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Abstract

In this thesis, by means of a suitable generalization of the construction
proposed in [3], we show that the orbit space of B2 can be equipped with
two Frobenius manifold structures related to the defocusing and focusing
NLS (nonlinear Schrodinger) equation respectively.
Motivated by this example, we generalize this construction for any Bn, with
n > 2. Such a construction is based on the existence of a homogeneous flat
pencil of cometrics (defined as in [15]) defined on the orbit space of Bn. The
proof of the existence of a homogeneous flat pencil relies on the Dubrovin-
Saito procedure (see [18] and [46]), modified in a suitable way.
Starting from this pencil, one can reconstruct a unique Frobenius manifold
structure MBn on the orbit space of Bn, for any n > 2, by following an al-
ternative procedure with respect to the standard one presented by Dubrovin
in [18]; this technical obstacle is due to the non-regularity of the pencil of co-
metrics.
Remarkably, MBn is isomorphic to the Hurwitz-Frobenius manifold struc-
ture on M0;n−2,0 (as evidenced in [41]). This is related to the constrained KP
hierarchy (see [35]). Such an identification makes it possible to compute ex-
plicitly the structure constants corresponding to the dual product of MBn ,
for any integer n.
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Introduction

The fulcrum of the thesis is a remarkable system of partial differential equations
that appeared at the beginning of the 90s of the previous century in two papers
([14] and [56]). The general problem is to find a quasi-homogeneous function
F (t), of the variable (t1, ...., tn), such that its the third derivatives

cijk(t) =
∂3F

∂ti∂tj∂tk

are the structure constants (with a lowered index) of an associative and unital al-
gebra for any t, whose unity doesn’t depend on t.
Such an algebra is automatically commutative. The associativity condition of the
algebra, written in terms of F , reads as an overdetermined system of non-linear
PDEs for F ; we call them WDVV (Witten-Dijkgraaf-E.Verlinde-H.Verlinde) equa-
tion.
Physically, it was first derived as an equation for the primary free energy for a
two-dimensional topological field theory.

Later on, it was discovered to be an efficient tool to join together many areas
of mathematics, such as Gromov-Witten invariants, reflection groups, singular-
ity theory, Painlevé equations, and integrable systems, in a remarkable geometric
framework.
In particular, Boris Dubrovin introduced the notion of the Dubrovin-Frobenius
manifold (see [17]), i.e. a free-coordinate formulation of WDVV equations and
2-D topological field theories. Essentially, a Frobenius manifold is a manifold en-
dowed with a flat metric and two special vector fields (the unity and the Euler
field). Furthermore, at any point, the tangent space has a structure of a Frobe-
nius algebra. The structure constants of the product satisfy certain conditions of
invariance and compatibility with respect to the metric and the associated Levi-
Civita connection.

There exists a natural approach to the theory of Frobenius manifold by means
of the geometry of flat pencil of cometrics (see [15]). In particular, it was proven
that under certain homogeneity and regularity assumptions, these structures co-
incide.
The notion of the flat pencil of cometrics appears in the theory of Dubrovin and
Novikov of Poisson bracket of hydrodynamic type on the loop space of a man-
ifold. This fact highlights the connection between Frobenius manifold and inte-
grable hierarchies.

In December 1992 during a talk of Dubrovin at I.Newton institute Arnol’d im-
mediately recognized in the weighted degrees of certain polynomial solutions of
WDVV equation the Coxeter numbers (plus one) of the three Coxeter groups in
the three-dimensional space. Motivated by this observation Dubrovin showed,
in 1993, that the orbit space of all Coxeter groups (i.e. finite group generated by
real reflection) has a structure of Frobenius manifold, moreover, the correspond-
ing prepotential is a polynomial function.
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Dubrovin’s work relies on a reinterpretation of Saito’s procedure, proposed in
[46] (see also [47]), in terms of bihamiltonian geometry.
According to Chavalley theorem, the subring of invariant polynomials, for the
action of the finite group generated by (pseudo-)reflection, is generated by a set
of homogeneous polynomials, called basic invariants. In general, such invariants
aren’t uniquely defined, while their degrees are uniquely defined by the choice
of the group.
In the case of the Coxeter group, Saito, Yano, and Sekiguchi propose a strategy
to select uniquely the corresponding basic invariants of the group. In particular,
these polynomial invariants are defined as the flat coordinates for a specific met-
ric and are called Saito flat coordinates.
Moreover, they exhibit explicit formulae for the invariants for any group (with
the exception of the case of the group E7 and E8).
Exploiting Saito’s results, Dubrovin proved that, starting from the Euclidean met-
ric, one endows the orbit space of any Coxeter group with a flat pencil of comet-
rics; furthermore, such a pencil yields a Frobenius manifold structure on the orbit
space.
Dubrovin’s construction relies heavily on the assumption that the unity field has
the form

e =
∂

∂un
(ã)

here un is the basic invariant of the highest degree.
Dubrovin also conjectured that, under some technical assumptions, all polyno-
mial solutions of the WDVV equation can be obtained by means of this proce-
dure applied to a suitable Coxeter group. Later, Hertling proved the conjecture
(see [31]).
In [55] Zuo observed that in the case of Bn and Dn, the non-standard choice of the
unity yields a Frobenius manifold structure different from the standard Coxeter
case.

In 2004, Dubrovin introduced the notion of almost-duality [16]. In the Coxeter
case, the Frobenius potential of almost-dual structure has a universal form given
by Veselov in [53]; this expression is related to the notion of check-system. More-
over, in [16] Dubrovin generalizes Saito’s construction in the case of the Shephard
group (i.e. the symmetry groups of regular complex polytopes). In this case, the
role of the Euclidean metric is played by the Hessian of the lowest degree basic
invariant. The flatness of such a metric relies on a result of Orlik and Solomon
(see [43]).
It turned out that the Frobenius structure obtained in this way on the orbit space
of a Shephard group is isomorphic to the Dubrovin-Frobenius structure defined
on the orbit space of the corresponding Coxeter group.

Analogously to the Coxeter case, finite complex reflection groups have a standard
representation in terms of linear endomorphism acting on vector space of dimen-
sion n. There exists a family of complex reflection groups, called well-generated,
whose minimal set of generators has cardinality n.
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In 2015 Kato, Mano and Sekiguchi proposed a further generalization of Dubrovin–
Saito construction for the case of well-generated complex reflection groups (see
[32]). In this case, this construction doesn’t yield a Frobenius manifold struc-
ture but only a flat F−manifiold. The notion of flat F−manifiold structure was
introduced by Manin in [42]; such structures in the literature of meromorphic
connection (see [45]) are called Saito structures without a metric.

In 2013, Arsie and Lorenzoni introduced the notion of bi-flat F−manifold in
[1], which generalizes Dubrovin’s almost-duality for the case of Dubrovin man-
ifold without metric. Roughly speaking, such a structure consists of two flat
F−structures intertwined with some compatibility conditions.
In 2017, Arsie and Lorenzoni proposed in [3] a new construction of bi-flat F -
manifolds on the orbit space of a well-generated complex reflection group. In
particular, the dual structure is defined by means of a family of flat connections
defined in terms of collections of reflecting (hyper-)planes. These connections ap-
pear in the literature in [27], [33], and [36].
This family of connections is parameterized by a collection of invariant functions
defined on the set of reflecting (hyper-)planes (i.e. for each (hyper-)plane one
assigns a “weight” and the weights chosen for distinct (hyper-)planes must coin-
cide if the (hyper-)planes belong to the same orbit with respect the action of the
group).
The dual product generalizes the notion of the Veselov ∨-system (check-system).
A standard choice of the weights of the product is to consider each weight propor-
tional to the order of the corresponding (pseudo-)reflection. Such a prescription
leads to a family of bi-flat F−structure defined on the orbit space of the chosen
reflection group. Conjecturally, in the well-generated case, the number of param-
eters on which the family of bi-flat F−structures depends coincide with N − 1,
where N is the number of orbits for the action of the reflection group on the col-
lection of reflecting hyperplanes. In the case of well-generated complex reflection
groups N is equal to 1 or 2. In the first case there is no freedom and the natural
structure should coincide with Kato-Mano-Sekiguchi structure while in the sec-
ond case one should obtain Kato-Mano-Sekiguchi structure for a particular value
of the parameter.
This conjecture has been verified for Weyl groups of rank 2, 3 and 4, for the dihe-
dral groups I2(m), for any of the exceptional well-generated complex reflection
groups of rank 2 and 3, and for any of the groups series G(m, 1, 2) and G(m, 1, 3).
In analogy with Dubrovin’s construction one chooses (ã) as the unity field. The
removal of this hypothesis is the cornerstone of this thesis, which is based on [8].

In [8] Arsie, Lorenzoni, Mencattini, and Moroni proposed a further generaliza-
tion of the Duvorin-Saito’s procedure for the Coxeter group Bn.
The first step is to apply Arsie-Lorenzoni’s procedure (of [3]) and to equip the
orbit space of B2, B3, and B4 with a bi-flat F−structure taking the non-standard
choice of the unity field

e =
∂

∂un−1
(ä)



5

and prescribing suitable choices for the dual product and the dual connection. In
particular, in the case of B2 two choices of the weights are admissible:

I. assign weights zero to the coordinate axes and non-vanishing weights to
the remaining mirrors

II. assign non-vanishing weight to the coordinate axes and zero weights to the
remaining mirrors

while in the case of B3 and B4 only the first choice is allowable.
It turns out that these structures are uniquely defined (up to the rescaling of the
basic invariants) and admit underlying Frobenius manifold structures respec-
tively. The corresponding solutions of WDVV equations are no longer polyno-
mial (as in Dubrovin’s construction) due to the appearance of a logarithmic term.
In the case of B2 the choices I and II of the weights yield the Frobenius manifolds
associated with the defocusing and focusing NLS equation respectively.
These solutions of WDVV coincide (for arbitrary n) with the prepotentials of the
Frobenius manifolds associated with constrained KP hierarchies (see [35]).
Now, the key observation is that the corresponding intersection form has always
the same form.

gij =
(1− δij)

pipj
(ç)

Thus, in the second step, motivated by the expression for the intersection form in
the case of B2, B3, and B4, we show that starting from the Bn-invariant cometric
g = (gij), we get a flat pencil of cometrics (g, η), where η = Leg and e is the vector
field (ä), defined on the orbit space of Bn.
In the third part, in order to prove the existence of a Frobenius manifold structure
MBn , for arbitrary n, one has to follow an alternative procedure with respect to
the standard one proposed by Dubrovin in [15]. This technical obstacle is due to
the non-regularity of the pencil. In particular, it turns out that it is not possible to
define all the structure constants of the natural product in terms of the Christoffel
symbols of the intersection form.

This procedure relies on dealing with the cometric (ç) instead of dealing with
explicit formulas for the dual product and dual connection. Thus one possible
open issue was to prove that the dual product of MBn coincides with the product
given by the choice I of the weights, for arbitrary n.
In 2023 Ma and Zuo showed that MBn is isomorphic to the Hurwitz-Frobenius
manifold structure on M0;n−2,0 (see [41] for details, which is related to constrained
KP hierarchy (see [35]). Frobenius manifold structure on Hurwitz space has been
defined by Dubrovin in [17]. This notion highlights connections between the the-
ory of Frobenius manifold and the singularity theory.
In general, given the LG (Landau-Ginzburg) superpotential one can recover the
Frobenius manifold data by means of residue formulas. Hence, using the LG su-
perpotential of [41] we have computed the structure constants associated with
the dual product of MBn , for any n. As conjectured, the outcome coincides with
the product associated with the choice I of the weights.
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Scheme of the Thesis

• First chapter: we will recall some basic notions of differential geometry.

• Second chapter: we will introduce the concepts of WDVV equations and
Frobenius manifold. Moreover, we will highlight the connection between
these structures.

• Third chapter: we will expose the notion of flat pencil of metric on a manifold
M . We will show that, under certain assumptions, a flat pencil of metric
endows M with a Frobenius manifold structure.

• Fourth chapter: we will introduce the notion of Coxeter group and expose
a fundamental result of the invariant theory due to Chevallay. So we will
show that the orbit space for a Coxeter group is endowed with a Frobenius
manifold structure.

• Fifth chapter: we will introduce the notion of complex reflection group. We
will outline the concept of flat F -manifold; then, by exploiting the notion of
Dubrovin’s almost-duality we will define the notion of bi-flat F -manifold.
We will show how to equip the orbit space for a complex reflection group
with a bi-flat F -manifold structure.

• Sixth chapter: by applying the results of the fifth chapter, we will construct
explicitly a bi-flat F -manifold on the orbit space for B2 taking a standard
choice of the unity field. Moreover, we will recover the underlying polyno-
mial Frobenius manifold structure.
Remarkably, by a non-standard choice of the unity field, we will recover a
non-polynomial Frobenius structure on the orbit space for B2.
Generalizing the B2 case, taking a non-standard choice of the unity, we will
equip the orbit space for B3 and B4 with a Frobenius manifold structure.
We will observe that in all these cases the intersection form has always the
same form. We will assume that this expression for the intersection form
holds true for an arbitrary dimension.

• Seventh chapter: starting from the expression of the intersection form for the
case B2, B3, and B4, we will equip the orbit space of Bn, with arbitrary n,
with a structure of flat pencil of cometrics.

• Eighth chapter: we will show that the flat pencil defined in the seventh chap-
ter is quasi-homogenous. Unfortunately, it doesn’t automatically yield a
Frobenius manifold structure because of the non-regularity of the pencil.
Then we will apply a non-standard procedure to prove the existence of a
Frobenius manifold MBn structure on the orbit space for Bn. We will ob-
serve that such a structure is related to the constrained KP hierarchy.

• Ninth chapter: we will recall the notion of constrained KP hierarchy and
central invariants. Following the work [41], we will see that MBn is isorphic
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to the Hurwitz-Frobenius manifold on M0;n−2,0. Then, we will recover the
structure constant associated with the dual product of MBn .
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1 Differential-geometric preliminaries

In this section, we summarize some results of differential geometry.
In this manuscript, we will consider as ambient space a real or complex manifold
M , of dimension n, equipped with a local coordinates system (xi).
In the first case, we will assume that all the geometric data are smooth, while in
the second case, we will assume that all geometric data are holomorphic (we will
denote by TM the holomorphic tangent bundle).
The Einstein summation convention is assumed (we sum over repeated indexes),
if not stated otherwise. In the case of free indexes, we assume that they range
from 1 to n.
Let ⟨·, ·⟩∗ be a symmetric and non-degenerate bilinear form on the cotangent bun-
dle T ∗M .

Definition 1.1 We define the contravariant metric, or briefly cometric, g = (gij) to be
the (2, 0) tensor field on M defined by

gij(x) := ⟨dxi, dxj⟩∗ (1.1)

where
(
gij(x)

)
is a symmetric and non-degenerate matrix for any x ∈ M and (dxi) are

differential 1-forms.

Denote by (gij) := (gij)−1 the inverse matrix of (gij).

Definition 1.2 We define a symmetric non-degenerate bilinear form on the tangent bun-
dle TM by

⟨∂i, ∂j⟩ := gij(x) (1.2)

where ∂i := ∂
∂xi .

Recall a well-known notion of differential geometry.

Definition 1.3 We define the Levi-Civita connection ∇ of the metric (gij) to be the
(unique) linear connection with vanishing torsion and compatible with the metric (i.e.
∇g = 0). In local coordinates, these conditions read{

Γs
kigsj + Γs

kjgis = ∂kgij

Γs
ij = Γs

ji

(1.3)

Proposition 1.4 The system of equations (1.3) has unique solution

Γk
ij =

1
2
gks
(
∂igsj + ∂jgsi − ∂sgij

)
(1.4)

Remark 1.5 Under the change of coordinates x 7→ x̃ the Christoffel symbols transform
as

Γ̃k
ij =

∂x̃k

∂xs

∂xr

∂x̃i

∂xq

∂x̃j
Γs
rq +

∂x̃k

∂xs

∂2xs

∂x̃i∂x̃j
(1.5)

Similarly, the inverse transformation x̃ 7→ x is obtained by interchanging x and x̃

Γk
ij =

∂xk

∂x̃s

∂x̃r

∂xi

∂x̃q

∂xj
Γ̃s
rq +

∂xk

∂x̃s

∂2x̃s

∂xi∂xj
(1.6)
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For our purpose is convenient to work with a modified version of the Christoffel
symbols.

Definition 1.6 We define the contravariant Christoffel symbols corresponding to the
connection ∇ the functions

Γij
k := ⟨dxi,∇kdx

j⟩∗ = −gisΓj
sk (1.7)

The system of equations (1.3) written in terms of the contravariant Christoffel
symbols reads {

Γij
k + Γji

k = ∂kg
ij

gisΓjk
s = gjsΓik

s

(1.8)

Definition 1.7 Given a connection ∇, we define the Riemann curvature tensor R =
(Rk

slq) to be the (1, 3) tensor field on M of components

Rk
slq := ∂sΓ

k
lq − ∂lΓ

k
sq + Γk

srΓ
r
lq − Γk

lrΓ
r
sq (1.9)

It’s useful to define a modified version of the curvature tensor.

Lemma 1.8 The following formula holds true

Rijk
l := gisgjqRk

slq = gis(∂sΓ
jk
l − ∂lΓ

jk
s ) + Γij

s Γ
sk
l − Γik

s Γ
sj
l (1.10)

Proof: Multiplying (1.9) by gisgjq and using (1.8) and (1.7) one has the thesis.

Recall the notion of flatness.

Definition 1.9 Let Γk
ij be the Christoffel symbols corresponding to the connection ∇.

The connection ∇ is said flat if there exists a coordinate system (ti) such that the Christof-
fel symbols Γk

ij vanish in these coordinates, i.e.

Γk
ij(t) = 0 (1.11)

The coordinates (ti) are called flat.

Definition 1.10 A tensor field T on M is said to be covariantly constant if

∇T = 0 (1.12)

Proposition 1.11 A connection is flat if and only if the corresponding curvature tensor
(1.9) and torsion tensor vanish.

Let ∇ be the Levi-Civita connection associated with the metric (gij). The follow-
ing proposition gives an alternative characterization of the flat coordinates.

Proposition 1.12 Given a flat connection, the corresponding flat coordinates system (ti)
reduces the metric (gij) to a constant matrix. Conversely, a coordinates system (ti) that
reduces (gij) to a constant matrix is a flat system.
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Remark 1.13 Let ∇ be the Levi-Civita connection associated with the metric (gij). If ∇
is flat we call the metric (gij) flat.

Remark 1.14 The flat coordinates (ti) are determined uniquely up to affine transforma-
tion with constant coefficients. They can be found by the following fundamental system

∇i(dt)j = gis∂s(dt)j + Γis
j (dt)s = 0 (1.13)

for i, j = 1, ...., n, where (dt)j = ∂jt.

Definition 1.15 Assume the bilinear form on the cotangent bundle ⟨·, ·⟩∗ to be positive
definite. The flat coordinates (pi) are said to be orthonormalized if

g̃ij(p) := ⟨dpi, dpj⟩∗ = δij (1.14)

Lemma 1.16 Let (xi) be a coordinate system and (pi) be an orthonormal coordinate sys-
tem for the Levi-Civita connection ∇ corresponding to the cometric (gij). For the com-
ponents of the cometric (gij) and contravariant Christofell symbols of the corresponding
Levi-Civita connection the following formulas hold true:

gij(x) =
∂xi

∂pa
∂xj

∂pa
(1.15)

Γij
k (x)dx

k =
∂xi

∂pa
∂2xj

∂pa∂pb
dpb (1.16)

Proof: (1.15) follows from the transformation formula for (2, 0) tensor in-
duced by the change of coordinates p 7→ x, indeed

gij(x) =
∂xi

∂ps
∂xj

∂pr
g̃sr(p)

=δsr

=
∂xi

∂ps
∂xj

∂ps

Since (pi) are flat coordinates, the transformation formula (1.5) induced by the
change of coordinates x 7→ p reduces to

Γ̃k
ij(p)

=0

=
∂pk

∂xs

∂xr

∂pi
∂xq

∂pj
Γs
rq(x) +

∂pk

∂xs

∂2xs

∂pi∂pj

Multiplying by ∂xb

∂pk
∂pi

∂xp
∂pj

∂xm one has

Γb
pm(x) = − ∂pi

∂xp

∂pj

∂xm

∂2xb

∂pi∂pj

Multiplying by (1.15) one yields

gdp(x)Γb
pm(x)︸ ︷︷ ︸

(1.7)
= −Γdb

m (x)

= −∂xd

∂pa
∂xp

∂pa
∂pi

∂xp︸ ︷︷ ︸
δia

∂pj

∂xm

∂2xb

∂pi∂pj

Γdb
m(x) =

∂xd

∂pa
∂pj

∂xm

∂2xb

∂pa∂pj
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or equivalently in terms of 1- form

Γdb
m(x)dxm =

∂xd

∂pa
∂2xb

∂pa∂pj
dpj

which coincides with (1.16).
By similar arguments, one gets the following:

Lemma 1.17 Let (xi) be a coordinate system and (ti) be a flat coordinate system (not
necessarily orthonormal) for the connection ∇. For the components of the Christofell
symbols, the following formula holds true:

Γk
ij(x) =

∂xk

∂ts
∂2ts

∂xi∂xj
(1.17)
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2 WDVV equations and Frobenius manifolds

The main reference of this section is [17].

2.1 WDVV equations

This subsection is devoted to introducing the theory of WDVVV equations. This
remarkable system of non-linear PDE was discovered by E.Witten, R.Dijkgraaf,
E.Verlinde and H.Verlinde ([56] and [14]) at the beginning of the 90’. There was
derived as equations for the so-called primary free energy of a family of two-
dimensional topological field theories. Later, WDVV equations have been shown
to be an efficient tool in the theory of Gromov-Witten invariants, reflection groups,
singularities, and integrable systems.
We introduce the main subject of this section: we are looking for a function
F = F (t), where t = (t1, ...., tn), such that the third derivatives

cijk(t) :=
∂F (t)

∂ti∂tj∂tk

satisfy the following equations:

1. Normalization:
ηij := c1ij(t)

is a constant nondegenerate matrix. Let (ηij) := (ηij)
−1.

2. Associativity: the functions

ckij(t) := ηkscsij(t)

define, for any t, in a n-dimensional space with a basis e1, ...., en a structure
of associative algebra At, defined by

ei ◦ ej := ckij(t)ek

The vector e1 will be chosen as the unity of the algebra, i.e.

cj1i = δji

3. F (t) is a quasi-homogeneous function of its variable, i.e.

F (cd1t1, ...., cdntn) = cdFF (t1, ...., tn) (2.1)

for a non-zero constant and for some numbers d1, ...., dn, dF .

It will be convenient to rewrite the quasi-homogeneous condition (2.1) in in-
finitesimal form, introducing the Euler vector field E = Ei∂i (where ∂i = ∂

∂ti
)

as
LEF (t) := Ei(t)∂iF (t) = dFF (t) (2.2)

In view of the quasi-homogeneity condition (2.2), it turns out that E(t) reads

E(t) = dit
i∂i

Observe that for the Lie derivative of the unity field e = ∂1 one has

LEe = −d1e
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Remark 2.1 We will consider a generalization of the quasi-homogeneity condition. Since
(2.1) is defined as the third-derivatives of F , we will consider the functions F (t1, ...., tn)
up to adding a (non-homogeneous) quadratic function in t1, ...., tn. Thus the algebra At

will remain unchanged. Hence the quasi-homogeneity condition (2.2) can be modified as
follows:

LEF (t) = dFF (t) + Aijt
itj +Bit

i + C

where Aij , Bi and C are constants.

Summarising, we give a precise formulation of WDVV equations.

Definition 2.2 Let η = (ηij) be a symmetric and nondegenerate n× n matrix.
We are looking for functions F (t) such that

I.
∂1∂i∂jF = ηij (2.3)

II.
(∂s∂i∂jF )ηsk(∂t∂k∂lF ) = (∂s∂i∂lF )ηsk(∂t∂k∂jF ) (2.4)

III.
LEF = dFF + 1

2
Aijt

itj +Bit
i + C (2.5)

where Ei = Ei(t) are linear functions of (ti), moreover, dF , Aij , Bi and C are real
constants such that Aij = Aji.
Equations (2.4),(2.4) and (2.5) are called normalization condition, associativity equation,
and homogeneity condition respectively. Furthermore, the function F will be called free
energy.

We have defined an overdetermined system of non-linear PDEs. The next step is
to construct a geometrical framework where these equations naturally arise.

2.2 Frobenius manifolds

In this subsection, we present the notion of Frobenius manifold introduced by
Dubrovin to give a free-coordinate formulation of WDVV equations and two-
dimensional topological field theories.
We define a complex Frobenius algebra as a finite-dimensional vector space equipped
with a multiplication and a bilinear form.

Definition 2.3 An algebra
(
A, ◦) over C is a (commutative) complex Frobenius algebra

if the following axioms are fulfilled:

• ◦ is a commutative and associative C-algebra on A.

• There exists a element e ∈ A, called the unity of the algebra, such that

a ◦ e = e ◦ a = a (2.6)

for any a ∈ A .
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• A is equipped with a nondegenerate C-bilinear form ⟨·, ·⟩, invariant in the following
sense:

⟨a ◦ b, c⟩ = ⟨a, b ◦ c⟩ (2.7)

for any a, b, c ∈ A.

Consider a family of Frobenius algebras depending on the parameters p = (p1, ...., pn).
We denote the space of parameters by M . Let M and N be a smooth (or complex)
manifolds. Consider the fiber bundle

π : N → M (2.8)

with fiber Ap := π−1(p).
The basic idea is to identify such a fiber bundle with the tangent bundle (N =
TM ) so that each tangent space of M is equipped with a Frobenius algebra struc-
ture (

Ap, ◦p, ep, ⟨·, ·⟩p
)

(2.9)

for any p ∈ M , where

• Ap := TpM .

• ◦p is the product defined by

∂i ◦p ∂j := ckij(p) ∂k (2.10)

here ∂i =
∂
∂pi

∈ TpM and ckij are the structure constants of the product.

• e : M → TM is the unity vector field, i.e.

Xp ◦p ep = ep ◦p Xp = ep (2.11)

for any vector field X and any p ∈ M .

• ⟨·, ·⟩p is the nondegenerate bilinear form defined by

⟨∂i, ∂j⟩p := ηij(p) (2.12)

where η = (ηij) is a pseudo-Riemannian metric tensor on M .

For brevity, from here on, we omit the subscript p.

Remark 2.4 In view of (2.10) one has that ckij are the component of a (1, 2) tensor field.

Remark 2.5 Let X, Y and Z be arbitrary vector fields. The commutativity and associa-
tivity condition of the product, i.e.

X ◦ Y = Y ◦X (2.13)
(X ◦ Y ) ◦ Z = X ◦ (Y ◦ Z) (2.14)

in terms of the structure constants (2.10) read

ckij = ckji (2.15)

ckisc
s
jq = ckjsc

s
iq (2.16)

respectively.
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We give the precise definition of Frobenius manifold proposed by Dubrovin in
[17].

Definition 2.6 A smooth (or complex) Frobenius manifold (M, η,∇, ◦, e, E) of charge
d, is a manifold M equipped with a structure of Frobenius algebra on each tangent space
TpM smoothly depending on p, such that the following axioms are fulfilled:

I. ∇ is the (flat) Levi-Civita connection corresponding to the flat metric η.

II. η is invariant with respect the product ◦

η(X ◦ Y, Z) = η(X, Y ◦ Z) (2.17)

for any vector fields X, Y and Z, or equivalently in components

ηisc
s
jk = ηjsc

s
ik (2.18)

III. The unity vector field e is covariantly constant (or briefly flat), i.e.

∇e = 0 (2.19)

IV. Let c be the (0, 3) symmetric tensor field on M (i.e. a symmetric trilinear form on
TM ) defined by

c(X, Y, Z) := η(X ◦ Y, Z) (2.20)

or equivalently in components

cijk := csijηsk (2.21)

We require the (0, 4) tensor field ∇c also to be symmetric.

V. There exists a linear vector field E, called Euler field, such that the corresponding
one-parameter group of diffeomorphism acts by conformal transformation of the
metric η and by rescaling on the Frobenius algebra TpM , for any p. In formulas
one has

∇∇E = 0 (2.22)

LEc
k
ij = ckij (2.23)

LEe = −e (2.24)
LEηij = (2− d)ηij (2.25)

Remark 2.7 The linearity condition of the Euler field (2.22) is redundant. Indeed, it can
be proven that it follows from the other axioms.

Denote by η−1 = (ηij) the inverse of the metric η.

Remark 2.8 Contracting the formula (2.18) by ηriηqj one obtains

ηqjcsjk = ηricqik (2.26)
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Remark 2.9 In view of the flatness of the metric η there exists a flat coordinate system
(ti) such that the entries ηij = ηij(t) are constants. In such coordinates (2.19) and (2.22)
read

∂ie
j = 0 (2.27)

∂i∂jE
k = 0 (2.28)

where ∂i = ∂
∂ti

. Then integrating one has

ei = ai (2.29)

Ei = bijt
j + ci (2.30)

where ai, bij and ci are constants.
Recall that the flat coordinates (ti) are defined up to an affine transformation. Thus, from
here on, we will choose flat coordinate so that the unity field has the form

ei = δi1 (2.31)

From here on, following Dubrovin, we will consider only the case

bi1 = δi1 (2.32)
c1 = 0 (2.33)

Remark 2.10 The symmetry condition IV. of the tensor ∇c, written in the flat coordi-
nates (ti), reads

∂icjks = ∂jciks (2.34)

or equivalently, raising one index, one has

∂ic
q
jk = ∂jc

q
ik (2.35)

Remark 2.11 Consider e of the form (2.31). The formula e ◦X = e, written in terms of
structure constants, reads

cs1jX
j = Xs

then
ck1j = δkj (2.36)

Definition 2.12 We define the grading operator Q = (Qi
j) to be the (1, 1) tensor field on

M defined by
Qi

j = ∇iE
j (2.37)

Remark 2.13 In view of (2.28) one observes that the matrix
(
Qi

j(t)
)
, where Qi

j(t) =
∂jE

i, has constant entries on M .

Under certain assumptions on the operator Q and the metric η can be reduced to
a simpler form; in particular, the following lemma holds true:
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Lemma 2.14 If η11 = 0 and all roots of Q are simple then by a linear change of coordi-
nates (ti) the matrix η can be reduced to the anti-diagonal form

ηij = δi+j,n+1 (2.38)

Proof: See [17] for details.

Remark 2.15 In view of the constancy of the metric η in the coordinates (ti) one has

Leηij
(2.31)
= ∂1ηij = 0 (2.39)

Similarly, the following formula holds true:

Lec
k
ij = ∂1c

k
ij = 0 (2.40)

Indeed
Lec

k
ij

(2.31)
= ∂1c

k
ij

(2.35)
= ∂ic

k
1j

(2.36)
= ∂iδ

k
j = 0

The structure constants (2.10) induce a product on the cotangent bundle by rais-
ing one index, more precisely the following lemma holds true:

Lemma 2.16 The C∞(M)-bilinear (or O(M)-bilinear in the complex case) application
defined by

dxi ◦̃ dxj := cijk dx
k (2.41)

where
cijk := ηiscjsk = ηisηjqcqsk (2.42)

establish a commutative and associative product on T ∗M ; i.e.

cqsk = csqk (2.43)

cbks crsq = crks csbq (2.44)

respectively.

Proof: In view of the definition (2.42), formula (2.26) reads

cqsk = csqk (2.45)

which coincides with the commutativity of the product.
Recall the associativity condition (2.16)

ckisc
s
jq = ckjsc

s
iq

Multiplying by ηbiηrj one has

ηbickis
=cbks

ηrjcsjq
=crsq

= ηrjckjs

=crks

ηbicsiq

=csbq

which coincides with the associativity of the product.
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Remark 2.17 Assume the operator ∇E to be diagonalizable, then

Ei = dit
i + ci (2.46)

here there is no summation over repeated indexes, moreover, di and ci are constants.
If di ̸= 0, for some i, ci may be killed by performing a shift in ∂

∂ti
direction.

The following proposition elucidates the connection between the notion of the
Frobenius manifold and WDVV equations.

Proposition 2.18 Let (M, η,∇, ◦, e, E) be Frobenius manifold with ∇E diagonalizable
and ci = 0 for any i. In flat coordinates (ti) for ∇ there exists, at least locally, a function
F , called Frobenius potential, such that

cijk = ηilc
l
jk = ∂i∂j∂kF. (2.47)

Furthermore, F fulfills the WDVV eqauations (2.3), (2.4) and (2.5) taking

dF = 3− d (2.48)

Conversely, any solutions of WDVV equation F , such that such that d1 ̸= 0, defines a
Frobenius manifold with structure constants given by (2.47).

Proof: See [17] for details.

2.3 Intersection form

A new metric play an important role in the theory of Frobenius manifold. This
metric was found by Dubrovin in [20], see also [17].

Definition 2.19 Given a Frobenius manifold (M, η,∇, ◦, e, E) we define ⟨·, ·⟩∗(g) to be
the bilinear form on T ∗M defined by

⟨ω, λ⟩∗(g) := iE(ω ◦ λ) (2.49)

for any differential 1-form ω and λ. The product of 1-form has been defined in (2.41) while
iE is defined as the operator of the inner contraction of a 1-form with respect to the Euler
vector field, i.e. iE(ω) := Ejωj .

Remark 2.20 The formula (2.49) explicitly reads

iE(ω ◦ λ) = Escijs ωiλj (2.50)

where Es, ωi and λj are the components of E, ω and λ respectively.

Let (ti) be a flat coordinate system for η.

Definition 2.21 The bilinear form (2.49) defines a cometric g = (gij) on the manifold
M , where

gij(t) := ⟨dti, dtj⟩∗(g) = Es(t)cijs (t) = Es(t)cjks(t)η
ki (2.51)

where ηij = ηij(t). We call g the intersection form of the Frobenius manifold.
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Lemma 2.22 (2.51) doesn’t degenerate on a dense set of M . Thus the definition (2.49) is
well-posed.

Proof: One has

gij(t) = Es(t)cijs (t) = E1(t) cij1 (t)

=ηircj1r=ηij

+
n∑

s=2

Es(t)cijs (t)

Recalling that Ei = birt
r + ci one gets

E1(t)ηij
(2.30)
= (b1rt

r + c1

(2.33)
= 0

)ηij
(2.32)
= t1ηij +

( n∑
r=2

b1rt
r

)
(2.32)
= 0

ηij = t1ηij

Furthermore, since b1j = δ1j and ∂1c
k
ij = 0, one has that

∑n
s=2 E

s(t)cijs (t) is indepen-
dent on t1. Then

gij(t) = t1ηij + f(t2, ...., tn) (2.52)

where f(t2, ...., tn) is a smooth function of (t2, ...., tn).
In the limit of large t1 one obtains the asymptotic expansion

gij(t) ∼ t1ηij (2.53)

Therefore, being ηij a non-degenerate matrix, gij(t) doesn’t degenerate on a dense
subset of M .

Remark 2.23 In view of (2.52) one has that

∂1g
ij = ηij (2.54)

Lemma 2.24 The following identity holds true

gij(t) = Ri
sF

sj(t) +Rj
sF

si(t) + Aij (2.55)

where

Ri
j = Ri

j(t) :=
d− 1

2
δij + ∂jE

i (2.56)

F ij(t) := ηisηjk∂s∂kF (t) (2.57)

Aij := ηisηjkAsk (2.58)

where F and Aij are defined by (2.3), (2.4) and (2.5), while (Ri
j) are the components of a

(1, 1) tensor field R on M written in the coordinates (ti). In particular, (Ri
j) are constant

functions.

