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1. INTRODUCTION  
 

1.1. Precision Farming 
 

Precision agriculture represents one of the most important opportunities that can 

be implemented by companies in order to ensure quantitatively and qualitatively 

satisfactory productions (Fountas et al., 2015; Schrijver et al., 2016). Recently, 

the International Society of Precision Agriculture (ISPA) released this definition: 

 

“Precision Agriculture is a management strategy that gathers, processes and 

analyses temporal, spatial and individual data and combines it with other 

information to support management decisions according to estimated variability 

for improved resource use efficiency, productivity, quality, profitability and 

sustainability of agricultural production.” 

 

Precision farming (PF) is a management method that aims to investigate the 

spatial and temporal variability of an agroecosystem in order to carry out site-

specific treatments, applying different technologies and methodologies. The intra- 

and inter-crop variability that occurs within the crop is determined by the spatial 

and temporal variability of the soil, the crop species, and the climate (Lal, 2015). 

The main advantages of this practice include: savings on the quantity of inputs 

used (López-Granados et al., 2004; Noori and Panda, 2016), lower environmental 

impact (Van Evert et al., 2017), higher crop productivity, and product quality. Its 

application is widely carried out in herbaceous crops and, to a lesser extent, in 

tree crops, where PF is mainly applied in viticulture, as it succeeds in achieving 

the best combination of production quality, environmental impact, and costs 

(Santesteban, 2019). 

Smart agriculture is developing beyond the modern concept of precision 

agriculture, which uses data from global navigation satellite systems (GNSS) and 

different geographic information system (GIS) programs (European Agriculture 

Machinery Association, 2017). However, this new form of agriculture is based on 

the concepts of precision farming, but is enhanced by contextual awareness and 

is triggered by real-time events, improving its performance. Smart farming 

incorporates intelligent services for the application and management of 

information and communication technologies (ICT) and enables cross integration 

along the entire agri-food chain with regard to food safety and traceability 

(Sundmaeker et al., 2016; Vieri et al., 2012). This complete interconnection of 

services and technologies can be done in different ways: Among them, IoT 

represents the most efficient (Villa-Henriksen et al., 2020). The application of IoT 

called AIoT (Zou and Quan, 2017), Ag-IoT (Zhai et al., 2017), or IoF, meaning 

Internet of farming (Alahmadi et al., 2018) or Internet of food and farm 

(Sundmaeker et al., 2016), has received more interest in the scientific community. 
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Certainly, the possibility of interconnecting multiple technologies available today 

such as UAVs, WSNs, and IoT, makes precision agriculture more efficient and 

could bring about a momentous change in the concept of agriculture, as happened 

in the past during the so-called green revolution (Patel, 2013; Popescu et al., 

2020). To manage and analyse that all information is possible use the Machine 

Learning (ML; Virnodkar et al., 2020). This technology is a branch of artificial 

intelligence and allows the automation of decision-making processes and the 

development of a farm-specific management system in real time, simplifying 

farmers’ work. Indeed, ML provides an effective approach to build a model for 

regression and classification of a multivariate, non-linear system, due to machine 

learning models. Different machine learning algorithms, such as decision trees 

(DTs), support vector machines (SVMs), artificial neural networks (ANNs), 

genetic algorithms (GAs), and ensemble learning, have been used effectively on 

remotely sensed information (Mountrakis et al., 2011). Recently, the use of 

machine learning techniques combined with remote sensing data has reshaped 

precision agriculture in many ways, such as crop identification, yield prediction, 

and crop water stress assessment, with better accuracy than conventional remote-

sensing methods. ML can be used to improve data from any platform. Makhloufi 

et al., (2021), using this technology, were able to more accurately estimate the 

biophysical data and phenological stages of the olive tree from remote platforms. 

One problem in implementing ML algorithms is the high computing power 

required. However, advances in ML algorithms reduce the computational time for 

data processing.  

These new emerging technologies, such as geospatial technologies, Internet of 

things (IoT), big data analytics, and artificial intelligence (AI) (Jha et al., 2019), 

despite posing new technological and cognitive challenges to be overcome, could 

be used to make informed management decisions in order to further improve the 

agri-food sector. 

 

 

1.2. Precision Oliviculture  
 

The world population and its food consumption are growing rapidly, while the 

effects of climate change complicate the possibility of ensuring food security in a 

sustainable way (Godfray et al., 2010; Tilman et al., 2011). Therefore, new 

methods of cultivation and farm management are being sought that ensure the 

proper supply of food to the population and a low incidence of environmental 

impact. In recent years, there has been an increase in the agricultural area devoted 

to olive growing and in the consumption of extra virgin olive oil (EVOO) 

(FAOSTAT, n.d.). Precision olive growing today represents a method of farm 

management that certainly brings undeniable benefits to the sector from all points 

of view: productive (Álamo et al., 2012), qualitative, and environmental (Van 

Evert et al., 2017). Indeed, precision olive growing involves the application of 
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different technologies in order to optimize the use of different agricultural inputs 

(Rosati et al., 2015). In addition, a continuous change in cultivation techniques 

has been observed, which poses new challenges to ensure the environmental and 

economic sustainability of olive farms (De Gennaro et al., 2012). Today, the olive 

tree is cultivated in about 40 countries and occupies a global area of about 10.5 

million hectares (FAOSTAT, n.d.). Its cultivation is almost entirely (over 98%) 

in countries bordering the Mediterranean Sea, where olive growing has always 

been a traditional practice and a descriptive element of many landscapes in rural 

and peri-urban areas (Baldoni and Belaj, 2009). However, it is also continuously 

expanding in other continents, such as Australia and South America (FAOSTAT, 

n.d.). The world olive system is divided into three forms of cultivation: traditional 

olive cultivation (OT), intensive (HI) or high intensity (HD) olive cultivation, and 

superintensive (SHI) or very high density (SHD) olive cultivation (Rallo, 2006; 

Tous et al., 2007). These three major classes are profoundly different in 

cultivation techniques and require appropriate agronomic choices for a successful 

crop.  

These techniques are able to modify the vegetative and productive activity of the 

olive tree and require appropriate choices depending on the agro-climatic context. 

These include phytosanitary management, irrigation, soil management, pruning, 

fertilization, etc. However, the most important agronomic practices that need to 

be different depending on the type of cropping system in which precision farming 

can allow a clear improvement are fertilization and irrigation.  

Fertilization can directly and indirectly influence the vegetative-productive 

activity of plants and the whole agrosystem. Such application proves to be 

beneficial in terms of productivity and quality (size, oil content, etc.) when the 

foliar nutrient concentration is below the threshold (Bouhafa et al., 2014; 

Fernández-Escobar and Marín, 1997; Rosati et al., 2015). However, this practice 

is often carried out without considering the real needs of the crop, the real 

availability, and the soil characteristics (Fernández-Escobar, 2011). In fact, 

excessive doses are used with a consequent increase in vegetative activity to the 

detriment of productivity (to this condition the olive tree is very sensitive, 

manifesting itself with a clear alternation of production), increased management 

costs, pollution (Fernández-Escobar and Marín, 1997), etc. Furthermore, the use 

of massive doses of fertilizer leads to a deterioration in oil quality (Dag et al., 

2009; Fernández-Escobar et al., 2006; Tognetti et al., 2008), due to a reduction in 

polyphenol content (Fernández-Escobar et al., 2002) without any increase in oil 

yield. 

Irrigation, more than any other agronomic practice, is capable of modifying the 

quality and quantity of the fruit (Fernández et al., 2018); unfortunately, it is 

difficult to reach the right compromise. In fact, there can be negative effects on 

fruit quality such as a reduction of the phenolic component (excessive doses) and 

on productivity (lower doses). On the other hand, the positive effects are linked 

to an increase in production and a reduction in production alternation. The olive 

tree is a species that has always been recognized as resistant–tolerant to water 
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stress with an average water requirement of 1500–2500 m3 ha−1. For this reason, 

in traditional systems it is grown without the aid of irrigation (Tognetti et al., 

2009). Unfortunately, the new SHD farming systems, characterized by higher 

productivity, cannot be managed without the use of this agronomic practice. 

Moreover, the water resource is decreasing due to its continuous exploitation. 

Therefore, it is evident that it is necessary to use techniques and agronomic 

choices able to maximize crop water efficiency (WUE). This objective can be 

pursued in different ways: acting on the quantity of water supplied, acting 

differently on the different phenological moments, acting on the methods of 

irrigation distribution (micro-flow, sprinkling, etc.), and/or through the right 

agronomic choices (pruning, fertilization, etc.). However, in order to achieve this, 

the water status of the crops must be measured accurately and reliably in order to 

provide a predetermined stress level. In this perspective, precision irrigation can 

provide excellent results on the identification of water stress variability in the field 

(Fernández et al., 2018). 

In short, the profound differences between farming systems and the different 

repercussions that agronomic practices can have on them pose new challenges and 

problems in successfully transferring and applying precision agriculture to this 

agronomic system. The aim of this work was to provide state of the art studies 

carried out on the application of precision farming to olive growing, in its different 

forms (OT, HD, and SHD), and to illustrate its potential applications. The research 

was done thoroughly by examining the existing literature work done in the 

context. 

 

1.2.1. Remote Sensing Sensors for Spatial Variability Detection 

 

The first step in precision agriculture is the investigation of spatial variability, 

using different types of sensors capable of acquiring raster or vector information 

(Zhang et al., 2002). As reported by Zhang et al. (2002) (Zhang et al., 2002), the 

variability affecting agricultural production can be classified into six groups: yield 

variability; field variability; soil variability; crop variability; variability related to 

abnormal factors; and management variability. The sensors used for this purpose 

are capable of acquiring information of different kinds and cover a more or less 

wide area. In order to be able to apply them in the best possible way, it is necessary 

to know the variable to be investigated and the acquisition platform on which they 

will be placed. In fact, the same sensor, such as a multispectral camera, can be 

used on remote or proximal sensing platforms and give very different information. 

In this article, we focus on the sensors that are the most used in remote sensing of 

olive trees as they are the most used in precision farming. Generally, these sensors 

are cameras capable of acquiring images (raster information) in different 

multispectral bands. Their use differs according to the spatial, spectral, 

radiometric, and temporal resolution they offer. The spatial resolution of a sensor 

is defined by the size of the pixel representing the investigated area. Spectral 
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resolution is indicated by the width of the spectral bands of the acquired 

electromagnetic spectrum. Radiometric resolution represents the number of 

different signal intensities that the sensor is able to acquire; the measurement scale 

is expressed in bits and generally ranges from 8 to 16. Temporal resolution is 

associated with the platform hosting the sensor rather than the sensor itself and 

represents the time between one acquisition and the next of the same object (Deng 

et al., 2018). There are many classifications of sensors that can be used remotely, 

as they can be distinguished based on their operation, type of acquisition, number 

of acquisition bands (multispectral and hyperspectral), and more. In remote 

sensing, RGB, hyperspectral, and multispectral images are generally present as 

sources of spectral information. However, these provide different information, so 

it is necessary to understand their actual potential. In precision olive growing, 

multispectral images represent the most widely used spectral information. In this 

article, the classification was made on the basis of the main crop characteristics 

(nutritional, water, and canopy structural status) that can be investigated by 

remote sensors on olive trees in the literature. 

 

1.2.2. Sensors and Technologies for Identifying the Physiological State of the 

Olive Tree 

 

For the identification of nutritional deficiencies, canopy structural information, 

water status of olive trees, and more generally plant health conditions, sensors 

capable of detecting the electromagnetic energy reflected or emitted by plants are 

used in precision agriculture (Rubio-Delgado et al., 2021). This is because leaf 

reflectance is influenced by several factors (presence or absence of particular 

molecules, environmental factors, etc.) in specific regions of the electromagnetic 

spectrum, such as: in the visible wavelengths by photosynthetic pigments such as 

chlorophyll a, chlorophyll b, and carotenoids; in the near-infrared by leaf structure 

(size and distribution of air and water inside the canopy), and the presence of 

water and biochemical substances such as lignin, cellulose, starch, proteins, and 

nitrogen (Liang, 2005). Therefore, this optical technique is based on measuring 

the reflectance of incident electromagnetic radiation at different wavelengths in 

the range from 350 to approximately 25,000 nm. This range includes the 

frequency bands most commonly used in precision farming, such as: visible 

(VIS), near-infrared (NIR), shortwave infrared (SWIR), and thermal infrared 

(TIR). The set of spectral responses of a crop at high spectral resolution (narrow 

bands) allows its spectral signature to be identified. The spectral signature is 

typical for each crop and each stress situation (Figure 1). 
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Figure 1. Spectral signature of the olive tree. 

 

The reflectance curves of olive tree leaves show the same spectral pattern typical 

of the main agricultural crops (Liang, 2005) for all measured wavelengths, 

although the magnitude and amplitude varied especially in the NIR region (750–

1100 nm) due to different crop characteristics such as canopy structure, water 

content, etc. In the study by Rubio–Delgado et al. (2021) (Rubio-Delgado et al., 

2021) the reflection curves showed different reflection peaks and absorption 

sinks. In the VIS region, one reflection peak was centered at 554 nm (green 

region) and two absorption sinks were centered at 390 and 680 nm (blue and red 

regions, respectively). The NIR region had a higher reflection than the VIS region. 

In the SWIR region (1100–2300 nm), three absorption wells were identified as: 

1200, 1450, and 1720 nm, and three reflection peaks centered at 1280, 1650, and 

2200 nm (Rubio-Delgado et al., 2021). Thus, the most suitable electromagnetic 

spectrum regions for characterizing the absorption spectrum of olive trees are 

between 350–1350, 1421–1800, and 1961–2300 nm. The first two represent the 

electromagnetic regions of greatest interest as they are used to investigate the 

nitrogen and chlorophyll content and some structural properties of the canopy. 

The absorption regions of the band are caused by the presence of water and have 

a high presence of noise, resulting in a low signal-to-noise ratio (Tanriverdi, 

2006). Therefore, alterations in photosynthetic activity are related to the 

nutritional status, health, and vigor of plants, and can be easily detected with 

multispectral and hyperspectral sensors (Lee et al., 2010). 

Since the 1980s, the first vegetation indices (VI) have been created to examine 

growing conditions (Table 1).  
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Table 1. Shows the main VI used on olive trees. 

VI Acronym Equation Author of index 

Chlorophyll Absorption 
in Reflectance Index 

CARI CAR * (ρ700/ρ670) 
Kim et al., 1994 

Double-peak Canopy 
Nitrogen Index 

DCNI 
[(ρ720 − ρ700) / (ρ700 − ρ670)] / 

(ρ720 − ρ670+0.03) 

Chen et al., 2010 

Green Index GI ρ550/ρ680 
Chamard et al. 1991 

Green Normalized 

Difference Vegetation 

Index 
GNDVI (ρ800−ρ550)/(ρ800+ρ550) 

Gitelson and 

Merzlyak, 1994 

Modifed Chlorophyll 

Absorption in 

Reflectance Index I1510 
MCARI 

[(ρ700 − ρ1510) − 0.2(ρ700 −ρ550)] 

/ (ρ700/ρ151) 

Daughtry et al., 2000 

Moisture Stress Index MSI ρ858/ρ1240 
Hunt & Rock, 1989 

Normalized Difference 

Greenness Vegetation 

Index 
NDGVI (ρ550−ρ680) / (ρ550+ρ680) 

Chamard et al. 1991 

Normalized Difference 
Red-Edge Index 

NDRE 
(ρNir−ρRedEge) / 

(ρNir+ρRedEdge) 

Maccioni et al., 2001 

Normalized Difference 

Vegetation Index 
NDVI (ρ800−ρ680)/(ρ800+ρ680) 

Rouse, Haas, 

Deering, & Sehell, 

1974 

Normalized Difference 
Water Index 

NDWI (ρ858−ρ1240) / (ρ858+ρ1240) 
Gao, 1996 

Optimized Soil-Adjusted 
Vegetation Index 

OSAVI (ρNIR - ρR) /(ρNIR+ ρR+0.16) 
Rondeaux et al., 

1996 

Soil Adjusted Vegetation 
Index 

SAVI 
(ρNir-ρRed) * (ρNir+ρRed+L) * 

(1+L) 

Huete et al., 1988 

Simple Ratio 550,670 SR ρ550/ρ670 
 

Simple Ratio 780,550 SR ρ780/ρ550 
 

Simple Ratio 780,670 SR ρ780/ρ670 
 

Simple Ratio Water 

Index 
SRWI ρ680/ρ1240 

Zarco-Tejada, 

Rueda, & Ustin, 

2003 

Transformed 

Chlorophyll Absorption 
Ratio Index1510 

TCARI 
3[(ρ700 −ρ1510) − 0.2(ρ700 − 

ρ550)(ρ700/ρ1510)] 

Haboudane et al., 

2002 

Water Index WI ρ680/ρ858 
Peñuelas et al., 

(1993) 
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These are calculated from the individual reflectance value wavelengths acquired. 

These are classified into two large families: slope-based and distance-based (Xue 

and Su, 2017). In addition to their simple use, several processing techniques have 

also been experimented with in order to obtain greater precision and information 

of vegetation indices such as smooting (SM), partial least squares regression 

(PLSR) techniques, etc. Using PLSR techniques, it is possible to extrapolate 

spectral information of the crop from the entire reflectance spectrum (350–2500 

nm) (Hansen and Schjoerring, 2003). In olive trees, the most widely used VI are 

probably the normalized difference vegetation index (NDVI) and the soil-adjusted 

vegetation index (SAVI). However, there have not yet been exhaustive studies in 

the field that have determined their real potential for use in stress discrimination. 

Given the high sensitivity of Vis to variations in chlorophyll content, nitrogen, 

and plant nutritional status, their application has focused on precision fertilization 

techniques (Ali et al., 2017; Barranco-Navero et al., 2017; Rotundo et al., 2003) 

and precision irrigation (Fernández et al., 2018).  

Regarding the ability and aptitude of the different IAs to discriminate and 

investigate the nutritional status of the olive tree, there are not many studies; 

moreover, they seem to be in slight contrast. Gómez-Casero et al., (2007) showed 

that N and K deficiencies can be discriminated using about 26 different 

wavelengths, and the best indices were: NIR/G, G/R, and NDVI. In general, the 

best wavelengths for the calculation of VI were between 830 and 890 nm (mainly 

in the NIR region) for both nutrients. Noguera et al., (2020) viewed the reflectance 

curve, in the VIS-NIR region, of olive trees under different treatments of nitrogen, 

phosphorus, and potassium. Their results showed that potassium and phosphorus 

had a similar pattern with peaks evident at 550 and 700 nm and to a lesser extent 

at 670 nm; in the case of N, they were not significant. Furthermore, using different 

methods of data analysis they found that non-parametric analysis (ANN, neural 

network analysis) generated the best prediction of leaf element concentration. 

The study by (Rubio-Delgado et al., 2021) contributed significantly to the 

evaluation of the spectral characteristics of olive leaves with the aim of estimating 

the nutritional status of this crop. All the wavelengths used gave a low predictive 

capacity for leaf nitrogen content. The best results of the VI used in Rubio-

Delgado et al., (2021) were provided by the indices: double-peak canopy nitrogen 

index (DCNI, r2 = 0.72), modified chlorophyll absorption in reflectance index 

(MCARI, r2 = 0.53), and transformed chlorophyll absorption ratio index (TCARI, 

r2 = 0.64). The best vegetation index was DCNI, with a correlation of 0.72, 

combining the following wavelengths: 395, (blue); 652 (red), and 1275 nm 

(SWIR). No index combining wavelengths from the NIR region presented a high 

coefficient of determination, underlining those combinations using blue, red, and 

SWIR wavelengths are the most suitable for estimating leaf nitrogen 

concentration (LNC) in olive trees using hyperspectral data. Furthermore, Rubio-

Delgado et al., (2021) processed the raw data with different methodologies in 

order to verify which one is the best for determining the LNC. The results showed 

that the raw data resulted in an increase in the correlation between VI and LNC, 
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especially when second derivative and smoothing (SM) and/or standard normal 

variate (SNV) were used as a pre-processing method. The PLSR models produced 

very good accuracy compared to VI, although the uncertainties associated with 

noise in the hyperspectral data were higher. Similar results were obtained by 

Rotbart et al., (2013) and Zarco-Tejada et al., (2004). Rotbart et al., (2013) 

estimated the LNC using the same methodology (albeit in the laboratory) over a 

reduced reflection spectrum (SWIR was not considered). They conclude the work 

by stating that due to several confounding factors such as leaf orientation, water 

content, etc., it was not possible to build a robust model to be applied in the field. 

Precision irrigation is currently more and more successful, also due to the high 

technology push and the gradual reduction of the cost of the necessary equipment 

in the last years (Noguera et al., 2020). However, it still remains a well 

implemented practice for different crops (Cohen et al., 2005). In precision 

oliviculture, this practice is under continuous experimentation, since the spatially 

variable application of water is advantageous for environmental, economic, and 

management sustainability (cost reduction, better balance between production and 

vegetation, and higher quality of the final product). Several techniques can be 

used to directly or indirectly determine the water status of the crop. The most 

widely used in precision oliviculture to investigate the entire variability of the 

field are thermography and/or the use of Vis closely linked to the crop’s water 

content. 

The main advantage of using Vis for the identification of plant water conditions 

lies in the possibility of exploiting the wavelengths that are recorded with 

multispectral or better hyperspectral chambers, which are usually used for the 

identification of the correct nutritional and health status of crops. These Vis are 

based on reflectance spectroscopy in the electromagnetic regions of the visible 

(VIS), near infrared (NIR), and shortwave infrared (SWIR) and can be applied for 

indirect assessments of the water status of olive trees, as water content can greatly 

influence crop spectral signatures (Agam et al., 2014; Elsayed et al., 2011; Jorge 

et al., 2019; Sims and Gamon, 2002). Recently, a specific database containing 

several indices related to “vegetation water” applications has been created and 

published online by the Institute of Crop Science and Resource Conservation 

(INRES, www.indexdatabase.de; 1 February 2022) of the University of Bonn. 

Unfortunately, the proposed indices are not related to any specific crop or physical 

variable. 

Rallo et al., (2014) described the accuracy of several VIs and the use of partial 

least squares regression (PLSR) to determine leaf water potential (LWP). The best 

prediction was found using the moisture stress index (MSI) (RMSE = 0.72 and r2 

= 0.45) and the normalized difference water index (NDWI, RMSE = 0.75 and r2 

= 0.45). Using the PLSR technique, a good prediction of LWP was obtained at 

both tree canopy and leaf levels. However, this technique requires the availability 

of complete high-resolution spectra, which can only be obtained with portable 

spectroradiometers or hyperspectral remote sensors. Although the use of VI seems 

to have good applications in crop water stress management, high correlations are 

http://www.indexdatabase.de/
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not always observed. This is because water stress is a condition that determines 

the change of the leaf structure and its spectral response but not always in the 

short term, and it is also linked to many other stress conditions such as nutrition 

and the management of the olive grove itself. 

Even today, methodologies or techniques are proposed that use leaf temperature 

alone (in the case of olive trees, the range of stress variability is between 28–37 

°C), to distinguish different levels of stress. Unfortunately, this poses numerous 

limitations due to the high influence of environmental conditions. For this reason, 

they are less used today, and it is preferred to use some normalized indices (Idso 

et al., 1981; Jackson et al., 1981; Möller et al., 2007). The main index that allows 

the evaluation of the water status of olive trees is the crop water stress index 

(CWSI). This index was invented by Jackson et al., (1981) and Idso et al., (1981) 

and can have a value ranging from 0 to 1, indicating stress and good irrigation 

conditions, respectively. It is determined from the temperature of the object (in 

this case the leaf temperature) at a given time (T0). This temperature is closely 

correlated with water stress, since the physical principle behind the temperature 

change depends on transpiration. In fact, the stomatal closure that occurs due to 

water stress causes less leaf transpiration (loss of water vapor), which in turn 

causes an increase in leaf temperature. 

From the different studies that have been found in the bibliography, we can state 

that CSWI has proven to be a good indicator of the crop’s water status as it 

presents very good correlations with canopy temperature and the different stress 

indices (Ben-Gal et al., 2009, p.; Cohen et al., 2005; Egea et al., 2017; Sepulcre-

Cantó et al., 2005). Egea et al., (2017) correlated CSWI and the main water stress 

indicator parameters such as: stem water potential (Ψst), leaf water potential (Ψl), 

leaf transpiration rate (Em), and stomatal conductance (gsm), obtaining 

significant linear regressions (Figure 2). 
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 Figure 2. Relationship between CWSI determined from aerial thermal imaging and (a) 

midday stem water potential (Ψst), (b) midday leaf water potential (Ψl), (c) stomatal 

conductance (gsm), and (d) leaf transpiration rate (Em) for FI, 45RDICC, and 45RDITP 

treatments. The straight lines represent the fitted regression lines to the data. Data from 

(Egea et al., 2017). 

 

The CWSI can be calculated from images acquired at wavelengths (λ) between 

7–14 nm. The original formula that was proposed is as follows: 

 

𝐶𝑆𝑊𝐼 =  
𝑑𝑇−𝑑𝑇𝑙𝑙

𝑑𝑇𝑢𝑙−𝑑𝑇𝑙𝑙
     (1) 

 

where dT is given by (Tc−Ta), i.e., the difference between the canopy temperature 

(Tc) and the air temperature (Ta); dTll is the No-Water Stressed Baseline (NWSB) 

of fully irrigated crops; and dTul is the upper baseline. The dTll and dTul are the 

temperature values of fully irrigated and water stressed crops respectively. The 

dTll and dTul are both a function of the atmospheric vapor pressure deficit (VPD) 

(Idso et al., 1981; Veysi et al., 2017). Both upper and lower limits are species-

specific and can be derived. Unfortunately, the different published NWSB 

equations for olive are site-dependent, as the VPD normalization procedure used 

to obtain CWSI does not take into account differences in net radiation and drag 

that are known to influence this index. Furthermore, as shown by Egea et al., 
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(2017) the intercept and equation of the NWSB varies with season and time of 

day.  

In response to this, Berni et al. (2009) proposed to calculate the NWSB 

empirically using the Tc-Ta values of trees from the full irrigation (FI) treatment 

near solar noon (12:30 GMT), using hourly mean values from clear days from 

April to September. Thus calculated, the NWSB (Tc-Ta = −0.35 − VPD + 2.08, 

r2 = 0.67) shows differences in Tc-Ta varying less than 1.5 K even with large 

variations in VPD. This difference is very small when compared to NWSB for 

herbaceous crops but also for some tree species such as pistachio and peach 

(Bellvert et al., 2016; Tognetti et al., 2006) as well as the slope of the same, 

probably due to the high transpiration regulation capacity of olive trees (Bellvert 

et al., 2016; J. A. Berni et al., 2009; Egea et al., 2017).  

Given the laboriousness, in olive trees, other calculation methods have also been 

identified for their determination. To eliminate the problem of knowing the 

NWSB, Jones, (1999) modified the CWSI and defined a new normalized CWSI, 

which is described as follows. 

 

 

where Tcanopy is actual canopy temperature obtained from the thermal image and 

Twet and Tdry are the lower and upper boundary temperatures representing a fully 

transpiring leaf with open stomata and a non-transpiring leaf with closed stomata, 

respectively. Note that Twet and Tdry are equivalent to dTll e dTul in the original 

formulation of CWSI by Idso et al., (1981). However, normalizing CWSI is a more 

complex process with changing atmospheric conditions than using VPD alone. 

Indeed, varying atmospheric conditions complicate the normalization of CWSI. 

In this regard, Tdry and Twet can be calculated using an empirical approach. 

In the empirical approach, Tdry can be determined by adding 5 °C to the air 

temperature (Irmak et al., 2000), while Twet can be determined by two methods. 

