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ABSTRACT 

 
Background: Human Immunodeficiency Virus (HIV), the causative pathogen of 
Acquired Immunodeficiency Syndrome (AIDS), continues to be a major global 
public health issue. Although, potent antiretroviral therapy (ART) has dramatically 
reduced the morbidity and mortality in HIV-infected individuals, one of the most 
consistent obstacles to HIV eradication is the presence of stable viral reservoirs of 
latently infected cells. The aim of the present study is to understand the 
mechanisms of the complex virus-host interactions that lead to persistent infection, 
and to achieve the ideal combination of therapies to eliminate HIV virus in an non 
human primate model, Sooty Mangabeys (SMs), that preserves CD4+ T cells 
homeostasis, avoiding the AIDS progression which occurs in Rhesus Macaque 
(RM) and humans. 
Materials and Methods: Twelve experimental chronically SIV-infected SMs, not 
homozygous for CCR5-null alleles and with viral load of 10

3
-10

5 
viral RNA 

copies/ml, were treated with combination antiretroviral therapy (cART) regimen 
consisting of Tenofovir, Emtricitabine, Raltegravir and Darunavir. The selected SMs 
were divided in four-treatment interruption groups receiving cART up to 2, 6, 9 and 
12 months. Plasma viral loads were detected by RT PCR, while CD4+ T subsets 
dynamics and their proliferation and activation status were analyzed by flow 
cytometry in different anatomical compartments and prior to the treatment initiation 
and during the cART in all SMs. cART-induced variations in CD4+ T cell subsets 
susceptibility to SIV infection were evaluated through FACS procedure and cell-
associated SIV-DNA assay. 
Results: No severe cART-related side effects, in terms of body weight and renal 
function indices were observed. Eleven out of twelve treated animals experienced 
a 2-3 log decline of plasma viremia at the earliest time points, below the level of 
detection. Although, analysis of total circulating CD4

+
 population showed minor 

changes in terms of frequency and absolute number, a significant recovery of 
CD4+ T cells in the mucosal compartment was observed. Interestingly, the study of 
CD4+ T cells subsets in the blood, highlighted a rapid and marked reduction of 
frequency and absolute count of effector memory (EM) and an expansion of central 
memory (CM) and memory stem cells (SCM) at early time point after ART initiation 
in SMs. cART resulted to be efficient in reducing immune activation levels on CD8+ 
T cells both in blood and mucosal compartments. In response to cART, a 
generalized reduction in SIV-infected CD4+ T cell subsets was observed and 
specifically in the fraction that represented the main virus source, i.e, EM and 
transitional memory T cells (TM). Analysis of cART interruption revealed that 
although, the group receiving cART for 2 months, experienced a rapid viral 
rebound after therapy interruption, interestingly, a control in viremia was observed 
after 6 months of cART in the treated animals.  
Conclusion: The four-drugs regimen proved to be safe, well tolerated with no 
discernible side effects and effective in suppressing viral replication in treated SMs. 
cART induced immunological changes and specifically a significant reduction of 
immune activation in both blood and mucosal compartments. A redistribution of 
CD4+ T cell subsets and a generalized decrease of CD4+ cellular subsets 
harboring virus in the early phases of treatment is a favorable scenario at 
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promoting further reduction of SIV reservoirs or their clearance for prolonged cART 
periods (9-12 months).  
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SOMMARIO 

 
Introduzione: Il virus dell'immunodeficienza umana (HIV), agente patogeno della 
sindrome da immunodeficienza acquisita (AIDS), continua ad essere uno dei 
maggiori problemi globali di salute pubblica. Sebbene, la potente terapia 
antiretrovirale (ART) abbia drasticamente ridotto la morbidità e la mortalità nei 
soggetti con infezione da HIV, uno degli ostacoli più consistenti per l'eradicazione 
del virus, è la presenza di stabili serbatoi virali in cellule latentemente infette. Lo 
scopo del presente studio è quello di comprendere i meccanismi alla base delle 
complesse interazioni tra virus-ospite che contribuiscono alla persistenza 
dell’infezione e di ottenere un’ottimale combinazione di terapie atte ad eliminare 
l’HIV  in un modello di primate (cercocebo moro – SMs). Questo modello preserva i 
linfociti CD4, evitando la progressione verso l’AIDS a differenza del Macaco 
Rhesus (RM) e degli uomini. 
Materiali e Metodi: Dodici SMs infettati sperimentalmente con SIV in fase cronica, 
non omozigoti per la mutazione del gene CCR5 e con carica virale di 10

3
-10

5
 copie 

di RNA/ml, sono stati trattati con una combinazione di farmaci antiretrovirali (cART) 
composta da Tenofovir, Emtricitabine, Raltegravir e Darunavir. I cercocebi mori 
sono stati divisi in quattro gruppi a cui è stato effettuato il trattamento 
rispettivamente per 2, 6, 9 e 12 mesi. La carica virale è stata rilevata su campioni 
di plasma mediante RT-PCR, mentre le dinamiche dei sottotipi cellulari dei linfociti 
CD4, il loro stato di proliferazione ed attivazione, sono stati analizzati mediante 
citofluorimetria a flusso in diversi compartimenti anatomici, prima e durante la 
terapia. Variazioni nella suscettibilità all’infezione da SIV in seguito a 
somministrazione della cART, sono state valutate nei diversi sottotipi cellulari dei 
linfociti CD4, mediante procedura di FACS e saggio di quantificazione del DNA 
virale totale. 
Risultati: Non sono stati riscontrati gravi effetti collaterali dovuti alla terapia, in 
termini di peso corporeo e indici di funzionalità renale. Undici dei dodici animali 
trattati hanno mostrato inizialemente una riduzione di 2-3 log della viremia 
plasmatica, inferiore ai limiti di detezione. Sebbene l’analisi dei linfociti CD4 
circolanti abbia mostrato minori variazioni in termini di frequenza e conta, un 
ripristino significativo dei linfociti CD4 è stato osservato a livello delle mucose. E’ 
interessante notare che l’analisi dei sottotipi cellulari dei linfociti CD4 nel sangue, 
ha evidenziato una rapida e significativa riduzione delle cellule effetrici della 
memoria (EM) ed un incremento delle cellule della memoria centrale (CM) e delle 
cellule T staminali di memoria (SCM) in tempi precoci in seguito alla 
somministrazione della cART. Nel sangue e nelle mucose, la cART si è rivelata 
efficace nella riduzione dei livelli di attivazione dei linfociti CD8. Per effetto della 
terapia, è stata inoltre osservata una riduzione generalizzata dell’infezione da SIV 
in tutti i sottotipi dei linfociti CD4 ed in particolare, nella frazione cellulare 
maggiormente coinvolta, ossia le EM. Al momento dell’interruzione della terapia, il 
gruppo trattato per due mesi ha evidenziato una rapida replicazione virale, mentre 
nel gruppo trattato per 6 mesi la viremia rimane controllata. 
Conclusioni: La terapia ha dimostrato di essere sicura, ben tollerata, senza 
particolari effetti collaterali, ed efficace nella soppressione della replicazione virale 
negli animali trattati. La cART ha indotto alcune variazioni immunologiche tra cui 
una riduzione dell’immunoattivazione nel compartimento sistemico e mucosale. Giá 
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a partire dalle fasi iniziali. la ridistribuzione dei sottotipi cellulari dei linfociti CD4 ed 
una generalizzata riduzione nel contenuto di DNA virale in risposta al trattamento, 
delineano uno scenario favorevole per un ulteriore decremento delle dimensioni 
dei serbatoi virali o per la loro completa eliminazione in seguito a periodi prolungati 
di terapia (9-12 mesi). 
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1. INTRODUCTION 

 

1.1 Acquired Immunodeficiency Syndrome (AIDS) history and its 

Epidemiology 

Despite more than 30 years of active research, the Human 

Immunodeficiency Virus (HIV), the causative pathogen of Acquired 

Immunodeficiency Syndrome (AIDS), continues to be a major global public 

health issue. Approximately 35 million people living with HIV were 

estimated at the end of 2013. This increased number is the result of a 

major accessibility to antiretroviral therapy with respect to previous years. 

However, the rate of new infections is still high, with 2.1 million people 

becoming newly infected with HIV globally. The number of AIDS deaths has 

increased with respect to 2012 (1.6 million), having claimed more than 39 

million lives so far in 2013 [1], confirming that AIDS is an ongoing 

challenge. 

Moreover, the difficulty of diagnosis of AIDS symptoms, that appear to be of 

nonspecific nature, easily confused with a variety of other illnesses, does 

not help the health care providers and may explain why this infection has 

not been discovered until 1981. In that year, a group of young gay men in 

New York, San Francisco and Los Angeles were diagnosed with symptoms 

not usually observed in individuals with a healthy immune status [2, 3, 4]. In 

particular, a very aggressive form of Kaposi’s sarcoma or Pneumocystis 

carinii pneumonia, lung infection, was observed in these individuals [4]. 

Due to its first occurrences in male homosexual community, the disease 

was also temporarily called gay compromise syndrome or gay-related 

immune deficiency (GRID) [5]. However, after determining that AIDS was 

not isolated to the gay groups [6, 7], it was realized that the term GRID was 

misleading, so, in 1982, it was attributing a new name, AIDS, by CDC 

(Centers for Disease Control and Prevention). Soon, the reported new 
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cases soared, with more than hundreds people, above all among the 

younger. In the individuals hit by AIDS, an extremely severe clinical course 

and high number of deaths was observed. It made the world understand 

that a new disease associated with the breakdown of the body’s immune 

system was appeared. Finally, in 1983, AIDS pathogen was isolated from 

lymphoid ganglions of an infected patient by Luc Montagnier and Françoise 

Barré-Sinoussi at the Institute Pasteur in Paris, attributing it the name 

lymphadenopathy-associated virus (LAV) [8]. Independently, at the same 

time, Robert Gallo’s research group declared to have found the retrovirus 

that may have been infecting AIDS patients, calling it HTLV-III [9]. In May 

1986, the International Committee on Taxonomy of Viruses coined a new 

name, HIV (Human Immunodeficiency Virus) [10].  

Despite the identification of AIDS etiologic agent in 80s and the achieved 

goals in HIV research fields with extraordinary changes in the AIDS 

landscape, it’s well established that some obstacles in HIV elimination still 

remain. First of all, the presence of epidemic burden that varies 

considerably between regions and countries over the world. Sub-Saharan 

Africa is one of the most affected regions, accounting for 24.7 million 

people living with HIV in 2013 and for almost 70% of the global total of new 

HIV infections [11]. This is likely the result of many factors, including 

education, morals, religion, virus transmission routes, different availability of 

antiretroviral drugs, stigmatization of HIV infection and higher rapes 

frequency [12]. Moreover, this high prevalence in Sub-Saharan Africa could 

probably also due to the fact that this is the region where HIV was 

transmitted first in humans through multiple infections from simian 

immunodeficiency virus (SIV)-infected nonhuman primates [13].  

In other countries, such as Asia, almost 4.8 million people are living with 

HIV, although the regional prevalence of HIV infection is about one-

seventeenth that in sub-Saharan Africa. In contrast in Western and Central 
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Europe HIV prevalence rates are about 0.1% [14]. Progress has been 

dramatic in stopping new HIV infections and, above all, among children. In 

2013, 240 000 children were newly infected with HIV, 58% lower than 2002. 

Despite the positive achieved successes to limit AIDS pandemic, there is 

still a long way to go. According to the World Health Report in 2008 [14] for 

every two people starting to take antiretroviral therapy, another five become 

newly infected. The main focus in low-income countries is not to treat 

patients but to prevent the onset of new infections with the design of HIV 

vaccines. Until then, clinical diagnostic tools to select appropriate 

antiretroviral therapies will become even more important and serve as a 

valuable factor in the fight against HIV. 

 

1.1.1 Clinical course of HIV Infection 

HIV can be transmitted through several routes: by sharing injecting 

equipment, by receiving blood transfusions or other blood related products 

from an infected person (in particular among intravenous drug abusers), 

from an HIV-positive mother to the baby (during pregnancy, childbirth and 

breast feeding) and mainly spread by risky homo and bisexual activities. In 

these ways, the contact of mucosal surfaces or damaged tissues with the 

body fluids of an HIV-infected person make the transmission possibly 

occurs.  

The clinical course of HIV infection generally includes three phases: 

primary infection, clinical latency and AIDS-defining illness [15] (Figure 1). 

Within the first week of exposure, at the sites of virus entry, HIV is 

transported to local lymph nodes by Langerhans cells (LC) or dendritic cells 

(DCs). From those sites, HIV can spread and reach the other body districts, 

particularly gut-associated lymphoid tissue (GALT), the principal site of HIV 

infection and a reservoir of the virus that supports its persistence even 

during long-term viremia suppression in presence of antiretroviral therapy 

[16, 17]. At around 3-12 weeks after infection, virus appears in the blood 
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with burst of viremia (up to 107 HIV RNA copies per ml of plasma) that 

favors HIV dissemination throughout the body and the infection of helper T-

cells, macrophages and DCs in peripheral lymphoid tissues. This phase 

commonly named acute phase of HIV infection, is therefore accompanied 

by a rapid depletion of the memory CD4+CCR5+ T cells, resulting in a 

variety of nonspecific signs and symptoms typical of many viral diseases.  

By 16 weeks after infection, the symptoms of acute viremia passed, but 

virus persists in the plasma. Resolution of the clinical syndrome, typical of 

acute phase and drop in viremia generally occur into a stage called  

“clinical latency” phase that is associated with the emergence of HIV-

specific host immune responses. Indeed, the immune system partially 

controls the infection and viral production, as reflected by a drop in viremia. 

The chronic and clinically asymptomatic latent phase of HIV infection can 

last for a period of 8-10 years and the virus continues to reproduce at very 

low levels. Lymph nodes (LNs) and the spleen are sites of continuous HIV 

replication and cell destruction. Although the majority of peripheral blood T-

cells does not harbor the virus, destruction of CD4+T-cells within lymphoid 

tissues steadily progresses during the latent period, and the number of 

circulating blood CD4+ T-cells steadily declines.  

The progression to AIDS-defining illness, the last stage of the disease, is 

characterized by CD4+ T cell counts below 200 cells per mm3. In this 

condition, HIV individuals become susceptible to other infections and the 

immune responses against new pathogens may stimulate HIV production 

and accelerate the destruction of lymphoid tissues. Viremia may 

dramatically climb, sustained also by the residual ongoing viral replication 

in the latent reservoirs. Generally the impossibility of new T cells 

regeneration and the presence of opportunistic protozoal, bacterial, viral 

and fungal infections or malignancies drive HIV-infected patients to the 

death after some years of disease [15,16]. 
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Figure 1. Typical course of untreated HIV infection - originally published in 

[15] 

 

1.1.2 Human Immunodeficiency Virus (HIV)  

HIV is an enveloped retrovirus, member of the genus Lentivirus and part of 

the family Retroviridae. Two closely related types of HIV, designated HIV-1 

and HIV-2, have been identified. HIV-1 is the most common cause of AIDS, 

but HIV-2, which differs in genomic structure and antigenicity, causes a 

similar clinical syndrome. Each virion contains two copies of an RNA 

genome enclosed by a cone-shaped capsid of viral proteins (p24). The viral 

core itself is surrounded by a spherical matrix (MA) comprised of p17 

proteins that are enclosed by a lipid bilayer, so called envelope (env) [18]. 

This envelope contains viral glycoproteins (gp120 and gp41) that bind 

specifically to CD4+ T cell receptors, enabling the virus to enter its host 

(Figure 2).  
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Figure 2. Structure of Human Immunodeficiency Virus type 1 

 

1.1.3 HIV genome organization 

HIV presents in its genome, many genes coding for structural proteins that 

are equally observed in all retroviruses, while several nonstructural 

("accessory") genes are unique to HIV. Each single-stranded RNA 

molecule has a length of about 9.2kb and is tightly bound to nucleocapsid 

protein p6 and p7 [18]. Long terminal repeats (LTRs) flank each end of the 

genome and regulate viral gene expression, viral integration into the host 

genome and viral replication. HIV genes encode at least nine proteins, that 

can be divided in three classes: major structural (Gag, Pol and Env), 

regulatory (Tat and Rev) and accessory proteins (Vpu, Vif, Vpr and Nef). 

Some primate lentiviruses carry an additional accessory gene, vpx (e.g. 

HIV-2) or vpu (e.g. HIV-1) in the region between pol and env. The gag 

sequences encode core structural proteins. Gag precursor is cleaved by 

the viral protease into the mature Gag proteins, matrix (MA, p17), capsid 
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(CA, p24), nucleocapsid (NC,p7), and p6, that create a capsid that 

surrounds the viral genome. The env sequences encode for glyprotein 

precursors gp160, cleaved by a cellular protease into two subunits of the 

viral spike, the glycoproteins gp120 and gp41, which are required for 

infection of cells. The pol sequences encode reverse transcriptase (RT), 

integrase (IN) and viral protease enzymes (PR) involved in viral replication 

process. In addition, HIV accessory and regulatory genes, Vif, Vpr, Vpu, 

Tat, Rev, and Nef, products regulate viral reproduction in various ways, but 

generally favoring the virus replication, packaging of the virus and the 

release of virions (Figure 3) [18]. 

 

 

Figure 3. HIV genome structure 

 

1.1.4 Life cycle of HIV 

HIV replication can be divided in one early phase, followed by a later one 

[19] (Figure 4). The early phase includes the steps until viral genome 

integration into the host genome, while the late phase is characterized by 
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the production of new virus particles, in terms of HIV expression, assembly 

and release [18].  

 

 

 

Figure 4. Replication cycle of HIV [19] 

 

Env complex is composed by a transmembrane gp41 subunit and an 

external, noncovalently associated gp120 subunit.  Env mediates HIV entry 

into target cells, promoting the binding between gp120 and the CD4 

molecule on the target cells, including CD4+ T cells, macrophages and 

some dendritic cells. CD4 binding induces a conformational change in viral 

gp120 that allow the virus to interact with additional cell surface molecules, 

termed co-receptors, also required for entry [18].  

Different isolates of HIV have distinct tropisms for different cell populations 

depending on the specificity of gp120 variants for different chemokine 
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receptors. Over 14 different seven transmembrane (7TM) receptors have 

been identified as potential co-receptors for HIV and SIV by their capacity 

to support infection of CD4+ cell lines in vitro [20]. The most used co-

receptors are CCR5 and CXCR4, found predominantly on T cells. The HIV 

strains that infect primary cultures of human macrophages but not 

continuous T-cell lines are defined as macrophages-tropic, or M-tropic, 

virus and bind to CCR5, whereas the strains that infect T cell lines but non 

macrophages are known as T-tropic virus and bind to CXCR4. Some virus 

strains also infect both T-cell lines and macrophages (dual-tropic virus). 

In many HIV-infected individuals, the early stages of the disease are 

characterized by M-tropic viruses that use CCR5 co-receptor, typically 

expressed on effector T cells located at mucosal sites. In contrast, during 

the late phases of the disease, it’s typical the emergence of more virulent 

T–tropic viruses that preferentially bind CXCR4, mainly expressed on naïve 

and central memory T cells in the peripheral blood or at lymphoid sites [21, 

22].  

Both CD4 and co-receptor bindings induce a second conformational 

change in gp41, that exposes a hydrophobic region (fusion peptide) crucial 

to initiate fusion between the lipid bilayers of HIV and the cell membrane. 

Once HIV virions enter the target cells, the viral core translocates into the 

cell cytosol, where the uncoated viral genome and enzymes start the 

reverse transcription process. At this point, viral RNA undergoes reverse 

transcription, mediated by the error-prone viral reverse transcriptase 

enzyme, with the final production of double-stranded complementary viral 

DNA. Then DNA is transported into the cell nucleus, where the integration 

of the viral DNA into the host genomic DNA is catalyzed by the viral 

integrase. The HIV integrated DNA, termed provirus, may remain 

transcriptionally inactive for months or years, with little or no production of 

new viral proteins or virions, allowing the infection to be latent.  
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LTRs regulate the provirus gene transcription, containing polyadenylation 

signal sequences, the TATA box promoter sequence and binding sites for 

two host cell transcription factors, NF-κB and SP1. Therefore, any 

cytokines or other physiologic/antigenic stimuli capable to active T-cells and 

macrophages, generally enhance the viral gene transcription of HIV 

provirus. Upon export from the nucleus, spliced mRNA is translated to 

generate early gene products of the viral proteins Rev, Tat and Nef. Later in 

infection, these viral proteins facilitate the nuclear export of singly spliced or 

unspliced viral RNAs, which produce late genes, as env, gag and pol, 

encoding for the structural component of the virus [18].   