Proof: Recall that, given a Frobenius manifold, one has the homogeneity
condition (2.5)

Ei∂iF = (3− d)F +
Aij

2
titj +Bit

i + C
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Differentiate with respect tk

∂k(E
i∂iF ) = (3− d)∂kF +

Akj

2
tj + Aik

2
ti +Bk

Differentiate with respect tm

∂m∂k(E
i∂iF ) = (3− d)∂m∂kF + Akm

2
+ Amk

2︸ ︷︷ ︸
=Amk

One observes that

∂m∂k(E
i∂iF ) = ∂m(∂kE

i∂iF + Ei∂k∂iF )

= ∂m∂kE
i︸ ︷︷ ︸

(2.28)
= 0

∂iF + ∂kE
i∂m∂iF + ∂mE

i∂k∂iF + Ei ∂m∂k∂iF︸ ︷︷ ︸
(2.47)
= cmki

then
∂kE

i∂m∂iF + ∂mE
i∂k∂iF + Eicmki = (3− d)∂m∂kF + Amk

Multiply by ηpmηsk

ηpmηsk∂kE
i∂m∂iF+ηpmηsk∂mE

i∂k∂iF+Ei ηskηpmcmki︸ ︷︷ ︸
(2.42)
= cspi

= (3−d)ηpmηsk∂m∂kF+ηpmηskAmk

Formula (2.25) in flat coordinates (ti) reads

Es ∂sη
ij

=0

−∂sE
iηsj − ∂sE

jηis = (d− 2)ηij

which yields

ηpm∂m∂iF
(
(2− d)ηis − ηik∂kE

s
)
+ ηsk∂k∂iF

(
(2− d)ηip − ηim∂mE

p
)
+ Eicspi = (3− d)F ps + Aps

(2− d)F ps − F pk∂kE
s + (2− d)F ps − F sk∂kE

p + Eicspi = (3− d)F sp + Asp

Eicspi = (d− 1)F sp︸ ︷︷ ︸
= d−1

2
δskF

kp+ d−1
2

δpkF
sk

+∂kE
sF pk + ∂kE

pF sk + Asp

Then, in view of the definition of Ri
j , one has

gij = Eicspi = Rs
kF

pk +Rp
kF

sk + Asp

The constancy of the matrix (Ri
j) follows from the observation (2.13).

Definition 2.25 We define the operator of multiplication by Euler vector field

L := E◦ (2.59)

to be the (1, 1) tensor field of components

Lj
i := cijsE

s (2.60)



23

Lemma 2.26 The following formulas hold true

Li
j = gisηsj (2.61)

(L−1)ij = ηisgsj (2.62)

Proof: One has

gisηsj
(2.51)
= Ekcikq η

qsηsj︸ ︷︷ ︸
=δqj

= Ekcikj

similarly
Li
q(L

−1)qj = gis ηsqη
qp︸ ︷︷ ︸

=δps

gpj = gisgsj = δij

2.4 Semisimple Frobenius manifolds

First, we recall the notion of semisimple Frobenius algebra.

Definition 2.27 A commutative and associative C-algebra A with unity is called semisim-
ple if there is no nonzero nilpotent element, i.e. there is no element a ∈ A−{0} such that
ak = 0, for some k > 0.

Thus we give the following:

Proposition 2.28 Let (A, ◦, ⟨·, ·⟩, e) be a Frobenius algebra over C of dimension n. The
following statements are equivalent:

1. A is semisimple.

2. A is isomorphic to
⊕n

i=1C.

3. A has a basis of idempotents, i.e. n elements π1, ...., πn such that

πi ◦ πj = δijπi

⟨πi, πj⟩ = ηiiδij

where ηii = ⟨e, πi⟩.

4. There is a vector E ∈ A such that the multiplication operator E◦ : A → A has n
pairwise distinct eigenvalues.

Definition 2.29 A point p of a Frobenius manifold M is semisimple if the correspond-
ing Frobenius algebra TpM is semisimple. If there exists an open dense subset of M of
semisimple points, then M is called a semisimple Frobenius manifold.

Remark 2.30 It’s clear that semisimplicity is an open property: if p is a semisimple point,
then all points in a neighborhood of p are semisimple.

Denote by Mss the set of semisimple points of M .
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Definition 2.31 Let M be a semisimple Frobenius manifold. We define the caustic as the
set

KM := M −Mss = {p ∈ M : TpM is not a semisimple Frobenius algebra}

A basis of idempotents of TpM can be prolonged in a neighborhood of p, in par-
ticular the following theorem holds true:

Theorem 2.32 Let p ∈ Mss be a semisimple point, and π1(p), ...., πn(p) a basis of idem-
potents of TpM . Then

[πi, πj] = 0

for any i, j = 1, ...., n. Thus there exist a local coordinate system (u1, ...., un), defined in
a neighborhood of p, such that

πi(p) =
∂

∂ui

∣∣∣∣
p

for any i = 1, ...., n.

Definition 2.33 Let M be a Frobenius manifold and p ∈ M be a semisimple point. The
coordinates (u1, ...., un) defined in a neighborhood of p, given by the latter theorem, are
called canonical coordinates.

Theorem 2.34 Let (u1, ...., un) be canonical coordinates, defined in a neighborhood U of
p ∈ M . Then the following formulas hold true in U :

∂

∂ui
◦ ∂

∂uj
= δij

∂

∂ui
(2.63)

e =
n∑

i=1

∂

∂ui
(2.64)

E =
n∑

i=1

ui ∂

∂ui
(2.65)

2.5 Symmetries of WDVV equations and Legendre-type trans-
formations

Roughly speaking, we are interested in transformations that map solutions to
solutions of WDVV equations.

Definition 2.35 We define a symmetry of WDV V equations as the transformation

ti 7→ t̂i

ηij 7→ η̂ij

F 7→ F̂

preserving the WDVV equations (2.3), (2.4) and (2.5).

One family of symmetries of WDVV equations are Legendre-type transforma-
tions.
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Definition 2.36 We define the Legendre-type transformation Sϵ, for ϵ = 1, ...., n, by the
following formulas:

t̂i = ∂i∂ϵF (t) (2.66)

∂2F̂

∂t̂i∂t̂j
=

∂2F

∂ti∂tj
(2.67)

η̂ij = ηij (2.68)

Remark 2.37 Using the above axioms it turns out that

∂i = ∂ϵ ◦ ∂̂i = (∂ϵ◦)∂̂i (2.69)

for i = 1, ..., n, where ∂i = ∂
∂ti

and ∂̂i =
∂
∂t̂i

.
Recall that the flat coordinates (ti) have been chosen so that the unit of the algebra reads
e = ∂1 (see (2.31)). Thus taking i = 1 in (2.69) one gets

e = ∂ϵ ◦ ∂̂1

so ∂ϵ is an invertible element of the Frobenius algebra of vector fields, with inverse ∂̂1 (i.e.
∂−1
ϵ = ∂̂1).

This remark yields the following:

Corollary 2.38 The transformation (2.66) is invertible (at least locally).

Proof: Applying the transformation rule for a vector, (2.69) yields

∂i =
∂ts

∂t̂i
(∂ϵ ◦ ∂s) =

∂ts

∂t̂i
ckϵs∂k

Thus
∂ts

∂t̂i
ckϵs = δki

so (
∂ts

∂t̂i

)
= (ckϵs)

−1 = (∂−1
ϵ ◦)ks

Then the Jacobian of the transformation t̂ 7→ t is defined at least locally. This
concludes the proof.

Remark 2.39 Note that in transformed coordinates (t̂i) the unity field reads

e =
∂

∂t̂ϵ

Moreover, observe that S1 is the identity transformation (in view of the choice of the unity
e = ∂1).

Remark 2.40 To prove that (2.66), (2.67) and (2.68) provide symmetry of WDVV equa-
tions one introduces a new metric ⟨·, ·⟩ϵ on the Frobenius manifold M , given by

⟨X, Y ⟩ϵ := ⟨∂2
ϵ , X ◦ Y ⟩

for arbitrary vector fields X and Y , with η̂ij = ⟨∂i, ∂j⟩ϵ.
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Proposition 2.41 (t̂i) are flat coordinates for the metric (η̂ij) and

⟨∂i ◦ ∂j, ∂k⟩ϵ = ∂̂i∂̂j ∂̂kF̂ (t̂)

Proof: See [17] for details.

Example 2.42 Let’s consider the Frobenius potential

F = 1
2
(t1)2t2 + et

2

F is related to the Toda-chain hierarchy. Consider the transformation S2, i.e.

t̂1 = ∂1∂2F = t1

t̂2 = ∂2∂2F = et
2

Raising the index by (ηij = δi+j,3) one has

t̂1 = et
2

t̂2 = t1

Now, using (2.67) one obtains

∂2F̂

∂t̂1∂t̂1
=

∂2F

∂t1∂t1
= t2 = log(t̂1)

∂2F̂

∂t̂1∂t̂2
=

∂2F

∂t1∂t2
= t1 = t̂2

∂2F̂

∂t̂2∂t̂2
=

∂2F

∂t2∂t2
= et

2

= t̂1

Thus
F̂ = 1

2
(t̂2)2t1 + 1

2
(t1)2

(
log(t̂1)− 3

2

)
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3 Flat pencil of cometrics

The main references of this section are [15] and [5].
Dubrovin in [15] proposed an approach to Frobenius manifold that relied on the
geometry of flat pencil of contravariant metrics. It was shown that, under certain
assumptions, these two objects are identical. The flat pencil of cometrics arises
naturally in the classification of bi-Hamiltonian structures of hydrodynamic type
on the loop of space ([21],[22],[23]). This highlights the relations between the
theory of Frobenius manifold and integrable hierarchies.

Definition 3.1 The cometrics g(1) = (gij(1)) and g(2) = (gij(2)) on a smooth (or complex)
manifold M form a linear flat pencil, denoted by (g(1), g(2)), if for any λ ∈ R (or C), the
following axioms are fulfilled:

I. The pencil (i.e. the linear combination)

gij(λ) := gij(1) − λgij(2) (3.1)

defines a flat cometric on a dense subset on M .

II. The functions defined by
Γij
k(λ) := Γij

k(1) − λΓij
k(2) (3.2)

are the contravariant Christoffel symbols associated with the Levi-Civita connec-
tions of (3.1), where Γij

k(1) and Γij
k(2) are the contravariant Christoffel symbols corre-

sponding to the Levi-Civita connections ∇(1) and ∇(2) of g(1) and g(2) respectively.

Lemma 3.2 Let (g(1), g(2)) be a flat pencil, then the cometrics g(1) and g(2) are flat.

Proof: In view of the definition, the cometric gij(λ) = gij(1) − λgij(2) is flat for any
λ and has contravariant Christoffel symbols Γij

k(λ) = Γij
k(1) − λΓij

k(2) Therefore the
vanishing of the corresponding (modified) curvature tensor

Rijk
l(λ) = gis(λ)(∂sΓ

jk
l(λ) − ∂lΓ

jk
s(λ)) + Γij

s(λ)Γ
sk
l(λ) − Γik

s(λ)Γ
sj
l(λ)

reads

gis(1)(∂sΓ
jk
l(1) − ∂lΓ

jk
s(1)) + Γij

s(1)Γ
sk
l(1) − Γik

s(1)Γ
sj
l(1)︸ ︷︷ ︸

=Rijk
l(1)

+O(λ)

+ λ2
(
gis(2)(∂sΓ

jk
l(2) − ∂lΓ

jk
s(2)) + Γij

s(2)Γ
sk
l(2) − Γik

s(2)Γ
sj
l(2)︸ ︷︷ ︸

=Rijk
l(2)

)
= 0

This formula can be regarded as a polynomial in λ. Then the coefficient of each
power in λ vanishes (as λ is arbitrary). In particular, the vanishing of the constant
term in λ corresponds to the flatness of the metric g(1) (i.e. Rijk

l(1) = 0), while the
vanishing of the quadratic term in λ corresponds to the flatness of the metric g(2)
(i.e. Rijk

l(2) = 0).
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Definition 3.3 We say that the flat pencil (g(1), g(2)) is quasi-homogeneous of degree d if
there exists a function τ on M such that the vector fields

E := ∇(1)τ, E
i = gis(1)∂sτ (3.3)

e := ∇(2)τ, e
i = gis(2)∂sτ (3.4)

satisfy the following conditions

[e, E] = e (3.5)
LEg(1) = (d− 1)g(1) (3.6)
Leg(1) = g(2) (3.7)
Leg(2) = 0 (3.8)

We call (3.3) and (3.4) the Egorov conditions and (3.6) the homogeneity condition of the
flat pencil. Furthermore, if (3.7) and (3.8) are fulfilled the flat pencil is said to be exact.

Remark 3.4 If the formula (3.5), (3.6), (3.7) and (3.8) hold true then one has

LEg(2) = LE(Leg(1)) = Le (LEg(1))︸ ︷︷ ︸
=(d−1)g(1)

−L[E,e]g(1)︸ ︷︷ ︸
=Leg(2)

= (d− 2)g(2) (3.9)

Remark 3.5 If the formula (3.3) and (3.4) hold true then one has

Ei = gis(1)g
(2)
sk e

k (3.10)

3.1 From Frobenius manifolds to flat pencils

In this section, we will see that any Frobenius manifold yields a flat pencil of
cometrics.
Let F = (M, η,∇, ◦, e, E) be a Frobenius manifold with intersection form g. We
show that F admits a natural structure of quasi-homogeneous linear flat pencil
(g(1), g(2)), where g(1) = g = (gij) and g(2) = η−1 = (ηij).

Proposition 3.6 The cometrics g and η−1 define a quasi-homogeneous linear flat pencil

gij(λ) := gij − ληij (3.11)

Γij
k(λ) := Γij

k(g) − λΓij
k(η) (3.12)

of degree d.

Definition 3.7 Let R be the linear operator on the tangent bundle TM (i.e a (1, 1) tensor
field) defined by

Rj
i :=

d− 1

2
δji +∇(2)

i Ej (3.13)

A quasi-homogeneous linear flat pencil is said regular if R doesn’t degenerate on M .

We prove the following preliminary lemma.
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Lemma 3.8 The contravariant Christoffel symbols (3.12) associated with the Levi-Civita
connection of the cometric (3.11) are given by

Γij
k(λ)(t) = Γij

k(g)(t) = cisk (t)R
j
s (3.14)

where the structure constants cijs (t) are defined in (2.42), (ti) is a flat coordinates system
for η and Ri

j = Ri
j(t) =

d−1
2
δji + ∂iE

j .
In particular, the functions (3.14) doesn’t depend on the parameter λ.

Proof: Recall that the Christoffel symbols Γij
k(η) evaluated in the flat coordi-

nates (ti) vanishes, then Γij
k(λ)(t) = Γij

k(g)(t). For simplicity we denote Γij
k(g) = Γij

k .
We prove that the functions (3.14) are the contravariant Christoffel symbols as-
sociated with the Levi-Civita connection of the cometric g. Differentiating (2.55)
with respect tk one has

∂kg
ij(t) = Ri

s∂kF
sj(t) +Rj

s∂kF
si(t) + ∂kA

ij︸ ︷︷ ︸
=0

Using the formula (2.57) one gets

∂kg
ij(t) = Ri

sη
sqηjp ∂k∂q∂pF (t)︸ ︷︷ ︸

(2.47)
= ckqp(t)

+Rj
sη

spηiq ∂k∂q∂pF (t)︸ ︷︷ ︸
(2.47)
= ckqp(t)

where ηij = ηij(t) are constants. Raising two indexes of ckqp one obtains

∂kg
ij(t) = Ri

sc
sj
k (t) +Rj

sc
si
k (t)

(3.14)
= Γij

k (t) + Γji
k (t)

which coincides with the compatibility condition for the the connection ∇(g) with
the metric g. The condition of vanishing torsion follows immediately from the
associativity of the product induced on the cotangent bundle T ∗M , indeed

gskΓij
k = gskciqk R

j
q

(3.14)
= Epcskp ciqk R

j
q

(2.44)
= Epcikp︸ ︷︷ ︸

=gik

csqk Rj
q︸ ︷︷ ︸

=Γsj
k

= gikΓsj
k (3.15)

In the end, we have to show that the functions (3.14) are the contravariant Christof-
fel symbols associated with the Levi-Civita connection of the cometric (3.11), i.e.
they fulfill the system of equations{

∂kg
ij
(λ)(t) = Γij

k (t) + Γji
k (t)

gsk(λ)(t)Γ
ij
k (t) = gik(λ)(t)Γ

sj
k (t)

(3.16)

Taking e in the form (2.31), the formula (2.54) holds true, i.e. ∂1gij(t) = ηij(t) = ηij .
Then expanding the functions gij(t1−λ, t2, ...., tn) in Taylor series about λ = 0 one
has

gij(t1 − λ, t2, ...., tn) = gij(t)− ληij = gijλ (t)
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Hence gλ(t) coincides with g(t) shifted by a quantity −λ in the first entry t1.
The first equation of (3.16) is satisfies since ∂kg

ij
(λ)(t) = ∂kg

ij(t).
Therefore shifting t1 7→ t1 − λ in the formula (3.15) one has

gsk(λ)(t)Γ
ij
k (t

1 − λ, t2, ...., tn) = gik(λ)(t)Γ
sj
k (t

1 − λ, t2, ...., tn) (3.17)

In view of the remark (2.13), the tensor R written in (ti) has constant components.
Therefore

∂1Γ
ij
k (t) = Le(c

ij
s (t)R

s
k) = Le(c

ij
s (t))R

s
k + cijs Le(R

s
k)︸ ︷︷ ︸

=∂1Rs
k=0

= Le(η
ikcjks(t))R

s
k

= Le(η
ik)︸ ︷︷ ︸

(2.39)
= 0

cjks(t)R
s
k + ηik Le(c

j
ks(t))︸ ︷︷ ︸

(2.40)
= 0

Rs
k = 0

So Γij
k (t) doesn’t depend on t1 and, consequently, Γij

k (t) arent’t affected by the
shifting. Then (3.17) coincides with the second of (3.16). This concludes the proof.

Now, we can prove the proposition (3.6).

Proof: Recall the asymptotic expansion (2.53) for large t1

gij(t) ∼ t1ηij

Then for any λ one has
gij(t)− ληij ∼ (t1 − λ)ηij

Hence gij(λ) doesn’t degenerate on a dense subset of M , for any λ.
The curvature tensor associated to the Levi-Civita connection of the cometric
(3.11) written in (ti) reads

Rijk
s(λ)(t) = gip(λ)(∂pΓ

jk
s(λ) − ∂sΓ

jk
p(λ)) + Γij

p(λ)Γ
pk
s(λ) − Γik

p(λ)Γ
pj
s(λ)

(3.14)
= (gij(t)− ληij) (∂p(c

jq
s R

k
q )− ∂s(c

jq
p R

k
q ))︸ ︷︷ ︸

(∗)

+ ciqp R
j
qc

pm
s Rk

m − ciqp R
k
qc

pm
s Rj

m︸ ︷︷ ︸
(∗∗)

One has

(∗) = ∂p(η
jbcqbsR

k
q )− ∂s(η

jbcqbpR
k
q ) = ηjbRk

q (∂pc
q
bs − ∂sc

q
bp)

(2.35)
= 0

Exchanging q ↔ m one obtains

(∗∗) = ciqp R
j
qc

pm
s Rk

m︸ ︷︷ ︸
=cimp Rj

mcpqs Rk
q

−ciqp R
k
qc

pm
s Rj

m = RqR
j
m(c

im
p cpqs − ciqp c

pm
s )

(2.44)
= 0

It remains to show the Egorov condition, the condition (3.5), the homogeneity
and the exactness of the pencil. We define τ := ηist

s and take ek = δk1 , then

gim∂mτ = gimη1s ∂mt
s

=δsm

(2.51)
= Ebciba η

amη1m︸ ︷︷ ︸
=δa1

= Ebcib1
(2.36)
= Ebδib = Ei

ηim∂mτ = ηimη1m = δi1
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therefore (3.3) and (3.4) are fulfilled.
The axiom (2.24) of Frobenius manifold coincides with (3.5).
By direct computation

LEg
ij = LE(E

qciqsη
sj) = LE(E

q)︸ ︷︷ ︸
=[E,E]q=0

ciqsη
sj + Eq LE(c

i
qs)︸ ︷︷ ︸

(2.23)
= ciqs

ηsj + Eqciqs LE(η
sj)︸ ︷︷ ︸

(2.25)
= (d−2)ηsj

(2.51)
= gij + (d− 2)gij = (d− 1)gij

and

Leg
ij = Le(E

qciqsη
sj) = Le(E

q)

=−LEeq

(2.24)
= eq=δ

q
1

ciqsη
sj + Eq Le(c

i
qs)︸ ︷︷ ︸

(2.40)
= 0

ηsj + Eqciqs Le(η
sj)︸ ︷︷ ︸

(2.39)
= 0

= ci1sη
sj (2.36)

= δisη
sj = ηij

then (3.6) and (3.7) are satisfied.
(3.8) coincides with (2.39), this concludes the proof.

3.2 From flat pencils to Frobenius manifolds

In this section we will show that under suitable condition on the operator R a
quasi-homogeneous linear flat pencil defines a Frobenius manifold.
The following technical lemma will be useful later.

Lemma 3.9 The functions defined by

∆ijk(x) := gjs(2)Γ
ik
s(1) − gis(1)Γ

jk
s(2) (3.18)

are the components of a (3, 0) tensor field on M . Furthermore, the connections ∇(1) and
∇(2) have a common system of flat coordinates if and only if ∆ijk = 0 at least locally.

Proof: First, we prove that the functions ∆k
ij(x) = Γ

k(1)
ij − Γ

k(2)
ji are the com-

ponents of a (1, 2) tensor field, where Γ
k(α)
ji = −g

(α)
js Γsk

i(α) (α = 0, 1).
Recall the transformation law of the Christoffel symbols induced by the coordi-
nate transformation x 7→ x̃

Γ̃i
jk =

∂x̃i

∂xs

∂xp

∂x̃j

∂xb

∂x̃k
Γs
pb +

∂2xs

∂x̃j∂x̃k

∂x̃i

∂xs

Therefore ∆k
ij transforms as a (1, 2) tensor field, indeed

∆̃i
jk = Γ̃

i(1)
jk − Γ̃

i(2)
kj =

∂x̃i

∂xs

∂xp

∂x̃j

∂xb

∂x̃k
Γ
s(1)
pb +

∂2xs

∂x̃j∂x̃k

∂x̃i

∂xs
− ∂x̃i

∂xs

∂xp

∂x̃k

∂xb

∂x̃j
Γ
s(2)
pb − ∂2xs

∂x̃k∂x̃j

∂x̃i

∂xs

=
∂x̃i

∂xs

∂xp

∂x̃j

∂xb

∂x̃k
∆s

pb

Suppose that the connections ∇(1) and ∇(2) have a common system of flat coordi-
nates (pi) defined in a neighborhood U , i.e. Γi(1)

jk (p) = Γ
i(2)
jk (p) = 0 for any p ∈ U .
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Then ∆i
jk = 0 for any p ∈ M .

We prove the converse statement. If ∆̃i
jk(p̃) = 0 for any p̃ ∈ U one has that

Γ̃
i(1)
jk (p̃) = Γ̃

i(2)
jk (p̃) = 0.

Let (pi) be a flat system for ∇(1) (i.e. Γi(1)
jk (p) = 0). Since ∆i

jk is a tensor ∆i
jk(p) =

∂pi

∂p̃s
∂p̃p

∂pj
∂p̃b

∂pk
∆̃s

pb(p̃) = 0, then Γ
i(1)
jk (p) = Γ

i(2)
jk (p) = 0 and the two connections have a

common system of flat coordinates.
Ultimately, we prove the vanishing of ∆ijk. Rising the indexes of ∆i

jk ,contracting
by gsj(1)g

qk
(2), one obtains the (3, 0) tensor

∆sqi := gsj(1)g
qk
(2)∆

i
jk = gsj(1)g

qk
(2)Γ̃

i(1)
jk − gsj(1)g

qk
(2)Γ̃

i(2)
jk = gqk(2)Γ

si
k(1) − gsj(1)Γ

qi
j(2)

Being the metrics g(1) and g(2) non-degenerate, ∆ijk(x) = 0 if and only if ∆i
jk(x) =

0 for any x ∈ U .

Let’s consider the metric g(2) = (g
(2)
ij ) where g

(2)
ij = (gij(2))

−1.
In particular, the metric g(2) is defined only on M0 := M − Σ, where
Σ := {p ∈ M : det(gij(2)) = 0}.
Now, we can give the following:

Definition 3.10 Let’s consider the (2, 1) tensor field on M0 of components

∆ij
k := g

(2)
ks ∆

sij (3.19)

The tensor ∆ij
k defines the bilinear application ∆ on T ∗M0 by

∆ : Γ(T ∗M0)× Γ(T ∗M0) → Γ(T ∗M0) (3.20)
(u, v) 7→ ∆(u, v) (3.21)

where the action of ∆ is obtained by extending by linearity the actions on a base, i.e.

∆(u, v) = uivj∆(dxi, dxj) := uivj∆
ij
k dx

k (3.22)

here ui and vi are the components of the 1-form u and v with respect to a local frame of
cotengent vetctors (dxi).

Remark 3.11 (3.19) can be rearranged as

∆ij
k = g

(2)
ks ∆

sij = g
(2)
ks (g

ip
(2)Γ

sj
p(1) − gsp(1)Γ

ij
p(2)) (3.23)

Furthermore, in flat coordinates (ti) for g(2) it reads

∆ij
k (t) = Γij

k(1)(t) (3.24)

Lemma 3.12 Given a linear flat pencil (g(1), g(2)), the following identities hold true:

gsk(1)∆
ij
k = gik(1)∆

sj
k (3.25)

gsk(2)∆
ij
k = gik(2)∆

sj
k (3.26)

∆ij
k ∆

ks
p = ∆ij

k ∆
ks
p (3.27)

∂s∆
jk
l = ∂l∆

jk
s (3.28)
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Proof: Quasi-homogeneity of the pencil isn’t a necessary condition.
Recall that, in view of the definition of flat pencil, we have that the curvature ten-
sor corresponding to the cometric g(1)−λg(2) vanishes for any λ. In flat coordinates
(ti) it reads

Rijk
l (t)

(3.24)
= (gis(1) − λgis(2))(∂s∆

jk
l − ∂l∆

jk
s ) + ∆ij

s ∆
sk
l −∆ik

s ∆
sj
l = 0

The vanishing of the linear term in λ yields (3.28). While the vanishing of the
constant term in λ yields (3.27).
The torsionless condition of the Levi-Civita connection corresponding to the co-
metric gis(1) − λgis(2), written in (ti), reads

(gis(1) − λgis(2))∆
jk
s = (gjs(1) − λgjs(2))∆

ik
s

The vanishing in any order in λ yield (3.25) and (3.26).

Corollary 3.13 (3.25) and (3.26) can be rearranged as follows:

g
(1)
is ∆sj

k = g
(1)
ks ∆

sj
i (3.29)

g
(2)
is ∆sj

k = g
(2)
ks ∆

sj
i (3.30)

Proof: Contracting (3.25) by g
(1)
ps g

(1)
pi one gets (3.29). Similarly one gets (3.30).

Lemma 3.14 Given a quasi-homogeneous linear flat pencil (g(1), g(2)), the following for-
mula hold true:

∇(2)∇(2)τ = 0 (3.31)
∇(2)∇(2)E = 0 (3.32)

Proof: For simplicity we denote gij(2) = ηij .
Observe that, in flat coordinates (ti) for ∇(2), one has

∇(2)∇(2)τ = ∂i∂jτ

The condition (3.8) written in (ti) reads

es ∂sη
ij

=0

+∂se
iηsj + ∂se

jηis = 0 (3.33)

Differentiating (3.4) with respect ts one obtains

∂se
i = ∂sη

ik

=0

∂kτ + ηik∂s∂kτ

The latter substituted in (3.33) yields

ηsjηik∂s∂kτ + ηisηjk∂s∂kτ = 0
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Exchanging s ↔ k one has
2ηisηjk∂s∂kτ = 0

Contracting by ηrsηqk one gets
∂r∂qτ = 0

for any r and q.
Similarly, differentiating

LEη
ij = (d− 2)ηij

one obtains ∂r∂qEs = 0.

Remark 3.15 From here on, for simplicity, we denote g(1) = g, g(2) = η−1, we denote by
Γij
k the contravariant Christoffel symbols corresponding to the Levi-Civita connection of

g and by (ti) a flat coordinate system for g2.

Lemma 3.16 The vector field e (3.4) has constant components in the flat coordinates (ti).
Furthermore, the following formula holds true

Qn
q = (1− d)δnq

Proof: Recall the formulas (3.4) and (3.32)

e = ∇(2)τ

∇(2)∇(2)τ = 0

Then e has constant components in the coordinates (ti).
Recall that the flat coordinates are defined up to an affine transformation. Then
we choose the flat system (ti) so that

ei = ei(t) = ηin (3.34)

Since ei = ηis∂sτ , one has ηin = ηis∂sτ . Hence ∂sτ = ηsiη
in = δns . Then τ = tn + c,

where c is a constant.
As Ei = gis∂sτ , we have that E written in (ti) has components

Ei = Ei(t) = gis∂st
n = gisδns = gin (3.35)

The formula (3.5) written in (ti) reads

ei ∂iE
j

=Qj
i

− ∂ie
j

=0

Ei = ej

Then, in view of (3.34), one obtains ηinQj
i = ηjn.

Since η is symmetric, we have that

ηniQj
i = ηjn = ηnj = ηjiQn

i

The formula (3.9) written explicitly reads

Es ∂sη
ij

=0

− ∂sE
i

=Qi
s

ηsj − ∂sE
j

=Qj
s

ηis = (d− 2)ηij
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Take j = n

Qi
sη

sn︸ ︷︷ ︸
=ηin

+Qn
sη

is = (2− d)ηin

Qn
sη

is = (1− d)ηin

Multiplying by ηiq one concludes the proof.

We will assume the choice (3.34) of the flat coordinates (ti) also below.

Lemma 3.17 In the coordinates (ti), the following formulas hold true:

∆in
j =

1− d

2
δij (3.36)

∆ni
j =

d− 1

2
δij +Qi

j (3.37)

Proof: Using the explicit formula of the Christoffel symbols corresponding
to the Levi-Civita connection of g one gets

∆n
ij = Γn

ij =
1

2
gns
(
∂igsj + ∂jgsi − ∂sgij

)
= 1

2

(
∂i(g

nsgsj︸ ︷︷ ︸
=δnj

)− gsjg
ns + ∂j(g

nsgsi︸ ︷︷ ︸
=δni

)− gsig
ns − gns∂sgij

)
(3.35)
=
(
− ∂iE

sgsj − ∂jE
sgsi − Es∂sgij

)
= −1

2
LEgij

(3.6)
=

d− 1

2
gij

Multiplying by gis the one has

∆in
j = Γin

j := −gisΓn
sj =

1− d

2
gisgij =

1− d

2
δsj

which coincides with (3.36).
Recall the condition of compatibility of the connection with the metric

∂kg
ij = Γij

k + Γji
k

Take j = n

∂kg
in

=∂kEi=Qi
k

= Γin
k

= 1−d
2

δik

+Γni
k

Then one obtains
∆ni

k = Γni
k =

d− 1

2
δik +Qi

k

which concludes the proof.

Lemma 3.18 In the coordinates (ti) the following formulas hold true:

LE∆
ij
k = (d− 1)∆ij

k (3.38)

Le∆
ij
k = 0 (3.39)
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Proof: Define the functions

Γ̃ij
k : = LE∆

ij
k + (1− d)∆ij

k

= Es∂s∆
ij
k + ∂kE

s∆ij
s − ∂sE

i∆sj
k − ∂sE

j∆is
k + (1− d)∆ij

k

(3.24)
= Es∂sΓ

ij
k +Qs

kΓ
ij
s −Qi

sΓ
sj
k −Qj

sΓ
is
k + (1− d)Γij

k

Thus differentiating the system of equations{
∂kg

ij = Γij
k + Γji

k

gisΓjk
s = gjsΓik

s

(3.40)

along the vector field E = Ei∂i one obtains the system{
Γ̃ij
k + Γ̃ji

k = 0

gisΓ̃jk
s = gjsΓ̃ik

s

(3.41)

Recall that the system (3.40) has a unique solution Γij
k .

We observe that (3.41) is the linear homogeneous system corresponding to (3.40).
Since (3.40) has a unique solution the corresponding linear homogeneous system
has only the trivial solution Γ̃ij

k = 0. Then LE∆
ji
k = (d− 1)∆ji

k .
Similarly, it can be proven that Le∆

ji
k = 0.

Lemma 3.19 Following [5], (3.13) and (3.23) can be written as follows:

Rj
i = ∇(2)

j Ei −∇(1)
j Ei (3.42)

∆jk
m = Ls

mη
jt
(
Γ
k(2)
st − Γ

k(1)
st

)
(3.43)

where Ls
h = gsmηmh.

Proof: One has

∇(1)
i Ek = ∂iE

k + Γk
ijE

j = ∂iE
k + 1

2
gks
(
∂ig

ksEj + ∂jg
siEj − ∂sg

ijEj
)

(3.6)
= ∂iE

k + 1
2
gks
(
∂igjsE

j − gsj∂iE
j − gij∂sE

j + (1− d)gsi − ∂sgijE
j
)

= ∂iE
k + 1

2

(
gks∂igjsE

j − δkj ∂iE
j − gks∂s(gijE

j) + (1− d)δki
)

Denote by θi := gijE
j the components of the 1-form θ. Then

∇(1)
i Ek = 1

2
∂iE

k + 1
2

(
gks∂igjsE

j − gks∂sθi
)
+ 1−d

2
δki

= 1
2
∂iE

k + 1
2

(
gks∂i(gjsE

j

=θs

)− gksgjs

=δkj

∂iE
j − gks∂sθi

)
+ 1−d

2
δki

= 1
2
gks
(
∂iθs − ∂sθi

)
+ 1−d

2
δki

Using the Egorov condition (3.4) one obtains that θs = ∂sτ . Then

∂iθs − ∂sθi = ∂i∂sτ − ∂s∂iτ = 0
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since τ is a smooth function. Therefore

∇(2)
i Ek −∇(1)

i Ek = ∇(2)
i Ek + d−1

2
δki

(3.13)
= Rk

i

(3.42) is proven. By a straightforward computation, one has

Ls
mη

jt
(
Γ
k(2)
st − Γ

k(1)
st

)
= gsqηqmη

jt
(
Γ
k(2)
st − Γ

k(1)
st

)
= ηqm

(
gsq ηjtΓ

k(2)
st︸ ︷︷ ︸

=−Γjk
s(2)

−ηjt gsqΓ
k(1)
st︸ ︷︷ ︸

=−Γqk
t(1)

)
= ηqm

(
ηjtΓqk

t(1) − gsqΓjk
s(2)

)
which coincides with (3.23).

Proposition 3.20 Let (g, η−1) be a quasi-homogeneous linear flat pencil on M of degree
d. If the operator R is invertible on M , then the data (M, η,∇(2), ◦, e, E), where ◦ is the
product defined by the structure constants

cjhk := Ls
h

(
Γ
l(2)
sk − Γ

l(1)
sk

)
(R−1)jl (3.44)

defines a Frobenius manifold on M .

Remark 3.21 Using the tensor (3.43), the tensor (3.42) and (3.43) can be rearagend as
follows:

Rm
s =

(
Γ
m(2)
sl − Γ

m(1)
sl

)
El (3.43)

= gsrη
rq∆pm

q ηplE
l(3.31)= gsrη

rq∆pm
l ηpqE

l = gsp∆
pm
l El

(3.45)

cjhk
(3.43)
= ∆ml

h ηmk(R
−1)jl (3.46)

We give the preliminary lemma.