One of these involves the spraying part of the canopy with water some 20 s prior 

to thermal image acquisition (Möller et al., 2007) or by measuring the temperature 

of a wet artificial reference surface (WARS). As detailed by Cohen et al., (2005) 

and Meron et al., (2003), the WARS is a permanently wet surface of reproducible 

radiometric and physical properties, such a wet object, which can also take the 

form of an artificial wet cloth (Meron et al., 2003), with a typical size of 30 × 40 

cm. Three main drawbacks limit the applicability of CWSIE for high 

spatiotemporal monitoring of stress (Agam et al., 2013; Ben-Gal et al., 2009). The 

first is the empirical value of 5 °C. While it had indeed been proven to represent 

the maximum leaf temperature under several conditions (Cohen et al., 2005; 

Irmak et al., 2000; Möller et al., 2007), the CWSIE is quite sensitive to the value 

assigned to Tdry, and a significant uncertainty is induced to the index’s value when 

use of this empirical formulation is adopted. The second drawback is that it must 

𝐶𝑊𝑆𝐼 =  
𝑇𝑐𝑎𝑛𝑜𝑝𝑦 − 𝑇𝑤𝑒𝑡

𝑇𝑑𝑟𝑦 − 𝑇𝑤𝑒𝑡
 (1) 
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necessarily be placed inside each thermal image acquired and the third required 

high-spatial resolution (to detect a significant number of pixels within the 

reference, while avoiding mixed pixels) (Ben-Gal et al., 2009). For these reason, 

one analytical method can be used to calculate Tdry and Twet. It is quite expensive 

in terms of calculation. This method is based on the energy balance equation 

(Jackson et al., 1988; Jones, 1999a) and requires the measurement of incoming 

solar radiation, air temperature, relative humidity, drag, and wind speed (Möller 

et al., 2007). These measurements are available from any meteorological station 

and can be representative of very large areas, but may have a degree of uncertainty 

that affects their accuracy. For the analytical calculation, an energy balance is 

performed to derive the net solar radiation (W m2), using the sum of incoming 

and outgoing radiation. The analytical form is proposed by Jones (CWSIA, (Jones, 

1999a)). This form has been used extensively in several studies in olive groves 

(Ben-Gal et al., 2009; J. Berni et al., 2009). Berni et al., (2009) developed an 

approach suitable for monitoring areas in the order of hundreds of hectares using 

an unmanned aircraft that could provide frequent visits and short lead times to 

detect water stress for irrigation scheduling. The methodology presented does not 

require the use of reference areas and relies on physical models to estimate all 

input variables of the energy balance equations. Berni et al., (2009) calculated 

firstly the resistance of the canopy to heat transport (rc). The model used to 

calculate the CWSI considers not only the vapor pressure deficit but also Rn and 

wind speed, parameters known to influence temperature differences between air 

and tree canopy. Once the rc is known and the potential canopy resistance for a 

well-watered crop (rcp) is estimated (Moriana et al., 2002; Testi et al., 2006), one 

can proceed with the calculation of the CWSI with a purely analytical solution, as 

reported below: 

 

According to Ben-Gal et al., (2009), a comparison of the two methodologies was 

carried out. The best of the two methods (analytical and empirical) turns out to be 

the CWSIA, although there are not clear differences. On the other hand, Agam et 

al., (2013) obtained contrasting results with Ben-Gal et al., (2009) as they showed 

that the use of CWSIE for the identification of the water status of olive trees during 

stress and recovery phase is better than the analytical one. Furthermore, Agam et 

al., (2013) observed a poor applicability of CWSIA indices throughout the day, in 

contrast to CWSIE, which proved to be better able to differentiate well-watered 

trees from stressed trees and better represented the evapotranspirative trend of the 

crop. Agam et al., (2013) proposed that the CWSIA can be used not so much for 

the estimation of the water status of the olive tree, but for an indirect estimation 

of the stomatal conductance, with which it is closely related. 

CWSI =   
γ(rc −

rcp
ra )

∆  + γ (1 + (
rcp
ra

)
 (2) 
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Agam et al., (2013) proposed the application of a new CSWI that is intermediate 

between the empirical and the analytical method, assuming that Twet is calculated 

analytically (Jones method), and thus overcoming one of the application 

limitations of CWSIE. Since Twet, calculated according to Jones (1999), has been 

shown to produce good CWSI values, it is therefore proposed to combine CWSIA 

with CWSIE to form a CWSIAE. In the latter method, Tdry is determined 

empirically, while Twet is calculated analytically, using meteorological 

measurements in the field. 

There is also another methodology to calculate CSWI that is used for satellite 

imagery (Guadalupe Sepulcre-Cantó et al., 2006a). This methodology turns out 

to be very similar to the use of CSWIE in that the image is calibrated based on the 

two references, hot and cold, present in the image. Veysi et al., (2017), using this 

methodology, were able to determine the CWSI using only remote sensing satellite 

data, using the following equation: 

 

where Ts is the land surface temperature (LST) derived from a satellite image 

providing the canopy temperature, Tcold is the temperature of the cold pixels, and 

Thot is the temperature of the hot pixels. Cold pixels are those covered by fully 

irrigated crops and hot pixels represent crops under water stress. Bastiaanssen et 

al., (1998) described the correct procedure for selecting hot and cold pixels while  

Veysi et al., (2017) made some modifications for selecting hot pixels. Hot pixels 

are selected from the area with maximum water stress while LST is calculated 

using thermal images. The LST calculation requires an image with no cloud cover 

or atmospheric correction of it, radiometric calibration, and knowledge of the 

emissivity of the considered surface. These are challenging tasks; moreover, 

existing terrestrial observations (EO) do not provide TIR images with detailed 

temporal and spatial resolution, and do not appear to be able to adequately 

distinguish individual canopies (G Sepulcre-Cantó et al., 2006; Guadalupe 

Sepulcre-Cantó et al., 2006a; Sepulcre-Cantó et al., 2007). Fuentes-Peñailillo et 

al., (2018) also proposed an intermediate methodology to be applied on remote 

stellar platforms to the Shuttleworth and Wallace model (Shuttleworth and 

Wallace, 1985). This methodology foresaw the use of terrestrial meteorological 

data (to determine the intra-plot variability of an olive grove) and satellite images 

(Landsat 7), obtaining results with reliable values but still with little applicative 

possibilities. Unfortunately, given the average size of olive farms and the 

implementation of new acquisition platforms with higher spatial resolution, the 

use of satellite platforms and CWSI calculation methods from these platforms 

have not been widely applied to olive growing. For this reason, applications of 

new thermal sensors on board unmanned aerial platforms (UAV) are gaining 

interest in water status investigation. They provide a spatial resolution of less than 

one square meter, allowing the retrieval of the real canopy temperature, thus 

𝐶𝑊𝑆𝐼 =  
𝑇𝑠 − 𝑇𝑐𝑜𝑙𝑑

𝑇ℎ𝑜𝑡 − 𝑇𝑐𝑜𝑙𝑑
 (3) 
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minimizing ground thermal effects compared to images from satellite platforms; 

despite the uncertainty caused by the high signal-to-noise ratio due to the high 

resolution. In addition, atmospheric effects and atmospheric transmittance should 

also be considered for low-altitude platforms aimed at keeping temperature 

measurement errors below 1 K. In conclusion, it can be stated that the CSWI, 

although reliable enough to predict crop water stress conditions, needs further 

studies in order to outline a standard protocol applicable in all soil and climate 

contexts. 

 

1.2.3. Sensors and Technologies for Olive Canopy Characterization 

 

Characterization of the canopy provides us with data on the amount of biomass, 

growth activity, productivity, water consumption (Caruso et al., 2019), health 

status, etc. Thus, canopy characteristics provide valuable information for specific 

tree management to reduce production costs and environmental pollution. There 

is a whole range of key cultivation operations, such as pesticide treatments (Gil 

et al., 2014), irrigation (Rufat et al., 2018; Sola-Guirado et al., 2017), and 

fertilization that depend largely on the structural and geometric properties of the 

trees. When talking about geometric variables, we refer to tree height, volume, 

area, and width, while structural variables mainly concern leaf area index (LAI), 

canopy penetrability, and canopy porosity. These can be determined in different 

ways and in a more or less empirical manner. Of these, the leaf area index (LAI) 

is the most important parameter. The LAI is a dimensionless variable and was 

initially defined as the total unilateral area of photosynthetic tissue per unit area 

of soil (Jonckheere et al., 2004; Villalobos et al., 2006).  

The structural and geometrical parameters of trees, such as volume and vegetation 

area, are generally derived from manual measurements of height and width. 

However, as this methodology is slow and expensive, alternative methods have 

been used in the last 10 years. The measurement and structural characterization 

of plants can be carried out remotely using different sensing principles. The main 

technologies that can be used for geometric characterization of crops include: 

ultrasound-based systems (Zaman and Schumann, 2005), digital photographs 

(Hernández-Clemente et al., 2014), laser sensors (Rosell et al., 2009; Sola-

Guirado et al., 2018), stereoscopic images (Rovira-Más et al., 2005), light sensors 

(Castillo-Ruiz et al., 2016; Giuliani et al., 2000), high-resolution radar images 

(Bongers, 2001), or high-resolution X-ray computed tomography (Stuppy et al., 

2003). Among these, light detection and ranging (LiDAR) and stereoscopic vision 

systems are probably the most promising techniques to obtain 3D images and 

maps of plants and canopies (Rosell and Sanz, 2012). It must be stressed that not 

all the previously mentioned technologies have been able to best describe the 3D 

structure of trees, due to the actual field conditions. 

For the manual characterization of the olive tree canopy, several methods can be 

used. Among the main ones we find the projected vertical crown area (VCPA) 
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method, ellipsoid volume (VE) method, and tree silhouette volume (VTS) method 

(Miranda-Fuentes et al., 2015). The main disadvantage of these methods concerns 

their high laboriousness without any possibility of being able to investigate the 

whole spatial variability of the plot. The methods of detecting biophysical 

parameters of olive trees remotely can be estimated from satellite area platforms 

with high spatial resolution (Gómez et al., 2011), on UAV (Caruso et al., 2019; 

Torres-Sánchez et al., 2015a; Zarco-Tejada et al., 2014a), from sensors mounted 

on unmanned aerial vehicle (UGV) or on tractors (Gamarra-Diezma et al., 2015; 

Martínez-Casasnovas et al., 2017; Miranda-Fuentes et al., 2015). 

A technology that arouses interest especially for canopy qualification in order to 

better define the direction and quantity of plant protection product is the use of 

ultrasound (Gamarra-Diezma et al., 2015). Ultrasonic sensors turn out to be 

cheap, robust, simple to use, and have shown reasonable accuracy under field 

conditions, sufficient for most cases (Rosell and Sanz, 2012; Tumbo et al., 2002). 

On the other hand, their main disadvantage is the error produced by some factors, 

mainly the shape and distance from the target, interference with the signal coming 

from the sensors, atmospheric conditions, and a low spatial resolution (requiring 

the use of a larger number of sensors). 

Among the most applied methodologies for the quantification of biophysical 

parameters of olive trees, there are applications using stereoscopic vision 

techniques, namely structure from motion (SfM) and image matching algorithms, 

which allow the automatic reproduction of high-resolution topographic scenes 

from multiple overlapping photographs (Jay et al., 2015). In order to orientate a 

set of overlapping images, it is necessary to identify a sufficient number of 

homologous points (called 'tie points') that connect the various survey images. 

SfM technology is applied using unsupervised algorithms that enable the 

identification of image tie points in a fully automated form. The identification of 

tie points begins with the extraction of feature points (or 'keypoints') from each 

image using feature detection algorithms (Manzo, 2020). Using specific 

algorithms, point feature descriptor information is obtained for each extracted 

feature, which are numerical vectors describing the gradient trend in the 

neighbourhood of the point. The next step is featuring matching (Bianco et al., 

2018). Usually, software is based on Euclidean distance calculation, which 

determines the similarity between two descriptors and classifies them, during this 

process a percentage of outliers can be found that is often not irrelevant, so it is 

necessary to identify geometrically consistent matching points by removing 

outliers using specific algorithms such as RANSAC (RANdom Sample 

Consenso) (Ghahremani et al., 2021). After this stage, the process involves 

performing Triangulation and Bundle Adjustment operations that iteratively add 

new points to the reconstruction. Subsequently, using specific algorithms, such as 

Multi-View Stereo (MVS) (Hui et al., 2018), which considers all the characteristic 

points of the scene, the dense point cloud is obtained, which allows the 3D 

geometry of the canopy to be constructed. 
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This technique involves the use of consumer RBG chambers (with or without an 

infrared filter), which allow 3D image reconstruction (Figure 3). The advantage 

of these technologies lies in the simple and reliable applicability of the system 

and its low cost (Anifantis et al., 2019; Caruso et al., 2019; Díaz-Varela et al., 

2015; Küng et al., 2011; Zarco-Tejada et al., 2014b). Anifantis et al., (2019), using 

a low-cost drone and a simple RGB camera, managed to obtain very good 

estimates of canopy structure and morphology compared to conventional classical 

methods. For the application of the SfM technique, the workflow after image 

acquisition involves orthomosaicking, reconstruction of the digital surface model 

(DSM) using structure from motion (SfM) image reconstruction, and finally GIS 

analysis to calculate the height and diameter of the canopy. A DSM is a digital 

representation of a topographical surface that represents the height of the top 

surface of the ground and objects on it, which can be used to obtain information 

on tree height. A digital terrain model (DTM) represents the topographic surface 

by including only the height of the ground surface, thus excluding the height of 

objects on it (Caruso et al., 2019). 

Based on the different spatial resolutions, very good results are obtained at plant 

and individual tree level. Of course, this technology can be tested and used on any 

type of planting (traditional and intensive) (Díaz-Varela et al., 2015). Caruso et 

al. (2019) (Caruso et al., 2019), with the same methodology, managed to obtain 

excellent correlations between biophysical and trunk section area (TCSA) 

parameters, underlining how vegetative activity and spectral response are closely 

related to the intensity of agronomic practices. Torres-Sánchez et al., (2015a), in 

order to fully exploit this technology, implemented more robust and automatic 

image analysis procedures (Figure 3), using a technique based on the 

methodology called geographic object-based image analysis (GEOBIA). 

GEOBIA overcomes some limitations of pixel-based methods by grouping 

adjacent pixels with homogeneous spectral values after a segmentation process 

and using the created ‘objects’ as the basic elements of the analysis (Blaschke et 

al., 2014; Karydas et al., 2017). GEOBIA, or OBIA, combines spectral, 

topological, and contextual information of these objects to address complicated 

classification problems. Karydas et al., (2017), starting from RGB and 

multispectral images with high spectral resolution, have obtained good results 

from the application of OBIA methodology. Stateras and Kalivas, (2020) have 

effectively applied OBIA technology on olive grove, managing to formulate a 

predictive model of yield based on canopy structural parameters and NDVI. 
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(a)        (b) 

Figure 3. 3D representation of a traditional plantation generated with a multispectral 

sensor (a) and a row plantation generated with a visible light camera (b). Data from 

(Torres-Sánchez et al., 2015a). 

 

Finally, the use of LiDAR is presented as a method of quantification and 

characterization of the canopy. This technology is becoming more and more 

successful in fruit growing, as it allows precise, objective, and fast determination 

of morphological parameters. Such systems can be mounted on any type of 

platform, even on the same tractor, so that normal cultivation operations can be 

used to identify and determine the entire olive grove. In the olive field, its use lays 

the foundations to immense application possibilities, especially in the case of 

SHD olive groves that need adequate conditioning of vegetative and productive 

activity to optimize production (Boussadia et al., 2010; Caruso et al., 2014; 

Tognetti et al., 2006). There are different types of LiDAR sensors on the market, 

with different modes of operation, and with a significantly lower cost than other 

technologies. LiDAR laser technology is a non-destructive remote sensing 

technique for measuring distances, providing a relatively new tool for generating 

a complete description of tree structure. The distance between the sensor and the 

target can be measured by two methods: by measuring the time a laser pulse takes 

to travel between the sensor and the target (LIDAR time-of-flight) or by 

measuring the phase difference between the incident and reflected laser beams 

(LIDAR phase shift measurement). In agricultural applications, 2D terrestrial 

LIDAR sensors can be used, which are much cheaper to use than 3D LiDAR 

sensors (Sola-Guirado et al., 2018). 2D LIDAR sensors obtain a point cloud 

corresponding to a plane or section of the object of interest. The fact that these 

sensors only scan in one plane does not necessarily limit their scope to 2D 

perception. Sola-Guirado et al., (2018), using a 2D LiDAR sensor, easily managed 

to obtain on-the-go measurements that could be used for canopy quantification 

for different crop operations. 

This technology, compared to the previously presented technologies, has the 

advantage of achieving much higher levels of resolution. Martínez-Casasnovas et 
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al., (2017) obtained correlations around 91%, compared to estimates made 

manually, with a high saving in time. Furthermore, they managed to identify the 

behaviour of sunlight within the canopy with an r2 of 0.97. Indeed, they observed 

that in the first section, sunlight could easily penetrate the canopy up to a distance 

of about 0.8 m. The comparison of sunlight extinction coefficients within the 

canopy can be used to evaluate the effect of different cultivation techniques, such 

as different pruning systems (Jiménez-Brenes et al., 2017) or different irrigation 

schemes. The possibility of investigating canopy structure with this technology 

offers more application possibilities than other methodologies (Castillo-Ruiz et 

al., 2016). Moorthy et al., (2011) managed to excellently characterize the olive 

tree canopy and related structural parameters using an intelligent laser ranging 

and imaging system (ILRIS-3D). They developed robust methodologies to 

characterize diagnostic architectural parameters, such as tree height (r2 = 0.97, 

rmse = 0.21 m), crown width (r2 = 0.97, rmse = 0.13 m), crown height (r2 = 0.86, 

rmse = 0.14 m), crown volume (r2 = 0.99, rmse = 2.6 m3), and plant area index 

(PAI) (r2 = 0.76, rmse = 0.26 m2). The algorithm used to process the LiDAR-3D 

data was the one developed and tested in the laboratory and proposed by (Moorthy 

et al., 2008). The disadvantage of this technology is related to its cost and the 

complexity of calculations, which are not yet standardized. 

 

1.3. Monitoring Technologies  
 

The primary objective of the monitoring process is to acquire the maximum 

amount of georeferenced information within the olive grove. A wide range of 

sensors can be used to monitor the different parameters that characterize the plant 

growth environment. The three agronomic variables that must be monitored in 

order to apply precision farming correctly are soil, climate, and crop. In the 

literature, very few works carried out in the olive grove have allowed the 

investigation of the spatial variability of the soil and climate characteristics, also 

considering what their influence on the cultivation activity might be. The main 

scientific progress has been made in the interpretation of data from biophysical 

parameters, production data, and spectral responses from the crop. The use of 

vegetation indices or punctual data closely linked to the productivity of the olive 

grove (such as the production map) are the main methods of analysis and 

management of the vegetative-productive variability found. 

Senay et al., (1998) distinguish three ways of measuring spatial variability in the 

field: continuously, discretely (e.g., point sampling of soil or plant properties), 

and remotely (e.g., through aerial photographs). Discrete sampling is generally 

characterized by a high precision of the investigated variable but cannot describe 

the complete variability in the field. When adopting this technique, proper 

geostatistical techniques must be applied, which allow the measurement of the 

variable to be transformed from discrete to continuous (Fountas et al., 2011). As 

far as continuous surveying methods are concerned, its progressive use is being 
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observed in precision olive growing, especially for the creation of particular maps, 

such as the production map. Finally there is remote sensing: This determines the 

creation of continuous measurements in space but acquired from platforms more 

or less distant from the object (Matese and Di Gennaro, 2015). It represents the 

most interesting and scientifically focused mode of data acquisition, as it allows 

a more precise, less laborious and often cheaper investigation than point sampling. 

The problem with remote/proximal sensing techniques is that generally an 

indirect estimate of the variable to be investigated is obtained and the correlation 

cannot always be generalized to other locations. For example, if we obtain an 

NDVI map in an olive grove, we can predict the amount of production that will 

be obtained, but this correlation is not always equally applicable. The literature 

often distinguishes the remote sensing technique into two large families based on 

the distance between the sensor making the measurement and the variable, in this 

case we speak of remote sensing and proximal sensing. Their differentiation is 

based on the distance between the sensor and the object of investigation. 

Generally, proximal sensing is based on the use of ground moving vehicles 

carrying various types of sensors, handheld sensors, and systems placed directly 

in the soil (ground sensing) or on the crop (Matese and Di Gennaro, 2015), while 

remote sensing identifies more distant and generally mobile platforms such as 

satellites, aircraft, and UAVs. These two categories are extremely different from 

each other and in precision oliviculture, the most used type of acquisition is 

remote sensing. However, proximal sensing in view of technological 

developments such as LiDAR, unmanned ground vehicle, etc., make this 

acquisition mode very interesting. 

 

1.3.1. Remote Sensing  

 

The application of remote sensing technologies for precision olive growing has 

increased rapidly in the last decades. The unprecedented availability of high-

resolution (spatial, spectral, and temporal) satellite imagery has promoted the use 

of remote sensing in many PA applications, including crop monitoring, irrigation 

management, nutrient management, disease management, pest management, and 

yield forecasting (Sishodia et al., 2020). 

The technologies available for the remote investigation of olive trees are very 

varied and allow increasingly precise monitoring. These are remote image 

acquisitions with different resolution scales, capable of describing the olive grove 

by detecting and recording reflected sunlight or wavelengths emitted from the 

surface of objects. Remote sensing techniques quickly provide a description of 

the shape, size, vigor, water status, nutritional status, stress state of the olive tree, 

and allow the assessment of variability within the olive grove. The three platforms 

mainly used in remote sensing are satellites, aircraft, and unmanned aerial 

vehicles or remotely-piloted aerial systems (UAV or RPAS). There are substantial 

differences between the different acquisition platforms depending on the 
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acquisition distance and the technical characteristics of the platforms themselves. 

In the case of precision oliviculture, it is possible to adopt satellite or airborne 

remote sensing techniques and obtain acceptable results (Apan et al., 2004; Noori 

and Panda, 2016). Such techniques can be used mainly at territorial level, for olive 

groves of large extents and with very large planting distances or even by public 

administrations and control bodies (Cruz-Ramírez et al., 2012). However, as 

today’s olive cultivation is also characterized by promiscuous forms of 

cultivation, with very small areas, this type of acquisition does not lend itself very 

well to precise monitoring in all forms of cultivation and to the correct application 

of variable rate technologies. On the other hand, when UAV platforms are 

adopted, plant investigation can be carried out with greater accuracy and precision 

of data (Figure 4), and even spatial resolutions of the order of a few centimeters 

can be achieved (J. Berni et al., 2009; Jurado et al., 2020). However, there are 

studies that emphasize the potential of remote sensing from satellite for the 

acquisition of multispectral images, especially when dealing with large areas 

(Ferwerda and Skidmore, 2007; Peña-Barragán et al., 2004; Solano et al., 2019). 

 

 
Figure 4. Airborne thermal imagery acquired over the study site: a) AHS image collected 

at 12:30GMT on 16 July 2005; b) UAV image collected at 13:30 GMT on 23 August 

2007; c) image detail showing the spatial resolution differences of AHS (2 m) against the 

UAV (40 cm). The spatial resolution of the UAV imagery shows individual tree crown, 

enabling pure crown temperature extraction. Data from (J. Berni et al., 2009). 
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All of the above platforms can be used to obtain information on soil, climate, and, 

above all, crops. Naturally, crop information is of greater interest as it allows the 

direct investigation of the health status of the olive tree (Zipori et al., 2020), in 

order to make the correct site-specific applications. The method involves the 

acquisition of different types of images such as multispectral, hyperspectral, and 

thermal images. From their processing, using GIS and photogrammetry software, 

it is possible to obtain the different information. Generally, there is also the need 

to carry out direct measurements in the field in order to better calibrate the final 

information by making it quantitative. In this way, it is possible to obtain thematic 

maps that are used to construct the prescription maps that represent the basis for 

carrying out site-specific management (Fountas et al., 2011; López-Granados et 

al., 2004; Peña-Barragán et al., 2004). How the different platforms have been 

applied in precision oliviculture is discussed below.  

 

1.3.2. Satellite 

 

Satellites have been used in agriculture since the early 1970s when the Landsat 1 

platform (in orbit since 1972), equipped with a multispectral sensor, became 

operational. However, the first applications in olive cultivation have been carried 

out since the 2000s for the identification of different optical and reflectance 

properties of the crop. Today, several satellite platforms are available and are 

constantly evolving due to the launch of new satellites by government space 

agencies and private companies. Indeed, the availability of images has increased 

over the years and is now very wide. Thus, the range of sensors available on the 

different platforms has also increased, ranging from multispectral sensors to 

hyperspectral and thermal sensors. Therefore, given the high availability and 

types of images that are acquired by satellite, these platforms are increasingly 

used for different precision farming applications. Unfortunately, images may be 

available for a fee or free of charge, and often a high image cost is associated with 

a high spatial resolution. 

Satellites are classified according to their spatial resolution capability (Giovos et 

al., 2021) (Table 2), high definition ones include RapidEye, which acquires 

images in 5 multispectral bands, with a resolution of 5 metres, first launched into 

orbit in 1996 and developed by a European project, since it has been active it has 

been used in many agriculture and forestry studies (Stoll et al., 2012). Another 

satellite with medium to high spatial resolution is Landsat 8 OLI (Operational 

Land Imager) which has provided excellent results, it consists of nine spectral 

bands with a spatial resolution of 30 m for the bands operating on visible light, it 

also consists of bands operating in the shortwave infrared. While a band has been 

implemented that reduces the disturbance caused by clouds. With the Landsat 

system, progress was made in terms of image resolution, however, high-resolution 

satellite systems such as IKONOS and Quickbird were later devised, the former 

providing panchromatic (PAN) images with a resolution of 0.80 m, the latter 
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launched in October 2001 provided images with a higher resolution than IKONOS 

(Yang, 2018). Another satellite is Planet, which provides a high-resolution, 

continuous, and comprehensive view of agronomic field conditions (Cheng et al., 

2020). GeoEye-1 launched in 2008 and WorldView-3 launched in 2014, are very 

high-resolution commercial satellites, for example WorldView-3 has 29 spectral 

bands and an average revisit time of less than 1 day. The MODIS satellite acquires 

data in 36 spectral bands with wavelengths from 0.4 μm to 14.4 μm and varying 

spatial resolutions, two bands at 250 m, five bands at 500 m and 29 bands at 1 

km. 

 

Table. 2 Representation of satellites used for monitoring. 

Satellite 
Temporal 

Cover Age 

Spectral 

Bands 

Ground Sample 

Distance (GSD) 

Global revisit 

time 

RapidEye AG 1996 - 2020 VIS-NIR 6.5 m 5.5 days 

IKONOS 1999–2015 PAN-VIS-NIR 
0.8 m PAN 3.6 m 

multispectral 

3 days MS 12 

days PAN 

Terra satellite (EOS AM-

1): (MODIS) 
1999 –present VIS-NIR 250–500 m 2 days 

Terra satellite (EOS AM-

1): (ASTER) 
1999 –present VIS-NIR 15 m 4–16 days 

Quickbird 2001–2015 PAN-VIS-NIR 
0.6 m PAN 2.5 m 

multispectral 
3 days 

TerraSAR-X 2007–present X-band SAR 3 m 3 days 

WorldView-2 2009–present PAN-VIS-NIR 
0.46 m PAN 1.84 

m multispectral 
1 day 

Planet 2009 - present VIS-NIR 3.7 m 1 day 

WorldView-3 2014–present PAN-VIS-NIR 
0.31 m PAN 1.24 

m multispectral 
1 day 

Sentinel-2 2015–present VIS-NIR 10 – 30 m 5 days 

 

The satellite provides large scale global dynamics measurements of the entire 

earth's surface, minimising the effect of cloud disturbance. One of the most widely 

used satellites in PA is the Sentinel-2 this satellite is capable of sampling 13 

spectral bands up to a resolution of 10m. The main advantage of Sentinel-2 over 

other satellites is that the data are open-source (Varghese et al., 2021). The use of 

data derived from satellite platforms is very wide, examples include studies to 

identify vineyards growing in large regions or areas (Zhao et al., 2019), monitor 

olive variability. Landsat and MODIS satellites are often used to monitor 

evapotranspiration processes and in general are useful for detecting water status. 

Another satellite that is being used to conduct vineyard water stress prediction 

surveys is the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) satellite (Alkassem et al., 2022). Consisting of 15 bands 

with 15 m resolution, it is suitable for measuring soil properties, soil temperatures 

(Silvero et al., 2020). Another satellite system used to evaluate soil moisture 

content is TerraSAR-X, which is equipped with a synthetic aperture radar (SAR) 
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antenna that provides high-quality radar images (Tang et al., 2020)). Finally, the 

use of satellite systems is also important for monitoring soil erosion phenomena 

(Baiamonte et al., 2019). The use of satellite information is increasingly in 

demand, to date, petabyte-scale remote sensing data archives can be accessed free 

of charge through government agencies (NASA; NOAA; Copernicus) (Loveland 

and Dwyer, 2012), which provide geospatial data processing tools. 

The main limitation of these technologies relates to spatial resolution and the need 

to obtain images with good radiometric correction to obtain more accurate data. 

In general, thermal images have low spatial resolutions. For example, Landsat 7 

and 8 have spatial resolutions in the order of 60 and 100 m, respectively.  

Satellite remote sensing techniques can be used for different purposes. In 

precision oliviculture, they can be used with the aim of better managing the main 

cultivation techniques such as: precision irrigation, description of biophysical 

parameters (Gómez et al., 2011; Solano et al., 2019) and for precision fertilization. 

High-resolution images are needed for the identification and description of 

biophysical and structural parameters of olive trees. Indeed, the results obtained 

from satellite platforms have resolutions that are hardly comparable to those 

obtained from proximal acquisition platforms or UAVs (Zhang and Kovacs, 

2012). In the study by Gómez et al., (2011), using images from the CASI satellite 

with a spatial resolution of 1 m and an algorithm developed by (Pouliot et al., 

2002), the authors managed to obtain correlations of 0.82 and 0.87 with very high 

significance and an RMSE of 4.8 m2 and 8.4 m3, for canopy size (m2) and volume 

(m3), respectively. However, using other satellite platforms, such as QuickBird, 

no acceptable results were obtained.  

