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In the big data era, the number, the volume and the variety 
of available data sources are dramatically increasing. 

As a consequence, one of the main open issues to address in 
computer science research consists of uniformly extracting 
knowledge and facing decision problems in heterogeneous 

application contexts. However, as generally 
happens, a solved problem becomes an opportunity. 

In fact, if we were able to define a model suitable to uniformly 
represent and handle highly heterogeneous data formats, 

we could use it to manage data coming from several 
research contexts. In other words, an approach designed 

to solve an open problem in one context can be easily 
transposed to address other open issues in other contexts. 
This thesis aims at providing a contribution in this setting. 

Indeed, it proposes a social network-based approach to 
uniformly extract knowledge and support decision 

making concerning disparate research contexts. 
In particular we will focus on four contexts: 

Biomedical Engineering, Data Lakes, 
Internet of Things and Innovation Management
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1

Introduction

1.1 Motivations

In the big data era, the number, the volume and the variety of available data sources

are dramatically increasing. As a consequence, one of the main open issues to address

in computer science research consists of uniformly extracting knowledge and facing

(very complex) decision problems in heterogeneous application contexts. However, as

generally happens, a solved problem becomes an opportunity. In fact, if we were able

to define a model suitable to uniformly represent and handle highly heterogeneous

data formats, we could use it to manage data coming from several research contexts.

In other words, an approach designed to solve an open problem in one context can

be easily transposed to address other open issues in other contexts. This thesis aims

at providing a contribution in this setting. Indeed, it proposes a social network-based

approach to uniformly extract knowledge and support decision making concerning

disparate research contexts. In particular we will focus on four contexts, namely:

Biomedical Engineering (BE - specifically electroencephalogram tracks to investigate

neurological disorders), Data Lakes (DL), Internet of Things (IoT) and Innovation

Management (IM - specifically patent data to investigate innovation trends).

The attempt to uniformly handle data sources characterized by heterogeneous

formats for extracting knowledge and supporting decision making has been performed

in the past, when most of available data were structured or semi-structured [288, 60,

62, 123, 348, 351]. However, with the advent of the big data phenomenon, most of

available data (i.e., about 80%) are unstructured [110]. This is rapidly changing the

coordinates of several research fields. So, the need of new models and approaches to

handle data with disparate formats is compulsory. As for this exigency, it was shown

that network-based models and approaches have the flexibility and, at the same time,

the power of effectively and efficiently handling data represented in heterogeneous

formats [76]. For this purpose, the advances in the Operations Research (OR) field,
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especially in Graph Optimization (GO), which network-based models and approaches

derive from, can successfully support knowledge extraction and decision making.

For instance Social Network Analysis (SNA) has been extensively investigated

from some decades and, with the advent of Online Social Networks (OSNs), it has

become one of the hot topics in computer science. In this context, several interest-

ing results concerning information diffusion [301], homophily [305], centrality [162],

crawling [84], etc., have been already found. Network models have also been suc-

cessfully adopted to face issues concerning IoTs [49], with particular reference to

Wireless Sensor Networks (WSNs) and event and anomaly detection [114, 165]. Most

of these studies focus on the analysis of data produced by single devices [365],

while few are based on the processing of aggregated data acquired by WSNs [90].

Here, network based models have been mainly applied to WSN design and routing

[287, 415, 15, 57, 197, 187]. The usage of these models in Biomedical Engineering has

been successfully experimented in the past to handle electroencephalographic (EEG)

and electrocardiographic (ECG) data [279]. On the other side, brain diseases have

been largely analyzed in Biomedical Engineering. Here, EEG analysis supports the

study of problems related to the brain, in a non-invasive and economic fashion. In

this context, network based models have been used for the diagnosis of several patho-

logical states in humans [192, 478, 389]. Finally, the same models have been already

used to face several problems concerning Innovation Management. Among them, we

cite the detection of hub institutions in a country [153].

In this thesis, we will examine the network-based models presented in the past

literature to represent structured and semi-structured sources [76]. In particular, we

will determine the pros and the cons of each of them. Furthermore, we will investigate

the features they need to have for handling unstructured data. Finally, we will define a

new model maintaining the pros and avoiding the cons of the previous ones by adding

the necessary features to make it capable of handling also unstructured data.

In the same way, we can define a unique network analysis-based approach for

extracting knowledge and supporting decision making in disparate contexts. Starting

from the past literature, we will define new and more appropriate techniques for

extracting knowledge and supporting decision making in several domains. This way

of proceeding will return a set of general techniques, well suited for the new model

and that, when applied to a certain context, allow us to address issues typical of

that context. In other words, we will produce a set of generic and, at the same time,

powerful template techniques, which can be specialized in many application fields and

can support the resolution of problems typical of each of these fields.
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We will apply the new model and the new approach to four contexts of interest,

namely: (i) Neurological Disorders, (ii) Data Lakes, (iii) IoT, and (iv) Information

Management.

In the whole thesis, we will underline the commonalities of the models and ap-

proaches described in the four contexts. In particular, we will try to define some best

practices and we specify some guidelines for modifying models in order to further

empower them for future research efforts.

1.1.1 Neurological Disorders

The first context refers to EEG data. Here, we propose a new network-based approach

to help experts to investigate neurological disorders in which the connections among

brain areas play a key role. Our approach receives the EEG of a patient and associates

a network with it, with nodes that represent electrodes and with edges that denote the

disconnection degree of the corresponding brain areas. Starting from this network, we

investigate the strength of the connections between brain areas and use this strength

to investigate three neurological disorders, namely Creutzfeldt-Jacob Disease (CJD),

Alzheimers Disease (AD) and Childhood Absence Epilepsy (CAE).

In recent years, the incidence of neurological disorders is growing also because pop-

ulation is aging in most countries. At the same time, the efforts to design approaches

capable of determining the onset of these disorders and of monitoring their course in

the corresponding patients are intensifying [138, 207, 463]. Even the tools supporting

neurologists in their activities are becoming more complex and sophisticated (think,

for instance, of electroencephalograms with 256 electrodes, instead of the classical

ones with 19 electrodes). The counterpart of these important advances is the need of

handling huge amounts of data that experts have difficulty to analyze manually. In

this scenario, automatic tools helping experts to analyze available data are becoming

mandatory.

Among the many diagnostic tools available to neurologists, electroencephalogram

(hereafter, EEG) is one of the least invasive. For this reason, it is adopted to support

the analyses of many neurological disorders. In the literature, many techniques to

process EEG data have been proposed, and most of them are based on signal analysis

[88, 220, 343, 418, 456, 422].

An EEG can be easily modeled as a network. Indeed, several approaches that use

networks to model EEGs and to investigate neurological disorders have been presented

[122, 280, 295, 370, 416, 472] in the past. After having modeled an EEG as a network,

these approaches generally use basic concepts and metrics of network analysis (e.g.,

centrality measures, diameter, path length) to help an expert in her diagnosis.
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It is well known that, in many neurological investigations, the key role is played

by the connections between the brain areas. Network analysis provides some basic

parameters to evaluate the connection level of a network. The most known of them

are network density and clustering coefficient. However, these two parameters have

not been specifically conceived for measuring the connection degree of a network. As a

consequence, a challenging issue could be defining a parameter specifically thought for

this purpose. Hopefully, this parameter could work better than density and clustering

coefficient for evaluating the connection degree of a network. To define it, we observe

that cliques play a central role in identifying highly-connected portions of a network.

Thus, they could represent the key concept in this task, because the higher the number

and the dimension of available cliques in a network and the higher the corresponding

connection level.

However, a network associated with an EEG is totally connected, since a voltage

difference can be evaluated for each pair of its electrodes. On the other side, voltage

difference between two electrodes is an indicator of the strength of the connection

between them and, ultimately, between the corresponding brain areas. As a conse-

quence, it is reasonable to use a metric derived from it to weigh the corresponding

edges in the network. This metric could represent the distance, or the disconnection

level, of the associated brain areas. These edge weights could guide the analyses of

the network and, ultimately, of the corresponding patient.

In this scenario, a metric that, starting from the voltage differences, can determine

the disconnection level between two nodes is particularly important. We have decided

to propose a new approach orthogonal to the metric adopted to weigh network edges.

1.1.2 Data Lakes

The second context will focus on Data Lakes. In particular, we propose a new network-

based approach to uniformly manage heterogeneous data lake sources. This approach

first models involved sources by means of networks, then it exploits network-based

techniques to extract interchema properties and knowledge patterns from them. The

extracted knowledge will represent the metadata that are, in turn, the core of a data

lake.