Lemma 3.22 The following identity holds true:

∆tl
k (R

−1)sl = ∆sl
k (R

−1)tl (3.47)

Proof: Equivalently, we have to prove that ∆sh
k Rm

s = ∆sm
k Rh

s . Suddenly, (3.47)
is obtained by contracting by (R−1)qm(R

−1)ph. We have

∆sh
k Rm

s

(3.45)
= ∆sh

k gsp∆
pm
l El (3.29)

= ∆sh
p gsk∆

pm
l El (3.27)

= ∆sm
p gsk∆

ph
l El (3.29)

= ∆sm
k gsp∆

ph
l El (3.45)

= ∆sm
k Rh

s

Now, we can prove the proposition 3.20.
Proof: In order to have a Frobenius manifold we have to prove the following
points 1. The product is commutative

cjhk
(3.46)
= ∆ml

h ηmk(R
−1)jl

(3.30)
= ∆ml

k ηmh(R
−1)jl

(3.46)
= cjkh

2. The product is associative

Rl
ic

i
sjc

s
hk

(3.45),(3.46)
= ∆ql

s ηqj(R
−1)sr∆

mr
h ηmk

(3.47)
= ∆ql

s ηqj(R
−1)mr ∆

sr
h ηmk

(3.27)
= ∆qr

s ηqj(R
−1)mr ∆

sl
h ηmk
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(3.47)
= ∆mr

s ηqj(R
−1)qr∆

sl
h ηmk

(3.27)
= ∆ml

s ηqj(R
−1)qr∆

sr
h ηmk

(3.47)
= ∆ml

s ηqj(R
−1)sr∆

qr
h ηmk

(3.27)
= Rl

ic
i
skc

s
hj

3. The vector field e is the unity of the product

cjhke
h (3.44)

= Ls
h

(
Γ
(2)l
sk −Γ

(1)l
sk

)
(R−1)jl e

h (2.61)
= gsqηphe

h︸ ︷︷ ︸
(3.10)
= Es

(
Γ
(2)l
sk −Γ

(1)l
sk

)
(R−1)jl

(3.42)
= Rl

k(R
−1)jl = δjk

4. The metric η is invariant with respect to the product ◦

ηsjc
j
hl

(3.46)
= ηsj∆

ql
h ηqk(R

−1)jl
3.45
= ηsj∆

jl
h ηqk(R

−1)ql
3.30
= ηhj∆

jl
s ηqk(R

−1)ql
(3.45)
= ηhj∆

ql
s ηqk(R

−1)jl
(3.46)
= ηhjc

j
sl

5. LEc
k
ij = ckij . Observe that

LER
i
j

(3.45)
= LE(gjp∆

pi
l E

l) = LEgjp

(3.6)
= (1−d)gjp

∆pi
l E

l+gjp LE∆
pi
l︸ ︷︷ ︸

(3.38)
= (d−1)∆pi

l

El+gjp∆
pi
l LEE

l

=[E,E]l=0

= 0

Then LE(R
−1)ij = 0. Hence

LEc
k
ij

(3.46)
= LE

(
∆ml

i ηmj(R
−1)kl

)
= LE∆

pi
l︸ ︷︷ ︸

(3.38)
= (d−1)∆pi

l

ηmj(R
−1)kl +∆ml

i LEηmj︸ ︷︷ ︸
(3.9)
= (2−d)ηmj

(R−1)kl +∆ml
i ηmj LE(R

−1)kl︸ ︷︷ ︸
=0

(3.46)
= ckij

This concludes the proof.
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4 Coxeter groups and Frobenius manifolds

The main references of this section are [18] and [46].
In this section we will recall Dubrovin’s procedure, following [18], aimed at con-
structing a Frobenius manifold on the orbit space of a Coxeter group. The realiza-
tion of a Frobenius structure relies on the notion of flat pencil of cometrics and on
the existence of a distinguished set of polynomial basic invariants for the Coxeter
group, called Saito flat coordinates (see [46]).
Dubrovin conjectured that any polynomial Frobenius manifold may be obtained
following this scheme. Later, Hertling proved this statement (see [31]).

In the following subsections, we recall some facts concerning the theory of Cox-
eter group. For a comprehensive survey see for example [Humpryes].

4.1 Coxeter groups

Recall what is meant by a reflection acting on a n-dimensional real vector space
V equipped with a positive-definite symmetric bilinear form ⟨·, ·⟩.

Definition 4.1 A real reflection is a linear operator on V which sends some non-zero
vector α to its negative while fixing pointwise the (hyper-)plane Hα orthogonal to α.
Explicitly, the action of a reflection, with respect to the vector α, is defined by the formula

Sαλ := λ− 2
⟨λ, α⟩
⟨α, α⟩

α (4.1)

for any λ ∈ V .

Remark 4.2 The formula (4.1) defines actually a reflection, indeed

1. taking λ = α one has Sαα = α− 2 ⟨α,α⟩
⟨α,α⟩α = −α

2. taking λ ∈ Hα, i.e. ⟨λ, α⟩ = 0, one has Sαλ = λ− 2 ⟨λ,α⟩
⟨α,α⟩α︸ ︷︷ ︸
=0

= λ

Definition 4.3 We define a Coxeter group to be a finite group generated by real reflec-
tion. A generic Coxeter group will be denoted by W .

Remark 4.4 Any element of a Coxeter group has order two, i.e. S2
α = id.

Remark 4.5 Any real reflection is an orthogonal transformation, or equivalently

W ⊂ O(n,R)

Here O(n,R) is the group of the orthogonal transformations on a n-dimensional real
vector space. Indeed

⟨Sαλ, Sαµ⟩ = ⟨λ−2 ⟨λ,α⟩
⟨α,α⟩α, µ−2 ⟨µ,α⟩

⟨α,α⟩α⟩ = ⟨λ, µ⟩−2 ⟨λ,α⟩
⟨α,α⟩⟨α, µ⟩+4 ⟨λ,α⟩⟨µ,α⟩⟨α,α⟩

⟨α,α⟩ −2 ⟨µ,α⟩
⟨α,α⟩⟨α, λ⟩ = ⟨λ, µ⟩
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Definition 4.6 A Coxeter group is called reducible if it can be decomposed if it can be
decomposed as

W = W1 ×W2

where both W1 and W2 are nontrivial subgroups generated by reflection of W .

Remark 4.7 The complete classification of Coxeter group was obtained by Coxetr in [13].
The complete classification consists of the following groups:

• The Weyl group An, Bn, Dn, E6, E7, E8, F4, G2.

• The group H3, H4 of symmetries of the regular icosahedron and of the regular 600-
cell in 4-dimensional space respectively.

• The group I2(k) of symmetries of the regular k-gone, i.e. the dihedral group.

4.2 Polynomial invariants of a finite group

Before considering reflection groups, recall some facts about the polynomial in-
variants of an arbitrary finite subgroup of GL(V ). Here GL(V ) is the group of
linear invertible transformation on the n-dimensional vector space V over a field
of characteristic 0.
Denote by S the symmetric algebra S(V ∗) of the dual space V ∗, which coincides
with the algebra of polynomial functions on V .
Fixed a basis of V , S may be identified with the polynomials ring K[x1, ...., xn],
where xi are (linear) coordinate functions on V . There is a natural action of G on
S induced by the contragredient action of G on V ∗, defined by

(g · f)(v) := f(g−1v) (4.2)

where g ∈ G, v ∈ V and f ∈ V ∗.
We observe that this action preserves the natural grading of S.

Definition 4.8 We say that f ∈ S is G-invariant if

g · f = f (4.3)

for any g ∈ G.

Definition 4.9 We define SG to be the subalgebra of S generated by the G-invariant
element of S.

Definition 4.10 We say that the polynomials {f1, ...., fk} in K[x1, ...., xn] are alge-
braically independent if, for any nonzero polynomial h ∈ K[x1, ...., xk], we have
h(f1, ...., fk) ̸= 0.

Let W be a Coxeter group. We present a version of the Chevalley theorem for
the invariant ring, taking as base field R. This result can be generalized to the
complex case.
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Theorem 4.11 Let B = SG be the subalgebra of R[x1, ...., xn] of W -invariant polynomi-
als. Then B is generated as an R-algebra by n homogeneous and algebraically indepen-
dent polynomials of positive degree together with 1.

Remark 4.12 B has the natural decomposition

B = B+ ⊕ R

where B+ is the subalgebra of W -invariant polynomials with strictly positive degree.

Definition 4.13 We define a set of algebraically independent homogeneous generators of
B, with strictly positive degree, a set of (polynomial) basic invariants of B.

Remark 4.14 The algebraically independent generators of B are not uniquely defined
in general. However, the degrees corresponding to the basic invariants turn out to be
uniquely defined by the choice of the Coxeter group. More precisely, the following propo-
sition holds true:

Proposition 4.15 Suppose that {f1, ...., fn} and {g1, ...., gn} are two sets of basic invari-
ants of B and denote by {d1, ...., dn} and {e1, ...., en} the respective degrees. Then, up to
a renumbering of the degrees, we have di = ei for all i.

For any irreducible Coxeter group, the degrees of the basic invariants are known.
We give the list of the degrees corresponding to the basic invariant incrementally
ordered.

W dn, ...., d1
An di = n+ 2− i
Bn di = 2(n+ 2− i)

Dn(n = 2k) di = 2(n− i)(i ≤ k)
di = 2(n− i+ 1)(i > k)

Dn(n = 2k + 1) di = 2(n− i)(i ≤ k)
dk+1 = 2k + 1

di = 2(n− i+ 1)(i > k + 1)
E6 12, 9, 8, 6, 5, 2
E7 18, 14, 12, 10, 8, 6, 5, 2
E8 30, 24, 20, 18, 14, 12, 8, 2
F4 12, 8, 6, 2
G2 6, 2
H3 10, 6, 2
H4 30, 20, 12, 2
I2(k) k, 2
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4.3 Frobenius structure on the orbit space of a Coxeter group

Let V be a n-dimensional real vector space. V is endowed with an Euclidean
inner product ⟨·, ·⟩(g) of components

gij(p) :=

〈
∂

∂pi
,
∂

∂pi

〉
(g)

= δij (4.4)

here (p1, ...., pn) is a system of linear and orthogonal coordinates.
Let W be a Coxeter group. We denote by R = R[p1, ...., pn] the polynomial ring in
(p1, ...., pn) with real coefficients.
The group W acts in a natural way on the ring R. Let RW to be the subring of
R of W -invariant polynomials. In view of the Chevallay theorem, there exists
n algebraically independent homogeneous polynomials {u1, ...., un} of degrees
di := deg(ui) ordered so that

d1 = 2 < d2 ≤ d3 ≤ .... ≤ dn−1 < dn = h

such that RW = ⟨u1, ...., un⟩R. h is called the Coxeter number of W .
We highlight that the basic invariant {u1, ...., un} aren’t uniquely defined. While
the degrees are uniquely determined by the Coxeter group W .
We denote by Ω(V ) the R-module of differential forms on V with polynomial co-
efficients. Let Ω(V )W be the submodule of W -invariant differential forms with
polynomial coefficients.

Remark 4.16 Let be C be an element in W .The eigenvalues of C have the form (see [9])

λi = exp

(
2πi(di − 1)

h

)
(4.5)

Moreover, the degrees di satisfy the duality condition (see [9])

di + dn−i+1 = h+ 2 (4.6)

for any i = 1, ...., n.

Any Coxeter transformation A ∈ W induces a transformation on any metric by
the transformation rule of a (0, 2) tensor.
Similarly, one gets the induced transformation for any cometric g, i.e.

g 7→ ATgA (4.7)

Remark 4.17 Recall that, in view of remark (4.5), any transformation in W is orthog-
onal. Since the orthogonal group O(n,R) is the group of transformations that leaves
invariant the Euclidean metric, one has that the latter is left invariant by any Coxeter
transformation as well. In particular, the Euclidean norm (p1)2 + .... + (pn)2 on V is
left invariant by any Coxeter transformation. Observe that for any irreducible Coxeter
group, the lowest polynomial basic invariant degree turns out to be 2. Therefore for any
irreducible Coxeter group the basic invariant polynomial of lowest degree coincides, up to
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rescaling, with the Euclidean norm.
We normalize u1 so that

u1 =
1

2h

(
(p1)2 + ....+ (pn)2

)
(4.8)

Remark 4.18 One may extend the action of the group W to the complexified vector space

VC := V ⊗R C (4.9)

Since V is a real vector space, the subscript R may be omitted. According to the result of
Coxeter and Chevalley, the orbit space

M := (V ⊗ C)/W (4.10)

has a natural structure of affine algebraic variety with coordinate ring

RW ⊗ C (4.11)

Therefore (u1, ...., un) may be used as local coordinates of M .

Remark 4.19 As the basic invariants aren’t uniquely defined, the coordinates (u1, ...., un)
of M are defined up to an invertible transformation

uj 7−→ ũi = ũi(u1, ...., un) (4.12)

where ũi(u1, ...., un) is a quasi-homogeneous polynomial in (u1, ...., un), with deg(ũi) =
deg(ui) = di

Lemma 4.20 The transformation (4.12) leaves invariant the vector field

e := ∂n =
∂

∂un
(4.13)

up to a constant factor.

Proof: The transformation law of e induced by (4.12) has the form

ẽi =
∂ũi

∂uj
ej

(2.31)
=

∂ũi

∂un

Since the basic invariants are ordered so that

deg(ũn) = deg(un) > deg(ui)

one has
∂ũi

∂un
= 0 (4.14)

for any i ̸= n. Since ũn = ũn(u1, ...., un) is a quasi-homogeneous polynomial of
degree dn = deg(un), ũn must has the form

ũn = cun + g(u1, ...., un−1)
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where c is a constant and g(u1, ...., un−1) is a quasi-homogeneous polynomial of
degree dn. Therefore

∂ũn

∂un
= c

Then
ẽ = c

∂

∂ui

which concludes the proof.

Definition 4.21 Let (u1, ...., un) be a set of basic invariants of degrees d1, ...., dn respec-
tively. We define

E := diu
i ∂

∂ui

to be the vector field generating the scaling transformation.

Lemma 4.22 The vector E is well-defined on M . Furthermore, the following identity
holds true

E = diu
i ∂

∂ui
= pi

∂

∂pi
(4.15)

Proof: This formula is a consequence of Euler’s theorem for homogeneous
functions.

We extend ⟨·, ·⟩(g) to the complexified space V ⊗ C as a complex bilinear form.

Remark 4.23 The factorization map

π : V ⊗ C → M (4.16)

is a local diffeomorphism of an open set of V ⊗ C onto its image. The image of this
subset in M consists of regular orbits (i.e. the orbit whose cardinality coincides with the
order of the Coxeter group W ). We define its complement as the discriminant of W ; we
denoted it by Discr(W ). In particular, for a Coxeter group W , it coincides with the union
of the reflecting (hyper-)planes associated with W . Notice that the linear coordinates
(p1, ...., pn) of V can serve also as local coordinates in a neighborhood in M −Discr(W ).

We want to define a new cometric on M −Discr(W ). In particular, the Euclidean
metric can be extended onto M as follows. Let ⟨·, ·⟩∗(g) be the bilinear form on the
dual space V ∗ defined by the cometric g−1 = (gij), where gij is the matrix inverse
of (4.4), i.e.

gij(p) :=
(
gij(p)

)−1
= δij (4.17)

Remark 4.24 The bilinear form ⟨·, ·⟩(g) coincides with the Euclidean inner product on
T ∗V ∼= V ∗. Then, in view of the remark (4.17), one has that the cometric g−1 is well-
defined on the orbit space M . Let

gij(u) := ⟨dui, duj⟩∗(g) =
∂ui

∂ps
∂uj

∂pk
δsk =

∂ui

∂ps
∂uj

∂ps

be the components of the cometric g−1 written in the basic invariants, here the latter
quantity is evaluated in p = p(u) (these functions are defined at least locally outside
Discr(W )). Since the partial derivative of any polynomial invariant is a homogeneous
polynomial, observe that any entry of

(
gij(u)

)
is a homogenous polynomial.
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Lemma 4.25 The Euclidean metric on V induces a W -invariant cometric with quasi-
polynomial entries, defined on the orbit space M , of components

gij(u) =
∂ui

∂ps
∂uj

∂ps
(4.18)

Furthermore, the corresponding contravariant Christoffel symbols of the Levi-Civita con-
nection, written in basic invariants (u1, ...., un), defined by

Γij
k (u) =

∂ui

∂pa
∂2uj

∂pa∂pb
dpb

duk
(4.19)

are also quasi-homogeneous polynomial functions on the orbit space M .

Proof: The first part of the thesis coincides with the previous remark.
Using Solomon’s result (see [50] for details), one has that the Christofell symbols
associated with the Levi-Civita connection of (gij) are W -invariant functions. In
view of (4.17), one has that (pi) is a flat and orthonormal coordinates system for
(gij). Therefore applying the formula (1.16), one obtains the formula

Γij
k (u)du

k =
∂ui

∂pa
∂2uj

∂pa∂pb
dpb (4.20)

Since the functions ∂ui

∂pa
and ∂2uj

∂pa∂pb
are homogeneous polynomials, the right-hand

side of (4.20) is a differential form with homogeneous coefficients. Then the func-
tions Γij

k (u) are quasi-homogeneous polynomials for any choice of the indexes.

Remark 4.26 The matrix
(
gij(u)

)
doesn’t degenerate on M −Discr(W ) where the pro-

jection (4.16) is a local diffeomorphism. Thus the polynomial (also called the discriminant
of W )

D(u) := det
(
gij(u)

)
(4.21)

vanish identically where the linear function (p1, ...., pn) fail to be local coordinates of M .
So (gij(u)

)
is often called the discriminant matrix of W .

Corollary 4.27 The polynomial functions gij(u) and Γij
k (u), defined by (4.18) and (4.19),

depend at most linearly on un.

Proof: Recall the formula (4.18) and (4.19);

gij(u) =
∂ui

∂ps
∂uj

∂ps
(4.22)

Γij
k (u)

∂uk

∂pb
=

∂ui

∂pa
∂2uj

∂pa∂pb
(4.23)

Observe that the partial derivative of a homogeneous polynomial coincides with
a homogeneous polynomial of degree lowered by one. Therefore by comparing
the degrees of both sides of (4.22) and (4.23) one gets

deg
(
gij(u)

)
=
(
deg(ui)− 1

)
+
(
deg(uj)− 1

)
= di + dj︸ ︷︷ ︸

≤2dn

−2 < 2dn (4.24)
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Similarly

deg
(
Γij
k (u)

)
+
(
deg(uk)− 1

)
=
(
deg(ui)− 1

)
+
(
deg(uj)− 2

)
Then

deg
(
Γij
k (u)

)
= di + dj︸ ︷︷ ︸

≤2dn

−dk − 2 < 2dn (4.25)

Since dn is the degree of un, both gij(u) and Γij
k (u) depend at most linearly on un,

for any choice of the indexes.

Following Saito [46], we give the following:

Corollary 4.28 The matrix of components

ηij(u) := ∂ng
ij(u) =

∂gij(u)

∂un
(4.26)

has a triangular form, i.e.
ηij(u) = 0 (4.27)

for i+ j < n+ 1. Furthermore, the anti-diagonal entries

ηi,n+1−i(u) = ci (4.28)

are non-zero constants. In particular, (ηij) is a non-degenerate matrix with

c := det(ηij) = (−1)
n(n−1)

2 c1....cn ̸= 0 (4.29)

Proof: Recall that (see (4.24))

deg
(
gij(u)

)
= di + dj − 2

In view of the definition (4.26) one obtains

deg
(
ηij(u)

)
= deg

(
gij(u)

)
− dn = di + dj − dn

:=h

−2 (4.30)

where h is the Coxeter number. Using the duality condition

di + dn+1−i = h+ 2 (4.31)

one gets that
deg
(
ηi,n+1−i

)
= di + dn+1−i︸ ︷︷ ︸

=h+2

−h− 2 = 0

Then the anti-diagonal terms are constants (polynomials of zero degree).
Recall that, for any Coxeter group, we ordered the basic invariants so that di > dj
for i > j. Therefore deg

(
ηij
)
< deg

(
ηik
)

for j < k.
Then, for i+ j < n+ 1 ⇐⇒ j < n+ 1− i, one has

deg
(
ηij
)
< deg

(
ηi,n+1−i

)
= 0
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Hence ηij(u) = 0 for i+ j < n+ 1. The triangularity is proven.
To prove the non-degenerateness of (ηij) we consider, following Saito, the dis-
criminant (4.21) written as a polynomial in un

D(u) = c(un)n + a1(u
n)n−1 + ....+ an−1u

n + an (4.32)

where a1, ...., an are quasi-homogeneous polynomials in (u1, ...., un−1) respectively
of degrees h, ...., nh respectively and the leading coefficient c is defined by (4.29).
Let λ be an eigenvector of any Coxeter transformation with eigenvalue

exp

(
2πi

h

)
= exp

(
2πi(d1 − 1)

h

)
as d1 = 2 for any Coxeter group.
Since by definition, the polynomial basic invariants polynomials are constant on
the orbit defined by the action of W , for any Coxeter transformation C one has

uk(λ) = uk(Cλ) = uk
(
e
2πi
h λ
)
= e

2πidk
h uk(λ)

where in the last equality we have exploited the homogeneity of uk.
Hence uk(λ) = 0 for k = 1, ...., n− 1 (since dn = h).
Evaluating the discriminant in u(λ) one gets

D
(
u(λ)

)
= c(un(λ))n+a1

(
u1(λ), ...., un−1(λ)

)︸ ︷︷ ︸
=0

(
un(λ)

)n−1
+....+an

(
u1(λ), ...., un−1(λ)

)︸ ︷︷ ︸
=0

as a1, ...., an are quasi-homogeneous functions they vanish at the origin. Therefore

D
(
u(λ)

)
= c(un(λ))n

But D
(
u(λ)

)
̸= 0 (see [9]), hence c ̸= 0.

Recall briefly the notion of flat pencil of cometrics presented in the previous sec-
tion. Let’s consider a manifold M supplied with two non-proportional cometrics
g(1) = (gij(1)) and g(2) = (gij(2)). We denote by Γij

k(1) and Γij
k(2) the corresponding con-

travariant Christoffel symbols of the Levi-Civita connection.
Recall that the functions

∆ijk = gis(2)Γ
jk
s(1) − gis(1)Γ

jk
s(2) (4.33)

define a (3, 0) tensor field on the manifold M .
The cometrics (g(1), g(2)) define a linear flat pencil if:

1. The cometric
gij(λ) := gij(1) + λgij(2)

is flat for any λ ∈ R.

2. The contravariant Christoffel symbols of the cometric g(λ) have the form

Γij
k(λ) = Γij

k(1) + λΓij
k(2)
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We give a technical result.

Proposition 4.29 Given a flat pencil (g(1), g(2)) there exists a vector field f = f i∂i such
that tensor (4.33) and the cometric g(1) have the forms

∆ijk = ∇i
(2)∇

j
(2)f

k (4.34)

gij(1) = ∇i
(2)f

j +∇j
(2)f

i + bgij(2) (4.35)

where b is a real constant and ∇i
(2) := gis(2)∇

(2)
s .

The (2, 0) tensor field
∆ij

k := g
(2)
ks ∆

sij = g
(2)
ks ∇

s
(2)∇i

(2)f
j (4.36)

satisfies the identity
∆ij

s ∆
sk
l = ∆ik

s ∆
sj
l (4.37)

Moreover (
gis(1)g

jq
(2) − gis(2)g

jq
(1)

)
∇(2)

s ∇(2)
q fk = 0 (4.38)

Conversely, given a flat cometric g(2) and a solution (fk) of (4.38), the cometrics (g(1), g(2)),
where g(1) is defined by (4.35), form a flat pencil.

Proof: Let (ti) be a flat coordinate system for g(2). Recall that, in these coordi-
nates, g(2) reduces to a constant matrix and the corresponding Christoffel symbols
vanish.
In these coordinate the formula (3.24) holds true:

∆ij
s (t) = Γij

k(1)(t) (4.39)

Recall that, the vanishing of the curvature tensor associated with the cometric
g(λ) = g(1) + λg(2) yield the formulas (see the lemma (3.12))

gsk(1)∆
ij
k = gik(1)∆

sj
k (4.40)

gsk(2)∆
ij
k = gik(2)∆

sj
k (4.41)

∆ij
k ∆

ks
p = ∆ij

k ∆
ks
p (4.42)

∂s∆
jk
l = ∂l∆

jk
s (4.43)

Then (4.37) is proven.
(4.43) implies the existence of a tensor f ij such that

∆ij
k = ∂kf

ij (4.44)

at least locally.
By means of (4.44), the formula (4.43) reads

gis(2)∂sf
jk = gjs(2)∂sf

ik

or equivalently
∂if jk = ∂jf ik
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where ∂j := gjs(2)∂s.
Then there exists a vector of component fk such that

f ik = ∂ifk = gis(2)∂sf
k (4.45)

Then using (4.44) one gets

∆ij
k = ∂kf

ij = ∂k
(
gis(2)∂sf

j
)
= gis(2)∂k∂sf

j (4.46)

In a general coordinate system we have

∆ij
k = gis(2)∇

(2)
k ∇(2)

s f j = ∇(2)
k ∇i

(2)f
j

Contracting by gqk(2) one obtains (4.34). The compatibility condition for the con-
nection ∇(λ) = ∇(1) + λ∇(2) with respect the cometric g(λ) = g(1) + λg(2) reads

∂kg
ij
(λ) = Γij

k(λ) + Γji
k(λ)

which written in the flat coordinates (ti) for ∇(2) reads

∂k(g
ij
(1) + λgij(2)) = Γij

k(1) + Γji
k(1)

Using (4.39) and (4.46) one gets

∂k(g
ij
(1) + λgij(2)) = ∂i∂kf

j + ∂j∂kf
i

Integrating in dtk one has (taking vanishing integration constant)

gij(1) + λgij(2) = ∂if j + ∂jf i

which in a general coordinate system reads

gij(1) + λgij(2) = ∇i
(2)f

j +∇j
(2)f

i

Taking λ = b we obtain (4.35).
Plugging (4.46) in (4.40) one gets

gsk(1)g
iq
(2)∂k∂qf

j = gik(1)g
sq
(2)∂k∂qf

j

which written in a general coordinate system yields (4.38).

The following lemma provides a sufficient condition to have linear flat pencils of
cometrics.

Lemma 4.30 Let g = (gij) be a non-degenerate flat cometric on a manifold and denote by
Γij
k to be the contravariant Christoffel symbols corresponding to Levi-Civita connection

of g. If in some coordinate system (xi) each functions gij(x) and Γij
k (x) depend at most

linearly on xn (for i, j, k = 1, ...., n) then the cometrics

gij(1)(x) = gij(x) (4.47)

gij(2)(x) = ∂ng
ij(x) (4.48)



50

form a flat pencil if (gij(2)) is a non-degenerate matrix.
The corresponding contravariant Christoffel symbols corresponding to the Levi-Civita
connection of the cometrics (gij(1)) and (gij(2)) have the forms

Γij
k(1)(x) = Γij

k (x) (4.49)

Γij
k(2)(x) = ∂nΓ

ij
k (x) (4.50)

Proof: Recall that the functions Γij
k fulfill the following system of equations:{

Γij
k + Γji

k = ∂kg
ij

gisΓjk
s = gjsΓik

s

(4.51)

Furthermore, Γij
k satisfy the equation of vanishing curvature

gis(∂sΓ
jk
l − ∂lΓ

jk
s ) + Γij

s Γ
sk
l − Γik

s Γ
sj
l = 0 (4.52)

One observes that (4.51) and (4.52) form a system of first-order differential equa-
tions with constant coefficients. Hence the transformation (the shift in the last
entry)

gij(x1, ...., xn) 7−→ gij(λ)(x) := gij(x1, ...., xn + λ) (4.53)

Γij
k (x

1, ...., xn) 7−→ Γij
k(λ)(x) := Γij

k (x
1, ...., xn + λ) (4.54)

map solutions to solutions of these equations, for any λ.
Therefore Γij

k(λ)(x
1, ...., xn) are the contravariant Christoffel symbols correspond-

ing to the Levi-Civita connection of the flat metric gij(λ)(x
1, ...., xn).

Using the linearity in xn one has

gij(x1, ...., xn + λ) = gij(x1, ...., xn) + λ∂ng
ij(x1, ...., xn) (4.55)

Γij
k (x

1, ...., xn + λ) = Γij
k (x

1, ...., xn) + λ∂nΓ
ij
k (x

1, ...., xn) (4.56)

We identify gij(1) = gij and gij(2) = ∂ng
ij .

We have to show that Γij
k(1)(x) = Γij

k (x) and Γij
k(2)(x) = ∂1Γ

ij
k (x). The former it’s

true by definition. Previously, we have shown that the function Γij
k(λ) fulfill the

system {
Γij
k(λ) + Γji

k(λ) = ∂kg
ij
(λ)

gis(λ)Γ
jk
s(λ) = gjss(λ)Γ

ik
s(λ)

Substituting (4.55) and (4.56) one has{
Γij
k + Γji

k + λ(∂1Γ
ij
k + ∂1Γ

ji
k ) = ∂kg

ij + λ∂k∂1g
ij

gisΓjk
s + λgis∂1Γ

jk
s + λ∂1g

isΓjk
s + λ2∂1g

is∂1Γ
jk
s = gjsΓik

s + λgjs∂1Γ
ik
s + λ∂1g

jsΓik
s + λ2∂1g

js∂1Γ
ik
s

We compare in each order in λ; taking the linear term in λ of the first equation
and the quadratic term of the second equation we get{

∂1Γ
ij
k + ∂1Γ

ji
k = ∂k(∂1g

ij)

(∂1g
is)(∂1Γ

jk
s ) = (∂1g

js)(∂1Γ
ik
s )
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Therefore ∂1Γ
ij
k are the contravariant Christoffel symbols corresponding to the

Levi-Civita connection of the cometric ∂1g
js.

Remark 4.31 Let e be the constant vector defined by

e =
∂

∂un
(4.57)

Then the matrix (4.26) can be written as

ηij = Leg
ij (4.58)

where (gij) is defined by (4.18).
Hence (ηij) automatically defines a (2, 0) tensor field, by the definition of Lie derivative.
Moreover, the cometric η = (ηij) is well-defined on the quotient space M = (V ⊗C)/W ,
in view of the lemma (4.20). It will be called the Saito metric. Let’s denote by

γij
k (u) := ∂nΓ

ij
k (u)

the contravariant Christoffel symbols associated with the Levi-Civita connection of the
metric (ηij). These are polynomial quasi-homogeneous functions of degrees

deg
(
γij
k (u)

)
= di + dj − dk − h− 2 (4.59)

Corollary 4.32 The cometrics (gij) and (ηij), defined by (4.18) and (4.58), form a flat
pencil of cometrics.

Proof: Since the metric (4.18) and its corresponding contravariant Christoffel
symbols are at most linear in un, in view of the corollary (4.27), one can apply the
lemma (4.30), as the Euclidean metric g is flat, and get a flat pencil.

Remark 4.33
(
(gij), (ηij)

)
is a linear flat pencil. Therefore, in view of the lemma (3.2),

η is flat.

The remarkable result of Saito is to show that among the sets of basic invariants,
there exists a unique distinguished one such that it forms a flat coordinate system
for η. More precisely one has the following:

Corollary 4.34 There exists a set of homogeneous polynomials {t1(p), ...., tn(p)} of de-
grees d1, ...., dn respectively, such that the matrix

ηij = ηij(t) := ∂1⟨dti, dtj⟩∗(g) (4.60)

is constant in each entry. The coordinates (t1, ...., tn), defined on the orbit space M , are
called Saito flat coordinates.

Proof: For details see corollary 2.4 in [18]. Otherwise, the theorem (7.31)
gives an alternative proof of the statement (taking as the Saito metric the Lie
derivative of a non-Euclidean metric).
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Lemma 4.35 Let the coordinate t1 be normalized as in (4.8), then the following identities
hold true:

g1i =
di
h
ti (4.61)

Γ1i
j =

(di − 1)

h
δij (4.62)

where in both formulas there is no summation over repeated indexes.

Proof: Using the Euler’s identity applied to the homogeneous function (ti)
(in view of the previous corollary) one has

g1i(t)
(4.18)
=

∂t1

∂pk
∂ti

∂pk
(4.8)
=

pk

h

∂ti

∂pk
=

di
h
ti

Similarly

Γ1i
j dt

j (4.20)
=

∂t1

∂pa
∂2ti

∂pa∂pb
dpb

(4.8)
=

pa

h
d

(
∂ti

∂pa

)
=

1

h
d

(
pa

∂ti

∂pa︸ ︷︷ ︸
=diti

)
− 1

h

∂ti

∂pa
dpa︸ ︷︷ ︸

=dti

=
(di − 1)

h
dti

then Γ1i
j = (di−1)

h
δij .

Remark 4.36 Applying lemma 2.14, by a linear change of coordinates, η reduces to a
anti-diagonal matrix

ηi+j,n+1 = δi+j,n+1 (4.63)

We present the main result of this section, which defines a structure of Frobenius
manifold on the orbit space of an irreducible Coxeter group.

Proposition 4.37 Let (ti) be Saito flat coordinates on the orbit space M of an irreducible
Coxeter group, with Coxeter number h. Denote by

ηij = ηij(t) := ∂1⟨dti, dtj⟩∗(η) (4.64)

the corresponding components of the Saito metric.
Then there exists a quasi-homogeneous polynomial F (t), of degree 2h+ 2, such that

⟨dti, dtj⟩∗(g) =
di+dj−2

h
ηisηjk∂s∂kF (t) (4.65)

where ∂i = ∂
∂ti

. Furthermore, the function F (t) determines on M a polynomial Frobenius
structure, i.e. a Frobenius algebra on each tangent space, with structure constants

cijk(t) := ηis∂s∂j∂kF (t) (4.66)

with unity

e := ∂n =
∂

∂un
(4.67)

and invariant metric η.
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Proof: Apply the proposition (4.29) taking g(1) = (ηij) and g(2) = (gij).
Thus in flat coordinates (ti) for ∇(2), (4.36) reads

Γij
k (t) = ∆ij

k (t) = ∂k∂
if j(t) = ηis∂k∂sf

j(t) (4.68)

The torsionless condition for the connection ∇(g) written in (ti) reads

gisΓjk
s = gjsΓik

s

Take i = 1
g1sΓjk

s = gisΓ1k
s

Using the identities (4.61) and (4.62) one gets

dst
sΓjk

s = gjs(dk − 1)δks

Using (4.68) one obtains

dst
sηjq∂q∂sf

k = (dk − 1)gjk

or equivalently

ηjq
n∑

s=1

dst
s∂s(∂qf

k) = (dk − 1)gjk

Working in a coordinates system such that (4.63) holds true one has

n∑
s=1

dst
s∂s(∂n+1−jf

k) = (dk − 1)gjk (4.69)

Recall that the flat coordinates (ti) are homogeneous polynomials. Then, in view
of the corollary (4.34), the Christoffel symbols written in the homogeneous coor-
dinates (ti) are quasi-homogeneous polynomials.
Moreover, in view of (4.68) the functions ∂qf

k are also quasi-homogeneous poly-
nomials. Comparing the degrees of both sides of (4.69) one has

deg(∂n+1−jf
k) = deg(gjk)

(4.24)
= dj + dk − 2

Now, using the Euler’s identity to (4.69) one has

(dj + dk − 2)∂n+1−jf
k = (dk − 1)gjk

Therefore applying (4.63) one obtains

(dk + dj − 2)ηjq∂qf
k = (dk − 1)gjk

here there is no summation over j. Then

ηjq∂qf
k

dk − 1
=

gjk

dk + dj − 2
(4.70)
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The latter formula implies the symmetry condition

ηjq∂qf
k

dk − 1
=

ηkq∂qf
j

dj − 1
(4.71)

then it’s natural to define the functions F i by the formula

F i

h
:=

f i

di − 1
(4.72)

So (4.71) reads
ηjq∂qF

k = ηkq∂qF
j

or equivalently
∂jF k = ∂kF j

Hence there exists a function F such that

F i = ∂iF = ηis∂sF

which, substituted in (4.72), yields

ηis∂sF

h
=

f i

di − 1
(4.73)

Differentiating with respect tq one has

di−1
h

ηis∂s∂qF = ∂qf
i (4.74)

which, substituted in (4.70), yields

dk+dj−2

h
ηksηjq∂s∂qF (t) = gjk(t) (4.75)

which coincides with (4.65). Furthermore, since f i are quasi-homogeneous poly-
nomials and in view of (4.73), one has that F is a quasi-homogeneous polynomial.
By direct computation we have deg(F ) = 2h+ 2.
By substituting (4.74) in (4.68) one has

Γij
k = ηis∂s∂kf

j =
dj−1

h
ηisηja∂s∂a∂kF

Raising one index of (4.66) one obtains

cijk = ηisηja∂s∂a∂kF

Then comparing the last two formulas one has

Γij
k =

dj − 1

h
cijk (4.76)

Hence, in Saito coordinates, one gets

∆ij
k = Γij

k =
dj − 1

h
cijk (4.77)
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The latter formula plugged in (4.37), i.e.