Precision irrigation of olive trees using satellite imagery can be skilfully applied 

through the calculation of water-sensitive VIs and thermography. The main 

limitation of thermography is the possibility to obtain images with high spatial 

resolution, which are able to derive the pure temperature of the canopy, 

minimizing the effect of the soil (Fernández, 2017; Ha et al., 2013). 

From satellite, given the wide availability of multispectral sensors with the main 

VIS, NIR, and SWIR bands, it is possible to calculate the different vegetation 

indices in order to carry out precision fertilization. Unfortunately, in the literature 

there were not many studies highlighting the application of this practice on the 

olive grove. Yet, fertilization represents an extremely important practice for the 

determination and maximization of production quality and quantity (Fernández-

Escobar et al., 2006; Tognetti et al., 2006). Precision fertilization is carried out on 

the basis of satellite, soil, climate, and crop data. It allows the differentiated 

distribution of different fertilizers (variable rate application, VRA) according to 

actual needs. An application study concerning precision fertilization in the olive 

grove using satellite information was conducted by (Noori and Panda, 2016). 

Using images from the ALOS-Avnir-2 satellite of the Japanese Aerospace 

Exploration Agency (JAXA), they managed to obtain several correlation 

algorithms that could be used for the creation of variable rate fertilization (VRF) 

maps. Unfortunately, these algorithms need to be tested for complete reliability 
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before they can be applied in other areas. In this study, in addition to multispectral 

data, information on soil, structural, and cultural properties was acquired. The 

multispectral data were acquired with the classic acquisition bands such as B, G, 

R, and IR, in order to calculate the three most widely used vegetation indices in 

the literature: normalized difference vegetation index (NDVI) and the soil 

adjusted vegetation index (SAVI). 

 

1.3.3. Aircraft 

 

Airborne missions for classical precision farming applications have not been very 

successful, as they are overpriced and often linked to private agencies. However, 

they have a better resolution of the final image than satellite platforms and can 

cover large areas. In precision oliviculture, the applications coming from this type 

of acquisition have been little used and concern only precision irrigation. In fact, 

good results have been obtained from airborne campaigns with high spatial 

resolution regarding the investigation of water status (J. Berni et al., 2009; 

Sepulcre-Cantó et al., 2005; Guadalupe Sepulcre-Cantó et al., 2006a; Sepulcre-

Cantó et al., 2007). In Sepulcre-Cantó et al., (2005), the aerial campaign was 

conducted with the airborne hyperspectral scanner (AHS) (Daedalus Enterprise 

Inc., USA). The AHS has a sensor that allows it to acquire 80 spectral bands 

between 430 and 12,500 nm. In this work, they were able to achieve a spatial 

resolution of 2.5 m. Three different flights were also carried out at different times 

of the day. Using this platform, they were able to faithfully describe the variability 

of the water status of olive trees. The relationships found for individual trees 

between the estimated and calculated temperature on the ground resulted in the 

following correlation indices: r2 = 0.81; r2 = 0.52, and r2 = 0.56, respectively, for 

the three flights performed. Sepulcre-Cantó et al., (2006) also demonstrated that 

high spatial resolution AHS images enabled the study of spatial and temporal 

thermal effects caused by water stress. In Sepulcre-Cantó et al., (2007), using the 

same sensor, they were able to monitor yield and fruit quality parameters. This 

time, the spatial resolution obtained was 2 m with the same bands. In this study, 

the quality parameter was related to the water content of the olive with respect to 

the different water conditions of the plants under different irrigation strategies. 

These results suggest that high-resolution thermal remote sensing is a potential 

indicator of yield and some fruit quality parameters under different irrigation 

regimes. Indeed, Tc-Ta maps could be used to assess the level of water deficits in 

orchards and to predict its impact on yield and fruit quality. 

Unfortunately, no article has been found in the literature attempting to apply 

spectral data from such a platform in order to apply other variable rate cultivation 

practices such as fertilization. However, the good results that have been found in 

the previously mentioned works on precision irrigation give hope for an 

implementation of the use of this acquisition platform. 
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1.3.4. Unmanned Aerial Vehicles (UAV) 

 

In the last decade, to overcome some limitations related to the use of satellites and 

aircraft such as low versatility and reduced spatial resolution also called UAVs 

(Unmanned Aerial Vehicle) or UAS (Unmanned Aerial System) or more 

commonly Drones. These platforms have numerous advantages thanks to the wide 

operational flexibility. In fact, they can be equipped with different types of sensors 

making these platforms suitable for a multitude of surveys. Their most evident 

benefits are associated with the speed of data acquisition, the ability to fly below 

120 m which allows to obtain a high geometric resolution and consequently very 

detailed information. The recent innovations of these platforms have significantly 

reduced the costs of purchase and use. Furthermore, the temporal resolution 

allows the surveys to be carried out at certain times linked to the agronomic 

conditions, however this advantage can be thwarted by the meteorological 

conditions. UAVs face some technical limitations, such as battery efficiency, 

communication distance and payload. There are different models on the market 

that can be classified according to the flight mode adopted (Figure5). 

 

 
Figure 5. Classification of the several UAVs used in agriculture. 

 

In this case we distinguish two macro categories, namely fixed wing and 

propeller. Fixed-wing UAVs take advantage of aerodynamic thrust and lift and 

are mainly used for spraying and photography over a wide range in a 

homogeneous orographically area. The macro category of rotary wing UAVs can 

be divided into helicopters and multirotors. The helicopter type features a large 

propeller on top of the aircraft. While, multirotor models are characterized by 

multiple rotors that allow them to move. Depending on the different number of 
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rotors, they are divided into: quadricopters, hexacopters and octacopters. These 

categories of drones are mostly used in Italy due to their versatility of use in 

fragmented areas and with irregular orography. This is due to a vertical take-off 

and landing mode and a facilitated altitude variation according to the terrain 

profile. 

Regardless of the type of drone, it is necessary to know how the different flight 

variables can influence the final acquisition of the data and the entire processing 

process. The flight variables that can be modified by the operator include: flight 

altitude, forward speed, type of flight (manual or automatic), flight direction, 

gimbal inclination, frontal and lateral overlay of images, the aperture and closure 

of the lens, and the focal length. While the most important environmental 

variables include: wind speed and light conditions. 

UAV platforms are the most successful spatial data acquisition platform in 

precision olive growing. They can be controlled from a visual distance by a pilot 

on the ground or fly autonomously to a user-defined set of waypoints, using a 

complex system of flight control sensors (gyroscopes, magnetic compass, GPS, 

pressure sensor, and triaxial accelerometers) controlled by a microprocessor. 

UAVs can be equipped with a variety of sensors, allowing a wide range of 

monitoring tasks to be performed. The particularity of the UAV application in 

remote sensing is its high spatial resolution (centimetres) and timeliness, due to 

reduced planning times. These features make it ideal in SHI or OT olive 

cultivation characterized by highly fragmented and heterogeneous areas. In fact, 

by adopting a common UAV it is possible to use different types of chambers and 

obtain very detailed information of the field conditions. For this reason, most of 

the scientific articles related to biomass quantification and characterization of 

olive tree canopy architecture have focused on the use of UAVs, also in view of 

future implementations of olive tree growth models that need high spatial 

resolution information (Moriondo et al., 2019; Stateras and Kalivas, 2020). 

Furthermore, such platforms can be used in some countries for direct field 

distribution of some inputs, such as plant protection products (Martinez-Guanter 

et al., 2020). 

The use of UAV platforms in precision oliviculture has focused on the possibility 

of acquiring spectral reflectance images, thermal images, and RGB images for 

photogrammetric processing. The high spatial resolution of the images obtained 

can be attributed solely to the lower flight height compared to other platforms 

(Jurado et al., 2020). This high resolution makes it possible to better discriminate 

between different disturbing elements, such as bare soil, and to obtain pure crop 

pixels. The main applications of UAV in olive cultivation concern 

photogrammetry for the spatial reconstruction of the canopy (Díaz-Varela et al., 

2015; Zarco-Tejada et al., 2014b) and its use in thermography to serve irrigation 

(Ben-Gal et al., 2009; J. Berni et al., 2009). The limitations of this technology are 

related to cost, technical training and weather conditions. UAV has been widely 

used recently for 3D reconstruction of olive tree structure, mainly using SfM 

techniques (Anifantis et al., 2019; Caruso et al., 2019; Díaz-Varela et al., 2015; 
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Küng et al., 2011; Zarco-Tejada et al., 2014b). An aspect of primary importance 

in the use of UAVs concerns the possibility of being able to find the right 

compromise between surface to be investigated, final resolution, and processing 

procedure (Torres-Sánchez et al., 2015a; Zarco-Tejada et al., 2014b). Zarco-

Tejada et al., (2014b) obtained an r2  =  0.83 and an overall root mean square error 

(RMSE) of approximately 35 cm among the canopy structural parameters 

measured using SfM, highlighting the importance of maintaining a pixel spatial 

resolution of at least 30 cm at the time of acquisition. Furthermore, compared to 

other platforms, it is possible to associate the geometric characteristics of the 

canopy with spectral information. 

In addition to canopy investigation, literature has focused on the use of drones to 

collect thermographic information to serve precision irrigation (Ben-Gal et al., 

2009; J. Berni et al., 2009; Egea et al., 2017; Rallo et al., 2014). While on other 

crops the possibility of acquiring multispectral images to carry out precision 

fertilization is a well-established practice, in the olive tree, there are not many 

studies about it. In fact, the application of drones in precision oliviculture in order 

to obtain spectral information and to carry out variable rate fertilization has not 

been investigated. However, much research points out that precision fertilization 

in the olive grove can also be conducted by the creation of prescription maps 

starting from soil element content measurements and obtain savings of up to 30% 

of fertilizer (Fountas et al., 2011; López-Granados et al., 2004; Van Evert et al., 

2017). 

 

1.3.5. Proximal sensing 

 

Proximal sensing is a data acquisition system that exploits different technologies 

that are in proximity to or directly in contact with the target surface (land surface 

or plant). The main feature of proximal sensing is the high accuracy of the data 

compared to remote sensing but generally lower than in the laboratory. Another 

important feature of this system is that the sensors can be used either on-line or 

off-line. In-line sensors are generally used to directly perform operations in the 

field while off-line sensors need to be processed in order to be used (Pallottino et 

al., 2019). The advantages of proximal sensors advantages are their high-

resolution imagery; their independence from external parameters; their suitability 

for small fields; and their simple application (i.e., mounting the sensor on the 

tractor). A very important factor to consider is the different sources of information 

that can be generated compared to remote sensing due to the different sensor-

object position. The limitations of proximal sensing are due to its high cost and 

its low capacity to acquire data that are able to describe the entire variability 

present in the plot. In fact, they are often point data, which have to be spatialized 

in order to refer to the whole area (Zhang et al., 2002). The ground platforms used 

for proximal sensing can be grouped into three categories: portable, self-

supporting in the field, and mounted on tractors or agricultural machinery or 
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UGVs (Sishodia et al., 2020). The development of UGVs is likely to greatly 

simplify crop operations that are carried out manually such as weed control, 

harvesting, etc. Regarding the use of UGVs in precision oliviculture, there have 

been no scientific applications in the literature yet, although the progress made in 

other sectors bodes well for their future application in olive cultivation (Saiz-

Rubio et al., 2021).  

Among the most interesting applications of proximal sensing with a direct effect 

on precision olive growing are LiDAR (Martínez-Casasnovas et al., 2017; 

Miranda-Fuentes et al., 2015) and ultrasonic sensors (Gamarra-Diezma et al., 

2015). The latter have found practical use on the distribution of plant protection 

products. Solanelles and Planas, (2005) created an ultrasonic prototype that 

allowed the automatic calibration of plant protection products, based on the 

architecture of the canopy.  

Among the proximal sensors are those involved in monitoring olive yield. (Alcalá 

Jiménez and Álamo Romero, 1998) initiated precision farming applied to olive 

groves, through the simple application of GPS sensors to map the production of 

olive trees. In fact, the production map represents one of the main sources of 

information for the creation of the correct fertilization map (Agüera-Vega et al., 

2013; Castillo-Ruiz et al., 2015). Álamo et al., (2012) was able to determine area 

production (20–30 trees per area) simply by weighing production. In other fields, 

such as precision viticulture, several on-the-go methods already exist that can map 

plant production. The idea would be to be able to transfer this type of technology 

to precision olive growing as well, in order to obtain data on the productivity of 

individual trees, as this is one of the most important pieces of basic information. 

There are also other portable instruments that allow, for example, the calculation 

of chlorophyll content or the spectral response of the olive tree, directly in the 

field. However, they have not been well investigated for use in precision 

oliviculture. 

 

Overall, precision olive cultivation has good possibilities to be developed under 

different climatic and agronomic conditions. As can be seen from this 

introduction, the main technologies used to investigate olive trees have been 

remote platforms equipped with different types of sensors. However, proximal 

platforms are also becoming more interesting from a scientific point of view and 

for various practical applications. 

However, what has been illustrated so far in this section has focused on the 

application of different technologies or methodologies that can be applied without 

considering different factors. In fact, soil, climate and plants are interconnected 

and the management of each can change the behaviour of the others.  
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AIM OF THE RESEARCH 
The main objective of this PhD thesis was the application of precision agriculture 

(PA) and smart farming (SF) in a typical orchard agroecosystem in the 

Mediterranean environment such as the olive tree (Olea europea var. europea). 

The experiment provided an agronomic decision support system (DSS) for the 

management of inter- and intra-plot variability. For this purpose, acquisition 

technologies and also data analysis methodologies were evaluated. Specifically, 

this thesis evaluated the proximal and remote sensing technologies equipped with 

RGB, multispectral, hyperspectral and thermal sensors. The main remote sensing 

applications focused on the study of UAV platforms, while proximal platforms 

involved the use of spectroradiometers and a handheld system. The UAV platform 

was used to understand the effect of the altitudes and flight paths in the final 

photogrammetric reconstruction in dense or sparse canopy conditions. Moreover, 

the multispectral images, the Orthomosaic and the Digital Elevation Model were 

processed to develop a GEOBIA (Geographic Object-Based Image Analysis) 

methodology to determine the vegetative, biometric and spectral crops condition 

in several GIS (Geographic Information System) software and scales of detail. 

The spectroradiometer was used to evaluate the spectral survey of the canopy 

from different viewpoints. During the research period abroad, an intelligent 

handheld system was evaluated in an olive orchard with different irrigation 

schedules. The accuracy of the GNSS positioning system, the different NDVI 

conditions of the canopy and the water stress conditions were evaluated. The 

water stress conditions were evaluated by calculating the CWSI empirically and 

analytically. 
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2. MATERIALS AND METHODS 
 

2.1. Study area 
 

The study area is located in Calatafimi Segesta (Trapani, Italy) with coordinates 

in the centroid of Lat 37°51'48.21 "N; Long 12°57'15.17 "E (Figure 6). 

 

 
Figure 6. Experimental site location on a scale of 1: 1,500,000. Maps Data: Google 

©2021, QGIS. 

 

According to the Koppen–Geiger’s classification, the climate of the area is 

classified as Mediterranean hot summer climates (Kottek et al., 2006). Climatic 

data was recorded from 2020 to 2022 in a weather station of the Sicilian 

Agrometeorological Information Service (SIAS) daily. The data collected were: 

average temperature, minimum temperature, maximum temperature, rain, 

potential evapotranspiration, average relative humidity.  

The soil moisture regime is xeric, bordering with aridic, and the temperature 

regime is thermic. According to the United States Department of Agriculture 

(USDA) classification, the soil belongs to the Sandy-Clay-Loam granulometric 

class (Figure 7). The field has a perimeter of 344m and the surface area covers 

5860 m2, with a flat surface topography. The soil presents a low percentage of 

coarse fragments on most of the surface.   
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Figure 7. Granulometric class of the experimentation area. 

 

The experiment was conducted between 2020 and 2022 in a 20-year-old olive 

grove cultivated according to ordinary management practices without irrigation 

system. The olive trees were planted in 2002 with single cultivar typical of the 

area, the cv. Cerasuola.  During the experimentation period, the olive orchard was 

in full productivity. The olive orchard is cultivated with a traditional training 

system and a plant layout is 5 x 5,5 m; the direction of the rows is NE-SW at an 

angle of 60° to the North (Figure 8). The total number of trees considered in the 

tests was 211 however 24 of which were used for some particular multispectral 

and hyperspectral acquisition data.  
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Figure 8. Training system and plant layout. 

 

2.2. Sampling and Surveys 
 

In 2020, the first surveys were carried out, aimed at exploring the variability 

present in the field from a cultural and pedological point of view. Plot perimeter 

and plants were georeferenced on DOY (day of years) 161 using the instrument 

Stonex S7-G (S7-G, Stonex, New York USA) with differential RTK (Real Time 

Kinematic) correction. On DOY 163 the trunk cross section area (TCSA) at 0.50 

m from the ground trying to exclude any hyperplasic nodes typical of the olive 

tree was measured (Noori and Panda, 2016). Field samplings were carried out in 

order to investigate soil and crop nutritional status variability using a regular 15m 

x 11m grid in both cases. The sampling point was identified at the intersection 

point (node) of the sampling grid, excluding the external part of the field. A total 

number of 36 points was sampled (Figure 9). 
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Figure 9: Sampling grid and sampling points used for characterization of the nutritional 

and soil condition. 

 

Soil samples were taken at each intersection point of the grid; thus, the leaf 

sampling was represented by an experimental unit of four adjacent olive trees 

(Figure 10). Soil sampling was carried out on DOY 168 at a depth of 10-30 cm 

using an Edelman auger. Leaf sampling was carried out on DOY 205 (López-

Granados et al., 2004). Each leaf sample consisted of four sub-samples of 25 

healthy, fully expanded and mature leaves collected from the central portion of 

current season branches not shaded approximately 1.5 m above the soil surface, 

at the four cardinal points from each olive tree (Figure 10).  
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Figure 10. Leaves sample location in each single tree. 

 

To determine the production map per plant in the year 2020, individual 

productions were quantified (Figure 11ab). In contrast, in the year 2021, no 

production was recorded as a result of intensive pruning. In the year 2022, 

production was only quantified for 20 selected plants in the two canopy portions 

facing north and south. In both season the olives were harvested when their 

maturity index was equal to 2.38 determined according to (Furferi et al., 2010) on 

DsOY 303-306 and 342 respectively. A team of four operators was employed to 

harvest the olives. Two of them used the hand-held electric harvester model 

OLIVION P230 (Pellenc, France). 
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(a)       (b) 

Figure 11. (a) hand-held electric harvester model OLIVION P230; (b) harvest 

team organization 

 

The other two operators had the task of laying and wrapping the nets under each 

plant and quantify the harvested fruits for each plant and the average mass of the 

drupes in the field using two digital balances (Shimadzu ATY324R, Milan, Italy; 

Figure 12ab). 

 

    
(a)        (b) 

Figure 12. (a) Olives after harvest; (b) weighing the ten drupes for tree.  
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For each tree was countified the average weight of ten drupes. Furthermore, one 

hundred healthy drupes (25 drupes per tree) were sampled from four trees used to 

collect leaf samples. 

 

2.3. Laboratory Analysis 
 

Laboratory analyses were carried out at the Soil Chemistry laboratory of the 

Department of Agricultural, Food and Forest Sciences of the University of 

Palermo. After sampling, the leaves were dried at 70°C for 24 hours and milled 

to pass through a 0.25 mm mesh (Figure 13) thus the soil samples were ground 

and sieved at < 2 mm after the air drying. 

 

 
Figure 13. Leaves dry process in stove.  

 

2.3.1. Soil analysis 

 

Soil samples were analyzed to determine texture, reaction, electrical conductivity 

(EC), total carbonates (TC), organic carbon (TOC) and total N (TN). Soil texture 

(sand, 2–0.02 mm; silt, 0.02–0.002 mm; clay, <0.002 mm) was determined by the 

standard methodology (Gee and Or, 2002, Figure 14ab). 
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(a)          (b) 

Figure 14. Texture analysis process: (a) sedimentation step; (b) shake step. 

 

The methodology was as follows: 10g of sample was weighed and put into 300ml 

Erlenmeyer flasks. Then the flasks were filled with H20d until a volume of 200ml 

was reached. Using the double-stroke pipette, 10ml of clay dispersant was put in. 

At this point, the samples were shaken for 2 hours with a solution containing 

sodium hexametaphosphate and sodium carbonate. Once the shaking was 

complete, the contents of the flasks were poured into the sedimenters with a three-

way tap. Naturally, the flasks were well cleaned with H2Od. The sedimenters were 

brought to a volume of 500ml, shaken for 60 sec and left to stand with the cap 

open for 20 hours. The following day, after weighing the capsules, the first sample 

was taken. The second sampling was carried out after the settler had been shaken 

again for 60 sec and left for a further 12 minutes. Samples were taken by placing 

the withdrawn liquid into small bowls previously weighed with an electronic 

balance to four decimal places. The small bowls were placed in a water bath and 

then in an oven at 105°C and finally in a desiccator so that the samples could be 

weighed. Once the different samples were weighed, the percentages of the three 

particle size classes; clay, silt and sand, were determined by weight difference as 

represented in the follow equations 5, 6 and 7: 

 

% 𝐶𝑙𝑎𝑦 =  
(𝑊𝑐−0.01) ∗ 500𝑚𝑙

10 ∗10 
∗ 100  (5) 

 

% 𝑆𝑖𝑙𝑡 =  
(𝑊𝑐+𝑠−𝑊𝑐) ∗ 500𝑚𝑙

10 ∗10 
∗ 100  (6) 
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% 𝑆𝑎𝑛𝑑 =  1 − (% 𝑐𝑙𝑎𝑦 + % 𝑠𝑙𝑖𝑡)  (7) 

 

Where Wc is the weight of clay portion weighted from the capsules; Ws+c is the 

weight of clay plus slit portion weighted from the capsules. 

Soil reaction was measured in distilled water using a soil/solution ratio of 1:2.5 

(w/v) and a glass membrane electrode, whereas soil EC was measured in distilled 

water using a soil/distilled water ratio of 1:5 (w/v). The various steps were carried 

out with the same sample preparation. In fact, 20g of sample was taken and diluted 

1:2.5 or 1:5, with 100ml of H20d then shaken for 2 hours in a horizontal position, 

respectively for pH and EC. At the end of shaking, the samples were filtered 

through funnels with Vatnan Filter Paper. The filtrate was accumulated in 300ml 

falcons. Any samples that showed a slight sediment were centrifuged at 1000 rpm 

for 5 minutes. Once the filtrate was obtained, it was used for the determination of 

pH and C.E. The pH measurement was done using the Metter Toledo, rinsing the 

probe with H2Od between the samples. The C.E. measurement was carried out 

with the HANNA (in µS*cm-1), again washing the probe with H20d between the 

samples. 

Soil Total Organic Carbon and TN were determined on pulverised soil samples 

by the Walkley-Black dichromate oxidation method and the Kjeldahl method, 

respectively. The determination of TOC was carried out by performing two 

different desiccations. 5g of soil was taken and dried for 24 hours at 105°C in 

order to remove all residual moisture present. They were then cooled and 

weighed. Finally, they were further dried in a muffle furnace at 400°C for 16 

hours. After cooling in the desiccator, they were weighed. The second drying 

process determined the complete degradation of the organic substances, as a 

result, the average organic matter (OM) content of the different samples was 

determined by a simple weight ratio. (Equation 8) Finally, the TOC was 

determined from the OM using the follow equation 9.  

 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑀𝑎𝑡𝑡𝑒𝑟 (𝑂𝑀) =  
𝑊

105°− 𝑊
400°

𝑊
105°

∗ 100 (8) 

 

𝑇𝑂𝐶 = 𝑂𝑀 ∗ 0.58    (9) 

 

Where W105° is the weight of the soil after the dry at 105°C; W400° is the weight 

of the soil after the dry at 400°C. 

The determination of the N concentration in the soil (Total Nitrogen, TN) was 

carried out using the Kjeldahl method according to the equation 10. This, was 

carried out by taking 2g of soil, 10ml of sulphuric acid (H2SO4) and 0.5g of 

copper oxide (CuO) and placed to mineralise. Next, distillation was carried out 

and finally, titration with sodium oxide (NaOH). 
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𝑇𝑁 (𝑔 ∗ 𝑘𝑔−1) =  
𝐻2𝑆𝑂4∗0.1∗14.007

𝑊𝑠𝑎
  (10) 

 

Where Wsa is the weight of the samples; H2SO4 (ml); normality of H2SO4; 14.007 

is the molecular weight of N. 

Finally, the content of TC was determined by the gas-volumetric method using 

the Dietrich–Fruehling calcimeter (Williams, 1949) and according to the equation 

11. 

 

𝑇𝐶 (%) =  
𝑉𝑜𝑙 𝐶𝑂2 (𝑠𝑜𝑖𝑙)∗0.3 

𝑉𝑜𝑙 𝐶𝑂2 (𝐶𝑎𝐶𝑂3)
   (11) 

 

Precisely, 1 g sample and 0.3 g pure CaCO3 were weighed for the determination 

of the percentage content of calcium carbonate. A 1:1 mixture of HCl with H20d 

was prepared. By adding 300ml of H2Od and then the same amount of HCl (37% 

concentration).  Once the samples were weighed and prepared, 10ml of the HCl 

solution was taken and poured into the bottle containing the sample. Based on the 

reaction between acid and HCl, a volume of CO2 was obtained based on the 

amount of calcium carbonate reacting with the acid. A simple equation was used 

to derive the percentage concentration of CaCO3 for the different samples. 

 

2.3.2. Fogliar and Drupes analysis 

 

Foliar analysis of the main macro- and micro-elements was carried out to 

determine the nutritional and health conditions of the plants. Leaf samples were 

analysed to determine the total content of the following elements: N, K, Ca, Fe, 

Mn, Mg, B, Zn, Na, Cu. All elements, except for N, were determined by 

microwave plasma atomic emission spectrometer (MP-AES 4210, Agilent 

Technologies, California, United States) after leaf digestion with concentrated 

nitric acid and hydrogen peroxide. Nitrogen content in leaf and drupes samples 

was determined by the Kjeldahl method. To determine the concentrations of the 

aforementioned metals, approximately 0.250g was weighed in the electronic 

balance to four decimal places, then placed in Teflon tubes with 3ml of supra-

grade nitric acid and 2ml of hydrogen peroxide (H2O2). The resulting sample was 

placed in a microwave oven for 50 minutes at 210°C and then left to cool. The 

mineralisation was recovered with millipor water in the falcon and brought to a 

level of 10ml. Finally, they were diluted 1:100 and analysed in ICP-MS. 

The Kjeldahl method was performed by weighing 0.500g of leaf samples in the 

electronic balance to four decimal places. Mineralisation of the samples is carried 

out for about 3 hours by inputting 15 ml sulphuric acid (H2SO4) and 0.5g copper 

oxide (CuO). Once the compound is mineralised, distillation is carried out. 

Finally, by a simple titration with soda ash (NaOH), the N concentrations were 

obtained.  
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In order to determine the amount of nitrogen removed from the harvest, it was 

necessary to quantify the dry matter present in the drupes and its nitrogen content. 

After taking a random sample from the production, the fruits were washed and 

subsequently, dried at 80° C for 48 hours and finally weighed. Nitrogen 

determination was carried out using the previously described Kjeldahl method. 

 

2.4  Nitrogen balance and prescription map realization 
 

During the year 2020, foliar sampling was carried out for the detection of 

nutritional deficiencies. Subsequently it was possible to create a fertilization map 

using two different methods as described below. The general nutritional status of 

the trees was evaluated by determining the nutrient concentration of the leaves. 

The threshold method of leaf nutrient concentration was used to determine the 

percentage of the plot area showing deficiency of a given nutrient. The threshold 

value represents the concentration limit of a nutrient that defines the correct 

nutritional status of the olive tree. In our study, among the different nutrients, only 

N had a concentration below the threshold, therefore we focused only on N to 

draw up the fertilization plan. The threshold value used was N≥1.2% as reported 

in Fernández-Escobar et al., (2012). In addition, using the above threshold to 

determine the area in need of fertilization, another method was used for the 

constitution of the prescription map. This method involved dividing the area that 

needed fertilization into different sub-areas. The sub-areas were identified starting 

from the soil, production data, spectral and the vegetative parameters of the crop. 

These parameters, through kriging and co-kriging algorithms, were processed to 

determine the areas MZ. The vegetative, productive and spectral parameters were 

crossed by carrying out the multivariate analysis for the determination of the MZ 

zones. Specifically, NDVI, production, CA, CV and Hc were used. Once the 

different MZs had been determined, it was possible to trace the quantity of 

fertilizer to be distributed per area by means of a simple relationship between the 

maximum and minimum doses used in the area. The minimum dose was 

distributed in the less productive areas while the maximum dose was distributed 

in the more productive areas. In this way, it was possible to improve the 

prescription map obtained with the sole use of the threshold. 

