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Notations

In this Section the adopted mathematical notation is presented. In general,
first-order tensors (vectors) are indicated with lower-case bold latin letters,
second-order tensors with lower-case bold italic greek or latin letters and fourth-
order tensors with bold capital latin letters. Voigt and matrix notations are
used throughout the thesis.

General quantities

Scalar α
First-order tensor a, ai
Second-order tensor σ, σij
Fourth-order tensor E, Eijkl

Useful operators

Kronecker delta δ, δij =

{
1 if i = j

0 if i ̸= j

Permutation or Levi-Civita symbol ϵ, ϵijk =


1 if i, j, k in CW order
−1 if i, j, k in CCW order
0 other cases

being (C)CW=(Counter)ClockWise

Second-order unit tensor I, Iij = δij

Fourth-order unit tensor I = I ⊗ I = δ ⊗ δ, Iijkl = δikδjl

17
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Symmetrized fourth-order unit tensor Is = δ⊗δ, Isijkl =
1
2(δikδjl + δilδjk)

Anti-symmetrized fourth-order unit tensor Ia, Iaijkl =
1
2(δikδjl − δilδjk)

Mathematical notations

For all ∀

Contained in ∈

Set of all real numbers R

Absolute value of a real number |α|

Norm of a vector ∥a∥

Determinant of a second-order tensor |A|

Transpose of a second-order tensor AT

Inverse of a second-order tensor A−1

Dot or scalar product of two first-order tensors a · b = aibi

Cross product of two first-order tensors [a× b]k = ϵijkaibj

Tensor product of two first-order tensors [a⊗ b]ij = aibj

Contraction of two second order tensors A : B = AijBij

Gradient operator ∇(∗)

Divergence operator div (∗)

Trace of a second-order tensor tr(A) = Aii
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Chapter 1

Introduction

This Chapter will introduce the fundamental problem underlying the entire the-
sis. The so-called strain localization in quasi-brittle solids will be investigated
in the framework of Isotropic Damage Models. This physical phenomenon will
be here presented by analyzing the main theoretical aspects developed over the
years, as well as the numerical procedures and the computational approaches
implemented to include the arising of weak and strong discontinuities and to
predict its possible evolution in the framework of the Finite Element Method
(FEM).

1.1 Strain localization in solids

It is already known that when a material is subjected to a high level of load, the
strain tends to be concentrated in a quite narrow strip zone, where it increases
until the material results in failure. Generally, structural collapse phenomena
are often preceded or triggered by the loss of bearing capacity of one or more
parts of the structure. The localization phenomenon develops in a small volume
compared to the whole structure, where the dissipative process takes place. The
formation of plastic hinges in metal frames, or fractures in masonry panels are
typical examples. More specifically, we are concerned with the local aspect
of such phenomenon, which can be understood from different points of view.
In this thesis we will deal specifically with the strain localization, associated
with the occurrence of displacement or strain gradients in small areas of the
structure.

From a general point of view, a material could follow a linear-elastic re-
sponse until a certain loading value, followed by the occurrence of micro-cracks

19
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or internal voids. Strain localization consists in the onset of these micro-cracks
or micro-defects, whose coalescence and interaction finally result in a physical
crack. Although the strain localization phenomena appear at the macroscopic
scale, as physical fractures, the prediction of this phenomenon at the micro-
scopic level could provide useful indicators to prevent structural failure.

Strain localization involves different kinds of materials, such as concrete,
rock, soils but also metals or fibre-reinforced composites, under various loading
conditions such as uniaxial and multiaxial, monotonic and cyclic loading. Each
material, however, responds differently based on its different constitutive and
mechanical nature. Commonly, materials are divided into two major categories:
ductile materials, such as steel, aluminium or plastics and brittle materials, such
as glass, brick, diamond or some polymers [9].

The substantial differences between these two categories can be highlighted
by studying the relative stress-strain curves, reported in Figure 1.1. The duc-
tility or brittleness of a material depends substantially on whether or not it
can develop plastic deformations during a loading process, which leads to a
concentration of permanent and irreversible strains. Ductile materials, more-
over, degrade gradually, undergoing the so-called yielding phase before failing,
thus providing advance notice for the collapse; brittle materials, on the other
hand, are subjected to sudden fracture since the post-elastic phase is practically
nonexistent. As a result, the energy stored by ductile materials before failure is
greater than that associated with brittle ones. Another substantial difference
is related to a non-symmetric response of the material to tensile or compres-
sive loads, as brittle materials have higher compressive strength than tensile
one. Furthermore, ductility or brittleness is highly temperature dependent;
consequently, a brittle material can behave like a ductile one at an elevated
temperature.

However, not all materials can be easily placed in one of these two cat-
egories; such materials are therefore called quasi-brittle materials, on which
my thesis will mainly focus. Quasi-brittle materials exhibit a post-elastic re-
sponse characterized by the so-called stress softening, during which an increase
in strain corresponds to a decrease in stress. Concrete, rocks or ceramics are
typical examples of this class of materials.

As said before, the phenomenon of strain localization appears differently in
relation to the constitutive nature of the material. The first analyses of this
phenomenon were conducted to interpret experimental results on tensile tests
on metal specimens. As discovered by LÜDERS in 1860 [72], steels experiencing
tensile stresses present the so-called Lüders bands or stretcher-strain marks,
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Ductile

Brittle

Quasi-brittle

Figure 1.1: Stress-strain curves associated to ductile, brittle or quasi-brittle materi-
als.

caused by localized plastic deformation as a result of a not uniform yielding.
The Lüders band usually starts at one end of the specimen and proceeds toward
the other one, with a typical inclination of 50° − 55° from the specimen axis.
The emergence of such bands can be associated with the constitutive analysis
of the deformation process in ductile materials, which includes several interact-
ing mechanisms, summarized as follows: plastic deformation, damage diffusion,
damage concentration (void coalescence) and consequent strain localization,
and finally, crack formation and propagation [128]. During the post-elastic
range, the spread of damage results in a plastic deformation component with
consequent degradation of stiffness. After reaching the yield stress, the subse-
quent softening range goes along with a strain localization in a specific zone,
causing the sliding of crystalline planes, which involves what for this reason is
called "shear band" [76] (Figure 1.2-a). The degradation process associated to
strain localization is modeled as lumped into a sufficiently thin cohesive band,
which allows for a gradual transition between the onset of localization and the
formation of a macro-crack (Figure 1.2-b).

Similar phenomena could be recorded in granular materials, such as rock,
clay or sand. These materials are extremely heterogeneous as well as the strain
distribution, which could involves shear bands [109]. As known in Geotechnics,
it is possible to introduce a friction angle, which is a shear strength parameter
of soils linked to the interaction forces developed between different grains and
their reciprocal position and dimension. By considering this friction angle, it
is possible to identify the plane along which the sliding will take place, after
reaching a limit value of the tangential stress (Figure 1.3-a). Another parameter
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(a)

Sound
material

Cohesive
band

Macro-crack

(b)

Figure 1.2: Strain localization in ductile materials: (a) shear band in metals; (b)
representation of the cohesive zone concept.

that could have an effect is the dilatancy, which is a mechanical phenomenon
for which the particles, under the action of external loads, increase their volume
by reorganizing their internal distribution.

Differently, micro-mechanical fatigue analysis on polymer matrix composites
has shown the possibility to record two different and often conflicting defor-
mation mechanisms that develop simultaneously: crazing, which usually pro-
duces brittle cracks, and shear flow, which is usually associated with ductile
failure. The existence of both deformation modes is linked to the long-chain
macromolecular structure and the ductile-brittle transition behaviour, typical
of polymers. Under certain loading condition, crack tip propagates in a certain
direction (crazing), but secondary deformation mode leads to symmetric shear
bands (shear flow), with a certain inclination, called "epsilon modes", since
their similarity to the Greek letter considering a cross-section [119] (Figure
1.3-b).

As regards quasi-brittle materials, cracks in concrete, for example, form by
progressive microcracking within a certain non-negligible Fracture Process Zone
(FPZ) at a preexisting notch/crack, in which the material progressively softens.
In this type of materials, as said before, the stress-strain relation exhibits strain-
softening behaviour after the elasticity limit. Experimental analysis has also
shown that the crack width depends on the maximum aggregate size in the
concrete [6] (Figure 1.4-a) or, generally, on the geometric nature of the material
components.

In fact, it is necessary to emphasize that the phenomenon of strain localiza-
tion, in addition to being related to the different constitutive models described
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(a)

Crack propagation
Crazing
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band

Shear
band

(b)

Figure 1.3: Strain localization in materials with quasi-brittle behaviour: (a) soil
sliding surfaces; (b) polymers representation of the so-called "epsilon-mode".

above, also depends on the geometric arrangement of its constituents. In struc-
tural engineering, it is common to work with heterogeneous materials, such as
masonry, which are generally consisting of units of more resistant material con-
nected by cohesive or adhesive joints of less resistant material. All the problems
related to the modeling of the aforementioned materials are of great scientific
interest, with the related inelastic phenomena that generally take place in their
physical interfaces, which are the contact surfaces between two different mate-
rials (Figure 1.4-b).

Therefore, it can be concluded that research on the physical phenomenon
of strain localization is open and constantly growing, in view of a possible
prediction of the structural collapse. The phenomenon depends on the consti-
tutive properties of the material, as well as on the geometric arrangement of
the constituents and on global characteristics of the structural components.

1.2 Theoretical aspects of strain localization

In the previous Section, the phenomenon of strain localization was illustrated
from a purely physical point of view, intended it as the preliminary phase of
fracture inception. However, this phenomenon has a deep local nature, studied
from a constitutive point of view since the early years of the last century. As
it will be better explained later, the concentration of strains in a strip zone
may result in the emergence of the so-called strong or weak discontinuities,
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(a) (b)

Figure 1.4: Strain localization in quasi-brittle or heterogeneous materials: (a) shear
bands in a concrete beam; (b) masonry crack between mortar interfaces.

depending on whether a jump in displacements or strains arises, respectively;
consequently, the linear elastic problem may be ill-posed. The formation of a
weak discontinuity, in fact, involves constitutive instability, so that the initial
homogeneous strain field is no longer unique and stable, setting a bifurcation
point, which consists of the possibility on the occurrence of more than one
strain rate pattern related to the associated stress rate. For this reason, a
definition of the term stability is therefore necessary: a system is stable if a
small perturbation in the initial conditions causes a small change in the solution
(as stated by LYAPUNOV in 1892 [73]). The term perturbation, therefore, alludes
to the need to include considerations from the dynamic point of view as well.

The simplest and oldest criterion about the stability of structures is linked
to an energetic approach [66]: the LAGRANGE-DIRICHLET theorem (1788) states
that a conservative system is stable if its potential energy is positive definite,
i.e. it has a strict minimum. Similarly, an equilibrium state is stable if the
second variation of the potential energy Π is positive for any small variations
δu of the generalized displacements from the equilibrium state

∂2Π > 0 ∀δu ̸= 0. (1.1)

The stability problem can be reduced to an investigation on the shape of
the potential energy surface as a function of the generalized displacements of
the structure. Alternative to this definition, the loss of uniqueness, i.e. the loss
of material stability occurs when the second variation of the potential energy
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vanishes:

∂2Π =
1

2
σ̇ε̇ = 0 (1.2)

where σ̇, ε̇ are the stress and the strain rates, respectively. Let us analyze the
following five local conditions regarding the stability of a material [13]:

C1 Positive-definiteness of the constitutive operator;

C2 Non-singularity of the constitutive operator;

C3 Strong-ellipticity;

C4 Ellipticity;

C5 Flutter.

First mathematical studies related to bifurcations have been pointed out
by HADAMARD (1903) [47], regarding the positiveness of the eigenvalues of the
elastic fourth-order tensor E (C1). Similarly, condition C2 is associated to the
condition of non-vanishing of these eigenvalues. The lack of positive definite-
ness of the aforementioned tensor, in fact, makes the wave propagation speed
imaginary, as explained later. Same considerations can be extended consider-
ing the tangent elastic operator Et of inelastic materials, as stated by HILL
(1958) [50] or THOMAS (1961) [122]. Similarly, a constitutive approach was al-
ready highlighted by the first formulations of RUDNICKI and RICE (1975) [103]:
the strain localization can be understood as an instability in the macroscopic
constitutive description of inelastic deformation of the material which can be
encountered when

det(Et) = 0. (1.3)

The crucial consequence of the loss of positive-definiteness of the material
tangent operator is the loss of ellipticity of the equilibrium rate equations. In
fact, the boundary value problem is well-posed when three conditions are veri-
fied: ellipticity, the not-emergence of stationary surface waves (Rayleigh waves,
along stress-free boundaries) and the not-emergence of stationary interfacial
waves (Stonely waves) [88].

At this point, it is useful to underline that strain localization can be analyzed
from a dynamic or static point of view. Regarding the first one, localization
corresponds to an acceleration wave with a vanishing speed, as pursued by the
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already mentioned Hadamard; in the second case, localization can be under-
stood as the result of the interaction of internal mechanisms of coalescence of
micro-defects, sliding, and decohesion that can evolve into a macro-mechanism
of fracture.

Starting from these considerations, different approaches have been devel-
oped in order to identify at the local level the areas in which the material
strongly exhibits localization characteristics [32]. One of these criteria could be
summarized as the velocity variation criterion, adopted by ORTIZ and QUIGLEY
(1991) [91]: in a dynamic context, strain localization is viewed as a stationary
discontinuity, that corresponds to an acceleration wave whose wave speed tends
to zero, as it represents a kind of internal obstacle to the propagation of the
wave itself. The variation of the velocity field, therefore, can be regarded as an
indicator of localization in the element.

The acoustic tensor criterion (among others, see BORRÉ and MAYER (1989)
[17] or RIZZI et al. (1995) [102]) uses the determinant of this tensor as a local-
ization indicator: localization is coincident with the condition of singularity of
the acoustic tensor L, which is obtained by contracting the tangent material
stiffness with the normal vector to the eventual localized band. As explained
in next sub-Section 2.2.1, the onset of localization and the associated discon-
tinuous and localized failure can be recorded when

det(L) = 0, (1.4)

that is a condition formulated according to the development by OTTOSEN and
RUNESSON (1991) [92] and then also solved by BIGONI and HUECKEL (1991) [14,
15] using Lagrange’s multipliers. Analysis of the eigenvalues of the above tensor
turns out to be of focal importance for the instability conditions presented
above: C3 corresponds to the positiveness of these eigenvalues, C4 corresponds
to the non-vanishing of the same eigenvalues and, finally, C5 occurs when these
eigenvalues become complex conjugate. The physical meaning of the acoustic
tensor will be deeply discussed in several sections of this thesis.

From a computational point of view, as stated by DE BORST [29, 30], if
the constitutive tangent operator Et locally loses its positive-definiteness, the
element tangent stiffness tensor Kt may lose its positive-definiteness as well.
In fact, given a vector λ, the positive-definiteness of the constitutive tangent
operator reads as

λT ·Et · λ > 0 ∀λ. (1.5)

The element tangent stiffness tensor is defined as follows
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Kt =

∫
V
BTEtBdV, (1.6)

where B is the compatibility matrix. Its positive-definiteness reads as

λT ·
∫
V
BTEtBdV · λ > 0 ∀λ. (1.7)

Since λ is independent of the volume, it follows∫
V
µTEt µdV > 0 ∀µ, (1.8)

being µ = Bλ. Condition (1.8), using a Gauss integration, reads as

2∑
i=1

2∑
j=1

wiwj |J i| µTi Et,i µi t > 0 ∀µ, (1.9)

being w the integration weights, J the Jacobian matrix and t the element
thickness. Therefore, if the constitutive operator is positive definite in each
integration point (the expression in the box), the tangent stiffness matrix is
positive definite as well.

Supposing that the loss of uniqueness condition is verified, which means
different equilibrium states exist for the same load level. A non-trivial solution
exists if and only if at least one eigenvalue of Kt vanishes or equivalently if

det(Kt) = 0. (1.10)

A point where the tangent stiffness matrix has a zero eigenvalue cannot
be isolated exactly in a numerical process; for this reason, it is assumed that
a bifurcation point is encountered when the lowest eigenvalue of the tangent
stiffness matrix becomes slightly negative.

A more complicated condition occurs when the tangent stiffness matrix is
non-symmetric. The singularity of this matrix implies bifurcation and stability
is decided by the symmetric part of the stiffness matrix K̂t, whose lowest
eigenvalue is known to be smaller or equal to the lowest eigenvalue of the non-
symmetric matrix K̄t [21]. Then it is possible to conclude that localization
condition can be associated with det(K̂t) = 0. The positiveness of all the
eigenvalues of matrix K̂t is a necessary and sufficient condition of stability
for a structure with a non-symmetric tangent stiffness matrix. It is proved
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by the Bromwich Theorem: every eigenvalue λ of a non-symmetric matrix
Kt = K̂t + K̄t satisfies the following inequalities (called Bromwich bounds)

λ̂1 ≤ Re(λ) ≤ λ̂n λ̄1 ≤ Im(λ) ≤ λ̄n (1.11)

where λ̂1 and λ̂n are the smallest and largest eigenvalues of the symmetric
matrix, and λ̄1 and λ̄n are the smallest and largest eigenvalues of the anti-
symmetric matrix.
Thus the real part of any eigenvalue of Kt lies within the spectrum of K̂t.

It is possible to summarize that

1. If the tangent stiffness operator Kt does not depend on the direction of
the vector of generalized displacement increments, a structure is stable if
and only if all the eigenvalues of the symmetric part K̂t of this matrix
are positive, and critical if and only if at least one of these eigenvalues
vanishes. The vanishing of at least one eigenvalue of a non-symmetric Kt

could imply either a limit point or bifurcation point, but not a critical
state of stability.

2. If Kt depends on the direction of the generalized displacement increment
vector, the vanishing of at least one eigenvalue of Kt implies either a
limit point (with or without bifurcation) or a bifurcation occurring at
increasing load.

3. If Kt varies discontinuously along the loading path, the first bifurcation
occurs when the smallest eigenvalue of Kt becomes zero or negative.

1.3 Numerical analysis of strain localization

An instability problem cannot be easily solved analytically and numerical meth-
ods have to be introduced for its solution. The evolution of the localization band
can be described using different modelling approaches, usually distinguished as
follows: continuous methods, discrete methods or hybrid continuous/discontin-
uous methods.

The continuous modelling approach is based on the assumption that the
domain is a continuous body and constitutive models such as plasticity or
damage are adopted, making use of internal variables to capture the evolution
of the micro-structural changes. Advanced formulations, such as non-local [97]
and gradient models [2], where the response of a material point is related with
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the neighbouring points, belong to this approach. In this case, for example, a
strain discontinuity is regularized or smeared on the material volume enriching
the physical content of the local material models with one or more intrinsic
length parameters. As a result, the constitutive equations are capable to better
describe the real material behaviour. More recently, the phase-field theory
has been applied to the strain localization problem [40, 81] introducing the
phase variable to describe the smooth transition from the sound material to
the localized one. In this sense the phase-field models belong to the class of
regularized continuum models: in fact a sharp crack surface embedded into the
solid is substituted by a regularized crack surface, functional of the crack phase
field variable.

The discrete modelling approach is instead based on the assumption that
the material is seen as an assembly of different blocks, particles or elementary
quantities, commonly used to model granular or discontinuous materials.

More complex, but often more efficient, are the continuous/discontinuous
models, within which the computational implementation developed in this the-
sis also falls. While continuous modelling approaches consider damage and
inelastic strains as distributed into the whole structure (Smeared Crack Models
(SCM) or Smeared Zone Models (SZM) [18, 58]), hybrid models are based on
the assumption that damage can be represented by a physical macro-fracture
lumping all non-linearities into a discrete line or surface. We can generally refer
this category to the so-called Cohesive Zone Models (CZM). It is therefore nec-
essary to insert a mechanical device that simulates discontinuities and possesses
its own constitutive law, different from that of the surrounding material. In
this regard we can generally distinguish between strong or weak discontinuities.

Generally, a strong discontinuity is physically represented by a line or sur-
face where the displacement field is discontinuous [90, 104, 111]. A weak discon-
tinuity, instead, is depicted as a volume zone confined by two surfaces, where
the strain field suffers discontinuity. In particular, the strain state in the nar-
row zone can be decomposed in the in plane components and in the out of
plane components, being the former regular and the latter discontinuous. This
weak discontinuity can be captured by an apposite reduction of the strain field
[11, 112].
Under the hypothesis that the band thickness is small if compared to the typical
dimension of the structure, the strain state can be approximately considered
constant through the thickness and can be evaluated making use of the dis-
placements of the surfaces delimiting the localization area. Adopting the Zero
Thickness Interface (ZTI) model the in plane strain components are neglected
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and the out of plane components are evaluated on the basis of the displacements
jump between the two physical interfaces.

From the computational point of view, research efforts have been mostly
concentrated on the simulation of the localization phenomenon in the frame-
work of FEM. Generally, we can distinguish between studies where the discon-
tinuity is inter-element located and studies where it is intra-element located.

In the first case, the ZTIs are pre-defined between opposite sides of adja-
cent elements and crack formation, branching and coalescing are guided by the
interface constitutive law [20, 129]. In the second case, different strategies have
been used to extend the capabilities of the classical finite elements to model
intra-element displacement or strain jumps.

The Generalized-Finite Element Method (G-FEM) [39] and the Extended-
Finite Element Method (X-FEM) [82] are examples of such numerical strategies.
In both cases the approximation of the field variable is enriched making use
of the Partition of Unity Method (PUM) which firstly appeared in the work
of BABUS̆KA et al. [4]. The most significant advantage of these methods is
modelling discontinuities and their development without requiring the definition
of a new mesh since they only increase the number of Degrees of Freedom (Dofs)
in the elements intersected by the crack. However, the numerical integration
of elements crossed by a discontinuity requires a special treatment, which is
different in presence of different interpolation basis (triangles, quadrilateral,
etc.) for 2D or 3D cases [22]. Therefore, despite the additional Dofs cause a
small increase in the overall computational cost, the implementation itself is
time-consuming.

The Phantom Node Method (PNM) has been derived from the work of
HANSBO and HANSBO [48] and can be considered as a variant of the X-FEM
[59, 99, 113] since it reinterprets the approximation of the X-FEM displacement
field by the superposition of the displacement fields of two overlapped finite
elements. The advantage of PNM compared to X-FEM is that no discontinuous
interpolation functions are required since each overlapping element furnishes the
displacement field on one side of the crack.

A tracking algorithm based on the Virtual Element Method (VEM) has been
recently proposed [3]. This method is based on the introduction of a cohesive
interface between polygons characterized by any number of edges. The ease of
implementation, the no need of a parent element, and the good performances
even in presence of distorted elements or not-conforming meshes are the main
advantages of the method. The need of inserting new nodes or moving some
of the existing ones, and difficulties in handling with crack branching are the
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main drawbacks.
The Augmented Finite Element Method (A-FEM) [38, 69, 71, 74] operates

at the element level and does not require the enrichment of the shape functions
to approximate the displacement field. In a different manner with respect to the
PNM, A-FEM simulates weak and strong discontinuities splitting the element
in two mathematically separable standard elements which are adjacent to the
discontinuity surface. Additional Dofs are firstly introduced to decompose the
cracked element and then condensed at the element equilibrium level. Hence,
they are not present at the global level.
Some of the benefits of A-FEM are:

• elements are split into standard finite elements, fully compatible with
standard finite elements packages;

• possibility to consider different material properties for the sub-elements;

• no need of a level-set information or to necessarily know if a sub-element
is below or above the discontinuity;

• reduced computational cost;

• straightforward implementation to 3D cases.

In this work attention is focused on the simulation of weak discontinuities,
modelling the localization zone by the InterPHase model (IPH) introduced by
GIAMBANCO and MRÓZ [41] and implemented in the finite element framework by
Giambanco et al. [43]. The principal difference of our approach with the clas-
sical A-FEM and X-FEM regards the possibility to follow the material failure
from the strain localization in a thin layer band to the crack opening by using
the interphase concept in place of the quite common ZTI model. The IPH model
can be considered the enrichment of the ZTI since, keeping as kinematic vari-
ables the displacements of the weak discontinuity surfaces, it allows to model
the contact and the internal strains of the thin material layer and to extend the
calculation of the stresses also to the internal components. As a consequence,
the thin layer response is more realistic and some phenomena as the squeezing
effect can be captured [43]. The most important point is that, differently than
ZTI models, IPH does not require a specific tractions-displacement jump con-
stitutive law and the constitutive laws adopted for the IPH can correspond to
those of the bulk material.
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Starting from the A-FEM formulation, the implemented computational ap-
proach aims the simulation of a finite element with an embedded weak discon-
tinuity, modelled as an IPH element.

1.4 Motivations and outlines

The problem of modeling discontinuities that arise when materials are outside
their elastic range is common in many engineering fields. In the framework of
FE models, considerable research progress has been made in modeling strain
localization and proposing computational approaches. Recently, several studies
have been carried out to simulate the mechanical response of different materials
with efficient and reliable models.

This thesis aims to propose a computational tool able to take into account
and model strain localization in structures made up of quasi-brittle materials,
studied in the framework of isotropic damage mechanics. The proposed tool
should follow the entire process starting from strain localization to fracture
propagation. Particular attention will be paid to the numerical loss of accuracy,
generally encountered with the discretization of the geometrical domain. In
this regard, a specific crack tracking algorithm has been developed in order to
correctly follow the crack propagation. The problem related to the modeling of
fractures and discontinuities in a material is developed both from the theoretical
and from the numerical point of view, throughout eight chapters.

Chapter 2 thoroughly investigates the physical meaning of the strain local-
ization, presenting it as a consequence of a constitutive instability. A dynamic
analysis approach is also pursued, mainly associated with the definition of the
so-called acoustic tensor, whose spectral analysis constitutes one of the ma-
jor criteria for identifying the onset of localization. An additional instability
phenomenon called flutter is also presented, linked to a complex form of the
acoustic tensor eigenvalues.

An overview on several computational strategies for modeling strain local-
ization is presented in Chapter 3. In the framework of Continuous/Discontin-
uous models, attention is particularly paid to the A-FEM, strategy from which
the computational tool implemented in this thesis takes its inspiration.

Chapter 4 presents different constitutive models for damage mechanics, fo-
cusing the attention on the Isotropic Damage Models (IDM) with Strain-Based
Loading Functions as formulated by Jirásek [58] and Mazars [79]. The numer-
ical implementation of this formulation is presented, as well as the analysis on
strain localization and flutter instability within it. Based on a specific analyt-
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ical study, it is proved that flutter instability cannot occur for the given class
of damage models. In addition, different localization criteria are compared,
highlighting their peculiarities and shortcomings and the consequent need to
find an alternative and more complete localization criterion.

The proposed computational methodology to model the finite element with
embedded interphase is described in detail in Chapter 5. The intra-element
weak discontinuity is modeled by referring to the IPH, which can be consid-
ered as an evolution of the ZTI. The fundamental relations are numerically
treated for a quadrilateral linear 2D element, split into two sub-domains and
an interposed IPH element.

Once that the procedure for modeling a finite element with embedded inter-
phase has been defined, the attention is focused on the strategy for simulating
fracture propagation at the structure level. Computational aspects regarding
the crack tracking algorithm are described in Chapter 6. The algorithm allows
to evaluate the crack propagation by grouping localized elements into clusters,
in turn further divided into substructures.

The in-house code has been written in the Matlab language and used to
run simulations on 2D specimens subjected to mode-I and mixed-mode stress
states. The numerical examples in Chapter 7 show the advantages and the
accuracy of the proposed strategy, together with the convergence behaviour
of the model. It is proved that the mechanical responses in terms of load-
displacement curves and crack patterns are not dependent on the mesh-size or
mesh-bias. Meaningful results are obtained even for multiple and simultaneous
cracks.
A final discussion and future developments are presented in Chapter 8.
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Chapter 2

Strain localization

This Chapter is devoted to the analysis of strain localization phenomenon. The
theoretical aspects presented in Section 1.2 are here studied in detail. From
a constitutive point of view, strain localization will be investigated both from
a static and dynamic point of view. By referring to the traditional kinematic
description for the discontinuities modeling, the differences between strong,
weak discontinuities or regularized localization zones will be presented, as well
as the related constitutive models. The dynamic aspects related to the strain
localization are investigated, starting from the mathematical formulation of the
continuous and discontinuous bifurcation problem. It leads to the definition of
the acoustic tensor, whose physical meaning will be presented. As known, the
spectral analysis of the aforementioned tensor turns out very significant for the
analysis of the local conditions for the material stability.

2.1 Strain localization from a constitutive point of
view

The focus is mainly on quasi-brittle materials, which localize in a process zone
that usually behaves differently with respect to the surrounding bulk material
when subjected to mechanical inelastic processes. Propagation and coalescence
of initial micro-defects lead to the formation of a displacement discontinuity or
a stress-free crack. However, outside this zone, the material unloads elastically.
The onset of strain localization leads to strain or displacement discontinuities
and, therefore, the standard kinematics of a continuous medium are no longer
valid.

35
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Generally, two types of failure can be distinguished: one is associated with
a distributed or diffuse failure and the other with a localized or discontinuous
failure. For the latter, different approaches have been proposed, which mainly
differ in the kinematic and in the associated constitutive models, used to me-
chanically describe the area surrounding the localized band.

2.1.1 Kinematic description

The kinematic description of discontinuities is here addressed according to
JIRÁSEK classification [54, 55] and, subsequently, analyzing the corresponding
constitutive models. Following this systematic differentiation, three different
models of discontinuities can be distinguished, that are schematized in Figure
2.1:

• Displacement or Strong discontinuity
The first model corresponds to the physical case of opening cracks or slips
along a line. It is characterized by a first-kind discontinuity jump in the
displacement field u(x) across the crack surface. From the compatibility
equation, the strain field ε(x) represents the displacement gradient, which
is a sort of measure of how rapid the displacement changes through the
material. The jump discontinuity in u(x) corresponds to a singular part
in ε(x) that has the character of a multiple of the Dirac delta distribution
(Figure 2.1-a);

• Strain or Weak discontinuity
This model corresponds to the physical concentration of inelastic phe-
nomena in a plastic zone with a finite thickness that usually depends on
the microstructure and that is of the same scale of the characteristic ma-
terial length. The band is separated from the bulk material through two
weak discontinuity surfaces. Contrary to the previous case, this model is
characterized by a continuous displacement field with two corner points
which involve a jump discontinuity for some strain components. Since
u(x) remains continuous, only the out-of-plane strain components could
record the discontinuity (Figure 2.1-b);

• Regularized localization zones models
The last model is associated with a continuously differentiable displace-
ment field, so also the associated strain field remains continuous. While
the previous model is related to a constant defects concentration in a fi-
nite thickness zone, in this case, a higher strain concentration is recorded
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2.1 Strain localization from a constitutive point of view 37

in the centre of the band with a gradual transition to lower strains in the
surrounding material (Figure 2.1-c).

2.1.2 Constitutive models

Each kinematic case analyzed in sub-Section 2.1.1 can be modelled by referring
to different constitutive models.

First of all, it is useful to give an overview on the aforementioned SCM,
adopted for the numerical simulation of cracks in the late 1960 (RASHID, 1968)
[100]. The basic idea is that plastic deformations remain distributed over a cer-
tain material volume, so as to ensure that the transition from the elastic to the
plastic regime occurs smoothly. In this case, the overall nonlinear behaviour of
the weakened material is modelled through a tensorial softening stress-strain
law associated to the whole material. Generally, when principal stresses reach a
limit value, the crack is inserted and the isotropic stress-strain previous relation
is substituted by an orthotropic elasticity-type law associated to the (n, t) refer-
ence system, being n and t the axes of orthotropy, normal and tangential to the
crack, respectively. Let us consider the stress components σsm =

[
σn σt σnt

]
and the associated strain components εsm =

[
εn εt εnt

]
.