∆ij
s ∆

sk
l = ∆ik

s ∆
sj
l

implies the associativity of the product defined by the structure constants (4.66),
indeed

�
��dj−1

h �
��dk−1
h

cijs c
sk
l =

�
��dk−1
h �

��dj−1

h
ciks c

sj
l

Recall (4.62):

Γ1i
j =

(di − 1)

h
δij

Comparing with (4.76) one obtains

c1ij = δij

Recall that
ηij = δi+j,1+n

then
c1ij = η1scisj = cinj

so
cinj = δij

which implies that the vector field e = ∂n = ∂
∂tn

is the unity field of the Frobenius
structure. In view of the formula (4.77), (4.41) reads as

ηskcijk = ηikcsjk

which yields the invariance of the metric η with respect the product ◦.

Theorem 4.38 Let W be an irreducible Coxeter group. The following data:

• The Saito invariant cometric η = (ηij) defined by

η = Leg (4.78)

where g is the W -invariant cometric (4.18) induced by the Euclidean metric on the
vector space V .

• The unity field

e := ∂n =
∂

∂un
(4.79)

• The Euler vector field

E :=
1

h

(
diu

i ∂

∂ui

)
(4.80)

• The product on the tangent bundle ◦ defined by the structure constants (4.66)
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define a unique polynomial Frobenius structure on the orbit space M := (V ⊗C)/W , up
to a rescaling of the Saito flat coordinates, of charge

d = 1− 2

h
(4.81)

The cometric g coincides with the intersection form of the Frobenius manifold, defined by

⟨u, v⟩∗ := iE(u ◦̃ v) (4.82)

for any u and v differential 1-form on M . Where ◦̃ is the product on the cotangent bundle
T ∗M induced by ◦.

Proof: The existence of such a structure follows from the previous lemma.
We have to prove the uniqueness.
Let’s consider a polynomial Frobenius manifold with invariant metric (4.64), in-
tersection form (4.82), unity field (4.67) and structure constants

cijk (t) = ηisηjq∂s∂q∂kF (t)

where F (t) quasi-homogeneous polynomial of degree 2h+ 2.
In Saito coordinates, the right-hand side of (4.82), taking u = dti and v = dtj ,
reads

iE(dt
i ◦̃ dtj) =

ds
h
tscijs (t) =

ds
h
tsηikηjq∂k∂q∂sF (t) =

1

h
ηikηjqdst

s∂s
(
∂k∂qF (t)

)
Observe that ∂k∂qF is a quasi-homogeneous polynomial of degree 2h+2−dk−dq,
then applying the Euler’s identity one obtains

iE(dt
i ◦̃ dtj) = 2h+2−dk−dq

h
ηikηjq∂k∂qF (t)

Working in coordinates such that (4.63) holds true one has

iE(dt
i ◦̃ dtj) = 2h+2−dn+1−i−dn+1−j

h
ηikηjq∂k∂qF (t)

Using the duality condition (4.31) one gets

iE(dt
i ◦̃ dtj) = ��2h+�2+di−�h−�2+dj−�h−2

h
ηikηjq∂k∂qF (t)

Taking u = dti and v = dtj , (4.82) reads

⟨dti, dtj⟩∗ = iE(dt
i ◦̃ dtj) =

di+dj−2

h
ηikηjq∂k∂qF (t)

(4.65)
= ⟨dti, dtj⟩∗(g)

Then the cometric defined by the formula (4.65) coincides with the intersection
form associated with the considered Frobenius manifold structure. The unique-
ness is proven.

Remark 4.39 The Frobenius manifold structure defined by Theorem 4.38 is semisimple.
For details see [18].
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Consider some examples of polynomial Frobenius manifolds.

Example 4.40 It’s worth mentioning the Frobenius potential associated with some rank
three Coxeter groups.

FA3 =
1
2
(t1)2t3 + 1

2
t1(t2)2 + 1

4
(t2)2(t3)2 + 1

60
(t3)5

FB3 =
1
2
(t1)2t3 + 1

2
t1(t2)2 + 1

6
(t2)3t3 + 1

6
(t2)2(t3)3 + 1

210
(t3)7

FH3 =
1
2
(t1)2t3 + 1

2
t1(t2)2 + 1

6
(t2)3(t3)2 + 1

20
(t2)2(t3)5 + 1

3960
(t3)11

Example 4.41 Let W = I2(k), here k > 2, be the dihedral group of order 2k. The action
of W on the complex z-plane is generated by the transformations

z 7→ e
2πi
k z

z 7→ z̄

i.e. the anticlockwise rotation of 2π
k

radiant and the reflection with respect the Re(z)-axis,
respectively. The I2(k)-invariant metric (·, ·) on C is given by the line element

ds2 = 4dzdz̄

A basis of homogeneous polynomial invariants is given by

u1 = 1
2k
zz̄

u2 = zk + z̄k

One has deg(u1) = 2 and deg(u2) = k. One obtains

g11(u) = (du1, du1)∗ = 4
∂u1

∂z

∂u1

∂z̄
= 2u1

g12(u) = (du1, du2)∗ = 2

(
∂u1

∂z

∂u2

∂z̄
+

∂u2

∂z

∂u1

∂z̄

)
= u2

g22(u) = (du2, du2)∗ = 4
∂u2

∂z

∂u2

∂z̄
= (2k)k+1(u1)k−1

Where (·, ·)∗ is the metric induced on the cotangent space by ds2.
Hence the Saito metric

(
∂gij

∂u2

)
is constant in (u1, u2). Thus (u1, u2) are Saito flat coordi-

nates for I2(k). Now, using the formula (4.65) one obtains the Frobenius potential

FI2(k) =
1
2
(u2)2u1 + (2k)k+1

2(k2−1)
(u1)k+1

In particular

• for k = 3, F gives the polynomial Frobenius structure on C2/A2

• for k = 4, F gives the polynomial Frobenius structure on C2/B2

• for k = 6, F gives the polynomial Frobenius structure on C2/G2
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Example 4.42 Following [17], we mention a remarkable example of Frobenius structure.
Moreover, this structure coincides with the polynomials Frobenius structure associated
with An. Let M be the space of all polynomials of the form

M = {λ(p) = pn+1 + anp
n−1 + ....+ a2p+ a1| a1, ...., an ∈ C} (4.83)

with a nonstandard affine structure.
We identify the tangent plane to M the space of all polynomials of degree less than n.
Moreover, the Frobenius algebra Aλ on TλM coincides with the algebra of truncated poly-
nomials

Aλ = C[p]/
(
λ′(p)

)
(4.84)

The invariant metric is given by the following formula:

⟨f, g⟩λ = res
p=∞

f(p)g(p)

λ′(p)
(4.85)

Furthermore, the unity and the Euler vector field are defined by

e =
∂

∂a1
(4.86)

E =
n∑

i=1

(n− i+ 1)ai
∂

∂ai
(4.87)

Let’s consider the Frobenius manifold structure defined on the orbit space of the
Coxeter group An (defined by theorem 4.38).
Recall that An acts on Rn+1 = {ξ0, ...., ξn} by permutations (restricting on the
hyperplane ξ0 + ....+ ξn = 0).
The elementary invariant polynomial can be taken as a homogeneous basis. Thus,
by taking as {a1, ...., an} the elementary symmetric polynomials, the complexified
orbit space C/An can be identified with the space of polynomials (4.83) of an
auxiliary variable p. Moreover, the polynomial Frobenius structure associated
with An coincides with the structure exposed in Example 4.42.
The formula for the metric (4.85) may be written in a peculiar way. In particular,
the following statement holds true:

Lemma 4.43 1. The metric (4.85) and the 3-rank tensor c(∂, ∂′, ∂′′) := ⟨∂ ◦λ ∂′, ∂′′⟩λ
(where ◦λ is the product corresponding to Aλ) have the form

⟨X, Y ⟩λ = −
∑

res
dλ=0

X
(
λ(p)dp

)
Y
(
λ(p)dp

)
dλ(p)

(4.88)

c(X, Y, Z) = −
∑

res
dλ=0

X
(
λ(p)dp

)
Y
(
λ(p)dp

)
Z
(
λ(p)dp

)
dλ(p)

(4.89)

here X, Y and Z are arbitrary vector fields.
2. Let q1, ...., qn be the critical points of λ(p), i.e. λ′(qi) = 0 for i = 1, ...., n. Let
ui = λ(qi) be the corresponding critical values. Hence the variables (u1, ...., un) are local
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coordinates near the point λ, where the polynomial λ(p) has no multiple roots. These
are canonical coordinates for the multiplication ◦λ. In these coordinates the metric (4.85)
reduces to the diagonal form

⟨·, ·⟩λ =
n∑

i=1

ηii(u)(du
i)2

where ηii(u) = 1
λ′′(qi)

.

We expose the notion of Hurwitz-Frobenius manifold (see [17] and [41] for addi-
tional details).

4.4 Landau-Ginzburg superpotentials

First, recall the notion of Hurwitz space.

Definition 4.44 A Hurwitz space Mg;n1,....,nm is a moduli space (C, λ), where C is a
genus g Riemann surface with m distinct ordered marked point ∞1, ....,∞m and λ is a
meromorphic function on C with poles at ∞i of order ni + 1.

Motivated by lemma 4.43, we will introduce a class of semisimple Frobenius man-
ifold structures defined on a Hurwitz space Mg;n1,....,nm .
We will construct a family of functions λ(z;u), where u = (u1, ...., un), of the
complex variable z defined in a domain D of a Riemann surface R realized as
a branched covering of the complex plane with a finite number of sheets. The
Riemann surface may depend on u. We fix the projection of the domain D on the
complex plane.
The functions λ(z;u) depend on complex pairwise distinct parameters u1, ...., un

belonging to a sufficiently small domain Ω ⊂ Cn. We require λ(z;u), as a function
of z, to fulfills the following properties:

1. λ(z;u) has critical values u1, ...., un, moreover, the corresponding critical
points must be non-degenerate.

2. For any two points z(1,2)i ∈ D with the same critical value, we require that

λ
′′
(z

(1)
i ;u) = λ

′′
(z

(2)
i ;u)

Definition 4.45 The function λ(z;u) on D×Ω satisfies the properties 1. and 2. is called
LG (Landau-Ginzburg) superpotential of some domain MΩ of the Frobenius manifold
structure (M, η,∇, ◦, e, E), with intersection form g, if for any critical points z1, ...., zn ∈
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D of λ(z;u), with critical values u1, ...., un, the following expression hold true:

η(X, Y ) = −
∑

res
dλ=0

X
(
λ(z)dz

)
Y
(
λ(z)dz

)
dλ(z)

(4.90)

g(X, Y ) = −
∑

res
dλ=0

X
(
logλ(z)dz

)
Y
(
logλ(z)dz

)
d logλ(z)

(4.91)

c(X, Y, Z) = −
∑

res
dλ=0

X
(
λ(z)dz

)
Y
(
λ(z)dz

)
Z
(
λ(z)dz

)
dλ(z)

(4.92)

c∗(X, Y, Z) = −
∑

res
dλ=0

X
(
logλ(z)dz

)
Y
(
logλ(z)dz

)
Z
(
logλ(z)dz

)
d logλ(z)

(4.93)

for X, Y, Z arbitrary vector fields. Here c(X, Y, Z) := η(X ◦ Y, Z) and c∗(X, Y, Z) :=
g(X ∗ Y, Z), where X ∗ Y = E−1 ◦X ◦ Y is the dual product of ◦.
Moreover, X

(
λ(z)dz

)
, Y
(
λ(z)dz

)
,.... are calculated keeping z constant. We omit u in

the argument of λ.
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5 Bi-flat F-manifolds and complex reflection groups

The main references of this section are [1], [3], [4], and [52].
Following [3] and [4] we will see that the orbit space of certain complex reflection
groups may be endowed with a structure of bi-flat F-manifold. In some cases this
structure appears in family depending on parameters; in [3] it has been proposed
a conjecture relating the number of the orbits corresponding to the action of the
group on the collection of reflecting hyperplanes.
First of all, we recall some definitions and facts concerning the theory of complex
reflection groups. In particular, we will consider groups acting on a complex n-
dimensional vector space V via their matrix representation.

5.1 Complex reflection groups

Definition 5.1 A pseudo-reflection is a unitary transformation on V that leaves invari-
ant a (hyper-)plane.

Remark 5.2 A pseudo-reflection is characterized by the property that all the eigenvalues
of the corresponding matrix representation are equal to 1, except for one that coincides
with the k-root of the unity, where k is the order (or period) of the transformation.

Definition 5.3 A finite complex reflection group is a finite subgroup of unitary trans-
formation generated by pseudo-reflections.

Remark 5.4 Irreducible and finite complex reflection groups were classified by Shephard
and Todd in [48]. The classification consists of an infinite family G(n, p,m) parameter-
ized by 3 positive integers and 34 exceptional cases.

Shephard and Todd proved a Chavalley-type theorem for complex reflection groups.
Let (p1, ...., pn) be a system of coordinates for V .

Proposition 5.5 Let G be a complex reflection group, then the subring of invariant poly-
nomials C[V ]G is generated by n algebraically independent polynomials {u1, ...., un} of
degrees d1, ...., dn respectively. They are called basic invariants. Moreover, the choice of
the basic invariants is in general not unique, while the corresponding degrees are positive
integers uniquely defined by the group.

Remark 5.6 Similarly to the case of Coxeter groups, (u1, ...., un) may be used as local
coordinates of the orbit space M := V/G.
Although (p1, ...., pn) and (u1, ...., un) are coordinates of different spaces, since the quo-
tient map π : V → V/G is a local diffeomorphism, we will treat (pi) and (ui) as different
local coordinate systems.

Definition 5.7 Well-generated irreducible complex reflection groups are irreducible com-
plex reflection groups, whose minimal set of generators consists of n pseudo-reflections.

Remark 5.8 Recall that any Coxeter group is generated by n reflections corresponding
to simple roots. Then any finite group generated by (real) reflection, i.e. a Coxeter group,
is automatically well-generated.
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5.2 Frobenius manifolds and Shephard groups

Now, we review the Dubrovin’s construction (see [16]) which equips the orbit
space for the action of a Shephard group with a Frobenius manifold structure.

Definition 5.9 A Shephard group is a well-generated complex reflection group which
consists in the symmetry transformations of a regular complex polytopes. In particular, a
Shephard group includes the symmetry group of a regular real polyhedra.

Remark 5.10 Any Shephard group admits a Coxeter-like representation. Let G be a
Shephard group, then there exists two sets positive integers p1, ...., pn and q1, ...., qn−1

such that the generating system {s1, ...., sn} of G satisfy the following condition:

• spii = id
for i = 1, ...., n

• sisj = sjsi
for |i− j| > 2

• sisi+1si....︸ ︷︷ ︸
qi terms

= si+1sisi+1....︸ ︷︷ ︸
qi terms

In particular, si are pseudo-reflections of order pi.

Definition 5.11 The Coxeter group obtained taking pi = 2 ,for any i, in the above rep-
resentation, is called the Coxeter group associated with G (or underlying G).

Remark 5.12 Among the families of complex reflection groups G(m, p, n), the family
G(m, 1, n) is constituted by Shephard groups. Moreover, there are also 18 exceptional
Shephard group, whose 2 are real.

Remark 5.13 Given any Shephard group, being a complex reflection group, there exists
a set of polynomial basic invariants {u1, ...., un} (due to proposition 5.5).

The crucial point is the following:

Proposition 5.14 Let (u1, ...., un) be a set of basic invariant of degrees d1, ...., dn respec-
tively ordered so that u1 is the lowest degree polynomial and un is highest degree poly-
nomial. The inverse (hij) of the Hessian matrix (hij) = Hess(u1) defines a flat metric
which depends linearly on un.

Proof: The proof is a consequence of the results of Orlik and Solomon (see
[43] for details).

Remark 5.15 Using this proposition and applying the Dubrovin’s argument for the case
of Coxeter group, exposed in the previous section, the flat pencil (g, η) defined by

gij := hij (5.1)

ηij := ∂nh
ij = ∂

∂unh
ij (5.2)
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one obtains a Frobenius manifold structure on the orbit space of any irreducible Shephard
group. Exploiting the well-known formula

(di + dj − 2)ηilηjm∂l∂mF = gij (5.3)

where ∂i =
∂
∂ti

, (ti) is a flat coordinate system for η, gij = gij(t) and ηij = ηij(t), one
reconstructs the Frobenius potential F .

Remark 5.16 Since the Frobenius manifold structure on the orbit space of a Shephard
group is a polynomial Frobenius manifold with strictly positive invariant degree, it must
be isomorphic to a polynomial Frobenius manifold structure associated with a Coxeter
group (in view of Hertling’s theorem (see [31])).
In particular, for any Shephard G, this Coxeter group is exactly the Coxeter group as-
sociated to G. Then the potential defined by (5.3) coincides, up to a rescaling of the flat
coordinates (ti), with the potential corresponding to the underlying Coxeter group. For
instance, the prepotential for the Shephard group G(m, 1, 2) and G(m, 1, 3) don’t depend
on m and coincides with the prepotential for the associated Coxeter group B2 and B3,
respectively.

5.3 ∨-systems

∨−system were introduced by Veselov in [52] to construct solutions of WDVV as-
sociativity equation given a set of covectors. In particular, the conditions defining
a ∨-system guarantees that a function, constructed using a special set of covec-
tors, satisfies the WDVV associativity equation.
Let V be a finite-dimensional real vector space (the construction can be general-
ized to the complex case), with linear coordinates (p1, ...., pn), and denote by V a fi-
nite set of non-collinear covectors {α} defined by the linear functionals α(·) ∈ V ∗.
Let

g :=
∑
α∈V

α⊗ α (5.4)

be a non-degenerate metric tensor on V .
We denote by α̌ the vector uniquely defined by

⟨α̌, ·⟩ = α(·) (5.5)

where ⟨·, ·⟩ is the bilinear form defined by g.

Remark 5.17 Let α = αie
i be a linear functional on V , where {ej} is a dual basis

corresponding to {ej}, i.e. es(ek) = δsk. Then

⟨α̌, ei⟩ = α(ei)

reads as
gjiα̌

j = αi

or equivalently
α̌j = gjiαi (5.6)
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Recall the definition of ∨-system. Let’s consider the following function on V :

FV(p) =
1

2

∑
α∈V

α2(p) log(α(p)) (5.7)

here α(p) := αip
i. Imposing that (5.7) is a solution of the WDVV associativity

equation one gets some prescriptions on the collection of covectors V :

Definition 5.18 We say that V is a ∨-system if for any two-dimensional plane Π ⊂ V ∗

we have ∑
β∈Π∩V

β(α̌)β̌ = µα̌ (5.8)

for any α ∈ Π ∩ V , where µ is a real constant which depends on Π and α.

Remark 5.19 Observe that the condition (5.8) is independent by the normalization of
the covectors α ∈ V . Then the collection Ṽ = {σαα}, where σα ∈ R for any α, also
defines a ∨-system.

Given a set V we construct a collection of (hyper-)planes H associated to the cov-
ectors contained in V .

Definition 5.20 By definition, a (hyper-)planes H belongs to H if and only if Ker(α) =
H for some covectors α ∈ V . Furthermore, we denote by αH the covectors corresponding
to H and by

πH : V → H⊥ (5.9)

the linear application having kernel H and image H⊥.

In view of the above definition, the linear map πH can be written as

πH = α̌H ⊗ αH

or in component
(πH)

i
j = gis(αH)s(αH)j (5.10)

Proposition 5.21 The definition of ∨-system is equivalent to the requirement that the
one-parameter family of connections

∇0 − λ
∑
H∈H

dαH

αH(p)
⊗ πH (5.11)

is flat for any real λ. Here ∇0 is the trivial flat linear connection with flat coordinates
(p1, ...., pn).

Proof: See [2] and [29] for details.



65

Remark 5.22 Given a set of covectors V defines a ∨-system with H it corresponding
collections of reflecting (hyper-)planes, the corresponding solution of the WDVV associa-
tivity equation is given by the formula

FV(p) =
1

2

∑
H∈H

α2
H(p) log(αH(p)) (5.12)

here αH(p) := (αH)ip
i.

One remarkable example of ∨−system is given by a Coxeter system of (hyper-)planes (see
[52]). Furthermore, in [16] it was proven that the Veselov’s solution (5.12) of WDVV
associativity equation, constructed from any Coxeter group, coincides with the Frobenius
potential associated with the almost-dual structure of the Frobenius manifold defined by
the theorem (4.38). In this case, the dual product has the form

∗ =
∑
H∈H

dαH

αH(p)
⊗ πH (5.13)

Remark 5.23 Let’s consider the following deformation of the function (5.12):

F̃V(p) =
1

2

∑
H∈H

σH(αH(p))
2 log(αH(p))

here σH ∈ R. One observes that

F̃V(p) =
1

2

∑
H∈H

(
√
σHαH(p))

2 log

(√
σH√
σH

αH(p)

)
=

1

2

∑
H∈H

(α̃H(p))
2 log(α̃H)︸ ︷︷ ︸

:=FṼ (p)

− 1

2
log(

√
σH)

∑
H∈H

(α̃H(p))
2

︸ ︷︷ ︸
:=G(p)

where Ṽ = {
√
σHαH} is a rescaled set of covectors and G(p) is a homogeneous poly-

nomial of degree 2. Recall that (in view of the remark (5.19)) the collection Ṽ is also a
∨-system, then FṼ(p) is a solution of the WDV V associativity equation. Moreover, since
the solutions of the WDVV associativity equation are defined up to a quadratic polyno-
mial, F̃V(p) is also a solution of WDVV associativity equation.

5.4 Flat and bi-flat F-manifolds

F -manifold with a compatible flat structure, or briefly flat F -manifold, have been
introduced by Manin as a generalization of the notion of Frobenius manifold.
Such structures are a particular example of a more general class of structure, in-
troduced by Hertling and Manin, called F -manifold.
Following [42], we recall the general definition.

Definition 5.24 A flat F -manifold (M, ◦,∇, e) is a complex manifold M equipped with
the following data:
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I. A commutative and associative product ◦ on the sheaf of holomorphic vector fields
of M

◦ : χM × χM → χM (5.14)

with unity flat vector field e, i.e.
∇e = 0 (5.15)

II. A flat and torsionless linear connection compatible with the product ◦, i.e.

∇ic
k
js = ∇jc

k
is (5.16)

where ckij are the structure constants corresponding to the product ◦.

Remark 5.25 The notion of flat F -manifold makes sense in the smooth category as well.
In this case, M is a smooth manifold, TM its tangent bundle, and χM the sheaf of smooth
vector fields on M .

The definition of flat F -manifold can be rephrased in a more compact manner.

Definition 5.26 A flat F -manifold (M, ◦,∇, e), where M is a complex manifold, ◦ :
χM ×χM → χM is a product on the sheaf of holomorphic vector bundle χM , ∇ is a linear
connection on the holomorphic tangent bundle TM , and e is a holomorphic vector field,
satisfying the following axioms:

1. For any λ ∈ C, ∇(λ) := ∇+ λ◦ is a flat and torsionless connection.

2. e is the unity of the product.

3. e is a flat vector field.

A manifold equipped with a product ◦, a connection ∇, and a vector field e satisfying 1.
and 2. are called an almost-flat F -manifold.

Let (u1, ...., un) be a coordinate system for M . Denote by ckij the structure constants
of the product ◦. Denote by Γk

ij and R = (Rs
ijk) the Christoffel symbols and the

Riemann tensor, respectively, of the connection ∇. Then the condition of vanish-
ing torsion for the connection ∇(λ) reads (let Γk(λ)

ij = Γk
ij + λckij be the Christoffel

symbols of the connection ∇(λ))

T
k(λ)
ij = Γ

k(λ)
ij − Γ

k(λ)
ji = Γk

ij − Γk
ji + λ(ckij − ckji) = 0

Since the latter formula holds true for any λ, one gets the following conditions:

• The connection ∇ is torsionless.

• The product ◦ is commutative.

Analogously, the zero-curvature condition reads

R
s(λ)
ijk = ∂jΓ

s(λ)
ik − ∂kΓ

s(λ)
ij + Γ

q(λ)
ik Γ

s(λ)
qj − Γ

q(λ)
ij Γ

s(λ)
qk

= ∂jΓ
s
ik − ∂kΓ

s
ij + Γq

ikΓ
s
qj − Γq

ijΓ
s
qk︸ ︷︷ ︸

=Rs
ijk

+λ(∇jc
s
ik −∇kc

s
ij) + λ2(cqikc

s
qj − cqijc

s
qk)

which yields the following conditions:
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• The connection ∇ is flat.

• ∇ is compatible with ◦.

• The product ◦ is associative.

Remark 5.27 By definition, it turns out that any flat F -manifold defines a one-parameter
family of flat and torsionless connections.

Remark 5.28 In analogy with the case of Frobenius manifold, in flat coordinated (ti)
for ∇, as a consequence of the axioms of flat F−manifold, one has that the structure
constants can be expressed in terms of the second derivatives of a vector potential, i.e.

ckij = ∂i∂jA
k (5.17)

where ∂i = ∂
∂ti

. Furthermore, taking the unity field e = ∂1, (Ai) satisfies the following
equations:

∂j∂lA
i∂k∂mA

l = ∂k∂lA
i∂j∂mA

l (5.18)

∂1∂iA
j = δji (5.19)

(5.18) and (5.19) are called oriented associativity equations.

The notion of flat F -manifold shares several properties with the notion of Frobe-
nius manifold. For instance, Dubrovin’s duality and Dubrovin’s principal hierar-
chy are well-defined for flat F -manifold.
By comparing it with the definition of Frobenius manifold, the missing data are
the invariant metric and the Euler field.
Replacing the flat matric η, in the definition of Frobenius manifold, with a flat
connection ∇ one obtains the following:

Definition 5.29 A Frobenius manifold without a metric (M,∇, ◦, e, E) is a smooth (or
complex) manifold equipped with the following data:

I. A flat and torsionless linear connection ∇ compatible with the product ◦.

II. A commutative and associative product ◦ on the tangent bundle of M

III. A flat unity vector field e.

IV. A linear Euler field E, i.e.

∇∇E = 0 (5.20)
[e, E] = e (5.21)

LEc
k
ij = ckij (5.22)

Frobenius manifolds without a metric are also called Saito structures.

Adding a suitable (pseudo-)Riemannian metric we can reconstruct the definition
of Frobenius manifold.
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Definition 5.30 A (flat) metric η is invariant for a Frobenius manifold (M, ◦,∇, e, E)
if the following conditions are fulfilled:

∇η = 0 (5.23)
η(X ◦ Y, Z) = η(X, Y ◦ Z) (5.24)

for any vector field X, Y, Z.

Definition 5.31 A Frobenius manifold (M, η,∇, ◦, e, E) is a Frobenius manifold with-
out a metric endowed with an invariant metric η, where the linear Euler field acts as a
conformal Killing vector field for η, i.e.

LEηij = (2− d)ηij (5.25)

here d is the charge of the Frobenius manifold.

5.5 Frobenius manifolds and almost-duality

Recall the notion of almost-duality, introduced by Dubrovin in [16].
Consider a Frobenius manifold structure on M . It turns out that M may be
equipped with an almost-dual Frobenius manifold structure, since the unity field
isn’t flat in general. In particular, the following theorem holds true:

Theorem 5.32 Given a Frobenius manifold (M, η,∇, ◦, e, E), let U be an open subset
of M such that the linear operator on the tangent bundle E◦ is invertible. Then the
following data:

• the intersection form g = (gij) defined by

gij := Esciskη
kj

where (ηij) are the components of the inverse matrix of η,

• the Levi-Civita connection ∇̃ corresponding to g,

• a dual product ∗ defined by

X ∗ Y := E−1 ◦X ◦ Y = (E◦)−1X ◦ Y

for any vector field X and Y , and

• the vector field E

define an almost-dual Frobenius manifold structure on M , with invariant metric g−1, flat
connection ∇̃, product ∗ and unity field E.

Remark 5.33 The structure defined above is called almost-dual since ∇̃E ̸= 0 in gen-
eral (since for a Frobenius manifold we require the unity to be covariantly constant with
respect to the flat connection).
However, replacing ∇̃ with ∇∗ := ∇̃ + λ̄∗, for a suitable λ̄ ∈ R, one obtains a flat
connection such that ∇∗E = 0. Moreover, by definition of flat F -manifold, gauging the
connection ∇̃ by a multiple of ∗ one gets a flat and torsionless connection.



69

Lemma 5.34 ∇∗E = 0, where ∇∗ is the gauged connection ∇∗ = ∇̃+ d−1
2
∗.

Proof: Recall that the contravariant Christoffel symbols corresponding to
Levi-Civita connection of the intersection form, written in a flat coordinate system
(ti) for η, are given by the formula (3.14), i.e.

Γ̃ij
k = cisk R

j
s = ηiqcsqkR

j
s

where Ri
j =

d−1
2
δij + ∂jE

i. Therefore

∇̃iE
j = ∂iE

j − giqΓ̃
qj
s E

s = ∂iE
j − giqη

qbclbsR
j
lE

s

In view of the formulas (2.61) and (2.62) one observes that

giqη
qbclbsE

s = giqη
qbglsηsb = δli

Hence
∇̃iE

j = ∂iE
j − δliR

j
l

=Rj
i

=���∂iE
j − d−1

2
δji −���∂iE

j = 1−d
2
δji

Taking λ̄ = d−1
2

, being E the unity of ∗, one has

∇∗
iE

j =
(
(∇̃+ λ̄∗)E

)j
i
= ∇̃iE

j

=
1−d
2

δji

+d−1
2

cj∗isE
s

=δji

= 0

Remark 5.35 In view of the previous lemma, one has that for any Frobenius manifold
(M, η,∇, ◦, e, E), the open set U where the linear operator is invertible is equipped with
two flat F -manifold:

1. the flat structure (∇, ◦, e),

2. the flat structure (∇∗, ∗, E).

The two structures are intertwined in a special way.
For an arbitrary vector field X , it turns out that

(d∇ − d∇∗)(X◦) = 0 (5.26)

where d∇ : Ωk(M,TM) → Ωk+1(M,TM) (here Ωk(M,TM) denotes the O(M)-module
of TM -valued differential k-forms) is the exterior covariant derivative. In this case, ∇
and ∇∗ are called almost hydrodynamically equivalent (see [6]).



70

5.6 Bi-flat F -manifolds

In order to generalize Dubrovin’s duality for Frobenius manifold without a met-
ric and motivated by the theory of integrable system of hydrodynamic type (not
Hamiltonian and bi-Hamiltonian necessarily), Arsie and Lorenzoni proposed the
notion of bi-flat F -manifold (see [1] and [3]).
In the semisimple case, Dubrovin’s almost duality can be extended to the Frobe-
nius manifold without a metric prescribing the following data:

• A dual product ∗ defined by

X ∗ Y := E−1 ◦X ◦ Y (5.27)

for any vector field X and Y .

• A dual connection ∇∗ satisfying the following properties:

1. ∇∗E = 0

2. ∇∗ is compatible with ∗
3. ∇ and ∇∗ are almost hydrodynamically equivalent, i.e. the following

formulas hold true:

(d∇ − d∇∗)(X◦) = 0 (5.28)
(d∇ − d∇∗)(X∗) = 0 (5.29)

for any vector field X , here d∇ and d∇∗ denotes the exterior covariant
derivative corresponding to the connection ∇ and ∇∗ respectively.

Remark 5.36 In the case of Frobenius manifold, the dual connection, in general, doesn’t
coincide with the Levi-Civita connection of the intersection form. In view of the remark
5.33, the difference between these two connections is proportional to the dual product, i.e.

∇∗ − ∇̃ = ν∗ (5.30)

where ν is a real number and ∇̃ is the Levi-Civita connection of the intersection form.

Definition 5.37 From here on, ∇ and ∇∗ will be called natural connection and dual
connection respectively.

In the semisimple case, the natural and the dual connection are related in the
following way:

Theorem 5.38 In the semisimple case, the dual connection defined above is uniquely de-
fined in terms of the natural connection. Furthermore, the flatness of the dual connection
is equivalent to the linearity of the Euler field.

Proof: See [1] for details.
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Lemma 5.39 The formulas (5.29) and (5.28) in components read

Γk
lj(X∗)li − Γk

li(X∗)lj = Γk∗
lj (X∗)li − Γk∗

li (X∗)lj (5.31)

Γk
lj(X◦)li − Γk

li(X◦)lj = Γk∗
lj (X◦)li − Γk∗

li (X◦)lj (5.32)

respectively, where Γk
ij and Γk∗

ij are the Christoffel symbols corresponding to the connec-
tion ∇ and ∇∗ respectively.

Proof: Recall that, the exterior derivative of a (1, p) tensor field coincides
with its covariant derivative antisymmetrized with respect the lower indexes,
explicitly

(d∇T )
j
i1,....,ip+1

= ∇[i1T
j
i2,....,ip+1]

Then (d∇ − d∇∗)(X∗) explicitly reads

A
(
�����∂i(X∗)sj + Γs

ik(X∗)kj − Γk
ij(X∗)sk

)
= A

(
�����∂i(X∗)sj + Γs∗

ik(X∗)kj − Γk∗
ij (X∗)sk

)
where A denotes the operator of antisymmetrization with respect the lower in-
dexes. Then one has

Γs
ik(X∗)kj−Γs

jk(X∗)ki−Γk
ij(X∗)sk+Γk

ji(X∗)sk = Γs∗
ik(X∗)kj−Γs∗

jk(X∗)ki−Γk∗
ij (X∗)sk+Γk∗

ji (X∗)sk

being ∇ and ∇∗ torsionless, i.e. Γk
ij = Γk

ji and Γk∗
ij = Γk∗

ji , one obtains

Γs
ik(X∗)kj − Γs

jk(X∗)ki = Γs∗
ik(X∗)li − Γs∗

jk(X∗)ki

which coincides with (5.31). Similarly, one can prove (5.32).

Following [3], we give the definition of bi-flat F -manifold.

Definition 5.40 A bi-flat F−manifold is a Frobenius manifold without a metric equipped
with an almost-dual structure defined as above.

More explicitly one has

Definition 5.41 A bi-flat F−manifold (M,∇,∇∗, ◦, ∗, e, E) is a smooth (or complex)
manifold equipped with a pair of flat connection ∇ and ∇∗, a pair of product ◦ and ∗ on
the holomorphic tangent bundle of M and a pair of vector field e and E satisfying the
following axioms:

• E behaves like a Euler field, i.e.