The balance of N (NB) created by (Fernández-Escobar et al., (2012) makes it 

possible to consider all the contributions and losses that may exist in a specific 

olive grove, to determine the correct quantity to apply. In this balance, in addition 

to the natural or external contributions that arrive through agronomic practices, 

there are various output parameters. Among these outputs we find the nitrogen 

losses that occur due to pruning and harvesting. The budget also includes other 

parameters such as possible losses to be entered such as: N lost by leaching; lost 

by ammonia volatilization; immobilized into organic matter; lost by erosion; lost 

by denitrification and fixed in clays. By applying the equation 12 it is possible to 

quantify the actual quantities removed by these two operations. Therefore, the 
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calculation of the amount of nitrogen removed in the third year was set taking into 

account the amount of nitrogen removed from fruit (Nf) and pruning (Nv). 

 

𝑁𝑟 = [(𝑌 ∗ 𝑁𝑓) + (𝑃 ∗ 𝑁𝑣)]   (12) 

 

where Nr is the amount of Nitrogen removed per plant (g plant-1), Y is the yield 

(kg plant-1), Nf is the nitrogen concentration in the fresh drupes (g kg-1), P is the 

pruning biomass to each plant (kg plant-1), Nv is the amount of nitrogen removed 

by pruning residues per kg (g kg-1). 

N removal due to olive cultivation is the sum of N removed by drupes harvesting 

and pruning. N removed by drupes was obtained by multiplying the amount of N 

content of the drupes per amount of the olive harvested. The N removed by drupes 

was originated from the amount of product and its nitrogen concentration. This 

concentration was derived from the average amount of N contained in the fresh 

fruits, and was found to be 2.65 g kg-1 of N. This value was similar to that 

reported by other studies, such as in (Fernández-Escobar et al., 2015, 2012). The 

production per plant was determined from the yield map (Blackmore, 2003). The 

yield map was obtained in the third years using a multivariate analysis using the 

main vegetation parameters such as CA, CV, Hc, NDVI and the production data 

for the 20 selected plants. The quantity P * Nv was calculated starting from the 

values of volumes removed by pruning. From the processing of the UAV images, 

it was possible to calculate the volumes removed per plant. Subsequently, the 

weight of these volumes was calculated considering their density. The density was 

obtained from the 20 selected plants. Furthermore, since there were slightly 

different pruning densities between the vigor classes, as shown in the results, the 

respective coefficients were applied according to the vigor classes. However, an 

average value taken from the bibliography was used as the Nv value, equal to 0.51 

g per kg of pruning. 

 

2.5 Surveys equipment 
 

2.5.1  GNSS receiver 

 

Georeferencing of GNSS and some agronomic variables was carried out using the 

receiver Stonex S7-G (named S7, Milan, Italy) used in other studies and was 

shown to be accurate and precise  (Catania et al., 2020, 2019; Figure15). It is able 

to receive L1 (1575.42 MHz) and L2 (1227.60 MHz) signals from the main 

constellation as GPS, GLONASS, BeiDou and SBAS (e.g., EGNOS) satellites; it 

has 120 channels, a maximum position update rate of 5 Hz (5 positions s−1), a size 

of 234 × 99 × 56 mm and a weight (without battery) less than 900 g, and it is also 

powered by a battery of 11.1 V and 2500 mA. 
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Figure 15. Stonex S7 receiver and external antenna. 

 

The internal antenna has a choke ring which can suppress multipath satellite 

signals. This receiver is equipped with a Cortex-A8-AM33X processor with a 

frequency of 1 GHz, internal memory of 8 GB, external memory of 8 GB on SD 

board and RAM of 512 MB, as well as working with a Windows Mobile 6.5 

Professional operating system. The receiver S7-G is also equipped with a slot for 

a SIM card and a GSM/GPRS/EDGE modem, which allows a quick and effective 

Internet connection, in order to obtain differential correction data in real time from 

the network of RTK ground stations (CORS). This receiver is equipped with Wi-

Fi and Bluetooth connections, as well as a high brightness colour TFT display 

Blanview 480 × 640 VGA, allowing an interface with the measured or previously 

logged data, by providing the user with excellent visibility of the field work. This 

instrument is also equipped with a camera with a resolution of 5 MPixel and 

autofocus. The horizontal (2D, longitude and latitude) accuracy specified by the 

manufacturer is 5 mm + 1 ppm rms (root mean square, i.e., 63–68% of 

measurements) in static (stand-alone) mode, 0.6 m rms by using SBAS satellites, 

0.4 m rms in differential mode (only code), 20 mm + 1 ppm in RTK mode with 

internal antenna, 10 mm + 1 ppm in RTK mode with external antenna. 

 

2.5.2. Unmanned Aerial Vehicles (UAV)  

 

Multispectral data acquisition was performed using a Phantom4 Multispectral 

drone (DJI, Shenzhen, China), a high-precision drone with a fully integrated 

multispectral imaging system (Figure 16). This equipment represents a solution 
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created specifically for precision agriculture applications. Using the classification 

presented in the Figure 5, this UAV is a rotary wing and multirotor UAV.  

 

 
Figure 16. Phantom 4 multispectral components. 

 

Precisely, it is equipped with four rotors (quadcopter) capable of autonomously 

flying over the predetermined route by the waypoints. It has a solar irradiance 

sensor on the top, which allows pre-calibrated images to be obtained. The 

positioning system consists of a multi-frequency Global Navigation Satellite 

System (GNSS) capable of receiving and decoding signals from the satellites 

constellation NAVSTAR (GPS), GLONASS, BeiDou and Galileo respectively in 

the bands L1/L2, L1/L2, B1/B2 and E1/E5, with possibility of RTK correction. 

Using the RTK correction, the precision of the position is 1.5 cm ±1ppm (RMS) 

and 1 cm ±1ppm (RMS) in vertical and horizontal direction respectively. The 

flight speed can be modified during the flight and depending on flight mode. The 

max speed is 50 km/h during the flight, thus in ascending and descending 6 m/s 

and 3 m/s respectively. The speed precision is 0.03 m/s. 

The Phantom 4 is equipped with an Obstacle Sensing System that constantly scans 

for obstacles in front of it, allowing it to avoid collisions by going around, over 

or hovering. The DJI Vision Positioning System uses ultrasound and image data 

to help the aircraft maintain its current position. With the help of Vision 

Positioning, the Phantom 4 can hover in place more precisely and fly indoors or 

in other environments where a GPS signal is not available. The main components 

of the Vision Positioning System are located on the bottom; they include two 

ultrasonic sensors and four monocular sensors. Flight data is automatically 

recorded on the internal storage of the aircraft. This includes flight telemetry, 
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aircraft status information, and other parameters. To access these data, connect 

the aircraft to the PC through the Micro-USB port and launch the DJI GO app. 

The DJI Intelligent Flight Battery has a capacity of 5870 mAh, a voltage of 15.2 

V, and a smart charge/ discharge functionality. It should only be charged using an 

appropriate charger and is capable of a flight time of approximately 27 minutes. 

Always calibrate the compass in every new flight location. The compass is very 

sensitive to electromagnetic interference, which can produce abnormal compass 

data and lead to poor flight performance or flight failure. Regular calibration is 

required for optimal performance.  

The Phantom 4 remote controller is a multi-function wireless communication 

device that integrates the video downlink system and aircraft remote control 

system. The video downlink and aircraft remote control system operate at 2.4 GHz 

or 5.8 GHz with a maximum distance of transmission of 7 km. The controller 

battery is a LiPo 2s type of 6000 mAh and a voltage of 7.4 V. The remote 

controller features a number of camera control functions, such as taking and 

previewing photos and videos, as well as controlling gimbal motion. The battery 

level is displayed via LED indicators on the front panel of the remote controller.  

 

2.5.3. Multispectral camera 

 

The acquisitions of the multi-spectral images are carried out using a DJI 

multispectral camera implemented as payload in the UAV above described 

(Figure 17). The multispectral camera has six 1/2.9" CMOS sensors, such as an 

RGB sensor for visible light imaging and a multi-imager system formed of five 

narrow monochrome sensors for multispectral imaging with a final resolution of 

2.08 MP pixels. The camera is not a multispectral camera properly speaking, 

because in the strict sense the sensor has a slightly distance offset. However, the 

camera is also able to compensate for image position and zero parallax error, as 

the relative positions of the CMOS sensor centres of the six cameras and the phase 

centre of the on-board D-RTK antenna are stored in the EXIF information of each 

image.The possibility of obtaining the same geometric resolution in the different 

bands is a very important condition as it allows us to obtain perfectly 

superimposed final images.  



47 

 

 
Figure 17. Multispectral camera diagram. 

 

The lens has a FOV (field of view) of 62.7°, a focal length of 5.74 mm and an 

aperture of f/2.2. The maximum final image size is generally 1600 × 1300 (4; 

3.25). The spectral characteristics of the monochromatic sensors are summarised 

in Table 3. 

 
Table 3. Multispectral camera characteristics bands specification 

 
 

The sensors acquire the image as a global shutter (all pixels are acquired in the 

same time) and save the data in .jpeg and .tiff format in float at 32 bit (FP32). The 

geometric resolution was calculated using the equation 13 represented below 

(Yuan et al., 2021): 

 

𝐺𝑟𝑜𝑢𝑛𝑑 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐺𝑆𝐷) =
𝐻∗𝑆𝑤∗100

𝑖𝑚𝑊∗𝐹𝑟
  (13) 

 

Where Fr is the focal length (mm), Sw is the sensor width (mm), H is the flight 

height (m), imW is the image width (pixel) and 100 is a factor of conversion.  

 

Bands
Center of band wavelength 

[nm]
Spectral Resolution [nm]

Blue 450 ±16

Green 560 ±16

Red 650 ±16

Red Edge 730 ±16

NIR 840 ±26

Multispectral sensor characteristics bands specification.
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2.5.4. Spectroradiometer 

 

The FieldSpec® HandHeld 2™ Spectroradiometer (HHS) was used to acquire 

hyperspectral data (Figure 18). The HHS is a handheld spectroradiometer that 

makes fast, accurate, non-destructive, non-contact measurements, operating in the 

spectral range from 325 to 1075 nm, with ±1 nm accuracy and a spectral resolution 

< 3 nm at 700 nm and a radiometric resolution at 16 bit. The geometric resolution 

of the acquisition area is determined by a square section and 25°FOV. It acquires 

high signal-to-noise ratio spectra in less than one second using a low light 

dispersion grating, an integrated shutter, DriftLock dark current compensation 

and second-order filtering. In addition, the HHS has a colour LCD display, built-

in computing capability, large internal data memory (2,000 measurements), laser 

pointer and GPS (NMEA) input compatibility. 

 

 
Figure 18. Proximal data acquisition with the hyperspectral sensor. 

 

2.6. Multispectral data workflow  
 

The workflow that was applied for the achievement of the experiment included 

three main phases (Figure 19): UAV data planning and acquisition; pre-

processing (photogrammetric reconstruction, orthorectification and mosaicking, 

spectral calibration of the images, image georeferencing, topographic derivation); 

image processing and analysis (object-based image segmentation, vegetation 

index derivation, image classification, olive canopy extraction, extraction of pure 

canopy biometric and spectral data). The different steps are described in detail 

below. 
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Figure 19. Synthetic operation workflow to manage the multispectral data. 
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2.6.3. Multispectral data collection 

 

Before the multispectral data collection, the flights have been planned using the 

specific and official DJI software, which is only available on the IOS system 

(Figure 20). 

 

 

 

Figure 20. (Image above) Drone view; (Image below) flight plan. 
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In particular the following was set: flight altitude, the ground surface distance 

(GSD), investigation surface, speed, path, camera setting, gimbal orientation, time 

of the flight, side overlap and the forward overlap. Before the flights, a harrowing 

was made and some Ground Control Points (GCPs) and the reflectance calibration 

panel were positioned. The harrowing was planned in some flights in order to 

remove the vegetation underneath, which could have created problems in locating 

the pure canopies. The GCP and calibration panel were positioned to make the 

geometric and the radiometric calibration in the photogrammetric process. Six 

GCP were placed evenly at the edges and centre of the plot on a solid platform 

(Figure 21). The GCPs were georeferenced using a GNSS instrument, specifically 

the Stonex S7-Gwith external antenna and RTK correction.  

 

 
Figure 21. Ground Control Points (GCP) in the experimental plot. 

 

Four and Five flight days were carried out during the 2021 and 2022 years 

respectively. All flights were performed in excellent weather conditions with high 

light intensity and low wind speed at 12 noon to minimise shadowing. Whole 

flights were carried out with the automatic flight configuration following the 

routes and waypoints predetermine. 

Whole flights, image acquisition was carried out at an average speed of 10 m*s-1 

with the stop-and-go mode, in order to minimise speed-related distortions. The 

image overlap ratio, front overlap ratio and side overlap ratio was 70% while the 

gimbal pitch was set at 90° (Downwards); in order to obtain more detailed and 

less distorted images.  The schedule of the flights is summarised in Table 4.  
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 Table 4. Flight schedule  

 
 

Precisely, during the year 2021, four flight days were carried out for a total of 

eight flights in order to make various tests. 

1. ID Flight 1 was carried out to determine the spectral and indirectly 

vegetative state of the 211 plants in order to compare it with the ground 

truth of vigour (measured as TCSA), nutritional status and production 

taken during the previous season (2020).   

2. ID Flight 2 was carried out to verify the growth of the plants during the 

new season.   

3. ID Flight 3 days were carried out with 3 flights at three different flight 

heights to evaluate their influence in the reconstruction of the spectral and 

vegetative parameters. The heights that were used were: 30m, 50m and 

70m a.g.l. (3a, 3b, 3c); obtaining a ground sample distance (GSD) of 

1.6cm, 2.6 and 3.6cm respectively. 

4. ID Flight 4 was performed to compare the hyperspectral data acquired 

laterally to the canopy with a spectroradiometer and flight 4b in order to 

Years ID Flight DOY Flight Height 
Surveyed area in the 

single photo
Duration GSD 

Course 

lenght
Photo 

-- -- -- [m] [m
2
] [s] [cm] [m] [n]

1 102 70 2695.68 8'.18'' 3.6 1051 97

2 176 70 2695.68 8'.18'' 3.6 1051 97

3a 30 532.48 26'.33'' 1.6 2102 489

3b 50 1406.08 12'.50'' 2.6 1364 186

3c 70 2695.68 8'.18'' 3.6 1051 97

4a 30 532.48 26'.33'' 1.6 2102 489

4b 50 1406.08 12'.50'' 2.6 1364 186

4c 70 2695.68 8'.18'' 3.6 1051 97

5 152 70 2695.68 8'.18'' 3.6 1051 97

6a 210 2695.68 7'.09'' 3.6 887 87

6b 210 2695.68 8'.17'' 3.6 1039 98

6c 210 2695.68 8'.37'' 3.6 1124 97

7a 278 30 532.48 26'.33'' 1.6 2102 489

7b 278 70 2695.68 8'.18'' 3.6 1051 97

8 339 70 2695.68 8'.18'' 3.6 1051 97

9 364 70 2695.68 8'.18'' 3.6 1051 97

2

0

2

1

189

2

0

2

2

70

217
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verify if the two points of view of the plants and the two types of spectral 

data provide different results. These surveys were conducted 

simultaneously. The three heights were also performed using the same 

methodology used in flight 3 to evaluate in-season plant change and the 

ability of flight height to detect it. 

 

During the year 2022 a total of eight flights, in five days, were carried out. 

 

5. ID Flight 5 was performed to determine the spectral and vegetative state 

of the 211 plants beginning of the new growing season of the olive grove 

following the site-specific management carried out in the first year. 

6. ID Flight 6 was carried out to evaluate the effect of three different flight 

paths of the UAV on multispectral and biometric canopy reconstruction 

(Figure 22). Three different flight angles were used depending on the 

layout of the plants. Precisely, test 6a (diagonal test) had an angle to the 

north of 32°, test 6b (north-south test) had flight directions coinciding with 

the north-south direction (angle of 0°), and finally test 6c (east-west test) 

had an east-west flight direction with an angle of 90° to the north (Figure 

22). 

7. ID Flight 7 were carried out with two flights at different flight altitude to 

evaluate their influence in the reconstruction of the spectral and vegetative 

parameters in dense canopy condition. The heights that were used were: 

30m and 70m a.g.l. (7a and 7b); obtaining a ground sample distance 

(GSD) of 1.6cm and 3.6cm respectively. 

8 – 9. The last two flights were carried out to compare the impact of the pruning 

operation in the vegetative and biometric condition of each plant. 

Furthermore, 20 plants were selected to quantify the biomass amount and 

the real canopy size.  
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Figure 22. Schematic representation of flight paths. (a) Diagonal flight path; (b) East-

West flight path; (c) North-South flight path. 
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2.6.4. Pre-processing of the images 

 

Once the multispectral and RGB images were acquired, they were pre-processed 

in order to obtain the multi-bands orthomosaic, Digital Elevation Model (DEM) 

and the Digital Terrain Model (DTM). The photogrammetric process employed is 

the classic scheme. Precisely, the different band image has been downloaded and 

uploaded in the software. The next steps were the alignments, the GCP upload, 

the calibration in reflectance. Once the preparation was complete, we proceeded 

with the construction of the dens cloud, the Mesh to obtain the final products. 

Data processing was done using a photogrammetric software able to apply the 

Structure for Motion (SFM) algorithms. Specifically, Agisoft Metashape 

Professional (version 1.7.3) software was used. This software enables 

photogrammetric processing of digital images and generates 3D and 2D spatial 

data for use in GIS applications. The photogrammetric process of the different 

images was performed following the main steps summarised in the workflow 

below (Figure 23). 

 

 
Figure 23. Work flow of photogrammetry data processing 

 

The images detected by the sensor are digital images in which the detected scene 

is represented by a matrix of pixels, each of which is characterised by a number, 

the DN (Digital Number), which corresponds to the average radiance of the area 

covered by each pixel and is usually represented in greyscale. The number of 

shades available depends on the memory of each pixel, expressed in bits, which 

corresponds to the radiometric resolution of the observation system. Each pixel 

constituting the image is characterised by three values: the two spatial variables x 

and y, which identify the position of the pixel within the image and the DN, related 
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to the intensity of the radiance on the ground, which indicates the value of the 

colour shade, or grey, assumed by each individual pixel. 

DNs are positive integer values obtained from a quantisation of the original 

electrical signal, through a signal conversion process, which translates them into 

levels of grey or light intensity. Each spectral band recorded by the sensor has a 

characteristic response function to perform the analogue-to-digital conversion of 

the electrical signal. The radiometric response function for a band is generally 

represented by a linear-type conversion function expressed by (equation 14): 

 

DN = G*L +B    (14) 

 

This equation is typical for every sensor and when we make the reflectance 

calibration, the software uses this from the metadata of constructor. Image 

alignment was performed using the software and setting high accuracy, generic 

preselection, reference preselection and the sequential method. The number of 

key and tie point limits were left as default. Once the alignment had been carried 

out, the GCPs were inserted using the WGS84 geographical coordinate system 

(EPSG: 4326). Then, the identification of the GCPs on the different photos was 

done. After this, the most accurate topographic transformation can be carried out, 

depending on the number of GCPs present. The calibration of the images was 

made by the software using the brightness data recorded by the brightness sensor 

on the drone with follow equation 15: 

 

  % =
 r

 i 
∗ 100   (15) 

 

Where   is the reflectance for each wavelength (); r is the power that reaches 

the sensor from the reflectance surface, i is the power incident on the reflectance 

surface. 

In addition, to improve the calibration, a white panel was placed on the ground 

before the flight to complete the radiometric calibration. The reflectance 

calibration was achieved by putting the panel reflectance measure in the field with 

the spectroradiometer. 

The construction of the Dense Cloud was carried out with a very high accuracy; 

then, it was possible to construct the Mesh and generate the texture between the 

multispectral and RGB images. Finally, the Digital Elevation Model (DEM) and 

the multiband orthomosaic was obtained through a process of orthorectification 

and mosaicking, (Figure 24). 
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(a)       (b) 

 

Figure 24. (a) Multispectral bands; (b) orthomosaic in RGB representation. 

 

2.6.5. Multispectral images processing and analysis 

 

Starting from the last products, orthomosaic, DEM, DSM and DTM, were 

processed and analyzed through the new GIS software. In this case, we used an 

important open-source software QGIS ver. 3.16.6 Hannover (QGIS.org, 2022). 

Moreover, the Saga and Grass tools already interconnected and implemented in 

QGIS were used. The best details of the image analysis in QGIS software are 

presented in the 2.7 section. 

 

2.7. Hyperspectral data workflow and processing 
 

The Hyperspectral data workflow that was applied for the achievement of the 

experiment included the acquisition, pre-processing and the analysis of the dataset 

(Figure 25).  
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Figure 25. Hyperspectral data workflow.  

 

Hyperspectral acquisitions with the spectroradiometer were carried out in the 

years 2021 and 2022. In the year 2021, four out of 24 randomly selected plants 

were flown at the same time.  The measurements were carried out from 01:00 pm 

in the four exposures with the following sequence: South, West, North and East. 

In the year 2022, another 20 plants were selected to carry out hyperspectral 

measurements only in the north and south exposures of the canopy at 12:00pm. 
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Three outcomes were obtained for each exposure and the radiometric reflectance 

calibration was performed using a calibrated spectral on white reference with 

known reflectance characteristics. For both experiments, the acquisitions were 

carried out in the lateral portions of the plants directly in the field, placing the 

instrument at about one meter from the canopy (Figure 26). 

 

 
Figure 26. Hyperspectral data acquisition process in the four-canopy exposure, DOY 

217. 

 

In this way, it was possible to examine the hyperspectral information of an entire 

portion of the canopy without any soil influence, for the four exposures. The 

acquired data were downloaded and processed by means of the software 

associated with the instrument (HH2 Sync and ViewSpec Pro). In this way, it was 

possible to calculate the spectral signature of each plant using the equations 14 

and 15.  

Obtained the spectral signature, using the position recorded on the instrument the 

data were transported to the QGIS software. This information has been joined to 

the corresponding canopy portion. For the first experiments, each canopy tree was 

divided into four parts to the exposure to the four cardinal directions. Considering 

that 0° is located at the centre of the North portion and turning clockwise: the 

North sector goes from 315° to 45°, East from 45° to 135°, South from 135° to 

225° and West from 225° to 315° (Figure 27). In the 2nd experiment carried out 

in 2022 the canopy portion was divided in two sections, North and South to 

associate the corresponding data. 
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Figure 27. Detail of a plant sampled for hyperspectral measurements and the canopy 

divided into four portions (North, South, East, West). 

 

2.8. GIS analysis 
 

Starting from different datasets, we analyzed the data with the QGIS program. For 

the vector data, the main geostatistical methods were used to spatialize the data 

and create other maps, while the GEOBIA (Geographic Object Based Image 

Analysis) technique was used to analyze and process the raster data. Afterwards, 

all information was merged, combined and processed to create different layouts 

that were in turn used to produce intermediate maps and prescription maps (final 

product). In addition, the layouts were statistically analyzed to obtain the static 

characterization. In this way it was possible to extract several pieces of 

information such as canopy area, canopy volume, spectral characteristics as well 

as other information.  

 

2.8.1. Vector data and Geostatistical analysis  

 

The geostatistical analysis was applied in all point data that needed their 

spatialization in order to create continuous maps. In particular, it affected the leaf 

nutrient analysis, the several soil parameters and the different measurements of 

tree vigor. The leaf nutrient maps achieved by kriging were used to estimate the 

percentage of field surface affected by nutritional deficiencies to be fertilized. 

Based on a semi-variogram and a cross-validation analysis, appropriate models 

were fitted, and the input parameter employed the ordinary kriging interpolate. 
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This method can express the spatial variation of a specific variable by minimizing 

the distribution error of the predicted values.  
Kriging interpolation assumes that the estimate at an arbitrary point in a specific 

zone of the field is expressed with a linear weighting of all observations. To 

provide the best linear estimation, semi-variograms are calculated, which consider 

the spatial structure (Chiles and Delfiner, 2009; Webster and Oliver, 2007a). In 

this case, the semi-variogram was calculated for each variable as follows. 

 

𝑦(ℎ) =
1

2𝑁 (ℎ)
∑ [ 𝑍(𝑥𝑖 + ℎ) − 𝑍(𝑥𝑖)]2𝑁(ℎ)

𝑖=1
  (16)   

 

where N(h) represents the number of pairs of observations separated by a value 

(h), which in turn corresponds to the distance deviation expressed in meters. The 

parameter Z(xi) is the value of the variable Z at the sampled location xi. 

Kriging of geo-statistics is an optimum interpolation technique for making 

unbiased estimates of regionalized variables at unsampled locations in which the 

structural properties of the semi-variogram and the initial set of samples are used 

(Huang et al., 2006; Khan et al., 2021). The spatial prediction of the values of a 

soil variable Z at an unsampled point v0 is estimated as a weighted average 

followed by the equation 17:  

 

Z (x0) = ∑ 𝑛
𝑖=0 i z(xi)    (17) 

 

where Z(x0) is the value to be estimated at the location x0, z(xi) is the known value 

at the sampling site xi, n is the number of neighbouring samples and λi is the 

weight. 

The semi-variogram, therefore, allows modelling functions to be developed for 

many infinitely large environmental variables. Therefore, the selection of a semi-

variogram is critical for geostatistics analysis techniques, as it allows the 

parameters needed to perform Kriging interpolation to be defined. The selection 

of the suitable semi-variogram was done by calculating the semi-variances at 

different distance intervals (h), fitting specific theoretical models. The 

experimental semi-variogram was adapted through the application of some 

appropriate theoretical models (Cressie, 2015): the spherical (18) and the 

exponential ones (19). 

 

 𝑦(ℎ) = 𝐶0 + 𝐶 [1.5
ℎ

𝑎
− 0.5 (

ℎ

𝑎
)

3

]   (18) 

 

𝑦(ℎ) = 𝐶0 + 𝐶 [1 − 𝑒𝑥𝑝 (−
ℎ

𝑎
)]   (19) 
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In these mathematical models, the input parameters are the sill variance (C0+C), 

the range indicated by (a), and nugget variance (C0), these inputs were calibrated 

to identify the spatial variability of vineyard vigour. The sill variance concerns 

the amount of spatial structural variance in the data set. The range represents the 

distance in which the semi-variogram lies around a limit value. The nugget 

defines the variability of a sampling interval or analysis error. 

Spherical, exponential and pure nugget models were fitted to the empirical semi-

variograms. The parameters of the model: nugget semi-variance, range, and sill 

or total semi-variance, were determined. Nugget semivariance is the variance at 

zero distance; sill is the lag distance between measurements at which one value 

for a leaf nutrient does not influence neighbouring values; and range is the 

distance at which values of leaf nutrient become spatially independent of the 

neighbouring values. The ratio between nugget semi-variance and total 

semivariance or sill was used to define different classes of spatial dependence for 

leaf nutrients (López-Granados et al., 2004). The ratio between nugget semi-

variance and total semi-variance or sill was used to define different classes of 

spatial dependence for leaf nutrients (Gargouri et al., 2006; López-Granados et 

al., 2004). If ratio was ≤25%, the leaf nutrient was considered to be strongly 

spatially dependent, or strongly distributed in patches; if ratio was between 26 

and 75%, the leaf nutrient was considered to be moderately spatially dependent; 

if ratio was greater than 75%, the leaf nutrient was considered weakly spatially 

dependent; if the ratio was 100%, or the slope of the semi-variogram was close to 

zero, the leaf nutrient was considered as not being spatially correlated (pure 

nugget). 

In cross-validation, the values estimated from ordinary kriging were compared 

with the values observed at the sampling points. Kriging calculation was carried 

out using several tools of QGIS software. A multivariate geostatistical approach, 

based on principal component analysis (PCA) and called factorial co-kriging 

(Webster and Oliver, 2007b), uses the information from spatial relationships 

among variables to subdivide an agricultural field into smaller, more 

homogeneous units (Buttafuoco et al., 2017). Moreover, most soil physical and 

chemical properties are likely to vary over a short-range (meters), whereas others 

vary at longer (thousand meters) distances. Therefore, soil properties are expected 

to be correlated among them in a way that is scale-dependent. 

 

2.8.2. Geographic object-based image analysis (GEOBIA)  

 

OBIA or GEOBIA is an alternative to a pixel-based method with basic analysis 

unit as image objects instead of individual pixels grouping a number of pixels into 

shapes with a meaningful representation of the objects (Blaschke, 2010). The aim 

of OBIA is to address more complex classes that are defined by spatial and 

hierarchical relationships within and during the classification process (Lang, 

2008). OBIA is usually composed of two main phases: (1) image segmentation, 
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and (2) feature extraction and classification. The most basic and critical step is 

image segmentation and the accuracy of following object based feature extraction 

and classification mainly depends on the quality of image segmentation (Cheng 

et al., 2001; Hossain and Chen, 2019).  Image segmentation was performed in 

order to obtain a classification into homogeneous regions and different non-

overlapping zones starting from the VI map realized with different vegetation 

indices (VI; Caruso et al., 2019; Roma and Catania, 2022), summarized in the 

Table 1. 