Full-length RNA transcripts of the proviral genome are packaged within a 

nucleoprotein complex that includes the gag core proteins and the pol-

encoded enzymes required for the next cycle of integration. New progeny 

virions, enclosed within a membrane (envelope), that bud from the host cell 

and express gp120 and gp41 on membrane, proceed to infect new cells 

[23, 24, 25]. This process allows HIV to infect and kill multiple immune 

cells, specifically causing a severe depletion of  CD4+ T cells, that result to 

be the major host immune system target [26, 27].  

In the last years, active research has been aimed at developing antiviral 

therapies and vaccines against HIV. However one of the most important 

obstacle is the complex nature of HIV that presents a real challenge for 

researchers. HIV reverse transcriptase is characterized by a high rate of 

mutation of the viral genome, due to its error-prone nature. It leads to a 

heterogeneous population of virions within an infected individual, creating 

highly diverse 'quasispecies'. Indeed, it has been assessed that in a single 

HIV-infected cell, the emergence of new mutations at the single base pair 

level is extremely high, with a rate of at least one variation in viral genome 

per day. [28]. This is the main mechanism that favors HIV variability within 

a single individual but also on a population level, as indicated by the 
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worldwide distribution of multiple clades and subspecies of HIV [29-31]. In 

particular, one of the viral region that mostly result to be susceptible to new 

mutations is the Env protein, that displays a crucial role in the infection of 

host cells, but at the same time, represents one of the major viral proteins 

targeted by the host immune system [32]. In this way, with this low fidelity 

process, HIV mutates, avoiding the pressure of the immune system and 

rapidly develops resistance to antiviral drugs [33]. Thus, the highly variable 

nature of HIV combined with the virus-mediated depletion of the cells of 

host immune system, make impossible to mount a functional immune 

response capable of defeating HIV. 

 

1.1.5 Immune responses to HIV  

The majority of HIV-infected people mount an immune response to HIV 

during the first few months following infection that does not differ from the 

other viral infections, in activating the immune system. However over the 

time, the HIV-specific humoral and cell-mediated immune responses result 

to be ineffective and generally contributing to viral escape. 

Studies of plasma donors who contract HIV have showed that, after HIV 

transmission, the first signal of immune response is the increase in acute 

phase proteins, such as serum amyloid A and alpha1-antitrypsin, and 

multiple cytokines, coinciding with an increase in plasma viremia [34, 35]. 

As viremia increases, so the levels of inflammatory cytokines and 

chemokine do in the plasma, particularly anti-viral type-I interferons (IFNs), 

interleukin (IL)-15, IL-22, and the pro-inflammatory cytokines IFN-γ and 

tumor necrosis factor (TNF)-α. The earliest cellular sources of cytokines 

production include CD4+CCR5+ T cells, plasmacytoid dendritic cells 

(pDCs), myeloid dendritic cells (mDCs), monocytes/macrophages, natural 

killer /natural killer T (NK/NKT) cells and, subsequently, HIV-specific T cells 

[26, 34, 36]. Collectively, this early intense immune response to HIV is 

defined as “cytokine storm”, due to the magnitude of the response, much 
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higher than that observed in acute B and C hepatitis infections. Although 

cytokines enhance protective antiviral immune responses in acute HIV 

infection, the cytokine storm probably also contributes to harmful immune 

activation, promoting viral replication rather than clearance the virus and 

favoring CD4+T cells loss.  

A few studies have measured that HIV specific CD8+ T cells responses 

occur during early infection (10-20 days post infection), before the first 

antibodies are detectable [37] (Figure 5).  As the CD8+ T cells response 

approaches its peak approximately 1-2 week later, the plasma viral load 

declines and reach a steady set point. This suggests that anti-viral cytotoxic 

T lymphocytes (CTL) help control initial virus replication by directly perforin 

and Fas ligand based HIV-infected cells killing or by secreting soluble 

factors with antiviral activity [38]. Despite higher frequencies of HIV-specific 

CD8+ T cells in HIV-infected individuals, [39-41] suppression of viral 

replication is not achieved. The main reason is the emergence of viral 

escape mutations that allow the virus-infected cells to be hidden by host 

cytotoxic T-lymphocyte [42-44]. Moreover, some in vitro studies have 

revealed that HIV-specific CD8+ T cells present a reduction in their cytolytic 

activity [45] and poor ability of proliferation [46]. 

Despite the virus infects and depletes CD4+ T cells, these cells also mount 

an early response to HIV antigens. However, this response is dysregulated 

and although acts in helping for both cellular and humoral adaptive immune 

responses, CD4+ T cells still are particularly susceptible to HIV, remaining 

its preferential targets [47]. Thus, the cells that theoretically should protect 

individuals against virus contribute for its expansion. Potentially, in HIV-

infected individuals treated shortly after infection and in a cohort of 

chronically infected people with ART-suppressed viremia, it has been 

observed that CD4+ T-cell proliferation responses to HIV antigens 

sometimes can be preserved or restored [48]. 
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Figure 5. Earliest innate and adaptive immune responses after HIV-1 

transmission [34] 

 

Finally, the antibody response to HIV infection first occurs at approximately 

13-25 days post infection in the form of immune complexes and non-

neutralizing antibodies, a majority of which are specific for gp41 and gp120. 

The antibodies, produced early in the infection, only partially inhibit viral 

infectivity or cytopathic effects. Studies on viral dynamics based on 

mathematical modeling, have shown that produced early antibodies do not 

result in select for viral escape mutants. These data suggest that they 

resulted to be ineffective at limiting viral replication [49]. Antibodies that 

neutralize HIV develop slowly, around 12 weeks or longer post HIV‐1 

transmission. However, at this point, these more potent antibodies hardly 

contribute to significantly control HIV infection, due to the emergence of 

neutralization-resistant viral variants that evade the immune responses 

[50]. The rapid immune escape of HIV from anti-viral CTL and antibodies 

induces a compensatory increase in immune cells specific for new viral 

variants. The persistent viral burden and the immune responses that the 
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host tries to mount against the virus contribute slowly to immune 

dysfunction and exhaustion.  

 

1.1.6 ‘Elite controllers’ – HIV infected non-progressors 

Although the majority of the HIV-infected patients are incapable of 

controlling virus replication and progress to AIDS, a small proportion (5 to 

15%) of people (long term non progressors - LTNPs) with HIV are able to 

control HIV replication with moderate viral loads (under 10,000 copies 

RNA/ml blood)  and CD4+ counts within the normal range in the absence of 

ART [51, 52]. A further subset of these individuals, termed elite controllers 

(EC), is able to maintain relatively stable CD4+ T cells counts and suppress 

viral loads to undetectable levels. Several genetic studies have identified a 

correlation between HIV disease progression and the presence of certain 

human major histocompatibility complex (MHC) alleles. In non-human 

primates models infected with SIV, the same correlation between disease 

progression and specific Mamu alleles, has been observed [53]. In 

particular, rapid and slow progressors showed specific HLA alleles, 

specifically HLA-B35 and the HLA-B7, that correspond to more rapid 

progression to AIDS. Interestingly, in most of the elite controllers the 

presence of protective MHC class I alleles including HLA B57 and B27 has 

been reported [54, 55]. Moreover, the majority of LTNP and elite controllers 

do not exhibit CCR5 Delta 32 gene deletion [56].  

Several studies have reported stronger CD8 responses to HIV-gag in elite 

controllers. An increase of cytotoxic granules, IL-2 and IFN-g production 

and CD27 cell surface expression lead to high functional avidity [57, 58]. 

However, the observation of absence of an intense cell-mediated response 

to HIV in all elite controllers, suggests that other mechanisms are 

responsible for controlling the virus replication and delaying AIDS 

progression. Natural killer cells may exert an important role in elite 
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controllers viremia control, since it has been documented a strong 

association of KIR3DL1 and KIR3DS1 with HLA B57 alleles in HIV 

individuals [59, 60]. Neutralizing antibodies have an unclear role, as they 

are nearly absent in some elite controllers [61] or higher HIV-1–specific 

antibody responses result to be observed and associated with low viremia 

level in other studies [62]. Moreover, follow up of most non-progressors has 

revealed a possible AIDS progression [63, 64].  Maintaining control of HIV 

replication, even for several years, is not sufficient to avoid AIDS and 

opportunistic infections, due to low levels of HIV replication, viral 

persistence, ongoing inflammation and viral evolution.  

 

1.2 Origin of HIV-AIDS: zoonotic transmission among species 

Before the emergence of AIDS in humans in 1981, the largest and first 

observed phenomena of lymphoma adenopathy was recorded in 23 captive 

rhesus macaques (Macaca mulatta) and one stump-tailed macaque 

(Macaca arctoides) of the Davis - California National primate research 

center between 1969 and 1971 [65, 66]. However, this macaque disease 

characterized by signs of immune suppression and opportunistic infections, 

was not reported as AIDS or even immunodeficiency, since the outbreak 

occurred before AIDS emergence in humans.  

Due to the necessity of primate centers to exchange animals for the 

purpose of expanding their colonies, increasing the genetic diversity in 

terms of scientific projects, soon the infection spread in the different Indian-

origin rhesus macaque groups, generating the highly pathogenic viruses 

SIVmac251 and SIVmac239. The occurrence of unintentional SIV 

transmission inducing lymphoma happened after the experimental transfer 

of Sooty Mangabeys (SMs) tissues into rhesus macaques (RMs). 

Retrospective analyses showed that these sooty mangabeys resulted SIV 

positive and represented the possible source for SIV infection in macaques 
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(SIVmac) [66, 67]. At that time, HIV-1 had already been identified as the 

cause of AIDS [8], but its origin still resulted to be unclear.  

Soon, in 1986, after the emergence of HIV-2 infection in individuals from 

West Africa [68], a closely related-virus, SIVsmm, was identified in SMs 

[69]. Within a very short period of time, HIV-1 and HIV-2 infections causing 

AIDS in humans spread and huge lentiviruses reservoirs in African 

monkeys were identified. Thus, simian viruses were thought to be mainly 

responsible for AIDS origin for their ability to cros species barriers.  

 

1.2.1 HIV-2 origin 

Molecular analyses revealed that HIV-2 originated from several zoonotic 

transmissions of SIVsmm to humans, virus closely related to SIVs identified 

also in infected macaques [70]. SIVsmm virus has been isolated and 

characterized from captive, free-ranging and pet [71, 72] Sooty Mangabeys 

(Cercocebus atys- SMs). SMs are mainly spread in West Africa, where 

SIVsmm infection is common in the wild. The natural habitat of sooty 

mangabeys overlaps with the geographical region where HIV-2 is endemic 

in humans. Indeed, in these areas, monkeys are regularly hunted for food 

or kept as pets, thus promoting the virus transmission through direct 

contact with blood or bites [72]. There are at least eight identified subtypes 

of HIV-2, that are only present in countries where sooty mangabeys 

inhabitat, explaining the less virulence compared to HIV-1  [73]. Although 

SIVsmm virus has crossed the species barriers several times, only 

subtypes A and B are represented in the HIV-2 populations, with subtype A 

mostly spread in Senegal and Guinea-Bissau and the subtype B in Côte 

d’Ivoire [74]. Other subtypes were only detected in one or few individuals.  
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1.2.2 HIV-1 origin 

SIVcpz is a virus closely related to HIV-1: they both share the same genetic 

organization and contain vpu gene that is not present in most other primate 

lentiviruses. In the light of this, SIVcpz results to be a strong candidate for 

AIDS pandemic as result of cross-species transmission from wild 

chimpanzees (P.t. troglodytes) to humans [75]. SIVcpz infection is common 

and widespread in Central and Eastern chimpanzees (P.t. troglodytes and 

P.t. schweinfurthii) but absent in the remaining two subspecies (P.t. verus 

and P.t. ellioti), explaining the relatively scarcity of SIVcpz in the wild. 

Genetic analysis revealed at least four independent cross-species 

transmissions that give rise to the HIV-1 groups M, N, P and O, with the 

earliest event occurring in 1908 near modern-day Kinshasa, Democratic 

Republic of the Congo [76]. Two of the four HIV-1 groups proceed from P.t. 

troglodytes, in particular the M group (main) that comprises the largest 

group of HIV-1 accounting for the majority of infections worldwide and N 

group that contains only a small number of strains localized to Cameroon. 

The remaining two groups, P and O, have been detected in gorillas, with a 

prevalence of SIVgor just restricted to few sites in Cameroon. Currently, it’s 

unclear whether gorillas were HIV-1 O source or whether both humans and 

gorillas were infected with a not indentified SIVcpz strain [77]. HIV-1 Group 

P phylogenetically clusters with SIVgor, suggesting that it is the result of a 

cross-species transmission from gorillas [78]  

 

1.3 Simian Immunodeficiency virus (SIVs) and non-human primate 

models in HIV-1 research 

Scientific interest in the study of SIVs viruses arose after the observation 

that the emergence of HIV-1 and HIV-2, the pathogen agents causing AIDS 

in humans, was the result of cross-species transmissions of SIVs from 

chimpanzees/gorillas and sooty mangabeys (SMs), respectively. Currently, 

the study of HIV origins, the characterization of SIV genome, the evaluation 
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of SIV disease progression in non human primate (NHP) are valuable tools 

for better understanding HIV pathogenesis in humans by allowing extensive 

in vivo studies to be performed in alternative preclinical models.  

 

1.3.1 SIV genome organization 

SIVs are a large group of lentiviruses that naturally infect more than 40 

African NHP species. Its prevalence is variable, from 2 percent to over 80 

percent in wild different species. SIVs belong to the genus Lentivirus of the 

family Retroviridae and infect the equine, ovine, bovine and feline families, 

in addition to simian species and humans. Primate lentivirus are highly 

divergent considering that some viral proteins share less than 30 percent 

amino acid identity between the different strains of SIV and HIV in terms of 

genome. However, many structural, molecular and biological features are in 

common. Both HIV and SIV lentiviral particles are surrounded by cell-

derived lipid membrane with anchored viral glycoproteins and containing 

enzymatic proteins. Underneath the lipid membrane, a cone–shaped capsid 

surrounds the two copies of positive-stranded RNA associated with 

nucleocapsid protein and enzymes required for reverse transcription and 

integration. SIV genome is about 10,000 nucleotides and contains 8-9 

genes that encode for about 15 different proteins. In addition to gag, pol, 

env, tat and rev genes, present also in HIV genome, at least three further 

accessory genes vif, vpr and nef are present. Moreover, vpx is 

characteristic of SIVs viruses that infect Papionini tribe of monkey and HIV-

2; while vpu distinguishes HIV-1 and its closely related SIVs [79] (Figure 6). 
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Figure 6. Genomic organization of lentiviruses [79] 

 

1.3.2 Host Restriction factors: barriers to cross-species 

transmission 

Viruses exploit cellular factors essential to each step of their replication in 

host target cells. While, mammals present the peculiar ability to use 

immune intrinsic factors, constitutively expressed in some cell types, to 

protect themselves against invading pathogens. In particular the interferon-

induced antiretroviral factors that act against the virus, interfering with 

different replication phases, are: TRIM5α that binds to the incoming 

retrovirus capsids, recruits them to the proteasome, avoiding reverse 

transcription; APOBEC3G that inhibits reverse transcription inducing a 

lethal hypermutation of the viral genome and tetherin that ‘tethers’ nascent 

virions to cell membrane. Primate lentiviruses, from their side, exhibit the 

ability to develop specific tools to evade the immune system. Especially, 

virus accessory proteins are mainly involved in this mechanism [80]. Briefly, 

Vif (viral infectivity factor) antagonizes APOBEC3G causing its proteosomal 

degradation; Vpr (viral protein R) mediates G2 cell-cycle arrest and Vpx 
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(viral protein X) only enconded by HIV-2, SIVsmm and SIV infecting 

mandrillis, induces cycle arrest and facilitates macrophages infection [81, 

82]. In addition, Nef (negative factor) and Vpu (viral protein U) accessory 

proteins display relevant roles. The acquisition of Vpu gene, only present in 

HIV-1 and its closest SIV counterparts, resulted in the evolution of primate 

lentiviruses with increased virulence and infection associated with higher 

immune activation levels [83]. Vpu acts enhancing the virions release by 

antagonizing ‘tetherin’ and modulating adaptive immune responses through 

CD4 receptor degradation [84,85]. Furthermore, the mechanism used by 

Vpu to affect the levels of virus-induced activation, may be affecting Nef 

function. It has been observed that Nef (negative factor), encoded by all 

HIV and SIV strains, down-modulates CD4, MHC-I and less efficiently 

CD28 and CXCR4 [86, 87], facilitating their degradation and avoiding 

massive T cell immune activation. In natural host of SIV, the Nef-mediated 

suppression of immune cell responses may be beneficial for promoting 

virus spread and furthermore, at the same time, reduced T cells activation 

may promote less viral replication-associated damage, maintaining more 

functional immune responses. HIV-1 Nef proteins differ from those of 

SIVagm, SIVsmm and HIV-2, with consequent strong response to 

stimulation, rendering T cell hyper-responsive. Vpu acquisition may have 

facilitated the evolution of viruses with an enhancement of T cell activation, 

explaining the acceleration of disease observed in HIV-1 infected humans 

[88].  

The ability of the lentiviruses to rapidly mutate and evolve, adapting 

themselves to a new environment and host factors, qualified them for 

efficient cross-species transmission.  
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1.3.3 Viral coreceptor tropism  

HIV and SIV Env glycoprotein interacts with CD4 receptor and a seven 

transmembrane G-protein-coupled chemokine co-receptor as entry factor. 

CD4 is mainly expressed on T helper cells and, at lower levels, on 

macrophages and dendritic cells surfaces. As in HIV infection, CCR5 is the 

main coreceptor used by most of the SIVs viruses to infect African NHPs. A 

wide variety of coreceptors repertoire, such as CCR1, CCR2b, CCR3, 

CXCR6, CCR8, GPR1, GPR15/Bob, STRL-33/Bonzo and Chem23 display 

important role for virus entry, at least in cell culture [89, 90]. However, SIVs 

viruses can replicate efficiently in some natural hosts, without using CCR5 

or CXCR4, as occurs in SIVrcm that uses CCR2b as a major entry factor 

[91]. Moreover, recently, it has been identified that a subset of SMs are 

homozygous for a 2 bp deletion (Δ2) in CCR5, resulting in a truncated 

molecule not expressed on cell surface [92]. These SMs showed viral loads 

moderately reduced viral loads compared to the SMs with wild-type CCR5 

alleles, but the presence of viremia is due to SIVsmm strains ability to use 

alternative coreceptors, such as CXCR6, GPR15 and GPR1 [89, 90]. It is 

well know that in 50% of HIV-1 infection, the progression to AIDS is 

characterized by a switch in viral tropism from CCR5 to CXCR4 viruses 

associated with a rapid decline in CD4+ T cells counts, accelerated disease 

progression and very poor prognosis without antiretroviral therapy [93]. In 

NHP models, CXCR4-tropic viruses emerge rarely [94, 95]. Interestingly, it 

has been reported the occurrence of SIVsmm capable to infect the host 

cellular targets by using CXCR4 in a cohort of SMs with loss of CD4+ T 

cells but with no development of any opportunistic infections or disease 

signs. Recent data [95] suggest that an AIDS free-status in low-CD4 SMs is 

possibly due to the presence of CD4/CD8 double negative T cells, 

particularly resistant to SIV infection with the ability to functionally 

compensate the lack of CD4+ helper T cells. Thus, although CXCR4 has 

been experimentally shown to be an effective coreceptor in SIV infection, 



24 
 

it’s largely unclear why CXCR4-tropic viruses more frequently emerge in 

HIV infection than in natural hosts SIV infection. A possible explanation 

may be that the CD4+T cells homeostasis is preserved in SMs that 

maintain regular levels of CCR5+ T cells throughout the course of natural 

SIV infection. 