Metadata have always played a key role in favoring the cooperation of heteroge-

neous data sources. This role has become much more crucial with the advent of data

lakes, in which case metadata represent the only possibility to guarantee an effective

and efficient management of data source interoperability. For this reason, the necessity

to define new models and paradigms for metadata representation and management

appears crucial in the data lake scenario. We aim at addressing this issue by propos-

ing a new metadata model, well suited for data lakes. Furthermore, to give an idea of
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its capabilities, we present an approach that leverages it to “structure” unstructured

sources and to extract thematic views from heterogeneous data lake sources.

In the last few years, the “big data phenomenon” is rapidly changing the re-

search and technological “coordinates” of the information system area [93, 451]. For

instance, it is well known that data warehouses, generally handling structured and

semi-structured data offline, are too complex and rigid to manage the wide amount

and variety of rapidly evolving data sources of interest for a given organization, and

the usage of more agile and flexible structures appears compulsory [128]. Data lakes

are one of the most promising answers to this exigency. Differently from a data ware-

house, a data lake uses a flat architecture (so that the insertion and the removal of

a source can be easily performed). However, the agile and effective management of

data stored therein is guaranteed by the presence of a rich set of extended metadata.

These allow a very agile and easily configurable usage of the data stored in the data

lake. For instance, if a given application requires the querying of some data sources,

one could process available metadata to determine the portion of the involved data

lake to examine.

In this scenario, we propose a new metadata model well suited for data lakes. Our

model starts from the considerations and the ideas proposed by data lake companies

(in particular, it starts from the general metadata classification also used by Zaloni

[341]). However, it complements them with new ideas and, in particular, with the

power guaranteed by a network-based and semantics-driven representation of meta-

data. Through this approach, our model can take advantage of all the results already

found in network theory and semantic-based approaches. As a result, it can allow a

large number of sophisticated tasks that currently adopted metadata models cannot

guarantee. For example, it allows the definition of a structure for unstructured data.

It also allows the extraction of thematic views from data sources, i.e. the construction

of views on one or more topics of interest to the user, obtained by extracting and

merging data from different sources.

1.1.3 Internet of Things

The third context regards an IoT scenario. In this case, we will use Social Network

Analysis to represent multiple networks of smart objects interconnected to each other

through cross objects. Then, we will use this representation to extract knowledge

from heterogeneous sensor data streams and to build virtual IoTs in a Multiple IoTs

scenario.

The Internet of Things (IoT) is currently considered the new frontier of the In-

ternet, and a lot of research results about this topic can be found in literature. One

of the most effective ways to investigate and implement IoT is based on the use of
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the social network paradigm: Social Internet of Things (SIoT) is an excellent attempt

in this direction. In the last years, social network researchers have introduced new

paradigms capable of capturing the growing complexity of this scenario. One of the

most known is the Social Internetworking System, which models a scenario comprising

several related social networks. We investigate the possibility of applying the ideas

underlying Social Internetworking System to IoT, and we propose a new paradigm,

called MIoT (Multiple Internets of Things), capable of modelling and handling the

increasing complexity of this last context.

MIoT can be seen as an evolution of SIoT (Social Internet of Things). In SIoT,

things are empowered with social skills, making them more similar to people [39, 42].

In particular, they can be linked by five kinds of relationship, namely: (i) parental

object relationship; (ii) co-location object relationship; (iii) co-work object relation-

ship; (iv) ownership object relationship; (v) social object relationship. If: (i) a node is

associated with each thing, (ii) an edge is associated with each relationship between

things, and, finally, (iii) all the nodes and the edges linked by the same relationship

are seen as joined together, SIoT can be modeled as a set of five pre-defined networks.

Here, some nodes belong to only one network (we call them inner-nodes), whereas

other ones belong to more networks (we call them cross-nodes).

The idea underlying SIoT is extremely interesting and, as a matter of fact, has

received, and is still receiving, a lot of attention in the literature. However, we think

that the number of relationships that might connect things could be much higher

than five, and relationships could be much more variegate than the ones currently

considered by SIoT. As a consequence, we think that a new paradigm, taking into

account this fact, is in order.

We think that the key concepts of SIS can also be applied to things (instead

of users) and to relationships between things and we propose the MIoT (Multiple

Internets of Things) paradigm. The core of the SIS paradigm is modeling users and

their relationships as a unique big network and, at the same time, as a set of related

social networks connected to each other thanks to those users joining more than one

social network. The MIoT paradigm arises in this scenario. Roughly speaking, a MIoT

can be seen as a set of things connected to each other by relationships of any kind

and, at the same time, as a set of related IoTs, one for each kind of relationship.

Actually, as will be clear in the following, a more precise definition of MIoT would

require the introduction of the concept of instance of a thing in an IoT.

1.1.4 Innovation Management

Finally, the fourth context concerns patent data. In this case, we found some inspi-

rations from the approaches that use network-based models to determine institutions
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acting as hubs [153]. The ultimate goal is the extraction of knowledge concerning

patents, their characteristics and their applicants, as well as information about the

influence and the scope of a patent on the other ones.

Patents and collaboration between researchers and, more in general, scientometrics

and bibliometrics have been largely investigated in the past. The impressive devel-

opment of innovations in all the R&D fields and the data available for investigations

are growing at a very rapid rate. This has made the adoption of big data centered-

techniques compulsory for their analysis. As a matter of fact, the problem of extracting

useful knowledge from these data can be seen as a Data Mining problem. In this con-

text, network analysis-based approaches are extremely promising. This is due to the

fact that in recent years it has become incredibly important to evaluate the perfor-

mances of researchers, universities, institutions, etc. Indeed, research collaborations

across institutions, firms and countries have been largely investigated in strategy and

management literature [409, 308, 79]. Moreover, different studies have been performed

to understand whether international flows from developed countries to developing and

less-developed ones have some positive effects in these last ones [178]. Furthermore,

many studies investigate the impact and the effects of international knowledge flows

by focusing on R&D collaborations and inventions and on their impact on innovation

[260, 300, 163].

As we pointed out, Social Network Analysis [458, 53, 52, 24, 106, 107, 258, 328]

and, more in general, graph theory, have been a prominent family of approaches

adopted in the past in this context (see, for istance [276, 36, 46, 72, 446, 359, 10, 13,

277, 237, 103, 71, 11]). Furthermore, it is possible to foresee that they will be even

more employed in the future, due to the increasing number of proposals someway

involving them.

As it will be clear in the following, our approach presents several features that

characterize it with respect to the related ones already proposed in the past. It does

not focus on a case study (for instance, on a group of countries). By contrast, it

consists of a general methodology for the extraction of several knowledge patterns

about innovation geography that can be applied on any country of interest for the

user. This is obtained by investigating inventors and not applicants. Furthermore, our

approach redefines several metrics, which have been already introduced in SNA or in

other research fields, in such a way as to make them suitable to the application context

of our interest. It also redefines the concepts of neighborhood, internal neighborhood

and external neighborhood of an inventor, which have been previously introduced in

totally different research fields. As for this contexts, as we will see in the following, we

are able to introduce several new concepts. Finally, our approach defines new metrics

about patent and inventor relationships not present in the past; think, for instance,
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of the aggregation coefficient and some parameters based on the modified Herfindahl

Index for the computation of the heterogeneity of the external collaborations of a

country and of the variability of the IPC classes, which the patents of a country refer

to.

1.2 Complex Networks as a unifying model for heterogeneous

contexts

In this section we provide an overview of a complex network-based model capable

of representing disparate scenarios. This model, whose specification will be presented

in the next chapters, represents the base for the unifying approach to knowledge

extraction that we examine in Section 1.3.

Our complex network-based approach can represent any scenario consisting of

several entities (generally of the same type) that interact with each other and that are

linked by one or more forms of relationships. Formally speaking, it can be represented

as a network:

N = ⟨V,E⟩

Here, V is the set of nodes of N . Each node vi ∈ V corresponds to an entity, for

instancve to an electrode, a metadata label, an object or a patent.

E is the set of the edges of N . Each edge eij connects the nodes vi and vj and

can be represented as:

eij = (vi, vj , wij)

Edges might be weighted. The weight wij is a measure of the connections strength

between vi and vj . It is an indicator of the connection/disconnection level of vi and

vj . Taking into account the peculiarities of the different areas in which the model can

operate, we have made our model orthogonal to the different distance measurements

that can be used. Indeed, in our experiments, we will employ different types of weight.

In some cases, the weight is part of the input (e.g. the PDI in the EEG), while, in

other cases, it is computed by pre-processing the input data (think, for instance, of

similarity weights in the analysis of similarities between the metadata of different data

lakes).