The orthotropic relation in plane stress reads as

σsm = Esm εsm (2.1)

where Esm =

µE 0 0
0 E 0
0 0 βG


The normal crack opening relation is linked to the elastic stiffness through a

µ coefficient which gradually decreases from one to zero to simulate the progres-
sive decrease of the transmitted normal stresses at the fracture. Shear tractions
are instead proportional to the sliding crack opening with a proportionality fac-
tor 0 < β ≤ 1 called retention factor.

In this class of models we distinguish between fixed or rotating crack models.
In fixed crack models, the crack direction is evaluated at the moment of crack
nucleation and is maintained fixed throughout the analysis, even if principal
axes could rotate during the loading process. However, for any value of β ̸= 0,
stresses and strains principal axes rotate, often losing their coaxiality: this
means that a portion of the elastic shear stiffness is retained, which causes stress
locking. To overcome problems related to stress locking and mesh-dependency,
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Figure 2.1: Kinematic representation of a discontinuity: (a) Displacement or strong
discontinuity; (b) Strain or weak discontinuity; (c) Regularized localization zones.

the rotating crack model (RCM) is been introduced, which continuously adjusts
the orientation of the crack, which is maintained perpendicular to the principal
stress direction. It has been proved that even in this case, coaxiality between
stresses and strains could be lost [53, 95]. Stress locking is one of the most
relevant problems of SCM, which means a spurious stress transfer that is linked
to the poor kinematic description of the displacement field near the macroscopic
crack. JIRÁSEK and ZIMMERMANN [62] improved the RCM by combining it with a
damage-type model (Rotating crack model with transition to scalar damage RC-
SD), for the lack of stress locking in the isotropic damage models. Moreover,
the embedded discontinuity model overcomes this problem by enriching standard
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finite element interpolations by strain or displacement discontinuities [53, 63].
Even if the smeared crack model can be more easily implemented in a stan-

dard non-linear FE code, the observed mesh-size and mesh-bias dependence
as well the stress locking analyzed have led to the implementation of continu-
ous/discontinuous models, which are certainly more complex and computation-
ally expensive but capable of overcoming these problems. The continuous/dis-
continuous approaches are based on the implementation of a strong or weak
discontinuity: the first one is described as a zero-thickness interface charac-
terized by a cohesive traction-separation law, formulated in terms of tractions
versus displacement jumps; the second one is represented as a finite width band
associated to a regularized cohesive law formulated in terms of tractions versus
inelastic deformations [24].

In the strong discontinuity case, the displacement field is discontinuous
across the surface of the crack. This type of discontinuity is a topic generally
analyzed in Fracture Mechanics.

The simplest model is the so-called stress intensity factor approach: the
fracture is a stress-free crack, with a stress singularity at the crack tip (Figure
2.2-a). According to the following relation

σ =
K√
2πr

, (2.2)

where r is the distance from the crack tip and K the stress intensity factor, it
can be concluded that if r → 0 ⇒ σ → ∞. This approach is typical of Linear
Elastic Fracture Mechanics (LEFM), which could be applied if the crack width
is negligible with respect to the crack length.

A second model is the energy balance approach: by taking into account
GRIFFITH’s theory (1921) [45], from the theorem of minimum energy it can be
concluded that the equilibrium state of an elastic body is that for which the
system potential energy reaches a minimum. So, a crack could appear if the
passage from the unbroken body to the cracked one involves a decrease in the
potential energy. The crack formation implies an increase of the work done by
the inter-elementary cohesive forces. When a crack propagates, a part of the
stored energy is then released. A crack could propagate if the released energy
is equal to or greater than the stored one, called potential surface energy, which
corresponds to the energy for the formation of a unit area of a crack.

The stress singularity of the crack tip was removed in the Cohesive Crack
Models or CZMs. Firstly BARENBLATT (1959) [5] and then DUGDALE (1960) [36],
assumed a plastic zone at the crack tip where inelastic strain could be modelled
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Figure 2.2: Differences between strong discontinuity models: (a) LEFM model; (b)
Barenblatt’s model; (c) Hillerborg’s model; (d) Barenblatt’s (left) and Hillerborg’s
(right) cohesive forces.

as cohesive forces acting on the surrounding. The opposite sides of the crack
are smoothly joined at the crack tip, in order to obtain a finite value of stress
also at this particular point. It is assumed that the crack opens when the stress
reaches a yield value σy (Figure 2.2-b). Referring to the hypothesis that the
plastic zone is smaller than the whole crack (rp ≪ a), it follows that

rp =
π

8

K2

σy
, w =

{
K2

σyE
plane stress

K2

2σyE
plane strain

, (2.3)

where w is the opening of the crack. In Barenblatt’s model, stress becomes
suddenly zero when w = w1, since for w < w1 crack is not completely open so
some remaining stresses transmitted have to be taken into account. Differently,
in HILLERBORG’s model (1976) [51] stress decreases with increasing crack width
(Figure 2.2-c). Differences between these two models are highlighted in Figure
2.2-d.

The presence of a discontinuity in the form of a displacement jump requires
an additional constitutive description, in addition to the stress-strain law that
describes the bulk material, which remains continuous. The so-called traction-
separation law represents the constitutive equations of the crack and links the
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surface forces to the displacement jump [[u]], known as the separation vector.
This law is formulated by considering two different directions: the normal one
(Mode-I), in which the crack opening is related to the normal traction and
the tangential one (Mode-II), in which the relative sliding of the crack faces
is related to the shear traction. As reported in literature [59, 124, 126], CZM
depends on the maximum strength, on the fracture energy, which corresponds
to the area under the traction-separation law, and on the shape of the traction-
separation curve itself.

Models with localization bands with weak discontinuities can be re-
garded as an alternative to strong discontinuity models. Instead of considering
a stress-free crack, in which tractions transmitted go to zero after crack nucle-
ation, the crack initiation process is considered as the effect of a gradual loss
of cohesion, more realistically. Weak discontinuity models represent the loss
of continuity of the strain state and, also in this case, a specific constitutive
model, expressed in terms of stress and strain within the band, is necessary.
The opening of the crack can be viewed as the limit condition reached by the
weak discontinuity models.

Lastly, models with a continuous strain field are implemented by ap-
plying enriched or generalized continuum formulations. Certain theories, in-
deed, depend on the particular scale of magnitude: below a certain limit, the
idealization of considering material as a continuum cannot be done and it would
be necessary to move to a discrete model. Alternatively, it is possible to intro-
duce a strongly or weakly non-local formulation, that overcomes the hypothesis
that the material can be analyzed as a set of infinitesimal volumes, described
independently of each other. In particular, an integral-type nonlocal material
model is a model in which the constitutive law at a point of a continuum de-
pends on weighted averages of a state variable over a certain neighbourhood
of that point [7, 56]. A gradient-type nonlocal model, instead, enriches the
local constitutive laws with the first or higher gradients of some state variables
or thermodynamic forces. Finally a gradient model refers to higher-order gra-
dients in the constitutive variables, which are considered as a measure of the
heterogeneity of the strain field.



i
i

“output” — 2022/12/5 — 16:12 — page 42 — #43 i
i

i
i

i
i

42 Strain localization

2.2 Strain localization from a dynamic point of view

We have already mentioned that, based on the theoretical formulation regard-
ing the stability of elastic materials as pursued by Hadamard (1903) and later
extended by Hill (1958) and Thomas (1961) for inelastic materials, the local-
ization process is analyzed as a constitutive instability that can be predicted by
monitoring the pre-fail response of the material. This process corresponds, in
fact, to a material instability which can be predicted by individuating the crit-
ical conditions for which the constitutive equations (in the pre-localized phase)
may allow a bifurcation point.

We are looking for the mathematical conditions for which the loss of unique-
ness of the solutions of a given boundary problem is recorded, which corresponds
to a material instability in the Liapunov sense. In the following Section, strain
localization is analyzed as the appearance of a discontinuity in strain rates,
which leads to a bifurcation of the velocity field [57, 117]. In this sense, the
dynamic aspect of such a physical phenomenon will be emphasized: as already
demonstrated with the Hadamard’s stability criterion, in fact, a material
is stable if all the waves propagate with a real velocity. Consequently, strain
localization is dynamically seen as the occurrence of a wave with a null velocity
in the direction normal to the localized band.

2.2.1 Continuous and Discontinuous bifurcation

Let us consider an orthonormal reference system (0,x1,x2,x3) and a solid body
Ω constituted by a strain-softening material (Figure 2.3-a). Along the boundary
of the structure two parts can be identified, Γu and Γt, where respectively the
kinematic and loading conditions are applied. The aim is to obtain a condition
in which strain increments can localize in one or more narrow bands separated
from the body by weak discontinuity surfaces, with a continuous displacement
field but with discontinuity in some strain rate components. The volume is
divided by a localization band Ωb, with a finite width wb and a unit normal
vector n into two sub-domains, Ω+, that contains the normal vector and Ω−,
the other one. By considering the plane tangent to the discontinuity surface,
the stress rate tensor σ̇ can be decomposed in its in-plane components (σ̇tt,
σ̇ss, σ̇ts) and out-of-plane components (σ̇nn, σ̇nt, σ̇ns), as explained in Figure
2.3-b.

The first fundamental hypothesis is obtained from the mechanical equilib-
rium across the shear band boundary, which leads to the traction continuity
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Figure 2.3: Geometry and boundary conditions of a volume crossed by a crack: (a)
Strain localization in a strain softening material distinguishing a localization band that
divides the volume into Ω− and Ω+; (b) Two sub-domains that the crack individuates,
with a discontinuity in the in-plane stress rate discontinuity.

condition, which corresponds to the continuity between the out-of-plane stress
rates. This condition can be written as

n · σ̇+ = n · σ̇−. (2.4)

The second hypothesis is obtained from the kinematic compatibility condi-
tion, which expresses that the velocity field is to be continuous, which corre-
sponds to the continuity between in-plane strain rates. So jumps could appear
only in the in-plane stress rates or out-of-plane strain rates.

In order to derive this second set of equations, the compatibility conditions
have to be written by considering the (n, t, s) reference system, in which the
displacement rate derivative is continuous along (s, t) and presents a first-order
jump tensor g along the normal direction n. As said in [103], since the velocity
field remains continuous, derivatives of velocity in t and s, directions parallel
to the band, remain uniform:

∂u̇+

∂t
=
∂u̇−

∂t
(2.5)

∂u̇+

∂s
=
∂u̇−

∂s
(2.6)

∂u̇+

∂n
=
∂u̇−

∂n
+ g. (2.7)
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The spatial gradient of the displacement rate is a second-order tensor ob-
tained from the gradient of each displacement rate component with respect
to the global reference system. The following transformation rules have to be
applied

∂u̇+(−)

∂x
=
∂u̇+(−)

∂t
⊗ ∂t

∂x
+
∂u̇+(−)

∂s
⊗ ∂s

∂x
+
∂u̇+(−)

∂n
⊗ ∂n

∂x
(2.8)

and considering equations (2.5)-(2.7) it can be summarized that

∂u̇+

∂x
=
∂u̇−

∂x
+ g ⊗ n. (2.9)

So g can be seen as a jump vector, with components g1, g2 and g3. It can
be written as g = ġm, where ġ = ∥g∥ is the magnitude of the jump vector
and m is a first-order tensor called polarization vector. By substituting this
relation in (2.9) and considering that the strain field is the symmetric part of
the displacement gradient, it reads

ε̇+ =
(∂u̇+

∂x

)
sym

=
(∂u̇−

∂x
+ ġm⊗ n

)
sym

= ε̇− + ġ(m⊗ n)sym

= ε̇− +
1

2
(m⊗ n+ n⊗m)ġ.

(2.10)

The constitutive relation can be written in terms of rates components as
σ̇ = Et : ε̇, where Et is the tangent stiffness tensor; by generalizing our case,
it is considered that the two sub-domains have different behaviours after strain
localization and, consequently, different strain-stress relationships:

σ̇+ = E+
t : ε̇+, σ̇− = E−

t : ε̇−. (2.11)

By substituting equation (2.10) in the traction continuity condition (2.4)
and considering the previous constitutive equations (2.11) it follows

n ·
[
E+

t :
(
ε̇− + ġ(m⊗ n)sym

)]
= n ·E−

t : ε̇− (2.12)

n ·E+
t : ε̇− + n ·E+

t : (m⊗ n)symġ = n ·E−
t : ε̇−. (2.13)

Considering the minor symmetry of the stiffness tensor, for which n · E+
t :

(m⊗ n)sym = (n ·E+
t · n) ·m the previous relation becomes

(n ·E+
t · n) ·mġ = n · (E−

t −E+
t ) : ε̇

−. (2.14)
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This equation, related to an incipient discontinuity, could be simplified by
considering the same stiffness tensor for both Ω− and Ω+, so by writing E+

t =
E−

t = Et. In this case, the right-hand term vanishes and, considering a non-zero
jump vector, the relation becomes

(n ·Et · n) ·m = 0. (2.15)

The localization or acoustic tensor is defined as follows

L = n ·Et · n. (2.16)

In linear algebra, the Rouchè-Capelli theorem states that a system of linear
equations Ax = b with n variables has a non-trivial solution if and only if the
rank of its coefficient matrix A is equal to the rank of its augmented matrix
A|b. Considering that the linear system in (2.15) is homogeneous, it is clear
that rk(A|b) < n. In order to obtain a unique solution, even rk(A) has to be
less than n or, in other terms, the coefficient matrix has to be singular. The
continuous bifurcation condition in (2.15) leads to the following localization
condition

det(L) = 0. (2.17)

Let us focus on the definition of the acoustic tensor, whose physical meaning
will be investigated in the next sub-Section 2.2.2. It depends on the tangent
stiffness tensor, which is linked to the current state of the material and on the
unknown direction n. The localization analysis implies the spectral analysis of
the acoustic tensor in order to search for a direction n for which it becomes sin-
gular. If this vector exists, a band has to be inserted and a strain discontinuity
considered.

Lastly, the polarization vector m is an indicator of the failure mode. If
m q n a splitting failure is obtained, so a crack opens under the so-called Mode
I; if m⊥n a shear slip occurs, denoted as Mode II. If none of these conditions
is verified, a crack opens under a mixed-mode.
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2.2.2 The meaning of the acoustic tensor

As said before, the localization tensor is more properly known as the acoustic
tensor. This name is linked to the original dynamic meaning of this tensor,
which is related to the propagation of harmonic waves in an elastic medium
[1, 46, 101].

The wave propagation is the result of a local excitation which creates a
disturbance that could be transmitted in the considered volume. This pertur-
bation couldn’t be detected instantaneously at each point, since a deformable
material is considered, that could try to oppose the propagation of the wave.
The disturbance is transmitted as a chain process from one point to the next
one. In an elastic, homogeneous and isotropic material, the velocity can be
expressed as v =

√
E
ρ ; so two parameters play a fundamental role in the resis-

tance to the propagation of the wave. The first one is the material stiffness:
only considering an infinitely rigid material the perturbation would have been
recorded in all points in the same way since its propagation speed would have
been infinite (E → ∞ ⇒ c → ∞). The other one is the material inertia or its
density ρ, since a poorly dense material record as well a high speed propagation
(ρ→ 0 ⇒ c→ ∞).

The wave is the result of energy transmission between near molecules. The
waves can be classified into stationary waves (standing waves), which do not
transmit energy from one point to another one, and progressive waves (trav-
elling waves), which transmit energy without transferring matter. Principal
differences are that in stationary waves all points between two successive nodes
are in the same phase, while in progressive waves two neighbouring points are
not in the same phase. The other one is that in progressive waves each point
achieves the same amplitude, while not for the stationary waves. In travelling
waves the successive particle of the medium performs a motion similar to that
of its predecessor along the direction of the propagation of the wave, but later.
They travel from a point indefinitely, never returning to their origin, until the
carried energy becomes zero. Classically, progressive waves are divided into lon-
gitudinal waves (P-waves, primary waves), where particles oscillate in parallel
to the wave propagation’s direction, and transverse waves (S-waves, secondary
waves) where particles oscillate perpendicularly to the wave propagation’s di-
rection (Figure 2.4).

Let us consider a homogeneous body with a density ρ. A progressive wave
can be represented by the following displacement field u(x, t), with x defining
the position of a material point and t the instant of time
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Vibration of particles

Vibration of particles

Wave propagation's direction

LONGITUDINAL WAVE

TRANSVERSE WAVE

Figure 2.4: Representation of a longitudinal and a transverse wave.

u(x, t) = mϕ(x · n− ct) = mϕ(s) (2.18)

where

• ϕ(s) is the wave function of class C2 on (−∞,+∞) with ϕ′′ = ∂2ϕ(s)
∂s2

̸= 0
since the displacement field must be twice differentiable and admit second
derivative, i.e. acceleration, continuous as well;

• s is the wave phase;

• c is the wave speed;

• m is the polarization vector, or direction of motion of the material point
and n is the direction of propagation.

The progressive wave is longitudinal if m and n are linearly dependent,
transverse if they are perpendicular and elastic if it satisfies the Navier’s equa-
tion of motion. It can be written as follows

∇ · (E : ∇u) = ρü, (2.19)

by considering the fourth-order elasticity tensor E and no volume forces.
The gradient of the displacement field ∇u can be written in a coordinate system
(x1, x2, x3) by referring to (2.18) as follows
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∇u =


∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

 = ϕ′(s)m⊗ n. (2.20)

In the hypothesis of small displacements, the strain tensor corresponds to
the symmetric part of the gradient displacement tensor

ε = (∇u)sym = ϕ′(s)
1

2
(m⊗ n+ n⊗m). (2.21)

The stress field from the Hooke constitutive law becomes

σ = E : ε = ϕ′(s)
1

2
E : (m⊗ n+ n⊗m). (2.22)

Since the stiffness tensor E exhibits major symmetry (Eijkl = Eklij) and
minor symmetry (Eijkl = Ejikl = Eijlk), the previous relation becomes

σ = E : ε = ϕ′(s)
1

2
E : (2m⊗ n) = ϕ′(s)E : m⊗ n. (2.23)

In order to impose equation (2.19) and remembering definition (2.16) asso-
ciated to the elastic constitutive operator, the divergence of the stress tensor is
calculated

∇ · σ = ϕ′′(s)(n ·E · n) ·m = ϕ′′(s)L ·m. (2.24)

The second-hand term in (2.19) is obtained by differentiating twice (2.18)
with respect to time

ρü = ρc2ϕ′′(s)m. (2.25)

By imposing equivalence between (2.24) and (2.25), the Fresnel-Hadamard
propagation condition for progressive waves is derived

L ·m = ρc2m → (L− ρc2I) ·m = 0. (2.26)

This condition corresponds to an eigenvalues and eigenvectors problem for
the acoustic tensor L: its eigenvalues ai = ρc2i give the possible wave prop-
agation speeds and the associated eigenvectors mi identify the polarization
directions.
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2.2.3 Flutter instability analysis

As already mentioned in Section 1.2, material stability can be investigated by
analyzing the non-negativity of the eigenvalues of both the constitutive operator
[det(Et) = 0] and the acoustic tensor [det(L) = 0]. Generally, the strong
ellipticity condition is linked to the definition and resolution of an eigenvalues
and eigenvectors problem, so it is useful to summarize the main concepts.

Let us consider a (n×n) matrix A ∈ ℜn×n; a scalar value λ for which exists
an (n× 1) vector x ̸=0 such the following equation is valid

A · x = λ · x (2.27)

is called eigenvalue of A and x is the eigenvector corresponding to λ. The set
of eigenvalues of A constitutes the spectrum of A and the maximum module
of the eigenvalues is said spectral radius of A. The eigenvalue problem can
be rewritten as:

(A− λI) · x = 0. (2.28)

As also said in 2.2.1, this equation admits non-trivial solutions if and only
if

det(A− λI) = 0. (2.29)

By developing the determinant of the following matrix:

A− λI =


a11 − λ a12 . . . a1n
a21 a22 − λ . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 (2.30)

a n-th order characteristic polynomial p(λ) is obtained and p(λ) = 0 is
called the characteristic equation of A, whose n roots are the eigenvalues of
A. The coefficients of λn and λn−1 are respectively (−1)n and (−1)n(a11 +
a22 + · · ·+ ann). The last coefficient is obtained considering p(0) = det(A). So
it can be written as follows:

p(λ) = det(A− λI) = (−1)nλn + (−1)n−1trAλn−1 + · · ·+ det(A) (2.31)

where trA is the trace of the matrix.
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For the fundamental theorem of algebra, the characteristic equation has n
roots in the complex field, taking into account their multiplicity. So an (n×n)
array has n eigenvalues in the complex field. Eigenvectors are therefore the
non-zero solutions of the linear homogeneous system in (2.28).

By comparing (2.15) with (2.28) the strain localization can be regarded as
an eigenvalues and eigenvectors problem with λ = 0.

Because of the assumption of major symmetry on the stiffness tensor E,
the acoustic tensor is symmetric with real eigenvalues; initially L is positive
definite. During a loading process, the evolution of state variables results in
modifications to the stiffness tensor and the acoustic tensor, with the result that
the lowest eigenvalue of L decreases. When this eigenvalue obtains a value of
zero, material stability is lost or, alternatively, one can say that ellipticity of the
spatial differential operator is lost: that condition corresponds to a stationary
wave.

When the acoustic tensor is non-symmetric there is, in principle, the possi-
bility of a particular type of instability. This is the so-called flutter instability
[13, 16] and corresponds to the occurrence of two complex conjugate eigenval-
ues of the acoustic tensor. If one of the eigenvalues ai of the localization tensor
becomes negative, the wave speed formally evaluated as ci =

√
ai
ρ becomes

imaginary. So the onset of flutter can be defined by finding the numerical
conditions which involve a complex form for the eigenvalues of the acoustic
tensor.

2.2.3.1 Application on linear isotropic elasticity models

Flutter and strain localization are particular instabilities that don’t appear
frequently but only after the satisfaction of several conditions. By considering
the expression of the acoustic tensor in (2.16), it is evident that it depends on
the tangent stiffness operator, so on the particular constitutive nonlinear law
adopted. However, it is useful to derive the expression of the acoustic tensor in
the case of linear isotropic elasticity.

The generalized Hooke’s law links the second-order strain and stress ten-
sors through the fourth-order stiffness tensor E. Since it exhibits both major
symmetry and minor symmetry, it depends on 21 independent parameters; the
constitutive law is defined as

σ = E : ε. (2.32)

By considering the hypothesis of isotropy, a general isotropic tensor T has
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components that don’t change by coordinate transformation and can be written
as the result of each possible combination of the second-order unit tensor [118]

T = αδ ⊗ δ + βIs + γIa (2.33)

being α, β, γ constant values and δ, Is and Ia the second-order unit tensor,
the symmetrized and anti-symmetrized fourth-order unit tensors, respectively.
Since the stiffness operator exhibits major symmetry, it can be concluded that
γ = 0 and that the linear elastic and isotropic stiffness tensor depends on only
two elastic parameters, called Lamè constants λ and µ, such that

Ee = λδ ⊗ δ + 2µIs. (2.34)

Lamè coefficients are related to other pairs of material parameters associ-
ated with linear elastic isotropic material, known as Young’s modulus E and
Poisson’s ratio ν, or bulk modulus K and shear modulus G:

λ =
Eν

(1 + ν)(1− 2ν)
= K − 2

3
G (2.35)

µ =
E

2(1 + ν)
= G. (2.36)

By considering equation (2.16) and (2.34), the elastic isotropic acoustic
tensor can be derived as follows

Le = n · (λδ ⊗ δ + 2µIs) · n
= (λ+ µ)n⊗ n+ µδ.

(2.37)

Considering the propagation condition in (2.26) it is obtained that

(λ+ µ)(n⊗ n) ·m+ µδ ·m− ρc2m = 0. (2.38)

Since (n⊗ n) ·m = (n ·m)n the previous relation becomes

(µ− ρc2)m+ (λ+ µ)(n ·m)n = 0. (2.39)

Since n and m are unit vectors, equation (2.39) can be satisfied only by
considering m q n, that corresponds to a P-wave, or m⊥n, that corresponds to
a S-wave. In the first case equation (2.39) becomes

(µ− ρc2P )n+ (λ+ µ)n = 0 (2.40)
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for which one eigenvalue ρc2P = λ+2µ is obtained. In the second case equation
(2.39) can be rewritten as

(µ− ρc2S)m = 0 (2.41)

for which a double eigenvalue ρc2S = µ is obtained. So it can be concluded
that, as said before, for the linear elastic isotropic case the eigenvalues of the
acoustic tensor are real and independent of the propagation direction n.

For stiffness tensors satisfying major symmetry, the localization tensor is
also symmetric and its eigenvalues are real, so flutter instability can only occur
by one eigenvalue passing from positive to negative, which results into the wave
speed passing from positive real to purely imaginary. Finally, if the elastic stiff-
ness is replaced by the tangent stiffness of inelastic material and, consequently,
the localization tensor is possibly not symmetric, a pair of complex conjugate
eigenvalues could occur.

For that reason, it will be useful to analyze (as we will do later in the
Section 4.4) this type of instability with the introduction of an isotropic damage
model, at which the constitutive operator may lose its symmetry resulting in
the possibility of the appearance of the flutter.
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Chapter 3

Computational strategies to
model strain localization

It was quickly pointed out in Section 1.1 how the phenomenon of strain local-
ization appears with different characteristics depending on the type of material
involved. Since the governing equations of the localization problem are diffi-
cult to solve by an analytical approach, numerical and computational methods
were developed over the past 50 years. The goal is simulating the mechani-
cal behaviour of the materials through mathematical/numerical models that
most closely approximate their peculiarities. Not all materials, however, can
be described by means of the same approaches. Moreover, the aforementioned
mathematical models often rely on abstractions or simplifications to try to sim-
ulate reality without excessive computational effort. Many models, for example,
are based on treating materials as if they were continuous, thus bypassing their
actual microscopic nature. This simplification can only be made, however, if
the scale of internal discontinuities is much smaller than the reference scale of
the problem. If this condition is not met, such as in the case of masonry or rock
masses, new models must be introduced that adequately simulate such internal
heterogeneities or discontinuities.

In this Chapter, after an initial introduction on continuum and discrete
models, the focus will be on the newly developed hybrid approaches which,
starting from a continuum, introduce discontinuities by means of appropriate
mechanical devices that simulate the cohesive forces. The basics of X-FEM, G-
FEM, extended VEM and the A-FEM will be here recalled. Particular attention
will be paid to the A-FEM, by which part of the algorithm implemented in this
thesis is inspired, as analyzed later in Chapters 5 and 6.

53



i
i

“output” — 2022/12/5 — 16:12 — page 54 — #55 i
i

i
i

i
i
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3.1 Continuum models

The continuum models are based on the fundamental idea that the physical
domain is considered as a single continuous body, whose changes at the micro-
structural level are encountered by referring to continuum formulations based
on theories of plasticity or damage mechanics. As already pointed out, such
abstraction can be carried out without the consequent ill-posedness of the math-
ematical problem only when the internal non-homogeneity present in the ma-
terials is negligible with respect to the scale of the model. In this case, in fact,
plastic deformations are encountered by referring to enriched constitutive mod-
els, based on internal variables which describe the micro-structural behaviour.

Quasi-brittle or heterogeneous materials, such as masonry or rock, require a
realistic description of the strain-softening behaviour, which is the macroscopic
result of distributed micro-cracking or void growth. However, the description of
softening at a continuum level in the framework of classical plasticity or contin-
uum damage theory leads to unsatisfactory results because the phenomenon of
strain localization cannot be captured objectively. In these cases, the inelastic
effects are distributed and smeared all over the material; therefore, numerical
analysis have shown a strong dependence on mesh-size or mesh-bias, since strain
localization occurs in an infinitely narrow band, which is physically meaningless
since it does not allow for any dissipation in the process zone [70, 94].

The physical range of validity of continuum methods can be extended by
adopting a generalized continuum approach in which the mathematical for-
mulation is enhanced with additional terms. This latter technique, known as
regularization technique, includes two main categories, namely the nonlocal ap-
proach, firstly formulated by BAŽANT and PIJAUDIER-CABOT in 1988 [8] or the
gradient approach, formulated by MÜHLHAUS and ALFANTIS in 1991 [86].

An ideal continuum is seen as an assemblage of infinitesimal volumes of ma-
terial, individually described by their own constitutive law. On the other hand,
nonlocal models of the integral-type are based on the assumption that the stress
field recorded in a point of a continuum body is dependant on the mechanical
behaviour of the neighbouring points. As a consequence, the constitutive law
in a specified point is calculated as weighted averages of the state variables
in the area surrounding the material point. Similarly, a gradient-type nonlocal
model includes the influence of the neighbouring material by enriching the local
constitutive law with first or higher gradients of some state variables. Nonlocal
formulations for quasi-brittle materials are strictly related to the definition of
a characteristic length, presented as a material intrinsic property associated to
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the maximum opening of a FPZ at the tip of a macroscopic crack. Finally,
the necessity to introduce a nonlocal formulation is also linked to the so-called
size-effect for which the structural strength, defined as the value of a certain
nominal stress at the ultimate load, shows a dependence on the structural ele-
ment size. The introduction of a nonlocal dissipation prevents the material to
localize into a vanishing volume.

As mentioned above, the mathematical difficulties associated to the contin-
uum approach can also be solved by adopting higher-order deformation gradi-
ents in the constitutive relations, for which additional (non-standard) boundary
conditions are needed for the solution of equilibrium states.

3.2 Discrete models

In some cases, however, the representation of materials as continuous systems
cannot be adopted, generally when the material has a length scale that is com-
parable with the structural scale. Materials such as rock or masonry belong to
this class.

In the early ’90s new modelling techniques were proposed with the aim
to model the material as a set of separate blocks and discrete particles, com-
monly referred to as the Discrete Element Method (DEM), firstly formulated by
CUNDALL and HARD in 1992 [28]. This method essentially divides the reference
domain into solid material blocks and contact devices between the individual
discrete elements that constitute the system. The overall response is based on
the constitutive relationships associated with each of these components.

As regards the formulation of contacts or interfaces laws, two different
strategies are identified: the soft contact strategy, which is based on the use
of springs of finite stiffness to represent the joint, thus enabling the interpen-
etration between different bodies of the system. On the other hand, the hard
contact strategy, which is based on the assumption that no interpenetration of
the bodies occurs, although shear movement and opening can occur.

The representation of the solid material is also linked to two main groups:
the material can be assumed as rigid or deformable. In the first case, the ma-
terial deformability can be neglected and the inelastic phenomena are concen-
trated in the joints. In the latter, the deformability has a role that is comparable
to the joints one.

Based on the adopted solving algorithm, DEM implementations can be
grouped into implicit or explicit methods, in which the time interval of each
step is or is not changed to reach convergence, respectively. In this regard,
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we can mention the Distinct Element Method, based on solving the equations
of motion by using an explicit-type scheme, leaving decoupled the differen-
tial equations; rigid or deformable discrete bodies with soft contacts are con-
sidered. An alternative method is the Discontinuous Deformation Analysis
(DDA) method, formulated by SHI and GOODMAN in 1985 [108]. The DDA uses
a system of algebraic equations obtained by minimizing the potential energy
and solving that system using an explicit integration. Shi’s original code uses
a penalty-constraint approach to solve the contact, and is therefore based on
the inclusion of springs with a very high stiffness (penalty springs) to prevent
interpenetration. The solution is achieved through an iterative process.