 

1.3.4 SIV pathogenesis in natural hosts 

Over 30 NHPs species of both wild and captive primates in Sub-Saharan 

Africa are naturally infected with SIV and are defined SIV natural host [96, 

97, 98]. The first species identified as natural carriers of SIVs were Sooty 

Mangabeys (SMs – Cercocebus atys), African green monkeys (AGMs - 

Cercopithecus aethiops), mandrills (MNDs – Mandrillus sphinx). In SMs, 

AGMs and MNDs, SIV infection has been identified to be generally non 

pathogenic with no significant consequence of lentiviral replication in these 

species. Interestingly, natural hosts are able to avoid progression to AIDS, 

despite active viral replication of SIV at levels comparable to those found in 

HIV patients [99] In contrast, in the case of the pathogenic SIV infection, 

which primarily involved the Asian rhesus and pig-tailed macaques, 

infection with SIV results in a disease course very similar to HIV-1.  

In African NHPs, SIV infection is horizontally transmitted and it usually 

occurs after sexual contacts or bite wounds [100]. SIV vertical transmission 

seems to be rare and the possible way of transmission (in utero, perinatally, 

or via breast milk) has not been identified yet. The average of SIV 

seroprevalence of AGMs, SMs and MNDs in the wild has been documented 

to be around 40-50 percent [100]. SMs are geographically distributed in 

coastal forests of West Africa, region of HIV-2 spread; AGMs inhabit sub-

Saharan Africa and the Caribbean islands, while MNDs are endemic in 

Gabon and Central Africa. Among the natural hosts species that remain 
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AIDS-free, sooty mangabeys are the most studied as identified as the 

original host of HIV-2. 

 

1.3.4.1 Sooty Mangabeys: natural history of SIV infection 

SIVsmm infection of sooty mangabeys occurs at sexual maturity 

(approximately 4-5 years of age) and is common both in the wild and in 

captivity [101]. SIV-infected sooty mangabeys generally maintain normal 

CD4+ T cell counts despite chronic high levels of virus replication [102]. 

The main mechanism that allow SMs to remain healthy in presence of high 

viral loads have not been completely elucidated, although important 

insights into natural infection of SIV have been carried out in the past years. 

One of the used approaches to better study SIV-infected natural hosts, is to 

compare the features of non-pathogenic infection that are similar or distinct 

from pathogenic infection. As observed in humans, the acquisition of SIV 

infection, the primary phase and the chronic asymptomatic phases are also 

present in SIVsmm-infected SMs and SIVmac-infected RMs. Acute SIV 

infection is characterized by a high peak viral load occurring between 10-17 

days post-infection that coincides with CCR5+CD4+ T cells loss in mucosal 

tissues and blood [103, 104] in both pathogenic and non-pathogenic 

models.  

In natural hosts, after the peak, viremia declines and reaches set-point 

levels, remaining stable in the chronic phase, with viral loads comparable to 

HIV infection in humans. Concomitantly to CD4+ T cells depletion, an 

increase in activated T cells is observed. After the third week of SIV natural 

infection, the activation levels return towards baseline levels, in a opposite 

trend compared to RMs. Indeed in RMs, chronic infection is characterized 

by high levels of immune activation, sustained levels of virus replication, 

progressive loss of CD4+ T cells in the periphery, with development of 

opportunistic infections and finally AIDS [105]. In contrast, SMs have a 

general lack of cell cycle dysregulation and T cell apoptosis [106, 107]; 
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show no evidence of lymphadenopathy or clinical signs of viral infection; 

maintain stable CD4+ T cell counts and slight chronic T cells activation, 

despite sustained levels of viral replication [108] (Figure 7). 

 

 

Figure 7. Pathogenic and non-pathogenic SIV infection [100] 

 

1.3.4.2 Host cells targets and viral load 

In both natural and pathogenic HIV/SIV infections, the main cell type target 

of infection, is represented by short-lived, activated CD4+ T cells [109,110]. 

CD4+ T cells display a key role in eliciting both humoral and cellular 

immune responses producing inflammatory cytokines and chemokines that 

induce immunologic activation in HIV/SIV-infection. Seventy percent of 

CD4+T cells, with an activated memory phenotype, are located in the gut 

that represents the major HIV-1/SIVmac replication site [100]. 

A transient leukopenia is observed during primary SIV infection of natural 

hosts, affecting a large number of cell subsets, and in particular CD4+T 

cells [111] both in blood and lymph nodes (LNs) similar to SIVmac infection. 

However, differently to what occurs in pathogenic models, during chronic 

infection, natural hosts tend to maintain close to normal levels of CD4+ T 

cells counts in peripheral blood and LNs, with a low number of productively 

infected cells [106]. In contrast,  CD4+ T cells, in particular memory subsets 
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within the gut associated lymphoid tissue (GALT) of pathogenic models, 

show a dramatic and sustained depletion, with a concomitant increase of 

activated T cells [111]. However, the late GALT CD4+ T cells recovery is 

also not robust during the chronic phase in natural hosts infections, with 

partial restoration after one year post-infection in AGMs and SMs [111]. 

Moreover, a beneficial trait, that natural hosts have acquired, is the 

reduction in memory CCR5+ CD4+ T cell subsets, the target cells of SIV 

viruses, in comparison with the rhesus macaque counterpart [109]. 

Reduction in cells expressing CCR5 is peculiar only of natural host CD4 

and not for all the memory-associated CD8+ T, that present regular CCR5 

expression levels. Strikingly a recent study [112] also demonstrated that 

central memory CD4+ cells of SMs express less CCR5 and are less 

susceptible to SIV infection compared with RMs [109, 112]. The prevalence 

of CCR5+ CD4+ T cells in LNs explains the lower viral loads observed in 

SMs, that may be related to a more rapid immune clearance of virus from 

lymphoid tissue in natural hosts [113]. 

Naturally or experimentally SIV-infected natural hosts show evidence of 

high viremia levels, with persistent RNA plasmatic levels similar or higher 

than those associated with pathogenic progression [108, 100]. So the 

healthy status of natural hosts is not due to the presence of SIV viruses not 

able to efficiently infect the host. Indeed, it has been shown that SIVagm 

virus acquires mutations in vivo as rapidly as RMs, with the same potential 

ability to escape the immune responses as HIV-1 and SIVmac do [114]. 

 

1.3.4.3 Immune activation and HIV/SIV pathogenesis 

Study of pathogenic infection has offered strong support for the role of 

immune activation in HIV/SIV disease progression towards AIDS [115, 

116]. It has been found that high levels of pro-inflammatory plasma 

cytokines and chemokines, increased expression of IL-2 receptor on 

lymphocytes and sustained levels of activation markers, such as CD38 and 
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HLA-DR on CD8+ T cells, are distinctive features in HIV-infected patients, 

above all at more advanced stages of the disease [117]. Even patients on 

antiretroviral therapies (ART) with undetectable viremia, still show high T 

cell activation levels if compared to the healthy controls [118]. 

Therefore, the driving force of CD4+ T cells dysfunction and depletion, 

leading to AIDS in RMs and humans, is represented by the chronic immune 

activation as result of direct and indirect effects of the virus infection. The 

virus mediates the direct killing of CD4-expressing cells, leading to a 

homeostatic burst of proliferation, that provides effector T cells and an 

activated immune environment that contribute to support infection by 

increasing cellular targets. While, indirectly, the virus may contribute to 

immune activation interacting with innate immune cells, which elicit 

cytokines such as IFN-α and TNF-α [119]. Interestingly, SIV natural hosts 

maintain persistently high levels of virus in the absence of chronic immune 

activation [106], while the same virus results in widespread increase in 

immune activation in non-natural Asian macaques [96]. Strikingly, SMs 

mount a cellular immune response that is comparable in magnitude to the 

response observed in SIV-infected RMs [113, 120, 121]. The study of early 

events following SIV infection in SMs have revealed that the absence of 

chronic immune activation is a result of active down-modulation of 

inflammation rather than a failure in SIV-specific immune responses. In 

fact, SMs mount an innate immune response with a robust upregulation of 

type I interferon-stimulated genes (ISG) and an increase in some pro-

inflammatory cytokines and chemokines, such as IP-10, IL-2, IL-6, IFN-g 

and MCP-1 during acute infection, similarly to what happens to RMs. By 

day 28, natural hosts, after a transient upregulation of these genes, show a 

decline in their expression, returning to baseline levels. However, in RMs 

the inflammation does not spontaneously resolve. In fact, in pathologic 

models, chronic phase is still driven by sustained and non-specific IFN-g 
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production [122], persistent expression of ISGs, increased expression of 

cells activation and proliferation markers (KI67, CD38, cell-cycling-genes) 

[123, 124] and markedly higher levels of CD8+ T cell proliferation [120]. 

The mechanisms by which SIV-infected natural hosts resolve acute phase 

immune activation, while HIV-infected patients and SIV-infected macaques 

present a persistent vicious cycle of inflammation and immune activation in 

chronic phases, are unclear. A possible explanation for the decline in 

immune system activation comes from the observation that at days 14-30 

post infection, programmed death receptor-1 (PD-1) expression on SMs T 

cells is remarkably increased, suggesting an immune control of viral 

replication [125]. 

In addition, some hypothesize that preservation of CD4+ T cells 

homeostasis in peripheral blood and lymph nodes, could be a possible 

explanation for maintaining low levels of immune activation. However, the 

study of a subset of SIV-infected SMs has revealed low levels of immune 

activation in presence of generalized depletion of CD4+ T cells in different 

compartment, blood, LN, GALT, and BAL [116, 94, 126]. Therefore, 

preserving CD4+ T cell levels may not be a critical factor in resisting 

increases in immune activation. 

Moreover, evidence of microbial translocation in HIV-infected patients, 

measured by increases in bacterial lipopolysaccharide (LPS) in the plasma, 

is correlated with sustained immune cell activation and elevated plasma 

IFN-α levels [127]. In both chronically SIVsmm-infected SMs and SIVagm-

infected AGMs, microbial translocation and high LPS levels are absent 

[127, 128]. The balance between Th17 and Treg is preserved, contributing 

to maintain mucosal integrity [129, 130]. Thus, non-progressive SIV 

infection manifest normal lymphocytes turnover, no infiltration of CD8+ T 

cells into germinal centers or virus trapping on follicular dendritic cells, 

preservation of epithelial barrier and lack of microbial translocation [102, 
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108, 122, 123]. All factors that create a non-inflammatory environment that 

favor the absence of chronic immune activation in natural hosts.  

 

1.3.4.4 Immune responses to SIV in natural hosts 

Despite general similarities in acute phases, the major difference between 

pathogenic and nonpathogenic disease become evident with the 

occurrence of the chronic phase. Studying the transition from acute into 

chronic phase, could better define the roles of the different immune cell 

subsets in terms of contribution to resolving or potentiating a pro-

inflammatory immune environment in SIV infection. 

 

CD8+ T cells 

CD8+ T-cells play a crucial role in controlling HIV/SIV replication during the 

infection. Several studies were able to demonstrate that CD8+T cells can 

efficiently inhibit viral replication ex vivo [131] early during infection. It has 

been shown a correlation between development of antiviral CD8+ T cells 

and post-peak viral decline [38] and that depletion of CD8+ cells in the SIV 

macaque models resulted in rapid increase of viral replication [132]. 

In natural hosts the contribution of CD8+ T cells remain to be elucidated. 

CD8 depletion studies resulted only in minor increases in viral load, 

possibly due to activation of CD4+ T cells than that absence of CD8+ T 

cells [133]. Moreover, in vivo depletion of these cells has been performed in 

several studies to further assess CD8+ contribution role in adaptive SIV 

immune responses. Transient inhibition of the CD8 lymphocyte responses 

resulted in a marked increase in viremia in SIV-infected RMs [131, 132]. In 

contrast, in AGMs, no effect on peak viral load but only a small delay in 

post-peak decline was observed if compared to control animals with all 

AGMs remained clinically healthy [134]. These findings demonstrate that 

delaying the initiation of CD8 + T cells responses have no impact on the 
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nonpathogenic outcome in SIV-infected natural hosts [100]. Moreover, 

investigations on the magnitude of SIV-specific CD8+ T cells responses 

have revealed similarities between natural hosts and pathogenic HIV/SIV 

hosts [120, 121, 133, 135]. Thus, it’s possible that natural hosts have 

evolved strategy to deal with SIV infection that acts independently of CTL 

(Cytotoxic T-lymphocyte) responses. 

 

Th17/ Treg 

Th17 cells are a CD4+ T helper-cell subset that produces IL-17 in response 

to extracellular pathogens and deems critical for antimicrobial mucosal 

immunity. These cells are involved in the activation, recruitment and 

migration of neutrophils and favor the production of antimicrobial molecules 

and enterocytes proliferation [136]. It has been shown that this subset is 

depleted in the gastrointestinal tract of HIV and SIV infected individuals and 

rhesus, pigtailed (PTMs) macaques, respectively. In natural hosts, SMs and 

AGMs, SIV evolved mechanisms act to preserve Th17 cells, showing no 

microbial translocation or damage to the mucosal barrier, but further a 

functional suppression of inflammation [129, 137]. As Th17 subset is 

present at healthy levels in SMs, also the balance with Treg (T regulatory 

cells) is maintained. Treg regularly can suppress antigen-specific CD4 and 

CD8 responses, controlling high levels of immune activation caused by 

pathogens. Treg cells of SIV-infected AGMs favor the reduction in immune 

activation, producing IL-10, TGF-β, FoxP3 and PD1 in the early phases of 

infection [125, 138]. Conversely, SIVmac RMs develop this type of 

responses to SIV, only in later infection [125,139], not avoiding the aberrant 

chronic T cell hyperactivation that correlates with AIDS progression as in 

HIV-1 infection [122, 123]. 
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Double Negative T cells  

Double negative (DN) T cells are defined by expression of the CD3 protein, 

and a lack of both CD4 and CD8. Previous studies in murine models 

attribute to these cells regulatory functions in autoimmunity and 

transplantation [140]. Moreover, cross sectional analysis of DN T cells in 

different natural hosts species has revealed that DN T cells are found in 

larger proportions (10–40% of lymphocytes) in natural hosts (SMs, AGMs 

and patas monkeys) than in pathogenic host species (RMs).  DN T cells are 

polyclonal and predominantly exhibit an effector memory phenotype 

(CD95+CD62L−). Microarray analysis of TCR (anti-CD3/CD28) in 

stimulated DN T cells has shown that these cells are multifunctional and 

upregulate genes with marked similarity to CD4+ T cells [141]. Moreover, 

DN T cells may have specific T helper function in a cohort of CD4-low sooty 

mangabeys, with no sign of AIDS progression [95]. When CD4-low sooty 

mangabeys were exposed to influenza vaccination, preserved immune 

responses were observed. These finding suggest a putative role of DN T 

cells in maintenance of an AIDS free status, producing Th1, Th2, and Th17 

cytokines [95]. The similarities between DN and CD4+ T cells during SIV 

natural infection in SMs highlight a possible immunotherapeutic target to 

prevent HIV-induced disease progression. 

 

B cell Responses 

In the initial phase of SIV pathogenic infection, the main target of the virus 

is represented by T cells, but similarly, B cells are hyperactivated with 

subsequent massive production of virus-specific antibodies. However, in 

short periods, B cells encounter a rapid loss, a huge amount of CD8+ T 

cells migrate in the germinal centers in HIV-1 and SIVmac infections and, 

with the progression of the disease, the normal architecture of these 

centers disappear. Although the transient reduction is also observed in the 
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natural hosts in acute phase, B cells then are reconstituted, with no sign of 

lymphadenopathy, no lymphocytes sequestration into LNs or CD8+ T cells 

infiltration of the germinal center during chronic infection [108].  

In vivo CD20+ B cells depletion studies were conducted to elucidate the 

role of the humoral arm in mounting an immune response against SIV. Only 

prolonged depletion of B cells in RMs, negatively affects the virus 

replication, that increases during chronic phase. If the role of the humoral 

responses in the pathogenic models seem to be unclear, depletion of 

CD20+ B cells in AGMs show minor effects on viremia with no remarkable 

AIDS sign [134]. Moreover, although natural hosts are able to mount 

neutralizing responses [142], the high plasma viremia that characterized 

them, explain how these responses are not more efficient than those 

mounted in pathogenic models. 

 

Dendritic cells  

Dendritic cells (DC) play a pivotal role in linking the innate and the adaptive 

immune responses, recognizing viruses or microbial components through 

Toll like receptors (TLRs) or other pattern recognition receptors (PRRs). 

When activated, DC migrate to secondary lymphoid organs where interact 

with different immunity cells, including NK cells, monocytes, T and B cells 

to mount an early immune response. In blood, among DC, the major 

subsets are represented by myeloid DCs (mDCs) and plasmacytoid DCs 

(pDCs). pDCs, expressing TLR7 and TLR9, are one of the first responders 

to lentiviral infection. These cells contribute to enhance the pro-

inflammatory environment, secreting IFN-α and other cytokines. During the 

first two weeks of pathogenic SIV infection, the levels of circulating pDCs 

decline in blood. Concomitant with the pDCs decrease in blood, plasma 

IFN-α levels and pDC numbers transiently increase in lymph nodes, where 

they encounter high levels of virus [143]. However, whether for natural 

hosts their frequencies returns to baseline levels after early phases of 
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infection, in pathogenic infection the decline continues, with constant pDCs 

recruitment in LNs favoring disease progression [144]. The control of 

aberrant IFN-α production by pDCs during acute infection may be critical for 

avoiding subsequent global immune activation during nonpathogenic 

infection. From the other side, mDCs are able to secrete IL-12 and IL-15, 

inducing T helper (Th1) cells, with subsequent activation of CTL responses 

that are implicated in the clearance of SIV-infected cells [145]. Moreover, 

IL-12 and IL-15 cytokines induce NK cells responses. In pathogenic 

infections AIDS progression is associated with mDCs depletion, due to their 

chronic recruitment to mucosal sites and their excessive cell death by 

apoptosis [146]. Residual mDCs from blood and intestine present an 

hyperactivated profile and produce pro-inflammatory cytokines in response 

to LPS stimuli, exacerbating the general immune activation and 

inflammation during SIV infection. Although AGMs circulating mDCs were 

initially depleted, a recovery to basal values is observed after the viral peak. 

In natural hosts, mDCs appear to promote tolerance to SIV in chronic 

phase likely due to the absence of intestinal dysfunction, microbial 

translocation or inflammation [146]. 

 

Natural killer cells 

Natural killer (NK) cells are important component of innate immune system, 

implicated in the control of several viral infections. A correlation between 

NK cells and rate of disease progression in HIV-infected individuals has 

been documented [147]. Following HIV and pathogenic SIV infection, a 

functional impairment of NK cell compartment is observed, with a significant 

expansion in cytolytic subset (CD16+CD56-) and a decline in cytokine and 

chemokine-producing CD56+CD16- cell population [148, 149]. The data 

regarding NK cells variations during natural SIV infection are limited. 

However, CD16+CD56- cells show a higher cytolytic activity than SIV-
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negative SMs or SIV-infected RMs [150]. In addition, IFN-γ and IL-2 

responses to mitogenic stimulation of CD16-CD56+ NK cells from 

uninfected SMs are higher than that the observed in uninfected RMs [151]. 

Although, during acute infection an increase in cell number has been 

reported in both RMs and SMs [150], natural hosts display low increase in 

KI67-positive proliferating NK cells if compared with RMs. Moreover, SMs 

present a lower expression of the inhibiting receptor NKG2A in their NK 

cells, suggesting that the profile of activating and inhibiting receptors could 

be involved in the enhanced NK cell activity in natural hosts [150]. Although 

the role of NK cells is not fully investigated, these cells seem to be involved 

in the control of the early phases of SIV non-pathogenic infection.  

 

Monocytes/Macrophages 

Macrophages and their blood precursors monocytes are innate immune 

cells that express a number of pattern recognition receptors that enable 

them to detect bacterial antigens and clear microbial infections, promoting 

the recruitment of adaptive immune cells. Macrophages precursor is a 

common hematopoietic stem cell that originates in the bone marrow and 

differentiates into a committed myeloid cell [152]. Upon release into the 

blood, they are termed monocytes. Initially in the research field, they were 

considered only the precursors of tissue resident macrophages. While, 

latter studies have revealed that microbial antigens exposure or 

surrounding cytokines milieu influence monocytes differentiation into 

myeloid dendritic cells or macrophages [153]. In response to antigens, 

monocytes act eliminating them through phagocytosis, generation of 

reactive oxygen and nitrogen species and producing proinflammatory 

cytokines such as IL-1, IL-6, IL-8 and TNF-α [152]. In HIV-infected patients, 

monocytes and macrophages are found to be less productively infected by 

HIV with fewer than 1% of cells containing integrated proviral DNA [154]. 