[e, E] = e (5.33)

LEc
k
ij = ckij (5.34)

• The product ◦ is commutative, associative and with unity e. Moreover

∇e = 0 (5.35)

• The product ∗ is commutative, associative and with unity e. Moreover

∇∗E = 0 (5.36)



72

• ∇ and ∇∗ are compatible with ◦ and ∗ in the following sense:

∇(l)
X ◦(l) (Y, Z) = ∇(l)

Y ◦(l) (X,Z) (5.37)

for any vector field X, Y, Z. Where ∇(l) = ∇, ∇(2) = ∇∗, ◦(l) = ◦, ◦(2) = ∗.

Remark 5.42 Frobenius manifolds equipped with an almost-dual structure, such that
the dual connection is gauged so that ∇∗E = 0 , are bi-flat F -manifold equipped with an
invariant metric and such that the Euler field acts as a conformal Killing vector field for
the metric.

Lemma 5.43 Given a bi-flat F-manifold (M,∇,∇∗, ◦, ∗, e, E), the Christoffel symbols
corresponding to the dual connection ∇∗ can be written uniquely in terms of the Christof-
fel symbols corresponding to the natural connection ∇, the structure constants of the dual
product ∗ and the Euler field E, i.e.

Γk∗
ij = Γk

ij − cs∗ij∇sE
k (5.38)

Furthermore, a ”dual” formula for the Christoffel symbols corresponding to the natural
connection holds true, i.e.

Γk
ij = Γk∗

ij − csij∇∗
se

k (5.39)

Proof: Recall the formula (5.31)

Γk
lj (X∗)li︸ ︷︷ ︸

=cl∗siX
s

−Γk
li (X∗)lj︸ ︷︷ ︸

=cl∗jsX
s

= Γk∗
lj (X∗)li︸ ︷︷ ︸

=cl∗isX
s

−Γk∗
li (X∗)lj︸ ︷︷ ︸

=cl∗jsX
s

Being X an arbitrary vector field one has

Γk
ljc

l∗
si − Γk

lic
l∗
js = Γk∗

lj c
l∗
is − Γk∗

li c
l∗
js (5.40)

Recall that E is the unity of the product ∗, i.e. Y ∗ E = Y for any vector field Y ,
or equivalently ci∗jkE

k = δij . Contracting (5.40) by Ei one gets

Γk
lj c

l∗
siE

i︸ ︷︷ ︸
=δls

−Γk
lic

l∗
jsE

i = Γk∗
lj cl∗isE

i︸ ︷︷ ︸
=δls

−Γk∗
li c

l∗
jsE

i

then
Γk
sj − Γk

lic
l∗
jsE

i = Γk∗
sj − Γk∗

li c
l∗
jsE

i (5.41)

Recall that E is covariantly constant with respect ∇∗, i.e. ∇∗E = 0, or equivalently

∂lE
k + Γk∗

li E
i = 0

Then substituting the above formula in (5.41) one has

Γk
sj − Γk

lic
l∗
jsE

i = Γk∗
sj + cl∗js∂lE

k

Γk
sj = Γk∗

sj + cl∗js(∂lE
k + Γk

liE
i︸ ︷︷ ︸

=∇lEk

)

which coincides with (5.38). Similarly, one can prove (5.39), using that the field e
is flat and is the unity of the product ◦.
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5.7 Bi-flat F-manifold and principal hierarchies

In this subsection, we will show how to construct commuting PDEs of hydrody-
namic type starting from a bi-flat F -manifold structure (see [37] for details).

5.7.1 The principal hierarchy

Let’s consider a flat F -manifold structure (∇, e, ◦) on a manifold M . Let (v1, ...., vn)
be a system of local coordinates for M .
Given such a structure, we associate with it a collection of systems of quasi-linear
evolutionary PDEs (or briefly hydrodynamic system) given by

vit(p,l+1)
= cijkX

j
(p,l)v

k
x (5.42)

where p = 1, ...., n and l = −1, 0, 1, ....., cijk = cijk(v) are the structure constants of
the product ◦ and Xj

(p,l) = Xj
(p,l)(v) are the components of the vector fields X(p,l).

For each value of l, which defines the level of the hierarchy, there are n systems
of quasi-linear evolutionary PDEs.

Definition 5.44 The flows given by (5.42) define the so-called principal hierarchy associ-
ated with the flat F -manifold (M,∇, ◦, e), where the vector fields X(p,l) are the coefficients
of the formal expansion in λ of the (flat) section with respect the deformed flat connection
∇(λ) := ∇− λ◦.

The minus sign is due to avoid minus in the recurrence relation.

Remark 5.45 Explicitly, X(p,l) are defined by the formal expansion

(∇− λ◦)
(
X(p,−1) + λX(p,0) + λ2X(p,1) + ....

)
= 0 (5.43)

Comparing each term containing equal power in λ one obtains the following conditions:

• The vector fields X(p,−1), defining the primary flows, are covariantly constant with
respect ∇, i.e.

∇X(p,−1) = 0 (5.44)

for any p = 1, ...., n.

• The remaining vector fields are obtained by the recurrence relation

∇X(p,l+1) = X(p,l)◦ (5.45)

for l = −1, 0, 1, ....

The integrable hierarchy (5.42) is a generalization of Dubrovin’s principal hierar-
chy associated with a Frobenius manifold, introduced in [17].

Remark 5.46 The consistency of the recurrence relation (5.45), and the proof of commu-
tativity of the flows defined by (5.42) are given in [38].

We have obtained
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• n primary flows, corresponding to t(p,0), defined by

vit(p,0) = cijkX
j
(p,−1)v

k
x (5.46)

• infinitely commutating flows, corresponding to t(p,l) with l > 0, defined by

vit(p,l) = cijkX
j
(p,l−1)v

k
x (5.47)

where p = 1, ...., n, l = 1, 2, .... and Xj
(p,l) are the components of a collection

of a vector defined by the recursion formula

∇jX
i
(p,l+1) = cijkX

k
(p,l) (5.48)

where l = −1, 0, 1, ....

Remark 5.47 Let (u1, ...., un) be a flat coordinate system for the connection ∇, then one
has ∇iX(p,l) = ∂iX(p,l) for any p and l. Then the primary fields has constant components,
i.e. ∂iX

j
(p,−1) = 0, while the recursion relation reduces to ∂jX

i
t(p,l+1)

= cijkX
k
(p,l).

Moreover, in flat coordinates (ui), the flows (5.42) turn out to be systems of conservation
laws, indeed

ui
t(p,l)

= cijkX
j
(p,l−1)︸ ︷︷ ︸

=∂kX
i
(p,l)

uk
x = ∂xX

i
(p,l) (5.49)

where in the last equality we have exploited the chain rule.

Remark 5.48 Assuming the product ◦ semisimple, there exists a distinguished coordi-
nate system (r1, ...., rn) such that the structure constants reduces to c̃kij = δki δ

k
j . Further-

more, in canonical coordinates (ri) the flows (5.42) read

rit(p,l) = c̃ijkX̃
j
(p,l−1)r

k
x = δijδ

i
kX̃

j
(p,l−1)r

k
x = X̃ i

(p,l−1)r
i
x (5.50)

which implies that the canonical coordinates (ri) are Riemann invariant for the conser-
vation law (5.49), with generalized velocities X̃ i

(p,l−1).

Remark 5.49 In the case of flat F -manifold with invariant metric η, the principal hi-
erarchy becomes Hamiltonian with respect to the Poisson bracket of hydrodynamic type
corresponding to the cometric η−1 (for details see [7]).
Furthermore, in the case of the Frobenius manifold, the principal hierarchy becomes bi-
Hamiltonian, where the further Poisson bracket of hydrodynamic is given by the intersec-
tion form.

5.8 Bi-flat F -manifold and complex reflection groups

We will see how the orbit space with respect to the action of an irreducible well-
generated complex reflection group may be endowed with a structure of bi-flat
F -manifold. In some cases, such a structure appears in family, as we will see in a
simple example.
First, we recall some results concerning flat structure associated with Coxeter
group, exposed previously.



75

5.8.1 Flat structures associated with Coxeter group

Recall the Dubrovin’s result.

Theorem 5.50 The orbit space of an irreducible Coxeter group is endowed with a Frobe-
nius manifold structure (η,∇, ◦, e, E) where

• the flat coordinates (u1, ...., un) for the metric η, called Saito flat coordinates, are a
unique set of basic invariants of the the group

• in Saito flat coordinates we have

e =
∂

∂un

E =
1

h

(
di

∂

∂un

)
where di are the degrees of the invariant polynomials with

2 = d1 < d2 ≤ d3..... ≤ dn−1 < dn = h

where h is the Coxeter number.

Dubrovin’s construction relies on the existence of flat pencil of cometric. One is
the Euclidean metric and one is the Saito metric.
The orbit space of these groups can be equipped with another structure, con-
structed by means of a collection of reflecting (hyper-)planes. In [16] Dubrovin
highlighted that the Frobenius potential corresponding to the almost-dual struc-
ture of a polynomial Frobenius structure, associated with any Coxeter group,
turns out to be an expression in terms of reflecting (hyper-)planes (associated
with the group). These solutions of the WDVV equation have already been dis-
covered by Veselov in [52]. We have the following:

Theorem 5.51 Let G be an irreducible Coxeter group acting on an Euclidean space Rn

with Euclidean coordinates (p1, ...., pn). Let g be the Euclidean metric and ∇̃ the corre-
sponding Levi-Civita connection. Then the following data:

• ∇̃

• ∗ :=
∑

H∈H
dαH

αH(p)
⊗ σHαH

• E := pi ∂
∂pi

where

• H is a collection of reflecting (hyper-)planes

• αH is a covector defining a reflecting (hyper-)plane

• πH is the orthogonal projection onto the orthogonal complement of H
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• the collection of weights {σH}H∈H are G-invariant (i.e σH = σH′ iff H and H ′

belong to the same orbit with respect to the action of G on the collection of reflecting
(hyper-)plane) and satisfy the normalization condition∑

H∈H

σHπH = idRn

define an almost-flat (i.e. ∇̃E ̸= 0 in general) Frobenius structure with invariant metric
g.

Proof: This is an equivalent reformulation of a result of Veselov (see [52]
and [53]). The equivalence between the flatness condition and the definition of
∨-system is discussed in [2] and [29].

5.8.2 Flat structures associated with complex reflection groups

Similarly to the case of Coxeter group, it’s possible to define two flat structures
on the orbit space of some classes of finite complex reflection groups.
The first structure generalizes the Dubrovin-Saito construction relying on Coxeter
groups to irreducible well-generated finite complex reflection groups. The sec-
ond one is defined by a Dunkle-Kohno-type connection associated with a com-
plex reflection group, which can be thought of as a generalization of Veselov’s
∨-system. In general, the two F -manifold flat structures don’t admit invariant
metrics, therefore they don’t come from a Frobenius and its almost-dual struc-
ture.
Following the work of Sato, Kato, and Sekiguci [32], we get the first flat structure.

Theorem 5.52 The orbit space of an irreducible well-generated finite complex reflection
group is equipped with a flat F -structure (∇, ◦, e) with linear Euler vector field E, de-
fined by the following prescriptions:

• The flat coordinates (u1, ...., un) for ∇, called generalized Saito flat coordinates are
a distinguished set of basic invariants of the group.

• In Saito flat coordinates we have

e =
∂

∂un
(5.51)

E =
1

dn

(
di

∂

∂ui

)
(5.52)

where di are the degrees of the polynomial invariants.

The second flat structure (more precisely a family of flat structures), is given by
the following (we refer to see [4]):
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Theorem 5.53 Let (p1, ...., pn) be a system of standard coordinates for Cn and let G be
an irreducible well-generated finite complex reflection group. Then the following data:

∇∗ := ∇0 −
∑
H∈H

dαH

αH(p)
⊗ τHαH (5.53)

∗ :=
∑
H∈H

dαH

αH(p)
⊗ σHαH (5.54)

E := pi
∂

∂pi
(5.55)

where

• H is a collection of reflecting (hyper-)planes

• αH is a covector defining a reflecting (hyper-)plane

• πH is the unitary projection onto the unitary complement of H

• the collections of weights {τH}H∈H and {σH}H∈H are G-invariant and satisfy the
normalization conditions ∑

H∈H

τHπh = idCn (5.56)∑
H∈H

σHπh = idCn (5.57)

• ∇0 is the trivial flat connection on Cn, with flat coordinates (p1, ...., pn)

define a flat F -structure on the orbit space with respect to the action of G on Cn.

Proof: First, we prove the connection ∇0 + λ∗ is flat and torsionless for any
λ. Using the definitions (5.53) and (5.54) one has

∇∗ + λ∗ = ∇∗ −
∑
H∈H

dαH

αH(p)
⊗ (τH − λσH︸ ︷︷ ︸

:=ωH

)αH

Observe that the collection {ωH}H∈H is also G-invariant. Then, applying Looi-
jenga’s result of [36], one gets the flatness of ∇0 + λ∗. The zero torsion condition
is obvious. Moreover

∇∗E
(5.55)
= ∇0E −

∑
H∈H

dαH(E)

αH(p)
τHαH

(5.55)
= idCn −

∑
H∈H

τHαH
(5.56)
= 0

Similarly, one proves that ∗E = idCn (i.e. E is the unity of ∗).

Remark 5.54 Recall that any Coxeter group is automatically well-generated. Therefore
the orbit space of any Coxeter group can be equipped with two flat structures defined by
the theorems (5.52) and (5.53).



78

We have seen that the orbit space of any well-generated complex reflection group
can be endowed with structures:

1. The first structure generalizes the notion of Saito coordinates without the
necessity of a metric

2. The second structure generalizes the notion of ∨-system

One question arises naturally: it’s possible to define a bi-flat F -manifold struc-
ture on the orbit space of a well-generated complex reflection group having the
natural structure of the form given by theorem (5.52) and dual structure of the
form given by theorem (5.53). If this question has an affirmative answer:

• Which choices of weights are allowed?

• What is the relation (if exists) between the flat structure and Dubrovin’s
polynomial structure given by proposition (4.37)?

Remark 5.55 Let G be Weyl group of rank 2, 3 and 4, or the dihedral group I2(m), or
any of the exceptional well-generated complex reflection groups of rank 2 and 3, or any of
the group G(m, 1, 2) and G(m, 1, 3), then the corresponding orbit spaces admit a bi-flat
F -structure. In all these cases the number of parameters appearing coincides with the
number of orbits for the action of the group on the collection of reflecting (hyper-)planes
minus one. For details see [3].
For a well-generated complex reflection group, the number of orbits is 1 or 2 (this integer
is related to the length of the roots corresponding to the reflection group). Moreover, in
all these cases the weights {σH} coincide, up to a multiplicative constant, to the order of
the (pseudo-)reflection corresponding to the (hyper-)planes H .
In particular, if σH = τH for any H , the flat structure coincides with Dubrovin’s struc-
ture defined by proposition (4.37) associated with the considered Coxeter group.
It’s worth highlighting that, even in the Coxeter case, the corresponding bi-flat F -structure
might be not uniquely defined. In order to elucidate such a theory, in the next section we
will study the bi-flat F -structures on the orbit space of B2.
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6 Flat structures on B2

Recall that B2 is the symmetry group of the square, in particular, B2
∼= D4 (where

Dn denotes the dihedral group of order 2n).
Moreover, since B2 is a Coxeter group, it’s automatically well-generated. There-
fore we can equip the orbit space of B2, following [3], with a bi-flat F -structure,
where the two underlying flat structures are given by the theorem (5.52) and
(5.53). Let (p1, p2) be a system of Euclidean coordinates of R2. Recall that the
general basic invariants for B2 (up to rescaling factors) are

u1 = (p1)2 + (p2)2

u2 = (p1)2(p2)2 + c
(
(p1)2 + (p2)2

)2
where c is a real constant.
First, applying Dubrovin-Saito’s procedure we reconstruct the unique polyno-
mial Frobenius manifold structure on the orbit space of B2. The contravariant
Euclidean metric, written in (u1, u2), reads

gij(u) =

(
4u1 (8c+ 1)(u1)2 + 8u2

(8c+ 1)(u1)2 + 8u2 (32c2+8c+1)
2

(u1)3 + (64c+8)
2

u1u2

)
where gij(u) =

∑2
s,q=1

∂ui

∂pq
∂uj

∂ps
gij(p).

The unity field has the form e = ∂
∂u2 .

We define the Saito flat coordinates (t1, t2) as the basic invariants such that Saito
cometric

ηij = Leg
ij =

∂gij

∂u2

reduces to a constant non-degenerate matrix. Thus we have

ηij(u) =

(
0 8

8 (64c+8)
2

u1

)
Hence (u1, u2) are the Saito flat basic invariants (t1, t2) for c = −1

8
.

We reconstruct the Frobenius potential by the equation system

di+dj−2

h
ηisηjk∂s∂kF (t) = gij(t) (6.1)

for i, j = 1, 2, where d1 = 2, d2 = 4 and ∂i =
∂
∂ti

.
(6.1) reads explicitly (

32∂2∂2F 64∂1∂2F
64∂1∂2F 96∂1∂1F

)
=

(
4t1 4t2

4t2 (t1)3

4

)
Thus by integrating one gets

F (t) = 1
7680

(t1)5 + 1
16
t1(t2)2 (6.2)

By rescaling t1 7→ 1
8
t1, F takes the form

F (t) = 64
15
(t1)5 + 1

2
t1(t2)2 (6.3)
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6.1 Bi-flat F−structures on B2

6.1.1 The dual product ∗

Let’s consider the dual product

∗ =
∑
H∈H

dαH

αH(p)
⊗ σHπH (6.4)

where

• αH(p) are the following linear forms:
α1(p) = p1

α2(p) = p2

α3(p) = p1 − p2

α4(p) = p1 + p2

• H = {H1, H2, H3, H4} is the collection of reflecting lines, with Hi := Ker(αi)

• π is the orthogonal projection obtained via the Euclidean cometric gij = δij ,
with components

(πH)
i
j = gis

(αH)s
||αH ||

(αH)j
||αH ||

=
(αH)i(αH)j
||αH ||2

• {σ1, σ2, σ3, σ4} is a collection of B2-invariant weights such that∑
H∈H

σHπH = idR2

then

σ1 = σ2 =
x

x+ y

σ3 = σ4 =
y

x+ y

indeed∑
H∈H

σHπH =
x

x+ y
(α̌H1 ⊗ αH1 + α̌H2 ⊗ αH2)︸ ︷︷ ︸

idR2

+
y

x+ y
(α̌H3 ⊗ αH3 + α̌H4 ⊗ αH4)︸ ︷︷ ︸

idR2

= idR2

Thus the structure constants associated with the product (6.4) reads

ci∗jk(p) =
∑

H=1,2,3,4

σH(αH)i(αH)j(αH)k
αH(p)||αH ||2
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In particular, one has the rational functions of (p1, p2)

c1∗11(p) =
(x+ y)(p1)2 − x(p2)2

(x+ y)p1
(
(p1)2 − (p2)2

)
c1∗12(p) = c1∗21(p) = c2∗11(p) =

−yp2

(x+ y)
(
(p1)2 − (p2)2

)
c1∗22(p) = c2∗21(p) = c2∗12(p) =

−yp1

(x+ y)
(
(p1)2 − (p2)2

)
c2∗22(p) =

x(p1)2 − (x+ y)(p2)2

(x+ y)p2
(
(p1)2 − (p2)2

)
6.1.2 The natural connection ∇

Let (u1, u2), defined by

u1 = (p1)2 + (p2)2

u2 = (p1)2(p2)2 + c
(
(p1)2 + (p2)2

)2
where c is a real constant, be a set of general basic invariants for B2. In particular,
d1 = deg(u1) = 2 and d2 = deg(u2) = 4.
We assume (u1, u2) to be a system of flat coordinates for ∇ (i.e (u1, u2) are gener-
alized Saito flat coordinates).
Using formula (1.16), i.e.

Γk
ij(p) =

∂pk

∂us

∂2us

∂pi∂pj
(6.5)

one obtains the following rational functions of (p1, p2) for the Christoffel symbols
corresponding to the connection ∇:

Γ1
11 =

(−4c+ 1)(p1)2 − (p2)2

(p1)3 − p1(p2)2

Γ1
12 = Γ1

21 = − (4c+ 2)p1

(p1)2 − (p2)2

Γ2
11 =

4c(p1)2

p2(p1)2 − (p2)3

Γ2
12 = Γ2

21 =
(4c+ 2)p1

(p1)2 − (p2)2

Γ1
22 =

(4c− 1)(p2)2 + (p1)2

p2(p1)2 − (p2)3

Γ2
22 =

(4c− 1)(p2)2 − (p1)2

(p1)2p2 − (p2)3

6.1.3 The unity field

We define the unity vector field

e =
∂

∂u2
(6.6)
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6.1.4 The Euler field

We define the Euler vector field

E = p1
∂

∂p1
+ p2

∂

∂p2
= d1u

1 ∂

∂u1
+ d2u

2 ∂

∂u2
(6.7)

E is normalized so that (5.21) reads

[e, E] = d2e

6.1.5 The natural product ◦

The natural product ◦ is given, in terms of the dual product ∗, by

X ◦ Y = (e∗)−1X ∗ Y

for any vector field X and Y , where (e∗)−1 denotes the inverse of the linear endo-
morphism e∗.
Denote M := (e∗)−1. Hence the structure constants of ∗ are given by the formula

cijk = M i
sc

s∗
jk

for i, j, k = 1, 2. We want explicit expressions for cijk in terms of (p1, p2), thus we
have to write the vector e in the same coordinates.
By applying the vector transformation rule one has

e =
∂

∂u2
=

∂p1

∂u2

∂

∂p1
+

∂p2

∂u2

∂

∂p2

Then e in the coordinate system (p1, p2) has components

e(p) =

(
∂p1

∂u2

∂p2

∂u2

)
= 1

4

 1

p1
(
(p1)2−(p2)2

)
− 1

p2
(
(p1)2−(p2)2

)


We obtain the rational functions of (p1, p2)

c111 =
4p1
(
x(p1)2 − x(p2)2 − y(p2)2

)
x+ y

c112 = c121 = c211 = −4yp2(p1)2

x+ y

c212 = c221 = c122 = −yp1(p2)2

x+ y

c222 = −
4p2
(
x(p1)2 − x(p2)2 − y(p2)2

)
x+ y
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6.1.6 The compatibility condition and the constraint on the weights

Recall that the compatibility condition between ∇ and ◦ is given by

∇ic
s
jk = ∇jc

s
ik

for i, j, k, s = 1, 2. In particular, ∇1c
1
21 = ∇2c

1
11 and ∇1c

2
21 = ∇2c

1
11 read

4p1p2(x− y)

x+ y
= 0

4(p1)2(x− y)

x+ y
= 0

which are true if and only if x = y and for any real c.
Hence one has σ1 = σ2 = σ3 = σ4 =

1
2
.

6.1.7 The dual connection ∇∗

Recall that the Christoffel symbols corresponding to the dual connection ∇∗ are
given by the formula

Γk∗
ij = Γk

ij − cs∗ij∇sE
k

for i, j, k = 1, 2. Then we have the rational functions of (p1, p2)

Γ1∗
11 =

(4c+ 1)(p2)2 − (p1)2

(p1)3 − p1(p2)2

Γ1∗
12 = Γ1∗

21 = Γ2∗
11 = − 4cp2

(p1)2 − (p2)2

Γ1∗
22 = Γ2∗

12 = Γ2∗
21 =

4cp1

(p1)2 − (p2)2

Γ2∗
22 =

−(4c+ 1)(p1)2 + (p2)2

(p1)2p2 − (p2)3

One observes that ∇∗ can be written in terms of a Dunkle-Kohno connection

∇̃ := ∇0 −
∑
H∈H

dαH

αH(p)
⊗ τHπH

with suitable weights {τH}. Let Γ̃k
ij be the Christoffel symbols associated with ∇̃.

It turns out that

Γ̃1
11 =

(2τ1 + τ3 + τ4)(p
1)2 + (τ3 − τ4)p

1 − 2τ1(p
2)2

2((p1)3 − p1(p2)2)

Γ̃1
12 = Γ̃1

21 = Γ̃2
11 =

(−τ3 + τ4)p
1 − (τ3 + τ4)p

2

2((p1)2 − (p2)2)

Γ̃1
22 = Γ̃2

12 = Γ̃2
21 =

(τ3 + τ4)p
1 + (τ3 − τ4)p

2

2((p1)2 − (p2)2)

Γ̃2
22 =

(−2τ2 − τ3 − τ4)(p
2)2 − (τ3 − τ4)p

2 + 2τ2(p
1)2

2((p1)2p2 − (p2)3)
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Then
∇∗ = ∇0 −

∑
H∈H

dαH

αH(p)
⊗ τHπH

for τ1 = τ2 = −4c− 1 and τ3 = τ4 = 4c.
In particular, for c = −1

8
one observes that Γk∗

ij = −ck∗ij , i.e. ∇∗ = ∇0 − ∗.

Remark 6.1 The collection of weights {σ1, σ2, σ3, σ4} is B2-invariant. This fact ensures
the flatness of the connection ∇∗ (see [36]).

6.1.8 The vector potential A

It turns out that the above data define a bi-flat F -manifold structure (∇,∇∗, ◦, ∗, e, E)
on the orbit space C2/B2, for any choice of the parameter c.
Recall that the structure constants corresponding to the natural product ◦, written
in generalized coordinates (u1, u2), define the vector potential AB2 = AB2(u) (up
to a polynomial of degree one) by the formula

c̃kij(u) = ∂i∂jA
k
B2

for i, j, k = 1, 2 and where ∂i =
∂

∂ui .
Using the transformation law of a (1, 2) tensor field

c̃kij(u) =
∂uk

∂ps
∂pr

∂ui

∂pq

∂uj
csrq(p)

one gets

c̃111 = −(4c+ 1
2
)u1

c̃112 = c̃121 = c̃222 = 1

c̃212 = c̃221 = c̃122 = 0

c̃211 = −c(4c+ 1)(u1)2

Therefore we get the equation system for A1
B2

∂1∂1A
1 = −1

2
(8c+ 1)u1

∂1∂2A
1 = 1

∂2∂2A
1 = 0

By integrating one obtains

A1
B2
(u) = − 1

12
(8c+ 1)(u1)3 + u1u2 (6.8)

Similarly for A1
B2

we have the system
∂1∂1A

2 = −c(4c+ 1)(u1)2

∂1∂2A
2 = 0

∂2∂2A
2 = 0

Therefore one has

A2
B2
(u) = − 1

12
c(4c+ 1)(u1)4 +

1

2
(u2)2 (6.9)
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Remark 6.2 Summarizing, we got a bi-flat F -structure, assuming e = ∂
∂u2 , for any

value of c, for a unique choice of {σ1, σ2, σ3, σ4} (which coincide, up to a multiplicative
constant, to the order of the reflection) and for certain values of {τ1, τ2, τ3, τ4} (which
depend only on c). Then we have a family of bi-flat F -structures parameterized by a
single real parameter. Furthermore, the number of parameters coincides with the number
of orbits for the action of B2 on the collection of reflecting (hyper-)planes minus one.

One question arises naturally: does this bi-flat F -manfiold admit a Frobenius
structure with its dual structure gauged so that ∇∗E = 0?
It’s natural to guess that if such a structure exists it coincides with the polynomial
Frobenius manifold on the orbit space of B2 with prepotential (6.2).
Recall that (see propositions (5.30) and (5.31)), in order to obtain a Frobenius
structure, one has to check if there exists a flat metric η invariant with respect
to the product ◦, compatible with the connection ∇ and such that the Euler field
acts a conformal Killing vector field for η.
The flatness of η implies that, in generalized Saito flat coordinates, it reduces to a
constant matrix

η =

(
η11 η12
η21 η22

)
The compatibility condition between η and ◦

ηisc
s
jk = ηjsc

s
ik

(where i, j, k = 1, 2) written in (u1, u2), yields the equation system for the compo-
nents of η and the constant c{

η11 = −4u1
(
η22(c

2 + c
4
)u1 + η21(c+

1
8
)
)

η12 = η21

which has solutions 
η11 = η22 = 0

η12 = η21

c = −1
8

In general, the invariant metric η is defined up to rescaling. Rescale η so that

η =

(
0 8
8 0

)
Moreover, 1

d2
E acts on η as a conformal Killing vector field, indeed

LEηij = Es ∂sηij
=0

+ ∂iE
s

=
di
d2

δsi

ηsj + ∂jE
s

=
dj
d2

δsi

ηis =
(di+dj)

d2
ηij = 8

(
0 (d1+d2)

d2
(d1+d2)

d2
0

)

= (d1+d2)
d2

ηij = (2− d)ηij
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where d = 1
2
. Hence the existence of the metric η endows the orbit space of

B2 with a Frobenius manifold structure of charge d = 1
2
. The corresponding

Frobenius potential is defined by

ηisA
s
B2

= ∂iFB2

for i = 1, 2, where ∂i =
∂

∂ui . Then we have the system{
∂2FB2 =

1
8
u1u2

∂1FB2 =
1

1536
(u1)4 + 1

16
(u2)2

By integrating one obtains the polynomial prepotenital

FB2(u) =
1

7680
(u1)5 + 1

16
u1(u2)2

The existence of a unique structure of polynomial Frobenius manifolds of charge
d = 1

2
on the orbit space for B2 is also guaranteed by the Theorem (4.38).

Remark 6.3 Observe that this prepotential coincides with (6.2), which was obtained by
applying the Dubrovin-Saito procedure. Furthermore, for c = −1

8
the generalized Saito

flat coordinates coincide with the standard Saito flat coordinates.

6.2 A modified construction for B2

In view of the definition of flat F -manifold, the components of the unity vector
field, written in flat coordinates, are constants.
Following Dubrovin-Saito and Kato-Mano-Sekiguchi constructions, in the previ-
ous example for the orbit space of B2, we assumed that the flat coordinates are
polynomial basic invariants for B2 and that the unity field has the form

e =
∂

∂u2
(6.10)

where u2 is the basic invariant of the highest degree. The last assumption is natu-
ral since the vector field e is not affected by any change in the choice of the basic
invariants and for homogeneity reasons.
Now, following [8], we will study the bi-flat F -structures on B2, defined as previ-
ously, by removing this hypothesis (6.10) on e.
The compatibility condition between ◦ and ∇

∇ic
s
jk = ∇jc

s
ik

for i, j, k, s = 1, 2, is fulfilled by the following set of solutions:

1. y = x, e1 = 0

2. c = 0, x = 0, e2 = 0

3. c = −1
4
, y = 0, e2 = 0
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Solution 1. corresponds to the one-parameter family of bi-flat F -manifold struc-
tures with vector potential of components (6.8) and (6.9).
Following the same steps outlined before, solutions 2. and 3. lead to the following
Frobenius potentials

F±(u) =
1
2
(u1)2u2 ± 1

2
(u2)2

(
log(u2)− 3

2

)
(6.11)

respectively, where the unity field has been normalized so that

e =
∂

∂u1
(6.12)

and the invariant metric has been rescaled so that

η =

(
0 1
1 0

)
(6.13)

Observe that these prepotentials are related to focusing/defocusing NLS equa-
tion

iqt + qxx + 2λ|q|2q = 0

where λ = ±1, respectively, as follows.
Recall that the evolution equations

ui
tl+1

= ci±jkX
j
(l)u

k
x

where l = −1, 0, 1, ...., define two chains of commutating flows, where

ci±jk = ηis∂s∂i∂jF±

denote the structure constants corresponding to the Frobenius manifolds related
to the prepotentials F± respectively.
Recall that (6.11) is a tensorial expression, thus it holds true in the Saito flat co-
ordinates (u1, u2) corresponding to the Frobenius manifolds associated with F±.
We take as the primary field X(−1) =

∂
∂u1 . Then the primary flow (l = −1)

ui
t0
= ci±jk X

j
(−1)

=δj1

uk
x = ci±1ku

k
x = ci±11u

1
x + ci±12u

2
x

reads (
u1
t0

u2
t0

)
=

c1±11
=1

u1
x + c1±12

=0

u2
x

c2±11
=0

u1
x + c2±12

=1

u2
x

 =

(
u1
x

u2
x

)

i.e. the wave equation ui
t0

= ui
x (for i = 1, 2). Observe that the primary flows

don’t depend on the choice of the prepotential F+ or F−.
Recall that the components Xj

(p), of the higher vector field, are given by the recur-
rence relation

∂jX
i
(p) = ci±jkX

k
(p−1)
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for i = 1, 2, which for p = 0 reduces to

∂jX
i
(0) = ci±j1

since Xj
(−1) = δj1.

Then X1
(0) and X2

(0) are obtained by solving the system
∂1X

1
(0) = 1

∂2X
1
(0) = 0

∂1X
2
(0) = 0

∂2X
2
(0) = 1

It turns out that X1
(0) = u1 and X2

(0) = u2.
Let’s consider the flow corresponding to t1

ui
t1
= ci±jkX

j
(0)u

k
x

which explicitly reads
u1
t1
= c1±jk X

j
(0)u

k
x = c1±11

=1

X1
(0)

=u1

u1
x + c1±21

=0

X2
(0)u

1
x + c1±12

=0

X1
(0)u

2
x + c1±22

=± 1
u2

X2
(0)

=u2

u2
x

u2
t1
= c2±jk X

j
(0)u

k
x = c2±11

=0

X1
(0)u

1
x + c2±21

=1

X2
(0)

=u2

u1
x + c2±12

=1

X1
(0)

=u1

u2
x + c2±22

=0

X2
(0)u

2
x

then {
u1
t1
= u1u1

x ± u2
x

u2
t1
= u2u1

x + u1u2
x = (u1u2)x

(6.14)

This system coincides with the dispersionless limit of the evolutionary PDEs as-
sociated with the defocusing/focusing NLS equation respectively. Indeed the
focusing/defocusing rescaled NLS equation (with ∂

∂t
7→ ϵ ∂

∂t
and ∂

∂x
7→ ϵ ∂

∂x
)

iϵqt +
1
2
ϵ2qxx ± λ|q|2q = 0

can be reduced by the substitution{
w = |q|2

v = ϵ
2i

(
qx
q
− q̄x

q̄

)
to the equation system{

wt = (wv)x

vt = vvx ∓ wx +
ϵ2

4

(
uxx

u
− 1

2
u2
x

u2

)
x

which in the dispersionless limit ϵ → 0, and with the identifications w = −u2 and
v = u1, coincides with the system (6.14).
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6.3 The case of B3 and B4

We want to study the bi-flat F -structures, following the scheme exposed before,
for the group Bn, with n > 2.
The computation turns out to be very cumbersome and it seems hopeless to carry
out all the steps without some additional assumption.
Motivated by the solutions 2. and 3. of the compatibility condition (6.10) it’s
natural to study bi-flat F -structures associated with two prescriptions of weights
{σH}H∈H as follows.
Recall that the number of orbits for the action of Bn on the collection of reflecting
(hyper-)planes coincides with 2 for any n.
Let (pi) be an Euclidean coordinate system for Rn.
Let I be the orbit containing the (hyper-)planes {pj = 0}, where j = 1, ...., n.
Let II be the orbit containing the remaining (hyper-)planes, i.e. {ps − pr = 0} and
{ps + pr = 0} , where s, r = 1, ...., n with r ̸= r.
So we consider the following choice of weights:

• σH = 0 if H is one of the (hyper-)planes belonging to the orbit I, otherwise
σH = 1.

• σH = 0 if H is one of the (hyper-)planes belonging to the orbit II, otherwise
σH = 1.

