of MDPs to environments where the
agent does not have perfect information about the current state of the environ-
ment. Instead, the agent only has access to observations, which are noisy and
unreliable indicators of the true state.

181

APPENDIX

A POMDP is defined by the the tuple S,A, T,R, γ,O,B, in which:

• States (S): A set of possible states of the environment.

• Actions (A): A set of possible actions that the agent can take.

• Transition probabilities (T): A set of probabilities that determine the like-
lihood of transitioning from one state to another given an action.

• Rewards (R): A function that assigns a reward to each state-action pair.

• Discount factor (γ): A value between 0 and 1 that determines the impor-
tance of future rewards relative to immediate rewards.

• Observations (O): A set of possible observations that the agent can make.

• Observation probabilities (B): A set of probabilities that determine the
likelihood of making an observation given the true state and the chosen
action.

The goal of an agent in a POMDP is to learn an optimal policy, which is a
mapping from observations to actions that maximizes the expected cumulative
reward over time.

MDPs and POMDPs are important in RL for the following reasons:

1. They provide a formal framework for modeling sequential decision-making
problems under uncertainty. This makes them well-suited for modeling a
wide range of RL problems.

2. They allow for the use of powerful mathematical techniques to solve RL
problems. These techniques can be used to find optimal policies for MDPs
and POMDPs, even in complex environments.

3. They provide a basis for developing new RL algorithms. Many RL algo-
rithms are based on the principles of MDPs and POMDPs.

Appendix B: Deep Reinforcement Learning algo-

rithms

In this section, we describe several DRL algorithms that are used to solve the
MDPs described in the previous chapters.

182

APPENDIX

Q-Learning and Deep Q-Networks

In RL, the notion of state-value function, often denoted as V π(sn), represents how
good is a state for an agent to be in, and is equal to the expected total reward that
the agent will get starting from state sn and then following policy π. Similarly,
the action-value function, denoted as Qπ(sn, an), represents the expected total
reward that the agent should receive when executing action an in state sn. In
traditional Q-Learning algorithms [170], the action-value function is updated as
follows:

Qπ(sn, an)← Qπ(sn, an) + α(rn+1+

+γmaxQπ(sn+1, an+1)−Qπ(sn, an))
(1)

where α ∈ (0, 1] is the learning rate, while Q(sn, an) and Q(sn+1, an+1) are the
Q-values of the current state and the next state, respectively. However, as the
number of states and actions in the MDP increases, the Q-table becomes too
large and the algorithm fails to converge.

Instead of approximating Q-values in the Q-table, Deep Neural Networks can be
used to estimate Qπ(sn, an), i.e., Qπ(sn, an) ≈ Qπθ(sn, an) ≈ Qθ(sn, an), where θ

represents the weights of the neural network that is used as a function approxima-
tor of the Q-values, replacing the Q-table. The network, called Deep Q-Network
(DQN) [28], is then trained by minimizing the loss via Temporal Difference (TD)
Learning, which requires retrieving the loss gradient, which is expressed as follows:

∇θJ(πθ)
DQN = E[rn+1 + γmaxQθ(sn+1, an+1)−

Qθ(sn, an)]
(2)

Therefore, the loss depends on the difference between the target Q-value, which
is calculated using the Q-learning formula [170], and the estimated Q-value. The
goal is to get the estimate Q-value as close as possible to the target Q-value.
To obtain these two Q-values, two independent neural networks are deployed, with
the same identical structure; they are called the evaluation network, with weights
θ, and the target network, with weights θ′. The former generates the estimate
Q-value according to the current state and changes its parameters every iteration
to decrease the loss, while the latter updates its parameters, θ′, by simply copying
the evaluation network parameters, θ, into its own network every k steps, where
k is a hyperparameter.
To provide training samples, DQN has a replay memory that stores historical
experience tuples. These are selected randomly from the replay memory to train
the neural network. This allows to enhance the stability of the training phase.

183

APPENDIX

DQN is a value-based method in which the policy is not stored explicitly, but
it can be rather derived directly from the value function by simply picking the
action with the best value.