The use of SIV-pathogenic models has partially elucidated the role of 
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monocytes and macrophages in the virus pathogenesis. Studies in RMs 

have shown that the massive blood monocyte turnover, observed after SIV 

infection, correlates with AIDS progression [155]. 

Moreover, monocytes and macrophages undergo changes in their 

functionality during pathogenic infections. The elevated TNF-α in the serum 

of HIV-infected patients, reported by different research groups, reveal that 

innate immune cells, such as monocytes, may produce inflammatory 

cytokine at high levels during pathogenic infection [156]. Peripheral blood 

monocytes from patients with AIDS are documented to be defective. 

Especially they exhibit disfunction in chemotaxis to several 

chemoattractants with a lowered ability to phagocytose multiple 

antigens/pathogens [157] and contribute to pro-inflammatory secretion that 

exacerbates general immune activation. 

In contrast in natural hosts, little is known about monocytes-macrophages 

role in SIV infection. Similarly to pathogenic infection, around 1-8% of viral 

replication occurs in monocyte and macrophages in SIV-infected sooty 

mangabeys [110]. Cervasi et al., have documented that a selective 

depletion of SIV-infected macrophages in SMs receiving antiretroviral 

therapy, resulted in a delayed viral rebound after ART interruption, 

suppressing the level of ongoing viral replication and reducing the 

reservoirs of infected cells that active viral replication [158]. As CD4+ T 

cells, CCR5 expression on monocytes of natural hosts is also lower than in 

progressive hosts [109]. The potential contribution of monocytes and 

macrophages to the low levels of immune activation in natural hosts is still 

unclear and under investigation. 

 

1.4 Antiretroviral therapy against HIV 

Except for the case of Timothy Ray Brown, also known as the ‘Berlin 

patient’, that has been cleared by HIV, after a stem cell transplants from 
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one donor homozygous for the Δ32 mutation [159], there is no reported 

case, today, of a patient cured from AIDS. More recently, great excitement 

was generated for another case of the so called ‘Mississippi baby’, born 

from an HIV-positive mother in 2012.  Although, an early intensive 

treatment was administered, last July, the virus returned and it was 

detected in the baby blood [160]. A safe and effective HIV vaccine remains 

the key requirement to better defeat the virus. In the past 30 years, several 

scientific efforts were realized, using whole inactivated virus, envelope 

subunit protein, gag, pol and nef proteins and expression vectors, from 

canarypox to adenovirus, aimed at eliciting B and T cells responses [161, 

162]. However, none of those approaches have succeeded. Nowadays, a 

vaccine against HIV is still not available and, the recent found results are 

less than encouraging. In 2007, the highly sponsored STEP-trial proposed 

by Merck and aimed at testing a promising vaccine candidate in a study 

that saw involved more than 3.000 people, resulted to be ineffective. 

Merck’s vaccine lacked vaccine efficacy, showing no signs of HIV-1 

prevention or early viral level reduction, but moreover, it appeared to 

enhance infection in treated individuals with respect to the control group 

patients [162]. A new set of studies conducted by Hansen et al, in animal 

models have demonstrated how a replicating cytomegalovirus vector 

expressing simian immunodeficiency virus (SIV) antigens could eradicate 

early SIV infection in 50% of SIV-challenged rhesus macaques [163, 164]. 

However, the discovery that SIV eradication was associated to an unusual 

form of CD8+ T cells with the ability to recognize SIV peptides bind to MHC 

class II molecules, revealed that a more intense research need to be done, 

to be able to possibly translate these findings in humans. In September 

2009, a Thai vaccine trial, named RV144, revealed to have some promising 

results.The prime-boost vaccine was aimed at eliciting both CTL and 

humoral responses, through the administration of  ALVAC canarypox 

expression construct encoding HIV Gag, Pol, and Env (prime) and 
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AIDSVAX gp120 protein subunit  (boost). This combination resulted in a 

31% reduction of new HIV infections in vaccinated volunteers (compared to 

placebo) [165]. Although the observed results are modest and need to be 

conducted further analyses to understand the immunological basis for 

protection against HIV, efforts in the research field are encouraging. Since 

currently, a prophylactic vaccine is not available, HIV therapy is based on 

the use of antiretroviral drugs. One of the most important advances in HIV 

research, is the development of antiretroviral therapies (ART) that have led 

to a major reduction of HIV-related mortality and morbidity, with 

suppression of viral load, enhancement of immune functions and clinical 

benefits in HIV-infected individuals [166]. Only four years after HIV 

isolation, the first drug, called azidothymidine (ZDV or AZT), a nucleoside 

reverse transcriptase inhibitor (NRTI), was approved by the U.S. Food and 

Drug Administration (FDA) in HIV/AIDS treatment [167]. The current 

antiretroviral therapies can suppress viral replication below the limit of 

detection, contributing to delay the disease and prolog life. However virus, 

even under intensified ART regimen, continues to replicate and mutate, 

representing an obstacle to fully HIV elimination.  

 

1.4.1 Current antiretroviral drugs 

A deeper knowledge of HIV biology, pathogenesis and viral/cellular 

dynamics of infection have promoted the development of ART during the 

last years. After ART introduction, a great reduction in illness and death 

among HIV-infected patients has been documented, transforming the face 

of AIDS in developed world. Several are the already existing approved anti-

HIV drugs commonly used in clinical trials (Figure 8-9). Antiretroviral 

therapies act targeting the different stages of the HIV-1 life cycle and 

promoting suppression of the viral replication [168, 169] (Figure 10). 
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Despite a large number of already existing drugs, multiple ones are under 

investigation. 

 

1.4.1.1 Entry and fusion inhibitors 

4%-16% of the European population present a homozygous ∆32 mutation 

in the CCR5 gene that prevents functional expression of the CCR5 

chemokine co-receptor, used by HIV-1 to enter its main targets, CD4+ T 

cells [170]. Individuals with this genetic defect are immune to HIV infections 

and show no severe side effects resulting from the non functional receptor. 

From this observation originated the class of entry and fusion inhibitors that 

are molecules acting on the first step of HIV-1 life cycle. Specifically, they 

interfere with the binding, fusion and entry of HIV-1 to the host cell. The 

only approved CCR5 inhibitor is Maraviroc. Currently different entry 

inhibitors targeting CCR5 and the CXC chemokine co-receptor CXCR4 are 

under investigation [171]. Unfortunately, the virus can escape Maraviroc 

drug-pressure using an alternate coreceptor CXCR4. A further mechanism 

of preventing HIV from entering target cells, is to inhibit the step of virus 

fusion with host cell membranes. 
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Figure 8. Antiretroviral drugs approved by the FDA (http://www.fda.gov/) 

 



41 

 

 

   

Figure 9. Antiretroviral drugs approved by the FDA (http://www.fda.gov/) 
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Nowadays, the only fusion inhibitor available is Enfuvirtide (ENF or T-20), a 

synthetic peptide that avoids the conformational change that facilitates the 

fusion between host and viral membrane, binding gp41 subunit [172]. 

 

 

 

Figure 10. Antiretroviral drug classes action in HIV-1 life cycle [169]. 

 

1.4.1.2 Reverse transcriptase inhibitors 

Reverse transcriptase (RT) inhibitors form the largest class of drugs against 

HIV. RT represented one of first target of antiretroviral therapy, interfering 

with the process of generating a DNA copy of the viral genome [169]. Two 

are the classes of reverse transcriptase inhibitors distinguished by their 

action mechanism. The nucleoside/nucleotide reverse transcriptase 

inhibitors (NRTIs) are nucleoside and nucleotide analogs that compete with 

their corresponding counterparts for incorporation into the newly 

synthesized DNA strand. These analogs lack a free 3’-hydroxyl group so 
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they act as chain terminators, blocking the transcription process [168, 173, 

174]. Viral resistance against NRTIs is obtained by reduced susceptibility to 

the analogs and enhanced incorporation of the natural nucleotides or by 

removal of the chain terminators NRTIs at the 3’ end by promoting a 

phosphorolytic reaction that leads to primer unblocking [174, 175]. Due to 

the increased adherence and better control of side effects, at least one 

drug of NRTIs class is commonly used in ART regimens. 

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are the second 

group belonging to RT inhibitors class. They are polycyclic compounds that 

bind a hydrophobic pocket near the polymerase catalytic domain [176]. This 

binding induces conformational changes that alter RT flexibility, interfering 

with viral DNA synthesis [177]. In general, NNRTIs are safe and well 

tolerated and therefore usually used in first-line therapy. However, in case 

of mutations and lower susceptibility to one NNRTI, a cross-resistance to all 

the different drugs belonged to this class may be observed, with the 

impossibility to use other NNRTIs. 

 

1.4.1.3 Integrase inhibitors  

Integrase inhibitors (INIs), also termed strand transfer inhibitors, are a new 

class of drugs that aim to prevent integration of the viral DNA into the host 

genome acting on the enzyme integrase. INIs interfere with a specific HIV 

integration step. The integrase removes a dinucleotide from the long 

terminal repeat of each HIV-DNA strand, the enzyme cuts the cellular DNA 

and covalently links the viral DNA 3’ ends to the target DNA [178].  

Nowadays, Raltegravir, Elvitegravir and the more recently approved 

Dolutegravir are the available INIs. Studies on Raltegravir show its ability to 

reduce viral loads and increase CD4+ T cell counts if used in monotherapy 

and in combinations with other drugs [179]. Moreover Raltegravir has 

shown to be efficient in gastrointestinal tissue penetration. Raltegravir is 

well tolerated with a safety profile similar to that observed in the placebo 
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groups. It can be administered in combination with existing antiretroviral 

drugs, providing highly efficacious treatment to both ART-experienced and 

naïve subjects [180, 181]. Dolutegravir, administered once-daily, results to 

be as extremely active and safe as, and even more, than Raltegravir in 

naïve and in treatment-experienced patients [182]. Moreover, patients that 

have both Raltegravir and Elvitegravir resistance, show a good response 

after Dolutegravir administration [183]. 

 

1.4.1.4 Protease Inhibitors 

Protease inhibitors (PIs) target the late phase of the viral replication, i.e. 

viral assembly, by inhibiting the activity of viral protease (PR), an enzyme 

used by HIV to cleave nascent proteins for final assembly of new virions. 

PIs structure is similar to the viral peptide naturally recognized by PR. 

These drugs act competing with the natural ligand for PR binding at the 

active site [184]. PIs cannot prevent the virus to integrate itself in the host 

genome. Thus, infected cells are replication-incompetent during a 

suppressive therapy but may potentially produce new viral particles in the 

absence of drug pressure.  

Unfortunately, several reports showing resistance episodes against PIs 

have been documented [185]. Initially primary mutations occur near the 

substrate-binding cleft of the enzyme that change its structure, interfering 

with the binding of the PIs to the viral protease. These resistance mutations 

often lead to some decrease in binding affinity to the PIs, favoring the 

natural substrate binding [185] . Thus, they are usually accompanied by 

later compensatory mutations that increase the replicative capacity of the 

viral PR and contrast PIs action [174, 184, 186]. 

PIs are usually very potent both in first-line therapy as well as in 

subsequent treatments. Due to their reduced half-life in the body, they are 

usually boosted with a low dose of Ritonavir that inhibits the hepatic and 
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intestinal cytochrome P450 pathway involved in the metabolism of most PIs 

[184]. Despite suppressing successfully the virus, PIs result to have several 

side effects that make them replace with other drugs. 

 

1.4.2 Viral Resistance and Highly Active Antiretroviral Therapy 

The advent of ART dramatically extended the life expectancy of HIV-

infected patients [166].  However, because of the extensive variability of 

HIV, the presence of escape mutations against individual drugs 

represented soon an issue. For these reasons, in 1995, the approach of 

combining several antiretroviral compounds marked the beginning of highly 

active antiretroviral therapy (HAART) era in HIV struggle. HAART combines 

a minimum of three drugs from at least two different drug classes to target 

HIV, in different phases of its replication [185]. A typical HAART regimen 

combines two NRTIs plus either one PI or one NNRTI [187]. The success 

of HAART is based on the fact that HIV has to acquire multiple resistance 

mutations against the different drugs included in the regimen. Immediately 

after HAART introduction, a rapid decline in HIV related mortality was 

observed [188, 189]. In HIV-infected individuals, the administration of 

HAART/cART resulted in a suppression of the viral replication and the 

preservation and limited restoration of the immune system, especially in the 

CD4+ T cell compartment [190]. However, these drugs are expensive and 

require complex daily regimens, making adherence a real challenge.  

Above all, this is particularly true in developing countries, where 

antiretroviral therapies are not available in numbers sufficient to treat those 

in need [191]. Strict adherence to cART is key to achieve successful HIV 

suppression, reduce the emergence of drug resistance, improve health, 

quality of life and survival, as well as to avoid HIV transmission. 

Furthermore, the majority of toxic side effects of these antiretroviral drugs 

are a serious complication, that not allow the achievement of real HAART 

effectiveness but rather contribute to therapeutic failure [192]. Currently a 
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cure for HIV is still not available and antiretroviral treatment is life long. 

Pharmaceutical companies aim is to improve drugs pharmacokinetics, 

reduce the undesired side effects of the available drugs and generate new 

compounds more effective at HIV elimination. Despite HAART has 

improved the quality of life of HIV-infected people, more efforts need to be 

carried out, aimed at achieving alternative and more tolerated therapies or 

a vaccine, in order to better treat and/or prevent HIV infection worldwide. 

 

1.4.3 Non human primate models in anti-HIV drugs research: 

advantages and limits 

Most of the important advances in understanding the biology of HIV 

infection in humans derive by the study of pathogenic models of SIV and 

simian-human immunodeficiency virus (SHIV) infections in Asian resus 

macaque, and the non-pathogenic models of SIV in African monkeys [193]. 

Similarities to humans in terms of physiological and immunological 

features, make NHP an important model for HIV investigation. The study of 

RM models have contributed in understanding key aspects of HIV-1 

pathogenesis, especially virus transmission routes, events occurring in the 

post-infection phase, sites of viral replication, observation of CD4+ T cell 

depletion and virus/cell turnover [194, 195]. By contrast, the investigation of 

ART regimen effects in rhesus macaque/SIV models, is a more recent tool 

used in the HIV-eradication research field. [196]. This is due to the fact that 

SIV viruses naturally resist to NNRTIs  [197] and present differences in 

ART pharmacokinetics if compared with humans [196, 198]. Furthermore, 

SIVmac is more virulent than HIV-1, showing viremia set point in SIV-

infected macaques 10- to 100-fold higher than in HIV-1 infection and a 

more rapid progression to AIDS [199]. A recent alternative model is 

represented by the chimeric HIV-SIV viruses (called simian-human 

immunodeficiency viruses or SHIVs). Specifically, the hybrid virus is 
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generated by replacement of SIVmac reverse transcriptase (RT) with RT 

gene of HIV-1 (RT-SHIVs) in vitro [200, 201]. Their advantage is to be 

susceptible to both NRTIs and NNRTIs as occurs in HIV-infection, even if 

their major limit is the difficulty to completely suppress the virus with 

available ART regimens.  

The choice of using a NHP model in eradication studies is becoming more 

common in the last years. The study of these models offers the opportunity 

to better investigate clinical parameters, hardly analyzed in humans, such 

as dose and route of inoculation of the virus, time of infection prior to 

initiation of ART, choice of the ART regimen and duration. Furthermore, 

extensive sampling allows investigators to characterize the cellular and 

anatomic compartment of both active and persistent reservoirs and, 

eventually, test interventions aimed at reducing viral reservoirs without 

exposing humans to unacceptable safety risks (i.e. stem cell and gene 

therapies; immune-based approaches, compounds acting at reactivating 

virus replication in latently infected cells) [193]. For these reasons, different 

combinations of antiretroviral drugs have been tested on NHP models and 

current therapies have demonstrated to be effective in the control of viral 

replication in SIV and SHIV models [200, 202, 203, 204]. 

It has been also highlighted how ART administration contributes to 

immunological recovery, increasing the CD4+ T cells levels in peripheral 

blood [205]. However, data regarding the reconstitution of CD4+ T cells in 

mucosa are discordant. Some studies suggest evidence of complete 

restoration in animals initiating ART during primary SIV infection [205].  By 

contrast, CD4+ recovery in mucosa compartment either in late or chronic 

infection is not observed in some NHP models [206]. In intestinal mucosa 

and other tissues of SIV-infected RMs, persistent viral replication can be 

detected even after plasma viremia suppression [207]. However, after 

every ART regimen interruption, in the majority of treated RMs, a rapidly 

increase of plasma viremia is observed, indicating the presence of residual 
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viral replication and latently infected cells that are not completely cleared by 

the current antiretroviral therapies. 

 

1.5 HIV eradication: an ongoing challenge 

In the last years, the consistent use of ART in majority of individuals, has 

been successful in reducing HIV-1 RNA levels to below the limit of 

detection, reflecting the clearance of free HIV virions and productively 

infected CD4+ T cells. cART has also improve the immunological HIV-

induced disorders, promoting the restoration of CD4+ T cells, reducing the 

generalized immune activation and delaying disease progression. However, 

although HAART is very effective at suppressing HIV-1 replication, viral 

loads rebound when treatment is interrupted with AIDS progression [16, 

208, 209]. So the current goal in HIV eradication research is focus on 

defining approaches to achieve a ‘sterilizing cure’ with the elimination of 

HIV infected cells and ‘functional cure’ to generate effective host immunity 

response that can control the virus in absence of therapies. 

 

1.5.1 HIV/SIV latency and viral reservoirs  

The major obstacle to address the formidable challenge of HIV eradication 

is the establishment of stable viral reservoirs of latently infected CD4+ 

memory T cells carrying integrated HIV-1 DNA, in the early infection 

phases, not affected by ART. In 2000, Siliciano et al. [210] defined a viral 

reservoirs as “a cell type or anatomical site in association with which a 

replication-competent form of the virus accumulates and persists with more 

stable kinetic properties that in the main pool of actively replicating virus”. It 

has been estimated that this pool size is between 103 and 107 cells per 

patient, indicating that only a very small number of CD4+ T cells harbors 

replication-competent provirus (< 0.01%) both in the peripheral blood and 

lymph nodes [210, 211, 212, 213]. ART treatment led to a biphasic decay in 



49 

 

viremia both in HIV-infected patients and SIV-infected PMTs [214, 215]. A 

rapid clearance of free virions and productively infected CD4+ T cells 

occurs within some days after ART initiation, constituting the so called first 

decay phase. However, after the rapid initial decay, the subsequent 

proportion of cell-free virions that remain circulating in the plasma decline at 

slower rate. Finzi et al [216], confirmed no correlation between decrease of 

frequencies of latently infected CD4+ T cells and increase of time on 

HAART, suggesting that the observed slow decay rate is consistent with 

the long-term survival of resting memory CD4+ T cells in uninfected 

individuals.  Therefore, the main contributors to virus production in the 

slower second phase of plasma decay are partially activated CD4+ T cells, 

macrophages, as well as dendritic follicular cells that gradually release 

trapped virions [217] (Figure 11). Nevertheless, although ART reduces the 

frequency of circulating resting CD4+ T cells harboring replication-

competent virus to a low steady-state level in blood and tissue 

compartment in PMTs and humans [214, 215], residual viral replication is 

still present. Moreover, in 2008, Palmer and colleagues [218] further 

revealed the complexity of HIV persistence, characterizing furtherly the 

decay kinetics of viremia in a 7 years cohort of HIV patients suppressed by 

ART. It was found the presence of the well established first two phases, but 

also additional third and fourth decay phases, with 39 weeks of decay and 

no decay respectively were defined. The cellular sources of the third and 

fourth phases of decay have not been fully identified but it seems that long-

lived and virus-producing cells are described as mainly contributors. One 

well-accepted latent cellular subtype that confers high stability to viral 

reservoirs, during the late decay phases, is represented by the resting long-

lived memory CD4 + T cells [217].   
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Figure 11. Impact of antiretroviral therapy on HIV reservoirs [217] 

 

1.5.2 Cellular and anatomical sources of viral reservoirs 

Nowadays, after several years of active research in this field, it’s becoming 

clear that viral reservoirs occurred in very early phases of HIV infection 

[213, 219]. However, the cellular nature of latently infected cells and their 

exact location within the body still remain not completely understood. The 

best characterized cellular reservoir of HIV, at present, is a small pool of 

latently infected CD4+ T cells with a resting memory phenotype [210, 220, 

221, 222] .  