DDA and DEM were initially designed for the analysis of the behaviour of
fractured rock masses, so for application in the geotechnical field. In particular,
DDA is basically an analysis method for discontinuous medium that allows
the simulation of slips along the discontinuities between blocks, the opening
of fractures, large rotations and the complete detachment between elements,
which would be difficult to achieve using, for example, the classic FEM.

3.3 Continuous/Discontinuous models

In the framework of classical numerical methods, such as FEM, in the last
decades the Continuous/Discontinuoous approach has been proposed in order
to describe the gradual transition from the continuous material to the fractured
one. Fractures can be analyzed as material discontinuities which can appear
during the loading process.

The possibility to include strong or weak discontinuities in a continuum vol-
ume, as already mentioned in sub-Section 2.1.2, can be operated by principally
referring to CZMs or ZTI models. Cohesive forces are introduced to model the
dissipation process which develops in correspondence of the crack. Different
constitutive laws may be associated with such mechanical devices simulating
the evolution of fractures: the shape of these laws determines the actual link
between the exchanged tractions t and the displacements jump [[u]] that such
a discontinuity entails. Generally, two components are identified: the normal
traction, linked to the crack opening, and the shear traction, linked to the
relative sliding between the two surfaces. These types of models enhance the
kinematic description of a continuum by introducing a displacement discontinu-
ity. The cohesive constitutive relation can be presented with different shapes,
classically divided into three groups: multi-linear, polynomial or exponential
(see Figure 3.1). Despite differences regarding the reference functions, these
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t

[[u]]

t

[[u]]

t

[[u]]
(a) (b) (c)

ft
ft ft

Figure 3.1: Different Traction-separation laws: (a) Multi-linear; (b) Polynomial; (c)
Exponential.

curves are all constructed in a similar manner: tractions increase, reach a limit
value and then tend to zero as separation between the weak discontinuity sur-
faces increases. Such constitutive law is in agreement with the real evolution
of the rupture process, which is a consequence of the mutual interaction and
coalescence between micro-fractures.

The previous relationship is controlled by two key material parameters: the
tensile-strength ft and the fracture energy Gf dissipated in developing a unit
area of a crack, which is evaluated as the area subtended by the t− [[u]] curve.
First numerical methods were developed to include these discontinuities in the
framework of FEM as inter-element bands. Discontinuities on the finite ele-
ment edges were included by an adaptive remeshing, that was computationally
expensive and difficult to implement. The strong mesh-dependency of finite
element models with inter-element bands was overcome by enhancing the ba-
sic formulation to include intra-element displacement or strain jumps. In this
regard, following sub-Sections will present an overview on some computational
strategies to model strain localization: X-FEM, G-FEM, A-FEM and extended
VEM.

3.3.1 Extended-Finite Element Method

General cohesive zone models require the potential crack path to be known a
priori, which represents a limitation for the simulation of evolving arbitrary
cracks. The Extended-Finite Element Method (X-FEM), firstly formulated by
BELYTSCHKO et al. in 1999 [82, 83], overcomes the need for remeshing to cap-
ture the discontinuity evolution. The technique is based on a local enrichment
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procedure of the cracked elements related to the Partition of Unity Method
(PUM), formulated by BABUS̆KA et al. in 1996 [80].

The PUM has some particular features:

• the a priori knowledge about the local behaviour of finite elements;

• it is a "meshless" method, that could be referred to as any general finite
element shape.

Generally, a partition of unity on a space X is a collection Gi of continuous
real functions on X such that∑

i

Gi(x) = 1 ∀x ∈ X. (3.1)

The key idea is the local enrichment of cracked elements through the so-
called enrichment functions, which are obtained from the analytical solution of
the problem with some simplifying considerations.

In order to model the presence of the discontinuity, the displacement field
u(x) is enriched by two additional terms:

u(x) =
∑
i∈I

Ni(x)di︸ ︷︷ ︸
regular interpolation

+
∑
j∈J

Nj(x)H(x)bj +
∑
k∈K

Nk(x)

(
4∑

l=1

clkFl(x)

)
︸ ︷︷ ︸

enrichment
(3.2)

where N(x) are the standard finite element shape functions. The first term
is associated with the set I of regular nodes of the entire mesh, so di are the
regular nodal displacements and Ni(x) the related shape functions. The gray
filled elements depicted in Figure 3.2 represent the set I, and the associated
regular nodes are the gray filled circles as well.

The first additional term involves the Jump function, defined as follows:

H(x) =

{
−1 if x > 0

1 if x < 0
(3.3)

where x is the distance from the crack, whose sign is determined by the position
of a node on one side or the other one respect to the crack surface. This
enrichment regards the set J , which includes all nodes whose support is bisected
by the crack. These elements are the green ones in Figure 3.2 and the associated
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Regular node 
(set I)

Crack-tip enriched node
(set K)

Jump enriched node
(set J)

Figure 3.2: The X-FEM modeling of a cracked body with the Jump and the crack
tip enrichment functions on a quadrilateral mesh.

Jump enriched nodes are the square green ones, whose displacement vectors are
indicated as bj .

The second additional term regards the set K of nodes whose support con-
tains the cohesive crack tips, depicted as red elements and associated circle red
nodes in Figure 3.2. The nodal displacement vectors of the crack-tip enriched
nodes are denotes as ck. This term involves the branch function Fl(x), which
models the displacement field around the tip of the discontinuity, defined as
follows{

Fl(r, θ)
}
=
{√

r sin
θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}
(3.4)

where (r, θ) are the local polar coordinate system with the origin in the crack
tip and θ = 0 tangent to the crack in the tip itself.

From equation (3.2), the displacement field can be seen as the sum of a
regular part, that is related to the continuous part of the displacement, and a
local enrichment contribution. It maintains the local property since the global
enrichment functions H(x) are multiplied by the nodal shape functions Nj(x):
the local term Nj(x)H(x) ensures that the stiffness matrix will be sparse.

Unlike other models, in which a crack could be only an inter-elements one,
which causes a continuous re-meshing to follow its evolution, in the X-FEM the
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Γu

ΓFF

Ω

Ω

+

Γ+
coh

Γ-
coh

t+ t-

Figure 3.3: Boundary conditions on a
volume Ω crossed by a cohesive crack.

n

Ω

Ω

+

-

f=0
PΓ(x)

x

f<0

f>0

Figure 3.4: Level set function defini-
tion.

elements can be arbitrarily crossed by the fracture. Let us refer to a domain Ω
as presented in Figure 3.3, which contains a FPZ denoted as Γcoh. Boundary
conditions are imposed on Γu and ΓF as imposed displacements ū and pre-
scribed tractions F, respectively. Defined a cohesive constitutive law, which
links the tractions on the two sides t with the crack opening [[u]] = u+ − u−,
the weak form of the equilibrium equations reads as∫

Ω\Γcoh

σ : ε dΩ+

∫
Γcoh

t · [[u]] dΓcoh =

∫
ΓF

F · u dΓF . (3.5)

The X-FEM is usually coupled with the Level Set Method (LSM) [114] in
order to model evolving cracks. The level set technique applied in fracture
mechanics consists in associating a crack Γ to a set of points at which a certain
function fΓ vanishes: the crack is also called the zero level set and corresponds
to

Γ = {x|fΓ(x) = 0} (3.6)

being x the position vector of a material point with respect the discontinuity
origin PΓ. Crack growth is obtained by updating the level set function and by
considering the normal vector to Γ defined as

n(x) =
∇fΓ(x)
∥∇fΓ(x)∥

. (3.7)

n could permit to identify negative and positive sub-domains in which the
element is divided by the crack. Let us consider Figure 3.4 and the associated
following level set function:
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fΓ(x) = ∥x∥sign[x · n(x)]. (3.8)

The domain is positive if fΓ > 0 or negative if fΓ < 0.
The enrichment functions used by the X-FEM can be easily explained by

considering a one dimensional example, in which the discontinuity point Γd

divides the element into Ω− where 0 < x < a and Ω+ where a < x < L
(top-side of Figure 3.5). The enrichment functions are expressed as H(x− a),
being H the Heaviside step function. Since N1 and N4 are not interested by
the discontinuity, only N2 and N3 will be enriched. So the new shape function
set consists of N1, N4, N−

2 = N2(1 − H), N+
2 = N2H, N−

3 = N3(1 − H),
N+

3 = N3H, associated with the corresponding DoFs d1, d4, d−2 , d+2 , d−3 and
d+3 . The two domains are two overlapping meshes, where b2 and b3 correspond
to the displacement differences between the left and the right sides (bottom
side of Figure 3.5).

For 1-D case, equation (3.2) can be re-written as follows:

u(x) =
4∑

i=1

Ni(x)di +
3∑

j=2

Nj(x)H(x− a)bj =

=
4∑

i=1

Ni(x)di +
3∑

j=2

Nj(x)[1−H(x− a)]d−j +
3∑

j=2

Nj(x)H(x− a)d+j .

(3.9)

3.3.2 Generalized-Finite Element Method

Almost simultaneously with the X-FEM, also the Generalized-Finite Element
Method (G-FEM) was presented by STROUBOULIS in 2000 [115]. This method
was used to extend the capabilities of FE codes to include discontinuities
through a nodal enrichment technique. The most important feature is that
the local enrichment of approximation is done through the so-called handbook
functions, which are solutions to local boundary-value problems reflecting the
local geometry of the problem domain.

We refer to a volume domain Ω, crossed by a discontinuity Γd, which iden-
tifies two sub-domains Ω+ (where the normal n to the crack enters) and Ω−,
as in Figure 3.6. F are applied on ΓF and ū on Γu. As done in the previous
sub-Section, the displacement field u(x) is the sum of a regular displacement
field û(x) and an enhanced part ũ(x):
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1 42 3

Ω
-

Ω
+Γd

N1

d1 d2
d3

d4b2
b3

x

u(x)

N2

N3

N4

H

Figure 3.5: Discontinuous displacement approximation in 1-D example in X-FEM.

Γu

ΓFF

Ω
Ω

+Γd

-

n

Figure 3.6: Boundary conditions on a volume Ω crossed by a discontinuity Γd.

u(x) = û(x) +HΓd
ũ(x) (3.10)

where HΓd
is the Heaviside function used to transmit the discontinuity, defined

as follows
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HΓd
=

{
1 if x ∈ Ω+

0 otherwise
(3.11)

Considering the small displacements hypothesis, the strain field can be writ-
ten as

ε = ∇su(x) = ∇sû+HΓd
(∇sũ)︸ ︷︷ ︸

bounded

+ δΓd
([[u]]⊗ n)︸ ︷︷ ︸
unbounded

(3.12)

where (·)S is the symmetric part, ⊗ the tensor product and δΓd
is the Dirac

delta. The strain field is continuous except on Γd, where the unbounded term
is taken into account. The displacements jump is evaluated as the enhanced
displacement field on the discontinuity

[[u]] = ũ(x)|Γd
. (3.13)

The weak form of equilibrium equations reads as∫
Ω+/−

(∇sδu) : σdΩ+

∫
Γd

δ[[u]] · tdΓ =

∫
Ω+/−

δu ·bdΩ+

∫
ΓF

δu ·FdΓ (3.14)

where δ· is the admissible displacement variation, t the traction on the discon-
tinuity and b the volume forces. The FE approximation reads as

ue = N e(x)(â
e +HΓd

ãe) on Ω+/− (3.15)
[[u]]e = N e(x)ã

e on Γd (3.16)

where âe and ãe are the nodal Dofs associated with ûe and ũe, respectively and
N e contains the element shape functions.

Differently from other models where the jump displacement field is approxi-
mated by some one-dimensional shape functions defined along the crack, in the
G-FEM it is obtained by using element shape functions themselves [35].

In this model, the DoFs associated with the parent element crossed by a
discontinuity are doubled, and the enrichment is provided by a second layer
of DoFs, that overlaps the given element. The nodal displacements ae of the
second layer could be seen as the sum of a regular part and an enhanced one:

ae = âe + ãe. (3.17)

The discretized form of equations (3.14) reads as
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K ââ K âã

K ãâ K ãã +Ke
d

âe
ãe

 =

F̂e

F̃e

 (3.18)

where

K ââ =

∫
Ω+/−

BTEBdΩ K âã =

∫
Ω+

BTEBdΩ (3.19)

K ãâ = K ãã = KT
âã Ke

d =

∫
Γd

NT
e EdN edΓ (3.20)

F̂e =

∫
Ω
NT

e bdΩ+

∫
ΓF

NT
e FdΓ (3.21)

F̃e =

∫
Ω+

NT
e bdΩ+

∫
Γ+
F

NT
e FdΓ. (3.22)

In the previous equations system, B is the compatibility matrix, E is the
constitutive matrix and Ed is the discontinuity constitutive matrix.

As done by Jirásek [59], let us consider the kinematic representation, from
different points of view, of an element crossed by a vertical discontinuity sub-
jected firstly to a relative displacement of the two domains and then to a com-
pression of the right-hand part only. Figure 3.7-a represents the physical sit-
uation; Figure 3.7-b represents an element with a smeared discontinuity, for
which normal and shear strains are necessarily transmitted between the two
domains; Figure 3.7-c represents the same element crossed by an embedded
discontinuity, where tractions are still transmitted so the left-hand domain has
to be affected by the presence of the other one; finally, Figure 3.7-d simulates
the X-FEM/G-FEM model, that could represent the two domains as two inde-
pendent bodies. The enrichment is provided by a second layer of DoFs which
overlaps the element (solid and dashed lines), with regular nodes (solid black
circles) and enriched ones (empty red circles), which represents the natural
extension of the displacement beyond the crack.

3.3.3 Augmented-Finite Element Method

Recently, researchers have proposed a FEM method to model the propagation
of single and multiple fractures known as the Augmented Finite Element Method
(A-FEM). This method lays its foundations in the works of LING, YANG and COX
[69] then continued by LIU [71], MOHAMMADIZADEH and SU [84].

The A-FEM can take into account strong discontinuity (as a crack) or weak
discontinuity (as a material interface) in a physical element.
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a) b) c) d)

SMEARED EMBEDDED X(G)-FEM

Figure 3.7: Different approaches to crack simulation: a) Physical body crossed by
a crack; b) Element with smeared crack; c) Element with embedded discontinuity; d)
X-FEM/G-FEM simulation with two overlapping elements.

The model takes into account multiple intra-element discontinuities with
arbitrary paths and allows a numerical efficiency greater than other models.
The main characteristic is that this method uses standard finite element shape
functions, so it essentially maintains the advantage of element locality and the
compatibility with existing standard FEM programs. Main advantages of this
method can be summarized as follows:

• it allows intra-element discontinuities and not only inter-element ones;

• cracks are inserted during the analysis according to specific insertion cri-
teria, without a priori imposition of the crack path;

• multiple cracks can be inserted by recursively augmenting elements;

• easy implementation of CZM to treat the discontinuity behaviour.

Additional nodes are inserted to describe the fracture but, through the
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condensation process, the final equilibrium equations do not depend on the
internal nodes.

This strategy is computationally efficient and leads to a significant improve-
ment in numerical accuracy, efficiency and stability in problems related to the
analysis of arbitrary cracks within materials.

The ability of the A-FEM to reproduce the formation of cohesive inter-
nal fractures in both homogeneous and heterogeneous solids is linked to the
assumption that a cracked element is the assembly of two separated mathe-
matical domains possessing standard finite element structure. The formulation
allows the use of standard finite element shape functions for each domain.

As later analyzed in Section 5.2.1, the problem is solved by replacing the
original element with at least 3 new elements: the two sub-domains and the
localization band, through which they interact, with its defined constitutive
behaviour.

By imposing the continuity of tractions along the fracture surfaces and
starting from the equilibrium equations of each sub-domain, it is possible to
calculate the displacements of the internal nodes as a function of the external
ones: the condensed final equilibrium system does not depend on the internal
Dofs, condition that releases the formulation from the prior knowledge of the
fracture path.

3.3.4 Extended Virtual Element Method

The Virtual Element Method (VEM) is a generalization of the classic Finite
Element Method (FEM), recently proposed by BEIRÃO DA VEIGA et al. in 2013
[3, 10, 19]. Its principal feature is related to its greater adaptability and flex-
ibility since it is capable of modeling polygonal meshes, characterized by any
number of edges without constraints. This permits VEM to be more efficient
with respect to the classical FEM in mesh generation, also starting from irreg-
ular or distorted geometries. By coupling it with, for example, a classic ZTI
element, it is possible to follow crack nucleation and evolution also by con-
sidering the decomposition of the computational domains into polygons with
complex geometry.

The displacement field is obtained as an interpolation of values calculated
on the element edges, without considering any approximation in the domain
itself.

The first step to implement a virtual element Ωe is establishing the number
m of its straight edges defining the polygon. The displacement field uh is fully
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implicit in the interior of the element, being h the mesh refinement size. On
the boundary ∂Ωe, instead, an explicit representation of the displacement field
denoted with ũh is introduced, by evaluating them from the nodal values as
follows

ũh = Ñ bŨ (3.23)

where Ñ b is the matrix of polynomial m-degree functions defined on the bound-
ary ∂Ωe, Ũ collects displacements of the DoFs associated with nodes lying on
the edges of ∂Ωe. A different accuracy can be obtained by using different de-
grees k of the approximating functions evaluated on the boundary.

The equilibrium equation can be written as follows∫
Ωe

(δuh)TbdΩ+

∫
∂Ωe

(δuh)T t̄ds︸ ︷︷ ︸
δLe

=

∫
Ωe

[δε(uh)]TEε(uh)︸ ︷︷ ︸
δLi

(3.24)

where b are the volume forces, t̄ are the inter-element tractions, s is the coor-
dinate on the edge and E is the element constitutive matrix.

An important consequence is that, since the displacement field uh is not
explicit within the element, the strain cannot be computed as the symmetric
part of the gradient, so a projection operator Π is introduced to define the
strain consistent field εc and, consequently, the stress one. It can be written as

εc = Π(uh). (3.25)

The fundamental hypothesis for this projection operator is that, since a
linear approximation is assumed for displacement on the boundary (k = 1),
the strain field in the element is constant. In addition, this condition has to be
satisfied

(εP )T
∫
Ωe

Π(uh) = (εP )T
∫
Ωe

ε(uh)dΩ ∀εP (3.26)

being εP a vector of constant components within the element. Π is defined as
follows

Π(uh) = ΠcŨ (3.27)

where Πc is a matrix explicitly computable as follows
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Πc =
1

Ae

∫
∂Ωe

NT
e Ñ bds (3.28)

by introducing (3.27) in the left-hand term of (3.26) and by integrating by parts
the right-hand side. N e contains the components of the normal to the edge
and Ae is the area of the element.

Considering equations (3.25)-(3.27) it follows that

εc = ΠcŨ. (3.29)

There will therefore exist a displacement field uc that is consistent with the
strain field εc, i.e. satisfying the following relationship:

εc = Buc (3.30)

being B the compatibility operator. A linear-type expression for uc can be
defined as follows

uc = P (x)d (3.31)

where d =
[
u01 u02 εc11 εc22 γc12 w12

]T and P (x) is a polynomial matrix.
u stands for the initial displacement, ε for the normal strain, γ for the shear
strain and w for the rigid rotation.

Assembling the matrices P (x(i)) into D and collecting the displacements
at each node uc(i) into a vector Ũc =

[
uc(1) . . . uc(m)

]T , we can write

Ũc = Dd. (3.32)

The vector Ũc can be evaluated by minimizing the difference between Ũ and
Ũc. However, Ũc is not still equal to Ũ, which results in an energy discrepancy
that therefore needs to be filled. Therefore, a stabilization part must be added
to the consistent part of the energy associated with the projection operator, in
order to recover the lost energy.

The internal work expression in the right-hand side of equation (3.24) by
referring to the consistent strain component as expressed in (3.29) becomes

δLi =

∫
Ωe

δŨTΠcTEΠcŨdΩ+ δΦs (3.33)

where δΦs represents the stabilizing term. It can be written as

δΦs = δŨT (I −Πs)T K̄(I −Πs)Ũ (3.34)



i
i

“output” — 2022/12/5 — 16:12 — page 69 — #70 i
i

i
i

i
i

3.3 Continuous/Discontinuous models 69

where

Πs = D(DTD)−1DT . (3.35)

The two consistent and stabilized stiffness matrices are derived

Kc = ΠcTEΠcAe (3.36)

Ks = (I −Πs)T K̄(I −Πs) where K̄ =
tr(Kc)

2
Ae. (3.37)

Finally, as regards the left-hand side in (3.24), t̄ are neglected ant the other
external term is evaluated as∫

Ωe

(∂uh)TbdΩ = ∂(ūh)T b̄ (3.38)

where ūh =
1

m

m∑
i=1

ũ(i) = MŨ (3.39)

b̄ =
1

Ae

∫
Ωe

bdΩ (3.40)

being ũ(i) the displacement vector of the i− th node and M a (2× 2m) matrix
defined as

M =
1

m

[
1 0 1 0 . . .
0 1 0 1 . . .

]
from which F = MT b̄. (3.41)

Given its easy formulation, VEM can also be used to include intra-element
discontinuities by appropriately adding Dofs at the fracture tips itself. The
extended VEM usually couples a standard VEM method with classical ZTI ele-
ments to simulate crack opening processes in domains with complex geometries.
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Chapter 4

Strain localization in Isotropic
Damage Models

In previous Chapters, it has been clarified that the phenomenon of strain lo-
calization depends on the type of material involved and on the choices made at
the computational and constitutive level. The computational procedure pro-
posed in this thesis in Chapters 5 and 6 refers to an Isotropic Damage Model
(IDM), although any constitutive model that could describe a strain-softening
behaviour could be implemented. For this reason, an overview on damage
constitutive models is firstly presented, paying particular attention to the for-
mulation proposed by JIRÁSEK in 2011 [58] and MAZARS in 1986 [79]. This model
will be adopted and implemented to describe the mechanical behaviour of the
material. Another point that will be investigated in this Chapter regards the
different criteria to identify strain localization and its geometrical features, in
the framework of IDM. Flutter instability will be also investigated.

4.1 Constitutive models for damage mechanics

Continuous Damage Mechanics (CDM) and Fracture Mechanics (FM) are the-
ories that reproduce the progressive degradation processes developing due to
mechanical, thermal or chemical agents.

Both fracture mechanics and damage mechanics aim to estimate the effect of
damage processes, which consist in the formation, propagation, and coalescence
of micro defects, on the macroscopic response of the material.

While FM analyzes the effects of cracks, considered as known discontinuities

71
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in the material, thus removing the hypothesis of continuity of the medium,
the CDM, starting from the hypothesis of continuity, studies the effects of
damaging processes at a macroscopic continuum level, by defining a set of
damage variables.

Although the degradation processes are the consequence of a single and
general microscopic mechanism related to the breaking of atomic and molec-
ular bonds, at the macroscopic level the damage can appear in different ways
depending on the nature of the material, type of load and temperature.

The term damage was firstly introduced by KACHANOV in 1958 [64] to model
creep rupture in ductile materials. Damage was considered as the result of in-
ternal micro-changes in material properties which induce a progressive material
deterioration and stiffness degradation. Previous formulations in the framework
of CDM were proposed by LEMAITRE and CHABOCHE in 1978 [68, 75]; similarly,
MAZARS proposed a damage model specially designed for concrete in 1986 [79].

Generally, a damage mechanism for which the degradation is equally recorded
in every direction is classically referred to an IDM, characterized by a single
scalar parameter. Our analysis will be related to this kind of models. In ad-
dition, more complex theories represent the anisotropic character of damage
through a vector, a second-order tensor or, generally, a fourth-order tensor
damage variable. Such variables have to be used when damage evolves with
no fixed direction and the complexity of the related theories is the greater
the higher the order of the tensors chosen, corresponding to different damage
mechanisms.

As also suggested by the name, the CDM refers to a damaged material mod-
elled as a continuum medium. On the physical level, the internal mechanisms
of damage can evolve differently and, therefore, different are the variables used
to describe them from the mathematical point of view. It is clear that the
first step in developing a damage theory involves the definition of the damage
variable.

Our analysis will be related to an IDM with a variable intended as a measure
of the irreversible defects in the material.

Let us consider a volume element, in which S represents the normal cross-
section. As the applied load increases, cracks and voids start to develop in
this section as the consequence of the loading process. The effective area S̄ is
defined as the unbroken resistant area; the damaged area Sd is defined as the
total area of the defects, equal to the difference Sd = S− S̄ (Figure 4.1). Let us
define the nominal stress σ as the force per unit area S and the effective stress
σ̄ as the force per unit effective area.
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Sd S

Damaged Undamaged

Figure 4.1: Representation of a damaged cross-section.

Since σS = σ̄S̄ it is derived that

σ =
S̄

S
σ̄ (4.1)

where S̄/S represents the integrity parameter. The damage parameter D can
be derived as follows

D = 1− S̄

S
=
Sd
S
. (4.2)

In Figure 4.2 three different loading conditions for the same volume element
have been analyzed: step A refers to an elastic condition, step B to the arising
of damage (small D value), step C corresponds to a very damaged volume (high
D value). In the same Figure, from left to right, the evolution of the effective
stress σ̄, nominal stress σ and damage parameter D, for these three different
conditions are reported, respectively. Step A corresponds to a condition for
which σ = σ̄, as the damage has not yet developed (D = 0). After damage
activation, the nominal stress decreases as the damage increases and vanishes
when D = 1.

As evident in Figure 4.2, the effective stress has always a linear trend, since
it is governed by the Hooke’s law

σ̄ = Eε. (4.3)

By substituting equations (4.2)-(4.3) into (4.1) it follows that

σ = (1−D)Eε. (4.4)

In a multi-dimensional case, considering stresses and strains as tensors, it
follows that

σ̄ = E : ε; σ = (1−D)E : ε. (4.5)
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S=S Sd(B) Sd(C)

a) b) c)

ε

σ

ε

σ

ε

D

1
A A

A

B

B
B

C

C

CEε DEε

(1-D)Eε

d) e) f)

Figure 4.2: Mechanical effects of damage evolution on a volume element at the
three configurations: a) A- undamaged; b) B- early damage; c) C- significant damage.
Trends of effective stress (d), nominal stress (e) and damage parameter (f).

Previous equations suggest that when damage increases material Young’s
modulus is reduced by a factor (1−D). Damage parameter could be dependent
on the intensity of kinematic or mechanical variables as well as other measurable
quantities. Different models are adopted in literature to describe the evolution
of damage variable. Next sub-Sections 4.1.1 and 4.1.2 will explain the stress- or
strain-based and thermodynamic approaches, respectively. The Jirásek-Mazars
damage model formulation adopted in this thesis is reported in sub-Section
4.1.3.

4.1.1 Stress- or strain-based formulations

As stated by SIMO and JU in 1987 [110], CDM is based on theories related to
the thermodynamics of irreversible processes and the associated internal state
variables. These theories can be developed in two alternative frameworks: the
strain-space damage models, based on the effective stress definition, and the
stress-space damage models, based instead on the effective strain definition.
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The effective stress concept is associated with the hypothesis of strain equiv-
alence (Figure 4.3) which reads:

"the strain associated with a damaged state under the applied stress is
equivalent to the strain associated with its undamaged state under the effective

stress."

σ

ε

σ

ε

σ σ

E

Figure 4.3: Illustration of the hypothesis of strain equivalence.

This can be proven by considering that

σ̄ =
σ

1−D
(4.6)

σ̄ = Eε (4.7)

from which it follows that

σ = (1−D)Eε (4.8)

so the previous statement is confirmed.
Similarly, the effective strain concept is associated with the hypothesis of

stress equivalence (Figure 4.4) which reads:

"the stress associated with a damaged state under the applied strain is
equivalent to the stress associated with its undamaged state under the effective

strain."

As done before, considering that

ε̄ = (1−D)ε (4.9)
σ = Eε̄ (4.10)

it follows

σ = (1−D)Eε (4.11)
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ε ε

σ

ε

σ

ε

E

Figure 4.4: Illustration of the hypothesis of stress equivalence.

and the previous statement is confirmed.
As regards the strain-based damage formulation, the fundamental idea is

the hypothesis that damage in the material is directly linked to the history of
total strains. For this reason the concept of equivalent strain ε̃ is introduced.
In general, it can be a function of the undamaged energy norm of the strain
tensor in a strain-based formulation:

ε̃ =
√
2Ψ(ε), (4.12)

as well as the equivalent stress σ̃ is a function of the undamaged complementary
energy norm of the stress tensor:

σ̃ =
√
2Φ(σ), (4.13)

in a stress-based formulation, which is dual to the strain-based one.

4.1.2 Strain-based thermodynamic formulation

First damage formulations were proposed in the framework of CDM and a
thermodynamic approach. A detailed description of these models was firstly
developed by LEMAITRE in 1985 and then by CHABOCHE in 1988 [25, 26, 67]. The
thermodynamic formulation is associated with internal variables and is based
on the existence of two potentials:

• a thermodynamic potential, from which constitutive laws are derived;

• a dissipation potential, from which flow rules are derived.

The thermodynamic potential can be decomposed in a part associated with
state variables, such as temperature T , strain ε, or stress σ, and a part associ-
ated with internal variables, governing the damage onset and growth.
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Referring to a strain-based formulation and in the case of constant and uni-
form temperature, the Helmholtz free energy Ψ is assumed as thermodynamic
potential, and its definition reads as

Ψ = Ψe(ε, D) + Ψi(ξ), (4.14)

being ξ the internal damage variable. As proposed by Chaboche in 1977, the
damaged elastic behaviour can be described by referring to the effective stress
concept. Ψe must be quadratic in ε and linear in (1 − D). Considering the
fourth-order elasticity tensor E, it reads

Ψe =
1

2
(1−D)ε : E : ε. (4.15)

As regards the dissipation potential, by combining the first and the sec-
ond principles of thermodynamics, the following Clausius-Duhem inequality is
imposed, which ensures the mechanical dissipation rate to be positive:

Ḋdiss = σ : ε̇− Ψ̇ ≥ 0 (4.16)

where Ḋdiss is the scalar intrinsic dissipation rate and ∗̇ represents the time
derivative. By substituting equation (4.14) in (4.16), it is obtained

Ḋdiss = σ : ε̇− ∂Ψe

∂ε
: ε̇− ∂Ψe

∂D
Ḋ − ∂Ψi

∂ξ
ξ̇ ≥ 0. (4.17)

Since inequality (4.17) has to be hold for every incremental deformation
process, including the purely elastic one, it follows that

σ =
∂Ψe

∂ε
= (1−D)E : ε. (4.18)

Since the Helmholtz free energy is a potential, other mechanical variables
can be obtained by deriving equation (4.14) with respect to the associated
kinematic variables. Defining:

ς = −∂Ψe

∂D
and χ =

∂Ψi

∂ξ
(4.19)

and remembering (4.18), the (4.17) now reads

Ḋdiss = ςḊ − χξ̇ ≥ 0. (4.20)
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ς and χ are the thermodynamic forces associated with the internal variables
D and ξ, respectively. The onset and growth of damage is an evolutionary
mechanical process, so the dissipation has a nonnegative maximum according
to the theorem of maximum dissipation. Flow rules of the constitutive variables
can be obtained looking for the maximum of the intrinsic dissipation Ḋdiss

subjected to the constraint ϕd(ς, χ) ≤ 0, with ϕd an activation function defining
damage activation. Explaining the Lagrangian method, a Lagrangian function
L is defined as follows

L = Ḋdiss − λ̇ϕd(ς, χ) = ςḊ − χξ̇ − λ̇iϕd (4.21)

where λ̇ is the Lagrangian multiplier. The variables λ̇ and ϕd have to satisfy
the following Kuhn-Tucker relationships

λ̇ ≥ 0, λ̇ ϕd = 0, ϕd ≤ 0. (4.22)

Flow rules are finally derived imposing the stationarity of the Lagrangian
function with respect to each mechanical variable and under previous condi-
tions. It is obtained that

∂L

∂ς
= Ḋ − λ̇

∂ϕd
∂ς

= 0 ⇒ Ḋ = λ̇
∂ϕd
∂ς

(4.23)

∂L

∂χ
= −ξ̇ − λ̇

∂ϕd
∂χ

= 0 ⇒ ξ̇ = −λ̇∂ϕd
∂χ

(4.24)

∂L

∂λ̇
= ϕd ≤ 0, (4.25)

which must be contemporary verified.