In many of the cases that we have considered, in order to specifically address the

analysis of the problems of our interest, we had to build projections of the networks,

for instance by removing the edges. This allowed us to make our model more “user-

friendly” and “expressive” and, at the same time, more capable of discriminating

strong and weak connections between the different network areas.
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A network Nπ, being a projection of a network N , is obtained from this last one

by removing the edges with an “excessive” weight and by coloring the others based on

their weight. As a matter of fact, if the edges weights represent distance, the edges with

an “excessive” weight identify weak connections between the corresponding nodes and

can be removed. The remaining edges can be, instead, colored based on their strength.

In particular, blue edges denote strong connections, red edges represent intermediate

ones and, finally, green edges indicate weak connections. We formalize the network

Nπ as follows:

Nπ = ⟨V,Eπ⟩

Here, the nodes of Nπ are the same as the ones of N . To define Eπ, we consider

the distribution of the weights of the edges of N . Specifically, let maxE (resp., minE)

be the maximum (resp., minimum) weight of an edge of E. Starting from maxE and

minE , it is possible to define a parameter stepE = maxE−minE
10 , which represents the

length of a “step” of the interval between minE and maxE . We can define dk(E),

0 ≤ k ≤ 9, as the number of the edges of E with weights that belong to the interval

between minE + k · stepE and minE + (k + 1) · stepE . All these intervals are closed

on the left and open on the right, except for the last one that is closed both on the

left and on the right. Eπ consists of all the edges of E belonging to dk(E), where

k ≤ thmax.

Now, we can “color” the edges composing Eπ. Specifically, Eπ = Eb
π ∪ Er

π ∪ Eg
π.

Here:

• Eb
π =

{
eij ∈ E | eij ∈

⋃
thmin≤k≤thbr

dk(E)
}
;

• Er
π =

{
eij ∈ E | eij ∈

⋃
thbr<k≤thrg

dk(E)
}
;

• Eg
π =

{
eij ∈ E | eij ∈

⋃
thrg<k≤thmax

dk(E)
}
.

As will be clear in the following, the projection technique described above, and

therefore the corresponding network Nπ, represent powerful tools at disposal for defin-

ing a uniform approach handling knowledge in disparate contexts.

1.3 Social Network Analysis as a unifying approach to

knowledge extraction

After having seen that complex networks can represent a unifying model to represent

disparate contexts, in this section we aim ad providing a highlight of how, after

having modeled contexts as complex or social networks, Social Network Analysis can

be exploited as a unifying approach to extract knowledge regarding these contexts.

In particular, in the following of this section, in order to prove an overview of this
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claim, we will focus on some Social Network Analysis concepts and operators. In the

next chapters, we will see that these concepts and operators could be much more

numerous.

1.3.1 Clique

In Social Network analysis, one of the most important (and, at the same time, simple

and basic) tools for investigating network connection is the concept of clique. We

recall that, given a network, a clique of dimension k represents a totally connected

subnetwork with k nodes. That is, its induced subgraph is complete. The task of

finding whether there is a clique of a given size in a graph (the clique problem) is

NP-complete, but, despite this hardness result, many algorithms for finding cliques

have been studied.

As for the four contexts examined in this thesis, the concept of clique can be used

in different ways. For example, cliques can be adopted as supporting data structures

in the process of identifying motifs (i.e., recurring connection patterns within the

network), but also to calculate a connection coefficient that, quantitatively, is able to

return information about the strength of the network itself.

The most important applications of this concept within our work are the following:

• in neurological disorders, to punctual monitor which areas of the brain are most

connected, and, therefore, what parts of the brain continue to operate correctly;

• in innovation management, to identify if there are groups of authors or organiza-

tions that often operate together to realize patents.

1.3.2 Centralities

Centrality is one of the most investigated issues in network analysis. It aims at mea-

suring the importance of a node in a network. It allows experts: (i) to measure the

relevance and the criticity of nodes in their networks; (ii) to define forms of distance

between network nodes or areas; (iii) to measure the cohesion degree of a subnetwork;

(iv) to identify cohesive subnetworks or network communities.

In the past, several centrality measures have been proposed in the literature [94,

386, 162, 186, 161, 423, 80]. Among them, the most general and best known ones are:

(i) degree centrality, based on the number of arcs incoming in, or outgoing from, each

node; (ii) closeness centrality, based on distances between nodes; (iii) betweenness

centrality, based on the shortest paths connecting pairs of nodes; (iv) eigenvector

centrality, based on both the number and the centrality of nodes whose outgoing arcs

are incident on the nodes of interest.
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All these measures, as well as the other ones proposed in the literature, could be

adopted in the investigation of the four contexts of interest for this thesis. In partic-

ular, they have been adopted as the starting point of several information extraction

tasks. Specifically:

• in the IoT analysis, they allowed us to identify cross-nodes within MIoT;

• in the Data Lakes analysis, they allowed us to re-construct a structure for unstruc-

tured sources;

• in the innovation management analysis, they allowed us to identify the so-called

innovation hubs, i.e., people and/or organization that can favor the development

of the whole neighborhood connected with them.

1.3.3 Homophily, Ego Networks and Neighborhoods

Due to the concept of homophily [305] in Social Network Analysis, the behavior of an

individual is strictly connected to the one of the individuals most strictly connected to

her. Describing and indexing the variation across nodes in the way they are embedded

in “local” social structures is the goal of the analysis of ego networks. Ego is an

individual focal node. A network has as many egos as it has nodes. Egos can be

persons, groups, organizations, or whole societies. A neighborhood, instead, is the

collection of an ego and all the nodes to whom it has a connection at some path

length. In Social Network Analysis, the “neighborhood” involved in ego networks is

almost always one-step; that is, it includes only the ego and the actors that are directly

adjacent to her. The neighborhood also includes all of the ties among all of the actors

to whom ego has a direct connection. The boundaries of ego networks are defined in

terms of neighborhoods.

Homophily, ego networks and neighbors have been extensively exploited through-

out this thesis and allowed us to extract knowledge in all the four contexts of our

interest. In particular:

• in the IoT analysis, they allowed us to identify communities within object net-

works;

• in the Data Lakes analysis, they represent the starting point of the Knowledge

Pattern extraction process;

• in the innovation management analysis, they allowed us to determine hubs and,

more in general, the influence of a patent, an authors or an organization on the

connected ones;

• in neurological disorders, to investigate the connection level of a portion of brain.
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1.4 A sketch of possible applications

In this section, we provide a sketch of possibile applications of our approach. The

details about this issue can be found in the next chapters of this thesis.

1.4.1 Neurological Disorders

The EEGs to perform our investigation were provided by different Italian centers

(i.e., University “Magna Graecia” of Catanzaro, Neurologic Institute “Carlo Besta” of

Milano, Istituto Bonino-Pulejo and Neurologic Institute of the University of Catania).

They regard a group of patients with neurological disorders (in particular, patients

suffering from Creutzfeldt-Jacob Disease - CJD -, Mild Cognitive Impairment - MCI

-, Alzheimer’s Disease - AD -, Childhood Absence Epilepsy - CAE) examined in

the last 15 years in these centers. The EEGs were recorded through scalp electrodes

placed according to the international 10-20 system. The specific montage was: Fp1,

Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, G2, Cz and Pz,

where G2 (located between electrodes Fz and Cz) was used as reference. Each EEG

was recorded in the morning in a comfortable, eye closed, resting state. The mean

recording length is 20 min. The EEG was high-pass filtered at 0.5 Hz, low-pass filtered

at 70 Hz. Furthermore a 50 Hz notch filter was also applied. The EEG traces were then

downsampled to 256 Hz. The artifactual epochs were visually detected and marked

by the EEG experts and later excluded from the analysis. Cleaned data was stored

in a MongoDB database [6]. To give an idea of it, we report some of its features: (i)

size = 357.8 MB; (ii) number of collections = 10 ; (iii) number of objects = 20; (iv)

number of indexes = 10; (v) index size = 160 KB.

Clearly, we investigated the three neurological disorders separately. Some impor-

tant results we have found are the following:

• We have defined an approach to identify and characterize Periodic Sharp Wave

Complexes in EEGs. These are important indicators of the presence of CJD in a

patient.

• We have defined an approach able to discriminate patients who convert from MCI

to AD and also to predict, at least partially, the occurrence of an epileptic seizure.

• We have defined an approach able to predict, at least partially, the occurrence of

an epileptic seizure.

1.4.2 Data Lakes

To perform our experiments about data lakes, we constructed a set DS of data sources

consisting of 2 structured sources, 4 semi-structured ones (2 of which were XML
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sources and 2 were JSON ones), and 4 unstructured ones (2 of which were books

and 2 were videos). All these sources stored data about environment and pollution.