In particular, the three main vegetation indices were used (Roma and Catania, 

2022) to determine the spectral variability, such as: NDVI (Rouse et al., 1974), 

MSAVI (Qi et al., 1994) and NDRE (Maccioni et al., 2001). 

 

NDVI =  
𝜌𝑛𝑖𝑟 −𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟 +𝜌𝑟𝑒𝑑
      (20) 

 

NDRE = 
𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑 𝑒𝑑𝑔𝑒

𝜌𝑛𝑖𝑟+𝜌𝑟𝑒𝑑 𝑒𝑑𝑔𝑒
      (21) 

 

MSAVI = 
{2𝜌𝑁𝑖𝑟 +1 − √[(2𝜌𝑁𝑖𝑟+1)2 − 8 (𝜌𝑁𝑖𝑟 − 𝜌𝑅𝑒𝑑)]}

2
  (22) 

 

Several algorithms for the image classification were applied. In particular, was 

applied a classification supervised and a classification unsupervised. The most 

widely used algorithm was the K-means algorithm. K-means is one of the simplest 

unsupervised learning algorithms that solve the well-known clustering problem. 

The procedure follows a simple and easy way to classify a given data set through 

a certain number of clusters (assume k clusters) fixed before. 

 

𝐽 =  ∑ ∑ 𝑤𝑖𝑘  ‖𝑥𝑖 − 
𝑘

‖
2

𝐾
𝑘=1

𝑚
𝑖=1   (23)

  

where wik=1 for data point xi if it belongs to cluster k; otherwise, wik=0. Also, μk 

is the centroid of xi’s cluster. The main idea is to define k centres, one for each 

cluster. These centres should be placed in a cunning way because of different 

location causes different result. K-means algorithm was applied to the VI map, 

which allowed to obtain a binary clustering of the image. This methodology was 

preferred over threshold clustering because any non-pure pixels (especially close 

to the canopy) that could be erroneously classified as soil. This clustering 

algorithm was in Saga's Images analysis library.  

The images classified allowed the comparison and analysis of variability found in 

the olive orchard. Through several process of rasterization and vectorialization it 

was possible to extract different information from the tree (Caruso et al., 2019), 

such as biometric information while the spectral information concerned in the 

calculation of VI (Figure 28). The spectral information was obtained from the 
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ortho mosaic using Raster calculator a tool of QGIS. The NDVI map from the 

flight with a big difference in soil pixel and vegetation pixel was used to extract 

the CA.  

 

 
Figure 28. Canopy extrapolation sequence for plant. 

 

However, in the flight performed during the season when there was weed above 

the canopy, the previous method cannot used. In this case, the elaboration method 

was performed starting from elevation maps. Precisely, the elevation maps were 

the DSM and the DTM. The DSM was extracted directly from the 

photogrammetric processing while the DTM was derived from some terrain point 

randomly selected and spatialized using a geo statistical method (Figure 29). After 

calculating DTM and DSM, it was possible to determine the CV using the 

following Equation 24. as defined in (Caruso et al., 2019): 

 

   𝐶𝑉 = (𝐷𝑆𝑀 − 𝐷𝑇𝑀) − 𝑇𝑟𝐻   (24) 

 

where DSM is the Digital Surface Model; DTM is the Digital Terrain Model; TrH 

is the trunk height (mean value of the 50 selected plants).  

 

2.9. Biometric Data validation 

 

The aptitude of the ortho mosaic and their DSMs to build the tree structures and 

to retrieve their geometric features was evaluated. These parameters are namely 

the projected area of the canopy (CA) and crown volume (CV); they were 

evaluated by comparing the UAV-estimated values and the on-ground values 
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observed in the validation fields. For this purpose, twenty olive trees were 

randomly selected in the field and their shape was outlined manually using the 

orthomosaic image to be used as an observation measure. The results of the 

GEOBIA (geographic object-based image analysis) analysis on the estimation of 

the CA and CV were compared to the observed measurements to calculate the 

area of coincidence for each olive tree and calculate the overall accuracy. In the 

same olive trees selected for CA, the CV quantification and validation were 

applied. CV* was estimated starting from the manual measurement, assuming an 

ellipsoid form and applying a validated method (Equation 25) for olive tree 

geometric measurements using the parameters measured (Pastor Muñoz-Cobo, 

2005; Torres-Sánchez et al., 2015b). 

 

𝐶𝑉∗ =


6
∗ (

𝐶𝑙∗𝐶𝑤

2
)

2
∗

𝑇ℎ

2
    (25) 

 

where Cl is the Canopy length (m); Cw is the Canopy width (m); Th is the tree 

canopy height (m). The effectiveness of the entire procedure to measure volume 

and area of the canopy of the fifty selected trees was evaluated by calculating the 

root mean square error (RMSE) and correlation coefficient derived from the 

regression fit. 
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Figure 29.  Data processing steps to obtain Crown Volume (CV). (a) Digital Surface 

Model (DSM); (b) Digital Terrain Model (DTM); (c) representation of the tree; (d) CV 

obtained using equation (1). 

 

2.10. Statistical Analysis 
 

Descriptive statistical analysis was carried out first to determine the mean, 

maximum, minimum, standard deviation, and coefficients of variation (CV) of 

the variables of the data.  

The data obtained from the sampling, the survey from the ground, proximal and 

remote sensing platform were processed and analysed statistically.  

To check the accuracy of the calculated predicted values the coefficient of 

determination (R2; equation 26), the root means square error (RMSE; equation 

27) and mean absolute percentage error (MAPE; equation 28) index was 

calculated as follows: 

 

𝑅2 = 1 −
∑ {𝑦(𝑥𝑖)−𝑦∗(𝑥𝑖)}2𝑛

𝑖=1

∑ {𝑦(𝑥𝑖)−𝑦̅(𝑥𝑖)}2𝑛
ì=1

     (26) 

 

𝑅𝑀𝑆𝐸 =  √∑ {𝑦(𝑥𝑖)−𝑦∗(𝑥𝑖)}2𝑛
𝑖=1

𝑁
     (27) 

 

𝑀𝐴𝑃𝐸 
100%

𝑁
∑ |

𝑦(𝑥𝑖)−𝑦∗(𝑥𝑖)

𝑦(𝑥𝑖)
|𝑛

𝑖=1     (28) 

 

where n is the number of points, y(xi) is the measured value, and y *(xi) is the 

predicted value, y̅(xi) is the mean value of the observed data, N is the total number 

of fitted points. The best prediction model was obtained when the RMSE and 

MAPE had the lowest value. 

The analysis was made applying the base statistic to characterize the dataset. The 

main analysis performed were the variance analysis model (ANOVA), Tukey's 

multiple comparison tests. Relationships between the parameters were tested 

using regression analysis and Pearson's correlation coefficient. Furthermore, the 

principal component analysis (PCA) has been used to discriminate how the 

several parameters have influenced the results. All the statistical procedures were 

performed using R software (RStudio Team., 2015).  and Microsoft Excel. 
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3. RESULTS 
 

This section will focus on the results that have been obtained from the various 

tests conducted during the different years of the experiment. For a better 

understanding, this section has been divided into the three parts of the 

agroecosystem (soil, climate and plant) and finally into a sub-section showing 

their interactions for specific agronomic practices. 

 

3.1. Weather conditions 
 

Weather conditions showed a different seasonal trend  in accordance with the 

mediterranea area. It was characterized by a mean annual air temperature of 17.50 

ranging from 13.07 to 17.50 ◦C and a mean annual precipitation of 745 mm. The 

precipitation in all years was concentrated from September to March (Fig 30, 31 

and 32), while the highest potential evapotraspiration was during the summer 

season (Fig 33).  The distribution of monthly average temperatures shows that the 

warmest temperatures are concentrated during the spring-summer period. During 

the summer, average daily maximum temperatures exceeding 30 °C are observed 

in all three years. While the lowest temperatures occur during the autumn-winter 

period. 

 

 
Figure 30. Monthly distribution of mean temperature, minimum temperature, maximum 

temperature and rainfall in the year 2020. Source data: weather station located in 

Calatafimi Long: 12°52'47.76"E Lat: 37°51'16.42"N. 
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Figure 31. monthly distribution of mean temperature, minimum temperature, maximum 

temperature and rainfall in the year 2021. Source data: weather station located in 

Calatafimi Long: 12°52'47.76"E Lat: 37°51'16.42"N. 

 

 
Figure 32. monthly distribution of mean temperature, minimum temperature, maximum 

temperature and rainfall in the year 2022. Source data: weather station located in 

Calatafimi Long: 12°52'47.76"E Lat: 37°51'16.42"N. 
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Figure 33. Trend of average daily potential evapotranspiration (ET0) over the three 

experimental years (gray line). Moving average of the last ten ET0 days (red line). 

 

The year 2022 was the warmest on average compared to previous years (Fig 34) 

with an average annual temperature of 18.28 °C, while the year with the highest 

rainfall was the year 2021 (Figure 35) with an average annual rainfall of 1100 mm 

concentrated almost 72% between September and December. 

 

 
Figure 34. Average temperature annual trend over the three experimental years. 
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Figure 35. Average rain annual trend over the three experimental years. 

 

3.2. Soil Variability 
 

The Digital Terrain Model was obtained from surveys carried out on the 2020 

(Figure 36). It allowed for the observation of whether there were any relationships 

between the soil variables and the terrain orography, even if the plot is typically 

flat. 

 
Figure 36. Digital Terrain Model of the experimentation area. 



71 

 

 

The main characteristics of the soil of the studied area are reported in table 5. Ac-

cording to the ISSS (International Society of Soil Science) classification system 

of soil particles, soil texture was sandy clay loam (Hillel, 2013). Soil reaction was 

neutral whereas both total carbonates and electrical conductivity (EC) showed 

low values. Total organic carbon and nitrogen concentration were also low.  

 
Table 5. Characteristics of the soil of the studied area. 

 
 

According to the ISSS the soil texture was homogenius in the whole plot with 

only a slight difference as showed in Figure 37. 

 

Parameter Mean SD CV (%) 

Clay (%) 30 3.30 11 

Silt (%) 13 1.92 15 

Sand (%) 57 4.01 7 

Total organic carbon (%) 0.67 0.10 14 

Total nitrogen (%) 0.15 0.03 20 

Total carbonates (%) 5.09 3.23 64 

pH 7.24 0.18 2 

Electrical conductivity (dS m-1) 0.16 0.03 17 
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Figure 37. Caly, Lime and Sand maps created using the ordinary kriging method on the 

36 soil samples. 
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Total N ranged from 0.10% to 0.25% and was positively related with TOC (r = 

0.74***). The TOC ranged from 0.56% to 0.76%, being an average of 0.68%. The 

map describing soil TOC and TN spatial variability was provided through the 

interpolation with geostatic methods (Figure 38). 

 

 

 
Figure 38. TOC (%) and TN (%) maps of the study area created using the ordinary 

kriging method on the 36 soil samples.  
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Other parameters such as EC, TC and soil reaction are well known in the literature 

to be good indicators of soil variability. In our experiment, soil reaction did not 

show enough variability to create differences on the map, which is why it is not 

represented (Table 4). In fact, this parameter varied by only 0.2 on the pH scale, 

from 7.15 to 7.33. Slight differences were observed in the EC (Table 4 and Figure 

39). This seems to follow a similar trend to that found for the parameters TN and 

to a lesser extent TOC. Indeed there was strong statistical correlation with the 

TOC (r =0.32*) and TN (r =0.45**). 

 

 
Figure 39. EC map created using the ordinary kriging method on the 36 soil samples.  

 

The TC was slighly correlated only with the TN (r= 0.3*) as represented in the 

following table 6.  
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Table 6. Correlation matrix among the main soil parameters. Soil reaction (pH); 

Electrical conductivity (EC, dS m-1); Total carbonates (TC, %); Clay (%); Lime (%); 

Sandy (%); Total Organic Carbon (TOC, %); Total Nitrogen (TN, %). *pvalue<0.05; ** 

pvalue <0.01; *** pvalue <0.001. 

 
 

Using the co-kriging analysis it was possible to determine the three MZ using the 

texture, TOC, CE and TN parameters (Figure 40). 

 

 
Figure 40. Different MZ from the co-kriging analysis among the main soil parameters.  

 

In the soil MZ 3 a statistically higher concentration of TC, TOC and CE was 

observed compared to the other two classes. TC, TOC and CE had values of 

1.01%, 0.75% and 172 dS m-1 respectively. 

 

 

 pH E.C. TC Clay Lime Sandy TOC 

E.C. -0.20       

TC 0.07 0.06      

Clay 0.10 -0.09 0.02     

Lime 0.13 -0.02 -0.07 0.12    

Sandy -0.14 0.08 0.02 -0.88*** -0.58**   

TOC -0.19 0.32* 0.10 0.12 0.03 -0.11  

TN -0.10 0.45** 0.30* 0.02 -0.08 0.02 0.74*** 
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3.3. Crop variability 
 

This section will show the results of crop investigations into the vegetative, 

nutritional and spectral conditions of plants. The vegetative features were 

expressed as biometric characteristics and the spectral condition. 

 

3.3.1. Nutrition condition and Productivity  

 

With regard to the crop nutritional status, of the nine elements determined on leaf 

samples to assess nutrient deficiencies (Table 7), only nitrogen had a 

concentration below the threshold (Akdemir et al., 2018; Barranco-Navero et al., 

2017; Maran and Fernandez-Escobar, 1996).  

 
Table 7. Leaf elements concentration and corresponding threshold. 

Element Mean value ± st.dev. Threshold 

N [%] 0.92 ± 0.23 ≥ 1.2 
K [%] 1.00 ± 0.57 ≥ 0.8 
Ca [%] 0.66 ± 0.24 ≥ 0.5 
Fe [%] 0.45 ± 0.28 ≥ 0.1 
Mg [%] 0.52 ± 0.38 ≥ 0.1 
Mn [ppm] 0.12 ± 0.02 ≥ 0.06 
Zn [ppm] 0.11 ± 0.02 ≥ 0.06 
Cu [ppm] 0.09± 0.02 ≥ 0.06 

 

TN concentration of plant leaves ranged from 0.40% to 1.46%, being on average 

0.92% as reported in the figure below (Fugure 41).  

 

 
Figure 41. Distribiution of the leaf nitrogen concentration. The red line represents the 

average of the whole samples, while the green line represents the threshold.  
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The spatial distribution of the TN concentration showed a great area where it is 

very low. Only the right side field area showed a concentration slightly above the 

threshold (Figure 42). 

 
Figure 42. Nitrogen concentration Map determined from 36 leaves samples and kriging 

algorithm.   

 

The different metal elements such as Ca, K, Fe, Mg, Mn, Zn and Cu showed 

statistically significant relationships among their leaf contents, as shown in table 

8.  

 
Table 8. Correlation matrix among the main leaf elements. Leaf Nitrogen (Nl, %); Leaf 

Potassium (K, %); Leaf Calcium (Ca, %); Leaf Iron (Fe, %), Leaf Magnesium (Mg, %); 

Leaf Manganese (Mn, ppm); Leaf  Zinc (Zn, ppm); Leaf Copper (Cu, ppm); Yield (kg); 

TCSA (m2); NDVI; Canopy area (m2). *pvalue<0.05; ** pvalue <0.01; *** pvalue <0.001. 
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Yield mapping can be considered an effective way to verify the actual response 

of a crop to within-field variation of soil and growth properties. 

During the first experimentation year (2020) the production of each plant was 

determined and used to create the yield map. Total olive yield during the study 

year was 2.8 t, corresponding to 4.8 t ha-1 (12.8 kg plant-1). While the second year, 

following intensive pruning, the plants did not produce. In the last year of the 

experiment (2022), there was a slightly lower average productivity than in the first 

year. However, the productivity of only a few sample plants were collected and 

quantified rather than all of them. By carrying out a multivariate analysis of the 

vegetative parameters most connected with production, it was possible to trace 

the production of each single tree. In this case, the estimated production was equal 

to 2.7 t ha-1, while the total quantity actually produced was equal to 2.3 t ha-1. 

Therefore, the estimated difference is around 15%. 

Figure 43 shows the spatial distribution of the quantities produced by each plant 

in the 2020 season. It can be seen that in the lower part of the test area, there is a 

concentrated area of red colouring that shows almost zero production. While the 

greatest production is almost entirely accounted for by the border plants, a blue-

coloured zone. From direct observations in the field, this zone shows a high 

presence of skeleton compared to the remaining part of the olive orchard.   
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Figure 43. Yield map of the first experiemetation year in kg plant-1. 

 

The last aim of the precision olive culture is the management of the variability 

detected, to be able to modify the agronomic practice using the site-specific 

technologies. The agronomic practice investigated in the literature include 

management of irrigation, fertilization and pesticide spraying in the olive orchard. 

In our experiment, we created a nitrogen fertilisation prescription map taking into 

account the leaf nitrogen variability and the pedological condition assessed during 

the first year (Figure 44). In this case was applied 150 kg ha-1 only for the zone 

where the fertilization was required (yellow zone). It represents the 76% of the 

total area.  
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Figure 44. Prescription map according the leaf nitrogen deficit and pedological 

conditions.  

 

According to the soil classes, with the main soil, vegetative, spectral variables and 

the production map, it was possible to obtain a greater spatial detail of the area 

that needed fertilization (Figure 45). In this case, the surface to be fertilized was 

always the same as in figure 44, but other areas with different nitrogen needs were 

identified. The three classes were identified by co-kriging while the quantity to 

be distributed was calculated by linear interpolation between the maximum and 

minimum dose that is generally applied in the area. The total quantity to be 

distributed per hectare in this case was equal to 50kg ha-1 This quantity was 

obtained by multiplying the quantity to be distributed per MZ by the relative 

surface area. 
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Figure 45. Prescription map according to the vegetative, spectral and productivity 

conditions merged with co-kriging method, calculated only for the nitrogen deficit zone 

 

3.3.2. Biometric analysis 

 

The biometric conditions of each plant can be expressed in several ways and 

represents their real vigour status. The olive orchard's vigour conditions can have 

a great influence on its optimal management. Therefore, their proper evaluation 

is an essential element of site-specific management. In this experiment, the 

biometric conditions has been expressed as: TCSA, HC, CA, and CV. TCSA 

showed a certain heterogeneity among the plants in the field, its values ranging in 

whole plot from 50 cm2 to 600 cm2 with a mean of 297.3 cm2 ± 109.6. These 

differences were reflected in growth and production activity as showed also in 

Noori and Panda (2016). Indeed, the TCSA values were statistically significant 

correlated with different variables expressing plant vigour such as canopy area 

extracted from the multispectral image. During the 2021 the correlation was of r 

= 0.78*** while in the 2022 was sligtly lowest (r = 0.65***; Figure 46).   
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Figure 46. Correlations between TCSA and CA. pvalue < 0.001(***). 

 

Crown height is another of those parameters that is often used to quantify plant 

vigour. However, depending on the breeding form, this can be very variable and 

is not always a good indicator of vigour. From a remote platform, such as a UAV, 

it has been possible to derive this parameter, albeit with results that are not always 

satisfactory. However, this parameter was also able to describe the variability 

present in the olive orchard and in the third year, before pruning, had an average 

of 3.57m and 2.91 after pruning. This parameter shows an average of 4.25m, 

3.57m and 3.1m from the lowest to the highest level of vigour. Thus, after the 

pruning the HC decreased for all vigour levels of 3.05m, 2.91m and 2.71m for 

LV, MV and HV respectively.  

ANOVA was performed to evaluate the influence of the different flight path in 

the Hc reconstruction. It is observed that the NS flight path overestimated the Hc 

compared to the D and EO directions, which showed no statistically significant 

differences (Figure 47). Furthermore, the D flight path showed the highest 

correlation with the ground measurements (R2 0.89***) compared to the other 

two directions, while the lowest value was given by the EO direction (R2 

0.57***). 
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Figure 47. Influence of the different flight path (E-W, N-S, D) on the HC reconstruction. 

Results from ANOVA test (pvalue > 0.05) and Tukey test. 

 

The canopy area was extracted from the NDVI map or from the 3D model 

reconstruction such as explained in the previous paragraph. CA was the vigour 

parameter that correlated best with production, spectral conditions and other 

vigour characteristics.  This showed a variable trend depending on the year and 

plant growth. However, the estimated CA in 2021 and that in 2022 with flights 3 

and 7 at 70m showed a close correlation equal to r = 0.81***. The pruning and 

the flight path have an important impact in its change and evaluation (Figure 48 

and 49). In fact, using the flights 8 and 9 a reduction in CA is observed. 

 

 
Figure 48. Boxplot of the CA before and after the pruning operation. 
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The CA before pruning had an average area of 15.62 m2 and was reduced to 10.75 

m2 after pruning, showing a reduction of 31.17%. This percentage seems to be 

slightly different for the three vigour levels. The CA before pruning was on 

average 16.54m2 and after pruning it was reduced to 10.43m2 for the high vigour 

group; thus there was a reduction of 37%. The CA before pruning was on average  

12.56 m2 and after pruning it was reduced to 9.8m2 for the medium vigour group; 

thus there was a reduction of 0.22%. Finally, the CA decreased from a value of 

10.61m2 to 7.23m2 for the high vigour group; thus there was a reduction of 0.32%.  

 

 
Figure 49. Comparison between the canopy area before and after pruning operation. 

 

From the ANOVA analysis of the influence of the different flight directions, it is 

observed that the diagonal flight direction underestimated the canopy area 

compared to the NS and EO directions, which showed no statistically significant 

differences (Figure 50). Furthermore, the CA from the diagonal flight showed the 

lowest correlation with the ground measurements (R2 0.76***) compared to the 

other two directions, while the highest value was given by the NS direction (R2 

0.99***). 
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Figure 50. Influence of the different flight paths (E-W, N-S, D) on the CA 

reconstruction. Results from ANOVA test (pvalue > 0.05) and Tukey test. 

 

Comparing flights 3, 4 and 7 was evaluated the differences determined by the 

flight height on the geometric reconstruction and the canopy area estimation (Fig. 

51 and 52). Multi-way ANOVA analysis showed that there were no statistically 

significant differences and interaction between the heights performed in flight 1 

and 2 and the period. However, for flight 7 the plants were more developed and 

the ANOVA analysis showed statistically significant differences between the 

flight height of 30m and 70m. The greatest values were found in the flight at 70m. 

 

 
Figure 51. Influence of the different flight altitude on the CA reconstruction. Results 

from ANOVA test (pvalue > 0.05) and Tukey test. 
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Flight alt:  70m   50m    30m 

GSD:      3.68cm   2.63cm    1.58cm 
Figure 52. Different geometric resolutions from the flights 3c, 3b and 3a. 

 

Starting from the CA calculated using the Qgis software and the ground measure, 

it was possible to carry out data validation. In fact, the accuracy assessment 

between the observed and estimated values for CA resulted in RMSE equal to 

0.54 and a statistically significant close linear relationship with R2 = 0.98*** 

(Figure 53). 
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Figure 53. Comparison between ground measured and UAV-estimated CA. 

 

CA data estimated using flight7 allowed the correlation between the flight made 

at 30m and the flight made at 70m to be identified. Their correlation showed a 

statically significant R2 value of 0.87***. Instead, the two datasets didn’t show 

any difference applying the ANOVA test.  

A particular parameter valuated using the flight 3 and 4 was the perimeter of the 

canopy. This parameter, when the tree had a canopy that was not very dense 

showed several differences. Indeed, from the ANOVA test showed differences 

statically significance between the flight altitude and period of flight (Figure 54). 

 

 
Figure 54. Influence of the different flight altitude on the canopy perimeter estimation. 

Result from ANOVA test (pvalue > 0.05) and Tukey test. 
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The influence of the perimeter of the inner holes with respect to the outer 

perimeter was found to be different depending on the height of flight. However, 

the most interesting finding concerns the influence of the area of the holes 

compared to the air deprived of the holes (Figure 55)  

 

 

 

 
Figure 55. Difference between the CA with (sx) and without (dx) holes form the flights 

at 30m, 50m and 70m in above, medium and below images respectively. 

 

These differences were statically different using the ANOVA test. They were 

34%, 22% and 12% for flight heights 30, 50 and 70 respectively (Figure 56). 
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Figure 56. Percentage hole area respect to the entire CA without holes. 

 

Figure 57 shows the 3-D representation generated in two fields with single-tree. 

Each flight camping generated images composed of two products: the ortho-

mosaic and its associated DSM. The plants were modelled in 3-D with high 

accuracy, showing the irregular shape of the trees including typical crown gaps 

and branch distribution, which allowed computing tree volume regarding the real 

crown shape. The orthomosaic were successfully created in all the studied 

scenarios. The application of image reconstruction using SfM techniques allowed 

the generation of detailed DSM, as shown in Figure 57, CV showed a good ability 

in reconstructing the geometry for each individual tree in the whole plot. Indeed, 

it showed a strong relationship with the other vigour parameters and the 

production capacity of the plants (r = 0.74***). 

 

 
Figure 57. 3D reconstruction of the whole study area and zoom of one tree. 
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CV was validated using the ground truth measured the same day as the flight. CV 

showed an underestimation of the final volume when compared to field 

measurements. In this case, the coefficient of determination was R2 = 0.67*** 

with RMSE equal to 9.5 m3 (Figure 58).  

 

 
Figure 58. Comparison between ground measured and UAV-estimated CV. 

 

Volume differences between the observed and estimated values do not denote real 

errors of the UAV-based measurements because the ground-based values were 

derived by applying the geometric equation that considers trees as full, ellipsoid 

shapes producing inaccurate estimates (Torres-Sánchez et al., 2015b; West, 

2009). In contrast, the three-dimensional products derived from the 3D 

reconstruction, reproduce the irregular shape of the canopy, yielding better 

estimates of tree volume as showed in Figure 59. 
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Figure 59. Comparison between geometric (red shape) and SFM reconstruction of the 

tree. 

 

The pruning operation had a determined impact on the CV variation (Figure 

60ab). In fact, using the flights 8 and 9 a reduction in CV is observed. The CV 

before pruning had an average area of 43 m3 and was reduced to 26 m3 after 

pruning, showing a reduction of 39.2% in whole plot. 
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(a)          (b) 

 
Figure 60. (a) Boxplot of the CV before and after the pruning operation; (b) Bar-plot of 

the biomass amount removed with the pruning operation in the three vigour levels. 

 

This percentage seems to be slightly different for the three vigour levels. Indeed, 

the low vigour group showed a reduction of 41%, while the medium and high 

vigour group showed a reduction of 34% and 47%, respectively. However, the 

biomass amount pruning removed from the pruning operation was good 

correlated (R2 = 0.63) in whole plot (Figure 61).  

 

 
Figure 61. Correlation between the biomass quantity and the volume before the pruning 

separated for the three vigour levels. 
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Taking selected plants in which, a more balanced pruning was carried out, the 

correlation between the amount of biomass removed and the initial plant volume 

was higher (R2 =0.76 ***, Figure 62 upper). The correlation between the 

difference of CV with the pruning weight showed a good linear correlation (R2 

=0.65***) in the plant selected with the same vigour level (Figure 62 below).  

 

 

 
Figure 62. (above) Correlation between the biomass quantity and the volume before the 

pruning separated for the selected plants. (below) Correlation between the CV and 

pruning weight. 

 

Using the pruning weight data for the 30 selected plants, it was observed that the 

weight of the removed biomass was not proportional to the volume of the biomass. 

In fact, the pruning density (kg/m3) was calculated and it was found that per 

vigour class there was a high homogeneity of the removed material (Figure 63). 

ANOVA analysis showed that there were statistically significant differences 
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between the high vigour group and the low vigour group, while the medium 

vigour group performed intermediately. 

 

 
Figure 63. Bar-plot of the biomass pruning density removed with the pruning operation 

in the three vigour levels. 

 

ANOVA was performed to evaluate the influence of the different flight path in 

the CV reconstruction. It is observed that the diagonal flight path overestimated 

the CV compared to the NS and EO directions, which showed no statistically 

significant differences (Figure 64). Furthermore, the CV from the diagonal flight 

showed the lowest correlation with the ground measurements (R2 0.77***) 

compared to the other two directions, while the highest value was given by the 

NS direction (R2 0.93***). 
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Figure 64. Influence of the different flight path ion the CV reconstruction. Result from 

ANOVA test (pvalue > 0.05) and Tukey test. 

 

Finally, in the Table 9 below is represent an overview of which were the best 

correlations results obtained between HC, CA and CV values found from the 

different flight directions and ground measurements. 
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Table 9. Correlation among some vegetative parameters and their ground truth.   

 

The correlation matrix results among Hc, Ca and CV calculated from different 

flight paths are summarized in table 10.  

 
Table 10. Correlation matrix among vegetative parameters: Hc, CA and CV estimated 

from the flight paths. 

 

CV data estimated using ID Flight 7 allowed the correlation between the flight 

made at 30m and the flight made at 70m to be identified. Their correlation showed 

a statically significant R2 value of 0.69 (Figure 65).  
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Figure 65. Comparison of CV values estimated from ID Flights 7a and 7b. 