4.1.3 The Jirásek-Mazars formulation

This thesis will deal with the IDM with strain-based loading function as formu-
lated by JIRÁSEK in [58] and MAZARS in [79]. We will refer to this formulation as
J-MF. In the J-MF the damage parameter D is a function of the total strain. It
can be calculated starting from the largest equivalent strain value even reached
during the loading path, being the equivalent strain a scalar measure of the
strain level. An internal kinematic variable κ is opportunely introduced as a
memory variable to record the maximum principal strain level reached over a
period t, as follows

κ = max ε̃(t). (4.26)
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Hence, the damage evolution dependency can be written as

D = g(κ). (4.27)

The explicit expression of damage variable is given by

D = g(κ) =

{
0 if κ ≤ ε0

1− ε0
κ exp(− κ−ε0

εf−ε0
) if κ > ε0

(4.28)

being ε0 the elastic limit strain and εf the post-peak limit strain.
The elastic domain and the loading-unloading conditions are defined by the

following damage activation function and related Kuhn-Tucker conditions:

f(ε̃, κ) = ε̃− κ, (4.29)

f(ε̃, κ) ≤ 0, κ̇ ≥ 0, κ̇ f(ε̃, κ) = 0. (4.30)

From the first condition κ is always bigger or equal to ε̃; the second condition
establishes that κ can’t decrease and the third one that κ can increase only if
a damage mechanism is activated.

The specific expression chosen to evaluate the equivalent strain determines
the shape of the elastic domain. Let us summarize the most widely used defi-
nitions of the equivalent strain.

• Scaled energy norm

The simplest definition of the equivalent strain is related to the Euclidean
norm of the strain tensor ε

ε̃ = ∥ε∥ =
√
ε : ε (4.31)

or as the scaled energy norm

ε̃ =

√
ε : E : ε

E
(4.32)

where E is the 4-th order elastic constitutive operator and E the Young’s
modulus.
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• Rankine definition

If we refer to the Rankine criterion of maximum principal stress, the
equivalent strain can be defined as

ε̃ =
1

E
max
i=1,2,3

⟨E : ε⟩i =
1

E
max
i=1,2,3

⟨σ̄i⟩ =
σ̄1
E

(4.33)

where ⟨σ̄i⟩ are the positive parts of the principal values of the effective
stresses.

• Modified Von Mises definition

DE VREE, BREKELMANS, and VAN GILS introduced in 1995 [31] the so-called
modified Von Mises expression

ε̃ =
(K − 1)I1ε
2K(1− 2ν)

+
1

2K

√
(1−K)2

(1− 2ν)2
I21ε +

12KJ2ε
(1 + ν)2

(4.34)

where I1ε is the first strain invariant of ε and J2ε the second deviatoric
strain invariant of εdev, defined respectively as follows

I1ε = ε : I = tr(ε), J2ε =
1

2
εdev : εdev (4.35)

with εdev = ε− 1

3
I. (4.36)

I is the identity matrix while K is a material parameter dependent on the
ratio between the uniaxial compressive strength fc and uniaxial tensile
strength ft.

• Mazars definition

Typically, quasi-brittle materials have a different behaviour in tension and
compression. Micro-cracks mostly grow when the material is stretched
and it is natural to pay more attention to traction in the definition of
the equivalent strain. Accordingly, the so-called Mazars definition of the
equivalent strain is:

ε̃ =

√√√√ 3∑
I=1

⟨εI⟩2 (4.37)
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where εI (I=1,2,3) are the principal strains and the McAuley brackets ⟨·⟩
denote the positive part.

Starting from this definition, in 1986 MAZARS [79] proposed a damage
model for concrete whose damage variable D was obtained as a combina-
tion of two variables, Dt and Dc, associated to tensile and compression,
respectively. The general formula reads as

D = αtDt + αcDc (4.38)

where the coefficients αt and αc were defined as

αt =
3∑

i=1

εti⟨εI⟩
ε̃2

, αc = 1−
3∑

i=1

εti⟨εI⟩
ε̃2

(4.39)

being εti (i = 1, 2, 3) the principal strains due to positive stresses. In this
formulation two separate damage evolution laws were defined for Dt and
Dc:

Dt = gt(κ) =

{
0 if κ ≤ ε0

1− (1−At)
ε0
κ −At exp[−Bt(κ− ε0)] if κ > ε0

(4.40)

Dc = gc(κ) =

{
0 if κ ≤ ε0

1− (1−Ac)
ε0
κ −Ac exp[−Bc(κ− ε0)] if κ > ε0

(4.41)

where Ac, At, Bc and Bt are material parameters related to the shape of
the uniaxial stress-strain diagrams.

A recent formulation [58] is instead based on a unified formula combining
the previous "purely tensile" and "purely compressive" stress cases, as in
relation (4.28).
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4.2 Numerical implementation of the J-MF in the
framework of IDM

This thesis mainly focus on the analysis of quasi-brittle materials. In this
Section the formulation regarding the adopted constitutive model, where in-
elastic phenomena are linked to damage evolution in the framework of IDM,
is furnished. In order to introduce the aforementioned constitutive model in
a nonlinear code based on an iterative Newton-Raphson procedure (see Ap-
pendix C), the tangent stiffness matrix at the Gauss point and at the element
level is derived. The first two sub-Sections are devoted to the evaluation of the
stiffness matrix. In a third sub-Section a numerical investigation on the mesh
dependency of the IDM will be pursued.

4.2.1 Constitutive model tangent operator

Let us recall the stress-strain law (4.5) written in Voigt notation:

σ = (1−D)Eε, (4.42)

with ε the strain vector and σ the stress one. We can define the elastic tangent
operator Et as the derivative of the stress field with respect to the strain one:

Et =
∂σ

∂ε
= (1−D)E −Eε

∂D

∂ε
. (4.43)

Recalling the dependence of damage on the equivalent strain, the derivative
of the damage variable can be further rewritten as

∂D

∂ε
=
∂D

∂κ

∂κ

∂ε̃

∂ε̃

∂ε
. (4.44)

With reference to the damage variable expression (4.28), the first term is
equal to

∂D

∂κ
= −

exp
(

κ−ε0
ε0−εf

)
ε0(κ− ε0 + εf )

κ2(ε0 − εf )
. (4.45)

The second term can be evaluated from the following simple observations

∂κ

∂ε̃
=

{
0 if ε̃ < κ (damage not activated)
1 if ε̃ = κ (damage activated).

(4.46)
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Last term of (4.44) is evaluated by considering the Mazars’ formulation of
the equivalent strain as presented in (4.37). Explicitly, the equivalent strain ε̃
can be furnished in terms of the principal strains ε1, ε2, ε3

ε̃ =
√

⟨ε1⟩2 + ⟨ε2⟩2 + ⟨ε3⟩2. (4.47)

From (4.47), the third term can be derived according to a plane stress or a
plane strain case that are separately investigated in the following.

• Plane stress case - σz = 0

In plane stress condition, general Hooke’s law leads to an expression of
εz dependent on εx and εy as follows

εz =
−ν
1− ν

(εx + εy). (4.48)

The strain tensor becomes

ε =

 εx γxy
2 0

γxy
2 εy 0
0 0 −ν

1−ν (εx + εy)

 . (4.49)

With reference to Figure 4.5, the related principal strains can be expressed
as follows

ε1 = ε̂+Rε (4.50)
ε2 = ε̂−Rε (4.51)

ε3 =
−ν
1− ν

2ε̂ (4.52)

where the following positions were made:

ε̂ =
εx + εy

2
and Rε =

√(
εx − εy

2

)2

+
γ2xy
4
. (4.53)

ε̂ and Rε in (4.53) fix the centre and the radius of the Mohr’s circle of
Figure 4.5. By substituting (4.50)-(4.51)-(4.52) in (4.47), the expression
of the equivalent strain becomes:
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εyy

x

εx

γxy

2

A

B

B

A

εxεy

x

y

εn

γn

γxy

2

γxy

2

ε1ε2

N

x1
x2

2α

α

Rε

Figure 4.5: Strain components representation on the physical plane x − y and the
Mohr plane εn − γn; α represents the first principal strain direction with respect to
the horizontal one.

ε̃ =

√
⟨ε̂+Rε⟩2 + ⟨ε̂−Rε⟩2 +

〈 −ν
1− ν

2ε̂

〉2

, (4.54)

whose derivative with respect to εx is:

∂ε̃

∂εx
=

1

ε̃

{
⟨ε̂+Rε⟩

(
1

2
+

εx−εy
2

2Rε

)
+ ⟨ε̂−Rε⟩

(
1

2
−

εx−εy
2

2Rε

)
+

+

〈 −ν
1− ν

2ε̂

〉( −ν
1− ν

)}
.

(4.55)

In Figure 4.5, A and B represent two physical planes and α is the incli-
nation of the first principal direction with respect to the x− y reference
system. From trigonometric considerations it can be deduced that

tanα =
γxy
2

ε1 − εy
tan 2α =

γxy
2

εx−εy
2

. (4.56)

Eliminating the terms γxy/2 from both equations it is obtained

εx−εy
2

Rε
=

tanα

tan 2α− tanα
. (4.57)

By considering the trigonometric formulas of duplication
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tan 2α =
2 tanα

1− tan2 α
(4.58)

it is possible to derive that

tanα

tan 2α− tanα
=

1− tan2 α

1 + tan2 α
= cos 2α. (4.59)

Substituting opportunely in (4.55) it follows that

∂ε̃

∂εx
=

1

2ε̃

{(
⟨ε1⟩+ ⟨ε2⟩

)
+ cos 2α

(
⟨ε1⟩ − ⟨ε2⟩

)
− 2ν

1− ν
⟨ε3⟩

}
. (4.60)

With analogous considerations the following relation holds:

γxy
2

Rε
= sin 2α (4.61)

and therefore it can be derived that

∂ε̃

∂εy
=

1

2ε̃

{(
⟨ε1⟩+ ⟨ε2⟩

)
+ cos 2α

(
⟨ε2⟩ − ⟨ε1⟩

)
− 2ν

1− ν
⟨ε3⟩

}
(4.62)

∂ε̃

∂γxy
=

sin 2α

2ε̃

(
⟨ε1⟩ − ⟨ε2⟩

)
. (4.63)

• Plane strain case - εz = 0

In plain strain condition the εz term in the strain tensor in (4.49) is null
and principal strains ε1 and ε2 are equal to expressions (4.50) and (4.51)
while ε3 = 0. The equivalent strain assumes now the following form

ε̃ =
√

⟨ε̂+Rε⟩2 + ⟨ε̂−Rε⟩2. (4.64)

Taking into account the same trigonometric equivalences as in the plane
stress case it can be derived that

∂ε̃

∂εx
=

1

2ε̃

{(
⟨ε1⟩+ ⟨ε2⟩

)
+ cos 2α

(
⟨ε1⟩ − ⟨ε2⟩

)}
(4.65)

∂ε̃

∂εy
=

1

2ε̃

{(
⟨ε1⟩+ ⟨ε2⟩

)
+ cos 2α

(
⟨ε2⟩ − ⟨ε1⟩

)}
(4.66)

∂ε̃

∂γxy
=

sin 2α

2ε̃

(
⟨ε1⟩ − ⟨ε2⟩

)
. (4.67)
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4.2.2 FE tangent stiffness matrix

The FE tangent stiffness tensor can be assumed as the local gradient of the
force/displacement relationship.

Internal forces are equal to

fint =

∫
V
BTσ dV, (4.68)

where B is the second-order compatibility strain-displacement tensor and σ is
the column matrix of stress components, written using Engineering notation. In
a finite element approach, using the Gauss quadrature, the integral is replaced
by a sum of contributions collected from a finite number of integration points
ngp:

fint =

ngp∑
i=1

wiB
T
i σi (4.69)

where wi are the weights associated to each point.
Introducing the compatibility equation in (4.42) it follows that

σ = (1−D)E(Bd) (4.70)

in which d is the vector of nodal displacements.
The sum in (4.69) can be rewritten as follows

fint =

ngp∑
i=1

wi(1−Di)B
T
i EBid

=

ngp∑
i=1

wi(1−Di)Kid

(4.71)

where Ki = BT
i EBi is the elastic stiffness matrix evaluated at the generic

integration point i.
The tangent stiffness matrix can be derived by differentiating the internal

forces in (4.71) with respect to the nodal displacements:

Kt =
∂fint

∂d

=

ngp∑
i=1

wi(1−Di)Ki −
ngp∑
i=1

wiKid

(
∂Di

∂d

)

= Ku −
ngp∑
i=1

wiKid

(
∂Di

∂d

) (4.72)
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where the first term Ku represents the secant stiffness tensor, which is a sym-
metric matrix. Because of the presence of the second term, the tangent stiffness
matrix can be symmetric only in particular cases [60].

The tangent stiffness matrix can be expressed in its integral form as follows:

Kt = (1−D)

∫
V
BTEBdV −

∫
V
BTEBd

∂D

∂d
dV (4.73)

being
∂D

∂d
=
∂D

∂ε

∂ε

∂d
=
∂D

∂ε

∂(Bd)

∂d
=
∂D

∂ε
B (4.74)

By substituting (4.74) in (4.73) the final expression of the FE tangent stiff-
ness matrix becomes

Kt =

∫
V
BT [(1−D)E −Eε

∂D

∂ε︸ ︷︷ ︸
Et

]BdV (4.75)

where Et is the elastic tangent tensor given in (4.43).
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4.2.3 Mesh dependency of the IDM

Table 4.1: Adopted parameters for the analysis on a single edge notched (SEN)
specimen under mixed mode.

E [MPa] ν ε0
εf
ε0

1000 0.2 1.0E − 3 100

This sub-Section deals with the analysis of the adopted damage model for-
mulation. The scope of this sub-Section is to investigate on continuum models
where the inelastic effects are distributed and smeared all over the material.
These approaches, as known, suffer from strong dependence on mesh-size.

In order to make this problem evident, a square specimen with dimensions
100 × 100 × 1 mm and a non-symmetric notch was analyzed. Geometry and
boundary conditions are reported in Figure 4.6, constitutive parameters in Ta-
ble 4.1. The specimen is fixed on the bottom side while the top edge is subjected
to uniform distribution of horizontal displacements and a linear distribution of
vertical displacements, with a maximum on the left node and zero on the right
node. The maximum final values of the horizontal and vertical displacements
are set equal to δ̄x = 0.85 mm and δ̄y = 1 mm, respectively.

To study the dependence of the model on mesh size and orientation, the
example is performed using five different meshes, three of which are regular
(RM) and two skewed (SM). The three regular meshes are shown in Figure 4.7
where, respecting a classical h-refinement rule, they are divided into 16 × 16,
32× 32, and 64× 64 quadrilateral linear elements. The two skewed meshes, on
the other hand, are represented in Figure 4.8 using 16 × 16 (Figure 4.8-a) or
32× 32 (Figure 4.8-b) quadrilateral linear elements respectively.

The reported data are those at the final step of the analysis for each one
of the aforementioned meshes. For each mesh, two images are reported. In the
first one (Figure 4.10), the contour plots of damage distribution are reported.
In the second one (Figure 4.11), principal strain direction vectors scaled by
damage value are shown, on a grid of 5× 5 evaluation points for each element.

It is possible to see how damage evolves in certain areas of the specimen
only. In particular, for all 5 meshes it evolves mainly in the central strip of
the specimen, starting from the notch, and then deflects toward the lower right
corner at the end of the analysis. In parallel, especially for coarser meshes,
damage involves also a central area just below the notch, the lower left and
upper right corners and a small area on the right edge of the specimen. However,
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Figure 4.6: SEN specimen under mixed mode - Geometry and boundary conditions.
Dimensions are given in mm.

(a) (b) (c)

Figure 4.7: SEN specimen under mixed mode - Different employed RM: (a) 16× 16,
(b) 32× 32, (c) 64× 64.
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(a) (b)

Figure 4.8: SEN specimen under mixed mode - Different employed SM: (a) 16× 16,
(b) 32× 32.
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Figure 4.9: SEN specimen under mixed mode - Load-displacement curves.

these secondary areas tend to disappear as denser is the mesh, confirming, the
dependence of these patterns on the mesh-size. Also, as evident from Figure 4.9,
different load-displacement curves correspond to different meshes: in particular,
the denser the mesh the lower the peak because the inelastic effects affect
elements of progressively smaller size, resulting in a more localized damaged
area.
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Figure 4.10: SEN specimen under mixed mode - Damage contour plots on a (a)
16× 16 RM; (b) 16× 16 SM; (c) 32× 32 RM; (d) 32× 32 SM; (e) 64× 64 RM.
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(a) (b)

(c) (d)

(e)

Figure 4.11: SEN specimen under mixed mode - Principal strain directions distri-
bution on a (a) 16 × 16 RM; (b) 16 × 16 SM; (c) 32 × 32 RM; (d) 32 × 32 SM; (e)
64× 64 RM.
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4.3 Strain localization with J-MF

Strain localization has been presented in previous Sections from a general point
of view as an instability problem linked to the constitutive nature of a mate-
rial. This section is devoted to the analysis of this phenomenon with specific
reference to the J-MF in the framework of IDM. Different strain localization
criteria are reported. It will be shown how each criterion is able to correctly
identify the localization instant but also how the acoustic tensor is not able to
correctly identify the localization direction and needs to be substituted with a
more suitable criterion.

4.3.1 Strain localization criteria

As already seen in Section 1.2, different local conditions regarding the unique-
ness condition and the stability of a material can be identified. The most
diffused of them are summarized in the expressions (1.3)-(1.4)-(1.10) and here
explicitly recalled.

• Singularity of the constitutive operator

As formulated by HADAMARD, THOMAS and HILL [47, 50, 122], the loss of
the positive-definiteness of the constitutive tangent operator Et leads to
the existence of waves propagating in the material with imaginary speed,
condition that is physically unreal. The condition whereby

det(Et) = 0 (4.76)

can be therefore intended as the first local indicator of strain localization.
Alternatively, by investigating on the sign of the eigenvalues of the con-
stitutive operator, incipient localization can be identified. However, this
criterion provides only the instant of formation of a potential band, but no
indication is retrieved regarding its inclination. This criterion, therefore,
should be coupled with a second criterion giving its correct position.

• Spectral analysis of the acoustic tensor

The physical meaning of the acoustic tensor L has been already dis-
cussed in sub-Sections 2.2.1-2.2.2. The continuous/discontinuous bifur-
cation condition leads to a localization criterion that reads as

det(n ·Et · n) = det(L) = 0. (4.77)
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Being n = [nx ny]
T the unit vector normal to the localization band, the

previous expression in plane stress reads as

L =

[
nx 0 ny
0 ny nx

]E11 E12 E13

E21 E22 E23

E31 E32 E33

nx 0
0 ny
ny nx

 =

=

[
E11n

2
x + (E13 + E31)nxny + E33n

2
y E12nxny + E13n

2
x + E32n

2
y + E33nxny

E21nxny + E23n
2
y + E31n

2
x + E33nxny E22n

2
y + E23nxny + E32nxny + E33n

2
x

]
(4.78)

Through the spectral analysis of the aforementioned tensor both the onset
and position of a localization band are identified at that step when its
minimum eigenvalue is null or negative. The direction of the localization
band then corresponds to the eigenvector associated with the minimum
eigenvalue.

Let us refer to the acoustic tensor expression in (4.78). The determinant
can be written as a function of the components nx and ny:

det(L) = C1n
4
x + C2n

3
xny + C3n

2
xn

2
y + C4nxn

3
y + C5n

4
y (4.79)

where

C1 = (E11E33 − E13E31)

C2 = (E11E23 + E11E32 − E31E12 − E13E21)

C3 = (E11E22 + E13E32 + E31E23 − E12E21 − E12E33 − E21E33)

C4 = (E13E22 + E31E22 − E21E32 − E23E12)

C5 = (E22E33 − E23E32).

(4.80)

Considering that ny =
√

1− n2x, the unknown variable nx is calculated
solving a single-variable bounded nonlinear minimization problem:

Find nx | nx = min det(L) with −1 ≤ nx ≤ 1.

Using this formulation, however, as demonstrated in the next sub-Section
4.3.2, the acoustic tensor is unable to furnish reliable localization direc-
tions, so the spectral analysis of the acoustic tensor could be used only to
individuate the onset of localization, again leaving the task of identifying
the direction of localization to a second criterion.
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• Singularity of the FE tangent stiffness

As stated by DE BORST [29, 30], localization can be understood as the loss
of positive-definiteness of the FE tangent stiffness matrix. This condition
coincides to impose that

det(Kt) = 0 (4.81)

where the tangent stiffness matrix Kt is that one introduced in (4.75) for
a finite element. Also, this criterion furnishes only an indication regarding
the incipient localization condition while no information is given about
the band direction.

As for the previous two criteria, the identification of the localization di-
rection for the J-MF model must be entrusted to a second criterion.

4.3.2 Strain localization in pure modes

Table 4.2: Comparison between different localization criteria on a single element.

E [MPa] ν ε0
εf
ε0

100000 0.30 9.0E − 4 10

56
,2

5
56

,2
5

n

(a) (b)
100

56,25

87,5

100
56,25

87,5

n

(c)

n

100
87,5

x

12,5

100
87,5

y

x

12,5
100100

87,5

x

12,5

100
87,5

y

x

12,5
100

Figure 4.12: Comparison between different localization criteria on a single element
subjected to (a) horizontal tensile load, (b) vertical compressive load and (c) shear
load.

The localization criteria listed in the previous sub-Section will be here ap-
plied on a single element, subjected to a horizontal tensile load (Figure 4.12-a),
a vertical compressive load (Figure 4.12-b) and a shear load (Figure 4.12-c).
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In these pure modes cases, vertical Mode-I cracks are expected for (a) and (b)
cases, while a Mode-II crack, with an inclination of 45°, is expected for case
(c).

The analysis has been conducted considering a simple 10 × 10 × 1 mm el-
ement, having the constitutive parameters reported in Table 4.2. The element
has been subjected to an imposed displacement λū, being ū = 0.001 the max-
imum imposed value and λ its multiplier. A total of 50 load steps have been
considered.

Figures 4.13-a, 4.14-a and 4.15-a compare the results of the three localiza-
tion criteria, referred to one of the four integration points, for which the same
values are recorded. The trend of the determinant of the constitutive operator
f(Et), of the minimum value of the determinant of the acoustic tensor f(L)
and of the minimum eigenvalue of the FE tangent stiffness matrix f(Kt) are
reported with respect to the step number. The reported values are normalized
to the correspondent elastic values (indicated by superscript 0) as follows:

f(Et) =
det(Et)

det(E0
t )
, f(L) =

(
det(L)

det(L0)

)
min

, f(Kt) =
λmin(Kt)

λmin(K
0
t )
.

(4.82)

In each case the initial values are positive but, at the localization step (LS),
they assume a minimum value to subsequently proceed asymptotically until an
almost null value.

Since the acoustic tensor criterion is the only one that could provide the
localization direction, Figures 4.13-b, 4.14-b and 4.15-b report the values of
det(L) with respect to the orientation αn of the unit vector n with respect
to the horizontal axis. The curves are reported, for the localization step LS
and for other 4 subsequent steps. In all 5 steps the trend is the same, but
after localization it flattens towards the horizontal axis. For the case (a) the
minimum value of the det(L) is assumed for αn ≃ 20° or 160°, although an
angle of about 0° is expected. Similarly, for the case (b) the minimum value is
assumed for αn ≃ 49° or 131°, although an angle of about 0° is expected. For
the case (c) the minimum value is obtained for αn ≃ 80°, although an angle of
about 45° is expected. It can be concluded that localization directions returned
by the acoustic tensor do not respect the expected directions, and therefore, as
will be explained later in Section 6.3, a new localization criterion is necessary.
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Figure 4.13: Comparison between different localization criteria (a) and trend of the
det(L) with respect to the angle αn between n and the x-axis (b) for case 4.12-a.
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Figure 4.14: Comparison between different localization criteria (a) and trend of the
det(L) with respect to the angle αn between n and the x-axis (b) for case 4.12-b.
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Figure 4.15: Comparison between different localization criteria (a) and trend of the
det(L) with respect to the angle αn between n and the x-axis (b) for case 4.12-c.

4.4 Flutter instability with J-MF

Strong-ellipticity and ellipticity are necessary conditions for the material sta-
bility, linked to the positiveness and non-vanishing of the eigenvalues of the
acoustic tensor, respectively. Conditions for the occurrence of the flutter insta-
bility will be here investigated, based on the spectral analysis of the acoustic
tensor in the framework of the Jirásek-Mazars formulation.

4.4.1 Flutter instability in plane stress

As already explained, flutter instability corresponds to the occurrence of two
complex conjugate eigenvalues of the acoustic tensor. Under plane stress con-
dition, the acoustic tensor is a 2 × 2 second-order tensor. By representing the
acoustic tensor in (4.78) by components Lij respect to a certain coordinate
system, it reads

L =

[
L11 L12

L21 L22

]
(4.83)

whose associated characteristic equation assumes the form
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λ2 − (trL)λ+ detL = 0 (4.84)

with

trL = L11 + L22, detL = L11L22 − L12L21. (4.85)

Flutter condition then reads:

(trL)2 − 4 detL < 0. (4.86)

Equation (4.86) shows that the localization condition detL ≤ 0 and the
flutter condition can never be satisfied simultaneously for the same direction
n. Of course, for a given state of the material, the localization condition could
be satisfied with some directions and the flutter condition with other ones.

By substituting (4.85) in (4.86) it is obtained

(L11 + L22)
2 − 4L11L22 + 4L12L21 < 0 (4.87)

⇒ (L11 − L22)
2 + 4L12L21 < 0. (4.88)

Equation (4.88) indicates that the flutter condition can be satisfied only if
L12L21 < 0, i.e. when the out-of-diagonal components of the acoustic tensor
have opposite signs. This is a necessary condition, but not sufficient, to record
flutter instability.

Let us consider the tangent stiffness constitutive operator for the M-JF in
the framework of IDM, as in (4.43). It can be rewritten as

Et = (1−D)E −Dκσ̄ ⊗ η (4.89)

where Dκ = ∂D
∂κ

∂κ
∂ε̃ is the derivative of damage with respect to the equivalent

strain, σ̄ = E : ε is the effective stress and η = ∂ε̃/∂ε. The corresponding
acoustic tensor is then

L = Lu −Ll = Lu −Dκσ̄n ⊗ ηn (4.90)

where
Lu = (1−D)n ·E · n (4.91)

is the elastic acoustic tensor for unloading and

σ̄n = σ̄ · n, ηn = η · n (4.92)
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are first-order tensors. The out-of-diagonal components are therefore considered

L12 = Lu12 −Dκσ̄n1ηn2 (4.93)
L21 = Lu21 −Dκσ̄n2ηn1 (4.94)

in order to look for cases where relation (4.88) is satisfied. With E, ν being
the elastic constants, D the damage variable and considering a x−y plane, the
elastic acoustic tensor for unloading in (4.91) becomes (considering nx = cosα
and ny = sinα)

Lu = (1−D)
E

1− ν2

[
nx 0 ny

0 ny nx

]
1 ν 0

ν 1 0

0 0 1−ν
2



nx 0

0 ny

ny nx


= (1−D)

E

2(1− ν2)

[
2 cos2 α+ (1− ν) sin2 α (1 + ν) sinα cosα

(1 + ν) sinα cosα 2 sin2 α+ (1− ν) cos2 α

]
.

(4.95)

The out-of-diagonal equal terms are

Lu12 = Lu21 =
(1−D)E

4(1− ν)
sin 2α. (4.96)

Similarly, the "correction" term Ll can be written as

Ll = Dκ

[
σ̄nxηnx σ̄nxηny

σ̄nyηnx σ̄nyηny

]
(4.97)

where

σ̄nx = nxσ̄x + ny τ̄xy (4.98)
σ̄ny = nyσ̄y + nxτ̄xy (4.99)
ηnx = nxηx + nyηxy (4.100)
ηny = nyηy + nxηxy. (4.101)

Since the material is isotropic, the relations remain valid even choosing a
different reference system. It is certainly more convenient to work with the
system aligned with the principal axes of the strain tensor, which are at the
same time the principal axes of effective stress and of tensor η.
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Therefore, it can be set σ̄x = σ̄1, σ̄y = σ̄2, τ̄xy = 0, ηx = η1, ηy = η2 and
ηxy = 0. In this case, the angle α denotes the angle between the major principal
axis and the unit vector n.

Let us remember the general Hooke’s law in the principal reference system

σ̄1 =
E

1− ν2
(ε1 + νε2) (4.102)

σ̄2 =
E

1− ν2
(ε2 + νε1). (4.103)

The principal values of η depend on the strain state and on the selected
expression for equivalent strain. The out-of-plane strain component is derived
from the others as follows

ε3 = − ν

E
(σ̄1 + σ̄2) = − ν

E

E(1 + ν)

1− ν2
(ε1 + ε2) = − ν

1− ν
(ε1 + ε2). (4.104)

Remembering the Mazars formulation expressed in (4.47), the equivalent
strain reads as

ε̃ =

√
⟨ε1⟩2 + ⟨ε2⟩2 +

ν2

(1− ν)2
⟨−ε1 − ε2⟩2 (4.105)

and its derivatives with respect to the strain components become

η1 =
∂ε̃

∂ε1
=

1

ε̃

(
⟨ε1⟩ −

ν2

(1− ν)2
⟨−ε1 − ε2⟩

)
(4.106)

η2 =
∂ε̃

∂ε2
=

1

ε̃

(
⟨ε2⟩ −

ν2

(1− ν)2
⟨−ε1 − ε2⟩

)
. (4.107)

Let us introduce a new variable, called stress angle ζ, such that

tan ζ =
σ̄2
σ̄1

⇒ σ̄1 = σ̄ cos ζ; σ̄2 = σ̄ sin ζ (4.108)

being σ̄ the magnitude of the effective stress, equal to

σ̄ =
√
σ̄21 + σ̄22 =

E

1− ν2

√
(ε1 + νε2)2 + (ε2 + νε1)2 =

=
E

1− ν2

√
(1 + ν2)(ε21 + ε22) + 4νε1ε2.