To describe unstructured sources, we considered a list of keywords for each of them.

These keywords were derived from Google Books, for books, and from YouTube,

for videos. The interested reader can find the schemas, in case of structured and

semi-structured sources, and the keywords, in case of unstructured sources, at the

address http://daisy.dii.univpm.it/dl/datasets/dl1. The password to type is

“za.12&;lq74:#”.

It could appear that taking only 10 sources is excessively limited. However, we

made this choice because we wanted to fully analyze the behavior and the perfor-

mance of our approach and, as it will be clear, this requires the human intervention

for verifying obtained results. This intervention would have become much more dif-

ficult with a higher number of sources to examine. At the same time, our test set is

fully scalable. As a consequence, an interested reader, starting from the data sources

provided at the address http://daisy.dii.univpm.it/dl/datasets/dl1, can con-

struct a data set with a much higher number of sources, if necessary.

For our experiments, we used a server equipped with an Intel I7 Dual Core 5500U

processor and 16 GB of RAM with the Ubuntu 16.04.3 operating system. Clearly, the

capabilities of this server were limited. However, they were adequate for the (small)

data set DS we have chosen to use in our tests.

Some important results we have found in this context are the following:

• We have defined an approach to create a structured representation of a natively

unstructured data source.

• We have defined an approach to extract interschema properties and complex

knowledge patterns from a data lake possibly consisting of a huge number of

disparate data sources.

1.4.3 Internet of Things

Since the MIoT paradigm has been proposed for the first time by us in several papers

connected with this thesis, there is no known case study or real example about it

yet. As a consequence, in order to have a testbed for our experiments, we constructed

a MIoT starting from some open data about things available on the Internet. In

particular, we derived our data from Thingful [3]. This is a search engine for the

Internet of Things, which allows us to search among a huge number of existing things,

distributed all over the world. Thingful also provides some suitable APIs allowing the

extraction of all the data we are looking for.

In order to construct our MIoT, we decided to work with 250 things whose data

was derived from Thingful.
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IoT Number of instances

a.home 22

a.health 22

a.energy 22

a.transport 22

a.environment 22

b.near 14

b.mid 38

b.far 53

c.plain 44

c.hill 50

c.mountain 6

Table 1.1. Number of instances present in the IoTs of our MIoT

Our MIoT consists of 11 IoTs. We associated an object with each thing; therefore,

we had 250 objects. In principle, for each object, we could have associated an instance

for each dimension we aimed to investigate. However, in order to make our testbed

closer to a generic MIoT, representing a real scenario, where it is not said that all the

objects have exactly the same number of instances, we decided not to associate an

instance with each dimension for all dimensions of our interest. Instead, we associated

only one instance (distributed uniformly at random among the dimensions, and based

on the features of the things of the IoTs of a given dimension) to 200 of the 250 objects.

Analogously, we associated two instances (distributed by following the same guidelines

mentioned above) to 35 of the 250 objects. Finally, we associated three instances to

15 of the 250 objects. At the end of this phase, we had 315 instances, distributed

among the 11 IoTs of our MIoT, as shown in Table 1.1.

Some important results we have found in this context are the following:

• we have defined a new crawler, specifically conceived for our MIoT;

• we have defined a new approach to create topic-guided virtual IoTs.

1.4.4 Innovation Management

Data regarding patents adopted in our analyses has been taken from PATSTAT-

ICRIOS database [108].

PATSTAT (i.e., EPO worldwide PATent STATistical database) is a database stor-

ing raw data about patents. It was constructed by EPO in cooperation with the World

Intellectual Property Organization (WIPO), OECD and Eurostat. It is currently man-

aged by EPO. It stores data about all patents, from 1978 to the current year, coming
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from about 90 patent offices worldwide, comprising the most relevant ones, such as

EPO and USPTO.

As pointed out above, data is registered in PATSTAT in a raw format. To fa-

cilitate its analysis, ICRIOS processed it and produced a cleaned and harmonized

database, i.e., PATSTAT-ICRIOS. This includes all bibliographic variables concern-

ing each patent application. In particular, it stores application number and date,

publication number and date, priority, title and abstract, application status, designed

states for protection, main and secondary International Patent Classification (IPC)

codes, name and address of both the applicant and the inventor, references (i.e., cita-

tions) to prior-art patent and non-patent literature, the corresponding Nomenclature

of Units for Territorial Statistics (NUTS3) and, finally, File Index concordance tables,

allowing the conversion of IPC codes into more aggregated and manageable techno-

logical classes.

Some important results we have found in this context are the following:

• we have defined an approach to evaluate the scope of a patent;

• we have extracted knowledge regarding the lifecycle of a patent;

• we have defined new metrics specifically conceived to evaluate the innovation level

of each country based on patent data.

1.5 Outline of this thesis

• In Part I, we will apply our network-based model and the associated social

network-based approach to Biomedical Engineering, in particular to the inves-

tigation of neurological disorders. This part is organized as follows: in Chapter 2,

we evaluate our approach on Creutzfeldt-Jacob Disease. In Chapter 3, we present

results related to Mild Cognitive Impairment and Alzheimer’s disease. In Chapter

4, we describe the application of our approach to Childhood Absence Epilepsy.

• In Part II, we apply our model and approach to Data Lakes. This part is or-

ganized as follows: In Chapter 5, we evaluate our approach to uniformly handle

heterogeneous Data Lake sources. In Chapter 6, we present results related to inter-

schema property derivation. Finally, in Chapter 7, we describe an approach to the

extraction of complex knowledge patterns among concepts belonging to different

sources.

• In Part III, we apply our model and approach to IoT. This part is organized as fol-

lows: in Chapter 8 we present its specialization to the extraction of knowledge from

heterogeneous sensor data streams. In Chapter 9, we present the MIoT paradigm.

Finally, in Chapter 10, we introduce the concept of topic-guided virtual IoTs in a

MIoT.
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• In Part IV, we apply our model and approach to Innovation Management. This

part is organized as follows: in Chapter 11, we propose a well-tailored centrality

measure for evaluating patents and their citations. In Chapter 12, we propose a

new Social Network Analysis-based approach to extracting knowledge patterns

about research activities and hubs in a set of countries. Finally, in Chapter 13,

we introduce new metrics specifically conceived to evaluate the innovation level of

each country based on patent data.

• Finally, in Part V, we draw some conclusions and delineate some possible future

developments of our research efforts.



Part I

Neurological Disorders
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In this part we apply our network-based model and the associated social network-based
approach to help experts who investigate neurological disorders in which connections among
brain areas play a key role. Our approach receives the EEG of a patient and associates a
network with it, with nodes that represent electrodes and with edges that denote the discon-
nection degree of the corresponding brain areas. This part is organized as follows: in Chapter
2, we evaluate our approach on Creutzfeldt-Jacob Disease. In Chapter 3, we present results
related to Mild Cognitive Impairment and Alzheimer’s disease. In Chapter 4, we describe our
approach applied to the evaluation of Childhood Absence Epilepsy.

.
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Creutzfeldt Jakob Disease

2.1 Introduction

Creutzfeldt-Jacob Disease (CJD) is a rapidly progressive, uniformly fatal Transmissi-

ble Spongiform Encephalopathy (TSE). It is characterized by the accumulation of a

variant of the host encoded cellular prion protein in the brain [463, 464, 282]. CJD be-

came well known to common people some years ago because one of its variants, known

as vCJD, has been linked to the transmission of the causative agent of the Bovine

Spongiform Encephalopathy (BSE) to the human population, mainly in United King-

dom. Sporadic CJD (hereafter, sCJD) represents the most common form of CJD; in

fact, it occurs worldwide in 84% of cases of CJD. It has an annual mortality rate of

1.39 per million.

An early and reliable diagnosis of CJD is extremely important to exclude other,

potentially treatable, causes of rapidly progressive encephalopathies. However, the

early diagnosis of this disease is complicated by the extreme heterogeneity of its

clinical presentation [482, 140].

Electroencephalography (hereafter, EEG) has always been, and still is, one of

the main methods to perform clinical diagnosis of neurological diseases in general

[225, 337, 102, 369], and of CJD in particular. In fact, in the EEG of patients with

sCJD, it is often possible to observe three-phase periodic spikes with sharp waves

known as “Periodic Sharp Wave Complexes” (hereafter, PSWCs). More specifically,

PSWCs were reported to occur in the EEG tracings of about two-thirds of patients

with sCJD. For this reason, they were included in the World Health Organization

diagnostic classification criteria of sCJD [463, 462, 464, 136].