 

The highest values were present in the values estimated at 30m. The ANOVA 

analysis of variance shows that the two datasets were statically different. Another 

interesting finding that was not shown is that the best DSM reconstruction was 

performed using the RGB image processing compared to the multi-spectral 

images in the flight 7a. Instead, flight 7b showed a better estimation of the DSM 

from multispectral data processing. Either way, the best DSM elaboration was 

performed reconstructing it from the dense cloud. Instead, the Mesh product was 

not able to differentiate well the soil from the canopy. 

By crossing all the vegetative variables such as TCSA, CA, CV and HC detected 

at the beginning of 2021, it was possible to define the MZ zones using the co-

kriging method (Figure 66). These zones have allowed for the construction of a 

more accurate prescription map as shown later. 
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Figure 66. Different vegetative MZ from the co-kriging analysis among the main 

parameters. 

 

3.3.3. Spectral analysis  

 

The investigation of the spatial variability of crop spectral characteristics makes 

it possible to determine the actual growing conditions of each plant. These data 

can be expressed in different ways, but the use of the vegetation index is a simple 

and smart method to understand the spectral conditions of crops. In our study, we 

measured spectral conditions using two major platforms and sensors applied in 

precision olive growing. The platforms were a UAV and a spectroradiometer as 

described in materials and methods. Continuous monitoring of the vegetation 

during the years 2021 and 2022 made it possible to observe plant growth in 

spectral terms as well (Figure 67).  The NDVI showed an increasing trend during 

the main growing season from April to September. This trend was observed for 

the three vigour levels determined by clustering. A characteristic peak is observed 

in the May period for both seasons and with minor effect for all three vigour 

levels. In general, the NDVI had an average value of 0.67 and 0.78 during the 

2021 and 2022 seasons respectively. 
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Figure 67. Average NDVI trend of the total plants for the three vigour levels (H, M, L). 

 

Sentinel 2 was used to observe the NDVI trend during the 2020, 2021 and 2022 

years (Figure 68). It showed an increasing trend during the rainy season. 

However, an increasing trend can also be observed during the season from May 

to September, even with less intensity. 
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Figure 68. Average NDVI trend of the whole plot calculated with Sentinel2 images 

according to the equation 20 for the years 2020, 2021 and 2022. The bars highlight the 

growing season of the olive tree, while the red line splits the different years. 

 

The multispectral informations were obtained for each individual tree canopy and 

for the different exposures using the UAV images. From the multispectral data, 

the mean values of the three vegetation indices recorded in the 24 selected plants 

were: 0.62± 0.03, 0.53± 0.03 and 0.71±0.03 for NDVI, NDRE and MSAVI 

respectively. ANOVA analysis shows that the mean values of the three vegetation 

indices are statistically different (p value < 0.005) from each other for each 

exposure. No statistically significant differences were found among the mean 

values of the four exposures for each index (Figure 69). 

 

 
Figure 69. NDVI, NDRE and MSAVI mean values of the individual canopies (n = 24), 

divided into the four exposures. 

 

The NDVI calculated from drone images, having a very low ground resolution 

(around 3cm), allowed for a good investigation of the spectral conditions of the 

canopy. As can be seen in the figure 70 it was possible to quantify which parts of 

the canopy are in a better vegetative state.  
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Figure 70.  NDVI representation for each canopy in a portion of the plot. 

 

NDVI correlates closely with plant vigour conditions, so any agronomic practices 

that are able to change them can influence the spectral response. Using the 

processed data from flights 8 and 9, it was also possible to see what the reduction 

in NDVI was between the vigour levels (Figure 71).    

 

 
Figure 71.  Different NDVI values before and after the pruning operation for the three 

vigour classes. 

 

Vigour maps obtained from kriging interpolation on NDVI values before and after 

pruning showed a decrease in the HV and MV groups and an increase in the LV 

group (Figure 72).  
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Figure 72. Vigour map before (above) and after (below) the pruning operation, obtained 

from the NDVI kriging interpolation. 

 

ANOVA was performed to evaluate the influence of the different flight paths in 

the NDVIvalues. Unlike what was observed for CV, CA and Hc, the flight paths 

did not lead to statically significant differences (Figure 73). 
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Figure 73. Influence of the different flight paths on the CV reconstruction. Results from 

ANOVA test (pvalue > 0.05) and Tukey test. 

 

Comparing flights 3, 4 and 7 was evaluated the differences determined by the 

flight height on the geometric reconstruction and the canopy area estimation 

(Figure 74). Multi-way ANOVA analysis showed that there were no statistically 

significant differences and interaction between the heights performed in flight 1 

and 2 and the period. However, for flight 7 the plants were more developed and 

the ANOVA analysis showed statistically significant differences between the 

flight height of 30m and 70m. The greatest values were found in the flight at 30m. 

 

 
Figure 74. Influence of the different flight altitude on the NDVI estimation. Results from 

ANOVA test (p value > 0.05) and Tukey test. 

 

The regression analysis shows that, in all the VIs, the values obtained from the 

four exposures are statistically correlated (p value< 0.001) to the mean value 
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obtained per plant, with a very high coefficient of determination. In this case, the 

southern exposure gave the best results. In fact, the R2 values found by comparing 

NDVI, NDRE and MSAVI of southern exposures with the relative mean values 

per plant were respectively: 0.754, 0.775 and 0.772 (Figure 75). 

 

 

 

 
Figure 75. (Image above) Correlation between NDVI values of the south-facing portion 

of the canopy and the mean NDVI value of the canopy. (Medium image) Correlation 
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between NDRE values of the south-facing portion of the canopy and the mean NDRE 

value of the canopy. (Image below) Correlation between the MSAVI index of the south-

facing portion of the canopy and the mean MSAVI of the canopy. 

 

The hyperspectral data acquired with the spectroradiometer allowed us to see the 

spectral signatures of the 24 selected plants and the reflectance of the four parts 

exposed at the cardinal directions (Figure 76). The average spectral signature, for 

most of the reflectance spectra, showed the typical trend of agricultural crops, 

with a higher reflectance in the near-infrared (NIR) bands than in the visible (VIS) 

region. More specifically, peaks of reflectance were observed approximately at 

555 nm in the green band and 770 nm in the NIR, while reflectance pits were 

recorded at around 690 nm. A different behaviour based on acquisition exposure 

was observed. 

 

 
Figure 76. Representation of the reflectance of the four parts of the plants exposed at the 

cardinal directions (each line is the mean of 24 spectra). 

 

The average reflectance that characterized the sampled plants were 6.2% in the 

blue band, 12.3% in the green, 9.8% in the red, 41.0% in the rededge, 61.7% in 

the NIR, respectively. It was observed a difference between the reflectance values 

acquired in the different cardinal directions, while maintaining the same trend 

along the curve. 

The reflectance in the South exposure was always higher than the other three 

while the North exposure showed the lowest values (p value < 0.001). East and 

West exposures gave similar values; in particular, in the region between 400 and 

680 nm, the West exposure shows values lower than those observed in the East 
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exposures, whereas in the NIR region the West exposure has on average 

significantly higher spectral reflectance values than East (p value < 0.001). 

The hyperspectral data provided in the 2022 by the two sides of the selected plants 

confirmed the results found during the 2021. As can be seen in the figure below 

(Figure 77), the two reflectance curves show the same trend, which is typical for 

crops. The curve exposed to the south was found to be higher in both the visible 

and infrared regions. The NDVI calculated from them was found to be higher in 

the southern exposure with statically significant differences.  

 

 
Figure 77. Representation of the average reflectance of the two-canopy sides of the plants 

(each line is the mean of 20 spectra). 

 

As was well explained in Materials and Methods, the reflectance of the north side 

was corrected according to the formula 15. In fact, there was a marked increase 

in it, exceeding the value of 1 in the infrared zone. 

PPFD measurements taken at the same time as the hyperspectral measurements 

showed a different amount of solar radiation in different areas of the plant (Figure 

78).  
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Figure 78. Distribution of PPF in the two exposures, North and South, in the three 

different zones of the canopy. 

 

However, the areas exposed to the south always had statistically higher values 

than those exposed to the north. For both exposures, the highest values were 

observed in the upper canopy area. On the north side, the lowest values 

statistically were recorded in the middle zone. In the southern exposure, there 

were no statistically significant differences between the middle and low zones. 

Three vegetation indices were calculated: NDVI, NDRE and MSAVI using the 

same range as the multispectral camera. Within each index, statistically 

significant differences were observed among the different exposures (Table 11). 

In particular, the South and West exposures gave for the three indices higher and 

significant values. Northern and Eastern exposures caused a greater dispersion of 

the data especially in NDVI and MSAVI. Statistically significant differences 

among the indices were also observed. MSAVI gave the highest average value 

with a mean of 0.718 ±0.14 followed by NDVI with a value of 0.574 ±0.13 and 

then NDRE with 0.156 ± 0.03.  

 
Table 11. NDVI, NDRE and MSAVI from hyperspectral data. Values are mean ± st.dev. 

of the 24 selected plants. Different letters in the column indicate statistically significant 

differences at a significance level of pvalue <0.05. 

Exposure NDVI  NDRE  MSAVI  

S 0.647 ± 0.05 a 0.170 ± 0.02 a  0.785 ± 0.04 a 

W 0.643 ± 0.05 a 0.167 ± 0.02 a 0.781 ± 0.04 a 

N 0.497 ± 0.15 b 0.139 ± 0.04 b 0.644 ± 0.20 b 

E 0.508 ± 0.14 b 0.147 ± 0.03 ab 0.661 ± 0.13 b 

Average 0.574 ± 0.13 0.156 ± 0.03 0.718 ± 0.14 
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The regression analysis between the indices used for the hyperspectral 

characterization of the plants showed statistically significant values (pvalue< 0.001) 

and high R2 values. NDVI had R2 value of 0.80 and 0.97 with NDRE and MSAVI 

respectively. NDRE showed R2 of 0.79 with the MSAVI value. Therefore, the 

coefficient of determination values between the indices were very high, with 

statistically significant differences; the R2 highest value was observed between 

MSAVI and NDVI (Figure 79).  

 

 
Figure 79. Linear correlation between NDVI and MSAVI. 

 

Important results were found out from the ANOVA test used  to compare 

multispectral and hyperspectral data obtained by the two sensors. The test was 

performed using the responses of the three different vegetation indices on each 

expousure (Figure 80). The effect of exposure was statical significant and more 

pronounced in the hyperspectral data than in the multispectral ones. West and 

South exposures gave the most consistent results with the multispectral images 

and the least scatter in the data for all indices used. In general, the effect of 

exposure had no impact on the multispectral data unlike the hyperspectral ones. 

Specifically, in the South and West exposures, NDVI and MSAVI values were 

statistically higher than those obtained from multispectral images (p value <0.05). 

In the North and East exposures, the values were always lower than the ones 

obtained from the multispectral data for all the VIs but the high dispersion 

determines no difference. 
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Figure 80. NDVI, NDRE and MSAVI data calculated from multispectral and 

hyperspectral images for the different portions of the canopy. 

 

The best correlation between the indices calculated from the two different datasets 

was obtained in the southern and western exposures, for all three indices. In 

particular, NDVI in the West exposure showed r = 0.69** between multispectral 

and hyperspectral data, while for MSAVI the best correlation was r = 0.63** in 
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the same exposure. For NDRE, the correlation between multispectral and 

hyperspectral data showed r = 0.74** in the South exposure. 

 

3.4 Variability and management 
 

Precision agriculture is an important tool that can be deployed to determine spatial 

and temporal variability in order to manage it efficiently. In the previous sub-

section, the results given from the soil, climate and crop variability were shown.  

The previous results gave a clear idea of the capabilities of the platforms and 

sensors used to extract different types of information from the olive orchard. In 

this sub-paragraph we compare the results obtained to understanding their 

interconnection and as can be used to create prescription maps that allow an 

efficiently site-specific management. 

The geostatic processing carried out on the soil parameters investigated in the 

experiment allowed obtaining base maps for understanding the spatial variability 

and the correlation with the vegetative parameters. The soil parameters were able 

to influence the growth conditions of the plants and their production. The 

nutritional status of the leaves was strongly influenced by the availability of 

elements in the soil (Table 12).  

 
Table 12. Correlation among the main soil, vegetative and production parameters. 

Electrical conductivity (EC, dS m-1); Total carbonates (TC, %); Sandy (%); Total Organic 

Carbon (TOC, %); Total Nitrogen (Ns, %); Leaf Nitrogen (Nl, %); Leaf Potassium (K, 

%); Leaf Calcium (Ca, %); Leaf Iron (Fe, %), Leaf Magnesium (Mg, %); Leaf Manganese 

(Mn, ppm); Leaf  Zinc (Zn, ppm); Leaf Copper (Cu, ppm); Yield (kg); TCSA (m2); 

NDVI; Canopy area (m2). pvalue<0.05*; pvalue <0.01**; pvalue <0.001***. 

 
 

Most of the metals present in the leaves as: K, Ca and Mn were in a statistically 

significant close relationship with some soil variables. Sandy, Tc, TOC and Tn 

were well correlated with several leaf parameters. In particular, TN and TOC were 
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strongly correlated (p-value < 0.01) with leaf nitrogen (Nf) with an r of 0.79 and 

062 respectively. 

Sand, electrical conductivity, organic matter and total N values were positively 

correlated with some crop variables such as TCSA, yield, NDVI and canopy area 

(Table 13) thus suggesting the importance of soil fertility and nitrogen for olive 

orchard growth. Strong correlations were obtained, in particular, between Sand 

and yield, but also good correlation was found with TN and TOC. The spectral 

condition of the plants also showed good correlation with the main soil parameter 

such as E.C. (r = 0.30*), sand (r =0.33**) and TOC (r =0.42**). 
 

Table 13. Correlation among main soil, vegetative, spectral and production parameters. 

Electrical conductivity (EC, dS m-1); Sandy (%); Total Organic Carbon (TOC, %); Soil 

Nitrogen (Ns, %); pvalue<0.05*; pvalue <0.01**; pvalue <0.001***. 

 
 

The vegetative parameters TCSA, CA and CV during the different experimental 

seasons always correlated well with the crop’s spectral response. TCSA were 

statistically significant correlated with NDVI during the different years. In the 

2021 the correlation was of r = 0.73*** while in the 2022 was sligtly lowest (r = 

0.58***; Figure 81). While lowest correlation was found with the productivity 

values (r = 0.42***).  
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Figure 81. Correlations between TCSA and NDVI calculated as the average of all pixels 

within the CA of each tree. pvalue < 0.001(***). 

 

NDVI, CA and CV have been calculated using the drone’s multispectral image 

and GIS processing; therefore, they made it possible to quickly and easily 

investigate the variability of the field. NDVI, CA and CV had respectively an 

average value of 0.71± 0.06, 7.7± 2.09 m2 and 18.02 ± 2.2m3. Crossing all vigour 

parameters such as CA, CV, and TCSA, the plants were clustered in three vigour 

groups (C1, C2, C3) using K-means as cluster algorithm. These cluster groups 

represent the three-vigour classes (Figure 82): High (HV), Medium (MV) and 

Low Vigour (LV).  

 
(a)        (b) 

 
Figure 82. (a) CA and NDVI values (±st. dev) for the three clusters; (b) CV and NDVI 

values (±st. dev) for the three clusters. 
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The three vigour groups showed clear differences in terms of vigour (Figure 82). 

The three parameters showed an increasing data trend for the three vigor groups. 

CA showed values of 5.4 m2 ± 0.8, 8.15 m2 ± 0.6 and 9.6 m2 ± 0.65 for the three-

vigour levels, respectively; NDVI showed values of 0.64 ± 0.02, 0.72 ± 0.02 and 

0.78 ± 0.02 going from C1 to C3; CV showed values of 15.6 m3 ± 0.84, 18.5 m3 

± 0.73 and 20.1 m3 ± 0.80 for the three-vigour levels. From the statistical analysis, 

it appears that the NDVI of each individual tree was able to describe the variability 

of the field especially in terms of vigour characteristics. In fact, NDVI was strong 

statistically significant correlated with the values of canopy area during the 2021 

r = 0.90***) and 2022 (r = 0.87***, Figure 83). 

 

 
Figure 83. Correlation value between NDVI and Canopy area (m2). pvalue < 0.001(***). 

 

All the vegetative parameters estimated in the 2021 before the new growth season 

showed an important correlation with the previus yield, especially NDVI (r = 

0.70***) and canopy area (r =0.76***). Also in the 2022 the NDVI of the selected 

plants showed a good relationship with production activity (r = 0.63***, Figure 

84). 
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Figure 84. Correlation value between NDVI and Production (kg plant-1). pvalue < 0.001(***). 

 

The hyperspectral data provided by the two sides of the selected plants showed 

important correlations with the production of the same side (Figure 85). The 

NDVI calculated from them was found to be higher in the southern exposure with 

statically significant differences. The yield per side gave the same results as the 

NDVI; confirming the NDVI as a good index for predicting yield (R2 = 0.68***).  
 

 
Figure 85. Correlation between NDVI and production for North and South canopy 

exposure. 
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Also, CA had a good influence on the productivity of the olive grove. Indeed, it 

was observed that productivity depends on the canopy area of the single plants (r 

= 0.75***, Figure 86). This result is supported by PCA analysis, where it was 

possible identify as the trees with high and low vigour were clustered with high 

and low production respectively (Figure 87). The average production and CA of 

all plants were used as a threshold to distinguish high and low production and 

canopy area. 

 

 
Figure 86.  Correlation between CA and Production. pvalue < 0.001(***). 

 

 
Figure 87. Principal Component Analysis (PCA) of high and low CA and production. 

 



116 

 

CV showed similar correlation results of the CA. CV had a good influence on the 

productivity of the olive grove showing a r= 0.74*** (Figure 88). 

 

 
Figure 88. Correlation between CV and Production. pvalue < 0.001(***). 

 

Using the GEOBIA method, it was possible to analyse all information from soil, 

nutrient and vigour conditions together to understand how this influenced the final 

productivity of the plants. Cluster analysis enabled three groups of plants to be 

statistically differentiated on the basis of all the variables examined so far (Figure 

89). Using the three groups of clusters and plotting their score of nitrogen 

concentration and canopy area, it was observed that the whole plot showed clear 

heterogeneities. These clusters were statistically different p (<0.001) in terms of 

productivity by ANOVA analysis (Figure 89). Moreover, the ANOVA test 

showed that CA has a greater effect than nitrogen concentration. 
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Figure 89. Cluster analysis of the three vigour groups (C1, C2, C3) according to total 

nitrogen content and CA and ANOVA test results for the production. 

 

From the results previous shown, it appears that vegetative and nutritional 

conditions played a decisive factor in yield. Olive production and canopy area 

based on NDVI were overlapped in Figure 90, also showing a certain variability 

in olive yield. 
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Figure 90. (Image above) Overlay of the yield map (red-green scale) and individual tree 

NDVI values; (Image below) particular of the image. 

 

In the third year of experimentation, from the pruning and production survey it 

was possible to obtain the data of all the plants and make a prediction through the 
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multivariate analysis. In this way the map of the amount of nitrogen removed from 

the crop according to equation 12 was obtained (Figure 91).  

 
Figure 91. Nr map according to the equation12 divided for homogeneous classes. The 

bar graph indicates the extension of the different homogeneous areas. 

 

The map above has a resolution of 1 m2 (1 pixel) containing, as a digital number 

(DN), the amount of Nr distributed per square meter The quantity of Nr varied 

from 30 kg/ha to 60 kg/ha as shown in figure 45 and three homogeneous areas 

were distinguished. 
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4. DISCUSSION 
 

The Mediterranean climate condition, being characterized by excessive 

temperatures during the summer period as well as low rainfall in the spring and 

summer seasons. This climate conditions do not allow many crops to grow 

properly. The olive tree, being a xerophytic plant, is able to withstand such 

conditions. In addition, the olive tree generally has a high alternation of 

production, so acting on the most important agronomic practices that can reduce 

it can lead to higher profitability. A precision management of water resources or 

fertilizers and of the main cultivation operations can play a key role in reaping 

economic and environmental benefits.  The climatic trend over the three years has 

been typical for the Mediterranean area. Nevertheless, clear differences in 

temperature and rainfall were observed across the years. Temperatures showed a 

steady increase in average temperatures gradually from 2020 to 2022. This effect 

is probably related to global warming, which is putting a strain on world 

agriculture. In the experiment conducted, climatic conditions strongly influenced 

olive tree growth, looking at the NDVI trend calculated from the sentinel2A and 

UAV images. However, plant productivity was not affected by rainfall. In the 

years 2020 and 2021, approximately the same production was obtained with 

similar rainfall, while no production was obtained in the year 2021. This is related 

to the intensive pruning carried out at the end of 2020.  

The economic benefits of site-specific nutrient management are likely to come 

from the more efficient use of fertilizers and from increases in crop yield. Soil 

sampling density depends on the variability of the field being tested. As sampling 

density increases, so do the costs of soil sampling, soil testing, etc. In general, 

site-specific management can be carried out at different scales of detail. The scale 

of detail that can be adopted depends on a number of factors, but mainly depends 

on the internal degree of variability of each area that we are able to achieve in 

order to homogeneously manage the sub-areas. In countries where the average 

farm area is very large, site-specific management is concentrated in the 

identification of homogeneous management areas (Zone management, ZM) that 

are more or less large. In the Mediterranean area, the oliviculture is characterized 

by several small fields with high inside variability. However, the site-specific 

application at the farmer's plot level has not been carried out in Sicily due to 

limitations in the development and adoption of agricultural science and 

technology. Therefore, it is important to verify that the main data acquisition 

platforms used in precision agriculture are able to allow variable rate management 

of an olive orchard in Mediterranean conditions. 

Geostatistical analysis of the maps enabled us to trace the spatial variability of the 

main soil variables such as texture, pH, EC, TOC and TN. The possible spatial 

structure of the different soil properties was identified by calculating the 

semivariograms and the best model describing these spatial structures was found. 

The best fit model was applied to each parameter, the accuracy of soil property 
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values was estimated by kriging (using parameters of the modelled 

semivariogram) also at unsampled locations. Parameters used to apply the best 

model included nugget effect (Co), sill (Co + C), and influence range for each 

terrain. Furthermore, the degree of autocorrelation between sampling points was 

found to be related to the spatial dependence (nugget: sill ratio) and expressed as 

a percentage. Spatial variables were classified as randomly to strongly dependent 

by the ratio (nugget : sill, Clark, 1979; Trangmar et al., 1986). Various models are 

used for semivariogram analysis such as linear and spherical. The electrical 

conductivity values of soil samples show a strong spatial dependency and an 

opposite trend like TOC. As the electrical conductivity of soils varies depending 

on the amount of moisture held by soil particles, thus its variability is distinct 

throughout the sampling area. The map of TOC shows that whole study area has 

a TOC content of less than 1%, which is the critical limit for organic carbon in 

most agricultural soils. The semivariograms and kriging interpolation map of 

TOC show a parallel (strong) spatial pattern trend as soil CE and TN (Buttafuoco 

et al., 2017), this results were confirmed in the correlation matrix in table 6. 

Indeed, it shows that there was good correlation between TOC and TN with EC. 

Their higher level was mainly observed in the eastern part of the study area, while 

in the middle and north zone the concentrations were low.  This effect can be 

partially explained because the TOC directly influenced the water source and CE 

is strongly related to it. The main factors for the low TOC concentration in the 

study area could be long-term soil tillage, low water content and high soil 

temperature induced by climatic conditions. Similarly, this variability may be 

based on landscape attributes, including slope and altitude although they are not 

very pronounced in our field as represented in the figure 36 (Rezaei and Gilkes, 

2005). In the whole experimental area, the concentration of TOC, as well as TN, 

was low, probably due to concomitant factors: i) excessive mineralization of 

organic matter and ii) the lack of organic matter supply.  

The determination of the different base maps subsequently allowed co-kriging for 

the identification of the MZs, after defining a spatial dependence model. The MZ 

maps made it possible to define 3 zones with statistically different soil 

characteristics. The map of homogeneous soil zones seems to be perfectly in line 

with the distribution of TOC and TN while it does not seem to follow the values 

of texture as found in other studies (Buttafuoco et al., 2017; López-Granados et 

al., 2004). The productive results recorded in the different areas emphasise that 

knowledge of soil variability is of central importance for site-specific 

management. Indeed, the production of olive trees was influenced by soil fertility, 

particularly the amount of TN and TOC as found in similar studies (e.g. Fountas 

et al., 2015). Soil parameters showed a good correlation with plant nutrition and 

vegetative status. The low amount of foliar nitrogen, thus, may be explained by 

the low concentration of soil nitrogen. Indeed, the foliar N concentration values 

were lower than the threshold in the 76% of the area, although in line with 

previous studies (López-Granados et al., 2004; Maran and Fernandez-Escobar, 

1996). TOC was correlated with vegetative activity (NDVI and canopy area) and 
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production while TN was correlated only with production. Probably, TN did not 

correlate closely with vegetative parameters because these are influenced by many 

variables such as pruning, agronomic management, etc. and not only by nitrogen 

availability, which fluctuates over the years. Another important result was the 

influence of the amount of TC with the concentration of certain metals in the 

leaves. Indeed, TC positively influenced the concentration of K, Ca and Mn. This 

effect is related to the increased availability in the soil caused by TC itself. Mn 

was found to be highly correlated with N in leaves, as widely accepted in the 

literature, as its concentration influences the formation of lignin and is part of 

some enzymes for cell division, metabolism and photosynthesis. Similar results 

were observed with the elements K and Ca showing high correlations with the 

amount of nitrogen in the leaves. Many agronomic techniques such as fertilization 

and irrigation are strongly dependent on soil conditions. In particular, for 

fertilization, distinguishing the areas that require intervention from those that are 

in suitable TOC can greatly reduce the amount to be distributed. Therefore, 

precision agriculture should make use of the study of soil variability to increase 

agroecosystem efficiency. 

The experiment showed that the majority plot area had nitrogen deficiency, as all 

samples had N concentration below the optimal threshold of 1.2%. No values 

below the threshold were observed for any of the other elements based on (Maran 

and Fernandez-Escobar, 1996). For this reason it was not possible to exclude 

zones of the plot from N fertilization (Aggelopoulou et al., 2011; López-Granados 

et al., 2004; Noori and Panda, 2016). However, several studies recommend that 

the best strategy to optimise nitrogen fertilization in olive orchards is to apply 

nitrogen fertilizers only when the leaf analysis of the previous season shows 

values below the deficiency threshold. The deficiency threshold for olive trees 

has been set at 1.5% leaf dry weight for July samples (Beutel et al., 1983). 

However, other studies have shown that there is no reduction in yield or growth 

in trees with a leaf nitrogen concentration below the threshold, suggesting that the 

deficiency threshold in olive trees must be lower (Fernández-Escobar et al., 

2009b; Molina-Soria and Fernández-Escobar, 2010). Based on these reports, it 

becomes necessary to establish a nitrogen balance in orchards that takes into 

account the spatial variability of all parameters that may influence vegetative 

growth and productive activity of plants. Indeed, the nutritional condition for each 

plant was not correlated well with the vegetative parameters. However, this 

deficiency was one of the determining factors for plant production, as obtained 

from the PCA that supported the grouping of plants into three groups (Figure 89). 

In our study, foliar nitrogen levels were probably not well correlated because the 

plants had different accumulated resources. However, nitrogen deficit status was 

the main limiting factor for plant growth in the plot considered, as found in 

another study (Fountas et al., 2015). The low NDVI values found (López-

Granados et al., 2004; Noori and Panda, 2016) and the entire vegetative 

heterogeneity detected could be explained by the deficient nutritional status of the 

plants, whose production was highly correlated to the vegetative parameters. 
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Therefore, using foliar nitrogen concentration threshold of 1.2, a new fertilization 

map was created. This, highlights the areas that actually need fertilization and 

coincides well with the areas of low productivity. Thus, the vigour map made on 

the basis of CA also shows important similarities. In this case the percentage of 

the total area that need the fertilization is 76%. Therefore, the amount of fertilizer 

actually saved per hectare compared to normal distributions is 24%. The 

fertilization prescription map applied at the beginning of 2021 enabled good plant 

growth conditions to be restored. This map appears to be similar to the previous 

maps obtained from the soil. It confirms that knowledge of the soil, plants and 

their interactions is an important management tool. A careful survey of the 

surrounding area showed that the dose of nitrogen commonly used is about 150 

kg ha-1, which corresponds to 88 kg in our plot. Using the fertilization map 

showed in the figure 44, the quantity to be actually distributed was 114 kg ha-1; 

consequently, a final fertilizer saving is 36 kg ha-1. This amount saving is in 

accordance to previous studies (Aggelopoulou et al., 2011; Van Evert et al., 

2017).  