It turns out that the first choice of weights leads to a Frobenius manifold structure
for n = 3, 4. Moreover, the corresponding prepotentials have the form

FB3(u) =
1
6
(u2)3 + u1u2u3 + 1

12
(u1)3u3 − 3

2
(u3)2 + (u3)2log(u3)

FB4 =
1

108
(u1)4u4 + 1

6
(u1)2u2u4 − 1

72
(u2)4 + u1u3u4 + 1

2
(u2)2u4 + 1

2
u2(u3)2 − 9

4
(u4)2 + 3

2
(u4)2log(u4)

While the second choice does not produce any bi-flat structure, since the compat-
ibility condition between ∇ and ◦ isn’t fulfilled.

Remark 6.4 The above solutions of WDVV can be obtained also from solutions of WDDV
equations associated with extended affine Weyl groups of type An by a Legendre trans-
formation. For instance, the details of the Legendre transformation between FB2 and the
prepotential associated with A

(1)
1 can be found in [44] while for details of the Legendre

transformation between FB3 and the prepotential associated with A
(1)
2 we refer to [17]

and [51].

In order to prove the existence of a Frobenius manifold structure on the orbit
space of Bn for any n > 0, we will use a different strategy. The key observation
is that in all the above examples (n = 2, 3, 4) the intersection form has always the
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same form, i.e.

gB2 =

(
0 1

p1p2
1

p1p2
0

)

gB3 =

 0 1
p1p2

1
p1p3

1
p1p2

0 1
p2p3

1
p1p3

1
p2p3

0



gB4 =


0 1

p2p1
1

p1p3
1

p1p4
1

p1p2
0 1

p2p3
1

p2p4
1

p1p3
1

p2p3
0 1

p3p4
1

p1p4
1

p2p4
1

p3p4
0


Then it’s natural to consider the intersection form g = (gij) defined by

gij :=
1− δij

pipj

Starting from g we will prove the existence of a flat pencil of cometrics and the
existence of Frobenius manifold structure on the orbit space of Bn, for any n > 0.
The proof relies on a suitable generalization of Dubrovin-Saito’s construction. In
particular, the proof of the existence of the Saito metric follows the scheme of
[46], proposed by Saito-Yano-Sekiguchi, while the reconstruction of the Frobe-
nius manifold structure requires overcoming some additional technical difficul-
ties with respect to the standard procedure exposed in [15], by Dubrovin, due to
the non-regularity of the corresponding (homogeneous) flat pencil.
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7 A flat pencil of cometrics associated with Bn

The main reference of this section in [8].
Starting from the previous examples (B2, B3, B4), whose prepotentials contain
logarithmic terms, we generalize the construction of a Frobenius structure for
any Bn.
In this section, following [8], we will see that, taking the Lie derivative of g = (gij)
with respect the second highest degree invariant polynomial un−1 we obtain a
new cometric η = (ηij) so that the pair (g, η) form a linear flat pencil of cometrics,
which is also exact, satisfies the Egorov property and the homogeneity condition.
First, we will prove some preliminary lemmas concerning g, which, in this setup,
plays the role played by the Euclidean cometric in the standard case. Analogously
to the Euclidean case, we will observe that g turns out to be Bn invariant and flat.

7.1 Invariance of g with respect to the action of Bn

Let (pi) be a system of Euclidean coordinates for a n-dimensional real vector space
V . First, we observe that

Lemma 7.1 The metric of components

gij :=

(
1

n− 1
− δij

)
pipj (7.1)

and the cometric of components

gij :=
(1− δij)

pipj
(7.2)

are inverse to each other.

Proof: First we consider gkigik. Then one gets

gkigik =
n∑

i=1

(
1

n− 1
− δki

)
(1− δik)

pipk

pipk
=

n∑
i=1

(
1

n− 1
− δki

)
(1− δik) =

∑
i,i ̸=k

(
1

n− 1
− δki

)
=

∑
i,i ̸=k

1

n− 1︸ ︷︷ ︸
= 1

n−1

∑
i,i ̸=k 1=1

−
∑
i,i ̸=k

δki︸ ︷︷ ︸
=0

= 1

Next we consider gkigil, it turns out that

gkigil =
n∑

i=1

(
1

n− 1
− δki

)
pl

pk
(1− δil) =

∑
i,i ̸=l

(
1

n− 1
− δki

)
pl

pk
=

=

(∑
i,i ̸=l,k

1

n− 1

pl

pk

)
+

(
1

n− 1
− 1

)
pl

pk
=

(
n− 2

n− 1
− n− 2

n− 1

)
pl

pk
= 0.
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The next lemma shows that the metric introduced above is invariant under the
action of Bn. Recall that the action induced by a Coxeter transformation on a
cometric is given by the tensor transformation law of a (2, 0). Moreover, the in-
variance of the corresponding cometric follows immediately.

Proposition 7.2 The metric g = (gij), where gij(p) :=
(

1
n−1

− δij
)
pipj , is invariant

under the action of Bn on V ∼= Rn.

Proof: Recall that the action of Bn on V is generated by reflections with
respect to the (hyper-)planes

{pj = 0} (7.3)

where j = 1, ...., n and
{pi ± pj = 0} (7.4)

where i, j = 1, . . . , n with i < j. We denote by Apj the Jacobian of the transforma-
tion associated with the reflection with respect to the hyperplane {pj = 0}, and
analogously for Api±pj .
We observe that the matrix Apj is a constant diagonal matrix with 1s on the main
diagonal except in position (j, j) where there is −1. Under the action of the
reflection with respect to the (hyper-)plane {pj = 0}, the metric transforms as
AT

pjgApj(p = p̃) where g is the matrix associated to the metric, T denotes transpo-
sition and p = p̃ means that after the matrix operations have been completed, the
metric is rewritten in terms of the new coordinates pi = p̃i for i ̸= j and pj = −p̃j .
Now, it is immediate to see that the action of Apj on g is to change the sign of
all terms that contain pj except the diagonal term ( 1

n−1
− 1)(pj)2. Then once it is

rewritten in terms of the coordinates p̃, the metric coincides with the original one.
As for the reflections with respect to the (hyper-)planes {pi − pj = 0} we argue
as follows. The matrix Api−pj is a constant matrix with 1s on the main diagonal,
except in position (i, i) and (j, j) where there is zero and it has 1 in position (i, j)
and (j, i), while all the other entries are zero. Notice that AT

pi−pj = Api−pj and
that Api−pj is the matrix representation of a transposition. Therefore, when Api−pj

acts on the left on a column vector, it exchanges the positions of i-th and j-th
components of the column vector but it leaves the other unchanged. Similarly,
when Api−pj acts on the right on a row vector, it exchanges the positions of i-th
and j-th components of the row vector but it leaves the other unchanged. Thus,
AT

pi−pjgApi−pj = Api−pjgApi−pj is obtained from g first exchanging the i-th and j-th
rows and then exchanging the i-th and j-th columns (or first working with the
columns and then with the rows) and leaving the rest unchanged. By the form
of the columns and rows of g, after performing the change of variables pk = p̃k

when k ̸= i, j, pi = p̃j and pj = p̃i, AT
pi−pjgApi−pj coincides with g.

Reflections with respect to the hyperplane {pi + pj = 0} are obtained as com-
position of reflections with respect to the hyperplanes {pi = 0}, {pj = 0} and
{pi − pj = 0}. To see this, just observe that the matrix Api+pj is a constant matrix
with 1s on the main diagonal except in positions (j, j) and (i, i) where there is 0,
and it has −1 in positions (i, j) and (j, i). Therefore Api+pj = ApiApjApi−pj . Now
invariance follows from the previous paragraphs. The proposition is proved.
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Definition 7.3 We define the elementary symmetric polynomials {f1, ...., fn} to be the
functions, in the variables y1, ...., yn, define by

fk(y) :=
∑

1⩽i1<....<ik⩽n

yi1 ....yik (7.5)

where k = 1, ...., n.

Remark 7.4 Let ui be the polynomials defined by

u0 := 1 (7.6)

ui := fi(p
2
1, . . . , p

2
n) (7.7)

where i = 1, ...., n and
uk := 0 (7.8)

where k > n.
We can take {u1, ...., un} as a set of basic invariant polynomials for Bn.

Lemma 7.5 The cometric g = (gij), defined by (7.2), can be written in terms of the
invariant polynomials

g̃ij(u) =
∂ui

∂pk
∂uj

∂pl
gkl(p) (7.9)

and it is well-defined on the quotient. Moreover, for any i and j, gij(u) is a homogeneous
polynomial in the p-variables of degree 2i + 2j − 4, which depends at most linearly on
un−1. In particular,

g11(u) = 4(n2 − n) (7.10)

Proof: The homogeneity of the functions gij(u), as functions of the p-variables,
is clear.
Since all invariant polynomials are really polynomials in (p1)2, . . . , (pn)2 no mat-
ter which ones we choose, then ∂ui

∂pk
contains a factor pk that cancels the factor pk

in the denominator of gkl(p) and similarly for ∂uj

∂pl
. Thus gij(u) are polynomials in

the p-variables, and since it is invariant by Proposition 7.2, it can be written in
terms of the invariant polynomials, and thus it is well-defined on the quotient.
As ui is a homogeneous polynomial in the p-variables of degree deg(ui) = 2i, see
(7.7). Furthermore, deg(pkplgkl(p)) = 0 for any k and l, see (7.2).
Then

deg(g̃ij(u)) = 2i− 1 + 2j − 1− 2 = 2i+ 2j − 4, (7.11)

as a function of the p-variables.
It turns out that deg(un−1) = 2n− 2.
Consider the entries g̃ij(u) above the anti-diagonal, i.e. for i+ j < n+1. We have

deg(g̃ij(u)) = 2(i+ j)− 4 < 2(n+ 1)− 4 = 2(n− 1) (7.12)

so those entries can not depend on un−1.
All the entries with (i, j) such that n + 1 ≤ i + j < 2n depend at most linearly
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on un−1, since in this range we have 2n − 2 ≤ deg(g̃ij(u)) < 4n − 4. Finally, since
un = (p1 · · · pn)2, it is immediate to see that each term in the sum (over k and l)
g̃nn(u) = gkl(p)∂u

n

∂pl
∂un

∂pk
contains un. Since deg(un) = 2n and deg(g̃nn(u)) = 4n − 4,

we can write g̃nn(u) = unf , where f is polynomial in p of degree 2n− 4, so f can
not contain un−1. This proves the claim. Now

g̃11(u) = gkl(p)
∂u1

∂pk
∂u1

∂pl
=

∑
k,l=1,...,n

(1− δkl)

pkpl
2pk2pl =

4
∑

k,l=1,...,n

(1− δkl) = 4(n2 − n),

thus proving (7.10).

7.2 Flatness of g

Recall that the Christoffel symbols, written in the local coordinates (pi), corre-
sponding to the Levi-Civita connection ∇ defined by the metric g are the func-
tions

Γk
ij(p) =

1

2

n∑
m=1

gmk

(
∂gim
∂pj

+
∂gjm
∂pi

− ∂gij
∂pm

)
, (7.13)

On the other hand, the contravariant Christoffel symbols associated with ∇ are
defined by

Γij
k (p) := −

n∑
s=1

gis(p)Γj
sk(p) (7.14)

We have the following:

Lemma 7.6 Let g the metric defined by (7.1), then the corresponding Christoffel symbols
read

Γi
ii(p) =

1

pi
and Γk

ij(p) = 0 otherwise. (7.15)

Proof: In the following proof all the metric coefficients and all Christoffel
symbols depend only on the p-variables. To prove (7.15), first one computes

∂gim
∂pj

(7.1)
=

∂

∂pj

[(
1

n− 1
− δim

)
pipm

]
=

(
1

n− 1
− δim

)
(δjip

m + δjmp
i)

= gim

(
δij
pi

+
δmj

pm

)
This yields

gmk

(
∂gim
∂pj

+
∂gjm
∂pi

− ∂gij
∂pm

)
=

gmk

[
gim

(
δij
pi

+
δmj

pm

)
+ gjm

(
δij
pj

+
δmi

pm

)
− gij

(
δim
pi

+
δmj

pj

)]
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which inserted in (7.13) gives

Γk
ij =

δij
2

[
1

pi

n∑
m=1

gmkgim +
1

pj

n∑
m=1

gmkgjm

]

+
1

2

[
n∑

m=1

gmkgim
δmj

pm
+

n∑
m=1

gmkgjm
δmi

pm

]

− gij
2

[
1

pi

n∑
m=1

gmkδim +
1

pj

n∑
k=1

gmkδmj

]

=
δij
2

(
δik
pi

+
δkj
pj

)
+

1

2

(
�
�

��gjkgij
pj

+
�

�
��gikgij

pi

)
− 1

2

(
�

�
��gijg
ik

pi
+

�
�
��gijg
jk

pj

)
i.e.

Γk
ij =

δij
2

(
δik
pi

+
δjk
pj

)
which entails the thesis.

Proposition 7.7 The metric (7.1) is flat.

Proof: This can be proved by direct computation of the curvature tensor
using the Christoffel symbols (7.15). A quicker way to do this is to introduce the
connection 1-form

ωi
j := Γi

jkdp
k

and the corresponding curvature 2-form

Ωi
j := dωi

j + ωi
k ∧ ωk

j

In view of (7.15) one has that

ωi
i = Γi

ikdp
k (7.15)

=
dpi

pi
= d(log(pi)) (7.16)

and
ωi
j = Γi

jkdp
k (7.15)

= 0 (7.17)

for i ̸= j. Then

Ωi
i = dωi

i + ωi
k ∧ ωk

i︸ ︷︷ ︸
(7.17)
= ωi

i∧ωi
i

(7.16)
= d2(log(pi))︸ ︷︷ ︸

=0

+ d(log(pi)) ∧ d(log(pi))︸ ︷︷ ︸
=0

= 0

and
Ωi

j = dωi
j︸︷︷︸

(7.17)
= 0

+ ωi
k ∧ ωk

j︸ ︷︷ ︸
(7.17)
= ωi

i∧ωi
j=

(7.17)
= 0

= 0

for i ̸= j.
Recall that the following formula holds true(

R(X, Y )
)j
i
= Ωj

i (X, Y )
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where X and Y are arbitrary vector fields and R = (Rs
ijk) is the curvature tensor

corresponding to the Christoffel symbols Γk
ij .

Thus the vanishing of the curvature two-form entails the vanishing of the curva-
ture tensor. A third way to prove the flatness of g is to observe that the connection
defined by (7.15) is a logarithmic connection with weights that are invariant un-
der the action of Bn (see Example 2.5 in [12]).

Remark 7.8 In the flat local coordinates yi = (pi)2

2
the cometric (7.2) reads

g̃ij(y) =
∂yi

∂ps
∂yj

∂pk
gsk(p) = 1− δsk (7.18)

Lemma 7.9 The cometric (7.18) is invariant under the action of An on V .

7.3 Definition of η

In this section, we introduce a new cometric η defined as the Lie derivative of the
cometric g with respect to the second highest degree basic invariant polynomial
for Bn. First, recall the following:

Lemma 7.10 Let

f(z) :=
n∑

i=1

fiz
i (7.19)

g(z) :=
n∑

i=1

giz
i (7.20)

be two complex polynomials of degree at most n, then the following identity holds true:

f(x)g(y)− f(x)g(y)

x− y
=

n∑
i,j=0

bijx
iyj (7.21)

bij :=

mij∑
k=0

(uj+k+1vi−k − ui−kvj+k+1) (7.22)

here mij := min{i, n− 1− j}.

Proposition 7.11 The partial derivative with respect to the vector field ∂
∂un−1 of the in-

tersection form
(
gij(u)

)
is given by the formula

ηij(u) :=
∂gij(u)

∂un−1
= 4(2n− i− j)ui+j−n−1. (7.23)

Hence
(
ηij(u)

)
is a non-degenerate Hankel matrix with all vanishing entries above the

anti-diagonal. In particular, the entries of the anti-diagonal, i.e. i+ j = n+ 1, are

ηi,n−i+1(u) = 4(n− 1).
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Proof: Let’s define

h(x) :=
n∑

k=0

ukxn−k =
n∏

l=1

(x+ (pl)2) (7.24)

where the former equality holds true in view of the Vieta’s formula.
One has

gij(u) =
n∑

s,k=1

(1− δsk)

pspk
∂ui

∂ps
∂uj

∂pk
,

one has

1

4

n∑
i,j=1

gij(u)xn−iyn−j =
1

4

n∑
i,j=1

n∑
s,k=1

(1− δsk)

pspk
∂ui

∂ps
∂uj

∂pk
xn−iyn−j

=
1

4

n∑
s,k=1

(1− δsk)

pspk
∂

∂ps

( n∑
i=1

uixn−i

)
∂

∂pk

( n∑
j=1

ujyn−j

)
u0=1
=

1

4

n∑
s,k=1

(1− δsk)

pspk
∂

∂ps

( n∑
i=0

uixn−i

)
∂

∂pk

( n∑
j=0

ujyn−j

)
(7.24)
=

1

4

n∑
s,k=1

(1− δsk)

pspk
∂h(x)

∂ps
∂h(y)

∂pk
.

Since
∂h(x)

∂ps
=

∂

∂ps

n∏
l=1

(x+ (pl)2) = 2ps

n∏
l ̸=s

(x+ (pl)2),

then

1

4

n∑
s,k=1

1

pspk
∂h(x)

∂ps
∂h(y)

∂pk
=

n∑
s,k=1

n∏
l ̸=s

(x+ (pl)2)
n∏

q ̸=k

(y + (pq)2)

=
n∑

s=1

n∏
l ̸=s

(x+ (pl)2)

( n∑
k=1

n∏
q ̸=k

(y + (pq)2)

)
= h′(x)h′(y)
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and

−1

4

n∑
s,k=1

δsk

pspk
∂h(x)

∂ps
∂h(y)

∂pk
= −1

4

n∑
k=1

1

(pk)2
∂h(x)

∂pk
∂h(y)

∂pk

= −
n∑

k=1

n∏
l ̸=k

(x+ (pl)2)
n∏

q ̸=k

(x+ (pq)2)

= −
n∑

k=1

h(x)h(y)

(x+ (pk)2)(y + (pk)2)

= −
n∑

k=1

[ −h(x)h(y)

(x− y)(x+ (pk)2)
+

h(x)h(y)

(x− y)(y + (pk)2)

]
=

1

x− y

(( n∑
k=1

h(x)

x+ (pk)2

)
h(y)−

( n∑
k=1

h(y)

y + (pk)2

)
h(x)

)
= −h′(y)h(x)− h′(x)h(y)

x− y
,

which yields

1

4

n∑
i,j=1

gij(u)xn−iyn−j = h′(x)h′(y)− h′(y)h(x)− h′(x)h(y)

x− y
.

Since h′(x) =
∑n−1

k=0(n−k)ukxn−k−1 (see (7.24)) deriving both sides of the previous
identity with respect to un−1 we obtain

1

4

n∑
i,j=1

∂gij(u)

∂un−1︸ ︷︷ ︸
:=ηij(u)

xn−iyn−j =
∂

∂un−1

(
h′(x)h′(y)− h′(y)h(x)− h′(x)h(y)

x− y

)

= h′(y) + h′(x)− 1

x− y

(
− h(y)− yh′(x) + h(x) + xh′(y)

)
=

h(y)− h(x) + xh′(x)− yh′(y)

x− y
.

Now, applying the Lemma (7.10) one gets the thesis.

Remark 7.12 From now on, since we want ηi,n−i+1(u) = 1 for all i, we normalize the
cometric gij dividing it by 4(n− 1). Thus, using (7.10) we have that

g11(u) = n (7.25)

Remark 7.13 We observe that the matrix (ηij), defined by (7.23), is lower anti-triangular.
Moreover, in view of the formula (7.23), each entry is a polynomial function in (ui) and
its determinant is a non-vanishing constant. Then we have the following:

Lemma 7.14 The metric η−1 = (ηij) depends polynomially on the (ui) as well. More-
over, (ηij) is also lower anti-triangular.
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Proof: Let pη(λ) be the characteristic polynomial of the matrix associated
with η. It is a polynomial in λ with coefficients that are polynomials in the en-
tries of η and thus they are polynomials in the u’s. By Cayley-Hamilton theorem,
pη(η) = 0 identically, then

pη(η) = ηn + cn−1η
n−1 + · · ·+ c1η + c0I

where c0 = (−1)n det(η) and I denotes the identity matrix. From this, we get
immediately

η−1 =
(−1)n−1

det(η)
(ηn−1 + cn−1η

n−2 + · · ·+ c1I),

from which it is clear that the entries of η−1 are polynomials in the us, since det(η)
is a non-zero constant and all the other terms depend on the us as polynomials.
To show that it is also lower anti-triangular, it is enough to observe that every
lower anti-triangular matrix can be obtained as a product LA of two matrices,
where L is lower triangular and A is the matrix with all ones on the anti-diagonal
and zero in the other entries. Furthermore, it is well-known that the inverse of a
lower triangular matrix is lower triangular while the inverse of A coincides with
A. This immediately shows that η−1 is also lower anti-triangular.

7.4 The pair (g, η) is a flat pencil of metrics

Recall the definition of flat pencil of metrics:

Definition 7.15 A pair of metrics (g(1), g(2)) forms a flat pencil if the following condi-
tions hold true:

• The metric
g := g(1) + λg(2)

is a flat metric for all λ.

• The contravariant Christoffel symbols Γij
k of the metric g are of the form

Γij
k = Γij

k(1) + λΓij
k(2)

for any λ.

In this subsection, we will show that the pair (g, η), where g and η are defined in
(7.9) and (7.23), respectively, gives rise to a flat pencil of cometrics on the orbit
space Cn/Bn.
Our proof is based on the Lemma 4.30. Recall that

Proposition 7.16 If for a flat metric g on some coordinate system (x1, ...., xn) both the
components

(
gij(x)

)
of the metric g and the contravariant components Γij

k (x) of the as-
sociated Levi-Civita connection depend at most linearly on the variable x1, then g1 := g
and g2 defined by

gij2 (x) := ∂x1gij(x)
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form a flat pencil if det(gij2 (x)) ̸= 0. Moreover, the contravariant components of the
corresponding Levi-Civita connections are

Γij
k(1)(x) := Γij

k (x)

and
Γij
k(2)(x) := ∂x1Γij

k (x)

Remark 7.17 As a system of coordinates on Cn/Bn we choose the set of basic invariants
(u1, . . . , un) defined by (7.7). Under this assumption, Lemma 7.5 entails that the cometric
defined in (7.2) descends to a metric on the quotient space having the properties required
in the Proposition 7.16, where the role of x1 is played by un−1. To conclude the proof, we
are left to prove that the contravariant components Γij

k (u) of the Levi-Civita connection
defined by g satisfy the conditions stated in Proposition 7.16. More precisely we will
prove that

Proposition 7.18 The contravariant components of the Levi-Civita connection defined
by g are polynomial functions of (u1, . . . , un), moreover, they depend at most linearly on
un−1.

We will split the proof of this proposition into two lemmas.

Lemma 7.19 The contravariant components of the Levi-Civita connections defined by g,
written in the coordinates (u1, ...., un), are polynomial functions of (u1, ...., un).

Proof: Denote by Γi
jk(p) the Christoffel symbols in the p-variables and by

Γi
jk(u) the Christoffel symbols in the u-variables. One has that the transformation

law for the Christoffel symbols induced by the chance of coordinates p 7→ u is
given by the formula

Γl
ij(p) =

∂pl

∂uc

∂2uc

∂pi∂pj
+

∂pl

∂uc

∂ua

∂pi
∂ub

∂pj
Γc
ab(u). (7.26)

Multiplying both sides of (7.26) by gki(p)∂u
f

∂pk
∂ud

∂pl
dpj , we obtain

gki(p)
∂uf

∂pk
∂ud

∂pl
Γl
ij(p)dp

j = gki(p)
∂uf

∂pk
∂ud

∂pl
∂pl

∂uc

∂2uc

∂pi∂pj
dpj + gki(p)

∂uf

∂pk
∂ud

∂pl
∂pl

∂uc

∂ua

∂pi
∂ub

∂pj
Γc
ab(u)dp

j

Now, observe that in the two terms of the right-hand side of the above expression
∂ud

∂pl
∂pl

∂uc = δdc , so it simplifies to

gki(p)
∂uf

∂pk
∂ud

∂pl
Γl
ij(p)dp

j = gki(p)
∂uf

∂pk
∂2ud

∂pi∂pj
dpj + gki(p)

∂uf

∂pk
∂ua

∂pi︸ ︷︷ ︸
=gfa(u)

Γd
ab(u)du

b.

Using the definition of contravariant Christoffel symbols one gets

−∂uf

∂pk
∂ud

∂pl
Γkl
j (p)dp

j = gki(p)
∂uf

∂pk
∂2ud

∂pi∂pj
dpj − Γfd

b (u)dub (7.27)
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The contravariant Christoffel symbols Γik
l (p) = −gim(p)Γk

ml(p), using the formulas
(7.15), read

Γik
l (p)

(7.15)
= −(1− δim)

pipkpm
δkmδkl =

(δki − 1)δkl
pi(pk)2

which, inserted in (7.27), yields

Γfd
b (u)dub =

(1− δki)

pipk
∂uf

∂pk
∂2ud

∂pi∂pj
dpj +

∂uf

∂pk
∂ud

∂pl
(δkl − 1)δlj
pk(pl)2

dpj. (7.28)

Rearranging the right-hand side of (7.28) one obtains

∑
k,i,j,k ̸=i

1

pipk
∂uf

∂pk
∂2ud

∂pi∂pj
dpj −

∑
k,l,j,k ̸=l

∂uf

∂pk
∂ud

∂pl
δlj

pk(pl)2
dpj

Splitting the first sum in j in j = i and j ̸= i one has

∑
k,j,k ̸=j

1

pjpk
∂uf

∂pk
∂2ud

(∂pj)2
dpj +

∑
k,i,j,k ̸=i,j ̸=i

1

pipk
∂uf

∂pk
∂2ud

∂pi∂pj
dpj −

∑
k,j,k ̸=j

∂uf

∂pk
∂ud

∂pj
1

pk(pj)2
dpj

which can be written as∑
k,j,k ̸=j

1

pjpk
∂uf

∂pk

(
∂2ud

(∂pj)2
− ∂ud

∂pj
1

pj

)
dpj +

∑
k,i,j,k ̸=i,j ̸=i

1

pipk
∂uf

∂pk
∂2ud

∂pi∂pj
dpj (7.29)

Recall that
uk =

∑
1≤i1<···<ik≤n

(pi1 · · · pik)2

It is immediate to check that first term of (7.29) vanishes identically, since u1, . . . , un

are polynomials of degree 1 in each of the (pi)2 (i.e. each monomial has degree 1
or 0 in (pi)2). Furthermore, the second term does not contain any denominator,
since they are simplified (unless d = 1 in which case the second term is identically
zero). Hence one obtains that

Γrs
b (u)dub =

∑
k,i,j,k ̸=i,j ̸=i

1

pipk
∂ur

∂pk
∂2us

∂pi∂pj
dpj (7.30)

whose right-hand side is a 1-form with polynomial coefficients in the p-variables.
We conclude the proof as follows. Since the left-hand side of (7.30) is Bn-invariant
(see [50, Theorem page 3]), the right-hand side is so. Now, as the latter is a 1-form
with polynomial coefficients, the coefficients of the left-hand side are necessarily
polynomial functions in (u1, . . . , un).

Remark 7.20 The previous argument is the same used in the proof Lemma 2.1 in [18].
However, while it is evident that the left-hand side of Formula (2.8) in [18] is a 1-form
with polynomial coefficients, the polynomiality of the coefficients of the right-hand side of
(7.30) was not so and it needed to be shown.
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To complete the proof of Proposition 7.18, we are left to show that the contravari-
ant components of the Levi-Civita connection of g depend at most linearly on
un−1. This result follows from the following:

Lemma 7.21 For any choice of indexes, the following inequality holds true

deg(Γsi
k (u)) < 4n− 4. (7.31)

Proof: First we will show that for every choice of the indices

deg(Γc
ab(u)) = deg(uc)− deg(ua)− deg(ub) (7.32)

To this end, we start noticing that, if not all the indixes in the left-hand side of
(7.26) are equal, (7.15) implies

∂pl

∂uc

∂2uc

∂pi∂pj
+

∂pl

∂uc

∂ua

∂pi
∂ub

∂pj
Γc
ab(u) = 0,

which yields
∂2uc

∂pi∂pj
+

∂ua

∂pi
∂ub

∂pj
Γc
ab(u) = 0.

This identity, together with the definition of the invariants (u1, ...., un), implies
that Γc

ab(u) is a homogeneous polynomial of degree

deg(uc)− 2 + deg(ua)− 1 + deg(ub)− 1 + deg(Γc
ab(u))

or, equivalently, that

deg(Γc
ab(u)) = deg(uc)− deg(ua)− deg(ub)

On the other hand, if in (7.26) i = j = l, (7.15) entails

∂uc

∂pi
1

pi
=

∂2uc

∂2pi
+

∂ua

∂pi
∂ub

∂pi
Γc
ab(u)

which implies that

deg(uc)− 2 = deg(Γc
ab(u)) + deg(ua) + deg(ub)− 2

or, equivalently, that

deg(Γc
ab(u)) = deg(uc)− deg(ua)− deg(ub)

proving (7.32). To conclude the proof of the lemma, it suffices to note since
Γsi
k (u) = −gsj(u)Γi

jk(u) and deg(ui) = 2i (for all i = 1, . . . , n), one has

deg
(
Γsi
k (u)

)
= deg

(
gsj(u)

)
+ deg

(
Γi
jk(u)

)
(7.11)
= deg(us) + deg(uj)− 4 + deg(Γi

jk(u))

(7.32)
= deg(us)− 4 + deg(ui)− deg(uk)

= 2s+ 2i− 2k − 4 ⩽ 4n− 6 < 4n− 4 = 2(2n− 2)
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Remark 7.22 One has that

deg
(
Γsi
k (u)

)
= 2s+ 2i− 2k − 4 (7.33)

for any choice of indexes.

Corollary 7.23 Since deg(un−1) = 2n−2, it follows from Lemma 7.21 that the functions
Γsi
k (u) depend at most linearly on un−1, for any choice of the indexes.

Summarizing, we get the following:

Theorem 7.24 The pair (g, η) gives rise to a flat pencil of metrics.

Proof: The metric
(
gij(u)

)
is well-defined on the quotient, it depends at most

linearly on un−1 by Lemma 7.5 and it is flat by Proposition 7.7. Furthermore, its
contravariant Christoffel symbols are also polynomial functions that depend at
most linearly on un−1 by Proposition 7.18. Therefore, since ηij(u) := ∂gij

∂un−1 (u) has
non-zero constant determinant by Proposition 7.11, (g, η) forms a flat pencil of
metrics by Proposition 7.16.

Corollary 7.25 The cometric (ηij) is flat.

Proof: Since (g, η) form a flat pencil, by applying the Lemma 3.2 one gets that
η is flat.

We close this subsection with a result that will play a crucial role to prove the
existence of a Dubrovin-Frobenius structure on the orbit space Cn/Bn.
First, recall some notions regarding the linear Pfaffian systems (see [30] for de-
tails). Denote by (x1, ...., xn) a standard coordinate system of Cn.
Let X ⊂ Cn be an open domain of Cn and akij(x) be holomorphic functions on
X , where i, j = 1, ...., N and j = 1, ...., n with N positive integer. The first-order
(overdetermined) linear system

∂ui

∂xj
=

N∑
k=1

akij(x)uk (7.34)

of partial differential equation, with unknown functions {u1(x), ...., uN(x)}, is
called linear Pfaffian system.
Let u to be the unknown column vector

u =


u1

.

.

.

.
uN

 (7.35)

and let {Aj(x)}j=1,....,n to be the matrices of functions Aj(x) :=
(
akij(x)

)
. So the

system (7.34) can be written in the form

∂u

∂xj
= Aj(x)u
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Introduce the matrix Ω = (Ωi
j) of differential 1-form defined by

Ω :=
n∑

k=1

Ak(x)dx
k

Then the system (7.4) can be written in terms of 1-forms as

du = Ωu (7.36)

Thus a linear Pfaffian system is also called a total differential equation.
For arbitrarily matrices {Aj(x)}j=1,....,n there may not exist solutions in general.

Remark 7.26 We observe that a holomorphic solution u(x) of (7.36) is C∞ in Cn, then
in particular is C2. Thus we have

∂2u

∂xi∂xj
=

∂2u

∂xj∂xi
(7.37)

for any choice of indexes.

Definition 7.27 For a linear Pfaffian system (7.34), (7.37) is called the integrability
(or compatibility) condition. Moreover, if (7.37) holds true, the system (7.34) is called
completely integrable.

Remark 7.28 The integrability condition (7.37) can be written in terms of Ω as a flatness
condition

dΩ = Ω ∧ Ω (7.38)

Indeed, using the properties of exterior derivative one has that

0 = d2u = d(Ωu) = dΩu− Ω ∧ du︸ ︷︷ ︸
=(Ω∧Ω)u

= (dΩ− Ω ∧ Ω)u

Theorem 7.29 Assume that the linear Pfaffian system (7.34) satisfies the integrability
condition (7.37). Then, for any a ∈ X and any u0 ∈ CN , there exists a unique solution
u(x) such that u(0) = u0. Moreover, the power series expansion of the solution u(x)
converges in any polydisk centered at a and contained in X .

Remark 7.30 By interpreting Ω as a curvature 1-form, equation (7.38) reads as a zero-
curvature (flatness) condition.

We state a modified version of the Corollary 2.4 in [18].

Proposition 7.31 There exists a set of Bn-invariant homogeneous polynomials

{t1(p), ...., tn(p)}

with deg(tk(p)) = 2k, such that (ηij) reduces to a constant matrix in the coordinates
(t1, ...., tn).
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Proof: In [18] the existence of a flat and homogeneous coordinate system was
proven, for all Coxeter groups, taking as g the inverse of the standard Euclidean
metric on Rn.
Let ∇ be the Levi-Civita connection of (ηij).
Recall that a flat function t is determined by the following fundamental (linear)
system of equations

∂kξj − γs
kjξs = 0 (7.39)

where ∂s = ∂
∂us , ξj = ∂jt and γs

kj = γs
kj(u) are the contravariant Christoffel symbols

corresponding to ∇. Recall that γs
kj(u) = −ηkq(u)γ

qj
s (u). Now, because of the

lemmmas (7.14) and (7.19), the functions γs
kj(u) are polynomials in (u1, ...., un).