Advantage Actor Critic (A2C)

The A2C [30] method is a Policy Gradient approach where the policy of an RL
Agent is parameterized and learned directly from experience. Policy gradient
methods attempt to compute an estimator of a parameterized policy function
using a gradient descent algorithm rather than an action-value or a state-value
function. Thus, they avoid the convergence problems that occur with estimation
functions due to non-linear approximation and partial observation. The policy
gradient, and therefore the loss function, is based on the expectation over the
probabilities of the policy actions and an estimate of the advantage function at
time step t, and is expressed as follows:

L(θ)PG = Ê[∇θ log πθ(a|s)Â] (3)

where Ê is the expectation operator over a finite batch of samples, πθ indicates
a stochastic policy, Â is defined by the discounted sum of rewards and a baseline
estimate, and a and s express the action and state, respectively. While it might be
appealing and straightforward to perform multiple steps of optimization on this
loss function LPG(θ), many challenges can arise from the prevalence of sample in-
efficiency, the balance between exploration and exploitation, and the undesirable
high variance of the learned policy. Empirically, it often leads to destructively
large policy updates, which are destructive since they can also affect the obser-
vation and reward distribution at future time steps. Actor-Critic methods use
two neural networks, the Policy Network, also called the Actor, and the Value
Network, also called the Critic, with θ and ω being the parameters of the two
networks, respectively. The Critic is usually used to approximate the parameter-
ized value function qπ(s, a) or vπ(s). On the other hand, the Actor updates the
policy distribution in the direction suggested by the Critic. A2C introduces the
advantage function, defined as the difference between the action-value function
and the state-value function:

απ(s, a) = qπ(s, a)− vπ(s) (4)

This is a measure of how much better it is to take a specific action compared to
the average, general action at the given state. To avoid constructing two neural

184

APPENDIX

networks to approximate both the action-value and the state-value, we can use
the relationship between the state-value and the action-value dictated from (4).
We can therefore rewrite the advantage as:

απ(s, a) = r + γvπ(s
′)− vπ(s) (5)

where s′ is the value of the state of the environment at the next step. This allows us
to calculate the advantage by having to approximate only the state values. Hence,
we only need another neural network, besides the policy network, to retrieve the
advantage by approximating the state-value. The parameter update rule of the
Actor is given by:

θ ←− θ + αθ · ∇θ log10 (Pr {a|πθ(s)}) · αω(s, a) (6)

while the parameter update rule of the Critic is given by:

ω ←− ω + αω · ∇ωαω(s, a)
2 (7)

The variables αθ and αω in (6) and (7) are the step sizes for Actor and Critic
networks, respectively.

The Actor and the Critic can share both the input layers and the hidden layers.
For this reason, the gradient can be calculated as:

∇f(θ) = ∇θ (Pr {a|πθ(s)}) · αθ(s, a) +∇θαθ(s, a)
2 (8)

The loss function is then given by:

L(θ)A2C = αθ(s, a) · (− log10 (Pr {a|πθ(s)}) + αθ(s, a)) (9)

Deep Deterministic Policy Gradient

In policy-based methods, a representation of a policy π : s → a is explicitly
created and updated during the training phase. For this reason, in the Deep
Policy Gradient (DPG) method, as in all the policy-based methods, the gradient
of the loss is calculated differently than the value-based methods, that is, as the
expected value over all the possible states and actions, as in (3). This means
that a lot of experience tuples (sn, an, rn+1, sn+1) have to be collected from the
environment to make an accurate estimation of the gradient.

On the other hand, in Deterministic DPG (DDPG), the mapping from states to
actions is fixed, so we do not need to integrate over the whole action space. In this

185

APPENDIX

case, the gradient is the expected gradient of the action-value function, which can
be estimated much more efficiently than its stochastic version. Therefore, DDPG
needs fewer data samples to converge over stochastic policy gradient algorithms.

To explore the environment, the DDPG algorithm achieves off-policy learning by
borrowing ideas from Actor-Critic methods [171]. Actor-Critic methods use two
neural networks, the Policy network, also called the Actor, and the Value network,
also called the Critic, with θ and ω being the parameters of the two networks,
respectively. The Critic is usually used to approximate the action-value function
Qw(s, a). On the other hand, the Actor updates the policy distribution in the
direction suggested by the Critic.