The construction of the prescription map starting from nitrogen deficiencies 

represents an effective method that can be easily adopted by companies. However, 

looking at figure 45 it can be seen that the fertilizer savings can be greater. This 

map is obtained from all the variables that mainly contribute to the nitrogen 

balance. Furthermore, it is easy to apply since once the MZ zones have been 

outlined, the determination of the fertilizer dose to be distributed is weighted on 

the actual minimum and maximum quantities that are distributed in the zone 

(Roma et al., 2023). Using the map in figure 45, a saving of 66% was achieved. 

This result, although it may seem high, is in agreement with the literature which 

in various articles confirms that it does not seem necessary to resort to annual 

fertilization in olive groves(Fernández-Escobar, 2011; Fernández-Escobar et al., 

2012; López-Granados et al., 2004). Furthermore, excessive amounts of fertilizers 

can cause low quality olive oil. (Fernández-Escobar et al., 2006).  Map 45 seems 

to be in line with the map in figures 66 and 40 from which it was obtained. 

Therefore, this result also confirms that the examination of soil and crop 

variability and their interpolation through correct management techniques can 

significantly help to reduce resources and increase the efficiency of the entire 

olive grove. Due to the pandemic and the energy crisis, all countries including 

Italy are witnessing a sudden increase in fertilizer prices. Therefore, the correct 

use of fertilizer can also be a determining factor in the success of the crop 

economically(Koch et al., 2004). Our study shows that saving an important 

amount of nitrogen fertilizer corresponds to a saving more of 100 euros for 

hectare. The detail that can be obtained for the creation of fertilization maps can 

be different. In our study we focused on the identification of MZ zones (Casa et 

al., 2011). However, given the new technological developments, a different dose 

can be applied to each individual plant. Figure 91 highlights that it is possible to 

calculate the actual quantities of nitrogen removed per plant (Cointault et al., 

2003; Ehlert et al., 2004). By applying the different GIS methodologies, it is 
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possible to extend this result also to the pedological parameters. This way you 

will get a true balance of fertilization per plant. 

The technologies available today in precision agriculture are able to describe and 

determine the health status of the olive orchard. As observed in this study, 

variability must be observed in soil, climate and vegetation, as all three variables 

can be managed at variable rates and lead to increased resource use efficiency. 

However, as shown in other studies (Caruso et al., 2019; Zarco-Tejada and 

Sepulcre-Cantó, 2007) the investigation of crop variability is the main factor for 

the best precision agriculture applications. Direct size assessment of certain 

geometric features of olive trees, such as CA, HC the perimeter and CV, is now 

possible through the combined use of UAV imagery and advanced image 

processing and analysis procedures. This technology opens up new opportunities 

for monitoring the condition and progress of trees on a field scale, as an efficient, 

objective and accurate alternative to laborious and often inconsistent manual 

measurements on the ground (Rosell and Sanz, 2012). By estimating vegetative 

conditions well, they can be used as important predictors for the classification of 

vigour classes, homogeneous zones or for estimating biomass and carbon stocks 

using allometric functions (Asari et al., 2013). Geometrical canopy characteristics 

are also important in order to optimize the spray volume in pesticides application 

(Miranda-Fuentes et al., 2015). To calculate the optimal amount of pesticide to be 

applied, several dosing models have been proposed, including the canopy height 

model (CHT model), the surface orchard model (SO model) and the tree row 

volume model (TRV model) (Rüegg et al., 2001). Therefore, the ability of UAVs 

to easily provide these characteristics of the olive canopy and interconnect them 

with other types of information could positively contribute to reducing the 

environmental impact of pesticide applications. In the present work, crop 

variability was assessed in several ways. Precisely, the vegetative, spectral and 

nutritional conditions of individual trees were investigated. The condition of the 

plants was the most important factor in determining production. As confirmed by 

several studies, accuracy in data acquisition is important and can be improved by 

knowing which variables may affect it. (J. A. Berni et al., 2009; Caruso et al., 

2019; Fountas et al., 2011).  

Canopy area and NDVI reflect the real vegetative status of the plants at the 

moment in which they are determined. Since they are significantly correlated with 

TCSA, this finding suggests the good ability of the remote sensing platform 

(UAV) to detect and investigate the variability of vigour in the olive grove (Noori 

and Panda, 2016; Roma and Catania, 2022), thus minimising field sampling 

(Fulton and Port, 2018; Shafi et al., 2019). Furthermore, the vegetative 

characteristics had a significant and robust correlation with production. It rather 

confirms that production was strongly influenced by the biometric characteristics 

of the crop and their correct management can improve the quality and the quantity 

of the products (Fernandez-Escobar et al., 2008). Therefore, by having a broad 

knowledge of the field conditions, it is also possible to trace the production as 

other studies proved (Stateras and Kalivas, 2020). 
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To express the vegetative variable, i.e., vigour, it was decided to use the TCSA, 

HC, CA and CV. All these characteristics express a condition of vegetative 

vigour, they showed statistically significant relationships with each other.  

TCSA was only measured during the year 2020 but showed good correlations 

with the CA of the following years estimated by image analysis. This means that 

the two vegetative parameters are able to express plant vigour conditions well. 

This, however, is a measurement that is often affected by much error, since in 

some plants, the presence of trunk hyperplasia prevents it from being measured 

correctly. TCSA is a condition formed over the years of cultivation and it cannot 

describe the annual condition of the plant, while the area of the canopy certainly 

expresses a precise condition at an exact moment. Probably, for this reason the 

canopy area was indeed more correlated with plant production and NDVI (Figure 

81). The reduction in the correlation between TCSA and CA over the years is 

linked to the directly proportional development of canopy depending on plant 

vigour. Observing the HC values before and after pruning, the height interval 

between the various vigour classes is 1.08m, while afterwards it is reduced to only 

30 cm. This means that the pruning intervention resulted in a substantial reduction 

in plant heights in the entire plot. In general, the height of the canopy was reduced 

by 20% with different weights depending on the vigour class, in order to 

homogenize the vegetative condition of the plants. 

A very interesting result that has so far not been investigated in the literature is 

the perimeter differences found at different heights. Indeed, in scattered canopies 

such as those surveyed with flight 3, the different heights were able to identify the 

different holes in the canopy. Whereas these differences were not found in denser 

canopies because these may be covered by lower canopy layers.  This survey 

system can also be conducted on a few plants to effectively determine the 

penetrability of light in the canopy considering its importance for canopy 

efficiency. Although no measurements were made regarding the actual canopy 

density, this result lays the foundation for future investigations that could improve 

the use of UAV platforms for the determination of parameters related to this 

aspect such as LAI. 

The UAV equipped with multispectral and RGB camera showed a good capacity 

to extract the vegetative information using the orthomosaic and SfM products to 

obtain the spectral and biometric data (Catania et al., 2023). They were able to 

predict the production and consequently to better manage variability with 

significant environmental, agronomic and economic benefits (Aggelopoulou et 

al., 2011; Van Evert et al., 2017). Geometric reconstruction showed interesting 

results. The high value of RMSE obtained between observed and estimated data 

were found in previous studies (Anifantis et al., 2019; Torres-Sánchez et al., 

2015b). These volume differences were caused by ground measurements applying 

the geometric equation as explained in Figure 59 (Torres-Sánchez et al., 2015b; 

West, 2009). Indeed, similar magnitudes were observed between the two 

approaches; in fact, the largest and smallest trees on the ground remained the same 

in the geometric reconstruction. Therefore, if one assumes that data from 3D 
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reconstruction are able to determine a better estimate of CV, it is possible to better 

balance and manage certain agronomic practices such as variable-rate treatments, 

resulting in significant product savings. Such savings consequently translate into 

greater environmental and economic sustainability. CV showed a strong 

relationship with CA and TCSA, pointing out that vigour conditions are 

interconnected. From the cluster analysis, the vigour conditions were able to 

differentiate the real health status of each tree expressed by its production. Getting 

accurate data on plant vigour is an important condition to obtain the best growth 

pattern of the olive tree and to better manage the orchard (Stateras and Kalivas, 

2020). However, during the first few years of the experiment, it was not always 

possible to use the DEM data because the pruning that was initially carried out 

resulted in too sparse canopies that did not allow for an accurate reconstruction, 

as has also been observed in other studies (Kattenborn et al., 2014; Torres-

Sánchez et al., 2015b). 

For the investigation of the above parameters, a UAV equipped with a 

multispectral and RGB camera was used as a platform. One of the aims of the 

thesis experiment was to understand how varying the direction of flight according 

to plants can alter and cause different results. The experiment showed that in the 

plot in all path configurations there was a difference in the multispectral and 

geometric results of the individual plants. In geometric terms, plant height was 

better estimated by the diagonal configuration, whereas the other configurations 

tended to overestimate values. This was characterised by a greater extension of 

high vigour areas than the sloping plot. However, the NS configuration was better 

at estimating CA values than the other configurations even though there were no 

statically significant differences with the EO configuration. The correct 

estimation of CA is crucial for correctly predicting yield, as it is the parameter 

most closely correlated with it. The effect of flight paths on the 3D geometric 

reconstruction of plants raises important questions about which method is actually 

better. Diagonal flight showed the best results as it had the highest correlations 

with the ground. However, as shown in the figure59, the measurements on the 

ground tend to strongly overestimate the CV especially if sparse. In fact, the CV 

measurements made by the NS and EO flight directions had much lower values, 

suggesting that diagonal flight overestimates the CV values. 

Another important effect evaluated in this thesis work was the influence of flight 

altitude on the geometric and spectral reconstruction of plants. The results showed 

that the flight performed at 70m slightly underestimated the CV measurements 

compared to the flight performed at 30m as showed in (Johansen et al., 2018). 

However, a closer look at the figure 65 shows that the plants that caused the most 

problems were those with very high CV. This difference was not observed for CA 

between the flight performed at different heights. There was no statically 

significant difference and the correlation between the two datasets was very close. 

Considering the entire workflow from flight operations to feature extraction, the 

time required to monitor one hectare of field area varied by several minutes in our 

plot. However, when referring to larger areas, the time consumed can have a very 
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important influence. Most of the time was spent on mosaicking and analysing the 

images, which is mainly influenced by the spatial resolution of the images. The 

time required between RGB and multispectral images was slightly less in RGB 

images. However, the opposite was observed in other studies. Probably due to the 

higher resolution of the RGB sensor Consequently, an agreement between the 

accuracy of the results and the duration of flight and calculation operations is 

necessary. In quantifying the time taken for image processing, the use of 

computers with high computing power is of crucial importance. This trade-off can 

be improved by choosing a good sensor and the correct flight configuration. In 

our investigation, the results obtained at lower altitudes did not always show the 

best results and image processing took much longer. From a practical point of 

view, imaging at an altitude of 70 m is recommended to increase the area of terrain 

covered in each flight and, consequently, to reduce both mission duration and the 

size of the image set. However, the potential accuracy expected from each flight 

altitude must be considered according to the starting conditions of the plants, as 

low or high canopy density conditions can greatly influence the final result.  

The impact of the pruning operation was found in previous study (Caruso et al., 

2021; Jiménez-Brenes et al., 2017) The pruning operation had a considerable 

effect in changing the vegetative condition of the entire plot. The CV was notably 

reduced, resulting in no statistical difference between the medium and high vigour 

classes. Most of the removal was carried out in the high vigour plants in terms of 

pruning as shown in the graph 91 Observing the correlations between the biomass 

removed and the initial volume of the plants, it is observed that this relationship 

is closer in low vigour plants than in medium and high vigour plants. This may be 

due to the greater cutting possibilities that can be performed in a high CV plant. 

The type of cutting that is carried out is also different. In fact, as is shown in the 

graph 63. the density of the pruning material was different. The high and medium 

volume plants had a higher weight because the percentage of wood in relation to 

the daughters was higher. In contrast, less light material was removed in the low 

vigour plants.  However, a higher correlation is observed in the selected plants as 

more targeted pruning was carried out on plants with similar vegetative 

conditions. 

Multispectral and hyperspectral images are an important tool for understanding 

the real condition of plants. it is known in the literature that their applications are 

very much for olive orchard management. In this thesis work, an attempt was 

made to highlight the potential of using such information sources to predict the 

main vigour parameters and productivity. The crop spectral conditions were 

investigated by calculating NDVI that describes the general vegetative and 

nutritional conditions of each plant because the bands used for its calculation (NIR 

and red) are strongly related with them (Liang, 2004; Xie et al., 2014). 

The NDVI calculated from the Sentinel2 images had peaks during the autumn-

winter periods. This phenomenon is linked to the development of weeds. The 

increased availability of water during the winter period resulted in the 

development of weeds that masked the spectral response of the olive tree from the 
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Sentinel2 data. During the growing season, NDVI values do not seem to have a 

typical trend as monitored by UAV. This may be related to continuous changes in 

the optical properties of the soil. Indeed, even when the weeds have been 

controlled, either chemically or by tillage, the spectral response of the soil is 

highly dependent on its water conditions. In fact, during the dry season, from June 

to August, a slight increase in NDVI can be appreciated. The trends in this period 

compared with drone images from the same years are not discordant. However, 

the inability to discriminate vegetation and strong soil influence due to the low 

ground cover coefficient, such images cannot be applied as well as UAVs for 

investigating the spectral conditions of individual plants. 

Using the UAV images, during the season 2021, the NDVI showed low values, 

especially where conditions of low vigour and low nitrogen concentration in the 

leaves were found. As also shown in other studies (Caruso et al., 2019; Gómez et 

al., 2011) the NDVI has a good relation with the vegetative status (81, 83, 84). As 

found in Caruso et al., (2021) the NDVI was more correlated with the TCSA and 

its increment, suggesting the great importance of this indices to predict, from 

remote platform, this data. The NDVI was found to be more correlated with the 

prior year's TCSA value, as was the CA. This means that there has been vegetative 

growth which should be monitored every year for site specific management of the 

olive orchard. Moreover, when it correlates with the CA, it was able to discern 

the plants with high or low productivity with a high level of precision (84). When 

it was correlated with production, it was able to underline the plant with high 

vigour (precisely with high canopy area; 83). The correlation between NDVI and 

CA is a most import result. In fact, knowing what the average NDVI is per plant 

and the relationship that exists, makes it possible to obtain excellent information 

for the prediction of the production. NDVI showed better correlations with canopy 

area than the vigour parameters because the multispectral bands used in the 

calculation are sensitive to both effects: leaf efficiency (red band) and canopy 

structural conditions (NIR band) (Liang, 2004). Since production was mainly 

linked to the availability of plant resources and therefore to CA, NDVI always 

proved to be a good indicator and predictor of production even in non-optimal 

nutritional conditions. These results emphasize that NDVI is more able to 

determine the vegetative parameters than production. Therefore, by having 

precise multispectral and RGB images of the entire olive orchard, it is possible to 

use this information to obtain crop status data that can be used in development 

models or DSS for the optimization of agronomic management. 

The hyperspectral data are consistent with those generally found in the literature. 

Rubio-Delgado et al. (2021) have also attempted to describe and identify the 

spectral signature of olive trees, given the wealth of information on their health 

status that can be obtained. They obtained in the NIR region a slightly different 

curve than the one described in this study that can be explained by the different 

point of view (POV) of the sensor compared to the crop (Ye et al., 2008). The 

difference in the reflectance of the hyperspectral curve in the four exposures 

marked the results of the entire experiment. The normalization of the spectral data, 
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and therefore of the calculation of the different indices, allowed a better 

understanding of the crop's status. The hyperspectral VI values showed a close 

dependence on the acquisition exposure. Nevertheless, their correlation with the 

multispectral data was found to be statistically significant regardless of the type 

of VI and exposure. 

In a traditional breeding system like the one used in the experiment, the different 

growth conditions in the four exposures influenced the relative spectral 

characteristics. This effect is related to the different angle of the rows, which 

influences the interception of photosynthetically active radiation  (PAR) (Campos 

et al., 2017). Indeed, as observed by Campos et al., (2017) with the rows in the 

NE-SW direction, the part with the highest light interception in a latitude close to 

40° are the South and West zones. In our experiment, the hyperspectral VI showed 

a clear dependence on exposure, as found in another study with hyper and/or 

multispectral side-view cameras (Saiz-Rubio et al., 2021). The differences found 

are probably due to different cultivation conditions such as climate (solar 

radiation, wind direction, etc..) and agronomic characteristics such as volume of 

the canopy, number of foliar, LAI. However, also to the different mode of 

acquisition and operation of the sensor have influenced the reconstruction of the 

image. By grouping the hyperspectral data from the South and West exposures 

and comparing them with the North and East data, it is evident that the South-

West exposure resulted in statistically higher NDVI, MSAVI and NDRE values. 

The higher values found in the South and West exposures can be explained by the 

better growing conditions of the crop due to the higher luminosity (Campos et al., 

2017). These different growth conditions, although not supported by the 

differences in volume between the two sides, are shown in productive terms. In 

fact, as shown in Figure85 the NDVI values of the South exposure for the plants 

selected in the 2022 were well correlated with production levels. Probably, these 

production differences are linked to a different amount of irradiance available for 

the two sides, as can be seen in figure 78. The result obtained in the South and 

West exposures is also supported by the very high and statistically significant r2 

values found between the hyperspectral and multispectral VIs. It remains to be 

investigated how the different regions of the spectrum change and under which 

conditions it is correct to use one region rather than another when using side-view 

spectroradiometers. In fact, different studies investigated the crop status using the 

entire spectral signature but with more problems with the data management. 

The multispectral images were able to determine for each plant the crown area 

and the multispectral information with high precision, as obtained in previous 

studies (Anifantis et al., 2019; Deng et al., 2018; Stateras and Kalivas, 2020). The 

multispectral images were thus able to appreciate the spectral condition of each 

plant. A good linearity of the extrapolated data was obtained from the 

multispectral VI analysis. In fact, no statistically significant differences were 

observed for the same indices among the various exposures, in all three indices. 

However, statistically significant differences were found among all the indices, 



130 

 

probably related to the different bands used for the calculation, thus providing 

different spectral information (Gómez et al., 2011; Modica et al., 2020).  

From the comparison between multi and hyperspectral images, it can be deduced 

that the different VIs do not associate the same value to the same level of crop 

stress. In general, MSAVI gave higher values, followed by NDVI and then by 

NDRE both from multispectral and hyperspectral data.  

The use of the multi and hyperspectral sensors, despite the different viewpoint of 

the object, was able to describe the health status of the plants as found in Vanegas 

et al., (2018). Data coming from the hyperspectral camera with a side view of the 

object correlated well with the aerial multispectral images from drone, paying 

attention to the exposure. Therefore, hyperspectral information is more accurate, 

but at the same time more affected and/or at risk of error than multispectral 

information. This effect is explained by the variation in the data and the lower 

correlation value between the hyperspectral data in the four exposures. The 

exposures that showed the best correlation among the VIs calculated from the two 

datasets were the S and W. This is probably related to the better growth conditions 

of the two canopy portions, confirmed by the higher values appreciable in the 

hyperspectral dataset, as found in (Marshall and Thenkabail, 2015). 

Crossing the spectral, biometric, productive and nutritional characteristics of each 

plant by means of cluster analysis yields very interesting results that confirm the 

effectiveness of the entire experiment. The three statistically different clusters 

(C1, C2, C3) were identified by cluster analysis according to vigour and 

nutritional characteristics (Figures 89). The production of the three clusters 

showed statistically significant differences. C1 was the most productive and 

vigorous, while C3 was the lowest (Figure 89). This condition is also confirmed 

by Figure 82 where it can be observed that CA, CV and NDVI increase with 

increasing vigour class. These results are also supported by other studies 

conducted on olive orchards with traditional systems. However, in super-intensive 

olive groves, there is an increasing attempt to intensify the planting density. In 

this case, the increase in AC and relative CV may not lead to an increase in 

productivity. The results obtained with the PCA confirm that plant productivity is 

positively correlated with canopy development and secondarily with nutritional 

conditions, since high productivity was observed even in plants with a very 

vigorous canopy and moderate foliar nitrogen concentrations. As described 

above, this condition can be explained by the different resources immobilised in 

the wood, when there are no other limiting factors. 
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5. Research activity carried out at Valencia Polytechnic 

University 
 

The aim of the study conducted during the research period abroad was to evaluate 

the GNSS positioning system and the CWSI calculation to be implemented in an 

intelligent handheld system. The CWSI was calculated in the empirical and 

analytical form to assess the water stress conditions in olive orchard. The smart 

handheld instrument was also equipped with other sensors that could provide an 

accurate detection of the stress plant conditions. 

 

5.1. Materials and Methods  
 

5.1.1. Study area  

 

The experimentation was carried out in an experimental field located in the 

Valencia Polytechnic University, Spain (39°28'59.24"N, 0°20'15.01"W; 

WGS84). The surface of the plot is about 2000m2 and a regular orography and 

predominantly flat. The climate of the area is Mediterranean with an average 

annual rainfall lower than 500 mm, concentrated from autumn to spring. 

According to the Koppen–Geiger’s classification, the climate of the area is 

classified as Mediterranean hot summer (Kottek et al., 2006). The soil moisture 

regime is xeric, border with the aridic one, and the temperature regime is thermic. 

The main characteristics of the soil of the studied area according to the ISSS 

(International Society of Soil Science) classification system of soil particles, soil 

texture was sandy clay (Hillel, 2013). The trial was carried out in an olive orchard 

(Olea europaea subsp europaea) during the season 2022. The cultivation system 

was traditional and the total number of the plants was 20. Layout was rectangular 

with planting distances of 4.5 x 4 in the inter-row and intra-row respectively, in a 

NE–SO direction. At the time of the trial, the plants were in full productivity, in 

good vigor condition and the crop height varied between 3 m and 5 m.  

 

5.1.2. Experimental design  

 

The experiment involved two different irrigation treatments: a full irrigation (FI) 

according to the evapotranspiration calculated with the Penman-Monteith and a 

deficit irrigation (DF) treatment where the only irrigation input was rainfall. The 

data were collected during the season considering all twenty-one olive trees for 

the experimentation. Trees were irrigated (FI) using a surface drip irrigation 

system, placed before the experimentation, with a distance of 0.75 m apart on a 

single drip line, discharging 8 L for h-1. In the FI plants the irrigation volumes will 

be calculated on the basis of to replace crop evapotranspiration (ETc) as follows:  
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𝐸𝑇𝑐 =  𝐸𝑇0 ∗ 𝐾𝑐 ∗ 𝐾𝑟   (29) 

 

the coefficient used was: the reference evapotranspiration crop (ET0), crop 

coefficient (Kc) of 0.55 and a coefficient of ground cover (Kr) of 0.46. Reference 

evapotranspiration, ET0 will be calculate using the FAO-Penman-Monteith 

method (Allen et al., 1998). Once the evapotranspiration was calculated, the 

hydrological balance was used to schedule irrigation. Of the twenty or so plants, 

nine will be subjected to full irrigation treatment (FI) and the remaining eleven to 

no treatment. The layout of the drip system used for the experiment is shown in 

Figure 92. 

 

 
Figure 92. Experimentation site location and irrigation design. Blue lines represent the 

drip irrigation system used to apply the full irrigation (FI) treatment.  

 

5.1.3. Handheld System  

 

The handheld system was created in the “Departamento de Ingenieria Rural y 

Agroalimentararia de Valencia” of the Valencia Polytechnic University. It was 

equipped of several sensors to investigate the main parameter to identify the 

health condition of the plants and of growth. Exactly there are sensors for measure 

the environmental condition (relative humidity, temperature of air), multispectral 

data (NDVI) and thermal crop condition (Temperature of the canopy). In addition, 

there is a Global Navigation Satellite System (GNSS) for storing the position of 

measurements and a system to visualize the parameter directly. GNSS is able to 

transport the data in a whatever Geographic Information System (GIS) to 

spatialize and manage the data. However, as the instrumentation is under patent, 

it cannot be shown and the individual components cannot be described in detail. 
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5.1.4. Experimental surveys 

 

Before the experimentation, the plants were georeferenced using a GNSS 

instrument already used in other study and described in the section 2.5.1. During 

the experimentation has been taken all sampling and measurement at midday 

(from 12:00 to 14:00) as expected to determine the LWP and the CWSI. The 

thermal and hydraulic status (LWP) were taken in the bright zone of the canopy 

from the medium part, in several trees per treatments; because the plants have one 

sunny and one shady area of the canopy. LWP during the dry season was 

measured in three leaf samples per area to make the measure water status. Leaf 

water potential was measured by taking the leaf directly and inserting it into the 

Scholander chamber (PWSC Model 3000, Soil moisture equipment Corp., 

California, USA) following the procedure described in (Moriana et al., 2012; 

Guadalupe Sepulcre-Cantó et al., 2006b). The thermal measure (Temperature of 

the canopy, Tc) was taken near the sample to LWP. The acquisition angle was 

60° from zenith axis, to eliminate the soil influence, and 1 meter of distance from 

the plant. If Tc is measured from a (near-) nadir position, it is the temperature of 

the outer canopy layer, which tends to be larger than T0 because of the direct 

sunlight received (Chehbouni et al., 2001; Jones et al., 2003). At larger angle, the 

measured Tc incorporates the temperature of deeper canopy layers and is closer 

to T0. In theory, an optimum angle is between 50 and 70 ° from nadir (Huband 

and Monteith, 1986). To calculate the CWSI with analytic method need of 

external measurements from the handheld system such as wind speed and net 

radiation. Therefore, simultaneously the water status and thermal measure we 

measured the NDVI and weather condition with the handheld system and 

environmental instrumentation. To measure the net radiation was used a 

pyranometer. To measure the wind speed, we used a Kestrel 5400 datalogger 

positioned at 2m above the ground. 

 

5.1.5. Validation of GNSS receiver 

 

The handheld system was equipped with instrumentation capable of detecting 

geographical position. The positioning accuracy was evaluated by testing the 

differences in positions measured by the S7 Stonex instrument and the handheld 

system.  The acquisitions were carried out simultaneously in three different areas 

of Spain. Specifically, the sites were located two in Requena (Valencia; Lat: 

39°32’11.82” N and Long:1° 9’33.34” W in the first site and Lat:39°27’55.88” N   

and Long: 1° 8’40.59” W in the second site) and one in Turis (Valencia, Lat: 

39°23’41.10” N and Long: 0°41’58.96” W). Furthermore, these three sites had 

different climatic conditions. It was therefore possible to test the accuracy of the 

positioning system even under different climatic conditions. 

 



134 

 

 

5.1.6. CWSI equations 

 

For the experimentation were evaluated the two main methods to obtain the 

CWSI, analytic and empirical. Precisely, for the analytic equation has been used 

two different equation such as: Jackson’s formula (-) and the reformulation (-). 

While, empirical equations used was obtained starting from the data measured in 

the plot; because the two equation presented in the literature from J. Berni et al., 

(2009) and Egea et al., (2017) showed negative results. Below are explained the 

different equations and parameters used to obtain the CWSIa (in two main 

equation) and CWSIe.  

 

5.1.6.1. Analytic CWSI  

 

In this method the Tc (Temperature of the canopy) measurements are combined 

with meteorological data to compute CWSI. The utilization of the analytical 

approach requires measurement of incoming solar radiation, air temperature, 

relative humidity, and wind speed. These measurements are available from any 

meteorological station, and can be representative for an entire field or orchard; 

but there is some uncertainty in the estimation of the resistances, which induces a 

level of uncertainty to this approach as well (Jackson et al., 1981). Thus, △Tdry 

only requires Rn and raH for its estimation and is often assumed constant. The 

estimation of △Tpot bears more uncertainty. Originally, (Jackson et al., 1981) 

proposed to calculate only with meteorological parameters the Tdry and Twet. 

From Jackson, Twet can be calculated using the equation 30, as: 

 

𝑇𝑝𝑜𝑡 =  𝑇𝑎𝑖𝑟 +
𝑟𝑎∗ 𝑅𝑛

𝜌𝐶𝑝
∗

𝛾1

∆+𝛾1
−

𝑉𝑃𝐷

∆+𝛾1
   (30) 

 

Where Rn is the net radiative flux density (W m−2), ρ the air density (kg m−3), Cp 

the specific heat at constant pressure (J kg−1 ◦C−1), γ the psychrometric constant 

(Pa ◦C−1), ∆ the slope of the saturated vapor pressure vs. temperature curve (Pa 
◦C−1), ra the aerodynamic resistance (s m−1), and γ1 is calculated as (equation 31): 

 

𝛾1 =  𝛾 ∗ (1 +
𝑟𝑐𝑝

𝑟𝑎
)    (31) 

 

Where γ the psychrometric constant (Pa ◦C−1), ra the aerodynamic resistance (s 

m−1), and rcp the canopy resistance at potential transpiration (s m−1). Furthermore, 

there are the possibility of subtract the soil heat flux density or the energy flux 

density leaving the lower canopy layer (W m−2; G) at the Rn because generally is 

hypnotize equal zero. 
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Another method to calculate Twet, used in different study, it becomes 

straightforward to rearrange the basic energy balance equation to estimate the 

canopy resistance to water vapour transfer directly (Jones, 1999b, p. 1; Möller et 

al., 2007). The theoretical values for leaf or reference surface temperatures can be 

calculated using a standard rearrangement of the leaf energy balance (equation 

32). 