Pioneering studies demonstrated the presence of latently infected cells is 

thought to primarily be the result of infection of highly susceptible activated 

CD4+ T cells, following by their reversion to a resting state [223]. In 

response to antigen, resting CD4+ T cells undergo proliferation and 
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differentiation in effector cells. Most effector cells die but a subset survives 

and reverts to a resting memory state, integrating the virus and surviving for 

long periods [223]. Several hypotheses of virus latency has been proposed. 

Virus genome could possibly remain transcriptionally silent for the presence 

of insufficient levels of host transcription factors (PTEFB, NF-kB, NFAT and 

STAT5); prevalence of negative transcription factors (NF-kB1 homodimers); 

integration in actively or inactively transcribed genes; chromatin remodeling 

of HIV DNA with epigenetic silencing or transcriptional interference by host 

promoter activities [217, 224]. 

Much work has been done to further characterize the main cellular subset 

involved in maintenance of viral reservoirs, i.e. memory CD4+ T cells that 

lack of activation markers. Indeed, the memory compartment is highly 

heterogenous. When it has been investigated the role of different cellular 

subsets within the memory CD4+ T-cell pool in HIV persistence, CD4+ 

central memory (TCM) and transitional memory (TTM) subsets were found 

to be the major contributors to viral reservoirs in HIV-infected individuals on 

long-term ART [225]. Moreover, Chomont et al., also found that a 

significant fraction of latently infected CD4+ T cells co-expresses the 

exhaustion/inhibitory molecule PD-1. Given the assumption that the major 

pathway for the generation of latency is the reversion of activated cells to a 

resting state, it is thought that the upregulation of negative regulators of 

immune function and in particular PD-1, are able to aid in this reversion 

[225].  

Moreover, more recent findings revealed that another subset of memory 

pool, the CD4+ T memory stem cells (TSCM), harbors high per-cell levels 

of HIV-1 DNA, contributing to increase the total viral CD4+ T cell reservoir 

over time even during suppressive ARTin HIV-infected patients [226]. 

There are at least three proposed mechanisms involved in the maintenance 

of  the stable reservoir of infected resting memory CD4+ T-cells  [217, 227]. 

First, among all, virus exploits the primary mechanisms of self-renewal of 
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the long-lived latently infected CD4+ T cells. In this way, these cells can 

intermittently release virus following homeostatic proliferation, becoming a 

continuous source of new infections. Furthermore, despite long-term 

suppression of HIV-1 replication in patients on ART, several immunological 

abnormalities persist and mainly an immune activated status. The presence 

of high levels of tissue inflammation cause the generation of activated 

target cells, more susceptible to HIV and responsible of cell-cell HIV 

spread. Finally, another possible mechanism of HIV persistence is 

represented by the ongoing low-levels virus replication that may occur in 

some anatomical sites that have unique barriers. One of ART 

disadvantages is the the not complete penetratation in particular sites, 

favoring continuous low-levels of virus replication and selection of drug-

resistant strains. This mechanism may thereby be responsible for therapy 

failure. Among the tissues compartments relatively resistant to standard 

treatment, there are central nervous system, gut mucosa, tonsils, lymph 

nodes and male-female genital tract [217, 228, 229]. Further studies on 

NHP models also include additional tissues, such as spleen and liver that 

seem to be enriched in latently infected cells [230]. 

In particular, central nervous system (CNS) together with male genital tract 

(MGT) are considered potential sanctuary sites, for the presence of 

physical barriers, 'blood-testis barrier' (BTB) and blood–brain barrier (BBB) 

respectively [231] that render the access of anti-HIV drugs very difficult. 

Several short-term studies have reported a slower decay in HIV-RNA levels 

in cerebrospinal fluid (CSF) than in plasma, especially in patients with HIV-

associated dementia (HAD). Access to the CNS by HIV-1 is mainly the 

result of circulating monocytes/macrophages. Same results have been 

found in the semen of HIV-infected individuals, where isolated T cells and 

macrophages harbored viral RNA [223]. Moreover, it is also thought that 

particularly GALT is one of the most important viral reservoirs 
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compartment, due to the profound degree of depletion and the high HIV 

proviral DNA content in central and transitional memory CD4+ T cells in 

treated HIV-infected patients and SIV-infected RMs [228, 232].  

 

1.5.2.1 Non-T cell populations and SIV/HIV latency 

Seminal studies recognized an additional non-T cell component involved in 

HIV persistence, besides memory CD4+ T cells. Indeed, it has been 

investigated that HIV latency may also occur in different cellular subsets, 

such as monocytes, macrophages, dendritic cells and hematopoietic 

progenitor cells [217].  

 

Follicular dendritic cells 

Follicular dendritic cells (FDCs) are localized in the germinal centers of all 

secondary lymphoid tissues. They are antigen presenting cells that trap and 

retain antigens in their native conformation, (Ags) in the form of immune 

complexes (ICs) formed with specific antibodies (Abs) and/or complement 

proteins [233]. It has been observed that HIV virions remain trapped on the 

surface of follicular dendritic cells (FDCs), maintaining their infectious 

nature without viral infection and/or replication for at least 9 months [234] in 

vivo  murine models. In this way, HIV is able to persist on these cells until 

FDCs die.  Moreover, a 2002 study has revealed that FDCs require both Ab 

against particle-associated determinants and FDC-FcgammaRs to maintain 

HIV infectivity [235].  

Further studies highlighted that FDCs-trapped virus was replication-

competent and genetically different from the virus isolated in other tissues 

and cells. In contrast, genetic similarities between FDCs – trapped virus 

and viral species isolated from the blood obtained at months 21 and 22 but 

were not present at months 4 or 18, indicating that FDCs could archive HIV 

[236]. Moreover, production of TNF-α by FDCs promotes a tissue 

microenvironment that favor HIV production and transmission [237].  For 
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these reasons, FDCs may be one of the possible source of low-level 

viremia observed during the 3rd phase of decay. The ability to retain some 

viral Ags for years that potentially can reignite infection after ART 

interruption, make speculate a possible role for these cells in HIV 

persistence. 

 

Monocytes and Macrophages 

The expression of low levels of CD4 on monocytes permits HIV-1 to infect 

this cellular subset. Indeed, monocytes circulate in the peripheral blood for 

less than 3 days before differentiating in macrophages. Although 

monocytes are more resistant to virus cytopathic effects in vitro than 

activated CD4+ T cells [238], it is well established that replication-

competent virus can be recovered from circulating monocytes in HIV-1 

patients, including those receiving HAART [239]. For these reasons, 

monocytes may represent one of the cellular subsets that contribute to viral 

reservoirs during of the late stages of HIV-1 disease. Furthermore, they 

present the ability to migrate to sanctuary sites, such as CNS and the GI, 

prior to maturation into macrophages, acting as vehicles of virus 

dissemination and providing explanation of a possible mechanism of low-

viral replication in patients receiving HAART despite undetectable HIV-1 in 

blood [240]. Moreover, in the rhesus macaque models, circulating 

monocytes counts increase during the first few days following infection and 

the high turnover is a predictive marker of AIDS progression in SIV 

infection. In conclusion monocytes may play a crucial role in pathogenesis 

and viral persistence in HIV/SIV infection [155].  

 

NK cells 

A subset of CD56+CD16+CD3- NK cells that express both CD4 and the 

chemokine co-receptors CCR5 and CXCR4, resulted to be productively 
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infected in vitro by both X4 and R5 strains via a CD4-mediated mechanism. 

Further analysis of HIV-infected individuals on HAART demonstrated the 

presence of viral DNA in purified NK cells. Stimulation in vitro of latently 

infected NK cells isolated from individuals on HAART, has demonstrated 

virus recovery in culture [241]. It’s has been observed persistent infection of 

NK cells and their substantial contribution to the total viral DNA in PBMCs 

[242]. 

 

1.5.3 Strategy aimed at eliminating viral reservoirs 

Since the establishment of the viral reservoirs occurs in the first phases of 

the infection, different studies have evaluated the impact of early initiation 

of ART on viral reservoirs in both HIV-infected patients and SIV-infected 

RMs. Patients started on ART in the first 6 months of infection were 

demonstrated to have lower levels of proviral HIV-DNA in PBMCs if 

compared to patient who started on therapy later [243]. Moreover, nineteen 

patients treated during Fiebig stage I lacked detectable integrated HIV DNA 

in PBMCs [244]. Results were again confirmed in the french VISCONTI 

cohort, where 14 patients exhibited virological control following treatment 

cessation after 3 years of therapy with ART initiated during primary HIV 

infection [245]. A further case of virus replication control after treatment, 

was represented by the “Mississippi baby” who was started on ART within 

the first 30 hours of life. While early initiation of ART seems to reduce the 

viral reservoir size, several recent studies have shown that it is not 

sufficient to prevent its establishment. In particular, Louis Picker group has 

shown that ART initiated at day 7 or 10 after SIV infection of RMs, although 

causing sustained virological suppression in peripheral blood, was not 

sufficient to generate a functional cure [246]. Another similar study found 

rebound of viremia after 24 weeks of ART in RMs that initiated therapy as 

early as day 3 post infection, despite no SIV RNA in plasma or SIV DNA in 
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PBMCs were detected [247]. Unfortunately, viremia rebound was also 

observed in the Mississippi baby after 17 months from ART interruption.  

So among the recent interventions aimed at eradicating the viral reservoirs, 

the “kick and kill strategy” that result in reactivation of latently infected cells 

in combination with ART to eliminate from a side, the HIV-infected cells by 

viral cytopathic effect or natural immune responses and from the other side, 

preventing new infections. For this purpose, early studies have shown a 

non specific activation of resting memory T cells with increased HIV 

replication when CD3 monoclonal antibodies or combination of cytokines 

TNF-α, IL-2, IL-6 and IL-7 were administered in HIV-infected patients [248]. 

Since the expression of integrated HIV-1 is inaccessible, in part as result of 

histone deacetylases (HDACs) action, another proposed strategy for 

inducing reactivation of HIV reservoirs and reducing their size, is using a 

class I synthetic HDAC inhibitors. This approach has been evaluated in a 

Jurkat cell model of latency and in resting CD4+ T cells derived from 

patients [249]. Among them, valproic acid resulted to be relatively weak, 

while vorinostat, belinostat, givinostat were more effective at targeting 

specific HDACs and inducing HIV expression. In addition to the 

aforementioned therapeutic agents, a different approach is to modify host 

genetics features, generating HIV-resistant CD4+ T cells. First, cells are 

treated with a zinc-finger nuclease that specifically eliminate or reduce the 

expression of HIV co-receptors CCR5 or CXCR4 ex vivo and then, 

engineered cells were transfused back into the autologous donors [250]. 

Preliminary findings have demonstrated a repopulation and steady increase 

in modified CD4+ T cells, but their beneficial role still remain unclear. 

In conclusion, further investigations on HIV reservoirs localization, 

identification of their cellular nature using SIV models, are critical steps 

towards development of interventions that could induce a long-term 

remission or possibly eliminate the virus entirely. 
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2. AIM OF THE STUDY 

In the last years, antiretroviral therapy has led to a major reduction of HIV-

related mortality and morbidity, with suppression of viral load, enhancement 

of immune functions and clinical benefits [166]. Indeed, HIV-1 patients on 

ART show a dramatic and rapid decrease in plasma viremia below the limit 

of detection and higher CD4+ counts [190]. However, although ART is very 

effective at blocking HIV spread within the body, one of the most consistent 

obstacles to HIV eradication is the presence of stable viral reservoirs of 

latently infected CD4+ memory T cells that persist, despite ART [16, 208]. 

The project aim is to understand the mechanisms of the complex virus-host 

interactions that lead to persistent infection and to achieve the ideal 

combination of therapies to eliminate HIV in a non pathogenic NHP model, 

Sooty Mangabeys (SMs), that preserves CD4+ T cells homeostasis, 

avoiding the AIDS progression [102]. Based on recent published data [112, 

251], SMs present specific subsets of memory CD4+ T cells, i.e., the 

central memory and memory stem cells, that seem to be relatively resistant 

to SIV infection if compared the same cell type in RMs. Our hypothesis is 

that SMs may be particular susceptible to cART, so the use of a four-drug 

regimen, consisting of PMPA/Tenofovir, FTC/Emtricitabine, Raltegravir and 

Darunavir) in a non pathogenic model, may be functional: 

1.To investigate in vivo and in different anatomical compartments, how 

active virus replication induces persistent infection,  

2.To elucidate which is the main CD4+ subset involved in SIV persistence.  

A deep investigation of the cART efficacy to suppress SIV infection in SMs, 

the evaluation of the fraction of target cells that are impacted by residual 

virus replication, if present, may result in a better understanding of the 

mechanisms by which natural SIV hosts avoid disease progression. This 

approach holds promise for the design of novel preventive and therapeutic 

approaches to HIV infection, including working towards an HIV cure. 
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3. MATERIAL AND METHODS 

 

3.1 Animal procedures and antiretroviral therapy 

3.1.1 Ethics statement 

Twelve (3 females and 9 males; average 16.8 years) chronically SIV-

infected Sooty Mangabeys (SMs; Cercocebys atys), not homozygous for 

CCR5-null alleles and with viral load superior to 10,000 viral RNA 

copies/ml, were included in this study. All animals were housed at the 

Yerkes National Primate Research Center of Emory University, Atlanta, 

GA. SMs were maintained according to the Animal Welfare Act and NIH 

guidelines for housing and care of laboratory animals. Animal procedures 

were conducted in accordance with the institutional regulations and after 

approval by the Institutional Animal Care and Use committee (IACUC) 

committee at the YNPRC (IACUC protocol #2000526). Adult SMs were 

assigned in our study (RAAC #2013-04). Commercial dry food 

supplemented with fruit, was provided by the veterinary personnel and 

water was available ad libitum. Room temperature was maintained at 21ºC, 

with a relative air humidity of 50% and a 12-h light/dark cycle.   

 

3.1.2 Antiretroviral treatment  

SMs were treated with combination antiretroviral therapy (cART) regimen 

consisting of Tenofovir (PMPA), Emtricitabine (FTC) – two nucleoside 

reverse transcriptase inhibitors; Raltegravir (RLT) - an integrase inhibitor 

and Darunavir (DRV) - a protease inhibitor, for up to 12 months. The twelve 

SMs were divided in four-treatment interruption groups receiving cART for 

2, 6, 9 and 12 months (Figure 12). PMPA and FTC were administered 

subcutaneously once a day, at the dosages of 20 mg/kg and 30 mg/kg, 

respectively. Stock solutions of FTC were prepared in phosphate-buffered 

saline (PBS, pH 7.4) at concentration of 100 mg/ml. To be at the 
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concentration of 80 mg/ml, PMPA was suspended in PBS with NaOH 

added to obtain a final pH of 7.6. FTC and PMPA stocks were filtered and 

stored at -20°C. RLT and DRV were administered orally (mixed with food) 

twice daily at the following dosages: Raltegravir, 300 mg/day; Darunavir 

800 mg/day. Drug dosages were adjusted weekly according to body weight. 

PMPA and FTC are provided by Gilead Sciences, Inc (Foster City, CA). 

Darunavir was provided by Johnson and Johnson (New Brunswick, NJ) and 

Raltegravir was provided by Merck Sharp & Dohme Corp (Whitehouse 

Station, NJ).  

 

 

 

Figure 12. Study experimental design 

 

3.2 Samples collections  

3.2.1 Blood and Rectal biopsies specimen 

The blood volumes that can be collected in NHPs for experimental 

procedures vary by species, sex and individuals, but they generally are 

around 8% of body weight. A maximum, safe volume for a single collection 

is 6-10 ml/kg. According to our proposed protocol, each SM underwent 

multiple blood draws and rectal mucosa biopsies (RB) at different time 

points before, during and at the end of treatment with cART (Figure 13). 
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Large amount of blood, up to 40 ml, was collected every six weeks, while 

the monitoring of viral load and immunophenotypic analysis were 

performed every 2 or 4 weeks on smaller blood volumes. For Rectal 

Biopsies (RB), fecal material was removed from the rectum and a rectal 

scope/sigmoidoscope was then placed a short distance into the rectum. 

Blood and RB collections were performed under sterile conditions. 

Sedatives, such as ketamine and telazol, were administered by 

intramuscular injection at the doses of 10 mg/kg and 4-5 mg/kg 

respectively.  

 

 

Figure 13. Blood and RB collections during the study course. 
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3.3 Samples processing 

3.3.1 Mononuclear Cells Isolation from Blood  

Peripheral blood (PB) was collected from all animals at different time points 

before and during the therapy by using EDTA-containing tubes. Plasma 

was obtained after double centrifugation at 2500 rpm for 15 minutes and 

then at 1800 rpm for 8 minutes. Plasma samples were stored at -80°C. 

Peripheral blood mononuclear cells (PBMCs) were isolated from whole 

blood and layered on a continuous PBS-90%-diluted Lymphocyte 

separation medium gradient (LSM- Lonza, Basel, Switzerland). Collected 

PBMCs were washed in phosphate-buffered saline (PBS, Mediatech, Inc., 

Manassas, VA). An additional wash with PBS and EDTA 0.5 mM 

(Invitrogen, Carlsbad, CA) at 200 g for 20 minutes was executed to remove 

platelets. After cell count performed with the automated cell counter 

Countess, cells were frozen in Freezing Media with Dimethyl sulfoxide 5% 

(DMSO, Sigma Aldrich, St.Louis, MO) and Fetal Bovine Serum (FBS, 

Gemini Bio, West Sacramento, CA). PBMCs were stored at -80 °C.  

 

3.3.2 Rectal Biopsies Collections 

Analysis of mucosal tissue compartment was performed on each SM. For 

this purpose, rectal mucosa biopsies (RB) were collected at different time 

points before and during cART (Figure 13). RB were obtained with biopsy 

forceps and placed in tissue culture fluid. Two pinches of medium size were 

selected and transfered in PFA 4% solution for 4 hours for further 

immunochemistry studies. Flash freezing of one 2 mm x 2 mm rectal pinch 

was performed to avoid the formation of large ice crystals that interfere with 

sample preservation. Vials containing rectal pinches were stored at -80 C 

for gene profiling analysis. Remaining pinches of RB were digested with 2-

0.5 U/mg Collagenase type II (Sigma-Aldrich, Saint Louis, MO) and 10 U/μl 

DNase I recombinant, Rnase-free solution (Roche Diagnostic Canada, 
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Laval, QC, Canada), shaking at 200 rpm and 37°C for 2 hours. Following 

mechanical tissue digestion, the obtained cell suspension was then passed 

through a 70 µm cell strainer (BD Falcon™ 2350, BD Biosciences, Bedford, 

MA). After centrifugation at 2,000 rpm for 8 minutes, the isolated 

lymphocytes were re-suspended in complete RPMI1640 media. The cell 

count and cell viability were performed using the trypan blue dye technique. 

The cell concentrations were adjusted to 1×106 cells/ml in complete 

RPMI1640 media before staining them.  

 

3.3.3 Cell count 

Cell count was performed with the automated cell counter Countess™ (Life 

Technologies, Carlsbad, CA) that combines optic system and image 

analysis to automate cell counting. Countess™ counter performs viability 

and cell counting measurement using the trypan blue method of dead cells. 

Specifically, 10 ul of sample were mixed with trypan blue dye and loaded 

on cell counting chamber slide. The camera acquires cell images from the 

sample on the slide and the software automatically analyzes acquired cell 

images. Live and dead cell concentration/ml, total concentration/ml, viability 

(% live cells to total cells) are provided by the counter. 

 

3.4 Plasma viral load analysis 

3.4.1 SIVsmm RNA quantification  

On plasma samples collected from peripheral blood, viral quantification was 

performed by the Virology Core of the Emory Center for AIDS Research at 

Yerkes National Primate Research (NIH Grant # P30-AI-50409). 150 µl  of 

lasma was used to extract viral SIVsmm RNA  using the QIAamp Viral 

miniRNA kit (Qiagen, Valencia, CA). 10 µl of extracted RNA were subjected 

to reverse transcriptase PCR using random hexamers to prime reverse 

transcription (Invitrogen, Carlsbad, CA). Primer and probe sequences were 



68 
 

targeted to the 5′ untranslated region of the SIVsmm genome, in particular 

as follows, the sequence of the forward primer for SIVsmm was 5′-

GGCAGGAAAATCCCTAGCAG-3′; the reverse primer sequence was 5′- 

GCCCTTACTGCCTTCACTCA-3′ and the probe sequence was 5′- 

AGTCCCTGTTCRGGCGCCAA-3′ as previously described [112]. 