In the past, approaches to investigating PSWCs in the EEGs of patients with

sCJD were mainly based on signal processing [463, 421, 422, 464, 262, 17, 456, 420,

327, 223, 320]. By contrast, to the best of our knowledge, no network analysis based

approach to investigating the CJD phenomenon has been previously proposed in the

literature. Nevertheless, network analysis has been largely exploited in the investi-
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gation of brain, especially in those application scenarios where brain connectivity is

extremely important [385].

Since in sCJD (as well as in all the neurodegenerative diseases) the investigation of

the connection level of the brain areas is extremely important, we argue that network

analysis could play a key role in this research context. In particular, in the past

literature, it was shown that, in presence of PSWCs, the areas of the brain are more

connected than in absence of them [437]. This implies that network analysis could

really represent a useful tool for investigating PSWCs.

In this chapter, we aim at providing a first contribution in this setting. Indeed,

we propose a network analysis based approach to characterizing PSWCs in EEGs of

patients with sCJD. Here, the term “characterizing” means two things, namely: (i)

finding a quantitative coefficient - that we call connection coefficient - whose values are

extremely different for the EEG tracing segments with PSWCs and the ones without

PSWCs, and (ii) finding (possible) network motifs characterizing the presence (or,

conversely, the absence) of PSWCs in an EEG tracing.

In our opinion, these two contributions are worthwhile. Indeed:

• It is true that PSWCs can be also seen with the naked eye by a human expert.

However, the human eye can recognize PSWCs well only when these are marked,

which happens in the advanced stages of the disease. By contrast, as previously

pointed out, it could be extremely useful to carry out an early diagnosis of this

disease, in which case PSWCs are not marked and cannot be recognized with

the naked eye. A numeric coefficient can help to recognize PSWCs when they

start to appear, thus allowing a much earlier diagnosis of sCJD. Furthermore, in

the future, in presence of much more sophisticated electroencephalographs with

256 electrodes, the human eye could experiment much more difficulties in finding

PSWCs.

• Differently from what generally happens in the network analysis literature (where

motifs are intended as patterns occurring in a complex network much more fre-

quently than they occur in randomized networks [312, 414, 339]), in our approach,

motifs must be intended as network patterns occurring very frequently in the

EEG tracing segments with PSWCs and very rarely in the ones without PSWCs,

or vice versa. As a consequence, in our approach, motifs are found among differ-

ent networks (and not in the same network). Our concept of motif has a twofold

importance. First, motifs represent a further indicator of the presence of PSWCs.

Second, and much more important, they could provide a characterization of the be-

havior of brain areas in presence of PSWCs. For instance, they could denote what

are the brain areas most connected and/or most active in presence of PSWCs.
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This is, probably, the most important contribution of our approach because this

information cannot be directly derived by a human expert.

In network analysis, one of the most common and, at the same time, powerful

tools to investigate the connection level of a network is the concept of clique. For

this reason, our connection coefficient, as well as our definition of motifs and the

corresponding motif extraction technique, are based on this concept, as will be clear

in the following.

This chapter is organized as follows: in Section 2.2, we provide an overview of

related literature. In Section 2.3, we present some support data structures. In Section

2.4, first we illustrate our connection coefficient, then we introduce our concept of

motif and, finally, we present our approach to motif extraction.

2.2 Related Literature

In the last decades, PSWCs, along with very few other clinical criteria [462, 455, 475,

360, 167], have been recognized as capable of representing the most typical findings in

the course of sCJD [463, 421, 422]. For instance, in [422], the authors investigate some

issues concerning the diagnosis of CJD through PSWCs. Specifically, they measure

sensitivity, specificity and the predictive values of PSWCs in cases where autopsy

confirmed or excluded CJD. They find that PSWCs allowed a correct diagnosis in

64% of the CJD cases and returned false positives in 9% of other dementias. In [464],

the authors study temporal and spatial development of EEG patterns in patients with

sporadic or iatrogenic CJD. They show that Frontal Intermittent Rhythmical Delta

Activity (hereafter, FIRDA) can be found in 4 out of 6 patients and, therefore, can be

considered as an early EEG pattern associated with human prion diseases. They also

show that FIRDA occurs at an early stage of CJD and is progressively replaced by

PSWCs. In [406], the authors propose an approach to redefining several periodic pat-

terns that can be found in the electroencephalograms of patients with sCJD. For this

purpose, they exploit the criteria of the American Clinical Neurophysiology Society.

Most of the research about PSWCs focuses on their temporal evolution in the

different stages of sCJD. In this context, [464, 262, 17, 45, 406] investigate: (i) the

anomalies present in EEGs of patients with sCJD before the appearance of PSWCs,

(ii) the fraction of patients with sCJD whose EEGs present PSWCs and, finally,

(iii) the disappearance of PSWCs in several patients with sCJD close to death. For

instance, in [262], the authors present a comparison between EEG findings in patients

in the literature and 36 patients with CJD at the Massachusetts General Hospital.

They found that 28 out of the 36 patients into examination had PSWCs at some time

during their clinical course. PSWCs generally made their appearance within 12 weeks
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of onset clinical symptoms. This result confirms what had already found in the past

literature about this issue.

Other papers about this issue apply Independent Component Analysis (hereafter,

ICA) to perform an early diagnosis of sCJD through the analysis of PSWCs. For

instance, in [456], the authors use ICA to split typical PSWCs into several independent

temporal components, in conjunction with spatial maps. They also show that ICA

may increase the sensitivity of EEG and facilitate the early diagnosis of CJD. More

recent approaches aim at performing an early diagnosis of sCJD through Support

Vector Machine (hereafter, SVM) or Deep Learning. Specifically, in [387], the authors

use the principal component analysis to reduce the dimensionality of the dataset.

Then, they exploit an SVM-based algorithm to analyze and classify EEG signals. In

[320], a technique to distinguish the EEG of patients with early-stage CJD from other

forms of rapidly progressive dementia is proposed. This technique reaches an average

accuracy of 89%, an average sensitivity of 92%, and an average specificity of 89%.

Further papers deepen the investigations of EEGs with PSWCs by means of non

linear analysis [420] and, more in general, the relationship between the acquisition of

measures composing an EEG (possibly preceded by a pre-processing step [185, 58])

and the possible presence of anomalies in the corresponding tracing. For instance,

in [420], the authors analyze the EEG of a patient with CJD using the method of

non linear forecasting. They aim at re-examining the hypothesis that PSWCs reflect

non linear, possibly chaotic, dynamics of the cortical networks. They show that these

episodes can be predicted much better than the irregular background activity. As

a consequence, they prove the usefulness of non linear models to gain a better un-

derstanding of brain dynamics. These models show that oscillations are an intrinsic

property of the system and external noise only modifies them to a some extent.

To the best of our knowledge, only two papers tried to determine the most active

brain areas in presence of PSWCs [327, 223]. Specifically, in [327], the authors apply

computerized topographic analysis to study periodic discharges (of which PSWCs

represent an example) in EEGs. They investigate how the presence of periodic diphasic

or triphasic sharp wave discharges evolves as long as the disease evolves over time.

They also investigate the local distribution of these discharges and find that even those

patterns, which seemed generalized on a visual inspection, are not truly bilaterally

symmetrical nor synchronous. Even in the same patient, separate discharges have

different focal onset areas and reach peak maximum activity in diverse brain areas. In

[223], the authors show that Dipole Source Localization (hereafter, DSL) can provide

information about the source location of particular EEG activities. They also show

that PSWCs in CJD are generalized discharges and may have multiple cortical sources

or alternating activation pathways in cortical areas. Furthermore, they combine ICA
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and DSL to define sources of generalized discharges, such as PSWCs. To characterize

the dipole sources responsible for PSWCs across patients into evaluation, they perform

cluster analysis using k-means. This way, they find a few sets of dipole clusters and

try to explain the pathophysiological mechanisms of PSWCs based on these results.

Finally, an interesting property of PSWCs is investigated in [437]. Here, the au-

thors show that, in patients with CJD, fusions of neuronal processes, in particular

dendrites, may lead to abnormal electrotonic coupling between cells, which causes

powerful excitatory interaction whereby large neuronal aggregates burst in near syn-

chrony. This cortical synchronous discharges would give rise to PSWCs in the elec-

troencephalogram; in the meantime, similar discharges in brainstem, spinal cord, or

elsewhere could lead to myoclonic jerks.

As pointed out in the Introduction, to the best of our knowledge, our paper rep-

resents the first attempt to apply network analysis to investigate PSWCs in patients

with sCJD. Nevertheless, network analysis has been frequently applied in the investi-

gation of modern brain mapping techniques, such as diffusion MRI, EEG and MEG

[385]. As a matter of fact, brain networks are complex and may hence be characterized

by applying complex network analysis methods.