 

𝑇𝑤𝑒𝑡 =  𝑇𝑎𝑖𝑟 −  
𝑟𝑅𝐻 𝑟𝑣 𝛾

𝜌𝐶𝑝( 𝑠 𝑟𝑅𝐻+𝑟𝑣 𝛾)
 𝑅𝑛𝑖 +

𝑟𝑅𝐻 

𝑠 𝑟𝑅𝐻+𝑟𝑣 𝛾
 𝑉𝑃𝐷  (32) 

 

where Rni is the isothermal net radiative flux density (W m−2), VPD the vapor 

pressure deficit (kPa), s (the same with ∆ in the equation before) the slope of 

saturated water vapor pressure versus temperature curve (kPa °C-1), γ  the 

psychrometric constant (kPa K-1), ρ the air density (kg m−3), Cp the specific heat 

at constant pressure (J kg−1 ◦C−1), rV or rW the total resistance to vapour transports 

(s m-1), rHR is the resistance to heat and radiative transport (Jones, 1992, 1999a). 

The rHR is composed from other two parameters as: resistance to sensible heat 

transfer and leaf resistance to radiative heat loss. The leaf boundary layer 

resistance to heat transfer (raH or rH) can be estimate using the following equation 

33 (Guilioni et al., 2008): 

 

𝑟ℎ = 100√
𝑑

𝑢
     (33) 

 

where d (m) is a characteristic dimension of the leaf (the length in the direction of 

the wind) and u (m s-1) is the wind speed at the height of the leaf, usually estimated 

from a wind profile. rR is the leaf resistance to radiative transfer rewritten as 

(Guilioni et al., 2008; equation 34): 

 

𝑟𝑅 =  
𝜌𝐶𝑝

(8 𝜀𝑙 𝜎 𝑇𝑎
3)

    (34) 

 

The total resistance to heat and radiative transfer given by equation 35: 

 

𝑟𝐻,𝑅 =  
𝑟𝐻 𝑟𝑅

(𝑟𝐻+ 𝑟𝑅)
     (35) 

 

A leaf exchanges heat and water vapour with the surrounding air from its two 

sides. Leaf resistance to water vapour transfer rV (rW) can be calculated from leaf 

temperature TL and environmental variables on the basis of a linearized form of 

the energy balance equation written showed in several studies (Guilioni et al., 

2008; Hamlyn G.. Jones, 1992). But for the olive tree, where the transpiration is 

in the lower side of the leaf (hypostomatous leaves), we used another method. In 

this case, the rW was calculated as (equation 36): 
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𝑟𝑊 =  𝑟𝑆2 + 𝑟𝑎𝑊𝑙     (36) 

 

Where the rs2 is the stomal resistance only in the lower side. The boundary layer 

resistance to water vapour transport (raWl) is slightly lower than the one for 

sensible heat, as explained by (Hamlyn G.. Jones, 1992) as: rW = 0.92 rH. The 

stomal resistance was assumed as the resistance of the canopy and was calculated 

as (equation 37): 

 

𝑟𝑐 =  
𝑟𝑎(𝑒𝑐

∗− 𝑒𝑎)

𝛾 ( 
𝑟𝑎 𝑅𝑛

𝜌𝐶𝑝
−(𝑇𝑐−𝑇𝑎))

− 𝑟𝑎  (37) 

 

Where ra the aerodynamic resistance. In our study the effective aerodynamic 

resistance (rae) because it showed good results in several previous studies. This 

semi-empirical equation includes the influence of buoyancy on aerodynamic 

resistance and was calculated with the (Thom and Oliver, 1977) empirical 

method, as: 

 

𝑟𝑎𝑒 = 4.72 
[ln(

𝑧𝑢−𝑑

𝑧0𝑀
)]2

(1+ 0.54𝑢)
   (38) 

 

Where zu are the heights at which u (wind speed) was measured, d is the zero-

displacement height, z0M the roughness length of momentum. Because we used 

the rV parameter to calculate the Tpot, we hypothesised to calculate rs2 no as rc 

but as rcp (potential resistance of canopy). In this case, rcp was calculate with the 

follow equation derivate from (O’Toole and Real, 1986). Where the α and β 

coefficient are determine from (J. Berni et al., 2009; Egea et al., 2017) and the 

environmental was calculated always in the field. 

When the leaf does not transpire and all the available energies dissipate into 

sensible heat Tdry given by (equation 39):  

 

𝑇𝑑𝑟𝑦 =  𝑇𝑎𝑖𝑟 + 
𝑅𝑛𝑖 𝑟𝐻𝑅

𝜌𝐶𝑝
   (39) 

 

For both equations used to obtain the CWSI analytic the Tdry was obtain using 

the equation above. Therefore, only the calculation of the leaf temperature at 

potential transpiration was recalculated according to the two methods expressed 

before. 

 

4.1.6.2. Empirical CWSI  

The empirical method was created by Idso, (1982).  The data input is limited to 

Ta, VPD and Tc. The approach was inspired by the observation that △T (Tc- Ta) 
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decreases linearly with VPD. Idso, (1982) demonstrated that the lower limit of the 

CWSI is a linear function of VPD for a number of crops and locations. In this 

method, the equation to calculate the CWSIe is (equation 40):  

 

𝐶𝑊𝑆𝐼 =  
(𝑇𝑐−𝑇𝑎)−(𝑇𝑐− 𝑇𝑎)𝐿𝐿

(𝑇𝑐−𝑇𝑎)𝑈𝐿−(𝑇𝑐−𝑇𝑎)𝐿𝐿
   (40) 

 

where Tc-Ta denotes the measured canopy-air temperature difference; (Tc-Ta)LL 

is the lower limit of (Tc-Ta) for a given vapor pressure deficit (VPD) which is 

equivalent to a canopy transpiring at the potential rate; and (Tc-Ta)UL is the 

maximum (Tc-Ta), which corresponds to a non-transpiring canopy. (Tc-Ta)LL is 

a linear function of VPD (non-water-stressed baseline, NWSB) that, once 

empirically obtained, (Tc-Ta)LL is calculated by solving the baseline equation for 

the actual VPD. Therefore in this equation there are two limits (Hamlyn G.. Jones, 

1992). The calculation of CWSI relies on two baselines: the NWSB, which 

represents a fully watered crop (lower limits), and the maximum stressed baseline, 

which corresponds to a non-transpiring crop (upper limits, stomata fully closed); 

these limits can be calculated from the equations 41 and 42:  

 

∆𝑇𝑙 =  𝛼 +  𝛽 ∗ 𝑉𝑃𝐷   (41) 

 

∆𝑇𝑢 =  𝛼 +  𝛽(𝑉𝑃𝑠𝑎𝑡(𝑇𝑎) − 𝑉𝑃𝑠𝑎𝑡(𝑇 + 𝛼))   (42) 

 

where VPsat (Ta) is the saturation vapor pressure at air temperature Ta and VPsat 

(Ta+a) is the saturation vapor pressure at air temperature plus the intercept value 

as for the crop of interest. Slope b and intercept a have been determined for a 

number of crops but for the olive orchard there are only two study calculated that 

coefficient (J. Berni et al., 2009; Egea et al., 2017; Roma and Catania, 2022). The 

basic assumption of the method is that α pot and β pot are constant and crop 

specific, at least for a given location and for a certain growth stage. To calculate 

the DTpot, in our experimentation, we decided to obtain an own equation 

calibrated using the experimentation condition. The Tdry calculation was 

implemented with two equations. One is the analytic method previous represented 

while the second method widely used in the literature involves to add + 5°C at the 

temperature of the air (Tair). However, no statistical differences were shown 

between the two calculation methods, but the analytical method yielded the best 

results. Therefore, in the results that will be shown, the calculation of Tdry was 

obtained analytically.   
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5.2. Results 
 

The experiment evaluated the accuracy of the receiver positioning in different 

sites and weather conditions. The low-cost system was able to maintain a 

positioning error of less than 2m even in harsh weather conditions (Figure 93). 

Indeed, there were no statically significant differences between the measured 

positioning accuracies using the ANOVA test. 

 

 
Figure 93. Different position accuracy tested in three different zone and weather 

condition. Zone1-2 (Requena), zone3 (Turis).  

 

Aside from evaluating the accuracy of the positioning system, the 

experimentation focused on validating the instrument's ability to effectively 

determine the spectral and water conditions of crops.  In each method used to 

determine the hydrological status, a response with similar tendencies and 

behaviour was shown, confirming that there is a soil-plant-environment 

continuum. The climatological trend in the plot was in line with seasonal 

averages. The average temperatures observed were 31.8 °C, while the canopy 

temperature varied depending on irrigation. Average values of 2m/s, 980 W/ m2 

and 50% were measured for wind speed, net radiation and relative humidity 

respectively. The multispectral data collected from two sides showed a different 

value. Indeed, the leaves in bright side has higher value of NDVI than the shadow 

side with difference statically significant (pvalue > 0.001; Figure 94). The average 

NDVI in the bright side was 0.82 ± 0.06 while in the shadow side was 0.68 ± 0.05. 
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Figure 94. Average NDVI values of the canopy from the leaves on the bright side and 

the shaded side (Bar errors represent the ± st.dev). 

The canopy temperature (Tc) of each tree was closely related to the air 

temperature (Ta) and other parameters such as irrigation status. However, 

different lighting conditions did not influence always the canopy temperature. 

There were no statistically significant differences between the canopy 

temperature in the FI treatment. Instead, a statistical difference in canopy 

temperatures was found between the two side of the DI treatments. The higher 

values of canopy temperature were found in the deficit system for both sides. 

(Figure 95). 

    

 
Figure 95. Canopy temperature for the two different irrigation treatments and canopy 

side acquisition. 

 

From the difference in the transpiration rate of leaves, plants can vary in 

temperature. In general, the temperature difference (T) in leaves in good condition 
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is more negative, whereas plants in a stressed condition tend to have a higher 

value. The ANOVA test showed a statically significant difference between the 

two treatments (pvalue < 0.001; Figure 96). 

 

 
Figure 96. Average T for each irrigation treatment.  

 

The plants transpiration showed strong relation with the VPD condition of the 

atmosphere as reimported from the NWBL. The CWSIe showed a strong linear 

relationship with more parameters mainly DT and CWSI. The NWBL obtained is 

represented below and showed one high value of R2 with the VPD (Figure 97). 

 

 
Figure 97. representation of the NWSB (T = a + b· VPD) obtained in experimental site. 

 

The experimentation was able to define the hydrologic status of the plants 

differencing the two irrigation treatments. Below, the response of the olive trees 
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to irrigation treatments detected by various CWSI are presented by the average 

value for each treatment (Figure 98).  

All the main indicators strictly relate with the water stress, showed an important 

trend during the experimentation season (Figure 98). The LWP measured in the 

DI showed a growing trend more pronounced of the experimentation than the 

LWP measured in the FI, though in the last time of the experimentation when the 

irrigation was stopped and there was not rain both increased.  

 

 
Figure 98. Trend representation of the main parameters such as: LWP, CWSIj and 

CWSIa during the experimentation season under the different irrigation treatments.  

 

LWP values were different for the two-irrigation schedule. However, they were 

lower than 2 MPa. The LWP value was found in the DF system with an average 

of 1.2 ± 0.46 MPa, while in the FI system it was average 0.63 ± 0.2. LWP was 

strong related with the difference of the temperature with a R2 of 0.71*** (Figure 

99). 
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Figure 99. Relationship among the Leaf Water Potential and the Difference of 

Temperature (DT) obtained for the two irrigation treatments. 

 

The CSWI analytics showed strong relationship statically significance with the 

LWP, as R2 of 0.62*** and 0.57*** for CWSIj and CWSIa respectively (Figure 

100). Both CWSI also showed best correlation with a DT, with a R2 of 0.91*** 

and 0.88*** for CWSIj and CWSIa respectively (Figure 99). 
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Figure 100. (a) Correlation relationship between the CWSIj and LWP; (b) correlation 

relationship between the CWSIa and the LWP; (c) correlation relationship between the 

CWSIj and the T; (d) correlation relationship between the CWSIa and the DT. pvalue < 

0.001 (***). 

 

5.3. Discussion 
The results obtained on the accuracy of the global positioning system confirm that 

the handheld system was able to acquire vegetative and weather geo-referenced 

data with excellent accuracy. These results emphasise how the increased 

deployment of low-cost positioning systems can help the spread and use of smart 

technologies in the service of agriculture. The results of the evaluation carried out 

by Jackson et al., (2018) with reference to the GNSS receiver Navcom SF-3050 

showed that the low-cost receivers do not achieve the same positioning accuracy 

as the survey-grade ones. All low-cost receivers during static applications, could 

achieve centimetre-level accuracy in rural environments and perform better when 

using high quality versus a low-quality antenna. Indeed, the tropospheric error 

can be affected a low percentage of the accuracy depending on the weather 

condition (Karaim et al., 2018).  

The results regarding the NDVI differences found per canopy side confirm the 

results regarding the spectral investigation assessed in Italy. Optimising the 

quantity and quality of olive oil requires finely tuned water management, since 

 

a b 

c d 
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increased irrigation, up to a certain level, increases yield, but a certain degree of 

stress improves oil quality. It would therefore be useful to have monitoring tools 

that provide accurate information on the water status of the orchard. Of the various 

existing methods, those with high resolution, both temporal (i.e. continuous) and 

spatial, have the greatest potential for adoption. One of the commonly used spatial 

methods is the Crop Water Stress Index (CWSI). The use of handheld systems 

allows the influence of external parameters to be reduced to zero. Indeed, 

Sepulcre-Cantó et al., (2007, 2006) observed a better relationship between DT 

and stomatal resistance early in the morning and a deterioration in the relationship 

towards noon. Their explanation of these findings was that during the early 

morning hours the soil temperature is lower, and thus has a smaller influence on 

the measurements. 

The objective of this research was to test the ability of the CWSI to characterise 

the dynamics of the water status of olive trees in order to implement it in a 

handheld system. The CWSI was tested in empirical form and in two analytical 

configurations. The empirical and analytical CWSI was calculated based on the 

canopy temperature extracted from thermal images. The CWSI has already shown 

its high ability to determine water status, although with some differences between 

authors. The Jackson method has not been applied much in the literature (Jackson 

et al., 1981; Yuan et al., 2004); however, it has proven to be the most accurate. 

The other method that seems to have given very good results was that of (Hamlyn 

G.. Jones, 1992; Jones, 1999b). Both allowed a distinction to be made between 

well-watered trees, however, the analytical method using Jackson's formula 

showed the best results. However, the analytical forms of CWSI still require 

improvement as they required several parameters such as wind speed and net 

radiation that were not easily detectable without the help of a weather station. 

Thus, the analytical formulas need further testing before they can be used as a tool 

for monitoring the water status of olive orchards. The empirical CWSI seems to 

be promising, despite its limitations. In our experiment, the NWBL was derived 

for the measured conditions. This seems to be slightly different from the one 

proposed by (J. Berni et al., 2009; Egea et al., 2017). Probably due to their 

different climatic and cultivation conditions. Specifically, the formula found was 

NWBL = 1.88 + [( -0.398) * VPD]. This seems to be slightly different in the β 

parameter compared to the other equation. However, the NWSB obtained in our 

experiment, as well as in Berni et al., (2009) and Egea et al., (2017), showed a 

wide dispersion and a very small slope compared to the baselines reported by 

other authors. This means that for large variations in VPD, Tc - Ta varies less than 

1.5 K, a very small difference when compared to the NWSB for herbaceous crops, 

but also for some tree species such as pistachios (Testi et al., 2008). This is a 

consequence of the small leaves of the olive tree being highly coupled to the 

atmosphere (Villalobos et al., 2006), and also because, even for well-watered 

trees, some stomatal closure occurs when evaporative demand increases. A 

consequence of this very small slope is that the CWSI for olive trees is very 

sensitive to errors in estimating Tc and measuring Ta. 
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6. CONCLUSIONS 
 

The growing population and the need to consume more sustainable agricultural 

products have set new goals for the agri-food sector, which will have to move 

towards a more efficient use of resources. This new form of agricultural 

management, also known as precision agriculture, is now widely used in many 

countries characterized by extensive and highly productive agriculture, which 

needs this change. 

Today, the olive sector is characterized by a wide variability, due to the different 

forms of farm management. The new forms of breeding and cultivation (hedgerow 

olive groves) have undeniable productive, qualitative, and environmental 

advantages, but they pose new problems in their management (Marino et al., 

2019). Therefore, scientific research is working to better control the vegetative-

productive activity of the various cultivation systems, in different areas and under 

different agronomic (management and soil and climate) conditions. In this 

context, precision olive cultivation is in line with the needs of the olive sector as 

it is able to maximize production and quality, with the least use of input 

(fertilizers, water, fuel, etc.), safeguarding biodiversity and enhancing 

environmental sustainability.  

The precision oliviculture manage all the information that we are currently able 

to obtain with the various devices, in order to carry out site-specific management 

with the smallest margin of error. The limits of precision olive-growing are 

represented by an overview of the agricultural variables (soil, climate, and 

cultivation) that is still not completely unambiguous and closely linked to the 

various experimental sites. 

This thesis work sought to provide a clear picture of the possibilities and 

applications of different technologies and analysis methodologies in an olive 

orchard. Precisely, this thesis was focused on evaluation how proximal and 

remote sensing technologies equipped with different sensors can be applied to 

provide advantages in the olive oil sector. Specifically, the main results that this 

thesis work showed were:  

 

i) Potential application of the remote and proximal sensing platforms in the 

olive orchard to obtain georeferenced information and spatial variability; 

ii) Development of a GEOBIA methodology to extract information from 

orthomosaic and DEM images; 

iii) Effect of the altitudes and flight paths in the final photogrammetric 

reconstruction in dense or sparse canopy conditions; 

iv) Evaluation of biometric and vigour conditions of plants measured and 

predicted remotely; 

v) Evaluation of the information extracted from RGB, multispectral images 

and hyperspectral data to predict the production and other parameters 

useful for the management of each individual tree;  
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vi) Assessment of the multispectral data to quantify the pruning operation 

impact;  

vii) Survey on nutritional status to establish the best nitrogen fertilization 

according to soil and crop conditions;  

viii) Comparison of multispectral and hyperspectral data provided by different 

platforms with two different canopy viewpoints; 

ix) Evaluation of an intelligent handheld system to evaluate the water stress 

and vegetative condition; 

x) Evaluation of the ability of the CWSI calculated using the analytical and 

empirical equations to evaluate the hydrological status. 

 

Mediterranean agricultural areas are characterised by heterogeneous orography 

and crop characteristics. Investigating the spatial and temporal variability of the 

olive orchard is a key step in site-specific management. This thesis work was able 

to provide clear results on the potential of UAV and proximal platform sensing in 

detecting and predicting the real conditions of each plant. The UAV data 

acquisition platform was able to investigate entire agricultural areas with high 

accuracy in rapid succession, achieving concrete time savings in the identification 

of variability. However, some mainly legislative limitations will have to be 

improved to allow a more radical diffusion in the area. Instead, the proximal 

systems had the advantage of being able to provide very precise data and through 

the different geostatistical techniques to also provide a description of the 

variability. However, they are often very laborious techniques and therefore 

require the automation of acquisition on mobile platforms to be more widely used 

in olive growing. 

This thesis work was able to develop a GEOBIA methodology to extract 

information from the two main photogrammetric products, DEM and orthomosaic 

multiband. They were elaborated to obtain several information on the crop 

conditions allowing create new layers on GIS. For example, starting from the 

DEM it was possible to obtain both the DTM and the CSM and from their 

elaboration the geometric canopy information. The GEOBIA approach was 

particularly useful for delineating individual tree canopies and for deriving object 

shape, geometric and spectral conditions. It has also been verified that in 

conditions of sparse or dense foliage or the weed presence, the GEOBIA 

techniques must be suitably modified. In fact, the canopy was well identified 

using the different combinations of spectral bands of the orthomosaic which had 

a low presence of background spontaneous plants. Instead, during the winter 

period, when there was a high presence of spontaneous plants, the best 

segmentation of the canopy was obtained using the DEM. Mapping tree structure 

and pruning effects may therefore require specialized approaches to be applied to 

different tree crops. GEOBIA processing step that showed the greatest complexity 

turned out to be the segmentation itself, for this reason different algorithms were 

tested such as: K means, principal component analysis, neighbouring or 

thresholding. 
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Certainly, the GEOBIA analysis worked on two images deriving from the 

photogrammetric reconstruction. However, the different flight settings and 

acquisition mode of RGB and multispectral images can determine different 

results. The present thesis works also had the objective of evaluating these effects, 

focusing on the height and direction of flight in sparse or dense canopy conditions. 

From the results of this work, we can conclude that the canopy can be well studied 

starting from the RGB and multispectral images following their accurate GIS and 

photogrammetric analysis. The geometric parameters which were best estimated 

were: CA, CV, canopy perimeter and Hc. The canopy perimeter was mapped 

more accurately at a flight height of 30 m in sparse canopy conditions, while in 

dense canopy conditions there were no statistically significant differences. In the 

case of sparse canopies, it was possible to determine the percentage of empty 

spaces, a parameter not shown in the literature but which can provide important 

information. Nevertheless, the flight height at 70m in dense canopy conditions 

showed very good correlations between calculated and estimated CA. In the case 

of CV, these results were less accurate due to the lower estimation accuracy of 

the ground values. Flight altitude also had an important effect in modifying the 

NDVI in dense canopy whereas in the case of sparse canopy the effect was less. 

The flight paths that provided the best results was North-South for the estimation 

of Hc, Ca, and CV values. Unlike what was shown for the geometrical 

characteristics of the canopy, the flight paths did not give any statistically 

significant difference in the spectral condition. Therefore, the results shown in 

this thesis could be used to improve the flight settings in order to obtain the best 

compromise between data accuracy and cost. However, further investigations are 

needed to evaluate other flight parameters that can influence the final quality of 

the images, such as: overlap, focal length and others. 

Multispectral and RGB images, were found to be able to accurately assess tree 

canopy biometric condition, including CA, CV, perimeter, and Hc. They were 

compared with the respective measurements on the ground. In all cases, excellent 

estimation accuracies were obtained. The parameter that was best estimated was 

the projection of the CA in all path configurations. An important result was 

instead observed in the CV estimation. Indeed, it was emphasised that ground-

based measurement is coarser and overestimated than remotely estimated 

measurements. In the cases in which distinct results were obtained for vigor 

classes, the biometric data obtained from UAV images showed an excellent 

correspondence underlining their potential in being able to discriminate plants. 

Data from several sensors has been merged to predict and highlight yield and crop 

conditions. The spectral conditions showed excellent correlations with the 

vegetative and productive parameters during the three years of experimentation. 

NDVI has been shown to be very sensitive to changes in leaf layers and an 

excellent predictor of vegetative conditions, especially for CA. These two 

parameters, NDVI and CA, were the best predictors of the yield and can be used 

to improve the new DSSs.  
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Canopy management is one of the key points in managing tree vigour. In the olive 

tree, canopy management is one of the most important techniques capable of 

modifying growth and yield. In this thesis work we have tried to outline what the, 

often expensive, impact of pruning operation was, using an innovative approach 

that exploits multispectral UAV images to measure the structural and spectral 

differences of trees. Indeed, from the UAV platform it was possible to observe 

with good accuracy the changes in terms of volume and spectral response of the 

canopy. Therefore, from this work, new ideas can be taken to understand how to 

use this agronomic technique in order to manage the canopy at a variable rate, 

also considering its influence on production. Indeed, SHD olive groves pruning 

is fully mechanized and such results could be very useful. Certainly, it will be 

necessary to investigate the real potential that this practice has on vegetative and 

productive activity. 

Another important plants characteristic to determine the yield and the vegetative 

growth is the nutritional status. Therefore, the management of fertilization, 

especially the nitrogenous one in the case of Mediterranean environments, 

represents an important aspect for greater agronomic efficiency. A methodology 

was proposed in this study to create a prescription map for fertilizers to be applied 

in olive orchards, taking into account the actual agronomic and soil conditions of 

the agro-ecosystem. Nutritional status and pedological condition offer important 

information to create a prescription map to balance the crop status during the first 

and second years. Productivity, biometric, nutritional and spectral data of the olive 

trees provided important information for deriving the correct crop nitrogen 

requirements for each individual plant. In particular, for the application of 

precision nitrogen fertilization, productivity, amount of biomass produced and 

relative nitrogen concentration were needed. By integrating the different 

information, an even more accurate estimate of nitrogen requirements was 

obtained, taking into account the crop and the current agronomic conditions. A 

24% and 66% fertilizer savings were obtained, with economic, agronomic and 

environmental benefits. This method determined a reduction in fertilizers 

distribution, lowering total costs and reaching greater sustainability. However, 

this particular topic will need to be better investigated in order to better understand 

how this agronomic practice can affect growth rates. The fertilisation maps 

obtained show various differences in the amount of application, so in future 

studies it will be important to understand which of the maps can provide the best 

results. 

The multispectral images obtained from remote sensing by drone can be 

compared with the hyperspectral images from proximal systems as they correlate 

well. This is especially the case when the proper wavelengths are used from the 

hyperspectral data and the acquisitions made in the South and West exposures of 

olive trees. The data obtained from the remote platform showed very good 

correlation and data matching over the whole plot and allow it to be accurately 

investigated. However, the possibility of obtaining spectral information from the 

crop, the development of new acquisition platforms from proximal sensing such 
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as Unmanned Ground Vehicles (UGV) and the continuous improvement of 

technology, make the use of hyperspectral sensors in precision farming 

increasingly interesting. This study has shown that hyperspectral data acquired 

from proximal platform with a different viewpoint can more accurately describe 

the crop spectral status, despite the limited diffusion of proximal sensing 

platforms for investigating the entire variability of the plot and the high variability 

of the data, depending on crop conditions such as exposure and brightness. This 

study was able to discriminate the potential of hyperspectral and multispectral 

data also considering their simultaneous use. Anyway, some characteristics of the 

two different platforms, such as application time and data management, should be 

evaluated in depth for future applications. 

The experiment conducted in Valencia Polytechnic University (Spain) confirmed 

that the CWSI calculated using different methodologies can be a valid tool for 

detecting water stress in the field as it is closely related to LWP. The CWSI value 

that provided the best results was found to be that of Jackson et al. (1981), but the 

limitations imposed by the amount of data required does not allow its easy 

implementation in handheld instruments. Indeed, the analytic and empirical 

CWSI showed good results;  however calculation of CWSIa based on Jackson’s 

(Jackson et al., 1981) definition needs more environmental variables than CWSIe 

based on the Idso’s (Idso, 1982). The empirical CWSI for water stress detection 

is a valid substitute for the CWSIj by making the necessary calibrations. Indeed, 

the CWSIe proved to be a good predictor of hydraulic stress and from the 

experiments conducted in this thesis two new parameters were calculated which 

could be used in other studies. The handheld system created has proven to be a 

valid tool for the detection of water but also the crop conditions. In fact, it was 

possible to evaluate the different spectral condition of the two sides of the canopy, 

confirming what was observed previously. Furthermore, the two sides, in addition 

to having differences in terms of NDVI, had different temperatures. These results 

underline how important it is to know canopy development in order to better 

manage water stress conditions. The positioning system used also provided 

excellent results even in unfavourable climatic conditions, making this instrument 

easily applicable and integrable in the various precision oliviculture applications. 

In conclusion, this thesis was able to assess how the main growth parameters 

measured via a high-resolution remote and proximal platform equipped with 

several sensors such as spectral, thermal and RGB sensors processed on various 

GIS platforms can express the real field and plant conditions. It was possible to 

verify that the new technologies available in precision agriculture allow to obtain 

various information on the crop status of each olive trees. Precisely, the UAV 

platform equipped with multispectral and RGB cameras was able to determine, 

through the GIS analysis, the main vegetative characteristics such as: various VI, 

Hc, CA and CV. They can be modified with the different agronomic practices to 

improve crop efficiency. UAV technology has demonstrated an excellent ability 

to efficiently produce spectral and geometric data of hundreds of agricultural trees 

at field level in a timely and accurate manner, offering a viable alternative to hard 
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and inefficient field work by investigating the entire spatial variability of the 

orchard within minutes. In addition, the GIS platforms used were able to spatialize 

the collected point samples data, such as the nutritional ones. All geo-referenced 

information allows the creation of maps of orchard heterogeneity and the 

identification of incorrect growing conditions. This heterogeneity was expressed 

as spatial variability of different growth and production parameters. Knowing this 

variability is the key point for the creation of specific maps that allow the 

construction and use of accurate DSS systems for olive orchard management 

optimization. In this way, a site-specific management strategy can be applied to 

increase profitability by improving input utilization (fertilizers, pesticides, water, 

etc.) and field operations (pruning, spray application, irrigation, harvesting). The 

results obtained in this paper derive from the first study carried out in Sicily, a 

region of Italy that produces quality extra virgin olive oils. Although this thesis 

work has been able to provide a broad overview of the real potential of the UAV 

platform and handheld system in detecting the different crop parameters, further 

experiments will also be needed in other pedoclimatic contexts to validate these 

results.  
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