SIV RNA copy number was determined by comparison to an external 

standard curve consisting of virion-derived SIVsmm RNA. For graphical 

reasons, samples with undetectable SIV RNA, below the limit of the assay 

sensitivity (60 copies per ml), were assigned a level of half of the lower limit 

of detection. 

 

3.5 Flow cytometry 

3.5.1 Immunophenotyping of T cell subsets 

Complete blood counts and flow cytometry analysis were carried out on 

collected blood samples at different time-points throughout the course of 

the study. Fourteen-parameter flow cytometric analysis was performed on 

whole-blood using panels of monoclonal antibodies that are cross-reactive 

with SMs. To study dynamics of CD4+ and CD8+ lymphocytes, pre-

determined optimal concentrations of the following antibodies were used: 

anti-CD3-allophycocyanin (APC)-Cy7 (clone SP34-2), anti-CD95-

phycoerythrin (PE)-Cy5 (clone DX2), anti-CD62L-PE (clone SK11), anti-

CCR5–APC (clone 3A9), anti-CD45RA–FITC (clone L48), anti-CCR7–PE-

Cy7 (clone 3D12) (all from BD Bioscience, San Jose, CA); anti-CD28-PE 

Texas Red (clone CD28.2) (from Beckman Coulter, Brea, CA); anti-CD8-

BV711 (clone RPA-T8), anti-CD4-BV650 (clone OKT4), anti-PD1-BV421 

(clone EH12.2H7), anti-CD27-BV605 (clone O323) (from BioLegend Inc, 

San Diego, CA). Activation and proliferation markers on CD4+ and CD8+ T 

cell populations were assessed. Specifically anti-HLADR-peridinin 

chlorophyll protein (PerCP)-Cy5.5 (clone G46-6) and anti-Ki-67–Alexa 700 
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(clone B56) (all from BD Biosciences, San Jose, CA) monoclonal 

antibodies were used. Flow cytometric acquisition was carried out on a 

LSRII flow cytometer driven by the FACS DiVa software package (BD 

Biosciences) 

 

3.5.2  Whole Blood staining 

In order to determine the expression of specific markers on the populations 

of our interest, immunophenotypic analyses were carried out using flow 

cytometry. Whole blood was first incubated following addition of the anti-

CCR7–PE-Cy7 antibody at 37°C, for 30 minutes. Proper antibodies were 

added for 30 minutes at room temperature (RT), then blood was lysed 

(FACs lysing solution, BD Biosciences, diluted 1:10 with deio water) and 

washed in homemade FACs Buffer (1X PBS, 0.5% BSA, 0.01% Na Azide). 

Cells were permeabilized with a methanol-based method, that required the 

use of FACs PERM (FACs Perm solution, BD Biosciences, diluted 1:10 in 

deio water) for 12 minutes at room temperature. After a wash with FACs 

Buffer, blood samples were stained with antibodies of intracellular 

transcription factors of interest and fixed in 1% paraformaldehyde (Electron 

Microscopy Sciences, Hatfield, PA) in PBS. Each sample was acquired on 

LSRII (BD Bioscience, San Jose, CA, USA) with a minimum of 120,000 

collected events in the CD3 gate and analyzed with FlowJo (Tree Star Inc., 

Ashland, OR, USA).  

 

3.5.3 Staining of PBMCs recovered by rectal biopsies  

Cells Suspension, obtained from RB, were stained with diluted 1:10 

LIVE/DEAD fixable dead cell stain in violet (Invitrogen, Carlsbad, CA) for 7 

minutes at room temperature. Cells were incubated with anti-CCR7–PE-

Cy7 antibody at 37°C, for 30 minutes and then the mixture of the marker of 

interest was added. See 3.5.2 paragraph for details about the method.  
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3.6 Isolation of CD4+ T cells subsets  

3.6.1 Enrichment of CD4+ T cells by magnetic bead sorting 

Upon PBMCs were isolated from whole blood by LSM gradient, cells were 

counted to proceed with CD4+ T cells magnetic isolation. CD4+ T helper 

cells are isolated by depletion of non-CD4+ T cells. A CD4+ T Cell Biotin-

Antibody Cocktail (Miltenyi, Auburn, CA) containing biotin-conjugated 

monoclonal antibodies against CD8, CD11b, CD16, CD20, CD56, and 

CD66abce, was added to the cells for 10 minutes at 4°C. After a wash with 

the buffer (PBS + 2 mM EDTA + 0.5% bovine serum albumin - BSA, pH 

7.2; Miltenyi, Auburn, CA), cells were incubated with microbeads 

conjugated to a monoclonal anti-biotin antibody for 15 minutes at 4°C. To 

remove the non-specific antibody bindings, another wash with bead buffer 

was performed. Enriched unlabeled CD4+ T cells were obtained, allowing 

the cells to pass through the large selection (LS) MACS column (Miltenyi, 

Auburn, CA) placed in the MACS Separator.  

 

3.6.2 Cell sorting 

Living cells in suspension were physically separated by fluorescence-

activated cell sorting (FACS), based on staining with dye-conjugated 

antibodies against cell-surface proteins of interest. Sorting of CD4+ T cell 

effector memory (EM), central memory (CM), transitional (TTM) and 

memory stem (TSCM) T cells from SMs was performed on a FACS Aria II 

flow cytometer (BD Biosciences). First, cells were stained with diluted 1:10 

LIVE/DEAD fixable dead cell stain in violet (Invitrogen, Carlsbad, CA) and 

then with incubated with the proper antibodies mixture as indicated in 

details in paragraphs 3.5.2 and 3.5.3. Specifically, anti-CD3 Alexa 700 

(clone SP34-2), anti-CCR7–PE-Cy7 (clone 3D12), anti-CD95-phycoerythrin 

(PE)-Cy5 (clone DX2), anti-CD62L-PE (clone SK11), anti-CD45RA-APC 

(clone 5H9) (all from BD Bioscience, San Jose, CA; anti-CD4-BV650 (clone 



71 

 

OKT4) (from BioLegend Inc, San Diego, CA); anti-CD28-PE Texas Red 

(clone CD28.2) (from Beckman Coulter, Brea, CA) antibodies were used in 

the staining procedure. Cells were initially gated on the basis of light 

scatter, followed by positive staining for CD3 and CD4. CD4+ effector 

memory (TEM), transitional memory (TTM) and central memory (TCM) cell 

subsets were gated on the basis of characteristic expression patterns of 

CCR7, CD28, CD95 and CD62L, while for CD4+ memory stem cells 

(TSCM) the marker of interests were CCR7, CD45RA, CD28, CD95.  

 

3.7 Cell associated DNA assay 

3.7.1 Total DNA/RNA extraction and DNA quantitative PCR 

After one ml PBS wash at 700 g for 10 minutes at 4°C, sorted cells were 

lysed and homogenized in a highly denaturing guanidine-isothiocyanate–

containing buffer, RLT plus, which, immediately, inactivates DNases and 

RNase and disrupt cell membranes. Then, total DNA was extracted using 

AllPrep DNA/RNA Mini Kit (QIAGEN) according to the manufacturer's 

recommendations. Sample were eluted into 40 µl of elution buffer (EB) for 

DNA extraction and in RNAse-free H2O for RNA extraction. Cells were first 

passed through an AllPrep DNA spin column to selectively isolate DNA and 

and then through an RNeasy spin column to selectively obtain RNA as 

indicated in kit instructions.  

 

3.7.2 Quantitative PCR for SIV gag DNA 

SIVsmm RNA quantitation was performed by real-time PCR. RNA was 

extracted and reverse transcribed as described previously [252]. Briefly, 45 

ng of DNA were loaded into a 50 µl reaction using an SIVutr primer/probe 

set. The same SIV-specific primers and probe were used to amplify and 

quantify total provirus copies of SIV, as described above in paragraph 

3.4.1. 
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Albumin was used as an internal control to quantify cell number against an 

external standard curve. Albumin gene specific probe (5’-VIC-

TGACAGAGTCACCAAATGCTGCACAGAA-3’) and flanking primers (5’-

TGCATGAGAAAACGCCAGTAA-3’) and 5’-ATGGTCGCCTGTTCACCAA-

3’) (Applied Biosystems) were used to determinate the proportion of SIV+ 

cells. In particular, SIV+ cells were quantified by dividing obtained SIV DNA 

copy number by the albumin gene copy number. Samples with 

undetectable SIV DNA (i.e, 5 SIV DNA copies per 105 cells) were assigned 

a level of half of the lower limit of detection for graphical purposes. Virology 

Core of the Emory Center for AIDS Research at Yerkes National Primate 

Research (NIH Grant # P30-AI-50409) performed total DNA extraction and 

quantitative PCR. 

 

3.8 Statistical methods 

To assess the presence of significant changes due to cART administration 

in CD4+ and CD8+ frequency and absolute counts in our cohort of SMs, 

standard deviations and means were calculated throughout the course of 

the study after cART inititiation. Comparisons between the level of different 

markers expression on CD4+ and CD8+ populations, and in their subsets, 

were determined during cART versus previous time points. Statistic 

analysis was performed using t Tests. Specifically, un-paired t Tests, un-

paired t Test with Welch’s correction and Wilcoxon matched-pairs signed 

rank test were carried out. Variations in pre-cART cell-associated virus 

levels, in SMs blood, were monitored over time and statistic significance 

was determined using the aforesaid t T test analyses. In all cases, 

significance was attributed at p<0.05. All analyses were conducted using 

GraphPad Prism 5.0d. 
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4. RESULTS AND DISCUSSION 

4.1 Animal selection criteria 

Despite high viremia, SIV-infected SMs generally maintain healthy levels of 

CD4+ cell. However, a subset of SMs is able to be infected with multitropic 

SIV R5/X4/R8-using virus with a consistent and generalized loss of CD4+ T 

cells (5-80 cells/microl of blood) but no preogression into clinical AIDS [94]. 

This may be the result of a two base pair deletion in the CCR5 gene that 

causes protein truncation in a low group of SMs (around 8 %). 

Homozygous mutant animals for this delection show no expression of the 

CCR5 co-receptor molecule on their cell surface targets [92]. Interestingly, 

such animals experience SIV infection with viremia comparable to wild type 

counterparts. To elucidate the mechanisms involved in the reservoirs 

maintaince and in the light of the aforesaid results, all twenty-two 

experimentally SIV-infected SMs housed at the Yerkes National Primate 

Research Center, were screened. According to our selection criteria, SMs 

homozygous for CCR5-null alleles were excluded, while SMs with high 

count of CD4+ T cells count and viral load greater than 10,000 viral RNA 

copies/ml were included in the study.  

 

4.1.1 Immunological and virologic features of SIV-infected SMs 

To understand the immunologic features of chronic SIV-infected SMs, we 

collected blood specimens from each animal of the twenty-two chronically 

SIV-infected SMs of the colony. Then the following parameters were 

considered: CD4+ T cells count, phenotype and viral load. 

CD4+ T cells percentages were obtained by flow cytometry analysis on T 

cell populations. Absolute CD4+ count was calculated from the CD4+ T cell 

percentage and the total white blood cell count during the course of the 

study to evaluate ART efficacy. On plasma samples, RT-PCR was carried 

out as described earlier. Only a small number of animals in the cohort of 
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SMs, housed at Yerkes National Primate Center, presented low levels of 

CD4+ in terms of frequency and absolute counts in addition to reduced viral 

loads (data not shown).  

The twelve SIV-infected SMs with viral load between 104 and 105 RNA 

copies per ml of plasma were included in the present study.  Animals with 

high CD4+ levels are selected compatibly to the immunological features of 

the SMs colony. Moreover, to ensure that all animals had endogenous 

CCR5, each SM included in the study, was genotyped in collaboration with 

Dr. Ronald G. Collman, Department of Medicine, University of 

Pennsylvania School of Medicine, Philadelphia, Pennsylvania, (USA). No 

mutation in CCR5 gene was observed in the selected animals (Figure 14).  

 

 

Figure 14. Features of animlas included in the study. Rationale for animal 

selection was viral load range, CD4 count and WT (wild type) genotype. 

Animal code 

 

Sex Age (yr) Viral load 

(copies/ml) 

CD4 

cells no 

CCR5 

Genotype 

FCs Female 20 80700 553.427 wt/wt 

Fez Male 14 5630 391.911 wt/wt 

FFs Male 20 47000 232.712 wt/Δ2 

FHa.1 Male 10 36500 1382.277 wt/wt 

FIy Male 15 45100 1166.952 wt/Δ2 

FJy Male 15 39800 708.150 wt/Δ2 

FLn Female 23 98700 434.089 wt/wt 

FSs Male 20 107000 749.953 wt/wt 

FUo Male 22 53800 237.511 wt/wt 

FUv Male 17 19200 460.938 wt/wt 

FWo Male 21 56900 390.449 wt/Δ2 

FZk Female 25 13200 986.245 wt/Δ2 
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4.2 Antiretroviral therapy safety and tolerance 

The quality of life, the health and the survival of HIV-infected individuals 

have remarkably improved with the introduction of anti–retroviral therapy. 

However, despite the successes of ART, an effective HIV cure is not 

available. ART remains the only source available to limit HIV infection so 

far, but it is a double-edged sword. Typically, standard treatments consist of 

three different classes of antiretroviral viral pharmaceuticals to avoid viral 

resistance. If HIV-infected patients strincly adhere to their treatment 

program, a better quality of life is experienced. Unfortunately, this is not 

always the case, since ART non-compliance and common clinical side 

effects, often mild (diarrhea, nausea, headaches) and sometimes more 

severe (peripheral neuropathy, lipodystrofy, liver and renal damage), can 

cause therapeutic failure in some HIV-infected patients.  

 

4.2.1 Monitoring of body weights and creatinine levels 

Because of clinical side effects of ART therapies, we monitored all the 

animals receiving drugs for cART related-adverse side effects during the 

course of the study. In particular a follow-up of behavioural and clinical 

signs (including appetite) was carried out twice daily and when the animals 

were sedated for blood samples collection. Body weights, hepatic and renal 

function indices were monitored prior to initiation and at various time points 

throughout the study.   

As indicated in Figure 15, body weights measurement revelead the stable 

physical condition for all animals on cART. Only two animals (FUv and FJy) 

exhibited a substantial loss of body weight (15-20%) from their initial. cART 

administration did not impact the health status of the remaining animals as 

shown by only minor physiological fluctuactions (2-6%). 

A major concern in all NHP models is drug toxicity. This is partially due to 

the elevated dosages than those typically administered in the treated HIV 

patients. Furthemore, in both clinical and experimental settings, PMPA-
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induced renal toxicity has been clearly reported. To ensure the safety of our 

experimental cART regimen, blood chemistry were performed to assess 

creatinine levels, physiological indicator of a healthy status and preserved 

kidney function. The studied animals, except for FUv, presented creatinine 

values in the adequate or below the established ranges, showing no sign of 

cART-related kidney failure (Figure 16). Finally, unfortunately, one animal 

(FWo), has been euthanized at day 43, due to its age-related healthy 

conditions. In conclusion, all animals showed good healthy conditions and 

no remarkable therapy-dependent adverse side effects. cART resulted to 

be safe and well tolerated by the majority of the animals included in the 

study. 

 

 

Figure 15. Effect of cART treatment on SMs weight. Loss of weight is 

calculated as percentage variation vs. pre-cART treatment values.  
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Animal 

codes 

Day 

15 

Day 

30 

Day 

60 

 

Day 

120 

 

Day 

165 

 

FCs −− 0.67 0.64 0.63 −− 

Fez 1.34 −− 1.13 −− 1.05 

FFs −− 0.99 1 1.01 1.04 

FHa1 −− 1.01 1.09 1 −− 

FIy 0.87 0.77 0.88 −− 0.97 

FJy 0.66 −− 1.58 −− −− 

FLn 1.88 −− −− −− 1 

FSs −− 1.07 1 0.86 1.01 

FUo −− 0.97 0.9 0.89 0.81 

FUv 6.8 2.69 2.91 2.90 −− 

FWo      

FZk −− 0.78 0.7 0.67 0.77 

 

Figure 16. Effect of cART therapy on renal function in SMs. Creatine levels 

were determined at various time points during the course of cART, 

specifically at day 15, 30, 60, 120 and 165, in treated SIV-infected SMs. 

Regular range: 0.8 -2.3. 

 

4.3 New potent cART regimen for the treatment of chronically SIV-

infected SMs 

Antiretroviral therapy represents one of the most important findings in HIV-

research of the past decade. ART is extremely effective at reduction of 

plasma viremia, replication suppression, enhancement of CD4+ T cells 

counts and improvement of life aspettance in treated patients [166, 190]. 

Despite ART has led to a reduction in morbidity and mortality in HIV 

patients, several challenges remain, including the absence of a vaccine that 
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can reliably prevent virus acquisition, and the inability of current ART 

regimens to eradicate the virus.  

The treatment of HIV-infected individuals with combination of three or more 

drugs can suppress viral load below the clinical limit of detection (50 HIV-1 

RNA copies/ml) [253]. However, residual levels of viral replication may be 

dectected with ultra-sensitive assays. HIV-1 persistence even with therapy, 

can be attributed to the presence of long-lived viral reservoirs [217]. It has 

been well established that viral reservoirs are mainly represented by 

memory CD4+ T cell subsets, which harbor silent copies of proviral DNA, 

that have been unable to be targeted by pharmaceuticals or the immune 

system [16, 208, 215].  

Extensive investigation of sources of residual viremia is not flexible in 

human HIV infection. Therefore, it has highlighted the importance of ART-

suppressed animal models to indentify stable reservoirs that contribute to 

viral persistence. Of particular interest to our study is the investigation of 

productively infected circulating populations and their anatomical 

localizations. Our results may be a key finding to address viral persistence 

in the human HIV infection. 

Several groups, studying pathogenic SIV infection, have described as 

administration of a multi-drugs regimen, proved to fully suppress SIV and 

decrease memory CD4+ T-cell subsets, the main cell subsets harboring the 

virus in vivo [200, 254].  

However, the effects of cART treatment on viral load and immunobiology in 

SIV-infected non-pathogenic NHP models are poorly understood. Previous 

work [110] has shown SIV-infected SMs treated with ART consisting of 

PMPA and FTC only. A two-phase decay of viremia was observed, with the 

bulk (92 to 99%) of virus replication sustained by short-lived cells (likely 

effector CD4+ T cells) and only 1 to 8% occurring in longer-lived cells (i.e., 

memory CD4+ T cells). This study suggested that in SIV-infected SMs, 
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similar to HIV-infected humans, short-lived activated CD4+ T cells are the 

main source of virus production [110]. 

Given these findings, we believed that our innovative experimental 

approach of using a potent four-drug ART regimen in a non pathogenic 

model represented by SMs, never conducted before, should be functional 

to fully achieve SIV suppression during treatment, resulting in complete 

eradication of residual virus production in short-lived activated CD4+ T 

cells. 

 

4.3.1 Antiretroviral therapy suppresses viral replication 

Twelve chronically SIV-infected SMs with viral loads ranging between 1.32 

x 104 and 1.07 x 105 copies/ml of plasma were treated with a potent cART 

regimen, consisting of four drugs: PMPA (20 mg/kg/day), FTC (30 

mg/kg/day), Darunavir (800 mg/day) and Raltegravir (300 mg/day). Plasma 

was collected from all experimental SMs at day 30 prior to the treatment 

initiation and throughout the duration of cART therapy. Sensitive RT-PCR 

based viral load assay was performed on plasma samples. 

Interestingly, all animals receving cART experienced a rapid and significant 

decline of the plasma viral load. 6 out of 11 animals showed viremia 

suppression below the level of detection (i.e. 60 copies/ml) as early as days 

15 and 30 (Figure 17). The remaining animals showed an early decline in 

viremia and total virus suppression at day 45 of treatment. 

Only one animal (FSs) seemed to be particularly resistant to cART, 

experiencing undetectable plasma viremia after a prolonged treatment 

period (day 184) (Figure 17).  