(4.109)

Previous expressions (4.98)-(4.101) can be simplified as
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σ̄nx = σ̄ cosα cos ζ (4.110)
σ̄ny = σ̄ sinα sin ζ (4.111)
ηnx = η1 cosα (4.112)
ηny = η2 sinα (4.113)

and (4.97) becomes

Ll = Dκσ̄

[
η1 cos ζ cos

2 α η2 cos ζ cosα sinα

η1 sin ζ cosα sinα η2 sin ζ sin
2 α

]
. (4.114)

Introducing (4.95) and (4.114) in (4.90), the acoustic tensor terms become

L11 =
Eu

2(1− ν2)

[
2 cos2 β + (1− ν) sin2 β

]
−Dκσ̄η1 cos ζ cos

2 β =

=
Eu

2(1− ν2)

[
1− ν + (1 + ν)(1− ψη1 cos ζ) cos

2 β
]

(4.115)

L12 =
Eu

2(1− ν2)
[(1 + ν) cosβ sinβ]−Dκσ̄η2 cos ζ cosβ sinβ =

=
Eu

2(1− ν2)
(1 + ν)(1− ψη2 cos ζ) cosβ sinβ (4.116)

L21 =
Eu

2(1− ν2)
[(1 + ν) cosβ sinβ]−Dκσ̄η1 sin ζ cosβ sinβ =

=
Eu

2(1− ν2)
(1 + ν)(1− ψη1 sin ζ) cosβ sinβ (4.117)

L22 =
Eu

2(1− ν2)

[
2 sin2 β + (1− ν) cos2 β

]
−Dκσ̄η2 sin ζ sin

2 β =

=
Eu

2(1− ν2)

[
2− (1 + ν)ψη2 sin ζ − (1 + ν)(1− ψη2 sin ζ) cos

2 β
]

(4.118)

where Eu = (1−D)E is the damaged elastic modulus and

ψ =
2(1− ν)Dκσ̄

Eu
(4.119)

a dimensionless parameter.
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4.4.2 Flutter instability in pure modes

The simplifications done in the previous Section lead to write the flutter insta-
bility condition (4.88) as a second-order inequality that has to be solved with
respect to the band normal inclination α

∆ = f (ν,E, σ̄, ε0, εf , ζ, α) < 0. (4.120)

When analyzing potential flutter instability for a certain type of stress and
for assigned constitutive parameters E, ν, ε0, εf , it is useful to fix the stress
angle ζ and increase the magnitude of the effective stress, σ̄, which plays the
role of a load parameter.

Then, for each fixed ζ, the resulting expression for the discriminant can be
minimized with respect to α in order to check whether the minimum can be
negative. In this case, indeed, the discriminant depends only on this angle,
since other parameters are fixed, so condition ∆ = f (α) < 0 has to be checked.

Analysis are performed by considering the constitutive parameters reported
in Table 4.3. Results will be reported for three particular stress conditions: ζ =
0° (uniaxial tension), ζ = −45° (shear) and ζ = −90° (uniaxial compression),
in plane stress conditions.

Table 4.3: Constitutive parameters adopted for flutter instability analysis in pure
modes and for different σ̄ values.

E [MPa] ν ε0
εf
ε0

100 0.15 0.9 100

Since ζ is a fixed parameter, it is useful to rewrite the principal strain values
for each given σ̄, as follows:

ε1 =
1

E
(σ̄1 − νσ̄2) =

σ̄

E
(cos ζ − ν sin ζ) (4.121)

ε2 =
1

E
(σ̄2 − νσ̄1) =

σ̄

E
(sin ζ − ν cos ζ) (4.122)

ε3 = ν
σ̄

E
(− cos ζ − sin ζ). (4.123)

The equivalent strain can be calculated by relation (4.105) and its deriva-
tives with (4.106)-(4.107). The acoustic tensor components are evaluated using
(4.115)-(4.118) in order to plot ∆ = (L11 − L22)

2 + 4L12L21.
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Figure 4.16 reports the discriminant value with respect to α for each dif-
ferent stress angle ζ and for different values of σ̄ = a · 400MPa, being a a
multiplier. As it is possible to notice, in none of these cases the discriminant
becomes negative: therefore, for such parameters, it results impossible to have
flutter instability.
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Figure 4.16: Discriminant of the acoustic tensor ∆ = 0 considering varying values
of σ̄ = a · 400MPa for different cases: (a) ζ = 0°, (b) ζ = −45°, (c) ζ = −90°.

The same analysis could be done by considering a different equivalent strain
definition. The simplest one is the Rankine-type definition, which deals with the
criterion of maximum principal stress, as expressed in (4.33). The derivative
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of the equivalent strain with respect to strain components (considering that
σ̄3 = 0 for the in-plane stress condition) can be calculated as

∂ε̃

∂εi
=

2∑
j=1

∂ε̃

∂σ̄j
· ∂σ̄j
∂εi

i=1,2, (4.124)

so, remembering expressions (4.102)-(4.103) for the effective stresses, it follows
that:

η1 =
∂ε̃

∂ε1
=

∂ε̃

∂σ̄1
· ∂σ̄1
∂ε1

+
∂ε̃

∂σ̄2
· ∂σ̄2
∂ε1

=
1

E
· E

1− ν2
+ 0 =

1

1− ν2
(4.125)

η2 =
∂ε̃

∂ε2
=

∂ε̃

∂σ̄1
· ∂σ̄1
∂ε2

+
∂ε̃

∂σ̄2
· ∂σ̄2
∂ε2

=
1

E
· Eν

1− ν2
+ 0 =

ν

1− ν2
(4.126)

Table 4.4: Constitutive parameters adopted for flutter instability analysis in pure
modes and for different ν values.

E [MPa] σ̄ [MPa] ε0
εf
ε0

100 500 0.9 100

The analysis are repeated considering the parameters reported in Table 4.4,
fixing this time σ̄ and plotting results for different values of the Poisson ratio
ν = a·0.1. For seek of comparison, the equivalent strain is evaluated considering
Mazars Definition (blue plots on the left of Figures 4.17-4.18-4.19, indicated as
MD) and Rankine Definition (red plots on the right of Figures 4.17-4.18-4.19,
indicated as RD).

As can be observed, the introduction of a different formulation of the equiv-
alent strain still does not make it possible to find an α range for which results
∆ < 0.

4.4.3 Dimensionless formulation

Being interested only in the sign of the discriminant, it is sufficient to evaluate
the dimensionless discriminant by inserting the parameter given in (4.119) and
evaluating ∆̃ as follows

∆̃ =
4(1− ν)2

E2
u

∆ =
4(1− ν)2

E2
u

[
(L22 − L11)

2 + 4L12L21

]
=
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Figure 4.17: ∆ = 0 considering varying values of ν = a · 0.1 for ζ = 0°: MD (left)
and RD (right).

=
1

(1 + ν)2

{[
(1 + ν)(1− ψη2 sin ζ − 2 cos2 β + ψη2 sin ζ cos

2 β + ψη1 cos ζ cos
2 β)

]2
+ 4(1 + ν)2(1− ψη2 cos ζ)(1− ψη1 sin ζ) cos

2 β sin2 β

}
=
[
(1− ψη2 sin ζ − (2− ψη2 sin ζ − ψη1 cos ζ) cos

2 β
]2

+

+4(1− ψη2 cos ζ)(1− ψη1 sin ζ) cos
2 β(1− cos2 β). (4.127)

This can be seen as a quadratic function of variable N1 ≡ cos2 β:

∆̃ = AN2
1 +BN1 + C (4.128)

A = (2− ψη2 sin ζ − ψη1 cos ζ)
2 − 4(1− ψη2 cos ζ)(1− ψη1 sin ζ) =

= 4ψ(η2 − η1)(cos ζ − sin ζ) + ψ2(η2 sin ζ − η1 cos ζ)
2 (4.129)

B = −2(1− ψη2 sin ζ)(2− ψη2 sin ζ − ψη1 cos ζ) + 4(1− ψη2 cos ζ)(1− ψη1 sin ζ) =

= 2ψ(3η2 sin ζ − 2η2 cos ζ + η1 cos ζ − 2η1 sin ζ) +

+ 2ψ2η2 sin ζ(η1 cos ζ − η2 sin ζ) (4.130)

C = (1− ψη2 sin ζ)
2. (4.131)

Figures 4.20-4.21-4.22 show the profiles of ∆̃ with respect to the inclination
α of the band: also in this case, obviously, the dimensionless discriminant is
non-negative for every inclination and for different values of the Poisson ratio,
both using Rankine or Mazars models.
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Figure 4.18: ∆ = 0 considering varying values of ν = a · 0.1 for ζ = −45°: MD (left)
and RD (right).
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Figure 4.19: ∆ = 0 considering varying values of ν = a · 0.1 for ζ = −90°: MD (left)
and RD (right).
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Figure 4.20: ∆̃ = 0 considering varying values of ν = a · 0.1 for ζ = 0°: MD (left)
and RD (right).
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Figure 4.21: ∆̃ = 0 considering varying values of ν = a · 0.1 for ζ = −45°: MD (left)
and RD (right).
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Figure 4.22: ∆̃ = 0 considering varying values of ν = a · 0.1 for ζ = −90°: MD (left)
and RD (right).

In order to satisfy flutter condition ∆̃ < 0 for some 0 < N1 < 1 value, the
quadratic equation ∆̃(N1) = 0 must have at least one real root between 0 and
1. Its roots are real if the discriminant of this equation is positive, that is

M = B2 − 4AC = (4.132)

=
[
2ψ(3η2 sin ζ − 2η2 cos ζ + η1 cos ζ − 2η1 sin ζ) + 2ψ2η2 sin ζ(η1 cos ζ − η2 sin ζ)

]2
− 4(1− ψη2 sin ζ)

2
[
4ψ(η2 − η1)(cos ζ − sin ζ) + ψ2(η2 sin ζ − η1 cos ζ)

2
]

= 4ψ2
[
cos ζ(η1 − 2η2 + η1η2ψ sin ζ)− sin ζ(2η1 − 3η2 + η22ψ sin ζ)

]2
− 4ψ(1− η2ψ sin ζ)2

[
−4(η1 − η2)(cos ζ − sin ζ) + ψ(η1 cos ζ − η2 sin ζ)

2
]
≥ 0.

After some manipulation M can written as follows

M = 16(η1 − η2)ψ(1− η2ψ cos ζ)(cos ζ − sin ζ)(1− η1ψ sin ζ) ≥ 0. (4.133)

With reference to parameters in Table 4.4, but with a σ̄ = 100MPa, Fig-
ures 4.23 report the variable M with respect to the stress angle ζ, considering
different ν = a ·0.1 values, both for the Mazars model and for the Rankine one.

It is reasonable to assume that η1 ≥ η2, since the major principal strain
ε1 should have a greater influence on the equivalent strain than ε2. In our
formulation, moreover, since σ̄1 = σ̄ cos ζ and σ̄2 = σ̄ sin ζ and considering that
σ̄1 > σ̄2, it always results that cos ζ ≥ sin ζ. So, considering that ψ > 0, the
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Figure 4.23: Representation of function M = 0 considering varying values of ν =
a · 0.1 and different stress angles ζ: MD (left) and RD (right).

previous inequality (4.133) corresponds to the following two cases:{
1 ≥ η2ψ cos ζ

1 ≥ η1ψ sin ζ
∨
{
1 ≤ η2ψ cos ζ

1 ≤ η1ψ sin ζ
(4.134)

The previous conditions guarantee that ∆̃ becomes negative for some values
of N1, but not that these values are between 0 and 1. So, in addition to M > 0
the condition that at least one of the roots of the quadratic equation ∆̃(N1) = 0
is inside the interval (0, 1) has to be set up.

This condition can be written as

0 < N±
1 =

−B ±
√
M

2A
< 1. (4.135)

It is known that C ≥ 0, but A and B could have an arbitrary sign. So
different cases have to be distinguished. For example the sign of A depends on
the variable ψ: since η1 > η2 but cos ζ > sin ζ, A could be positive for large ψ
and negative in other cases. Figures 4.24 and 4.25 report the trends of variables
A, B and ψ with respect to the stress angle ζ, by considering different values
for the Poisson’s ratio ν = a · 0.1 and the Mazars definition for the equivalent
strain. σ̄ = 100MPa is set in Figure 4.24 and σ̄ = 500MPa in Figure 4.25.
Figures 4.26-4.27 report same trends, referring instead to the Rankine model.
The constitutive parameters reported in Table 4.3 are used in both cases.
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Figure 4.24: Analysis with σ̄ = 100MPa, ν = a · 0.1 and MD: (a) A, (b) B, (c) ψ.
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Figure 4.25: Analysis with σ̄ = 500MPa, ν = a · 0.1 and MD: (a) A, (b) B, (c) ψ.
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Figure 4.26: Analysis with σ̄ = 100MPa, ν = a · 0.1 and RD: (a) A, (b) B, (c) ψ.
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Figure 4.27: Analysis with σ̄ = 500MPa, ν = a · 0.1 and RD: (a) A, (b) B, (c) ψ.

4.4.3.1 Analysis of different terms of flutter existence inequality

Condition (4.135) can be rewritten as follows, assuming that A > 0:

B < ±
√
B2 − 4AC < 2A+B. (4.136)

By considering terms under the square root, since A > 0 and C ≥ 0,
it follows that

√
B2 − 4AC ≤ |B|. Consequently, the left inequality can be

satisfied only if B < 0, and in this case, it is satisfied for both signs. The right
inequality, instead, depends on the sign of 2A + B. If it is positive, the right
inequality is automatically satisfied for the negative sign before the square root,
while for the positive sign it is satisfied if

B2 − 4AC < (2A+B)2 (4.137)

which leads to the condition A + B + C > 0, which is always satisfied for the
case analyzed.

On the other hand, if the term 2A+B is negative, the right inequality could
be satisfied only for the negative sign before the square root, but this would
require A+ B + C < 0, which is excluded. Concluding, for M > 0 and A > 0
flutter occurs if B < 0 and 2A+B > 0.

Let us assume now that A < 0. Condition (4.135) becomes

2A+B < ±
√
B2 − 4AC < B. (4.138)

In this case, considering the terms under the square root, it can be written
that

√
B2 − 4AC > |B|, and so the right inequality is satisfied only for the
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negative sign before the square root. However, the left inequality, considering
that it can be satisfied only for 2A+B < 0, leads to A(A+B+C) > 0, which
cannot be satisfied with A < 0 since A+B+C > 0. Concluding, when M > 0
and A < 0 flutter cannot occur.

Flutter existence conditions can be summarized as
A > 0

B < 0

M = B2 − 4AC > 0

2A+B > 0

(4.139)

that can be satisfied simultaneously if

− 2A < B < −2
√
AC ⇒ A︸︷︷︸

T1

> −B
2︸︷︷︸

T2

>
√
AC︸ ︷︷ ︸
T3

(4.140)

Considering terms in (4.129)-(4.130)-(4.131) and previous positions, relation
(4.140) can be written as

T1 = ψ2(η2 sin ζ − η1 cos ζ)
2 − 4ψ(η1 − η2)(cos ζ − sin ζ) >

T2 = −ψ(3η2 sin ζ − 2η2 cos ζ + η1 cos ζ − 2η1 sin ζ)− ψ2η2 sin ζ(η1 cos ζ − η2 sin ζ) >

T3 = |1− ψη2 sin ζ|
√
ψ2(η2 sin ζ − η1 cos ζ)2 − 4ψ(η1 − η2)(cos ζ − sin ζ). (4.141)

Left inequality becomes

T1−T2 = ψ2η1 cos ζ(η1 cos ζ−η2 sin ζ)+ψ(2η1 sin ζ−3η1 cos ζ+2η2 cos ζ−η2 sin ζ) > 0.
(4.142)

Considering the cases in which η1 cos ζ > 0 and η1 cos ζ > η2 sin ζ, the
previous condition will always be satisfied for sufficiently large ψ.
This can be proven considering, for example, σ̄ = 100MPa or σ̄ = 500MPa:
only in the second case inequality (4.142) is positive for a small range, both
considering the Mazars definition (Figure 4.28) or the Rankine one (Figure
4.29). The same can be done for the right inequality term T2 − T3, reported in
Figure 4.30 for the MD and in Figure 4.31 for the RD.

A quick example can be reported considering the simplest case: the Rankine
model applied with ν = 0. Considering expressions (4.125)-(4.126), it follows
that η1 = 1 and η2 = 0 so the terms in (4.129)-(4.130)-(4.131) become

A = 4ψ(sin ζ − cos ζ) + ψ2 cos2 ζ; B = 2ψ(cos ζ − 2 sin ζ); C = 1. (4.143)
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Figure 4.28: Analysis on the sign of the first inequality T1 − T2 with ν = a · 0.1 and
MD : (a) σ̄ = 100MPa, (b) σ̄ = 500MPa.
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Figure 4.29: Analysis on the sign of the first inequality T1 − T2 with ν = a · 0.1 and
RD : (a) σ̄ = 100MPa, (b) σ̄ = 500MPa.

With these simplifications, the inequalities (4.140) can be written as{
ψ > 3 cos ζ−2 sin ζ

cos2 ζ

ψ(2 sin ζ − cos ζ) >
√
ψ2 cos2 ζ − 4ψ(cos ζ − sin ζ).

(4.144)
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Figure 4.30: Analysis on the sign of the second inequality T2 − T3 with ν = a · 0.1
and MD : (a) σ̄ = 100MPa, (b) σ̄ = 500MPa.
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Figure 4.31: Analysis on the sign of the second inequality T2 − T3 with ν = a · 0.1
and RD : (a) σ̄ = 100MPa, (b) σ̄ = 500MPa.

In order to simplify the second previous expression by eliminating the square
root, a positive left-hand term has to be considered, which corresponds to
impose 2 sin ζ > cos ζ. In this case, it is obtained that
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ψ > 3 cos ζ−2 sin ζ

cos2 ζ

4(1− ψ sin ζ)(cos ζ − sin ζ) > 0

2 sin ζ > cos ζ

(4.145)

which leads to {
3 cos ζ−2 sin ζ

cos2 ζ
< ψ < 1

sin ζ

ζ > arctan 1
2 .

(4.146)

The angles range ζ > arctan 1
2 ≈ 26.57° represents a case close to the biaxial

tension. Figure 4.32 reports the three different inequality terms of (4.146), both
considering σ̄ = 100MPa or σ̄ = 500MPa: the first term is smaller than the
second one only for ζ < arctan 1

2 . So it can be concluded that flutter could not
occur considering the Rankine model and ν = 0.
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Figure 4.32: Representation of terms of inequality (4.146) with ν = 0 and RD: (a)
σ̄ = 100MPa, (b) σ̄ = 500MPa.
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4.4.3.2 Application to the Rankine model with general Poisson ratio

Let us consider the equivalent strain expression in the Rankine model with
a general value of Poisson ratio. So, considering expressions (4.125)-(4.126),
inequality (4.142) reads

ψ

1− ν2
cos ζ(cos ζ − ν sin ζ) + (2− ν) sin ζ − (3− 2ν) cos ζ > 0 (4.147)

from which
ψ

1− ν2
>

(3− 2ν) cos ζ − (2− ν) sin ζ

cos ζ(cos ζ − ν sin ζ)
(4.148)

while the second inequality T2 − T3 > 0 can be written as

ψ

1− ν2
[(2− 3ν) sin ζ − (1− 2ν) cos ζ]−

(
ψ

1− ν2

)2

ν sin ζ(cos ζ − ν sin ζ) >

>

∣∣∣∣1− ψ

1− ν2
ν sin ζ

∣∣∣∣
√(

ψ

1− ν2

)2

(ν sin ζ − cos ζ)2 − 4
ψ

1− ν2
(1− ν)(cos ζ − sin ζ).

(4.149)

Defining the variable ψ̃ = ψ/(1 − ν2), the previous conditions can be written
as

ψ̃ >
(3− 2ν) cos ζ − (2− ν) sin ζ

cos ζ(cos ζ − ν sin ζ)
(4.150)

and

ψ̃[(2− 3ν) sin ζ − (1− 2ν) cos ζ]− ψ̃2ν sin ζ(cos ζ − ν sin ζ) >

>
∣∣∣1− ψ̃ν sin ζ

∣∣∣√ψ̃2(ν sin ζ − cos ζ)2 − 4ψ̃(1− ν)(cos ζ − sin ζ). (4.151)

Since the second expression is too difficult to analyze, the conditions of the
system (4.139) have to be considered. The second inequality can be rewritten
considering M > 0 and B < 0. Since η1 > η2 and cos ζ > sin ζ, and of course
also ψ > 0, these two conditions can be written as{

(1− η2ψ cos ζ)(1− η1ψ sin ζ) > 0

3η2 sin ζ − 2η2 cos ζ + η1 cos ζ − 2η1 sin ζ + ψη2 sin ζ(η1 cos ζ − η2 sin ζ) < 0

(4.152)
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or considering the variable ψ̃ and expressions (4.125)-(4.126):{
(1− νψ̃ cos ζ)(1− ψ̃ sin ζ) > 0

3ν sin ζ − 2ν cos ζ + cos ζ − 2 sin ζ + ψ̃ν sin ζ(cos ζ − ν sin ζ) < 0.

(4.153)
Since cos ζ − ν sin ζ > 0, depending on the sign of the stress angle ζ, the

second inequality corresponds to two cases

ψ̃ <
(2− 3ν) sin ζ − (1− 2ν) cos ζ

ν sin ζ(cos ζ − ν sin ζ)
if ζ > 0 (4.154)

ψ̃ >
(2− 3ν) sin ζ − (1− 2ν) cos ζ

ν sin ζ(cos ζ − ν sin ζ)
if ζ < 0. (4.155)

In summary, to get flutter, it is looked for ψ̃ that satisfies simultaneously
conditions (4.150), first one in (4.153) and (4.154) or (4.155). Two main cases
arise:

case 1 :



ψ̃ >
(3− 2ν) cos ζ − (2− ν) sin ζ

cos ζ(cos ζ − ν sin ζ)

(1− νψ̃ cos ζ)(1− ψ̃ sin ζ) > 0

ψ̃ >
(2− 3ν) sin ζ − (1− 2ν) cos ζ

ν sin ζ(cos ζ − ν sin ζ)

ζ < 0

(4.156)

case 2 :



ψ̃ >
(3− 2ν) cos ζ − (2− ν) sin ζ

cos ζ(cos ζ − ν sin ζ)

(1− νψ̃ cos ζ)(1− ψ̃ sin ζ) > 0

ψ̃ <
(2− 3ν) sin ζ − (1− 2ν) cos ζ

ν sin ζ(cos ζ − ν sin ζ)

ζ > 0.

(4.157)

case 1: ζ < 0
Only the range −90° < ζ < 0° is considered since biaxial compression is

excluded because a state in which damage propagates (for the Rankine crite-
rion) cannot never be got. Under this condition it results that cos ζ > 0 and
sin ζ < 0. The second inequality in (4.156) is rewritten as

ψ̃2(ν sin ζ cos ζ) + ψ̃(− sin ζ − ν cos ζ) + 1 > 0 (4.158)
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which leads to the following simplified version of (4.156):

case 1 :



ψ̃ > f1 =
(3− 2ν) cos ζ − (2− ν) sin ζ

cos ζ(cos ζ − ν sin ζ)

ψ̃ > f2 =
(2− 3ν) sin ζ − (1− 2ν) cos ζ

ν sin ζ(cos ζ − ν sin ζ)

ψ̃ < f3 =
1

ν cos ζ
.

(4.159)

case 2: ζ > 0
In this case, that represents a stress state close to biaxial tension, it results
cos ζ > 0 and sin ζ > 0. It follows

case 2.1 :


(3− 2ν) cos ζ − (2− ν) sin ζ

cos ζ(cos ζ − ν sin ζ)
< ψ̃ <

(2− 3ν) sin ζ − (1− 2ν) cos ζ

ν sin ζ(cos ζ − ν sin ζ)

ψ̃ < f4 = min

(
1

ν cos ζ
,

1

sin ζ

)
(4.160)

case 2.2 :


(3− 2ν) cos ζ − (2− ν) sin ζ

cos ζ(cos ζ − ν sin ζ)
< ψ̃ <

(2− 3ν) sin ζ − (1− 2ν) cos ζ

ν sin ζ(cos ζ − ν sin ζ)

ψ̃ > f5 = max

(
1

ν cos ζ
,

1

sin ζ

)
.

(4.161)
Figure 4.33 represents inequalities terms of case 1 (4.159) considering two

extreme cases with ν = 0.1 and ν = 0.5, respectively. Constitutive parameters
are reported in Table 4.4. It is clear that ψ̃ is never above f1 in both cases.

Similarly, Figure 4.34 represents inequalities terms of case 2.1 (4.160) as
well as Figure 4.35 represents inequalities terms of case 2.2 (4.161), considering
ν = 0.1 and ν = 0.5, respectively. They confirm that there is no range where
all the conditions are contemporary respected.

These results confirm that there is no range of ζ for any nonzero value of
Poisson ratio where the conditions on ψ̃ are respected. It is possible to math-
ematically confirm that the flutter instability cannot occur in all the analyzed
cases. Finally, it can be concluded that no flutter instability can appear with
the Rankine model for any 0 ≤ ν ≤ 0.5.

In conclusion, for the given class of damage models (isotropic damage with
one scalar damage variable driven by equivalent strain), flutter cannot occur.
The convexity of the elastic domain implies that η1 ≥ η2 ≥ η3. In 2D, the
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Figure 4.33: Terms of inequalities in case 1 (4.159): (a) ν = 0.1, (b) ν = 0.5.
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Figure 4.34: Terms of inequalities in case 2.1 (4.160): (a) ν = 0.1, (b) ν = 0.5.

analogous statement that η1 ≥ η2 whenever σ̄1 ≥ σ̄2 indeed follows from con-
vexity based on the graphical representation in the principal strain plane, since
the tensors σ and η have the same principal directions and the principal val-
ues are arranged in the same way. For isotropic models, condition σ̄1 ≥ σ̄2
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Figure 4.35: Terms of inequalities in case 2.2 (4.161): (a) ν = 0.1, (b) ν = 0.5.

is equivalent to ε1 ≥ ε2. If the elastic domain in the principal strain plane is
convex, the normal to its boundary (i.e., the vector with components η1 and
η2) is characterized by an angle (measured from the ε1 axis) that must mono-
tonically increase from −135◦ to 45◦ by travelling along the boundary from
the point corresponding to biaxial compression to the point corresponding to
biaxial tension, and in this range it results that η1 ≥ η2.

Probably, our initial assumption on which the formulation is based is in-
correct: the only way to satisfy the flutter condition in 2D would be to use a
model for which η2 > η1, i.e., the equivalent strain that drives damage would
depend more strongly on the minor principal strain than on the major one.

In order to show possible flutter instabilities, it is convenient to look at
an anisotropic model, such as Desmorat’s model [34], with an initially elastic
material with damage described by a tensor. Anisotropy can be either induced
by damage or already present due to the material micro-structure. The analysis
of flutter instability could be extended to more general cases contemplating
anisotropic constitutive models.
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Chapter 5

Finite element with embedded
interphase

This Chapter is devoted to the implementation of a finite element with an
embedded interphase element. The IPH will be here presented, by initially
highlighting its improvements with respect to the ZTI model. Then the ele-
ment with an embedded narrow band will be implemented in the framework
of the A-FEM technique. Summarily, the proposed strategy can be briefly de-
scribed for one localized element as follows: a general finite element that has
reached its elastic limit is split into three elements, two sub-elements with an
interposed IPH, whose behaviour is nonlinear and governed by the isotropic
damage model presented in Chapter 4, and then re-assembled by condensing
internal additional Dofs at the equilibrium level.

5.1 Modeling strategies of contact elements

Heterogeneous materials, such as masonry structures, concrete or composite
materials, present a mechanical response strictly related to the static and kine-
matic phenomena occurring in each constituent and at their joints. Their me-
chanical behaviour is also strongly related to the effective position of hetero-
geneities within the overall structure. The most important inelastic mechanisms
occur at the so-called mesoscopic scale, where each constituent is analysed sep-
arately. However, overall behaviour remains governed by the geometric and
global morphological configuration, concerning the macroscopic scale [78].

In the mesoscopic approach, the discontinuity is analyzed as a potential

123
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Bulk material
Joints

Interface zones
a) b)

Homogeneous continuum

Figure 5.1: Differences between mesoscopic approach a) and macroscopic approach
b).

fracture plane and this allows to study separately the combined action of the
bulk material, the thin joint and the interface zones by which they transfer
quantities to each other. Meso-modeling is preferable if the local behaviour of
the structure has to be analyzed in detail, even if it is computationally more
expensive than macro-modeling. In the macroscopic approach, instead, the ma-
terial is idealized as a homogeneous continuum, without distinction between the
different components: in this way, computational effort is significantly reduced
with respect to the micro-modeling (Figure 5.1).

In the classic mesoscopic approach solid blocks are separately modelled as
classic 2D or 3D continuum elements while the joints are simulated through me-
chanical devices (contact elements) able to reproduce the inelastic phenomena
occurring in the weakest areas of the structure, such as opening-closing, sliding
or dilatancy effects. Contact elements are classified in the following categories:

• Link elements between two opposite nodes;

• Thin layer elements, with small but finite thickness;

• ZTI or Interphase elements, in which the displacements discontinuities
between the upper and the lower surfaces represent the main kinematic
variables.

Next sub-Sections will deal with the analysis of the latter mentioned cate-
gory.
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Figure 5.2: Goodman’s interface element.

5.1.1 ZTI models

The first FEM application using ZTI elements appears in the last sixties and
it is attributed to GOODMAN [44], who analysed the mechanical response of rock
masses. The 4-node element initially presented two pairs of nodes placed at the
same geometric location, from which the name of Zero-Thickness Interface (Fig-
ure 5.2). Introducing the matrix N containing the standard shape functions,
the vector of relative displacements δ is related to the vector of absolute nodal
displacements ue =

[
u1t u1n u2t u2n u3t u3n u4t u4n

]T as follows

δ =

[
δt
δn

]
= Nue (5.1)

where δt and δn represent the tangential and normal relative displacements at
the generic node of the ZTI and N is

N =

[
−N1 0 −N2 0 N2 0 N1 0
0 −N1 0 −N2 0 N2 0 N1

]
; (5.2)

with N1,2 =
1

2
∓ t

L
. (5.3)

The tangential and normal stresses, τ and σn respectively, are calculated
from the relative displacements through the following constitutive relation[

τ
σn

]
=

[
Et 0
0 En

]
δ = ENue (5.4)
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where Et and En are the tangential and normal stiffness per unit length. By
integrating this contribution along the t direction and considering the lenght
L, the element stiffness matrix Ke is obtained

Ke =

∫ −L/2

−L/2
NTENdt =

∫ 1

−1
NTEN |J |dξ (5.5)

where J is the Jacobian transformation matrix. The stiffness matrix needs to
be rotated from the local reference system (t, n) to the global one (x, y) using
the rotation matrix R

K = RTKeR (5.6)

First numerical applications showed spurious oscillations of the stress field,
in particular when the interface is stiffer than the remaining part of the body.
The Goodman’s model, although exhibiting robust response normal to the in-
terface, has basic kinematic deficiencies attributed to the form of the element
equations, which appear as tangential force oscillations. This deficiency was
attributed to the uncoupled form of the element equations.

SCHELLEKENS et al. [107] related also this bad performance to the numerical
integration schemes used to calculate the stiffness matrix in (5.6). The element
performs badly with the Gauss quadrature integration scheme. The impact of
Gauss, Newton-Cotes, Lobatto and lumped integration quadrature on the stress
prediction in interfaces was investigated. The nodal or Lobatto quadrature has
the advantage that the constraint matrix is decoupled and becomes diagonal,
since the contributions from the different shape functions do not interact. They
concluded, however, that inaccurate results occur when the Newton-Cotes and
Lobatto integration schemes are used, due to an incorrect calculation of the
contribution det(J) in each integration point. In this case, in fact, the ZTI
element degenerates in discrete springs located at the nodes of the element.

This model was improved by the ZTI element proposed by HERMANN [49].
According to this approach, the mechanical behaviour of the interface is mod-
eled through two springs, one normal and one tangential at the interface, at
each pair of coupling nodes. The insertion of these springs could solve some
deficiencies of the Goodman’s model: Hermann’s approach in fact defines three
distinct response regimes to simulate the non-slip, the slip, and the separation
modes by changing the springs’ stiffness.

The same bad performance was analysed by KALIAKIN and LI [65]: the
behaviour of two in-series linear zero-thickness interface elements was studied
and some fundamental behavioural deficiencies noted.
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Figure 5.3: Kaliakin’s interface model.