Network analysis allows brain networks to be reliably quantified by means of

a small number of neurobiologically meaningful and easily computable measures

[415, 15, 57, 197, 187]. Furthermore, comparisons of structural or functional network

topologies between subject population can reveal possible connectivity abnormalities

in neurological and psychiatric disorders [419, 56, 259, 370, 454].

Measures of individual network elements typically quantify connectivity profiles

and, hence, reflect how these elements are embedded in the network. Example of these

measures are: (i) functional segregation, i.e., the ability of specialized processing to

occur within densely interconnected groups of brain regions [459, 330]; (ii) func-

tional integration, i.e., the ability to rapidly combine specialized information from

distributed brain regions [14]; (iii) paths in functional networks, i.e., sequences of dis-

tinct nodes and links representing potential routes of information flow between pairs

of brain regions [206, 459, 253]; (iv) anatomical motifs, i.e., patterns of local connec-

tivity in a given network whose significance is determined by their frequency within

that network [312, 414, 339].

Since anatomical brain connectivity influences the neuropathological lesions’ ca-

pability of affecting functional brain activity, network analysis can be exploited to

characterize the resilience of the brain networks to these lesions. Indirect measures

of resilience quantify anatomical features reflecting network vulnerability to insults.

Two examples of indirect measures are degree distribution [52] and assortativity co-

efficient [329]. Direct measures of network resilience generally test the network before
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and after a possible insult. The effects of lesions on the network may be quantified by

characterizing the changes in the resulting anatomical connectivity, or in the emergent

simulated functional connectivity or dynamical activity [31]. An approach to inves-

tigating EEGs through complex networks was recently proposed in [132]. Here, the

authors construct suitable weighted complex networks and apply community struc-

ture detection techniques to them for analyzing multi-channel EEG signals. Then,

they show that this method is well suited in identifying epileptic seizures in EEGs.

2.3 Basic Support Data Structures

The EEGs to perform our investigation were provided by three different Italian centers

(i.e., University “Magna Graecia” of Catanzaro, Neurologic Institute “Carlo Besta” of

Milano, and Neurologic Institute of the University of Catania). They regard a group

of ten patients with sCJD examined in the last 15 years in these three centers1. The

EEGs were recorded through scalp electrodes placed according to the international

10-20 system. The specific montage was: Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2,

F7, F8, T3, T4, T5, T6, Fz, Cz and Pz, where G2 (located between electrodes Fz and

Cz) was used as reference. The EEG were recorded in the morning in a comfortable,

eye closed, resting state. The mean recording length is 20 min. The EEG was high-

pass filtered at 0.5 Hz, low-pass filtered at 70 Hz, and a 50 Hz notch filter was also

applied. The EEG traces were then downsampled to 256 Hz. The artifactual epochs

were visually detected and marked by the EEG experts and later excluded from the

analysis. Cleaned data was stored in a MongoDB database [6]. To give an idea of it,

we report some of its features: (i) size = 357.8 MB; (ii) number of collections = 10 ;

(iii) number of objects = 20; (iv) number of indexes = 10; (v) index size = 160 KB.

We segmented each EEG at disposal in such a way as to separate the tracing

segments with PSWCs from those without PSWCs (Figure 2.1). As a consequence,

for each EEG, we had several tracing segments, which could be grouped in two distinct

sets, namely, those containing PSWCs and those not containing PSWCs.

Formally speaking, let EEGSet be the set of EEGs at our disposal, let eeg be

an EEG of EEGSet. Starting from eeg, it is possible to define a network N (resp.,

N ) representing the set of segments of eeg with PSWCs (resp., without PSWCs).

Specifically:

N = ⟨V,E⟩ N =
〈
V,E

〉

1 We are aware that the number of patients under examination is low. However, this is due

to the fact that sCJD is a very rare disease and, consequently, it is very difficult to collect

data about it.
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Fig. 2.1. Partitioning of an EEG into segments with PSWCs and without PSWCs - shaded

segments correspond to the ones with PSWCs

Here, V is the set of the nodes of N and N . Each node vi ∈ V corresponds to

an electrode. Since, in our EEGs, the electrodes were applied by following the 10-20

system, we have that |V | = 19.

E (resp., E) is the set of the edges of N (resp., N ). Each edge eij ∈ E connects

the nodes vi and vj . It can be represented as:

eij = (vi, vj , wij)

Here, wij is a measure of “distance” between vi and vj . This “distance” is an

indicator of the disconnection level of vi and vj . Actually, each measure representing

this characteristic could be adopted in our model. In the experiments described in this

chapter, we used the Permutation Join Entropy (PJE) between vi and vj , which is a

new metric of cross-randomness between channels in multivariate electrophysiological

time-series [112, 293].

In order to make our model more “user-friendly” and “expressive” and, at the

same time, more capable of discriminating strong and weak connections between brain

areas, we decided to construct two new networks, namely Nπ and Nπ, obtained from

N and N by removing the edges with an “excessive” weight2 and by coloring the

other ones on the basis of their weight. More specifically, blue edges denote strong

connections (i.e., small weights), red edges represent intermediate ones and, finally,

green edges indicate weak connections.

Formally speaking, let EEGSet be the set of EEGs at our disposal and let NSet

(resp., NSet) be the set of the corresponding networks. As usual, N ∈ NSet (resp.,

N ∈ NSet) corresponds to an EEG of EEGSet and denotes its tracing segments with

2 Recall that, in our model, edge weight is a measure of distance.
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(resp., without) PSWCs. Let max(·) be a function returning the maximum weight of

the edges of the network provided in input to it. Then, it is possible to define:

Max = MedN∈NSet(max(N )) Max = MedN∈NSet(max(N ))

In other words, Max (resp., Max) represents the median of the maximum weights

of the edges of the networks of NSet (resp., NSet). The choice of the Median function

is motivated by the exigency to make our approach robust against possible outliers

or noise.

On the basis of these two parameters, we can define Nπ (resp., Nπ), obtained

from N (resp., N ) by removing the edges with the highest weights and by coloring

the other ones according to the rules mentioned above. Specifically:

Nπ = ⟨V,Eπ⟩ Nπ =
〈
V,Eπ

〉

Here, the nodes of Nπ and Nπ are the same as the ones of N and N .

In order to define the sets Eπ and Eπ, first we compute the value min(Max,Max)

and, then, we divide the interval [0,min(Max,Max)] in 10 equiwidth intervals. We

indicate with len = min(Max,Max)
10 the length of each of these intervals. We denote

with Ik the kth interval; it includes the values of the weights higher than or equal to

(k − 1) · len and lesser than or equal to k · len.

Now, we are able to specify the structure of Eπ and Eπ:

Eπ = {(vi, vj , wij) ∈ E | wij ̸∈ Ik, 8 ≤ k ≤ 10}

Eπ =
{
(vi, vj , wij) ∈ E | wij ̸∈ Ik, 8 ≤ k ≤ 10

}

In these formulas, the values of k have been determined experimentally. The factor

min(Max,Max) allows a more selective filtering in such a way as to lower the effects

of possible noise or outliers. Observe that the same threshold is used in the definition

of both Eπ and Eπ. In fact, we need the same “severity” level of filtering to better

characterize the possible differences and peculiarities ofNπ againstNπ, and vice versa.

Now, after having defined Eπ (resp., Eπ), we can “color” the edges composing it.

Specifically:

Eπ = Eb
π ∪ Er

π ∪ Eg
π Eπ = Eb

π ∪ Er
π ∪ Eg

π

where:

Eb
π = {(vi, vj , wij) ∈ Eπ | wij ∈ Ik, k < 5}

Er
π = {(vi, vj , wij) ∈ Eπ | (wij ∈ Ik, k = 5}

Eg
π = {(vi, vj , wij) ∈ Eπ | wij ∈ Ik, k > 5}

In an analogous way, it is possible to define Eb
π, E

r
π and Eg

π. In Figure 2.2, we

report the networks N and N for a patient with sCJD. The disposal of the nodes in
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Fig. 2.2. Original Networks Nπ and Nπ for the patient CJD 10

Fig. 2.3. Colored Network Nπ for the patient CJD 10

the networks reflects the 10-20 system, even if they are rotated 90 degrees clockwise.

From the analysis of this figure, it is possible to observe that the two networks are

indistinguishable. Indeed, the only difference would be in the edge weights, which are

not reported due to layout reasons. Instead, in Figures 2.3 and 2.4, we illustrate the

corresponding colored networks Nπ and Nπ. Observe how the filtering of the edges

with the highest distance, along with the coloration of the other ones on the basis of

the closeness of the corresponding nodes, make this model very expressive.