In summary, the administration of four–drugs regimen resulted to be well 

tolerated in all animals. cART was effective in rapid suppression of viral 

replication as early as 2-6 weeks in the majority of the treated SIV-infected 

SMs. 
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Figure 17. Effect of experimental cART regimen on plasma viremia. Plasma 

viral load of twelve SMs chronically infected with SIV, designated FCs, FEz, 

FFs, FHa.1, FWo, FJy, FLn, FSs, FIy, FUo, FUv and FZk before and during 

(shaded) cART. Note that animal FWo died on day 43 for ART-unrelated 

causes (natural death).  

 

4.4 Immunological changes induced by antiretroviral therapy in SMs 

Both untreated human HIV infection and pathogenic SIVmac infection of 

RMs are characterized by chronic viral replication, progressive loss of 

CD4+ T cells depletion and elevated levels of lymphocyte activation and 
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proliferation. Introduction of ART therapy induces a series of profound 

immunological changes in the infected hosts, consisting mainly of a rapid 

increase in CD4+ T cells counts and a remarkable reduction in the 

expression of activation and proliferation markers on CD4+ and CD8+ T 

cells, both in peripheral blood and in tissues [135, 190].  

Specifically, the administration of ART in HIV-infected individuals can 

restore the pool of CD4+ T cells in a biphasic trend. The initial phase sees 

primarily involved the memory cells recovery, while a later phase in which 

naïve and other memory CD4+ subsets are restored. This is likely a result 

of interruption of virus-killing activity and low levels of immune activation, 

that permits redistribution from lymphoid tissues back to the periphery [110, 

214]. 

 

4.4.1 Impact of cART on the recovery of CD4+ T cells 

We first performed a cross-sectional analysis of the phenotype of T cells 

isolated from different anatomical compartments: peripheral blood (PB) and 

MALT (Mucosal associated lymphoid tissue), specifically rectal biopsy, RB. 

To evaluate the extent of CD4+ T cells reconstitution following cART in 

peripheral blood (PB), frequency and CD4+ T cell absolute counts were 

determined at various time points during the course of the study. Although 

recovery of CD4+ T cells is usually observed in SIV-infected RMs and HIV-

infected humans on ART [190, 205], the analysis of total circulating 

CD4+ population, in all treated SMs, revealed only minor fluctuations in 

terms of their frequency and absolute number (Figure 18 A-B and C-D 

respectively). The lack of CD4+ T-cell increase in cART-treated SMs 

infected with SIV was not entirely unexpected, considering that non 

pathogenic SIV infection is not characterized by severe depletion in chronic 

phases but rather relatively high levels of CD4+ T cells even in absence of 

treatment.  
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Consistent with previously work [111], CD4+ T cell levels were lower in 

mucosal sites versus the systemic compartment prior to cART initiation 

(Figure 19 A). Interestingly, we observed a marked recovery of mucosal 

CD4+ T cells early in cART therapy as well as days 92 and and 135 in 

comparison to baseline levels (p= 0.0391 and 0.0078 respectively) (Figure 

19 B–C). These data suggest that cART suppression in SIV-infected SMs, 

only plays a minor role in augmentation of the systemic CD4+ T cell 

compartment. While likely the lack of immune dysfunction in this species 

may favor homeostatic mechanisms designed to reconstitute the CD4+ T 

cells in the mucosa.  

 

 

Figure 18. CD4+ T cells dynamics in peripheral blood of cART suppressed 

SMs. (A) Frequency of CD3+ CD4+ T cells fraction in peripheral blood (PB) 
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30 days before the initiation of cART and every two weeks of treatment 

from day 0 (shaded). (B) Average is shown in the right panel. Percentages 

of CD4+ T cells are determined by flow cytometry analysis on lymphocytes 

population. (C) CD4+ T-cell count, on the Y axis for each of the SMs 

before, during (shaded) the therapy, is calculated based on CD4+ T cells 

percentage and the total white blood cell count. (D) Average is shown in the 

right panel. 
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Figure 19. Impact of cART on MALT CD4+ T cells. (A) Representative flow 

cytometric analysis showing the fraction of CD4+ and CD8+ T cells in 

Peripheral Blood (PB) and rectal mucosa (RB) before cART initiation and 

during treatment course in one SM, gated on live CD3+ cells. (B) Average 

of CD4+ T cells in RB of SIV-infected SMs in absence and presence of 

therapy. The x-axis shows time post cART initiation (day 0). (C) Recovery 

of CD4+ T cells in mucosal tissue (RB). Mean values, standard deviations 

and statistically significant differences are shown (∗ p<0.05, ∗∗ p<0.01 and 

∗∗∗ p<0.001 vs baseline, day-30). Statistical significance was determined 

by Wilcoxon matched-pairs signed rank test. 

 

4.4.2 Kinetics of CD4+ T cell subsets during cART 

It has been described that five species of SIV natural hosts express 

markedly lower levels of CCR5 on CD4+ T cells isolated from blood and 

lymph nodes [109]. A more in depth exploration found that long-lived CD4+ 

central memory (TCM) are characterized by greatly reduced CCR5 

expression when compared to non-natural hosts (RMs), ex vivo and in the 

context of SIV infection in vivo [112]. A consequence of reduced CCR5 

expression is that the amount of SIV DNA found in CD4+ TCM in SMs is ~1 

log lower than in RMs, meaning that SMs TCM are relatively resistant to SIV 

infection in comparison to RM TCM. A more recent study [251] identified 

another SIV resistant CD4+ subset in natural hosts, so called T memory 

stem cells (TSCM). Indeed, CD4+ TSCM cells exhibit substantial levels of 

direct virus infection in RMs measured by cell-associated DNA. While, in 

the majority of SMs, a complete lack of SIV-DNA detected in the same 

subset was observed.  

Given the well-established role of memory CD4+ T cells in the maintenance 

of viral latency in presence of cART, we aimed to elucidate the dinamyics of 

memory CD4+T cell subsets during cART treatment.  
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Thus, a deep characterization of source(s) of viral reservoir(s) in a non-

pathogenic model resistant per se to SIV infection may help design novel 

prophylactic and therapeutic interventions to cure HIV infection. 

 

4.4.3 CD4+ T cell subsets definition 

Memory T-lymphocytes can be subdivided into distinct populations. The 

most studied subsets are the central memory (TCM) and the effector 

memory (TEM) cells that are characterized by different homing and effector 

functions. Briefly, humans TCM express lymph nodes homing receptors 

(CD62L and CCR7); whereas TEM mainly reside in the effector sites, 

exhibiting β1 and β2 integrins, CCR1, CCR3, CCR5 and CD103, CLA17 

markers. In non-human primate models, equivalent distinctions are made 

using the costimulatory molecule CD28 expression and FAS Ligand 

(CD95). These CD4+ T cell memory subsets are distinguished by CCR7 

expression, a chemokine that modulates lymph node migration. 

Specifically, TEM express CD95 and low levels of CCR7; wheareas, TCM 

express CD95+ and CCR7 expression is high on these cells. The canonical 

CD45RA or the CD62L expression, commonly used in humans to define 

TCM and TEM subsets, have been less extensively used in non-human 

primate models [255]. 

In the light of these observations, we aimed to differently define memory 

CD4+ T cell subset, as a mean of more deeply understanding. To 

accomplish this, we used the canonical approach (CD95, CD28, CCR7) in 

conjunction with alternative markers. Both CCR7 and CD62L expression 

characterizes the fraction of TCM cells, while TEM lack the expression of 

both markers on cell surface. 

In humans, Chomont et. Al and later Cirion et. Al., distinguished among 

CCR7- and CD45RA- cell fraction, another memory CD4+ T cell subset, 

called transitional memory (TTM), based on expression of CD27 [225, 245]. 

In NHP models, a definition of the pool of TTM and TCM has been 
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described based on CD28+CD95+ expression by Savarino [254]. To better 

elucidate the role of this subsest in latency maintainance, we characterized 

TTM as cells expressing CD28, CD95, CCR7 but not CD62L. 

In the light of this new definition, twelve-parameter flow cytometric analysis 

was performed on whole blood before and during cART treatment. We 

deeply analyzed the impact of cART on different memory CD4+ T cells 

subsets dynamics, assessing the fraction of effector memory (TEM, CD28+, 

CD95+, CCR7-, CD62L-), central memory (TCM, CD28+, CD95+, CCR7+, 

CD62L+) and transitional memory (TTM, CD28+, CD95+, CCR7+, CD62L-) 

CD4+ T cells (Figure 20). 

 

 

 

Figure 20. Gating strategy for memory CD4+ T cell subsets. Expression of 

the surface markers CD28, CD95, CCR7, CD62L on CD4+ T cells in a 

representative sooty mangabey. (A) Fractions of central memory (TCM, 

highlighted in red), effector memory (TEM, in green) and transitional memory 

(TTM, in blue). 

 

4.4.3.1 CD4 + Effector memory T cell subset 

A rapid reduction of CD4+ effector memory T cells in terms of frequency 

was observed at earlier time points (day 15). TEM were significally reduced 
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at days 75 and 120 from the beginning of ART treatment in all animals 

(p=0.0003 and p<0.0001, respectively) (Figure 21 A-B). The TEM reduction 

in frequency was also confirmed by the absolute counts. The TEM count 

was significally reduced at days 75 and 120 versus baseline values 

(p=0.0039 and p=0.0039, respectively) (Figure 21 C-D). It has been 

described that TEM are short-lived cells, depleted by the virus during HIV-

infection, representing the main source of viral replication [110]. Consistent 

with this notion, upon cART initiation, the fraction of TEM was reduced as a 

result of SIV-mediated death. At later time points, TEM resulted to be 

maintained at low levels, likely owing to cART inhibition of newly infected 

TEM.  
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Figure 21. Longitudinal analysis of TEM CD4+ T cell subset in SIV-infected 

SM. (A) Average of effector memory (EM) frequency after ART initiation 

and significant decrease at days 75 and 120 (B). (C) Average of CD4+ TEM 

absolute counts and marked reduction (D) at days 75 and 120. Data were 

performed by flow cytometer on whole blood samples at different time 

points. Mean values, standard deviations and statistically significant 

differences are shown (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs baseline, 

day-30).   

 

4.4.3.2 CD4+ Central memory T cells 

Recent papers showed that the tempo of disease progression in HIV/SIV 

infection is dictated by the depletion of long-lived TCM pool [256].  A 

peculiar feature of an effective ART therapy is the ability to restore immune 

function and enhance CD4+ T cell survival.  

Interestingly, under cART regimen, we observed an expansion of central 

memory CD4+ T pool, at earlier time point of treatment (Figure 22 A). At 

days 92 and 135, frequency of TCM was significant increased (p=0.0078 

and p=0.0078 respectively) (Figure 22 B). The absolute count of the CM 

subset was modestly elevated in cART-treated animals (Figure 22 C-D).  

Our observations suggested that TCM expansion, following ART initiation, 

may be the result of both the interruption of virus-induced killing and the 

rapid redistribution of cells that were previously localized in lymphoid 

tissues or other effector compartments. TCM are relativey protected by 

reduced CCR5 expression in natural host and are restorated during cART. 

A viable mechanism could be that nascent memory pool generated by TCM 

during cART, could be harboring reduced virus or be clear of infection. 

 

 

 



91 

 

 

 

 

Figure 22. CD4+ T cells TCM dynamics in cART-treated SM. (A) Average 

of central memory (CM) frequency and their reduction (B) after ART 

initiation. Mean values, standard deviations and statistically significant 

differences are shown (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs baseline, 

day-30) (B) Absolute count trend (C) and average (D) for TCM subset in 

whole blood for the treated SMs. 
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4.4.3.3 CD4+ Transitional memory 

Chomont et al. have demonstrated that in human TTM together with TCM 

represent the major reservoirs of latent HIV-1 [225]. TTM cells showed to 

be particularly responsive to some cytokines, such as interleukin (IL)-7 in 

human infection. IL-7 usually drives homeostatic proliferation of all memory 

T cell subsets, thus may be responsible for promoting the expansion of the 

latently infected cells, specfically TTM [257].  

Moreover, consistent with Chomont in 2009 described, our 

immunophenotypic evaluation of SMs TTM revealed that this subset 

presents an intermediate phenotype between those of TCM and TEM. 

CD4+ TTM cells express higher lever of CCR5, HLADR and PD1 than TCM 

and lower level of the same surface markers when compared with TEM 

[225]. 

Analysis of CD4+ T dynamics showed that cART does not exert 

appreciable effects on transitional memory T cells kinetics in treated 

animals (Figure 23). TTM were maintained during the course of cART, 

based on our assessed parameters, frequency (Figure 23 A-B) or absolute 

count (Figure 23 C-D). 
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Figure 23. Maintenance of Transitional CD4+ T (TTM) cells subpopulation 

during cART. Definition of transitional memory T cells includes CCR7 and 

CD62L markers (shown before).  (A) Frequency (left panel) and average 

(B) of frequency (right panel) of TTM (CCR7+CD62L-) in treated SMs (C) 

Absolute count (left panel) and mean values (D), standard deviations (right 

panel) are shown. 

 

4.4.3.4 Memory stem CD4+ T cells 

The memory T cell compartment is heterogeneous and the described 

conventional populations were represented by central memory, responsible 

for seeding the memory pool, and the effector memory that exhibit a more 
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differentiated phenotype. Initial works in mouse models, revealed the 

presence of a population of memory T cells that exhibits ‘stem cell-like’ 

features [258]. These stem cells, designated T memory stem cells (TSCM), 

present a naïve-like phenotype, expressing CD44low, CD62Lhigh markers; 

co-express canonical stem cells markers, such as stem cell antigen-1 (Sca-

1), antiapoptotic molecule B lymphoma 2 (Bcl-2), IL-2Rbeta receptor and 

the chemokine receptor CXCR3 [258]. 

Later, Roeder et Al. identified phenotypically and functionally a similar 

population of long-lived memory T cell subset with stem cell-like properties. 

It has been found that TSCM are defined, in humans, as 

CD45RA+CD45RO-CD62L+CCR7+CD28+CD127+CD95+CD122+. 

A homologous subset in RMs and pig tailed macaques was identified as 

CD45RA+CCR7+CD27+CD28+CD127+CD95+ [259], with intermediate 

expression of CXCR3, Bcl-2 and LFA-1 and suggestive of a population that 

is medial to both naïve and central memory [251, 258]. 

These cells have the unique ability to self-renew as well as a sustained 

proliferative potential allowing them to differentiate into all other memory T 

cell subsets, TCM, TEM and TTM. NHPs studies had given insights of 

TSCM distribution in tissues. CD4+ TSCM subset is mainly localized in 

peripheral blood and secondary lymphoid tissues, but is scarce in mucosal 

tissues, with a simililar tropism of naïve T cells.  Both CD4 + and CD8+ 

TSCM have been identified in humans and NHP models. In the context of 

SIV infection, TSCM CD8+ T cells seem to be involved in the long-term 

maintainance of virus-specific CD8+ T cells-mediated responses. 

While, despite the functional and phenotypic understanding of CD4+ 

TSCM, their contribution in HIV/SIV infection is unclear. Recently, 

Lichterfeld and his colleagues proposed CD4+ TSCM as the main memory 

subset that promotes long-term viral persistence in cART-treated patients 

[226]. 
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As we approached other memory subsets, we aimed to better understand 

the role of CD4 + T memory stem cells (TSCM, CD45RA+, CCR7+, CD27+, 

CD28+, CD95+) in maintaince of viral reservoirs during cART treatment in 

non pathogenic SIV infection. We defined CD4+TSCM as previously 

Roeder described [260] and as represented in the figure below (Figure 24). 

Further inclusion of surface CD122 expression, confirmed we consistently 

evaluated TSCM based on the parameters recently described (data not 

shown, [251]). 

 

 

 

Figure 24. Phenotypic characterization of CD4+ memory stem T cells 

(TSCM).  Definition of TSCM (highlighted in pink) based on the expression 

of surface markers CCR7, CD45RA, CD28, CD27 and CD95 on CD4+ T 

cells in one sooty mangabey.  

 

The presence of such a pool of long-lived T cells with a less differentiated 

phenotype ensure a lifelong supply of protective immunity. During cART-

treatment, TSCM frequency was maintained, with no significant fluctuations 

(Fgure 25 A). However, a significant expansion in TSCM counts was 

observed at day 60 (p=0.0068) (Figure 25 B-C). Interestly, given the ability 

of TSCM to differentiate into other memory, this may account for the 

increase in TCM in later time points during cART, as previously shown 

(Figure 22). Thus, this is a proof of principle that if TSCM are less infected 
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in natural hosts, may not contribute to the maintaince of viral reservoirs. 

TSCM may rather propagate and supply the memory niches with SIV-

cleared new progeny.  

 

 

 

Figure 25. cART does not exert a net effect on CD4+ TSCM cells during 

antiretroviral therapy. (A) TSCM Frequency and absolute count (B) in the 

treated SMs. (C) Significant expansion of TSCM at day 60. Mean values, 

standard deviations deviations and statistically significant differences are 

shown (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs baseline, day-30) are 

shown. 
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4.4.4 cART impact in peripheral blood and rectal mucosal 

lymphocytes activation and proliferation  

Systemic chronic immune activation is considered today, as the driving 

force that causes a progressive depletion of CD4+ T cells in pathogenic 

HIV/SIV infection and leads to significant increase of in vivo HLA-DR and 

CD38 expression on CD8+ T cells [256]. The limited immune activation of 

SIV-infected sooty mangabeys represents a marked difference with the 

generalized chronic immune activation in pathogenic HIV and SIV 

infections.  

To further characterize the impact of cART on the levels of immune 

activation, we longitudinally assessed the expression of activation marker, 

HLADR on CD4+ and CD8+ T cell compartments. As expected, SMs 

presented low level of CD4+ T cells immune activation. HLADR expression 

remains stable during antiretroviral therapy in peripheral blood (Figure 26 

A-B) as levels comparable to the baseline. Wheares, CD8+ T cells revealed 

a significant reduction in immune activation at day 165 when compared to 

day 75 (p= 0.0273) and at day 165 versus cART initiation day (day -30) (p= 

0.0039) in systemic compartment (Figure 26 C-D). 

Our observations of peripheral blood CD8+ and CD4+ T cells, mirrored the 

results found in the mucosae. Although, HLADR+CD4+ T cells fraction 

showed no major fluctuations during cART (Figure 27 A-B), the CD8+ T 

cells expressing HLADR were significally reduced at days 92 and 135 (p= 

0.0322 and p= 0.0195) after cART initiation in mucosal compartment 

(Figure 27 C-D). 

In HIV-infected individuals on cART, lower viral replication is associated not 

only with a reduced expression of T-cell activation markers, but also with a 

rapid decrease in T-cell turnover. 

To assess this phenomenon in our model, we used variantions in Ki-67 

expression as correlate of T cell turnover in our group of treated SMs. It has 

been demonstrated that SMs harbor low levels of CD4+ and CD8+ Ki67 
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expressing cells in peripheral blood versus those observed in RMs, where 

this exacerbated process promotes pathogenic progression [261].  

Consistent with these data, we observed relatively minor cART induced-

changes on frequency of proliferating CD4+ and CD8+ T cells both in 

systemic (average of Ki-67+CD4+ ranging between, 1.61 and 1.81%; 

average of Ki-67+ CD8+, 0.871 and 1.06%) and tissue compartments 

(average of Ki-67+CD4+ ranging between 2.19 and 2.56%; average of Ki-

67+ CD8+, 2.013 and 3.8 %) (data not shown).  

Consequences of elevated immune activation may contribute to viral 

persistence via increase of infectious targets, increase in viral production 

and upregulation of cell exhaustion marker PD-1 [262]. Antigen specific 

CD4+ and CD8+ T cells exhibit functional exhaustion in vitro when high 

levels of PD-1 are expressed, suggesting that PD-1 is a significant target 

molecule to restore HIV-response [263]. This has been evidenced in many 

clinical studies, in which HAART therapy dramatically reduced PD-1 

expression on both CD4+ and CD8+ T cell compartments [263]. However, 

the effect of cART therapy in the non-pahthogenic model has yet to be 

understood. For this purpose, we evaluated PD-1 marker variantions in our 

cohort of SMs. According to our observations, no significant changes in the 

high level of PD1 expression were determinated in response to cART (data 

not shown).  