For this purpose, an improved six-node element was proposed, as the result
of the assembly of two aligned 4-node interface elements (Figure 5.3). Nodes
1 − 4, 2 − 3 and 5 − 6 are coincident since the element has no thickness. For
each element the stiffness matrix is given by equation (5.5), then assembled into
the global stiffness matrix. Finally by using the static condensation technique
the DoFs associated with nodes 5 and 6 are condensed out, so the resulting
equation assumes the classic form

Keue = f e (5.7)

with f e =
[
f1t f1n f2t f2n f3t f3n f4t f4n

]T .

Even if the structure of the stiffness matrices obtained with the Goodman’s
approach and the Kaliakin’s one is similar, the numerical coefficients and more
importantly the signs of certain off-diagonal terms differ. This leads to an im-
proved ZTI element which eliminates the kinematic inconsistencies and spurious
traction oscillations recorded in the previous models.

The model proposed by GIAMBANCO et al. [42] simulates the third body
Ω3 using an interface, with a uniform thickness h, in contact by two physical
surfaces Σ1 and Σ2 with the two bodies Ω1 and Ω2. The static and kinematic
quantities are referred to a Cartesian coordinate system (x1, x2, x3), with x1, x2
lying in the middle plane of Ω3 and x3 coinciding with the normal direction to
the interface (Figure 5.4).

Joints are modelled following these assumptions:

• Continuity of the tractions at the physical surfaces:
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Figure 5.4: Interface layer Ω3 of thickness h between bodies Ω1 and Ω2, connected
by physical surfaces Σ1 and Σ2.

[[σ]] = 0 (5.8)

where [[∗]] represents the jump of the enclosed quantity.

• The strain components are uniform along the thickness and are calculated
from the associated displacements discontinuities:

ε =
[[u]]

h
. (5.9)

The constitutive laws are expressed in terms of contact tractions and conju-
gate generalized joint strains: contact stresses and displacement discontinuities
represent the primary static and kinematic variables. The constitutive laws at
the integration points read:

σ = Eε =
1

h
E[[u]] = K[[u]] with K =

1

h

G1 0 0
0 G2 0
0 0 E

 (5.10)

where G1, G2, E are the tangential and normal elastic moduli.
Interface elements are characterized by an uncoupled form of the equilib-

rium equations, thanks to the diagonal form of the stiffness matrix. The usual
assumption that the response is governed by contact stress components only
may require an advancement when the effect of the internal stresses must be
included to catch particular nonlinear behaviours. The advancement of ZTI
elements is represented by IPH elements, as discussed in the next sub-Section.
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5.1.2 The interphase model

The interphase model reproduces a thin material layer Ωb with thickness wb,
which crosses a solid body Ω defined in the Euclidean space R3, referred to
the coordinate system (ex, ey, ez) (Figure 5.5). It is separated from Ω+ and
Ω− by two weak discontinuity surfaces Σ+, Σ− where the displacement field
is continuous while the strain field is discontinuous. The body is subjected to
the volume forces f , while along the boundary two parts could be identified,
Γu and Γt, where respectively the kinematic constraints u = u and tractions t
are applied. It is assumed that the band thickness is small if compared with
the characteristic dimensions of the body and is modelled using an IPH model.
As typical in IPH or ZTI models, it is also assumed that the band can be
considered locally planar, so that any mechanical quantity related to a band
curvature is neglected.
In order to study the static and kinematic conditions of the interphase element
a local Cartesian coordinate system (xb, yb, zb) is considered, with xb, yb axes
lying within the middle plane Σb of the joint and the zb axis identified by the
unit vector normal to the band and directed towards the body Ω+. The thin
layer is subjected to the external tractions t on the lateral surface Γb (Γb is
synonymous with Γt, with different subscript only to indicate reference to the
band) and to the contact traction q+ and q− on the physical surfaces Σ+ and
Σ−, respectively.

5.1.2.1 Geometry and Kinematics

The geometric and kinematic assumptions for the localization band are:

• the localization band is planar;

• the fibers along zb are maintained rectilinear during the deformation pro-
cess, so the displacement field ub is derived from the displacements u+

b

and u−
b of Σ+ and Σ−:

ub (xb, yb, zb) =

(
1

2
+
zb
wb

)
u+
b (xb, yb) +

(
1

2
− zb
wb

)
u−
b (xb, yb) ; (5.11)

• the band thickness wb is small with respect to the characteristic dimen-
sions of the remaining part of the body;
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Figure 5.5: Schematic representation of a continuous body with a localization band
Ωb.

• the strain state is uniform in the band thickness and its value is obviously
equal to the average value along the same direction.
By considering the thin layer as collapsed in its middle plane Σb, the
strain field could be calculated as follows:

εb =
1

wb

∫ wb
2

−wb
2

∇sub dzb =
1

wb
([[ub]]⊗ nb)

s +∇sûb (5.12)

where (· ⊗ ·)s is the symmetric part of the resulting tensor, nb is the unit vector
normal to the middle surface of the localization band, ∇s is the symmetric part
of the gradient operator and

[[ub]] = u+
b − u−

b , ûb =

(
u+
b + u−

b

2

)
. (5.13)

Let us note that the joint curvatures generated by the displacement field
(5.11) and the flexural effects are neglected.
Equation (5.12) can be given in its explicit form in terms of components as:

εxb
=

1

wb

∫ wb
2

−wb
2

(
∂uxb

∂xb

)
∂zb =

1

2

(∂u+xb

∂xb
+
∂u−xb

∂xb

)
(5.14)
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εyb =
1

wb

∫ wb
2

−wb
2

(
∂uyb
∂yb

)
∂zb =

1

2

(∂u+yb
∂yb

+
∂u−yb
∂yb

)
(5.15)

εzb =
1

wb

∫ wb
2

−wb
2

(
∂uzb
∂zb

)
∂zb =

[[uzb ]]

wb
(5.16)

εxbyb =
1

wb

∫ wb
2

−wb
2

[
1

2

(
∂uxb

∂yb
+
∂uyb
∂xb

)]
∂zb =

1

4

(
γ+xbyb

+ γ−xbyb

)
(5.17)

εzbxb
=

1

wb

∫ wb
2

−wb
2

[
1

2

(
∂uxb

∂zb
+
∂uzb
∂xb

)]
∂zb =

[[uxb
]]

wb
+

1

2

(∂u+zb
∂xb

+
∂u−zb
∂xb

)
(5.18)

εzbyb =
1

wb

∫ wb
2

−wb
2

[
1

2

(
∂uyb
∂zb

+
∂uzb
∂yb

)]
∂zb =

[[uyb ]]

wb
+

1

2

(∂u+zb
∂yb

+
∂u−zb
∂yb

)
.

(5.19)

In equation (5.12) it is clear how the strain field can be decomposed into
two parts: the first one is typical of an interface strain field and is related to
contact strain components only (the boxed terms ∗ in the previous explicit
relations). The second term takes into account additional contributions due to
the appearance of internal strains.

5.1.2.2 Forces and equilibrium

The Principle of Virtual Displacements (PVD) asserts that the external work
produced by the contact tractions and the external loads must be equivalent to
the internal work developed in the localization band, thus∫

Σ+

δu+
b · q+ dΣ+

∫
Σ−

δu−
b · q− dΣ+

∫
Γb

δub · t dΓ =

∫
Ωb

δεb : σb dΩ. (5.20)

The virtual displacements, preceded by the symbol δ, are assigned while
the virtual strains must satisfy the Eq. (5.12). Since the strain state is uniform
along nb in a consistent manner also the stress state can be considered uniform
along the same direction. Therefore the internal work assumes the following
expression:∫

Ωb

δεb : σb dΩ =

∫
Σb

[(δ[[ub]]⊗ nb)
s + wb∇sδûb] : σb dΣ. (5.21)
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Integrating by parts the second term in the right-hand integral, we can
write:∫

Σb

wb∇sδûb : σb dΣ =

∫
Cb

wbδûb · (σb ·mb)dC −
∫
Σb

wb δûb · divσbdΣ (5.22)

where Cb is the contour of the localization band middle surface (Cb = Σb ∩ Γb)
and mb is the vector normal to the contour line.
Substituting, expression (5.21) reads as∫
Ωb

δεb : σb dΩ =

∫
Σb

[(δ[[ub]]⊗ nb)
s : σb − wb δûb · divσb] dΣ+wb

∫
Cb

δûb·(σb ·mb) dC.

(5.23)
Substituting the integral (5.23) in the PVD, assuming that Σ+ ≡ Σ− ≡ Σb,

using positions (5.13) and considering that the surface forces t on Γb are uniform
along with the thickness of the thin layer, it follows∫

Σb

δu+
b ·
(
q+ +

wb

2
divσb − σb · nb

)
dΣ+

∫
Σb

δu−
b ·
(
q− +

wb

2
divσb + σb · nb

)
dΣ+∫

Cb

wbδûb · (t− σb ·mb) dC = 0, (5.24)

where the following equivalences have been considered: dΓb = wbdCb;(
δu

(−,+)
b ⊗ nb

)s
: σb = δu

(−,+)
b · (σb · nb). As the equality (5.24) must be

valid for any virtual displacements δu+ and δu− and since Cauchy’s Theorem
permits to write q+ = σ+ · nb and q− = −σ− · nb, the equilibrium equations
for the interphase element can be obtained [41]-[43]:

wb divσb + [[σb]] · nb = 0 onΣb (5.25)
(σb − σ̂b) · nb = 0 onΣb (5.26)

σb ·mb = t inCb (5.27)

where

[[σb]] = σ+
b − σ−

b , σ̂b =
σ+
b + σ−

b

2
. (5.28)

Eqs. (5.25) and (5.26) can be regarded as internal and external equilib-
rium equations of the interphase element and (5.27) represents the equilibrium
boundary conditions.
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In the circumstance that the same constitutive behaviour of the bulk material
is used for the IPH, wb represents the only additional parameter to furnish in
order to solve Equation (5.25). It is important to remark that wb is a parameter
that needs to be specified in any model where the band is assumed collapsed
in its middle plane, as it happens for IPH or ZTI models.

5.1.3 Differences between the IPH and the ZTI

The IPH is an enhancement of the ZTI from different points of view:

• enrichment of the stress and strain fields: not only the contact compo-
nents but also the internal ones. This makes the IPH closer to a solid
element than the ZTI;

• absence of requirement of specific adhesive contact constitutive equations
since the same constitutive relations of the bulk material can be consid-
ered;

• the adoption of the IPH and the consequent distinction between contact
tractions and internal stresses allows to introduce different failure condi-
tions for the physical interfaces and the bulk material;

• more realistic response and the possibility to capture some phenomena,
such as the squeezing effect, that the ZTI model can’t analyze.

Let us consider, as an illustrative example, the so-called sandwich model related
to the uniaxial compression test on a masonry volume [43, 123]. Generally,
when a stack consisting of alternating layers of stiffer and more flexible layers
is subjected to uniaxial compression, elements will deform perpendicularly to
the loading direction. By considering two bricks interfaced by a mortar joint,
two different cases can be distinguished.

The first case is when mortar is stiffer than the brick (Em > Eb): the mortar
responds with a confinement action on the two blocks, and causes the arising
of tangential stresses that imply a tensile normal action on the mortar and a
compression one on the blocks (Figure 5.7-a). The second case is when blocks
are stiffer than the mortar (Eb > Em): the stiffer material prevents the softer
one from expanding laterally, so the mortar is literally "squeezed" between
the blocks and subjected to a compression normal stress. However, the tensile
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action on the blocks may lead to failure consisting on a vertical crack (Figure
5.7-b).

wb x

z

y

τx
(1)

τx
(2)

σx σx+ dσx

dx

dx

dx

Figure 5.6: Uniaxial tension for the mortar joint.

Let us now consider an interface element, with width wb, thickness t and
referred to the (x, y, z) coordinate system, subjected to uniaxial tension along
the axial direction x, by imposing σz = 0. Since in the ZTI model this stress
component σx is not present (Figure 5.6) therefore, in order to respect the
equilibrium, the jump in the tangential tractions t must be zero, as explained
in the following passages:(

σx +
dσx
dx

dx

)
· wb · t+ (τ (1)x + τ (2)x )dx · t− σx · wb · t = 0 (5.29)

dσx
dx

· wb + (τ (1)x + τ (2)x ) = 0 (5.30)

wb

2

dσx
dx

+ τ̂x = 0 (5.31)

σx = 0 in ZTI → τ̂x = 0 (5.32)

It can be concluded that the ZTI model can provide only the stress in the
normal direction, so the enhancement of the IPH is necessary to include also
internal stress and strain components.



i
i

“output” — 2022/12/5 — 16:12 — page 135 — #136 i
i

i
i

i
i

5.1 Modeling strategies of contact elements 135

q

σ
τ

Brick
(a)

q

σ
τ

Mortar
(b)

Figure 5.7: Uniaxial compression test on masonry volume: (a) mortar stiffer than
the blocks (Em > Eb); (b) blocks stiffer than the mortar (Eb > Em).
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5.2 Numerical procedure at the finite element level

In order to numerically simulate the collapse of structures where cracks propa-
gate or strains concentrate, the IPH is implemented in the framework of A-FEM
[69, 71, 84] strategy in presence of an IDM constitutive behaviour. The IPH el-
ement is used to substitute those narrow bands where strains concentrate. The
fundamental relations are here furnished with reference to a quadrilateral 2D
element and an efficient procedure that exploits the A-FEM idea is presented.
The extension to mesh constituted by triangular 2D elements or generic 3D
elements is straightforward since it involves the same fundamental relations.
It is important to highlight that in the present formulation the crack can be
only straight within each element. Variations of the crack direction and crack
branching inside the element will be included in future developments.
Stress and strain states are written using Voigt’s notation.

A single finite element is split in 3 parts (Figure 5.8): two sub-elements
Ω+ and Ω− and an IPH Σb. In the following two sub-Sections the equilibrium
equations for the sub-elements and the IPH are derived, respectively. In the
third sub-Section the condensation procedure typical of A-FEM strategy is
illustrated.

Let us consider a 4-node finite element crossed by a localization band which
identifies the two parts Ω+ and Ω− (Figure 5.8-a). The quantities referred to
the localization band will be identified with the subscript b.

In a 2D problem, the band is represented by the line Σb passing through
the point (ρbx , ρbz) and identified with its unit vector nb, pointing to the sub-
domain Ω+. According to the A-FEM procedure, four nodes (m, n, r, s) are
added, providing the DoFs Ub of the interphase. U+ and U−, instead, collect
the Dofs of Ω+ and Ω− sub-elements, respectively.

A single quadrilateral element could be divided into two quadrilateral sub-
elements (Figure 5.8-a) or a triangular and a pentagonal sub-elements (Figure
5.9-a). Vectors are here explicitly furnished for the first case only, but funda-
mental equations have a general character and are valid for any sub-element
shape.

5.2.1 Sub-element equilibrium equations

As regards the two sub-elements, the isoparametric formulation of a quadrilat-
eral finite element is considered. The displacement field on each domain u(−,+)

and the associated strain field are obtained by mapping the nodal displacement
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Figure 5.8: Four-node finite element crossed by the localization band (a) and its
separation into two quadrangular sub-elements Ω+ and Ω− and the interphase element
identified by its middle plane Σb (b).

vectors U(−,+) as follows

u(−,+) = NU(−,+), ε(−,+) = CN U(−,+) = BU(−,+) (5.33)

where N is the shape functions matrix and C is the kinematic compatibility
matrix for plane problems.

With reference to Figure 5.8-b, nodal displacement vectors for the two sub-
elements are:

U− =


Ui

Uj

Un

Um

 , U+ =


Uk

Ul

Us

Ur

 . (5.34)

The PVD written for Ω+ and Ω− reads

δU(−,+)T

(∫
Ω(−,+)

NT f dΩ+

∫
Γ(−,+)

NT t(−,+)dΓ +

∫
Σ(−,+)

NTq(−,+)dΣ−∫
Ω(−,+)

BTσ(−,+)dΩ
)

= 0. (5.35)
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Assuming an isotropic damaging behaviour of the elements material, solving
the integrals by using the Gauss quadrature integration and considering that
the equality (5.35) has to be true for any virtual nodal displacement vector,
the equilibrium equations of the two sub-domains are obtained:

F(−,+)
e + F

(−,+)
i = K(−,+)U(−,+), (5.36)

where

F(−,+)
e =

∫
Ω(−,+)

NT f dΩ+

∫
Γ(−,+)

NT t(−,+)dΓ (5.37)

F
(−,+)
i =

∫
Σ(−,+)

NTq(−,+)dΣ (5.38)

K(−,+) =

∫
Ω(−,+)

BTEtB dΩ. (5.39)

Fe represents the nodal force array originated by external forces and trac-
tions. Fi contains the nodal internal forces originated by tractions due to the
discontinuity. K is the element tangent stiffness matrix, dependent on the
elastic tangent operator Et, defined as (4.43) in sub-Section 4.2.1.

As stated before, previous formulation refers to the case in which the band
divides the element into two quadrilateral elements. However, it also holds a
pentagonal and a triangular sub-elements form. The pentagonal sub-element is
modeled as a composition of three triangles (Figure 5.9-b). In this case, and for
the triangular sub-element as well, the shape functions are those for triangular
elements only. The stiffness matrix and the force vector of the pentagon are
obtained assembling the correspondent quantities of the three triangles, which
are identified linking the internal nodes m and n with the external node j, as
in Figure 5.9-b.

The subdivisions showed in Figures 5.8-5.9 hold for a 4-node quadrilateral
element with bi-linear shape functions, that are the easiest numerical assump-
tions used as a first attempt in this work. In presence of higher-order shape
functions, in quadrilateral elements with more than 4 nodes, Ω+ and Ω− would
be both subdivided in triangles, while for the interphase element six nodes can
be used, instead of four.

5.2.2 Interphase equilibrium equation

As regards the interphase element, a 2D element in the rotated (xb, zb) plane
under the hypothesis of plane stress condition is considered (Figure 5.10-a). Let
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Figure 5.9: Four-node finite element crossed by the localization band (a) and its
separation into a pentagonal and a triangular sub-elements, called Ω− and Ω+, and
the interphase element identified by its middle plane Σb (b).

us refer to the displacement field relation (5.11), presented in sub-Section 5.1.2.
The interphase element constitutive equation for the specific 2D case reads as
follows:

σb = Etεb where εb =

 εxb

εzb
εxbzb

 , σb =

 σxb

σzb
τxbzb

 . (5.40)

Remembering expressions (5.14-5.19) we can summarize

εxb
=

∂

∂xb
ûxb

, εzb =
[[uzb ]]

wb
, εxbzb =

[[uxb
]]

wb
+

∂

∂xb
ûzb . (5.41)

An isotropic damage constitutive model is considered for the interphase
element. Et is the elastic tangent operator expressed in (4.43). Note that the
same expression of the elastic tangent operator of the bulk material is adopted.
As explained in paragraph 4.2.1, this matrix is evaluated with a linearization
procedure.

The isoparametric formulation is based on a 4-node element in the refer-
ence system (ξ, η) of Figure 5.10-b. The interphase nodal displacements are
calculated as follows
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Figure 5.10: The schematic representation of the mechanical behaviour of the inter-
phase element: (a) the interphase element referred to (xb, zb), rotated respect to the
reference system (x, z); (b) The isoparametric interphase element.

Ub =

[
U

−
b

U
+
b

]
where U

−
b =

[
Um

Un

]
; U

+
b =

[
Ur

Us

]
. (5.42)

The displacement fields of the lower and upper physical interfaces Σ(−,+)

are derived using a linear interpolation of the nodal displacements

u−
b = N−

b U
−
b , u+

b = N+
b U

+
b . (5.43)

The symbol (∗) means that the relative quantity is referred to the interphase
coordinate system. Shape functions matrices are expressed as

N−
b =

[
N1 0 N2 0
0 N1 0 N2

]
N+

b =

[
N2 0 N1 0
0 N2 0 N1

]
(5.44)

where

N1 =
1

2
(1− ξ) , N2 =

1

2
(1 + ξ) , with ξ ∈ [−1, 1]. (5.45)

By writing relations (5.41) in a compact form and using the symbol (∗), it
follows



i
i

“output” — 2022/12/5 — 16:12 — page 141 — #142 i
i

i
i

i
i

5.2 Numerical procedure at the finite element level 141

εb =
1

wb
Cb1

(
ū+
b − ū−

b

)
+

1

2
Cb2

(
ū+
b + ū−

b

)
(5.46)

where

Cb1 =

0 0
0 1
1 0

 ; Cb2 =

 ∂
∂xb

0

0 0

0 ∂
∂xb

 . (5.47)

Introducing the displacement expressions (5.43) into (5.46) we obtain

εb = B+
b U

+
b +B−

b U
−
b (5.48)

with

B+
b =

(
1

wb
Cb1 +

1

2
Cb2

)
N+

b ; B−
b = −

(
1

wb
Cb1 −

1

2
Cb2

)
N−

b . (5.49)

By re-writing the PVD problem for the interphase in equation (5.20), con-
sidering the kinematic equations (5.43) and (5.48) and neglecting the external
traction applied on the lateral surface (t = 0 in Γb), it follows:

δU
+T
b

∫
Σ

(
wbB

+T
b EtB

+
b U

+
b + wbB

+T
b EtB

−
b U

−
b −N+T

b q+
)

dΣ+

δU
−T
b

∫
Σ

(
wbB

−T
b EtB

+
b U

+
b + wbB

−T
b EtB

−
b U

−
b −N−T

b q−
)

dΣ = 0 (5.50)

which, being satisfied for any value of virtual displacements, gives

K
++
b U

+
b +K

+−
b U

−
b = F

+
b (5.51)

K
−+
b U

+
b +K

−−
b U

−
b = F

−
b (5.52)

where

K
++
b =

∫
Σ
wbB

+T
b EtB

+
b dΣ K

+−
b =

∫
Σ
wbB

+T
b EtB

−
b dΣ (5.53)

K
−+
b =

∫
Σ
wbB

−T
b EtB

+
b dΣ K

−−
b =

∫
Σ
wbB

−T
b EtB

−
b dΣ. (5.54)

5.2.2.1 Numerical performance of the interphase element

As for interface elements, unfortunately even interphase elements showed some
numerical problems associated with spurious oscillations in the stress profiles.
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Table 5.1: Material parameters in the uniaxial compression test of masonry specimen:
case a) Eb = 10Em; b) Em = 30Eb.

Case Eb [MPa] νb Em [MPa] νm

a) 15000 0.30 1500 0.35
b) 500 0.30 15000 0.35
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Figure 5.11: Geometry and boundary conditions of the uniaxial compression test of
masonry specimen. Dimensions are given in mm.

They are related to the integration scheme chosen to derive the stiffness matrix.
In order to analyze the numerical performance of the interphase element a patch
test was run, regarding the linear elastic response of two masonry blocks joined
by a mortar thin layer subjected to uniaxial compression, following what was
done in [43]. The boundary and loading conditions are illustrated in Figure 5.11.
The model thickness is equal to 10 mm and the stress state was considered as
plane. Two cases were analyzed: the first one with a block stiffer than the
mortar (constitutive parameters in Table 5.1-case a); the second one with the
mortar stiffer than the block (constitutive parameters in Table 5.1-case b). The
numerical convergence was tested by using a number of interphase elements
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varying from 10 to 80 to model the mortar joint. The interphase stiffness
matrix was integrated by using the conventional Gauss quadrature scheme.
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Figure 5.12: Case a): Eb = 10Em - standard Gauss quadrature. Internal stresses
σxb

(a), σzb (b) and contact tractions τxbzb (c) trends with respect to the x position
in the IPH element.

Numerical results for the case a) are reported in Figure 5.12. It is clear how,
respect to the ZTI elements, the normal internal stress σxb

and the tangential
contact traction τxbzb appear. Profiles are also more defined as the number
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of elements increases. Accordingly to what said before, the mortar joint is
subjected to a compressive normal stress.

Numerical results for the case b) are reported in Figure 5.13- a, b and c. As
expected, the mortar joint in this case is subjected to a tensile normal stress.
Bad results are obtained for the tangential traction, which is affected by an
unacceptable oscillation of the profile, not disappearing when the number of
elements increases. Similar spurious oscillations of the stress field have been
also recorded by different authors in the ZTI elements, when the layer is stiffer
than the bulk material. This is the consequence of the so-called shear locking,
consisting on an overestimation of the shear stiffness when the aspect ratio
of the element tends to zero. This instability has been avoided by using the
Selective Reduced Integration (SRI): this procedure essentially consists in using
one Gauss point for the shear part of the energy and a full integration for the
remaining normal part. Oscillations disappear, as visible in Figure 5.13-d.

5.2.3 Assembling procedure

In order to assemble sub-elements and interphase element we need to refer
the kinematic and static quantities to the global reference system. Since the
orientation of the band is individuated by the unit vector n =

[
nx nz

]T , we
can proceed with a reference system rotation in a classical way:

U
(−,+)
b = RU

(−,+)
b F

(−,+)
b = RF

(−,+)
b (5.55)

where the rotation matrix R reads as

R =


nz −nx 0 0
nx nz 0 0
0 0 nz −nx
0 0 nx nz

 (5.56)

with nx = − sinα and nz = cosα (Figure 5.14). By replacing equation (5.55)
in equations (5.51)-(5.52) the equilibrium equations of the interphase element
written in the global reference system (x, z) are obtained. Nodal displacement
vectors U(−,+) are partitioned into external (e) and internal (i) components:

U−
e =

[
Ui

Uj

]
U−

i =

[
Un

Um

]
(5.57)

U+
e =

[
Uk

Ul

]
U+

i =

[
Us

Ur

]
, (5.58)
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Figure 5.13: Case b): Em = 30Eb - standard Gauss quadrature (a-b-c) and SRI (d).
Internal stresses σxb

(a), σzb (b) and contact tractions τxbzb (c-d) trends with respect
to the x position in the IPH element.

so equations (5.36) become[
F
(−,+)
ee

F
(−,+)
ei

]
+

[
0

F
(−,+)
ii

]
=

[
K

(−,+)
ee K

(−,+)
ei

K
(−,+)
ie K

(−,+)
ii

][
U

(−,+)
e

U
(−,+)
i

]
. (5.59)
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Figure 5.14: Interphase element rotation.

In order to follow the anti-clockwise order of nodes in Ω+ and Ω−, the
displacements in Ωb can be expressed as:

U+
b = AU+

i U−
b = AU−

i (5.60)

being A an operator defined as

A =

[
0 I
I 0

]
, (5.61)

with 0 and I being the 2×2 null and identity matrices, respectively.
Substituting equations (5.60) into (5.55), the interphase equilibrium equa-

tions (5.51)-(5.52) can be re-written by pre-multiplying each term by ST , being
S = RA. This operation leads to

K++
b U+

i +K+−
b U−

i = F+
ii (5.62)

K−+
b U+

i +K−−
b U−

i = F−
ii (5.63)

where the following positions have been done

Kικ
b = STK

ικ
b S, Fι

ii = ST F̄ι
b, with ι, κ ∈ {+,−}. (5.64)

Internal forces in (5.62)-(5.63) can be substituted into the equilibrium equa-
tions of the two sub-elements (5.59) to obtain the internal displacements

U+
i = H+

[
F+
ei −K+

ieU
+
e +M+

(
F−
ei −K−

ieU
−
e

)]
(5.65)

U−
i = H− [F−

ei −K−
ieU

−
e +M− (F+

ei −K+
ieU

+
e

)]
(5.66)

where

H+ =
[
K+

ii −K++
b −K+−

b

(
K−

ii −K−−
b

)−1
K−+

b

]−1
(5.67)
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H− =
[
K−

ii −K−−
b −K−+

b

(
K+

ii −K++
b

)−1
K+−

b

]−1
(5.68)

M+ = K+−
b

(
K−

ii −K−−
b

)−1 (5.69)

M− = K−+
b

(
K+

ii −K++
b

)−1
. (5.70)

Finally, after some mathematical manipulations, the equilibrium equations
of the element with the embedded interphase are obtained:F−

ee −K−
eiH

− (F−
ei +M−F+

ei

)
F+
ee −K+

eiH
+
(
F+
ei +M+F−

ei

)
 =

K−
ee −K−

eiH
−K−

ie −K−
eiH

−M−K+
ie

−K+
eiH

+M+K−
ie K+

ee −K+
eiH

+K+
ie

U−
e

U+
e

 .
(5.71)

The new equilibrium system does not depend on the internal nodes. The el-
ement stiffness matrix incorporates the presence of sub-elements and interphase
as well as the effect of the damage in all of them.

The proposed formulation is based on the use of the same constitutive model
for both the sub-elements and for the interphase element. With respect to
other models, such as the ZTI one in which additional cohesive laws have to
be introduced, in this case no additional material parameters are needed apart
the band thickness.
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Chapter 6

Implementation of a crack
tracking algorithm

The previous Section is referred to the formulation of a finite element with
an embedded interphase that is a-priori known. In the present section also
the macro-scale or structural-scale problem is investigated. It requires the
formulation of an algorithm capable to predict the formation and propagation
of the band/fracture among the finite elements of the numerical model.
This issue has been treated in several papers, with the principal aim to make
the fracture pattern independent of the finite elements density and orientation.
In the case where the strain localization band is not known a priori, the principal
issues regard:

• the identification of the numerical step at which a strain localization band
can be introduced;

• the evaluation of strain localization band position and orientation;

• the intra-element propagation of bands or fractures;

• the identification of the crack pattern and the coexistence of multiple
cracks.

The first two aspects are strongly related to the constitutive model adopted
for the quasi-brittle material. The remaining ones deal with the finite element
mesh processing, and require a specific crack tracking algorithm in order to
define the evolution of the discontinuity surface during the loading process.
The entire numerical procedure has been implemented in an entirely homemade

149
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150 Implementation of a crack tracking algorithm

MatLab© code. Nonlinear equations are solved using the Newton-Raphson
iterative procedure. The time integration scheme is based on a backward Euler
method. For the sake of completeness, the code for the generic time step n is
reported in Algorithm 1 on page 157 [98].

6.1 Overview on fracture initiation criteria

In the case where the strain localization band is not known a priori, a classic
crack tracking algorithm predicts when to switch from a diffuse to a contin-
uous/discontinuous model, where to locate the localization band and how to
model it.

A tracking algorithm allows to identify the crack propagation direction and
predict the crack path within a certain domain [105]. It is possible to qualita-
tively distinguish three different categories of tracking algorithm:

• local algorithms, in which the crack direction is computed locally, using
values referred to a single element or a restricted area surrounding it;

• global algorithms, which compute simultaneously all the potential crack
paths at each step of the analysis, by constructing a scalar function θ
whose isolines represent the crack propagation directions within the whole
structure;

• partial-domain algorithms, in which the solution of a boundary value
problem at each step is done within a sub-domain rather than in the
whole structure.

Some of the typical criteria used in literature to model and follow the propa-
gation of one or more fractures will be presented below.

In CERVERA et al. [23], a Rankine criterion based on the value of the maxi-
mum principal stress is applied, in which it is assumed that the crack propagates
in a plane orthogonal to the corresponding principal stress eigenvector. For this
reason, principal stress directions are evaluated in the surrounding of the crack
tip. A scalar field θ is defined, whose gradient is parallel to the normal vector
n, so that n = ∇θ

|∇θ| . An isoline, defined by θ = constant, is orthogonal to n;
thus, the problem of evaluating the direction of crack propagation is equivalent
to find the scalar field θ and determine the iso-level locus θ = θ0, with a θ0
threshold value (see Figure 6.1).