Essentially, the Actor produces the action, an, given the current state of the
agent, sn, while the Critic produces a signal that criticizes the actions made by
the Actor. The Actor network outputs the actions, while the Critic network takes
the actions and observation as input and outputs the estimated rewards for each
action. Then the Critic is updated via TD learning as in (2), and the Actor is
updated via Policy Gradient as in (3). Therefore, recalling that the parameters
of the Critic are w and the parameters of the Actor are θ, then the gradient for
DDPG is:

∇θJ(µθ)
DDPG = E [∇θµθ(s)∇aQ

µθ(s, a)|a = µθ(s)] (10)

Where the weights of the Actor, w, and of the Critic, θ, are updated as in (6) and
(7): In order to improve the stability of the Actor training process, two techniques
are borrowed by DDQN [29]: Experience Replay and target networks.
Experience Replay Buffer aims at satisfying one of the fundamental requirements
in neural network optimization, that is, that the training data should be indepen-
dent and identically distributed. This is to prevent action values from oscillating
or diverging catastrophically. This can happen because the sequence of experience
tuples (sn, an, rn+1, on+1) can be highly correlated. The learning algorithm that
learns from each of these experience tuples in sequential order runs the risk of
getting swayed by the effects of this correlation.

The other idea that has been adopted by DQN is the use of target networks. The
Bellman equation provides us with the value of Q(sn, an) via Q(sn+1, an+1), and
this can potentially lead to harmful correlations. In fact, state sn and sn+1 are only
one step far from each other. This makes them potentially very similar, therefore
making it very hard for a neural network to distinguish between them. When we
perform an update of our neural networks’ parameters to make Q(sn, an) closer
to the desired result, we can indirectly alter the value produced for Q(sn+1, an+1)

and other similar states. This can make our training very unstable. To make

186

APPENDIX

training more stable, DDQN introduced the concept of target network, in which
a copy of the neural network is used to get the Q(sn+1, an+1) value in the Bellman
equation. This means that the predicted Q-values of this target network are used
to backpropagate through and train the main network.

It is important to highlight that the target network’s parameters are not trained
via neural network optimization, but are rather periodically synchronized with the
parameters of the main network. This update is called "hard-update". The idea is
that using the target network’s Q-values to train the main Q-network will improve
the stability of the training. By using target networks, we prevent the training
process from spiraling around because we are fixing the targets for multiple time
steps, thus allowing the online network weights to move consistently toward the
targets before an update changes the optimization problem, and a new one is set.
On the other hand, in this way the learning process is slowed down, because the
main network is no longer training on up-to-date values: the frozen weights of the
target network can be lagging for up-to 10,000 steps at a time. Therefore, it is
essential to balance stability and speed and tune this hyperparameter.

In DDPG, target networks are used for both Actor and Critic. However, if on
DDQN the weights of the main network are periodically copied to the target
network, in DDPG the weights of these target networks are updated by having
them slowly track the learned networks. This is done with a fixed frequency via
"soft-update". For Actor and Critic networks, the network weights θ and w are
soft-updated respectively by:

θ′ = τθ + (1− τ)θ′ (11)

w′ = τw + (1− τ)w′ (12)

Proximal Policy Optimization (PPO)

PPO [103] is an advanced Policy-based algorithm that builds upon the Actor-
Critic structure, which is able to combine advantages of traditional value-based
and policy-based approaches. The PPO algorithm is also much simpler to imple-
ment, has less computation burden, and has better sample complexity (empiri-
cally). Specifically, PPO proposes a clipped surrogate loss function and combines
the policy surrogate and a value function error term:

LPPO(θ) = Ê[LCLIP (θ)− c1L
V F (θ) + c2S[πθ](s)] (13)

187

APPENDIX

where LCLIP is the clipped surrogate objective, c1 and c2 are coefficients, LV F

is the squared-error loss of the value function, and S denotes the entropy loss.
Specifically, the clipped surrogate objective LCLIP takes the following form:

LCLIP (θ) = Ê[min(r(θ)Â, clip(r(θ), 1− ϵ, 1 + ϵ)Â] (14)

where ϵ is an hyperparameter, r(θ) denotes the probability ratio
r(θ) = πθ(a|s)/πθold(at|st). This way, the probability ratio r is clipped at 1− ϵ or
1 + ϵ depending on whether the advantage is positive or negative, which forms
the clipped objective after multiplying the advantage approximator Â. The final
value of LCLIP takes the minimum of this clipped objective and the unclipped
objective r(θ)Â, which can effectively avoid taking large policy updates.

188