The trends emerging from these figures have been confirmed in all the other EEGs

at our disposal. In particular, we observe that:

• For a specific EEG, Nπ has more edges than Nπ; in fact, the average number of

edges of Nπ is 142, whereas the one of Nπ is 134. Furthermore, the edges of Nπ
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Fig. 2.4. Colored Network Nπ for the patient CJD 10

are generally stronger than the ones of Nπ; indeed, the average weight of the edges

of Nπ is 1.66, whereas the one of the edges of Nπ is 1.923.

• In both networks, the strongest edges can be found in the occipital area of the

skull.

2.4 PSWC Characterization

This section represents the “core” of our paper because it aims at providing two net-

work analysis based ways to characterize PSWCs. The former is a numeric coefficient,

whereas the latter consists of graph-based knowledge patterns.

2.4.1 Connection Coefficient

As pointed out in the Introduction, one of the main features to investigate in neurode-

generative patients is the connection level of brain areas. This feature is also relevant

in the problem we are addressing. In fact, as pointed out in Section 2.2, in the litera-

ture, it was shown that, in presence of PSWCs, brain areas are more connected than

in absence of them [437]. Furthermore, in Section 2.3, we have seen that the networks

corresponding to the tracing segments with PSWCs are generally more numerous and

more strongly connected than the networks corresponding to the tracing segments

without PSWCs.

3 Recall that edge weights are distance measures.
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In network analysis, one of the most important (and, at the same time, simple

and basic) tools for investigating network connection is the concept of clique. We

recall that, given a network, a clique of dimension k represents a totally connected

subnetwork with k nodes. On the basis of this reasoning, a quantitative coefficient for

discriminating the networks corresponding to the tracing segments with PSWCs from

the ones associated with the tracing segments without PSWCs could highly benefit

from cliques.

In particular, this coefficient should take the following considerations into account:

• Both the dimension and the number of cliques are important as connectivity in-

dicators.

• The concept of clique is intrinsically exponential; in other words, a clique of di-

mension n+ 1 is exponentially more complex than a clique of dimension n.

• It is necessary to avoid the possible presence of outliers and noise; as a consequence,

it is inappropriate to consider only the cliques with the maximum dimension;

by contrast, it appears more equilibrate to consider also the cliques with the

maximum, sub-maximum and sub-sub-maximum dimension. On the other hand,

it appears unnecessary and time consuming to consider the other cliques because

their contribution decreases exponentially against their dimension.

Starting from these considerations, we now define our connection coefficient. Let

Nπ = ⟨V,Eπ⟩ be a colored network representing the tracing segments with PSWCs

of an EEG of a patient. Let C be the set of cliques of Nπ and let dim(·) be a function

returning the dimension of a set of cliques, all of the same dimension, received in

input. Then, it is possible to define:

• the subset CM1 ⊂ C of the cliques with the maximum dimension;

• the subset CM2 ⊂ C of the cliques with the sub-maximum dimension;

• the subset CM3 ⊂ C of the cliques with the sub-sub-maximum dimension.

In the same way, CM1 , CM2 and CM3 can be defined.

Finally, let |CM1 |, |CM2 | and |CM3 | be the cardinalities (i.e., the number of cliques)

of CM1 , CM2 and CM3 , respectively.

Then, the connection coefficient ccNπ , associated with Nπ, is defined as:

ccNπ =
3∑

i=1

(
| CMi | · 2dim(CMi )

)

This formula takes all the above considerations into account. In an analogous way,

it is possible to define the connection coefficient ccNπ
associated with Nπ.

In Table 2.1 (resp., 2.2) we report the values of |CMi | (resp., |CMi |) and dim(CMi)

(resp., dim(CMi)), 1 ≤ i ≤ 3, as well as the values of ccNπ (resp., ccNπ
), for all the

patients at our disposal. Finally, in Table 2.3, we report the values of ccNπ and ccNπ
,
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along with the percentage of decrease observed when passing from ccNπ to ccNπ
, for

the same patients.

Patient dim(CM1 ) |CM1 | dim(CM2 ) |CM2 | dim(CM3 ) |CM3 | ccNπ

CJD 02 14 4 9 1 4 1 66064

CJD 04 12 5 8 1 7 1 20864

CJD 05 15 1 14 2 12 1 69632

CJD 08 16 3 6 1 0 0 196672

CJD 09 14 2 13 2 9 1 49664

CJD 10 13 1 12 3 8 1 20736

CJD 13 12 2 11 1 10 2 12288

CJD 16 11 1 10 6 8 6 9721

CJD 19 19 1 0 0 0 0 524288

CJD 22 16 2 14 2 9 1 164352

Table 2.1. Values of dim(CMi), |CMi | (1 ≤ i ≤ 3) and ccNπ for all the patients at our

disposal

Patient dim(CM1 ) |CM1 | dim(CM2 ) |CM2 | dim(CM3 ) |CM3 | ccNπ

CJD 02 12 1 11 10 6 1 24640

CJD 04 12 2 11 2 10 1 13312

CJD 05 14 2 13 1 10 2 43008

CJD 08 13 6 11 1 9 1 51712

CJD 09 12 6 10 1 8 1 25856

CJD 10 11 4 9 2 8 2 9728

CJD 13 10 4 9 2 8 1 5376

CJD 16 11 2 10 4 9 2 9216

CJD 19 18 2 0 0 0 0 524288

CJD 22 14 4 12 2 8 1 78080

Table 2.2. Values of dim(CMi), |CMi | (1 ≤ i ≤ 3) and ccNπ
for all the patients at our

disposal

From the analysis of these tables we can draw two important results. In fact:

• ccNπ is always higher than ccNπ
except for the patient CJD 19 for whom the two

coefficients have the same value. However, Nπ19 and Nπ19 are associated with a

very particular EEG. As an evidence of this fact, we observe that Nπ19 is totally

connected and, therefore, has only a unique clique coinciding with it.Nπ19 , instead,

is totally connected except for only one edge; as a consequence, it has only two

cliques, each consisting of 18 nodes.

As a consequence, we can say that connection coefficient is really a quantitative

parameter capable of characterizing the tracing segments with PSWCs.
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Patient ccNπ ccNπ

ccNπ
− ccNπ

ccNπ

CJD 02 66064 24640 -62.70%

CJD 04 20864 13312 -36.20%

CJD 05 69632 43008 -38.24%

CJD 08 196672 51712 -73.71%

CJD 09 49664 25856 -47.94%

CJD 10 20736 9728 -53.09%

CJD 13 12288 5376 -56.25%

CJD 16 9721 9216 -5.19%

CJD 19 524288 524288 0.00%

CJD 22 164352 78080 -52.49%

Table 2.3. Values of ccNπ , ccNπ
and

ccNπ
− ccNπ

ccNπ
for all the patients at our disposal

• The values obtained for ccNπ and ccNπ
confirm the previous results presented in

the literature about the fact that brain areas are more connected to each other in

presence of PSWCs than in absence of them [437].

2.4.2 Motifs

In the previous section, we have seen that connection coefficient, strongly based on

cliques, is capable of characterizing the tracing segments with PSWCs. In this section,

we aim at investigating the possible presence of motifs characterizing the tracing

segments with PSWCs against the ones without PSWCs, and vice versa.

Actually, motifs have been already investigated and exploited in past approaches

adopting network analysis (see, for instance, [312, 414, 339]). In those scenarios, they

are considered as [312]:

“patterns of interconnections occurring in complex networks at numbers that are

significantly higher than those in randomized networks”.

In our approach, we use motifs in a completely different fashion. Indeed, we do not

examine a unique complex network to find patterns frequently repeated therein. By

contrast, we search for patterns appearing frequently in the networks corresponding

to the tracing segments with PSWCs and being absent in the networks corresponding

to the tracing segments without PSWCs, thus characterizing the former segment

typology against the latter, and vice versa.

As will be clear in the following, our approach to deriving motifs exploits the sup-

port data structures introduced in Section 2.3, along with a further support network,

strongly based on the clique concept, which we call clique network. We describe this

data structure in the next subsection.
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Clique network

Let eeg be an EEG of EEGSet, let Nπ (resp., Nπ) be the colored network associated

with the tracing segments with PSWCs (resp., without PSWCs) of eeg and let C

(resp., C) be the set of cliques of Nπ (resp., Nπ).

The clique network CN (resp., CN ), corresponding to Nπ (resp., Nπ) and C (resp.,

C), is defined as:

CN = ⟨CV,CE⟩ CN = ⟨CV ,CE⟩

Here:

• CV represents the set of the nodes of CN . There is a node vi ∈ CV for each node

vi ∈ V . A weight wi is associated with vi; it represents the number of cliques of C

in which vi is involved.