In WANG et al. [125] a damage variable DΩ is introduced, as an average
measure of the microcracks at each Gauss point. The values of DΩ in the
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θ=θ0

n
R

Figure 6.1: Tracking algorithm in [23]:
isolines identification, normal to the crack
direction.

Figure 6.2: Tracking algorithm in [125]:
n is the growth direction, obtained as a
weighted average of the damage valuesDΩ

calculated in the red Gauss points.

Gauss points close to the crack tip are checked at the end of each loading step:
if they exceed a damage threshold value Dcrit, the existing crack is extended.
The crack direction is chosen on the basis of a geometric approach, wherein the
crack is located as the medial axis of the damage isoline. In order to take into
account contributions related to different elements in the same region and not
only to a local element, the growth direction n is calculated using a weighted
average of bulk damage, calculated on points belonging to a half circle from the
crack tip, since the crack is unlikely to snap back. The radius R is a geometric
parameter defining where the bell-shaped weighting function is applied. Figure
6.2 explains this procedure (red points are used for the weighted average, blue
ones are excluded).

In SALOUSTROS et al. [106], a new crack starts at an element according to a
specified tensile damage criterion. Elements which satisfy the failure criterion
are labeled as crack root elements. By defining a sub-domain radius rsub, the
crack root element is identified as the one having the highest value of the tensile
equivalent stress and the crack origin is positioned in its centroid. This radius is
a parameter of the model, dependent on the mesh dimension. The second phase
corresponds to the identification of the so-called next potential elements of the
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crack. Starting from the crack origin, two vectors s1 and s2 are identified,
which are perpendicular to n, associated with the maximum principal stress
direction, and with opposite orientations. Both for s1 and s2, the potential
elements are identified by considering the neighbouring elements that share the
edge intercepted by the propagation vector, until the influence radius rsub is
reached (see Figure 6.3).

n

s1

s2

rsub Crack root element

New potential element

Crack origin

Figure 6.3: Tracking algorithm in [106]: n is the maximum principal stress direction,
s1 and s2 are the two possible crack propagation directions.

Rather than using a local approach, based on the information recorded in
the neighbouring of the crack tip, in TAMAYO et al. [120] a global geometrical
approach is proposed. The crack is inserted in the medial axis of the damaged
area individuated by the isoline D = Dcrit, which represents the locus of the
centres of the interior bitangent circles (Figure 6.4). At the end of each step, if
one or more elements reach a damage value D ≥ Dcrit, their nodes are marked
for the X-FEM enrichment (see section 3.3.1). The technique allows to capture
complex crack patterns and the crack branching phenomenon.

6.2 Summary of the implemented algorithm

The entire nonlinear code, based on Algorithm 1 for the generic step and asso-
ciated to the flowchart in Figure 6.6, can be summarized as follows:

• let us consider a structure where some cracks are present. The groups of
elements crossed by a unique crack are referenced here as substructures.
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D>Dcrit

Figure 6.4: Tracking algorithm in [120]: medial axis of the isoline associated with
D = Dcrit.

ΔUsub

(Δfint)sub

Figure 6.5: Representation of the implemented Algorithm.

At the beginning, the overall structure is analyzed as a composition of
not yet localized elements and distinct substructures. Nodal displace-
ments are evaluated at the end of an ELASTIC PREDICTION stage (lines
1-13 of Algorithm 1). Then, each substructure is solved individually, con-
sidering the displacements exchanged with the rest of the structure as
boundary conditions (∆Usub); the resulting nodal forces (∆fintsub) are
then transferred as internal forces to the whole structure. Forces and
stiffness matrices of the substructures and of the remaining elements are
assembled and convergence checked. If no convergence is reached, a NON-
LINEAR CORRECTION stage (lines 14-18 of Algorithm 1) takes place, which
is repeated until convergence, based on a Newton-Raphson iterative pro-
cedure (see Appendix C);

• at convergence of the nonlinear correction procedure, the STRAIN LOCAL-
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IZATION procedure (lines 19-29 of Algorithm 1) is applied to identify new
localized elements with associated band position and orientation;

• finally, the CRACK TRACKING ALGORITHM procedure is applied (lines 30-32
of Algorithm 1). New localized elements were either divided into exist-
ing substructures or form new ones and manipulated in order to form
continuous cracks.

Figure 6.5 illustrates the core of the numerical strategy: substructures are
individuated, separately solved (by imposing nodal displacements ∆Usub) and
then assembled with the remaining part of the structure (nodal forces are trans-
ferred to the rest of the structure as internal forces ∆fintsub).

6.3 Band formation, position and orientation

As said in Chapter 2, the strain localization corresponds to a constitutive bifur-
cation problem, for which the equilibrium equations show a loss of uniqueness.
The bifurcation point could be obtained through the acoustic tensor, since the
localization condition corresponds to the achievement of its singularity for a
specific direction identifying the localization band.
Unfortunately, as shown in Section 4.3.2, the spectral analysis of the afore-
mentioned tensor for the specific IDM does not give the expected localization
directions, which are often not consistent with the kinematic conditions.

In the implemented code, fracture insertion occurs when three different
constraints are simultaneously verified. For what regards the identification of
the bifurcation point, the singularity of the tangent stiffness matrix is looked
for or, analogously, the change in the sign from positive to negative of its lowest
eigenvalue.

A transition criterion formulated in terms of principal stresses, strains or
local damage values is commonly adopted in literature. In practice, when the
maximum principal stress or strain or damage reaches an assigned threshold
value, the condition of diffuse damage is switched to the condition of localized
damage. The proposed formulation is even inspired by this approach, by using
the damage variable as the second localization constraint.
Following the formulation reported in [27] and applied in [121, 125], if simultane-
ously the tangent stiffness matrix becomes singular and if the damage variable
D̂, averaged on the volume Ve of the element, exceeds a fixed critical dam-
age of the material Dcrit, a new interphase is inserted in the element and the
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continuous-discontinuous transition is applied. This condition can be mathe-
matically written as

D̂ =
1

Ve

∫
Ωe

D dΩ > Dcrit. (6.1)

In order to give answer to other questions related with the position and
inclination of the interphase band, the balance point of damage ρb is identified
through a damage-weighted average of the coordinates of the integration points,
as follows

ρb =

∑ngp
i=1Di ρi∑ngp
i=1Di

, (6.2)

where ngp is the number of the Gauss points and ρi and Di are the coordinates
vectors and the values of damage variable at the same points, respectively.

Localization direction nb coincides with the eigenvector associated with the
maximum eigenvalue of the so-called fracture tensor, defined as follows:

T b =

∑ngp
i=1Di ni ⊗ ni∑ngp

i=1Di
, (6.3)

and built as the damage-weighted average of the tensorial products of the direc-
tion ni of the maximum principal strain at each Gauss point. This localization
criterion permits to overcome the mismatch between numerical and experimen-
tal data obtained by using the acoustic tensor criterion. This criterion, at
the element level, takes into account the local information recorded on each
integration point in a weighted form with respect to its damage level.

Once condition (6.1) and the singularity of the tangent stiffness matrix are
verified, (ρb,nb) are calculated; finally, the third check is performed. This
check verifies if the localization direction nb is stabilized, comparing the slope
evaluated at the actual step with that obtained at the previous one [62]. When
the difference in the slopes is below a certain tolerance, even the third condition
for localization is reached. Once localization is confirmed, the element is divided
into the two sub-domains Ω+ and Ω− and the interphase element Ωb is inserted
between them, respecting the position of the balance point ρb and localization
direction nb.

Depending on the topology of the two sub-elements, strain and damage
values can be initialized at the Gauss points of Ω+, Ω−, and Ωb, exploiting
the same shape functions of the original element. In the sub-elements Ω+ and
Ω− the damage is kept frozen and the response is linear and elastic, with the
stiffness attained at the fragmentation instant. Damage, instead, is free to
evolve in the interphase element Ωb.
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6.4 The crack tracking algorithm

In presence of new localized elements an efficient crack tracking algorithm is
essential to correctly update the fracture path, which must be continuous and
representative of the real fracture propagation.
At the end of the strain localization stage in Algorithm 1, some of the elements
of the FE mesh could be localized. For these elements the three aforementioned
localization checks are all verified and the band in each element is identified
through its balance point and orientation.

The number of new localized elements in a load step is dependent on the
load step size. As is common in nonlinear FE, in order to avoid inaccurate
solutions in terms of crack-path and mechanical response, the load step should
be in some way calibrated to the element size and should not be too large. It
could happen to see clouds of localized elements, usually having sub-parallel
localization bands, as the consequence of the diffuse damage formulation. In
these cases not all the localized elements can be crossed by the crack and the
clouds need to be in a certain sense ’cleaned’.

An efficient crack tracking algorithm is therefore necessary to correctly
transform the bands inside localized elements into macroscopic continuous cracks.
The proposed crack tracking algorithm operates in a three-stage process. This
process is depicted in a simplified manner in Figure 6.7.

In the first stage all the new localized elements are partitioned into different
clusters, as explained in sub-Section 6.4.1 (Figure 6.7-a).

In the second stage, clusters are subsequently converted into substructures
(Figure 6.7-b). Only the localized elements ensuring the most correct contin-
uous crack are retained, converting the remaining elements into not localized
elements again. The selection is carried out on the basis of specific checks that
will be introduced in the sub-Section 6.4.2.

The third stage, described in sub-Section 6.4.3, deals with crack propaga-
tion among elements and performs the alignment of bands in order to have
continuous cracks (Figure 6.7-c).

The crack tracking algorithm has been numerically structured into three
correspondent in-series modules, namely the NO-BINARY-SEARCH MODULE (Al-
gorithm 1, line 30), the UPDATE-SUBS MODULE (Algorithm 1, line 31), and the
ALIGN MODULE (Algorithm 1, line 32).



i
i

“output” — 2022/12/5 — 16:12 — page 157 — #158 i
i

i
i

i
i

6.4 The crack tracking algorithm 157

Algorithm 1 Code at step n
1: ▷ Update BCs and/or ext. forces

▶ ELASTIC PREDICTION

2: j ← 1 ▷ Initialize iterations
3: Un ← Un−1 ▷ Initialize Un

4: Fext
n ← Fext

n−1 +∆Fext
n ▷ Update ext. forces

5: K
(j)
n ← Aeno−loc

e=1 (Ke
n−1) + Asubs

s=1 (K
s
n−1) ▷ Assemble global stiffness matrix

6: K
(j)
n ∆U

(j)
n = ∆Fext

n ▷ Solve equilibrium equations
7: Un ← Un +∆U

(j)
n ▷ Update mech. & kin. variables

8: for s = 1 : subs do ▷ Loop over all substructures
9: Us

n ← S(Un) ▷ Extract displ. at subs. boundary nodes
10: Fint, s

n ← CALL SOLVE-SUBS(Us
n) ▷ Solve NL problem for subs. imposing Us

n

11: end for
12: Fint

n ← Aeno−loc
e=1 (Fint,e

n ) + Asubs
s=1 (F

int,s
n ) ▷ Assemble int force vector

13: if Err
(j)
n =

∣∣Fext
n − Fint

n

∣∣ ≥ tol then ▷ check convergence
▶ NONLINEAR CORRECTION

14: j ← j + 1

15: K
(j)
n ← Aeno−loc

e=1 (Ke
n) + Asubs

s=1 (K
s
n) ▷ Assemble global stiffness matrix

16: K
(j)
n ∆U

(j)
n = Err

(j)
n ▷ Solve equilibrium equations

17: go to 7
18: end if

▶ STRAIN LOCALIZATION

19: for e = 1 : eno−loc do ▷ Loop over not localized elements
20: λe

min ← eig[Ke] ▷ Find tangent stiffness eigenvalues
21: D̂e ← 1

Ve

∫
Ωe

D dΩ ▷ Calculate volume average of damage
22: if (λe

min ≤ 0) .and. (D̂e ≥ Dcrit) then ▷ Check localization
23: ρb,Tb ← Use Eqs.(6.2-6.3) ▷ Find balance point & fracture tensor
24: nb ← eig[Tb] ▷ Evaluate band orientation
25: if

∣∣nn
b − nn−1

b

∣∣ ≤ tol then ▷ Check band stabilization
26: eloc ← [eloc e] ▷ Insert e among new localized elements
27: end if
28: end if
29: end for

▶ CRACK TRACKING ALGORITHM

30: clusters ← CALL NO-BINARY-SEARCH(eloc) ▷ Partition of eloc into clusters
31: subs ← CALL UPDATE-SUBS(clusters) ▷ Update existing subs

or create new ones
32: CALL ALIGN(subs) ▷ Align bands in new localized elements
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Current displacement increment

Solve the governing equations

subs>0

Extract ΔUsub at subs nodes

Solve a nonlinear problem for subs 

Evaluate boundary forces at subs 
Δfint  (to pass to the main structure 
as internal forces) and update Ksub

sub

YES

Assemble new Fint and K

NO

Err=|Fext-Fint|<tollNO

λe
min≤ 0

De ≥ Dcrit 
YES

Evaluate ρb, Tb and nb

|nb
n-nb

n-1|<toll

N-B-S Module

Update-subs Module

Align Module

Next displacement increment

NO
YES

NO

Figure 6.6: Flowchart representation of the implemented Algorithm 1.
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Localized element Cluster/Substructure edge Localized bandNot accepted localized element Crack

(a) (b) (c)

Figure 6.7: Three-stage process of the crack tracking algorithm. (a) Clusters iden-
tification. (b) Substructures identification. (c) Alignment of bands in substructures.

6.4.1 Clusters of localized elements

Clustering is an important data exploration technique that in recent years has
been applied in different engineering fields. Data clustering consists in dividing
a data set into several homogeneous clusters on the basis of fixed constraints.
Each cluster contains points that share the same properties and characteristics
[96].

Generally, it is possible to distinguish between partitioning algorithms, which
have the limitation to specify a-priori the number of the clusters, and hierarchi-
cal algorithms, that is the technique applied in the implemented code to divide
new localized elements. In particular, an agglomerative approach is applied,
instead of a divisive one. Starting from clusters containing a single element,
this technique operates a series of agglomerations in which these small clusters
are merged to form larger clusters.

The procedure which collects new localized elements into homogeneous clus-
ters follows the main features of the so-called No Binary Search (NBS) contact
detection algorithm [87].
For each localized element, a circle of radius R is partially inscribed within the
quadrilateral, with a diameter equal to the longest axis bisecting two pairs of
opposite sides.
Given two localized elements, when R1 + R2 ≥ d, where d represents the dis-
tance between the centres of the two circles, it can be concluded that the two
elements are in contact (Figure 6.8-a). In other words, as in [87], all the circles
in contact are those for which the distance between their closest point is less or
equal to zero, which means that circles overlap or touch. A cluster is therefore
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R1
d

Localized
element 1

Localized
element 2

element edge
element circle
midlines

R2

(a)

Localized element

Cluster edge
element circle
crack

(b)

Figure 6.8: Clusters of localized elements. (a) Circles and schematic representation
touching check of two elements; (b) global structure with clusters.

a set of elements two by two in contact (Figure 6.8-b).

6.4.2 Substructures of localized elements

The second module is related to the conversion of clusters into one or more
substructures. Under specific circumstances, not all the elements of a cluster
can be part of a substructure and they need to be opportunely shortlisted. It
is therefore necessary, for each cluster, to guarantee the continuity of the crack
and to identify all the substructures associated with it.
The selection is made on the basis of a total of four checks. Some of these are
consolidated in the literature, some are specifically designed according to the
adopted localization criteria. Two of these checks are always invoked, two are
recalled anytime the new localized elements could extent an existing crack.
All the four checks are explained in Figure 6.9 and listed below:

• considering the position vector obtained by joining the crack tip with
the centroid of the new localized element, its scalar product with the
outgoing versor normal to the element edge containing the crack tip must
be positive, in order to exclude reversal cracks (Figure 6.9-a):

v · n > 0;
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• band orientations in two adjacent localized elements must not differ more
than a prescribed limit value (Figure 6.9-b), in order to distinguish ele-
ments belonging to two different crack paths;

• the extremes of the bands in two adjacent localized elements should share
the same edge to avoid locking issues (Figure 6.9-c);

• if almost parallel bands are localized in adjacent elements only one crack
is inserted, associated with those elements for which the longest fracture
path is obtained (as also represented in Figure 6.9-c) or, in the case of
crack involving a single element, associated with the element recording
the highest value of damage variable D̂ (Figure 6.9-d). Other elements
are not accepted and remain not localized.

At the end of the Update-subs module, clusters have now been decomposed
into substructures, whose lists of associated elements are then returned to the
main code. Each list is provided as a sequence of numbers corresponding to the
localized elements of every single substructure. A single substructure has to
be intended as associated to a unique crack. It is important to highlight that
the code does not require ’a-priori’ the initialization of a crack. Multiple and
simultaneous fractures are also allowed.

6.4.3 Crack propagation criterion

The last part of the crack tracking algorithm (Align module) is devoted to
the alignment of bands in elements constituting the substructure, in order to
guarantee crack-path continuity. Three possibilities arise:

1. extension of existing cracks;

2. merging of existing cracks;

3. formation of a new crack.

Let us analyze the first case. A single crack always has two active tips
used to eventually extend the fracture in one direction or the other one, by the
attachment of one or more elements. Active tips are located in those elements
where circles have a unique connection with another circle. The remaining
circles of the chain have instead two connections. The elements in the list,
therefore, starting from a crack tip, are ordered following the sequence of the
connections to reach the opposite end of the band (Figure 6.10-a).
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C

C

v

n

not accepted new
localized element

element
centroid

crack tip

existing
crack

accepted new
localized element

localized band

v

(a)

existing
crack crack tip

not accepted new
localized element

accepted new
localized element

localized band

> lim

≤ lim

localized band

(b)

not accepted new
localized element

not accepted new
localized element

localized band

accepted new
localized element

(c)

not accepted new
localized element

not accepted new
localized element

accepted new
localized element

localized
band

D<Dmaxˆ ˆ

D=Dmaxˆ ˆ

D<Dmaxˆ ˆ

(d)

Figure 6.9: Substructures of localized elements: (a) element centroid position check;
(b) band slope check; (c) sharing edges or new crack length check; (d) D̂ check.

The code starts scanning the existing substructure lists at the previous step
and checks if at the actual step new elements have been added. If yes, one
or more already existing cracks have been extended. The need for continuity
implies that the added band must pass through the crack tip. In this code
then the requirement to pass through the balance point is removed while the
localization direction is maintained (Figure 6.10-b). The band is translated in
parallel by forcing the passage from the crack tip of the adjacent element. If
more than one element is added, the procedure continues until the entire list
is completed. For each new localized element added to an existing crack four
nodes are internally introduced as vertexes of the interphase element. In order
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(a) (b)

(c) (d)

Figure 6.10: Crack propagation: (a) localized elements list; (b) addition of a new
element to an existing crack; (c) addition of an enclosed element; (d) insertion of a
new crack with more than one element.

to guarantee the deformation continuity among the element containing the new
crack tip and the adjacent not localized element that share the same edge, the
new internal nodes placed on the crack tip are overlapped and enforced to move
together and to lie on the same edge. These constraints are removed once the
crack tip moves ahead on a new element.

It could also occur that a new substructure comes from the fusion of two
substructures. Initially, it may happen that old cracks are extended by following
the order of elements collected in the list of each substructure. Going ahead,
there could be an element that is in contact with two substructures. This is the
case of an enclosed element, and both requirements of passing from the balance
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point and the localization direction are abandoned in favour of the restriction
that the band must pass through the two adjacent crack tips (Figure 6.10-
c). Additionally, nodes constrained to coincide on the two old crack tips are
released.

Finally, once the existing cracks have been scanned over, the remaining new
substructures are inserted as new cracks starting from the central element to-
wards the extremes. For the first element, the band is inserted as localized, since
both constraints on the balance point and localization direction are maintained.
For the subsequent elements, the balance point is substituted by the crack tip,
while the band orientation remains unchanged and the band translated (Figure
6.10-d) as for the first case.

The key point of the implemented numerical procedure is to split at the
generic time step the solution of the substructures from the solution of the
remaining part of the finite element model. In this sense the procedure con-
templates two nested nonlinear iterative procedures, one at the substructure
level, where the nodal displacements are considered as boundary essential con-
ditions, and the other at the whole model level. At the substructure level,
the Newton-Raphson iterative procedure leads to the correspondent bound-
ary nodal forces together with the updated substructure stiffness matrix. The
stiffness matrix and the nodal forces contribute to in turn update the stiffness
matrix and internal force vector of the whole structure.
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Chapter 7

Numerical applications

The effectiveness of the proposed numerical method has been tested through
different applications ranging in mode I and combined mode I-mode II loading
stress states, reported in the following Sections. Several numerical applications
will be presented to illustrate the flexibility and efficiency of the proposed ap-
proach and to assess its accuracy and robustness.
Each application is performed in plane stress and under displacement control.
Firstly, a parametric analysis is presented, in order to investigate on the influ-
ence of geometric and constitutive parameters.
In Example 2, a single edge notched specimen subjected to a mixed mode I-
mode II stress state is tested. This example shows the capability of the crack
tracking algorithm to follow the crack pattern in absence of mesh dependency.
The same example is also run with three different load step sizes in order to
analyze the influence of the load step size on the results and on the convergence
of the iterative solution.
In Example 3, a classic three-point bending test is examined. Two simple
meshes are used to discretize the fracture propagation zone to further strengthen
the mesh independence and investigate on the interphase thickness parameter.
A mode I test on a double edge notched specimen is run in Example 4. The
particularity of this example lies in the double crack propagation and in the
comparison of the overall response with the similar test performed by Benvenuti
et al. [12] who used the regularized X-FEM method.
In Example 5 the capability of the code to reproduce the experimental results
for a double edge notched specimen undergoing a combination of mode I-mode
II stress state is presented. The same example is exploited to show a compari-
son between the IPH and the ZTI model.

165
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Example 6 reports the experimental results on an L-shaped concrete specimen,
performed following constitutive parameters reported in [77].
Example 7 reproduces a predominantly mode II crack developed in a pull-out
test for anchor bolts embedded in concrete, simulated in [116].

For each numerical application, a table including constitutive and geomet-
rical parameters is reported: the Young’s modulus E, the Poisson’s ratio ν, the
elastic limit strain ε0, the εf

ε0
ratio, the interphase thickness wb and the critical

damage value Dcrit.
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7.1 Example 1: mode-I and mode-II crack in a single
element

Table 7.1: Example 1 - Material parameters.

E [MPa] ν ε0 Dcrit

338456 0.15 2.66E − 4 0.5
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Figure 7.1: Example 1 - Geometry and boundary conditions. Dimensions are given
in mm.

A first application, for parametric investigation, was carried out consider-
ing a single element of size 200 × 100 mm, unitary thickness and constitutive
parameters given in Table 7.1. The value of critical damage is a not very influ-
ential parameter in this case since, being a single element, the damage increases
almost abruptly, without affecting the actual instant of band insertion. The
boundary conditions are schematically reproduced in Figure 7.1. The analyses
were conducted by varying two parameters: the interphase thickness (wb) and
the ( εfε0 ) ratio.

Firstly, the specimen was subjected to a δx = 0 and an incremental vertical
displacement δy, in order to simulate a mode-I fracture. In Figure 7.2 different
load-displacement curves are reported for varying interphase thicknesses with
εf
ε0

= 100 (Figure 7.2-a) or for varying εf
ε0

ratios keeping wb = 1 mm (Figure
7.2-b).

Similarly, the second simulation considered a value of δy = 0 and an in-
cremental horizontal displacement δx, in order to simulate a mode-II fracture.
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In Figure 7.3 different load-displacement curves are reported for varying inter-
phase thicknesses with εf

ε0
= 500 (Figure 7.3-a) or for varying εf

ε0
ratios keeping

wb = 1 mm (Figure 7.3-b).
Figure 7.4 reports the final deformed configuration for mode-I (a) and mode-

II (b).
The curve falls the faster the smaller both the interphase thickness and the

εf
ε0

ratio. Remembering the expression of strain in the interphase element, in
fact, as the thickness increases, the strain decreases and thus the lower the
damage value will be, implying a higher stress and, consequently, a higher force
in Figures 7.2-a and 7.3-a. For the same reason, since the damage variable
has the value εf − εo in the denominator, as the ratio εf

ε0
increases the damage

variable decreases and thus the force in the load-displacement curves in Figures
7.2-b and 7.3-b increases.
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Figure 7.2: Example 1 - Load-displacement curves, related to the mode-I crack, for
different interphase thicknesses wb (a) and different εf

ε0
ratios (b).

7.2 Example 2: single edge notched specimen under
mixed mode

In sub-Section 4.2.3 the mesh-size dependency of the IDM has been tested by
referring to a single edge notched square specimen under mixed mode. Bound-
ary conditions are reported in Figure 4.6 on page 89 and the analyzed regular
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Figure 7.3: Example 1 - Load-displacement curves, related to the mode-II crack, for
different interphase thicknesses wb (a) and different εf

ε0
ratios (b).
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Figure 7.4: Example 1 - Final deformed shapes for the (a) mode-I and (b) mode-II.

Table 7.2: Example 2 - Material parameters.

E [MPa] ν ε0
εf
ε0

wb [mm] Dcrit

1000 0.2 1.0E − 3 100 1 0.1

meshes (RM) and skewed meshes (SM) in Figures 4.7-4.8 on page 89, respec-
tively. The same previous analyses were performed with the implemented code,
in which the strain localization module is activated, allowing the previously
tested diffuse damage condition to be switched to a localized fracture condition.
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Tests on each one of the five meshes have been run by referring to constitutive
parameters reported in Table 7.2.

For each test, a crack begins to propagate from the notch toward the right
edge of the specimen, maintaining the same inclination for all tests. The final
fracture patterns are shown in Figure 7.5-b. It can be seen that the fractures
are very similar and almost overlapping, with a slight difference due to the
mesh size.

No influence due to mesh orientation is observed. This is an important
result since it is known from literature [105] how much the application of a bias
factor to the mesh can affect the overall behaviour. As known, the so-called
directional mesh-bias dependency/sensitivity is a common numerical difficulty
reported in the simulation of propagating cracks in solids. Many simulations
have reported how fractures tend to propagate following the orientation of the
finite elements’ edges: in this example, however, this problem has not been
encountered.
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32x32 (SM)

16x16 (SM)

(a) (b)

A B

C

Figure 7.5: Example 2 - (a) Load-displacement curves; markers A, B, C indicate three
states for which the deformed shapes are plotted in Figure 7.6. (b) Crack patterns:
the fractures are mostly overlapping.

Load-displacement curves, in Figure 7.5-a, are in good agreement with each
other, confirming the absence of mesh-dependence of the response. This result
is in contrast with the different curves reported in Figure 4.9 on page 90, when
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the same tests were run without activating the localization but allowing only
the damage evolution: in this case, a strong mesh dependency was encountered.

The damage constitutive model returns a nonlinear behaviour with soften-
ing. After the initial elastic phase, the highest principal strains are concentrated
near the notch, leading to strain localization and crack initiation. The nonlin-
ear phase reaches its peak at around 45 N , beyond which crack evolves quicker
dividing the specimen into a lower block, which remains mostly stationary
throughout the test, and an upper one.

In Figure 7.6 the deformed shapes and the related crack patterns for the 64×
64 RM are reported at the three marked points of Figure 7.5-a, corresponding
to a δ̄y multiplier λ equal to 0.105 (point A), 0.161 (point B), 0.390 (point
C) respectively. Crack evolves from the lower part of the notch toward the
opposite edge of the specimen following a curvilinear trajectory.

(a) (b)
-0.10

0.40  

0.00 

0.10
0.20
0.30

δy[mm]

(c)

Figure 7.6: Example 2 - Deformed shapes at points (a) A, (b) B, and (c) C indicated
in Figure 7.5-a.

The same test is run on the 32 × 32 SM in order to show the convergence
behaviour of the numerical code. Three different load step sizes are considered,
so that the influence of the load step size can be highlighted. In the first
test the amplitude of the imposed vertical displacement in the step is equal to
∆δy = 2 · 10−4 mm, for a total of 5000 steps. In the second and third tests the
step size is 10 times and 15 times that one of the first test, respectively.
The results in terms of load-displacement curves are shown in Figure 7.7-a.
As expected from the literature, a loading increment influences the peak force
value for a fixed grid spacing. Besides, the crack patterns show differences
in their final parts (Figure 7.7-b), bringing to different residual load values.
The difference in the residual loads could be explained considering the different
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amount of elements remaining between the crack and the right edge of the
specimen, constituting a sort of rotational hinge with a different stiffness. The
farther this hinge is from the right edge of the specimen the greater the upper
part of the specimen that is resistant and, therefore, the higher the residual
force in the associated curve.
Convergence data are reported in Tables 7.3-7.4 and 7.5 for the same multipliers
λ (A, B, C) and for each load step size respectively. In each table the errors
at the end of the global time steps are reported, together with the number of
iterations used to reach convergence at the substructure level. The quadratic
convergence is ensured and the number of iterations increases at the increasing
of the load step size.

Table 7.3: Example 2 - Convergence data with ∆δy = 2 · 10−4 mm.

Global nit
A (Step 525) B (Step 805) C (Step 1950)

Error Total n. Error Total n. Error Total n.
local iter. local iter. local iter.

1 1.11E-4 3 5.48E-5 3 3.61E-6 2
2 5.13E-10 3 3.49E-10 3 2.53E-13 2
3 1.05E-14 3 2.92E-14 3 - -

Table 7.4: Example 2 - Convergence data with 10∆δy.

Global nit
A (Step 52) B (Step 80) C (Step 195)

Error Total n. Error Total n. Error Total n.
local iter. local iter. local iter.

1 2.22E-2 4 8.12E-3 3 1.60E-3 3
2 2.05E-3 4 4.35E-6 3 1.36E-7 3
3 1.85E-8 4 9.76E-13 3 1.12E-13 3
4 9.12E-15 4 - - - -
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Table 7.5: Example 2 - Convergence data with 15∆δy.

Global nit
A (Step 34) B (Step 54) C (Step 130)

Error Total n. Error Total n. Error Total n.
local iter. local iter. local iter.

1 3.11E-1 5 3.30E-1 4 9.89E-4 3
2 3.83E-2 4 1.38E-2 4 2.22E-8 3
3 1.59E-4 4 2.49E-3 4 1.15E-13 3
4 6.05E-9 4 4.20E-8 4 - -
5 1.01E-14 4 1.91E-14 4 - -
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Figure 7.7: Example 2 - Influence of the load step size: (a) Load-displacement curves;
(b) crack patterns.
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7.3 Example 3: three-point bending test

Table 7.6: Example 3 - Material parameters.

E [MPa] ν ε0
εf
ε0

Dcrit

20000 0.2 1.2E − 4 58 0.5
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Figure 7.8: Example 3 - Geometry and boundary conditions. Dimensions are given
in mm.

In this example, a classical three-point bending test is analyzed, for which
the crack is expected to evolve in the pure mode-I. The specimen geometry and
boundary conditions are given in Figure 7.8; thickness is unitary. Material pa-
rameters are given in Table 7.6. Since the evolution of the crack is rather simple
in this application, the real purpose of the test is to investigate the effect of the
interphase thickness parameter, ascertained that the fracture appears vertical.
In addition, this test is used to compare the advantages of the implemented
model with respect to the classic diffused crack model.

For this purpose, let us consider the two different meshes adopted for the
strip above the notch, as shown in Figure 7.9. Specifically, the mesh in Figure
7.9-a (M1) has one vertical row of elements only, with a width equal to that
of the notch (5 mm), while the mesh in Figure 7.9-b (M2) has three vertical
rows of elements, each one having width equal to one-third that of the notch
(5/3 mm). The mesh outside the localization zone is left unchanged. All the
elements are quadrilateral and bilinear.