The flatness of (ηij) yields the integrability condition ∂i∂kξl = ∂k∂iξl. Now since
the linear (7.39) is completely integrable, one may apply Darboux’s theorem: the
space of solutions of (7.39) is a linear vector space of dimension n, i.e. a general
solution is of the form

ξi =
n∑

α=1

cαξ
(α)
i

where {cα} are constant and {ξ(α) = (ξ
(α)
i )} are linearly independent fundamental

solutions of (7.39), i.e. ξ
(α)
i (0) = δαi . Since γs

kj are polynomials in (u1, ...., un),
they are also analytic functions in (u1, ...., un). Then applying the Theorem (7.29),
one concludes that {ξ(α)} are analytic functions on a polydisk. We define the flat
coordinate system (t1, ...., tn) by

dtα = ξ(α)

where α = 1, ...., n and so that tα(0) = 0. Here the integrability of the system is
ensured by the exactness of the 1-forms {ξ(1), ...., ξ(n)} (that follows from the van-
ishing of the torsion of ∇). Moreover, the functional independence of (t1, ...., tn)
follows, by definition, from the linear independence of the 1-forms {ξ(1), ...., ξ(n)}.
It’s clear that the functions (ti) are analytic as well.
We have to show that the system of solutions

(
ti(u)

)
is invariant with respect to

the scaling transformations
ui 7→ cdiui

where i = 1, ..., n, di := deg(ui) and c is a constant.
Denote

t̃(u1, ...., un) := t(cd1u1, ...., cdnun)

Using the chain rule one has

∂i∂j t̃(u
1, ...., un)+γk

ij∂k t̃(u
1, ...., un) = cdicdj ∂̃i∂̃jt(ũ

1, ...., ũn)+cdkγk
ij(u

1, ...., un)∂̃kt(ũ
1, ...., ũn)

(7.40)
where ũi := cdiui and ∂̃i =

∂
∂ũi . Recall that the functions γk

ij(u) are quasi-homogeneous
polynomials in (ui) of degrees deg

(
γk
ij(u)

)
= dk − di − dj , then

cdk−di−djγk
ij(u

1, ...., un) = γk
ij(c

diu1, ...., cdnun) (7.41)
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therefore (7.40) vanish identically. So (ti(u)) are quasi-homogeneous functions in
(u1, ...., un).
Since ∂it

j(0) = δji and t(0) = 0 the flat coordinates have the form

ti = ui + f(u1, ..., ûi, ..., un)

where f is a quasi-homogeneous function of the same degree of ui. Then (t1, ...., tn)
has positive degrees (d1, ...., dn) respectively.
Since all the degrees are positive, the power series expansion of ti(u) must be a
quasi-homogeneous polynomial in (u1, ...., un). Now, in view of the invertibility
of the transformation ui 7→ pj we conclude that ti(u(p)) are homogeneous poly-
nomials in (p1, ...., pn) of degrees deg(ti(p)) = deg

(
ui
)
= 2i.

Lemma 7.32 In our case, the flat coordinates of Proposition 7.31 can be further chosen
so that:

ηij(t) = δi,n+1−j (7.42)

The coordinates so defined are called Dubrovin-Saito flat coordinates.

Proof: By Proposition 7.31 flat coordinates for (ηij) are homogenous invariant
polynomials with distinct degrees. Therefore, in order to prove the claim of the
Lemma, by Corollary 1.1 in [17] it is enough to show that there exists a system of
flat coordinates (t1, ...., tn) such that ηnn(t) = 0. Consider the contravariant metric
η written in the u-variables, see (7.23). Observe that ηnn(u) = 4(2n−n−n)un−1 = 0.
Recall that ηnn(u) = 1

det(η)
adj(η)nn, where adj(η) = CT and where C is the cofactor

matrix of η, whose entry (i, j) is (−1)i+j times the (i, j) minor of η.
Since η is lower anti-triangular, its (n, n) minor is zero, therefore ηnn(u) = 0.
Rewriting η−1 in a flat coordinate system (t1, . . . , tn) we have ηkl(t) = ηij(u(t))

∂ui

∂tk
∂uj

∂tl
.

Then

ηnn(t) = ηij(u(t))
∂ui

∂tn
∂uj

∂tn
.

Observe that ∂ui

∂tn
= 0 for any i unless i = n, for degree reasons. Then

ηnn(t) = ηnn(u(t))

(
∂un

∂tn

)2

= 0,

(no sum over n) since ηnn(u) = 0.

Proposition 7.33 The contravariant Christoffel γij
k of the Saito metric η, written in the

coordinates (u1, ...., un), are given by

γij
k (u) = 4(n− j)δk,i+j−n−1 (7.43)

Moreover, using the above formula one can verify that the polynomial invariants u1, un

and the function τ , see Formula (8.3) in Section 8 below, are flat functions.

Remark 7.34 It is also immediate to verify that, in the Dubrovin-Saito flat coordinates,
g11(t) = n, up to a possible rescaling by a constant, see Remark 7.12.



107

Remark 7.35 The same results of this section can be obtained writing the An-invariant
cometric (7.18) in a suitable set of An-invariant polynomials of degrees 1, 2, ..., n obtained
combining the elementary symmetric polynomials

fk =
∑

1⩽i1<···<ik⩽n

yi1 · · · yik

where k = 1, ...., n, in a suitable way (like in the case of Bn with (pi)2 replaced by 2yi).
The drawback of this ”interpretation” is that the dual product does not seem to admit a
natural explanation in this context in terms of reflecting (hyper-)planes.
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8 Dubrovin-Frobenius structure of NLS type on Cn/Bn

In this section, we will show that the flat pencil of metrics, given by Theorem
(7.24), defines a Frobenius manifold structure on the orbit space Cn/Bn.

8.1 From flat pencils of metrics to Dubrovin-Frobenius mani-
folds

Recall some notions regarding the flat pencil of cometrics. One can prove that
any Dubrovin-Frobenius structure defines a flat pencil of contravariant metrics,
and, conversely, that a Dubrovin-Frobenius structure can be defined starting from
a flat pencil of metrics satisfying the following three additional properties (see
chapter 3).

• Exactness: there exists a vector field e such that

Leg = η Leη = 0 (8.1)

where Le denotes Lie derivative with respect to e. This condition play an
important role in the theory of evolutionary bihamiltonian PDEs both in the
dispersionless and in the dispersive cases (see for instance [28]).

• Homogeneity: the following condition holds true:

LEg = (d− 1)g (8.2)

where Ei := gilηlje
j .

• Egorov property: locally there exists a function τ such that

ei = ηis∂sτ Ei = gis∂sτ (8.3)

Exactness implies that [e, E] = e and by combining this with the homogeneity
condition one obtains

LEη = LELeg = LeLEg − L[E,e]g = (d− 2)η (8.4)

Moreover, for Dubrovin-Frobenius manifolds the vector fields e and E coincide
with the unity vector field and the Euler vector field respectively.
To prove that the flat pencil (g, η) induces a Dubrovin-Frobenius structure on
Cn/Bn, we will start to show that the (g, η) is exact, homogeneous and that it
satisfies the Egorov property or, using Dubrovin’s terminology, that it is quasi-
homogeneous.
Let e = ∂

∂un−1 . Denote ∂k =
∂

∂uk for all k. Recall that

ηij = 4(2n− i− j)ui+j−n−1 (8.5)

Then

Lemma 8.1 The pair (g, η) form an exact pencil.
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Proof: The first of (8.1) is true by definition and the second follows from the
fact that η does not depend on un−1 as it can be inferred from formula (8.5).
Moreover

Lemma 8.2 If τ is given by

τ :=
1

4(n− 1)

(
u2 − (n− 2)

2(n− 1)
(u1)2

)
(8.6)

then
ei = ηij∂jτ, (8.7)

so the first of (8.3) is fulfilled.

Proof: The proof is by a direct computation. Using (8.6) and (8.5), one obtains

ei =
1

4(n− 1)

n∑
j=1

(
ηijδj2 −

(n− 2)

(n− 1)
ηijδj1u

1

)
=

1

4(n− 1)
ηi2 − (n− 2)

4(n− 1)2
ηi1u1

(8.5)
=

(2n− i− 2)

(n− 1)
ui+1−n − (n− 2)(2n− i− 1)

(n− 1)2
ui−nu1 (8.8)

Since uk = 0 for all k < 0, if i < n − 1 both summands in (8.8) are zero. If i = n,
(8.8) becomes

(2n− n− 2)

(n− 1)
un+1−n − (n− 2)(2n− n− 1)

(n− 1)2
un−nu1 =

(n− 2)

(n− 1)
u1 − (n− 2)

(n− 1)
u0u1 = 0,

since u0 = 1. Finally, if i = n− 1, one obtains

(2n− (n− 1)− 2)

(n− 1)
un−1+1−n − (n− 2)(2n− (n− 1)− 1)

(n− 1)2
u(n−1)−nu1 = 1,

which proves our statement since ei = δin−1.

Lemma 8.3 Defining
Ei := gij∂jτ (8.9)

one has that
Ei = gilηlje

j, (8.10)

so that the second of (8.3) is fulfilled.

Proof: This follows from (8.7) and from (8.9), recalling that ηijηjl = δil .

Similarly, one can prove that

Lemma 8.4 The vector field E has the following form

E =
1

2(n− 1)

n∑
k=1

pk
∂

∂pk
(8.11)
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Proof: The proof follows at once from (7.7), (8.6) and (8.9). First one computes

∂(u1)2

∂pj
= 4pju1

One observes that u2 can be written as

u2 = (pj)2
n∑

i=1

(pi)2 + f(p1, ..., p̂j, ..., pn)

where f is a homogeneous function that doesn’t depend on pj . Therefore

∂u2

∂pj
= 2pju1 − 2(pj)3

Which yield
∂τ

∂pj
=

1

2(n− 1)

[
pju1

n− 1
− (pj)3

]
.

Then

Ei = gij(p)
∂τ

∂pj
(7.2)
=

1

2(n− 1)

n∑
j=1

(1− δij)

pipj

[
pju1

n− 1
− (pj)3

]
=

1

2pi(n− 1)

∑
j ̸=i

[
u1

n− 1
− (pj)2

]
=

1

2pi(n− 1)

[
(n− 1)u1

n− 1
− u1 + (pi)2

]
=

pi

2(n− 1)
.

since
∑

j ̸=i(p
j)2 = u1 − (pi)2.

Recall that deg(uk) = 2k, and that glk is a homogeneous polynomial of degree
2k + 2l − 4 (in the us). From this it follows:

Proposition 8.5 We have that

LEg = (d− 1)g, (8.12)

where d = 1− 2
(n−1)

, therefore condition (8.2) is fulfilled.

Proof: First one observes that

LE(du
k) =

k

(n− 1)
duk (8.13)

where (duk)i := ∂iu
k. Indeed, in component, one has that

LE(du
k)i = Ej∂j∂iu

k + ∂iE
j∂ju

k (8.11)
=

1

2(n− 1)

(
pj∂i∂ju

k + ∂ip
j∂ju

k
)

=
1

2(n− 1)

(
∂i(p

j∂ju
k︸ ︷︷ ︸

=2kuk

)− ∂ip
j∂ju

k + ∂ip
j∂ju

k
)
=

k

(n− 1)
∂iu

k

=
k

(n− 1)
(duk)i
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here we have exploited the homogeneity of the function uk.
Using the homogeneity of the entries of (gij) (see Lemma (7.5)), one gets

(LEg)(du
l, duk) = LE(g(du

l, duk))− g(LEdu
l, duk)− g(dul,LEdu

k)

=LEg
kl − l

(n− 1)
glk − k

(n− 1)
glk

=LEg
kl − l + k

(n− 1)
glk

=
l + k − 2

(n− 1)
glk − l + k

(n+ 1)
glk

=− 2

(n− 1)
glk

=− 2

(n− 1)
g(dul, duk).

Before moving on, we observe that

Remark 8.6 If (f 1, . . . , fn) is any system of homogeneous coordinates in the p-variables

E =
1

2(n− 1)

n∑
k=1

pk
∂

∂pk
=

1

2(n− 1)

n∑
k=1

pk
n∑

j=1

∂f j

∂pk
∂

∂f j

=
1

2(n− 1)

n∑
j=1

(
n∑

k=1

pk
∂f j

∂pk

)
∂

∂f j

=
1

2(n− 1)

n∑
j=1

deg(f j)f j ∂

∂f j

here we have exploited the Euler’s identity.
In particular, in our case we have

E =
n∑

k=1

pk
∂

∂pk
=

n∑
j=1

dju
j ∂

∂uj
(8.14)

where (ui) are defined in (7.7).
Our next step in the construction of the Dubrovin-Frobenius structure on M :=
Cn/Bn, will be the introduction of the structure constants defining the relevant
product. To this end, recall that a homogeneous flat pencil (g, η) on M is called
regular if the endomorphism of TM defined by

Ri
j = ∇(η)

j Ei −∇(g)
j Ei, (8.15)

is invertible, where, in the previous formula, ∇(η) and ∇(g) denote the covariant
derivative operators corresponding to the Levi-Civita connections of the metrics
η and g respectively.
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Under the regularity assumption, the flat pencil defines a structure of a Dubrovin-
Frobenius manifold on M whose structure constants are defined by

cjhk = Ls
h(Γ

l(η)
sk − Γ

l(g)
sk )(R−1)jl (8.16)

where Ls
h = gsiηih, Γl(η)

sk and Γ
l(g)
sk are the Christoffel’s symbols of the metrics η and

g respectively.
From now on, unless explicitly stated, all the tensors will be written in the flat
Dubrovin-Saito coordinates, see Proposition 7.31 and Lemma 7.32 above. Since
in these coordinates Γ

l(η)
sk = 0 for any choice of the indexes, in order to keep the

notation more readable, we use directly the notation Γi
jk to denote the Christoffel

symbols associated to g (as we did in Section 5.4). Under these assumptions,
Formula (8.16) becomes

cjhk = −Ls
hΓ

l
sk(R

−1)jl = −gsiηihΓ
l
sk(R

−1)jl
(7.14)
= ηhiΓ

il
k (R

−1)jl , (8.17)

see [5] and references therein.

Remark 8.7 One can prove that the flat pencil of metrics (g, η) defined above is not
regular. To this end it suffices to recall that (see formula (3.42))

Ri
j =

d− 1

2
δij +∇η

jE
i, (8.18)

which, in our case, entails

Ri
j =

(j − 1)

n− 1
δij. (8.19)

In fact, since d = 1− 2
n−1

, using the Dubrovin-Saito flat coordinates, which are invariant
homogeneous polynomials in view of Proposition (7.31), one has that

Ri
j =

d− 1

2
δij +∇(η)

j Ei (8.14)
= − 1

n− 1
δij +

j

n− 1
δij =

(j − 1)

n− 1
δij

which has a vanishing eigenvalue.

Despite our flat pencil of metrics is not regular, we will be able to prove the fol-
lowing:

Theorem 8.8 The flat pencil of metrics (g, η) gives rise to a Dubrovin-Frobenius struc-
ture on Cn/Bn generalizing those computed explicitly for the cases n = 2, 3, 4.

The proof of this result will consist of the following steps:

(i) Definition of the structure constants of the product.

(ii) Proof of the commutativity of the product.

(iii) Existence of a flat unity vector field.

(iv) Identification of the metric η with the invariant metric of the Dubrovin-
Frobenius manifold.
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(v) Identification of the cometric g with the intersection form of the Dubrovin-
Frobenius manifold.

(vi) Symmetry of the tensor ∇c.

(vii) Associativity of the product.

In all steps of the proof we will work in Saito flat coordinates. In order to prove
the last step we will preliminarily prove that the functions

bijk =

(
1 + dj −

dF
2

)
cijk , (8.20)

coincide with the contravariant Christoffel symbols of the cometric g. This will
allow us to obtain part of the associativity conditions as a consequence of the
vanishing of the curvature.
We start with a preliminary lemma:

Lemma 8.9 In Saito flat coordinates the contravariant symbols of the Levi-Civita of the
metric g satisfy

Γn+1−h,k
m = Γn+1−m,k

h (8.21)
gisΓjk

s = gjsΓik
s (8.22)

Γij
s Γ

sk
l = Γik

s Γ
sj
l (8.23)

Γmh
k

Rh
h

=
Γhm
k

Rm
m

(h,m) ̸= (1, 1) (8.24)

where Γjk
i are the contravariant Christoffel of g in Saito flat coordinates.

Proof: Recall that the following identities hold true (see (3.25), (3.26), (3.27)
and (3.47)):

ηhs∆
sk
m = ηms∆

sk
h , (8.25)

gis∆jk
s = gjs∆ik

s , (8.26)
∆ij

s ∆
sk
l = ∆ik

s ∆
sj
l , (8.27)

∆tl
k (R

−1)sl = ∆sl
k (R

−1)tl . (8.28)

where the tensor ∆jk
m is given in terms of the Levi-Civita connections ∇(η) and

∇(g) by the formula

∆jk
m = ηlm

(
ηjsΓlk

s(g) − gslΓjk
s(η)

)
= ηlm

(
ηlsΓjk

s(g) − gjsΓlk
s(η)

)
.

In Saito flat coordinates Γjk
i(g) = Γjk

i , Γjk
i(η) = 0, ∆jk

i = Γjk
i and ηij = δi,n+1−j . Then

the above identities reduce to identities (8.21), (8.22), (8.23) and (8.24).
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8.2 Step 1: Definition of the cijks

As we have already mentioned, the definition of the Dubrovin-Frobenius struc-
ture on Cn/Bn cannot completely rely on (8.16) since the endomorphism R defined
in (8.19) in not invertible. On the other hand, the loss of information is restricted
to the case Ri

j = 0, i.e. i = j = 1, see Formula (8.19).
In this way, Formula (8.17) permits to define all the cijk except the ones with i = 1.
In other words

cijk :=
ηjhΓ

hi
k

Ri
i

(8.29)

for all i ̸= 1. We observe that

cijk
(7.42)
=

Γn+1−j,i
k

Ri
i

(8.30)

Furthermore, the commutativity of the product entails

Γn+1−j,i
k

Ri
i

(8.21)
=

Γn+1−k,i
j

Ri
i

(8.31)

We highlight that the above equality holds true only in Dubrovin-Saito coordi-
nates.
The remaining cijk will be defined by the following formulas:

c1ij := cn+1−j
ni (8.32)

for any (i, j) ̸= (n, n), and

c1nn :=
(n− 1)

tn
(8.33)

Since Ri
i are constants in Dubrovin-Saito coordinates, the structure constants ckij ,

defined in (8.29) and (8.32), are homogeneous polynomials of the p-variables of
degree

deg(ckij)
(8.30)
= deg(Γn+1−i,k

j )
(7.33)
= 2(n+1− i)+2k−2j−4 = 2(n−1− i−j+k) (8.34)

for k ̸= 1, and

deg(c1ij) = deg(cn+1−j
ni )

(8.34)
= 2(n− 1− n− i+ n+ 1− j) = 2(n− i− j) (8.35)

In particular, note that, with the exception of c1nn,

ckij = 0 (8.36)

for all i, j, k such that i+ j > n+ k − 1.
Notice that due to (8.33) the corresponding prepotential cannot be defined when
tn = 0. As a consequence the Dubrovin-Frobenius manifold structure, we are go-
ing to study, is defined on the orbit space of Bn less the image of the coordinate
(hyper-)planes under the quotient map.
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Remark 8.10 Hereafter, we will normalize the degree of the p-homogeneous polynomials
by 1

2(n−1)
accordingly with the expression of Euler vector field, see (8.11). In other words,

we will set
dk := deg (fk) =

k

n− 1
(8.37)

where fk is any degree 2k, homogeneous polynomial in the p-variables. For example

dn−1+k−i−j := deg (ckij) =
n− 1 + k − i− j

n− 1
(8.38)

and
di+j−2 := deg (gij) =

i+ j − 2

n− 1
(8.39)

see (7.11) and (8.34).

8.3 Step 2: Commutativity of the product

We have to prove that
cijk = cikj. (8.40)

for any choice of the indexes.
For i ̸= 1 this follows automatically from (8.31), indeed

cijk =
Γn+1−j,i
k

Ri
i

=
Γn+1−k,i
j

Ri
i

= cikj

For i = 1, k = n, j ̸= n we have

c1jn
(8.32)
= cn+1−n

nj = c1nj

For i = 1, j = n, k ̸= n it’s enough to read the above line backward.
For i = 1, k ̸= n, j ̸= n we have

c1jk
(8.32)
= cn+1−k

nj

(8.30)
=

Γ1,n+1−k
j

Rn+1−k
n+1−k

(8.21)
=

Γn+1−j,n+1−k
n

Rn+1−k
n+1−k

(8.24)
=

Γn+1−k,n+1−j
n

Rn+1−j
n+1−j

= ...

Since Γn+1−f,g
l = Γn+1−l,g

f for any choice of the indexes, taking f = n one has that
Γ1,g
l = Γn+1−l,g

k , then

... =
Γ1,n+1−j
k

Rn+1−j
n+1−j

=
(8.30)
= cn+1−j

nk

(8.32)
= c1kj

8.4 Step 3: Existence of a flat unity vector field

We now prove that the unity of the product defined above is the vector field
e = ∂

∂un−1 , such that
cijke

k = δij,
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For i ̸= 1 this follows from the results for regular quasi-homogeneous pencil (see
[15]). For i = 1, since ek = δkn−1, we have

c1jke
k = c1j,n−1

This means that we have to prove the identities

c11,n−1 = 1

c1j,n−1 = 0

for j = 2, ...., n. Recall that (see (8.38)) ckij are polynomial functions in the (pi)

of degrees deg(ckij) = n−1−i−j+k
n−1

, then deg(c1j,n−1) = 1−j
n−1

, therefore for j ̸= 1 they
vanish identically.
For j = 1 we have

c11,n−1 = c1n−1,1 =
(8.32)
= cnn,n−1 = cnnke

k = δnn,

where the last equality follows from the fact that cijke
k = δij for i ̸= 1.

It is immediate to check that ∇(η)e = 0. Indeed, since un is flat, the passage from
the coordinates (u1, , , , , , un) to the flat basic invariants (t1, , , , , , tn) does not affect
the form of e that remains constant in the new coordinates.

8.5 Step 4: Identification of the metric η with the invariant met-
ric.

We need a preliminary lemma:

Lemma 8.11 For any choice of the indexes we have

cijk = cn+1−k
n+1−i,j = cn+1−j

n+1−i,k (8.41)

Proof: The case i = 1, and (j, k) = (n, n) is trivial. If i = 1 and (j, k) ̸= (n, n),
then

c1jk
(8.32)
= cn+1−k

nj

which coincides with the first of the (8.41). The second one holds true because of
the symmetry of the lower indices of the cijk (formula (8.40)), indeed

cn+1−k
nj︸ ︷︷ ︸

(8.32)
= c1jk

= cn+1−j
nj︸ ︷︷ ︸

(8.32)
= c1kj

If i ̸= 1 and k ̸= n (so n+ 1− k ̸= 0) we have

cijk
(8.30)
=

Γn+1−j,i
k

Ri
i

,

and

cn+1−k
n+1−i,j

(8.30)
=

Γi,n+1−k
j

Rn+1−k
n+1−k

(8.24)
=

Γn+1−k,i
j

Ri
i

(8.21)
=

Γn+1−j,i
k

Ri
i

(8.30)
= cijk
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and

cn+1−k
n+1−i,j

(8.30)
=

Γi,n+1−k
j

Rn+1−k
n+1−k

(8.21)
=

Γn+1−j,n+1−k
n+1−i

Rn+1−k
n+1−k

(8.24)
=

Γn+1−k,n+1−j
n+1−i

Rn+1−k
n+1−k

(8.30)
= cn+1−j

k,n+1−i

(8.40)
= cn+1−j

n+1−i,k

On the other hand, if i ̸= 1, k = n and j ̸= n

cn+1−k
n+1−i,j = c1n+1−i,j

(8.32)
= cn+1−j

n,n+1−i︸ ︷︷ ︸
=cn+1−j

n+1−i,n

(8.30)
=

Γi,n+1−j
n

Rn+1−j
n+1−j

(8.24)
=

Γn+1−j,i
n

Ri
i

(8.30)
= cijn

Finally if i ̸= 1 and (j, k) = (n, n), then the three terms of the identity are zero, see
(8.36). Indeed

deg(cinn) =
2

n− 1
(n− 1− i− n− n) =

2

n− 1
(−1− i− n) < 0

deg(cnn+1−i,n) =
2

n− 1
(n− 1− n− n− 1 + i− n) =

2

n− 1
(i− 2n− 2) < 0

for any i.

We have now all the ingredients to prove that

ηisc
s
jk = ηjsc

s
ik. (8.42)

This follows at once from (8.41) and from ηij = δi,n+1−j . In fact, substituting
i 7→ n− 1 + i in (8.41), one has

ηisc
s
jk = cn+1−i

jk = cn+1−j
ik = ηjsc

s
ik

8.6 Step 5: Identification of the cometric g with the intersection
form.

We will now prove the identity

cijkE
k = gilηlj; (8.43)

which amounts to say that the operator of multiplication by the Euler vector field
E, defined via the (8.30), (8.32) and (8.33) is the affinor, i.e. a tensor field of type
(1, 1), defined composing (the covariant metric) η with (the contravariant metric)
g. To prove (8.43), we write E = Ei∂i and first we observe that (8.15) written in
Dubrovin-Saito coordinates reduces to

Ri
j = ∇(η)

j Ei −∇(g)
j Ei = −Γi

jlE
l, (8.44)

which, for i ̸= 1, yields

cijlE
l (8.29)
=

1

Ri
i

ηjlΓ
li
kE

k = − 1

Ri
i

ηjlg
lsΓi

skE
k (8.44)

=
1

Ri
i

ηjlg
ls Ri

s︸︷︷︸
=δisR

i
i

(8.19)
= ηjlg

li
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On the other hand, the case i = 1 and j ̸= n can be reduced to the previous one.
In fact

c1jlE
l (8.32)
= cn+1−j

nl El = gn+1−j,lηln = gn+1−j,1 = g1lηlj

where the other equalities follow from the case i ̸= 1 and from the explicit form
of η. Finally, if i = 1 and j = n:

c1nlE
l (8.36)
= c1nnE

n (8.14)
= c1nndnt

n (8.33),(8.37)
=

n− 1

tn
n

n− 1
tn = n

(7.25)
= g11

(7.42)
= g1lηln

Note that in the first equality we used the explicit form of the Euler vector field,
in the fifth the normalization of g (see Remark 7.34) and in the last the explicit
form of η.

This identity (8.43), multiplied by the inverse of (ηij), implies that

gih = cijkE
kηjh = chjkE

kηji. (8.45)

In other words the cometric g can be identified with the intersection form.

We prove now an useful identity that we will use later.

Lemma 8.12
gisclsm = glscism, (8.46)

for any choice of the indexes.
Proof: If m ̸= n, l ̸= 1 and for any i

gisclsm
(8.30)
= gis

Γn+1−m,l
s

Rl
l

(8.24)
= gis

Γl,n+1−m
s

Rn+1−m
n+1−m

(8.22)
= gls

Γi,n+1−m
s

Rn+1−m
n+1−m

(8.30)
= glscn+1−m

n+1−i,s

(8.41)
= glscims.

If m ̸= n, l = 1 and i = 1 is trivially true.
If m ̸= n, l = 1 and i ̸= 1

gisc1sm
(8.32)
= giscn+1−m

ns

(8.30)
= gis

Γ1,n+1−m
s

Rn+1−m
n+1−m

(8.22)
= g1s

Γi,n+1−m
s

Rn+1−m
n+1−m

(8.30)
= g1scn+1−m

n+1−i,s

(8.41)
= g1scism.

If m = n, l = 1 and i = 1 is trivially true.
On the other hand, if m = n, l = 1 and i ̸= 1 we have

(g1scisn − gisc1sn)E
n = (g1scisk − gisc1sk)E

k

= g1sgirηrs − gisg1rηrs

= 0,

and this implies g1scisn − gisc1sn = 0 since En = dnu
n. The first equality follows

from (8.43) and from the fact that (8.46) holds true if m ̸= n, l = 1 and i ̸= 1,
see the previous computation. On the other hand, the last equality is obtained
trading r with s in (for example) the second summand. Finally, since i and l
appear symmetrically in (8.46), the case m = n, i = 1 and l ̸= 1 follows from the
previous computation simply exchanging the role of i and l.
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8.7 Step 6: Symmetry of ∇c

In Saito flat coordinates the vanishing of the curvature of the pencil implies

∂sΓ
jk
l = ∂lΓ

jk
s , (8.47)

for any choice of the indexes, where Γij
k denote the contravariant Christoffel sym-

bols of the metric g (see formula (3.28) written in Saito coordinates). This obser-
vation entails that

Proposition 8.13
∂sc

k
jl = ∂lc

k
js (8.48)

for any choice of the indexes.

Proof: If k ̸= 1, then (8.48) follows from the definition of the structure con-
stants. In this case we have ckjl =

ηjrΓ
rk
l

Rk
k

, where ηjr
Rk

k
are constants. Then

∂sc
k
jl =

ηjr
Rk

k

∂sΓ
rk
l

(8.47)
=

ηjr
Rk

k

∂lΓ
rk
s = ∂lc

k
js (8.49)

If k = 1 we want to prove that

∂sc
1
jl = ∂lc

1
js

Observing that deg(∂sc1ij) = 2(n − i − j − s), see (8.35), one has that deg(∂nc1ns) =
2(n − s). Then c1ns = 0 for any s ̸= n. Therefore, if k = 1 and (j, l) = (n, n), the
right-hand side of (8.48) is zero unless s = n when this identity is trivially true.
Moreover, if s ̸= n, then also the left-hand side of (8.48) is zero since c1nn depends
on un only. Finally, if k = 1 and (j, n) ̸= (n, n), then

∂sc
1
jl = ∂sc

1
lj = ∂sc

n+1−j
nl

(8.49)
= ∂lc

n+1−j
ns = ∂lc

1
sj = ∂lc

1
js.

8.8 Interlude: Structure constants of the product and Christoffel
symbols

Let
dF = 3− d = 2 +

2

n− 1

and let
cijk := ηiscjsk (8.50)

for any choice of the indexes, where cjsk were defined in (8.29), (8.32) and (8.33).
Let

bijk :=

(
1 + dj −

dF
2

)
cijk (8.51)
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Remark 8.14 Note that
1 + dj −

dF
2

=
j − 1

n− 1
.

for all j = 1, . . . , n.

We will prove that

Theorem 8.15 The functions bijk , defined in (8.51), satisfy the following system of equa-
tions

∂kg
ij = bijk + bjik (8.52)

gisbjks = gjsbiks (8.53)

where i, j, k = 1, . . . , n.

To prove this statement we need to prove the following preliminary lemma.

Lemma 8.16 Let c = (cijk ) the (1, 2)-tensor field defined by (8.29), (8.32) and (8.33).
Then

LEc = c (8.54)

Proof: Let c = cijk∂i ⊗ dtj ⊗ dtk. Recall that

LEdt
i = i

n−1
dti

LE∂i = − i
n−1

∂i

deg(cijk) =
n−1+i−j−k

n−1

see (8.38) and (8.13).
Therefore, we observe that

LEc
i
jk = Es∂sc

i
jk︸ ︷︷ ︸

=n−1+i−j−k
n−1

cijk

− ∂sE
i︸︷︷︸

= i
n−1

csjk + ∂jE
s︸︷︷︸

= j
n−1

cisk + ∂kE
s︸ ︷︷ ︸

= k
n−1

cijs = cijk

Then, in view of the Leibniz’s rule, one has

LEc = (LEc
i
jk)∂i ⊗ dtj ⊗ dtk + cijk(LE∂i)⊗ dtj ⊗ dtk

+ cijk∂i ⊗ (LEdt
j)⊗ dtk + cijk∂i ⊗ dtj ⊗ (LEdt

k)

= c.

For later use, we observe that from the very last equality, solving for
(LEc

i
jk)∂i ⊗ dtj ⊗ dtk one obtains

Em∂mc
j
lk = cjlk + djc

j
lk − dlc

j
lk − dkc

j
lk, (8.55)

where dj were defined in (8.37).
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Once these preliminary results are settled, one can prove Theorem 8.15.
Proof: First note that (8.43) implies

ghk = ηkichisE
s. (8.56)

Then we compute

∂k(g
ij) = ∂k(η

ilcjlmE
m) = ηil(∂kc

j
lm)E

m + ηilcjlm∂kE
m (8.48)

= ηil(Em∂mc
j
lk) + dkη

ilcjlk.
(8.57)

Using (8.55) to substitute Em∂mc
j
lk in (8.57), we obtain

∂k(g
ij) = ηil(cjlk + djc

j
lk − dlc

j
lk). (8.58)

Since the pencil (g, η) is homogeneous and exact,

LEη = (d− 2)η = (1− dF )η,

see (8.4) (here η denotes the contravariant metric). On the other hand, since η is
constant when written in the Saito flat coordinates, working with the covariant
metric, one has

0 = LE

(
η(∂i, ∂l)

)
= (LEη)(∂i, ∂l) + η(LE∂i, ∂l) + η(∂i,LE∂l)

= (dF − 1)η(∂i, ∂l)− ∂iE
mη(∂m, ∂l)− ∂lE

mη(∂i, ∂m)

= (dF − 1)ηil − diη
il − dlη

il,

which entails
−ηildl = ηil(−dF + 1 + di)

Inserting this identity in (8.58), one gets

∂k(g
ij) = ηil(2 + di + dj − dF )c

j
lk = (2 + di + dj − dF )c

ij
k

This should be compared with

bijk + bjik =

(
1 + dj −

dF
2

)
cijk +

(
1 + di −

dF
2

)
cjik

To this end, first one observes that the invariance of the metric η w.r.t. the product
implies

cmh
k = chmk (8.59)

for any h,m, k = 1, ...., n. In fact, in view of the invariance of the metric w.r.t.
product, one gets

cmh
k

(8.50)
= δhl η

mjcljk = ηhiηmjηilc
l
jk

(8.42)
= ηhiηmjηjlc

l
ik = δml η

hiclik
(8.50)
= chmk

From this one concludes that

bijk + bjik = (2 + di + dj − dF ) c
ij
k = ∂kg

ij
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To prove (8.53) we use (8.50), (8.51), (8.56) and we compute

gisbjks
(8.51)
= ηimcsmhE

h

(
1 + dk −

dF
2

)
ηjlckls

(8.43)
= ηimgshηhm

(
1 + dk −

dF
2

)
ηjlckls

(8.46)
= ηimgskηhm

(
1 + dk −

dF
2

)
ηjlchls

(8.42)
= ηimgskηhl

(
1 + dk −

dF
2

)
ηjlchms

(8.46)
= ηimgshηhl

(
1 + dk −

dF
2

)
ηjlckms

(8.43)
= ηjlcslhE

h

(
1 + dk −

dF
2

)
ηimckms

(8.51)
= gjsbiks .

Theorem 8.15 implies that

Proposition 8.17 The functions bijk defined in (8.51) are the contravariant Christoffel
symbols of the metric g in the Saito flat coordinates, i.e.

bijk = Γij
k (8.60)

for any choice of the indexes.

8.9 Step 7: Associativity of the product.

We start noticing that since (g, η) is a flat pencil, expressing the conditions of zero-
curvature for the Levi-Civita connection defined by g(λ) := g− λη in the Saito flat
coordinates, one obtains the following set of equations

∂sb
jk
l − ∂lb

jk
s = 0 (8.61)

bijs b
sk
l − biks b

sj
l = 0 (8.62)

The first set of conditions (8.61) does not provide additional information since it
follow from the symmetry (in the lower indices) of ∇(η)c. Indeed(

1 + dk −
dF
2

)(
∂sc

jk
l − ∂lc

jk
s

)
(8.51)
= Rk

kη
jh
(
∂sc

k
hl − ∂lc

k
hs

) (8.48)
= 0 (8.63)

Let us consider the second set of conditions (8.62). First we note that using the
(8.51) and recalling that Rk

k = (1 + dk − dF
2
) for all k, these conditions can be

rewritten as follows

Rk
kR

j
j(c

ij
s c

sk
l − ciks c

sj
l )

(8.59)
= Rk

kR
j
j(c

ji
s c

ks
l − ckis c

js
l ) = Rk

kR
j
jη

jhηkm(cihsc
s
ml − cimsc

s
hl) = 0

(8.64)
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(no summation over j and k). The quadratic conditions (8.64) entail the associa-
tivity of the product defined by the cijk, that is

cihsc
s
ml = cimsc

s
hl,

but when one of the index m, h is equal to n (of course, if both indices are equal
to n the statement is trivially true), For this reason, to conclude the proof we are
left to show that

cinlc
l
km = ciklc

l
nm, (8.65)

for all possible values of i, k,m. It is worth noticing that if k = n the previous
identity is trivially satisfied. We start checking that

cinlc
l
km − ciklc

l
nm = 0 (8.66)

for all (m, k, i) ̸= (n, n, 1).