 

 

 

 

 



99 

 

 

 

 

Figure 26. Kinetic of HLADR expressing CD4+ and CD8+ T cells in 

peripheral blood compartment. (A) Longitudinal analysis and average (B) of 

HLADR on CD4 + T cells before, during (shaded), and after cART. (C) 

Average and significant decrease (D) in CD8+ T cells expressing HLADR 

during cART. P values were determined by the Wilcoxon matched-pairs 

signed rank test. Statistic significant differences are shown (∗ p<0.05, ∗∗ 

p<0.01 and ∗∗∗ p<0.001 vs baseline, day-30) 
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Figure 27. Kinetic of activated CD4+ and CD8+ T cells in rectal mucosae. 

General trend and mean values, standard deviations of HLADR+ on total 

CD4+ (A –B, top panel) and CD8+ (C-D, bottom panel) every six weeks 

from ART initiation. Statistically significant differences are shown (∗ p<0.05, 

∗∗ p<0.01 and ∗∗∗ p<0.001 vs baseline, day-30). P values were determined 

by the Wilcoxon matched-pairs signed rank test. 
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4.4.4.1 Immunophenotypic assessment of CD4+T cell 

compartment during course of cART 

To better elucidate the role of viral replication in SIV-persistence, we 

interrogated CD4+ T cell subsests proliferative and activation status and if it 

may contribute to SIV reservoirs. For this purpose, we measured 

proliferative capacity, considering expression of Ki67, activation levels, 

using HLADR expression and finally phenotypic exhaustion was 

determined by PD1 marker, on CD4+ TCM, TTM, TSCM and TEM during 

the course of cART. 

cART had little influence on HLADR expression on CD4+ TSCM, TCM and 

TM fractions in all animals (Figure 28 A). However, a cART-induced 

increase of activated TEM at day 184 (p= 0.0103) in comparison to pre-

cART, was observed (Figure 28 B). Possibly the inhibition of replication 

mediated by cART contributed to new functional TEM with effector 

phenotype.  

Moreover, Ki67+ TEM cells (range of Ki67+ cells, 3.6–3.8%) were present 

in higher frequency. In contrast, TCM cells and TTM cells were 

characterized by low to intermediate levels of Ki67 expression, as indication 

of potential sources of SIV viral reservoir. Interestingly, consistent to 

previous reports [251], CD4+ TSCM from treated SMs showed higher levels 

of Ki-67 (Figure 28 C), suggesting that this smaller pool of cells may 

maintain CD4+ memory T cell homeostasis through higher basal rates of 

proliferation (Figure 28 C).  

Finally, our results indicated that PD-1 expression remained upregulated at 

higher levels particularly in the late differentiated CD4 subsets (TEM cells). 

While, CD4+ TTM and TSCM cells exhibited higher frequency of PD-1+ 

expression than TCM cells, but lower than TEM cells (Figure 28 D). 

Taken together these results suggested that SIV may potentially persist in 

TCM and TTM cells by continuous low-level of proliferation, lower 

expression levels of co-inhibitory molecule PD-1 and less activated 
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phenotype, ensuring the persistence of integrated viral DNA through 

mitosis. 

 

 

 

Figure 28. Variations in activation, proliferation and exhaustion expression 

levels in CD4+ T cell population. Frequency of CD4 expressing HLADR (A-

B), Ki67 (C) and PD-1 (D). Mean values are shown as horizontal bars and 

standard deviations. Statistical significance was determined using the 

Wilcoxon matched-pairs signed rank test (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ 

p<0.001 vs baseline, day-30)  
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4.5 Reduced SIV infection of SMs CD4+ T cell subsets after ART 

initiation 

The most significant barrier to HIV cure is the establishment of stable viral 

reservoirs in the early phases of infection. Different studies have evaluated 

the impact of early initiation of ART on viral reservoirs in both HIV-infected 

patient and SIV-infected RMs. However, as documented in a recent study, 

even RMs challenged intrarectally with SIVmac251 and receiving early ART 

on day 3, experienced viral rebound after discontinuation of ART following 

24 weeks of SIV fully suppression [247]. It is becoming more clear tha viral 

reservoirs are seeded rapidly after HIV/SIV infection, even before post-

infection peak of viral replication is observed in plasma. Moreover, previous 

findings in monkeys indicated that the size of the SIV-reservoir in PBMCs 

and tissues increases significantly earlier after SIV infection, around day 7 

and day 10 [246]. 

Despite current treatments induce a rapid decrease in plasma viremia, 

SIV/HIV-infected cells can persist in various compartments, such as blood 

and immunologically privileged sites, central nervous system, gut mucosa, 

lymph nodes and male and female genital tract [217, 222, 223], due to 

ongoing viral replication in these sites. 

A deep characterizations of the main component of viral reservoirs has 

revealed latently infected are represented by resting CD4+ T cells carrying 

an integrated copy of viral DNA [217, 219, 220, 221]. Indeed, accordings to 

recent findings, viral reservoir resulted to be largely made up of CD4 

memory T-cells, including central, transitional and effector memory cells in 

humans and in RMs [225, 264]. Recently, Maria Buzon et Al., identified a 

pool of long-lasting cells, memory T cells stem cells that harbor high levels 

of HIV DNA despite long-term antiretroviral therapy in HIV-infected 

individuals [226].  

In NHPs models, remarkably differences in the pattern of infection of CD4+ 

T cell subsets during natural and non-natural SIV infection of sooty 
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mangabeys and rhesus macaques, has deeply been described. In 2011, 

Paiardini et al., showed that, in contrast to the pathogenic NHP 

counterparts, SMs CD4+ TCM cells fraction expresses low CCR5 levels. 

CD4+ TCM relatively protection from virus-mediated depletion, preserves 

CD4+ homeostasis and promotes an AIDS-free status in this species [112]. 

In addition, a recent published study revealed that direct virus infection of 

CD4+ TSCM is a peculiar feature of SIV-infected RMs, with the majority of 

SIV-infected SMs lacking SIV DNA within the same subset [251]. 

In the light of these results, since specific SMs memory CD4+ T cell 

subsets resulted to be particularly resistant to SIV infection, we wanted to 

test in vivo the relatively contribution of specific infected cell populations to 

virus persistence in cART-treated SIV-infected SMs. 

For this purpose, we assessed the analysis of the memory CD4+ T cell 

compartments, sorting CD4+ T cell subsets from all SMs before and during 

cART. On the basis of surface expression of CD45RA, CC chemokine 

receptor-7 (CCR7), CD28 and CD95, we identified the different CD4+ T cell 

subsets, including effector memory (EM), central memory (CM), trasitional 

memory (TM) and memory stem cells (TSCM). Moreover, TTM, TEM and 

TCM were further distinguished based on CD62L expression. Highly 

sensitive quantification of total SIV proviral DNA on the sorted cells was 

then performed. The number of gag DNA copies amplified from each 

sample was normalized to the number of cells in each PCR, measured as 

expression of albumin gene.  

The investigation of the CD4+ TCM, TEM, TTM and TSCM fractions 

highlighted their different susceptibility pattern to SIV infection (Figure 29).  

Here we show cell-associated SIV-DNA data of 5 out of 12 SMs, including 

animals receiving cART for 2 and 6 months. 

Results showed that before cART initiation, SIV-DNA content in TEM was 

higher than in TCM, confirming previous data [112]. Short-lived CD4+TEM, 
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as main source of viral replication, confirmed to represent the major SIV 

reservoirs contributor in absence of cART. At day 45, a rapid reduction in 

SIV-DNA amount was observed in all CD4+ T cells subsets of 5 cART-

treated SMs (Figure 29). Moreover, our results revealed that TCM and 

TSCM showed limited contribution to the pool of latently SIV-infected cells, 

with lower levels of SIV-DNA if compared with TTM and TEM (Figure 30 A-

B-C-D). Interestingly, one animal (FEz) exhibited undectable levels of gag 

SIV copies in TCM and TSCM fractions both prior to cART treatment and 

during the treatment, suggesting the peculiar absence of latentely SIV-

infected long-lived cells harboring SIV-DNA in that animal.  

Overall, our data confirmed the role of the memory compartment in SIV 

persistence. cART was effective in reducing the size of the viral reservoirs 

in all the CD4+ T cell subsets and specifically, in TEM cells. Consistently 

with previous data, TCM and TSCM resuted to be relatively resistant to SIV 

infection in natural host, suggesting that once SIV-infected TEM are cleared 

and cART interrupted, no viral rebound may be observed.  
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Figure 29. Effect of cART on SIV-DNA content of CD4+ T cell subsets. 

Contribution of TCM (blue), TEM (red), TTM (purple) and TSCM (green) 

CD4+ T cell subsets to the pool of SIV-infected cells was calculated in 5 

SMs that interrupted cART. Total SIV DNA copy number was determined in 

sorted subsets by highly sensitive real-time PCR. In the graph, error bars 

represent s.e.m. 
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Figure 30. CD4+ T cell subsets harboring integrated SIV-DNA. Analysis of 

TCM (A), TEM (B), TSCM (C) and TTM (D) prior to cART initiation, day -30 

(full squares), and during cART, day 45, 92, 135 and 184 (empty squares). 

Results were expressed as the SIV copy number was calculated to the 

albumin housekeeping gene. 

 

4.6 Virological features of ART-interrupted SMs 

HIV-1 patients on ART show a dramatic and rapid decrease in plasma 

viremia below the limit of detection, reflecting the clearance of free HIV 

virions and productively infected CD4+ T cells. However, although cART is 



108 
 

very effective at containing HIV-1 spread within the body, viral load can 

reboundas upon interruption of therapy. The main cause of viral rebound is 

the presence of earlier established stable reservoirs that promote viral 

replication.  

The focal of our work is to understand the mechanisms of the complex 

virus-host interactions that lead to persistent infection. By intensive study 

and implementing fully suppressed SIV replication with a potent new 

combination of antiretroviral therapies, we had the possibility to study, in 

depth, the sources of residual virus and kinetics of short-lived CD4+ T cells. 

We successfully observed the inhibition of SIV replication during cART, 

indicating the combination of antiretroviral drugs used resulted to be safe, 

well tolerated and efficient in viral replication suppression. We also 

assessed which is the main CD4+ T subsets involved in SIV persistence in 

a non-pathogenic model such as SMs, revealing that TEM and TTM were 

the major contributors to SIV-reservoirs. 

We aimed to further interrogate the effect of cART in SIV-reservoirs after 

cART interruption. For this purpose, treatment was administrated for 

different temporal periods, to understand the best timing to achieve full SIV-

viremia suppression and elimination of residual viral replication. According 

to our experimental study design, the selected SMs were further divided 

into four treatment-interruption groups. Specifically animals received cART 

for 2, 6, 9 and 12 months. Plasma viral load was measured in the animals 

after cART suspension at different time points. 
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Figure 31. Viral kinetic in 2 months of cART group. SIV-RNA levels in two 

SIV-infected SMs, FJy and FUv, that received antiretroviral therapy from 

day 0 to day 60. Gray shading depicts periods on cART. 

 

We obtained full SIV-suppression in presence of cART in the treated-SMs. 

Animals FJy and FUv interrupted cART at day 60. As expected, the 

stoppage of therapy at two months resulted in a rapid rebound in SIV 

viremia. The viral kinetic was remarkably similar to those observed during 

acute SIV infection of SMs [111, 252] (Figure 31). Animals experienced a 

high peak at day 30 with a viral set point around 104 SIVsmm RNA 

copies/ml at latest time point.  

Viral kinetics after stoppage of cART 6 months later (day 184) revealed that 

animals FLn and FEz experienced an initial peak at earlier time point 
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comparable to the baseline levels (Figure 32). Interestingly, reduction of 

viremia was observed at day 30 post cART interruption. As confirmed to 

our previous data, FEz particularly experienced a dramatic decay in viremia 

close to undetectable levels. Thus, data suggested that 6 months cART 

treatment was effective in reducing the source of latent viral burden and 

that possibly SMs’ immune system was able to control virus replication, 

promoting the elimination of the remaing SIV-infected cells. 

 

 

 

Figure 32. Viral kinetics following cessation of cART after 6 months. SIV-

RNA levels in two SIV-infected SMs, FLn and FEz, that received 

antiretroviral therapy from day 0 to day 184. Gray shading depicts periods 

on cART. 
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4.7 Immunological variations in SMs following cART cessation 

In this study, we wanted to examine quantitative aspects of CD4+ and 

CD8+ T cells dynamics throughout the duration of the treatment but above 

all, after cART cessation, to better define the immunologic correlates 

outcome in SMs that received cART. Specifically, we show here an 

analysis of the all interrupted animals (2 and 6 months) at days 15 and 30 

post cART. 

4.7.1 Viral rebound and impact on CD4+ T cell population 

Interestingly, interruption of therapy did not affect the percentage or 

absolute count of CD4+T cells in the studied animals (Figure 33 A-B). 

These data indicated that level of viral replication does not alter the 

magnitude of circulating CD4+T cells in natural host species.  

 

 

 

Figure 33. Effect of cART interruption on circulating CD4 + T cells. 

Frequencies and counts of CD4 + T cells are not decreased following cART 

interruption. (A) Frequency and (B) absolute count mean values of 

CD3+CD4+T cells fraction in peripheral blood prior to (day -30) and at 

cART interruption (dotted line). Data of days 15 and 30 post cART in all 

interrupted SMs are shown. 
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4.7.2 CD8+ T cells and the control of plasma viremia in 6 months 

group 

The rapid and initial viremia peak at day 15 post cART, followed by the 

control of rebound viremia to pre-cART set point levels and even lower in 

animals on cART for 6 months, brought us to investigate a possible 

involment of CD8+ T cells. 

Interestingly, no changes in CD8+ T cell frequency or counts were 

observed during the course of the study (data not shown) and early 

following cART stoppage in the animals that received cART for 2 and 6 

months (Figure 34 A-B). No remarkable expansion in CD8+ T lymphocytes 

was observed, so likely the reduction of viremia may be the result of cART 

effect on viral reservoirs size.  

 

 

 

Figure 34. Interruption of cART and variantions in CD8 compartment. (A) 

Frequency and (B) absolute count mean values of CD8+T cells per mm3 of 

blood. CD8+ T cells compartment was monitored throughout treatment and 

after cessation periods (dotted line).  
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4.7.3 Immunoactivation and proliferation levels on lymphocytes 

after cART interruption 

Coincident with the increase of viral replication upon the termination of 

cART, a modest increase in the activated CD4+ and CD8+ T cells was 

observed at days 15 and 30 post cART interruption (Figure 35 A-B). 

Interestingly, we observed an augmentation of Ki67+CD4+ T cells at days 

15 and 30 post cART versus pre-cART time points (p= 0.0035 and 0.0321, 

respectively). It was unclear if initial SIV replication-peak induced 

proliferation of SIV-specific CD4+ T cells or, alternatively, if it’s a result of 

increased immune activation levels on lymphocytes after cART interruption, 

that contributed to the transient virus replication higher than the pretherapy 

set point [110] (Figure 35 C). Moreover, in our SMs, we observed that 

cART interruption induced an increase in the level of proliferating CD8+ T 

cells (Figure 35 D), event that could be a self-limiting response to the 

increased viral burden in the context of cART interruption [110]. 
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Figure 35. Immunological changes following cART cessation on CD4 and 

CD8 activation, proliferation status. Frequency of HLADR expressing CD4+ 

(A) and CD8+ (B) T cells in peripheral blood. Ki67 expression was 

measured on CD4+ (C) cells and CD8+ T cells (D) after cART cessation 

periods. Statistical significance was determined using the Wilcoxon 

matched-pairs signed rank test (∗  p<0.05, ∗∗  p<0.01 and ∗∗∗  p<0.001 vs 

baseline, day-30) 
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5. CONCLUSIONS AND FUTURE DIRECTIONS 

The development of highly active antiretroviral therapy (HAART) has 

dramatically improved the clinical outcome in HIV-infected, increasing their 

life expectancy. Nowadays, a large number of very potent antiretroviral 

drugs have dramatically reduced HIV-mortality and morbidity. However, 

HIV eradication remains unachievable, due to the presence of persistent 

viral reservoirs in peripheral blood and tissues of infected patients [217, 

219, 220-223]. Consequently, a thrust of HIV research has been to develop 

therapeutic strategies that can boost host immunity to control viral 

replication upon discontinuation of cART or eliminate persistent viral 

reservoirs. However, our knowledge of the systemic cellular nature of HIV 

reservoirs is incomplete. To provide elucidations on the possible 

mechanisms that rule ongoing SIV-residual replication, we performed an 

intensive examination of latently infected cellular components of SIV-

reservoirs in a non-pathogenic model of SIV infection undergoing cART. 

For this purpose, twelve chronically SIV-infected SMs were treated for 2, 6, 

9 and 12 months with combination antiretroviral therapy (cART) consisting 

of four drugs (PMPA/Tenofovir, FTC/Emtricitabine, Raltegravir and 

Darunavir). Of particular interest in our study, the achievement of a full 

suppression model of viral replication in SIV-infected SMs by the use of a 

novel and powerful cART regimen. Moreover, our focus was to investigate 

the cellular composition of SIV-viral reservoirs in blood and mucosal 

compartments and cART impact on productively infected cells in non-

pathogenic infection.  

Here, we proved that the four-drug regimen administrated to all animals, 

resulted to be safe, well tolerated and with no discernible side effects. 

cART-treated SMs, experimentally infected with SIV, experienced a rapid 

decline from 2- to 3-log decrease- of plasma viremia at the earliest time 

points, suggesting that cART resulted to be sufficiently effective in the 
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inhibition of SIV replication with plasma viral load below the limit of 

detection. In most HIV-infected individuals, the viral suppression replication 

achieved by highly active ART administration results in an increase in 

CD4+T-cell counts as well as a decrease in the levels of immune activation. 

In this cohort of SMs, we observed only minor fluctuactions in CD4+ T cell 

number in systemic compartment, while a marked reconstitution of mucosal 

CD4+ T cells at the time of cART-induced suppression of viral replication.  

With respect to level of immune activation, although we observed that 

cART induced minor decrease in T-cell proliferation (measured by Ki67 

expression) and immune activation (measured by HLADR expression) on 

CD4+T cell, activated and proliferating CD8+ T cells were remarkably 

reduced in blood and mucosa of treated SMs.  

Several studies strongly revealed that HIV latency is mainly due to resting 

long-lived CD4+ T cell in memory pool, that persist in HIV-infected 

individuals on cART. We showed that the content of SIV-DNA in infected 

CD4+ T cells resulted to be reduced during suppressed cART in SIV-

infected SMs. Consistent to previous studies [112, 251], SMs were 

particularly susceptible to cART, due to lower infection levels in specific  

CD4+ memory subsets. Specifically, SMs CD4+TCM and TSCM revealed a 

relatively resistance to SIV during cART treatment. Moreover, the 

evaluation of cART impact on the dynamics of CD4+ T cell pool, revealed 

redistribution in the different subsets. In particular, a rapid CD4+ TEM 

reduction was observed during cART administration. Interestingly, we 

described an expansion of low SIV-DNA infected CD4+ TSCM and TCM 

after cART initiation, that fuel, according to our hypothesis, the re-

population of memory niches with nascent progeny, harboring cells with 

reduced or no SIV virus. 

Moreover, the current study also gave us the opportunity to investigate the 

kinetics of viral replication and immunobiology in SMs after cessation of 
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antiretroviral therapy. When cART was interrupted, although all animals 

preserved CD4+ and CD8+T cell populations at levels comparable to the 

pre-cART, activated and proliferating T cell in both pools were augmented.  

Interestingly, SIV-infected SMs experienced a rapid rebound followed the 

interruption of cART, characterized by a peak of viral replication occurring 

within 2 weeks post cART interruption. However, interestingly, after 6 

months of cART a reduction of latent viral burden was observed.  

 We are currently investigating cART-induced effects in the remaining 

cohort of SMs, receving treatment for 9 and 12 months. Our previous 

observations on 2 and 6 months interruption groups were very 

encouraging. The dramatic decay of viremia in presence of cART, the early 

redistribution of CD4 +T cell subsets and the viral kinetics after cART 

cessation, allow us to be confident to achieve a complete clearance of SIV-

infected cell in viral reservoirs for prolonged cART periods. 

In conclusion, the observed reduction of SIV-reservoirs size in the setting of 

a full SIV-suppressed NHPs model, provided crucial insights in the 

investigation of SIV/HIV latency mechanisms. Our results will offer a new 

experimental in vivo platform to address innovative interventions aimed at 

eradicating viral persistence in human HIV infection. 
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