At the beginning, tests are performed on both meshes considering the dif-
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(a) (b)

Figure 7.9: Example 3 - (a) Mesh 1 (M1); (b) Mesh 2 (M2).

fused approach, until the final displacement δ̄y = 0.5mm. The resulting nonlin-
ear behaviour is represented by the load-displacement curves plotted as dotted
lines in Figure 7.10. Since damage localizes in elements of different width, and
thus is more concentrated the thinner the elements, a lower load-displacement
curve is obtained running the M2 mesh. Considering that same material pa-
rameters are used for both meshes, the different result depends on the different
mesh size only.

Subsequently, the same test is run on M1 mesh using the proposed model,
by considering an interphase thickness ranging from 0.5 mm to 5 mm. As
highlighted in Figure 7.10, a greater thickness correlates with a higher load-
displacement curve, as expected. Besides, when the interphase thickness equals
the element width of M1 or M2 mesh, the load-displacement curve overlaps the
corresponding dotted line, demonstrating that even in this case the results are
not mesh-dependent.

Figure 7.11 shows a comparison between the diffused approach (on the
left) and the proposed one (on the right) in terms of damage distribution and
deformed shape at a multiplier λ = 0.24 of the final imposed displacement.
Figure 7.11-a corresponds to points A of Figure 7.10, while Figure 7.11-b to
points B. Considering that the proposed model freezes damage outside the
interphase and that damage inside the interphase isn’t visible in Figure 7.11,
the damage maps after strain localization look less intense with respect to the
diffused approach, where damage is distributed all over the elements.



i
i

“output” — 2022/12/5 — 16:12 — page 176 — #177 i
i

i
i

i
i

176 Numerical applications

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

A

B

δy [mm]

F
[N

]
wb=0.5 mm

wb=1 mm

wb=5/3 mm

wb=2 mm

wb=3 mm

wb=4 mm

wb=5 mm

M1-diffused

M2-diffused

Figure 7.10: Example 3 - Load-displacement curves. Markers A and B indicate two
states for which the deformed shapes are plotted in Figure 7.11.
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Figure 7.11: Example 3 - Damage maps and deformed shapes comparison between
the proposed approach applied on M1 mesh (on the right) and the diffused approach
(on the left) for (a) M1 and (b) M2 meshes.
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7.4 Example 4: double edge notched specimen under
tensile load

Table 7.7: Example 4 - Material parameters.

E [MPa] ν ε0
εf
ε0

wb [mm] Dcrit

2000 0.2 5E − 4 500 1 0.55

In this test on a double edge notched specimen, the fracture opens in mode
I. The special feature of this test is related to the simultaneous propagation
of two cracks which finally merge into one. Our results were also compared
with others available in the literature and, in particular, with those obtained
by Benvenuti et al. [12]. For this purpose, the same geometry and material
parameters as in [12] are adopted. The geometry of the specimen, which has
a thickness of 10 mm, is reported in Figure 7.12-a, where the coarser mesh,
boundary and loading conditions are also visible. Figure 7.12-b shows instead
a second adopted denser mesh, also used in this case to demonstrate that the
code is not mesh-dependent. Material parameters are listed in Table 7.7. All
elements are quadrilateral and linear. The specimen is constrained on the
underside and loaded by imposing vertical incremental displacements λδ̄y on
the upper edge until the final value of δ̄y = 1 mm is reached.

The load-displacement curves for the two meshes are reported in Figure 7.13,
together with the numerical result of the regularized X-FEM model reported
in [12]. Since the interphase thickness is fixed to 1 mm for both meshes and
cracks proceed in a perfectly horizontal manner, both coarse and dense meshes
return the same mesh independent response. This behaviour is also in very
good agreement with reference [12].

Strain localization occurs when the load-displacement curve reaches its peak
value. At this point, two cracks appear symmetrically at the two notches,
propagate during the softening branch and meet halfway until they merge on
the symmetry axis. Crack patterns are reported, for the denser mesh, on the
deformed shapes of Figure 7.14, corresponding to a multiplier λ = 0.104 (Figure
7.14-a), λ = 0.116 (Figure 7.14-b), and λ = 0.134 (Figure 7.14-c), respectively.
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Figure 7.12: Example 4. Meshes and boundary conditions, with dimensions given
in mm. (a) Coarse mesh, (b) Dense mesh.
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Figure 7.13: Example 4 - Load-displacement curves. Markers A, B, C indicate three
states for which the deformed shapes are plotted in Figure 7.14.
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(a) (b)

0.50  

0.30  

0.40  

w

0.15  

0.00
0.03
0.06 
0.09
0.12 

δ [mm]

(c)

Figure 7.14: Example 4 - Crack evolution on deformed shapes at steps (a) A, (b) B,
(c) C of Figure 7.13.
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7.5 Example 5: double edge notched specimen under
mixed mode

Table 7.8: Example 5 - Material parameters.

E [MPa] ν ε0
εf
ε0

wb [mm] Dcrit

20000 0.2 1.38E − 4 140 1 0.1
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Figure 7.15: Example 5 - (a) Geometry and boundary conditions; (b) Numerical
mesh. Dimensions are given in mm.

The aim of this example is to compare numerical results with experimental
data. Experimental reference is the double edge notched concrete specimen
tested by Nooru-Mohamed in 1993 [89], which was subjected to a mixed-mode
loading machine. The experimental apparatus consisted of two independent
rigid plates capable of causing a combination of shear and tensile (or compres-
sive) stress on the specimen. Among the different experimental tests conducted
in [89], the so-called loading paths ’4a’ and ’4b’ have been simulated, based on
a 200 mm square specimen with two symmetrical notches, as depicted in Fig-
ure 7.15-a. The two rigid loading frames were fully anchored to the specimen
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Experimental: 5 kN

Experimental: 10 kN

Numerical: 5 kN

Numerical: 10 kN

Figure 7.16: Example 5 - Load-displacement curves. Markers A, B, C indicate three
states for which the deformed shapes are plotted in Figure 7.17. Markers A’, B’, C’
indicate three states for which the deformed shapes are plotted in Figure 7.18.

throughout its entire thickness of 50 mm. The experimental load was applied
in two stages. In the first stage, the specimen was laterally pushed in displace-
ment control until the resultant force Fs reached the values of 5 kN for paths 4a
and 10 kN for paths 4b. In the second stage, the horizontal force Fs achieved
was held constant, while the test continued by imposing incremental vertical
displacements on the lower and upper edges.

In [89] the experimental load-displacement curves were reported in terms
of vertical resultant force F versus the relative vertical displacement δ between
the two control points highlighted in Figure 7.15-a. The resulting experimental
curves are plotted as dotted lines in Figure 7.16. The observed crack pattern
consisted of two curved fractures that originated at the notches with a greater
slope the higher the Fs lateral force, and propagated symmetrically in parallel.
Nooru-Mohamed stated that, although the experimental machine was precise
and sophisticated, undesirable eccentricities associated with the skew-symmetry
of the test were observed. These effects could be the cause of imperfectly sym-
metrical experimental cracks and could influence the load-displacement curves.

Numerical tests have been simulated considering the mesh shown in Figure
7.15-b. This is composed of 910 initially quadrilateral linear elements, with
a denser mesh in the crack propagation zone. In order to accurately repro-
duce the loading phases, elements representing the steel frames, modelled with



i
i

“output” — 2022/12/5 — 16:12 — page 182 — #183 i
i

i
i

i
i

182 Numerical applications

structural steel constitutive parameters, have been firstly pushed horizontally
under displacement control. The imposed displacements have been calibrated
in order to obtain Fs exactly equal to 5 kN or 10 kN . Once Fs has reached
its prescribed value, horizontal constraints on the lateral loaded edges have
been converted into externally applied forces which have been maintained con-
stant throughout the rest of the test. Then, the specimen has been vertically
stretched under displacement control. The vertical displacement δ reported in
Figure 7.16 is the relative one between the two control points marked in Figure
7.15-b. Material parameters are those provided by [93] and given in Table 7.8.

(a) (b)

-0.10  

0.10  

-0.05  

0.00  

0.05  

δ [mm]

(c)

Figure 7.17: Example 5 - Crack evolution at steps (a) A, (b) B, (c) C of Figure 7.16,
when Fs = 5 kN .
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In Figure 7.16 is evident a good match between numerical and experimental
curves in the 5 kN case, for which the numerical parameters are calibrated. The
numerical response associated with the 10 kN case, moreover, shows a peak
equal to the experimental one, the same initial stiffness and a similar nonlinear
trend. However, after crack initiation, the nonlinear behaviour results more
deformable and, consequently, for the same force there is a higher δ value in the
numerical curve with respect to the experimental curve. From the numerical
point of view, this discrepancy could be possibly associated with the value
of interphase thickness adopted for both cases; on the other hand, from an
experimental point of view, it could be related to the undesirable eccentricities
mentioned above.

(a) (b)

-0.10  

0.10  

-0.05  

0.00  

0.05  

δ [mm]

(c)

Figure 7.18: Example 5 - Crack evolution at steps (a) A’, (b) B’, (c) C’ of Figure
7.16, when Fs = 10 kN .
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The crack evolution at points A, B, and C marked in Figure 7.16 is shown
in Figure 7.17 for the Fs = 5 kN case. Similarly, Figure 7.18 shows the crack
evolution at the points A’, B’, and C’ marked in Figure 7.16. Cracks nucleate
and propagate symmetrically, as expected. Cracks propagating in the 5 kN case
are more flattened with respect to the 10 kN case, as happened experimentally.
Overall, it can be concluded that the comparison between the numerical and
experimental results is generally good.

In order to show the influence of internal stresses and strains in the overall
mechanical response of the FE model, the Fs = 5 kN case is run considering
an interface element, that is obtained by neglecting the internal components
in the stiffness matrix of the interphase element. The mechanical response in
terms of load-displacement curves is shown in Figure 7.19-a and the associated
crack patterns in Figure 7.19-b. Almost overlapping cracks appear, both mod-
elling the discontinuity as an interphase or an interface element. Given the
same boundary and constitutive conditions, although the fracture process is
governed by tensile tractions, the load-displacement response in the post-peak
stage is lower respect to the interphase one. Not taking into account the inter-
nal components implies that the interface element underestimates the stresses
developed in the discontinuity and, therefore, the associated forces.

0 0.02 0.04 0.06 0.08 0.1
0

4

8

12

16

δy [mm]

F
[k
N
]

Experimental

IPH

ZTI

(a) (b)

Figure 7.19: Example 5 - IPH/ZTI comparison: (a) Load-displacement curves; (b)
crack patterns.
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7.6 Example 6: L-shaped concrete specimen

Table 7.9: Example 6 - Material parameters.

E [MPa] ν ε0
εf
ε0

wb [mm] Dcrit

18000 0.18 1.5E − 4 30 10 0.1

F, δy=λδy

L=500

L=
50

0

L/2=250 L1=220

L/
2=

25
0

y

x

(a)

Experimental 
range

Marfia et al.

Numerical

(b)

Figure 7.20: Example 6 - (a) Geometry and boundary conditions, with dimensions
given in mm. (b) Comparison between experimental and numerical crack patterns.

A concrete L-shaped specimen experimentally investigated in [127], is ad-
dressed in this section. Numerical simulations have been carried out using the
constitutive and geometrical parameters reported in Table 7.9, which are the
same of those used by Marfia et al. in [77, 85]. The specimen is constrained on
the bottom side, while a single point at (L1 +

L
2 ,

L
2 ) is subjected to a vertical

incremental displacement λδ̄y. The thickness of the specimen is 100 mm. Fig-
ure 7.20-a shows the geometry of the specimen and the simulated mesh. The
final value of the vertical maximum applied displacement is δ̄y = 1 mm.

Fracture originates at the inner L-node at λ = 0.05, which corresponds to
the point of greatest strain concentration, and then propagates almost hori-
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0 0.2 0.4 0.6 0.8 1
0

2,000
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8,000
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δy [mm]

F
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]
Experimental 1

Experimental 2

Experimental 3

Marfia et al.

Numerical

Figure 7.21: Example 6 - Load-displacement curves. Markers A, B, C indicate three
states for which the deformed shapes are plotted in Figure 7.22.

zontally. Figure 7.20-b shows the area of propagation of experimental cracks,
together with the numerical patterns obtained in this study and in [77]. These
two appear to be mostly overlapping.

The load-displacement curves, both for the experimental tests and the nu-
merical ones, are reported in Figure 7.21. Curves are in good agreement: during
the softening branch the evolution of the fracture separates the specimen in two
parts.

In Figure 7.22 the deformed shapes and crack patterns are reported at the
three marked points of Figure 7.21, corresponding to a multiplier λ equal to
0.175 (point A), 0.3 (point B), 0.550 (point C), respectively.
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(a) (b)

-0.05

0.60

0.00 

0.10 

0.20
0.30
0.40
0.50

δy [mm]

(c)

Figure 7.22: Example 6 - Deformed shapes and crack patterns at points (a) A, (b)
B, and (c) C indicated in Figure 7.21.
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7.7 Example 7: pull-out test on a concrete specimen

Table 7.10: Example 7 - Material parameters.

E [MPa] ν ε0
εf
ε0

wb [mm] Dcrit

30000 0.2 1.27E − 4 300 3 0.1

100
56,256,2537,5

10
087

,5
100

56,256,2537,5

10
087

,5
100

56,256,2537,5

10
087

,5
100

56,256,2537,5

10
087

,5

y

x

100
56,25

6,25
37,5

12,5
100

λδx

87,5

y

x

100
56,25

6,25
37,5

12,5

λδx

87,5

y

x

100
56,25

6,25
37,5

12,5
100

λδx

87,5

y

x

100
56,25

6,25
37,5

12,5

λδx

87,5

F, δy=λδy

15 185 15

12
5

15
10

10
0

215

y

x

Figure 7.23: Example 7 - Geometry and boundary conditions, with dimensions given
in mm.

This example simulates the pull-out test of an anchor bolt embedded in
concrete, presented by RILEM Technical Committee 90-FMA [37]. In this test
crack evolves primarly in mode-II. A concrete specimen with a thickness of 100
mm was investigated.

The constitutive and geometrical parameters reported in Table 7.10 and
referred to [116], are used. The specimen is constrained on the bottom side
and in the vertical edge of the lower right-hand corner; the effect of the anchor
bolt, instead, is reproduced by imposing an incremental vertical displacement
λδ̄y on the upper edge of the notch until a final value of δ̄y = 0.4 mm. Figure
7.23 reports the geometry, the mesh and the boundary conditions adopted.

Crack begins to propagate from the notch, proceeding in a roughly recti-
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Experimental

Suarez et al.

Numerical

α

Figure 7.24: Example 7 - Comparison between experimental and numerical crack
patterns.

linear way, with a slope α ≃ 13° toward the top edge. Figure 7.24 shows a
comparison between the crack patterns obtained experimentally, in reference
[116] and in the implemented code.

Load-displacement curves are reported in Figure 7.25: the numerical curve
was obtained activating the possibility to localize bands in elements, using an
interphase thickness equal to wb = 3 mm. The numerical result is in good
agreement with the experimental one.

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

· 104

A

B C

δy [mm]

F
[N

]

Experimental

wb = 3 mm

Figure 7.25: Example 7 - Load-displacement curves. Markers A, B, C indicate three
states for which the deformed shapes are plotted in Figure 7.26.
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Figure 7.26 shows the deformed shapes at the three marked points A-B-C
of Figure 7.25, corresponding to a multiplier λ equal to 0.0625 (point A), 0.2
(point B) and 0.325 (point C), respectively.

0.13  
0.12  

(a)

0.13  
0.12  

(b)

0.00  

0.13  

0.02  
0.04  
0.06   
0.08   
0.10  
0.12   

δy [mm]

(c)

Figure 7.26: Example 7 - Deformed shapes at points (a) A, (b) B, and (c) C indicated
in Figure 7.25.
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Chapter 8

Conclusions and remarks

The present thesis concerns strain localization and fracture modeling in the
framework of isotropic damage mechanics. This phenomenon has been analyzed
from both static and dynamic points of view, making a comparison between the
various approaches usually adopted, in order to highlight the purely physical
significance of this phenomenon. An extensive overview of the computational
strategies used to model strain localization has been presented and the A-FEM
has been selected as the reference approach.

An alternative numerical strategy has been proposed in this work, based on
the continuous-discontinuous approach in which the localization band within
the finite element is modelled by an interphase element instead of a zero-
thickness interface (ZTI) or a cohesive zone model (CZM). Since the inter-
phase is a continuous thin material layer with the same constitutive behaviour
as the bulk material, the proposed approach does not need a new traction-
discontinuous displacement constitutive law for the localization band. There-
fore, the proposed approach overcomes the problems related to what consti-
tutive model and what related mechanical parameters should be attributed to
these devices because the material maintains the same constitutive model, be-
fore and after strain localization. In addition, the interphase element permits to
introduce a discontinuity as an element with a real volume and not a vanishing
one.

The main difference of the proposed approach with respect to the classical
A-FEM and X-FEM regards the possibility to follow the material failure from
the strain localization in a thin layer band to the crack opening by using the
IPH concept instead of the quite common ZTI one.

It has been proposed a general procedure so any constitutive model could

191
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be implemented. The IDM has been here adopted, based on the formulation of
Jirásek and Mazars.

Thus, taking inspiration by the A-FEM technique, an operating procedure
for modeling a finite element with an embedded interphase at the local level has
been implemented. The best strategy for simulating fracture propagation at the
global structure level has been also analyzed. Therefore, special attention must
be paid to the criterion used to identify when the band has to be inserted,
defining its position and correct inclination. An appropriate crack tracking
algorithm has been implemented, founded on the procedure of clustering among
different elements, the concept of substructuring and some heuristic criteria for
crack propagation.

The numerical examples on specimens subjected to mode-I and mixed-
modes stress states show the advantages and the effectiveness of the proposed
strategy with respect to the smeared damage models. The mechanical responses
in terms of load-displacement curves and crack patterns are not dependent on
the mesh size or mesh bias.

The numerical procedure and the implemented crack tracking algorithm
show a quite good convergence behaviour and accuracy of the results. There-
fore, the numerical code can be considered an efficient tool for those applications
where the structural collapse depends on localized strains or crack propagation.

Several future developments are related to the scope of this thesis. First
of all, the implementation of a different damage model, as well as the possibil-
ity of reproducing numerical simulations considering the case of elastoplastic
constitutive models. The analysis of the conditions for giving rise to flutter in-
stability (in Section 4.3), in fact, showed that it cannot be achieved in any way
by adopting an isotropic damage model. A chance to identify cases in which
flutter instability occurs could arise by the introduction of anisotropic damage
models. Anisotropy can be either induced by damage or initially present due to
the material microstructure. The model proposed by Desmorat et al. [33]-[61],
for example, presents a damage anisotropy that is loading induced and can be
represented by a tensorial damage variable.

Another possible development regards the improvement of the crack track-
ing algorithm for the case of fracture branching and inter-element localization
bands. An in-depth analysis of the physical significance of the critical dam-
age variable, a fundamental parameter within our numerical analyses, is being
pursued. It might be also useful to identify some iso-lines associated with the
same damage value D̂ and to evaluate the direction of localization not only
with the local data of the individual element but rather to those associated
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with all elements within a certain iso-line region.
The extension of the numerical procedure to mesh constituted by 3D ele-

ments or elements with more than 4 nodes is also straightforward.
Finally, it can be concluded that the analysis of strain localization remains

a field in continuous growth and evolution. This thesis sought to present a
detailed overview of what has already been done in the literature by providing
a new computational approach to complement those recently developed.
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Appendix A

Rotation from global to
principal reference system

The objective of this Appendix is to obtain the principal strains in the x1 − x2
reference system from the displacement field expressed in the x − y reference
system. Let us consider a displacement vector u = [ux uy]

T and its projection
up = [u1 u2]

T into a second reference system x1 − x2, forming a θ angle
between axes x− x1 (Figure A.1).

Considering that u1 = ĀB + B̄C and u2 = P̄C − D̄C, it can be written
that u1u2

u3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

uxuy
u3

 =

ux cos θ + uy sin θ
uy cos θ − ux sin θ

u3

 . (A.1)

As better explained in Appendix B, the strain field is derived from the
associated displacement vector through a compatibility matrix, so it can be
written

εp = B′up ε = Bu. (A.2)

A plane stress condition is considered, so the component ε3 is not inde-
pendent as explained in (4.48). It is considered εp =

[
εx1 εx2 γx1x2

]T and
ε =

[
εx εy γxy

]T . Considering that x3 is already a principal direction, pre-
vious relationships in extended form become
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Figure A.1: Displacement field in x− y and x1 − x2 reference systems.

εp =


∂

∂x1
0

0 ∂
∂x2

∂
∂x2

∂
∂x1

[u1
u2

]
ε =


∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

[ux
uy

]
. (A.3)

By substituting expressions (A.1) in (A.3), strains in x1 − x2 can be ex-
pressed as follows

εp =


∂

∂x1
(ux cos θ + uy sin θ)

∂
∂x2

(uy cos θ − ux sin θ)
∂

∂x2
(ux cos θ + uy sin θ) +

∂
∂x1

(uy cos θ − ux sin θ)

 . (A.4)

Considering the following chain rule to differentiate composite functions

∂

∂xi
f(x, y, z) =

∂f

∂x

∂x

∂xi
+
∂f

∂y

∂y

∂xi
+
∂f

∂z

∂z

∂xi
(A.5)

expressions in (A.4) become

εp =



∂x
∂x1

(∂ux
∂x cos θ +

∂uy

∂x sin θ) + ∂y
∂x1

(∂ux
∂y cos θ +

∂uy

∂y sin θ) + ∂z
∂x1

(∂ux
∂z cos θ +

∂uy

∂z sin θ)

∂x
∂x2

(
∂uy

∂x cos θ − ∂ux
∂x sin θ) + ∂y

∂x2
(
∂uy

∂y cos θ − ∂ux
∂y sin θ) + ∂z

∂x2
(
∂uy

∂z cos θ − ∂ux
∂z sin θ)[

∂x
∂x2

(∂ux
∂x cos θ +

∂uy

∂x sin θ) + ∂y
∂x2

(∂ux
∂y cos θ +

∂uy

∂y sin θ) + ∂z
∂x2

(∂ux
∂z cos θ +

∂uy

∂z sin θ)+

+ ∂x
∂x1

(
∂uy

∂x cos θ − ∂ux
∂x sin θ) + ∂y

∂x1
(
∂uy

∂y cos θ − ∂ux
∂y sin θ) + ∂z

∂x1
(
∂uy

∂z cos θ − ∂ux
∂z sin θ)

]


.

(A.6)
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The following transformation relations also hold:

∂x

∂x1
= cos ˆxx1 = cos θ;

∂y

∂x1
= cos(90° − θ) = sin θ;

∂z

∂x1
= cos(90°) = 0;

∂x

∂x2
= (90° + θ) = − sin θ;

∂y

∂x2
= cos θ;

∂z

∂x2
= cos(90°) = 0.

Substituting them into (A.6), it is obtained

εp =


∂ux
∂x cos2 θ +

∂uy

∂y sin2 θ + (∂ux
∂y +

∂uy

∂x ) sin θ cos θ

∂ux
∂x sin2 θ +

∂uy

∂y cos2 θ − (∂ux
∂y +

∂uy

∂x ) sin θ cos θ

(∂ux
∂y +

∂uy

∂x )(cos2 θ − sin2 θ) + (−2∂ux
∂x + 2

∂uy

∂y ) sin θ cos θ

 . (A.7)

Remembering expressions in (A.2)-(A.3) and considering c = cos θ and s =
sin θ for abbreviations, previous relationships become

εp =

 c2 s2 sc
s2 c2 −sc

−2sc 2sc c2 − s2




∂ux
∂x
∂uy

∂y

∂ux
∂y +

∂uy

∂x

 = Apε = ApBu. (A.8)

It can be concluded that the principal strain vector can be calculated from
the nodal displacement one. The associated value of the equivalent strain is
calculated with the relation (4.37) and the related damage value is obtained
from equation (4.28). In summary, choosing any point of coordinates ξ ∈
[−1, 1] and η ∈ [−1, 1] in the parent element, the compatibility matrix can be
calculated as later explained in (B.8) in order to obtain the strain field in this
point.
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Appendix B

Four-node isoparametric
elements formulation

Let us consider a 4-node physical element referred to the x− y physical system
and the parent element referred to the natural coordinate system ξ− η (Figure
B.1). These two coordinates systems are mutually related, so physical coordi-
nates (x, y) are obtained by mapping the natural ones (ξ, η) through a set of
4-node shape functions N(ξ, η) [52]. It can be written that

x(ξ, η) =
4∑

i=1

Ni(ξ, η)x
e
i = N · xe y(ξ, η) =

4∑
i=1

Ni(ξ, η)y
e
i = N · ye (B.1)

being xe and ye the nodal coordinates vectors and N the shape functions
vector, defined as follows

xe =
[
x1 x2 x3 x4

]T
ye =

[
y1 y2 y3 y4

]T
N =

[
N1 N2 N3 N4

]
.

(B.2)
The shape functions contain a constant term, terms linear in ξ and η and the

term ξη, that is the bilinear monomial; for this reason they are called bilinear
shape functions. By writing monomials in terms of arbitrary parameters, the
following expression is obtained:

x(ξ, η) = α0 + α1ξ + α2η + α3ξη (B.3)

where α0, α1, α2, α3 are constants to be determined by imposing that the func-
tion interpolates the four nodal values, whose coordinates are expressed in table,
as follows

211
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η

ξ

1 2

4 3

η

ξ

1
2
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3

x
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η=1
ξ=-1

ξ=1

η=-1

-1

-1

1

1

Figure B.1: Relation between the physical element in x − y and the parent one in
ξ − η.

x(ξi, ηi) = xi where

i ξi ηi
1 -1 -1
2 1 -1
3 1 1
4 -1 1

. (B.4)

By solving equations (B.4) it is obtained that

Ni(ξ, η) =
1

4
(1 + ξiξ)(1 + ηiη) (B.5)

N1(ξ, η) =
1

4
(1− ξ)(1− η)

N2(ξ, η) =
1

4
(1 + ξ)(1− η)

N3(ξ, η) =
1

4
(1 + ξ)(1 + η)

N4(ξ, η) =
1

4
(1− ξ)(1 + η).

Same passages could be done by considering y instead of x in (B.3)-(B.4)
and same shape functions will be obtained. These shape functions have to
respect some conditions:

• they are regular functions (at least class C1) within the element, that
means they are analytic and single-valued throughout this region;
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Figure B.2: Shape functions of 4-node isoparametric element.

• they are continuous along the boundaries of the element. Along each
element edge they changes in a linear way since depending only on the
extremes values. It can be concluded that they assume a typical hyper-
bolic paraboloid shape inside the element, as represented in Figure B.2.

The essential feature of the isoparametric elements is that the physical co-
ordinates are mapped by the same shape functions as those used for the ap-
proximation (of displacements, for example). So, similarly to relations (B.1),
the displacement field u on the element can be obtained by mapping the nodal
displacement vector de as follows

u(ξ, η) = Nde. (B.6)

The strain field ε in the element could also be calculated from the nodal
displacements
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ε = Bde (B.7)

where

B = ∇N =


∂N1
∂x 0 ∂N2

∂x 0 ∂N3
∂x 0 ∂N4

∂x 0

0 ∂N1
∂y 0 ∂N2

∂y 0 ∂N3
∂y 0 ∂N4

∂y

∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x

∂N3
∂y

∂N3
∂x

∂N4
∂y

∂N4
∂x

 . (B.8)

To obtain the derivatives of shape functions expressed in the parent element
coordinates (ξ, η) with respect to the physical coordinates (x, y), the following
transformation formulas have to be applied:

∂Ni

∂ξ
=
∂Ni

∂x

∂x

∂ξ
+
∂Ni

∂y

∂y

∂ξ

∂Ni

∂η
=
∂Ni

∂x

∂x

∂η
+
∂Ni

∂y

∂y

∂η

or

∂Ni
∂ξ

∂Ni
∂η

 =

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η


︸ ︷︷ ︸

J

∂Ni
∂x

∂Ni
∂y



where J is the Jacobian matrix and it relates the derivatives of the phys-
ical coordinates with respect to the parent element ones. From the previous
expression it follows ∂Ni

∂x

∂Ni
∂y

 = J−1

∂Ni
∂ξ

∂Ni
∂η

 (B.9)

that can be substituted in (B.8) in order to obtain the compatibility matrix
B and derive the associated strain field ε and the related stress field σ.
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Appendix C

Newton-Raphson iterative
procedure

The first two blocks of the Algorithm 1 on page 157 are related to the classi-
cal way of solving a nonlinear problem; this Appendix will only point out the
iterative procedure used in the implemented code.
Generally, if a structure behaves elastically the Elastic prediction block of Al-
gorithm 1 has to be applied. If instead the elastic conditions are not verified,
the solving system of equations will be nonlinear. It is possible to distinguish
three different cases: a material nonlinearity, when an external load increment
doesn’t correspond to a proportional strain increment; a geometry nonlinearity,
in which the small displacements hypothesis could no longer be respected; a
constraints nonlinearity, in which constraints conditions vary during the load
applications.
A nonlinear problem implies finding the equilibrium between external and in-
ternal forces at every step n

F ext
n = F int

n (C.1)

This kind of equilibrium has been here solved by implementing a displacement-
control incremental procedure coupled with the classic Newton-Raphson iter-
ative method and the residual norm convergence criterion. This procedure
performs satisfactorily when handling snap-through problems, but it fails at a
snap-back point and has the disadvantage that every iteration is relatively time-
consuming since it is based on the progressive modification of the consistent
tangent stiffness matrix for each iteration. It is an explicit integration scheme,
since the time interval of each step is maintained fixed. It is calibrated and set
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216 Newton-Raphson iterative procedure

with not excessively large load increment sizes, in order to avoid convergence
problems. A quadratic convergence has been obtained in the implemented code.

The Nonlinear correction block in Algorithm 1 summarizes an incremental
procedure that starts from the assumption that the solution at a given step
(Un−1, Fn−1) is known and a linearization around this equilibrium point to
calculate the next solution at the step (n) is operated. So, starting from the
equilibrium equation at step (n− 1)

Kn−1Un−1 = Fn−1, (C.2)

a new solution at the step (n) is been looking for

KnUn = Fn → Kn(Un−1 +∆U) = Fn−1 +∆Fn ⇒ Kn∆U = ∆Fn. (C.3)

Considering the first iteration, it results K
(1)
n = Kn−1 so it can be written

K(1)
n ∆U = ∆F(1)

n (C.4)

From the displacement increment ∆U the stiffness matrix K
(2)
n is updated,

so the residual force vector is evaluated as follows

K(2)
n ∆U−∆F(1)

n = Err(1). (C.5)

If the convergence check is not verified we proceed with a second iteration
by solving the equilibrium system obtained by applying the error vector as the
external forces vector:

K(2)
n ∆U(2)

n = Err(1)n . (C.6)

By evaluating the displacements increment ∆U
(2)
n the stiffness matrix K

(3)
n

is updated and a new error is calculated

K(3)
n ∆U(2)

n − Err(1)n = Err(2). (C.7)

The general procedure can be summarized for an iteration j as follows:

K(j)
n ∆U(j)

n = Err(j−1)
n (C.8)

Stiffness matrix updating ⇒ K(j+1)
n (C.9)

Residual vector evaluation ⇒ K(j+1)
n ∆U(j)

n − Err(j−1)
n = Err(j). (C.10)
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Figure C.1: Newton-Raphson iterative method with a displacement control proce-
dure.
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