First recall that, since bijk = Γij
k , we have cijk =

bn+1−j,i
k

Ri
i

=
bn+1−k,i
j

Ri
i

by (8.30). By a
direct computation

cinlc
l
km − ciklc

l
nm = cin1c

1
km − cik1c

1
nm +

∑
l ̸=1

(
cinlc

l
km − ciklc

l
nm

) (8.32),(8.30)
=

cin1c
n+1−m
nk − cik1c

n+1−m
nn +

∑
l ̸=1

(
b1il
Ri

i

bn+1−m,l
k

Rl
l

− bn+1−k,i
l

Ri
i

bn+1−m,l
n

Rl
l

)
(8.30),(8.24)

=

b1i1
Ri

i

b1,n+1−m
k

Rn+1−m
n+1−m

− bnik
Ri

i

b1,n+1−m
n

Rn+1−m
n+1−m

+
∑
l ̸=1

(
b1il
Ri

i

bl,n+1−m
k

Rn+1−m
n+1−m

− bn+1−k,i
l

Ri
i

bl,n+1−m
n

Rn+1−m
n+1−m

)
=

b1i1
Ri

i

b1,n+1−m
k

Rn+1−m
n+1−m

− bnik
Ri

i

b1,n+1−m
n

Rn+1−m
n+1−m

+
∑
l ̸=1

(
b1il
Ri

i

bl,n+1−m
k

Rn+1−m
n+1−m

− bn+1−l,i
k

Ri
i

b1,n+1−m
n+1−l

Rn+1−m
n+1−m

)
=

b1i1
Ri

i

b1,n+1−m
k

Rn+1−m
n+1−m

− bnik
Ri

i

b1,n+1−m
n

Rn+1−m
n+1−m

+
∑
l ̸=1

b1il
Ri

i

bl,n+1−m
k

Rn+1−m
n+1−m

−
∑
l ̸=n

blik
Ri

i

b1,n+1−m
l

Rn+1−m
n+1−m

=

b1il
Ri

i

bl,n+1−m
k

Rn+1−m
n+1−m

− blik
Ri

i

b1,n+1−m
l

Rn+1−m
n+1−m

= 0.

Remark 8.18 In the previous computation, the fourth line follows from the third one,
applying (8.21) to both bn+1−k,i

l and bl,n+1−m
n . In the fifth line, the second summation

stems after declaring s = n + 1 − l (and then s = l) in the second summand of the
summation of the fourth line.

If (m, k) ̸= (n, n) and i = 1, (8.65) becomes

c1nlc
l
km = c1klc

l
nm. (8.67)

By (8.64), we know that
c1ilc

l
km = c1klc

l
im (8.68)
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for i = 1, . . . n − 1, since we are also assuming k ̸= n and m ̸= n. Therefore
(8.67) can be rewritten in the following equivalent form

(c1ilc
l
km − c1klc

l
im)E

i = 0,

since, for what already proven, the only non-zero contribution in this sum is the
one with i = n.
Using (8.43) one gets

(c1ilc
l
km − c1klc

l
im)E

i = c1ilE
iclkm − c1klc

l
imE

i

= g1sηslc
l
km − c1klg

lsηsm
(8.46)
= g1sηmlc

l
ks − csklg

l1ηsm (8.69)
= 0,

whose last equality is obtained changing s with l in the second summand of (8.69).
Therefore (8.67) holds true.

As already observed above, if m = k = n and for any i, (8.65) becomes

cinlc
l
nn − cinlc

l
nn = 0.

We are left to consider the case m = n, k ̸= n and any i; that is we need to prove

cinlc
l
kn − ciklc

l
nn = 0, (8.70)

for k ̸= n and for any i.
We first observe that cinlc

l
ks − ciklc

l
ns = 0 for s = 1, . . . , n − 1 and any i, since for

i ̸= 1 this is (8.66), while for i = 1 this is (8.67).
Therefore we can rewrite (8.70) in the equivalent form

cinlc
l
ksE

s − ciklc
l
nsE

s = 0,

which, together with (8.43), yields

cinlg
lsηsk − ciklg

lsηsn
(8.46)
= csnlg

liηsk − csklg
liηsn

(8.42)
= (csnlηsk − csklηsn)g

li = 0.

This concludes the proof of Theorem 8.8.

8.10 Conclusions and Open problems

In this section, combining the following:

• the procedure presented in [3] for complex reflection groups, which relies
on explicit formula for the multiplication and the connection of the dual
structure and a yields a possible expression for the intersection form

• a generalization of the classical Dubrovin-Saito procedure presented in [18]
and [46], which shows that the candidate intersection form produces a ho-
mogeneous flat pencil of cometrics
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we have obtained a non-standard Dubrovin-Frobenius structure on the orbit space
of Bn. More precisely, such a structure is defined on the orbit space of Bn less the
image of coordinate (hyper-)planes under the quotient map (where the intersec-
tion form and the dual structure constants are not defined).
In other words, the procedure of [3] allowed us to get explicit formulas in the
cases n = 2, 3, 4 while the generalized Dubrovin-Saito procedure allowed us to
prove the existence of this structure for arbitrary integer n.
Two main questions are open:

1. For n = 2, 3, 4 the dual product is defined by

∗ =
1

N

∑
H∈H

dαH

αH

⊗ σHπH

with σH = 0 for all the mirrors in the Orbit I and σH = 1 for all the mirrors
in the Orbit II. Is it true for arbitrary n?

2. For n = 2, 3, 4 the Dubrovin-Frobenius prepotentials

FB2 =
1

2
(t1)2t2 ± 1

2
(t2)2

(
ln t2 − 3

2

)
.

FB3 =
1

6
(t2)3 + t1t2t3 +

1

12
(t1)3t3 − 3

2
(t3)2 + (t3)2 ln t3,

FB4 =
1

108
(t1)4t4 +

1

6
(t1)2t2t4 − 1

72
(t2)4 + t1t3t4 +

1

2
(t2)2t4 +

1

2
t2(t3)2

− 9

4
(t4)2 +

3

2
(t4)2 ln t4,

coincide with the solutions of WDVV equations associated with constrained
KP equation (see [35]) and enumeration of hypermaps (see [26]), in partic-
ular the case n = 2 is related to the defocusing NLS equation and higher
genera Catalan numbers. Is it true for arbitrary n?

Both these questions, as we will see in the next section, have affirmative answers.
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9 Constrained KP hierarchies and central invariants

The main references of this section are [35] and [41].
In [35] Liu, Zhang and Zhou computed the central invariants of the bi-Hamiltonian
structure associated with constrained KP hierarchies. In particular, they all coin-
cide with 1

24
.

The notion of central invariant of a semi-simple bi-Hamiltonian structure, which
possesses a hydrodynamic limit, was introduced by Dubrovin, Liu and Zhang in
[24]. Moreover, in [24] it was also proven that such invariants completely char-
acterize the equivalence classes of infinitesimal deformation of a semi-simple bi-
Hamiltonian structure of hydrodynamic type modulo Miura type transformation.
In [24] and [39] it was also conjectured that for any given semi-simple bihamilto-
nian structure of hydrodynamic type and a set of central invariants there exists
such a deformation of the bi-Hamiltonian structure. In particular, one has to ver-
ify the triviality of the associated third bihamiltonian cohomology, introduced in
[24]. In [40] the conjecture has been verified in the scalar case, while in [10] the
conjecture has been verified in the general case.
Given a bi-Hamiltonian structure, the notion of central invariant is an efficient
tool in order to characterize the associated integrable hierarchy of evolutionary
PDEs. For example, for the bi-Hamiltonian integrable hierarchy that controls a
cohomological field theory, associated with a semi-simple Frobenius manifold, all
the central invariants coincide with 1

24
(see [25] for details). This bi-Hamiltonian

structure is called topological deformation of its hydrodynamic limit.
Following [35], we will expose the notion of constrained KP hierarchy and its
corresponding bi-hamiltonian structure. In particular, we will consider the asso-
ciated central invariants. Then, we will recall the Frobenius manifold structure
associated with the constrained KP hierarchy. Following [41], this manifold has
a structure of Frobebius-Hurwitz manifold; furthermore, it is isomorphic to the
Frobenius manifold MBn , exposed in chapter eight (thus conjecture 2 of page 124
is confirmed).
Such identification allows us to compute explicitly the structure constants associ-
ated with the dual product of MBn , confirming conjecture 1 of page 124.

9.1 Constrained KP and their bi-Hamiltonian structure

Let D be the ring of pseudo-differential operator of the form∑
k≤m

fk∂
k

where ∂ = ∂
∂x

, fk : x 7→ fk(x) are smooth functions on R and m is an integer.
For any two pseudo-differential operator A =

∑
k≤m1

fk∂
k and B =

∑
k≤m2

gk∂
k

of D, their product is given by

AB :=
∑
k≤m1

∑
j≤m2

(
k

l

)
fk

∂lgj
∂xl

∂k+j−l
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For a fixed non-negative integer m, we define the pseudo-differential operator L,
depending on vn, vn−1, ...., v1, w, u, as follows:

L := ∂n+1 + vn∂
n−1 + ....+ v2∂ + v1 + (∂ − w)−1u (9.1)

where the operator
(∂ − w)−1 = a1∂

−1 + a2∂
−2 + ....

is uniquely defined by the identity

(∂ − w)(a1∂
−1 + a2∂

−2 + ....) = 1

We define the (n+ 1)−constrained KP hierarchy by the following Lax equation:

∂L

∂tk
= [
(
L

k
n+1

)
+
, L] (9.2)

for k = 1, 2, ...., where [A,B] : AB −BA (A and B pseudo-differential operator).
The constrained KP hierarchy has a bihamiltonian structure defined as follows.
First, denote

B := L+ = ∂n+1 + vn∂
n−1 + ....+ v2∂ + v1

the differential part of L. Given a functional

F =

∫
f(v,vx, ....)dx

with a suitable domain of integration, where v = (v1, ...., vn), we define the varia-
tional derivative with respect the pseudo-differential operator L by

δF

δL
:=

δF

δB
+

δF

δu
+

δF

δw

1

w
(∂ − u)

The variational derivative of F with respect to the differential operator B is de-
fined by

δF

δB
:=

n∑
i=1

∂−i δF

δvi

while δ
δu

denotes the variational derivative.
Recall that the residue of a pseudo-differential operator is defined by

res

(∑
k≤m

ak∂
k

)
:= a−1

It can be proven that the variation of the functional F , defined by

δF :=

∫ ( n∑
i=1

δF

δvi(x)
δvi(x) +

δF

δu(x)
δu(x) +

δF

δw(x)
δw(x)

)
dx

can be represented as

δF =

∫
res

(
δF

δL
δL

)
dx
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For two functionals F =
∫
f(v,vx, ....)dx and G =

∫
g(v,vx, ....)dx, denote their

variational derivative with respect L by X := δF
δL

and Y := δG
δL

. Then the compati-
ble pair of Poisson brackets for constrained KP hierarchy are given by

{F,G}(1) =
∫

res
(
[L,X+]Y − [L,X]+Y

)
dx (9.3)

{F,G}(2) =
∫

res
(
(LY )+LX − (Y L)+XL+ 1

n+1
X[L,KY ]

)
dx (9.4)

where KY := ∂−1res
(
[L, Y ]

)
. Define the Hamiltonians

Hk :=

∫
hk(v,vx, ....)dx

for k ≥ −n, with densities

hk :=
n+1

k+n+1
res
(
L

k+n+1
n+1

)
Thus it follows that the constrained KP hierarchy (9.2) has the following bihamil-
tonian representation:

∂v

∂tk
= {v(x), Hk}(1) = {v(x), Hk−n+1}(2) (9.5)

for k ≥ 1.

9.2 Central invariants

Consider the bihamiltonian structure given by the pair of Poisson brackets

{F,G}(a) :=
∫

δF

δwi(x)
P ij
(a)

δG

δwj(x)
(9.6)

for a = 1, 2, where the local functionals F and G are defined on the jet space a
n−dimensional manifold M with local coordinates (w1, ...., wn). The Hamiltonian
operators P ij

(1) and P ij
(2) are given by the formulas

P ij
(a) := gij(a)(w)∂x + Γij

k(a)(w)wk
x +

∑
z≥1

ϵk
k+1∑
l=0

Aij
k,l,(a)(w,wx, ...., ∂

l
xw)∂(k−l+1)

x (9.7)

for a = 1, 2, where w = (w1, ...., wn). In the above formula the matrices (gij(a)), for
a = 1, 2, are assumed to be non-degenerate and symmetric with entries smooth
functions of w1, ...., wn. For ϵ = 0 we get a Poisson bracket of hydrodynamic type.
The functions Aij

k,l(a) are homogeneous polynomials of degree l; here we define
the degrees of the jet variables as

deg(∂k
xw

j) = k

for k ≤ 0 and j = 1, ...., n.
Recall that the semisemplicity of a bihamiltonian structure is characterized by the
following proposition (see [17] for details):
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Proposition 9.1 The n roots λ1(w), ...., λn(w) of the characteristic polynomial

det
(
gij(2) − λgij(1)

)
= 0

constitute a local coordinate system of the manifold M in a neighborhood of a semi-simple
point p ∈ M . We call them canonical coordinates for the bihamiltonian structure on M .
Moreover, the leading coefficients of the operators P ij

(1) and P ij
(2) in canonical coordinates

reduce to the diagonal matrices

gij(1)(λ) = f(λ)δij

gij(2)(λ) = λif(λ)δij

respectively.

Denote

P ij
(a)(λ) :=

∂λi

∂wk
Akl

1,0,(a)

∂λj

∂wl

Qij
(a)(λ) :=

∂λi

∂wk
Akl

2,0,(a)

∂λj

∂wl

for a = 1, 2. The central invariants c1(λ), ...., cn(λ) of the bihamiltonian structure
(9.6) are defined by

ci(λ) :=
1

3(f i(λ))2

(
Qij

(2)(λ)− λiQij
(1) +

∑
k ̸=i

(
P ij
(2)(λ)− λiP ij

(1)

)2
fk(λ)(λk − λi)

)
(9.8)

Now, introduce the dispersion parameter ϵ in the constrained KP hierarchy (9.2)
and its bihamiltonian structure defined by (9.3) and (9.4), by the following rescal-
ings:

∂

∂tk
7→ ϵ

∂

∂tk

∂

∂xk
7→ ϵ

∂

∂xk
:= D

Then, for the two pseudo-differential operator A =
∑

k≤m1
fk∂

k and B =
∑

k≤m2
gk∂

k

of D, their product reads as

AB :=
∑
k≤m1

∑
j≤m2

ϵl
(
k

l

)
fk

∂lgj
∂xl

Dk+j−l

Similarly, after rescaling, the constrained KP hierarchy (9.2) takes the form

∂L

∂tk
= [
(
L

k
n+1

)
+
, L]

for k ≥ 1, where the Lax operator is given by

L := Dn+1 + vnD
n−1 + ....+ v2D + v1 + (D − w)−1u
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The corresponding compatible pair of Poisson bracket (9.3) and (9.4), after rescal-
ing, read as

{F,G}(1) =
1

ϵ

∫
res
(
[L,X+]Y − [L,X]+Y

)
dx (9.9)

{F,G}(2) =
1

ϵ

∫
res
(
(LY )+LX − (Y L)+XL+ 1

n+1
X[L,KY ]

)
dx (9.10)

Remark 9.2 It can be shown that the Poisson brackets (9.9) and (9.10) for the con-
strained KP hierarchy have the form (9.6).
Thus using the formula (9.8), one defines the central invariants associated with con-
strained KP hierarchy.

Following [35], we recall the following fundamental result:

Theorem 9.3 The central invariants associated with constrained KP hierarchy coincide
with 1

24
.

9.3 Frobenius manifold underlying constrained KP hierarchy

We know that the central invariants of the bihamiltonian structure associated
with constrained KP hierarchy coincide with 1

24
. This characterizes the topologi-

cal deformation of the principal hierarchy of a semi-simple Frobenius manifold.
Indeed there exists a (n+2)-dimensional semi-simple Frobenius manifold M un-
derlying the constrained KP hierarchy. Let’s consider the LG superpotential

λ(p) = pn+1 + vnp
n−1 + ....+ v2p+ v1 +

u

p− w
(9.11)

The data of the Frobenius manifold M are given by the residue formulas given in
section 4. In particular, the invariant flat metric reads

η

(
∂

∂vi
,
∂

∂vj

)
= −

(
res
p=∞

+ res
p=w

) ∂λ(p)
∂vi

∂λ(p)
∂vj

λ′(p)
dp

and the multiplication on the tangent bundle reads

c

(
∂

∂vi
,
∂

∂vj
,
∂

∂vk

)
= −

(
res
p=∞

+ res
p=w

) ∂λ(p)
∂vi

∂λ(p)
∂vj

∂λ(p)
∂vk

λ′(p)
dp

for i, j = 1, ...., n + 2, where vn+1 := w and vn+2 := u. The flat coordinates of the
Frobenius manifold can be chosen as

ṽi = − n+1
n+1−i

res
p=∞

λ(p)1−
i

n+1 (i = 1, ...., n)

ṽn+1 = vn+1

ṽn+2 = vn+2
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Then the prepotential F (ṽ) of the Frobenius manifold has the form

F (ṽ) = P (ṽ1, ...., ṽn+2) +
1

2
ṽ2n+2

(
log(vn+2)−

3

2

)
where P (ṽ1, ...., ṽn+2) is a quasi-homogeneous polynomial.

Remark 9.4 The flat metric η defines a Poisson bracket of hydrodynamic on the loop
space of the Frobenius manifold M associated with constrained KP hierarchy. It can
be shown that the Poisson bracket coincides with the Poisson bracket obtained from the
dispersionless limit ϵ → 0 of the Poisson bracket (9.9).
There exists a second flat metric, the intersection form g (defined outside the discriminant
Σ), which is given by the formula

g

(
∂

∂vi
,
∂

∂vj

)
= −

(
res
p=∞

+ res
p=w

) ∂λ(p)
∂vi

∂λ(p)
∂vj

λ(p)λ′(p)
dp

for i, j = 1, ...., n + 2. Similarly to η, g defines a Poisson bracket of hydrodynamic
type on the loop space of M , which coincides with the dispersionless limit ϵ → 0 of the
Poisson bracket (9.10). These two compatible Poisson brackets, associated with η and
g, yield a bihamiltonian structure on the loop space of the Frobenius manifold M and a
bihamiltonian integrable hierarchy of hydrodynamic type, called the principal hierarchy
of M . It can be represented as

∂ṽi
∂tj,m

= ηik
∂

∂x

(
∂θj,m+1

∂ṽk

)
for m > 0 and i, j = 1, ...., n + 2 and where the functions θj,m+1 define the calibration
of M . For details about the principal hierarchy associated with Frobenius manifolds and
calibration see [17] and [24].

9.4 Equivalence between KP constrained hierarchy and Bn Frobe-
nius manifold

We observed, in the previous section, that the prepotential FBn , for n = 2, 3, 4,
coincides with the solution of WDVV equations (9.3) associated with constrained
KP hierarchy. Is it true for any n? The answer is affirmative. In particular, fol-
lowing [41], we will show that the Frobenius manifold structure MBn associated
with Bn (exposed in the section 7) is isomorphic to the Hurwitz-Frobenius mani-
fold structure on M0;n−2,0, which coincides with the Frobenius manifold structure
associated with constrained KP hierarchy exposed previously, with prepotential
(9.3).
Let’s consider the Hurwitz space M0;n−2,0 of a particular class of LG superpoten-
tial consisting of Laurent polynomials in one variable with bidegree (n − 1, 1).
These are the functions of the form

λ(z) = zn−1 + a1z
n−2 + ....+ an−1 + anz

−1 (9.12)
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where any ai ∈ C and an ̸= 0.
We have seen how to define a semi-simple Frobenius manifold structure on M0;n−2,0

with coordinates (a1, ...., an).
Recall that the invariant metric η and intersection form g are given by the formu-
las

η
(
X, Y

)
=

1

4

∑
res
dλ=0

X
(
λ(z)dz

)
Y
(
λ(z)dz

)
dλ(z)

(9.13)

g
(
X, Y

)
=

1

4

∑
res
dλ=0

X
(
log(λ(z))dz

)
Y
(
log(λ(z))dz

)
dlogλ(z)

(9.14)

where −1
4

is a arbitrary normalization factor and X, Y are vector fields.
Consider the Euler vector field of the form

E =
j

n− 1
aj

∂

∂aj
(9.15)

moreover, we have LEλ(z) = λ(z)− z
n−1

λ′(z).
The symmetric (0, 3) tensor field c(X, Y, Z) := η(X ◦ Y, Z) is given by

c(X, Y, Z) =
1

4

∑
res
dλ=0

X
(
λ(z)dz

)
Y
(
λ(z)dz

)
Z
(
λ(z)dz

)
dλ(z)

(9.16)

where ◦ is the multiplication of tangents vectors on M0;n−2,0.
Let e be the unity vector field of ◦, i.e. e ◦X = X ◦ e = X for any X .
Using explicit expression (9.13) and (9.16), c(e, Y, Z) = η(e◦Y, Z) implies Leλ(z) =
1. Thus we have

e =
∂

∂an−1

(9.17)

For z → ∞, one inverts (9.12) as follows (Puiseux expansion):

z = λ(z)
1

n−1 −
(
t1 + t2λ(z)−

1
n−1 + ....+ tnλ(z)−1

)
+O

(
λ(z)−

j−1
n−1

)
(9.18)

where (t1, ...., tn) are flat coordinates for the metric η.
By using the ”thermodynamical” identity

∂

∂ti
(λdz)z=const. = − ∂

∂ti
(zdλ)λ=const. (9.19)

one gets (using (9.18))

∂λ

∂ti
=

(
λ(z)

i−1
n−1λ′(z)

)
≥−1

(i = 1, ...., n) (9.20)

where (f)≥−1 =
∑n

j=−1 fjz
j for the Laurent series f =

∑n
j=−∞ fjz

j .
Thus (9.14) and (9.20) yields

η

(
∂

∂ti
,
∂

∂tj

)
=

n− 1

4
δn+1,i+j (9.21)
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Using the identities

Leλ(z) = 1

LEλ(z) = λ(z)− z

n− 1
λ′(z)

one gets

e =
∂

∂tn−1

(9.22)

E =
j

n− 1
tj

∂

∂tj
(9.23)

Recall, briefly, that the Frobenius manifold structure MBn consist of a flat pencil
of cometrics

gijBn
(u) =

∂ui

∂ps
∂uj

∂pq
(dps, dpq)

ηijBn
(u) =

∂ηij(u)

∂un−1

where (dps, dpq) = 1−δsq

pspq
is a Bninvariant cometric on Rn and (u1, ...., un) are the

elementary symmetric polynomials in (p1)2, ...., (pn)2. Moreover, the unity and
Euler vector fields are given by

e =
∂

∂un−1

E =
j

n− 1
uj

∂

∂uj

Now, we can state the following fundamental result:

Theorem 9.5 The map h : M0;n−2,0 → MBn , given by aj 7→ uj with

uj = aj (9.24)

for i = 1, ...., n, is a local isomorphism of Frobenius manifolds.

Since the Hurwitz-Frobenius manifold on M0;n−2,0 is semi-simple by definition.
By using the isomorphism h one gets the following:

Corollary 9.6 The Frobenius manifold MBn is semi-simple.

Remark 9.7 Substituting z = p− bn in (9.12), we retrieve the LG superpotential (9.11)
of the Frobenius manifold structure associated with the constrained KP hierarchy.
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9.5 Structure constants of MBn

By the identification of MBn with Hurwitz-Frobnius manifold M0;n−2,0, by ex-
ploiting formula (4.93), one can retrieve the structure constants associated with
the dual product of MBn . One has the following:

Proposition 9.8 The dual product of MBn has the form

∗ =
∑
H∈H̃

dαH

αH(p)
⊗ πH (9.25)

where H̃ = {pi − pj = 0}i ̸=j∈{1,....,n} ∪ {pi + pj = 0}i ̸=j∈{1,....,n}.

Proof: Using formula (4.93) one has

c∗ijk := c∗
(

∂

∂pi
,
∂

∂pj
,
∂

∂pk

)
= 1

4

∑
res
λ′=0

∂logλ(z)
∂pi

∂logλ(z)
∂pj

∂logλ(z)
∂pk(

logλ(z)
)′ dz

Applying Vieta’s formula the rational superpotential (9.12) factorizes as

λ(z) = z−1
(
zn + a1z

n−1 + ....+ an−1z + an
)
= z−1

n∏
i=1

(
z + (pi)2

)
Thus

logλ(z) = −log(z) +
n∑

i=1

log
(
z + (pi)2

)
So

∂logλ(z)

∂pi
=

2pi

z + (pi)2(
logλ(z)

)′
=

1

z
+

n∑
i=1

1

z + (pi)2

Hence

c∗ijk = 2
∑

res
λ′=0

pipjpk(
z + (pi)2

)(
z + (pj)2

)(
z + (pk)2

)(
logλ(z)

)′dz︸ ︷︷ ︸
:=fijk(z)dz

here fijk(z)dz is meromorphic 1-form on the Riemann sphere CP1.
Observe that

(
logλ(z)

)′
= λ′(z)

λ(z)
, thus the critical value of λ(z) are poles for fijk(z)dz.

Now, since CP1 is a complex compact manifold, the sum of the residue of f(z)dz
vanishes. Thus, for i = j = k, one has

c∗iii = −2 res
z=−(pi)2

fiii(z)dz = −2 res
z=−(pi)2

(pi)3(
z + (pi)2

)3(− 1
z
+
∑n

s=1
1

z+(ps)2

)dz
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In the limit z 7→ −(pi)2 one has

fiii(z) =
(pi)3(

z + (pi)2
)3(− 1

z
+
∑

s ̸=i
1

z+(ps)2
+ 1

z+(pi)2

) ∼ 1(
z + (pi)2

)2
thus z = −(pi)2 is a second-order pole for f(z)dz. Then

c∗iii = −2 res
z=−(pi)2

fiii(z)dz = −2 lim
z 7→−(pi)2

d

dz

((
z + (pi)2

)2
fiii(z)

)
(9.26)

= −2(pi)3
(∑

s ̸=i

1

(pi)2 − (ps)2
− 1

(pi)2

)
(9.27)

For i = j ̸= k, f(z)dz has a first-order pole at z = −(pi)2, then

c∗iik = −2 res
z=−(pi)2

fiik(z)dz = −2 lim
z 7→−(pi)2

((
z+(pi)2

)
fiik(z)

)
=

(pi)2pk

(pi)2 − (pk)2
(9.28)

While, for i ̸= j ̸= k, f(z)dz has no pole except the critical points for λ(z), hence

c∗ijk = 0 (9.29)

We conjectured that the dual product of MBn has the form

∗ =
∑
H∈H̃

dαH

αH(p)
⊗ πH (9.30)

where H̃ = {pi − pj = 0}i ̸=j∈{1,....,n} ∪ {pi + pj = 0}i ̸=j∈{1,....,n}, here the orthogonal
projector πH is obtained via the Euclidean metric g = (δij).
Thus the corresponding structure constants read

ck∗ij = 1
2

∑
s ̸=r∈{1,....,n}

(dps − dpr)i(dp
s − dpr)j(dp

s − dpr)k
ps − pr︸ ︷︷ ︸

(I)

+1
2

∑
s ̸=r∈{1,....,n}

(dps + dpr)i(dp
s + dpr)j(dp

s + dpr)k
ps − pr︸ ︷︷ ︸

(II)

Check that these functions coincide with the actual dual structure constants of
MBn computed above.
It turns out that

(dps − dpr)i = δsi − δri

then

(I) =
n∑

s=1

∑
r ̸=s

1

ps − pr
(
δsiδsjδsk − δsiδsjδrk − δsiδrjδsk + δsiδrjδrk − δriδsjδsk + δriδsjδrk

+ δriδrjδsk − δriδrjδrk
)
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Observe that
n∑

s=1

∑
r ̸=s

δsiδsjδsk
ps − pr

=
∑
r ̸=s

n∑
s=1

δsiδsjδsk
ps − pr

=
∑
r ̸=i

δijδjkδik
ps − pr

Moreover
n∑

s=1

∑
r ̸=s

δsiδsjδrk
ps − pr

=
n∑

s=1

δsiδsj
∑
r ̸=s

δrk
ps − pr

=
∑
s ̸=k

δsiδsj
ps − pk

= δijfik

where

fik :=

{
1

pi−pk
(i ̸= k)

0 (i = k)
(9.31)

Similarly
n∑

s=1

∑
r ̸=s

δsiδrjδsk
ps − pr

= δikfij

n∑
s=1

∑
r ̸=s

δsiδrjδrk
ps − pr

= δjkfij

n∑
s=1

∑
r ̸=s

δsiδrjδrk
ps − pr

= δjkfij

n∑
s=1

∑
r ̸=s

δriδsjδsk
ps − pr

= δjkfji

n∑
s=1

∑
r ̸=s

δriδrjδsk
ps − pr

= δijfki

n∑
s=1

∑
r ̸=s

δriδrjδrk
ps − pr

= −
∑
r ̸=i

δijδjkδik
pi − pr

Thus

(I) = 2δijδjkδik
∑
r ̸=i

1

pi − pr
− δijfik − δikfij + δjkfij − δjkfji + δikfji + δijfki

= 2

(
δijδjkδik

∑
r ̸=i

1

pi − pr
− δijfik − δikfij − δjkfji

)
Analogously

(II) = 2δijδjkδik
∑
r ̸=i

1

pi + pr
+

δij(1− δik)

pi + pk
+

δik(1− δij)

pi + pj
+

δjk(1− δij)

pi + pj

+
δjk(1− δji)

pi + pj
+

δik(1− δji)

pi + pj
+

δij(1− δik)

pk + pi

= 2

(
δijδjkδik

∑
r ̸=i

1

pi + pr
+

δij(1− δik)

pi + pk
+

δik(1− δij)

pi + pj
+

δjk(1− δij)

pi + pj

)
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Hence

ck∗ij = 1
2
(I) + 1

2
(II)

= δijδjkδik
∑
r ̸=i

(
1

pi + pr
+

1

pi − pr

)
+ δij

(
1− δik
pi + pk

− fik

)
+ δik

(
1− δij
pi + pk

− fij

)
+ δjk

(
1− δij
pi + pk

− fji

)
Using the definition of fij one gets

ck∗ij = 2δijδjkδik
∑
r ̸=i

pi

pi + pr
fir−2δij

(
pk

pi + pk
fik

)
−2δik

(
pj

pi + pj
fij

)
+2δjk

(
pi

pi + pj
fij

)
Lowering an index by (7.1) one has

c∗qij := gqk c
k∗
ij = ( 1

n−1
− δqk)p

qpkck∗ij

In particular

2( 1
n−1

− δqk)p
qpkδijδjkδik

∑
r ̸=i

pi

pi+pr
fir =

2
n−1

pqδij p
kδjkδik︸ ︷︷ ︸
=piδij

∑
r ̸=i

pi

pi+pr
fir − 2pqδij p

kδqkδjkδik︸ ︷︷ ︸
=pqδqjδjiδqi

∑
r ̸=i

pi

pi+pr
fir

= 2
n−1

pq(pi)2δij
∑
r ̸=i

1
pi+pr

fir − 2(pq)2pi δqjδjiδqi︸ ︷︷ ︸
=δij

∑
r ̸=i

1
pi+pr

fir

= 2δij
∑
r ̸=i

fir
pi+pr

(
pq(pi)2

n−1
− (pq)2pi

)
and

− 2( 1
n−1

− δqk)p
qpkδij

(
pk

pi+pk
fik
)
= − 2

n−1
δijp

q (pk)2

pi+pk
fik + 2pqδij

(pk)2

pi+pk
δqkfik︸ ︷︷ ︸

=
(pq)2

pi+pq
fiq

and

− 2( 1
n−1

− δqk)p
qpkδik

(
pj

pi+pj
fij
)
= − 2

n−1
δikp

k

=pi

pq pj

pi+pk
fij + 2 pqpj

pi+pj
fij δqkδikp

k︸ ︷︷ ︸
=δiqpq

and similarly

2( 1
n−1

− δqk)p
qpkδjk

(
pi

pi+pj
fij
)
= 2

n−1
pqpj pi

pi+pj
fij − 2δqj(p

q)2 pi

pi+pj
fij

Hence

cqij =2δij
∑
r ̸=i

fir
pi + pr

(
pq(pi)2

n− 1
− (pq)2pi

)
+ 2δijp

q

(
− 1

n−1

(pk)2

pi + pk
fik +

(pq)2

pi + pq
fiq

)
+ 2δiq(p

q)2
pj

pi + pj
fij − 2δqj(p

q)2
pi

pi + pj
fij
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Let q = i = j, since fiq = fij = 0 by definition, one has

c∗iii = 2
∑
r ̸=i

fir
pi + pr

(
(pi)3

n− 1
− (pi)3

)
+ 2pi

(
− 1

n−1

(pk)2

pi + pk
fik

)
= 2

2− n

n− 1
(pi)3

∑
r ̸=i

fir
pi + pr

− 2pi

n− 1

∑
r ̸=i

(pr)2

pi + pr
fir

(9.31)
= 2

2− n

n− 1
(pi)3

∑
r ̸=i

1

(pi)2 − (pr)2
− 2pi

n− 1

∑
r ̸=i

(pr)2

(pi)2 − (pr)2

=
2pi

n− 1

∑
r ̸=i

1

(pi)2 − (pr)2
(
(2− n)(pi)2 − (pr)2︸ ︷︷ ︸
(pi)2−(pr)2+(1−n)(pi)2

)
=

2pi

n− 1

(∑
r ̸=i

1︸ ︷︷ ︸
=n−1

+
∑
r ̸=i

(1− n)(pi)2

(pi)2 − (pr)2

)

=
2(pi)3

n− 1

(
1

(pi)2
−
∑
r ̸=i

1

(pi)2 − (pr)2

)
which coincides with (9.27).
Let q = i ̸= j, then

ciij = 2(pi)2
pj

pi + pj
fij

(9.31)
=

2(pi)2pj

(pi)2 − (pj)2

which coincides with (9.28).
While, for q ̸= i ̸= j, c∗qij = 0 as in (9.29).



139

References

[1] A. Arsie and P. Lorenzoni From Darboux-Egorov system to bi-flat F -manifolds,
Journal of Geometry and Physics, Vol 70, pp 98–116 (2013).

[2] A. Arsie and P. Lorenzoni, Purely non-local Hamiltonian formalism, Kohno con-
nections and ∨-systems, J. Math. Phys. 55 (2014).

[3] A. Arsie and P. Lorenzoni, Complex reflection groups, logarithmic connections
and bi-flat F-manifolds, Lett. Math. Phys. 107, pp 1919–1961 (2017).

[4] A. Arsie and P. Lorenzoni, Bi-Flat F -Manifolds: A Survey, in Integrable Sys-
tems and Algebraic Geometry: Volume 1, Cambridge University Press.

[5] A. Arsie, A. Buryak, P. Lorenzoni, P. Rossi, Riemannian F-manifolds, bi-flat
F -manifolds, and flat pencils of metrics, International Mathematics Research
Notices rnab203 (2021).

[6] A. Arsie and P. Lorenzoni, F -manifolds with eventual identities, bidifferential
calculus and twisted Lenard-Magri chains, IMRN 2012.

[7] A. Arsie and P. Lorenzoni, Poisson bracket of 1-forms and evolutionary PDEs,
Journal of Physics, Mathematical and Theoretical, Vol 45, no 47, 2012.

[8] A. Arsie, P. Lorenzoni, I. Mencattini and G. Moroni A Dubrovin-Frobenius
manifold structure of NLS type on the orbit space of Bn, Selecta Mathematica
New Series, Vol 29, no 1, 2023.
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