• CE indicates the set of the edges of CN . There is an edge (vi, vj , wij) ∈ CE if

the edge (vi, vj) is present in at least one clique of C. wij denotes the number of

cliques of C in which (vi, vj) is present.

• CV and CE are analogous to CV and CE, but for C, instead of for C.

The edges of CN can be “colored” in a way analogous to the edges of Nπ. Also in

this case, blue edges are the strongest ones, red edges have an intermediate strongness

and green edges are the weakest ones. Formally speaking:

CE = CEb ∪ CEr ∪ CEg

• CEb =
{
(vi, vj , wij) | (vi, vj , wij) ∈ CE, wij > thrb

}

• CEr =
{
(vi, vj , wij) | (vi, vj , wij) ∈ CE, (wij > thgr) ∧ (wij ≤ thrb)

}

• CEg = {(vi, vj , wij) | (vi, vj , wij) ∈ CE,wij ≤ thgr}

Also in this case, we determined thrb and thgr experimentally. In particular, we

found that the best values for them are thrb = 6 and thgr = 3. In an analogous

fashion, we defined CE.

In Figures 2.5 and 2.6, we report the clique networks CN and CN associated with

the patient CJD 16. Here, the dimension of nodes is directly proportional to their

weights. In these figures, there are two graphical indicators that help the reader to

understand the features of the tracing segments with PSWCs and the ones without

PSWCs. In fact, the color of an edge (which, we recall, is directly connected to the

corresponding weight) is an indicator of the strongness of the connection between

the corresponding brain areas. The dimension of a node (directly connected to the

associated weight) is an indicator of the connection degree of the brain area associated

with it and, ultimately, an indicator of its activity level.
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Fig. 2.5. Clique Network CN for the patient CJD 16

Fig. 2.6. Clique Network CN for the patient CJD 16

Clique-based Support Data Structures and Parameters

After having introduced clique social networks, we are now able to fully present the

data structures and parameters adopted in our motif extraction approach. Specifically,
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let eeg be an EEG of EEGSet, let Nπ and Nπ be the corresponding colored networks

and let CN and CN be the corresponding clique networks. We recall that:

Nπ = ⟨V,Eπ⟩ Nπ = ⟨V,Eπ⟩ CN = ⟨CV,CE⟩ CN = ⟨CV ,CE⟩

We also recall that:

Eπ = Eb
π ∪ Er

π ∪ Eg
π Eπ = Eb

π ∪ Er
π ∪ Eg

π CE = CEb ∪ CEr ∪ CEg

CE = CEb ∪ CEr ∪ CEg

Now, we define more restrictive colored networks and clique networks by removing

green edges from the networks defined previously. Specifically, we define:

Nππ = ⟨V,Eππ⟩ Nππ = ⟨V,Eππ⟩ CN ππ = ⟨CV,CEππ⟩

CN ππ = ⟨CV ,CEππ⟩

where:

Eππ = Eb
ππ ∪ Er

ππ Eππ = Eb
ππ ∪ Er

ππ CEππ = CEb
ππ ∪ CEr

ππ

CEππ = CEb
ππ ∪ CEr

ππ

After this, we introduce the sets Cπ, Cπ, Cππ, Cππ, NCππ, NCππ as the sets of the

cliques of NSetπ, NSetπ, NSetππ, NSetππ, CNSetππ, CNSetππ, respectively.

Starting from these last sets, we define the sets Tπ, Tπ, Tππ, Tππ, T Cππ, T Cππ as

the sets of totally connected triads of Cπ, Cπ, Cππ, Cππ, NCππ, NCππ
4. Then, we define

the sets NSetπ (resp., NSetπ, NSetππ, NSetππ, CNSetππ, CNSetππ) comprising all

the networks Nπ (resp., Nπ, Nππ, Nππ, CN ππ, CNππ) associated with the EEGs of

EEGSet.

Finally, let t be a generic triad. We call noccπ (resp., noccπ, noccππ, noccππ,

cnoccππ, cnoccππ) the number of occurrences of t in NSetπ (resp., NSetπ, NSetππ,

NSetππ, CNSetππ, CNSetππ).

Extraction of basic motifs

After having defined all support data structures and parameters, we are able to de-

scribe our motif extraction approach. It consists of two main steps, the former devoted

to the extraction of basic motifs and the latter conceived to the construction of de-

rived ones. In this section, we focus on the former, whereas, in the next section, we

present the latter. Preliminarily, it is necessary to specify what is a basic motif in our

context. Specifically:

4 We recall that a triad is a subnetwork consisting of three nodes. The totally connected triad

is considered the most stable structure in network analysis. Clearly, a totally connected

triad can be considered as a clique of dimension 3.
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Let t be a totally connected triad of NSetπ. If (1) t is present frequently in NSetπ

and is absent in NSetπ, and if (2) this trend is confirmed (also only to a lesser

extent) for NSetππ and NSetππ and also for CNSetππ and CNSetππ, then t is

a basic motif. In particular, t is a motif characterizing the tracing segments with

PSWCs against the ones without PSWCs.

In order to be able to really extract basic motifs, it is necessary to provide a

quantitative definition of this rule. For this purpose, it is preliminarily necessary to

associate a numeric value with the concept of “frequently”. Recalling that all the sets

NSetπ, NSetπ, NSetππ, NSetππ, CNSetππ, CNSetππ have the same cardinality, we

can define the following threshold:

thf = αf · |NSetπ|

A high value of αf would lead to a high value of thf and, therefore, to a low

number of basic motifs. In this case, the correctness of results is privileged over their

completeness and our approach becomes restrictive. Vice versa, a low value of αf

would cause a low value of thf and, therefore, would produce a high number of basic

motifs. In this case, the completeness of results is privileged over their correctness

and the approach becomes permissive. We experimentally set the value of αf to 0.30,

which we chose as the default one of our approach. In fact, this value experimentally

proved to be the most “equilibrate” (i.e., neither extremely permissive nor extremely

restrictive) one.

Therefore, let t ∈ Tπ be a totally connected triad of NSetπ. If, with reference to

t, the following conditions simultaneously hold:

• (1) (noccπ ≥ thf ) ∧ (noccπ = 0)

• (2) (noccππ > noccππ) ∧ (cnoccππ > cnoccππ)

then, t is a basic motif characterizing the tracing segments with PSWCs against the

ones without PSWCs.

In a dual fashion, it is possible to define the basic motifs associated withNSetπ and

characterizing the tracing segments without PSWCs against the ones with PSWCs.

In the following, we indicate byMπ (resp.,Mπ) the set of motifs extracted starting

from the triads of NSetπ (resp., NSetπ).

In an analogous way, it is possible to derive the basic motifs of the setsMππ,Mππ,

CMππ and CMππ, obtained starting from the triads of NSetππ, NSetππ, CNSetππ

and CNSetππ.

Figure 2.7 represents two basic motifs belonging to CMππ and CMππ, obtained

by applying our approach to the data at our disposal.
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Fig. 2.7. Two basic motifs belonging to CMππ (at left) and CMππ (at right)

Observe that a motif is not only an indicator of the tracing segments with PSWCs

(or without PSWCs). Actually, it is much more. Indeed, it allows a characterization of

the behavior of the brain areas in presence (resp., in absence) of PSWCs. For instance,

it denotes what are the brain areas most connected in presence (resp., in absence) of

PSWCs. This is, probably, the most important contribution of our approach because

this information cannot be directly derived by a human expert. The basic motifs

derived by our approach, with αf set to its default value of 0.30, are reported in

Table 2.4.

Mπ Mπ Mππ Mππ CMππ CMππ

[’Cz’, ’Fz’, ’P4’] [’F4’, ’P4’, ’T6’]

[’Fz’, ’P4’, ’Pz’] [’F4’, ’O2’, ’T6’]

[’Fz’, ’O2’, ’P4’] [’C4’, ’F4’, ’T6’]

[’Cz’, ’Fz’, ’Pz’] [’F7’, ’P3’, ’Pz’]

[’Cz’, ’Fz’, ’O2’] [’F7’, ’O2’, ’P3’]

[’Fz’, ’O2’, ’Pz’] [’P4’, ’T3’, ’T4’]

[’F7’, ’Pz’, ’T5’]

[’F7’, ’Pz’, ’T3’]

[’F7’, ’O2’, ’Pz’]

[’F7’, ’O1’, ’Pz’]

[’F7’, ’O2’, ’T5’]

[’F7’, ’O2’, ’T3’]

[’F7’, ’O1’, ’O2’]

[’Pz’, ’T3’, ’T4’]

[’T3’, ’T4’, ’T5’]

[’T3’, ’T4’, ’T6’]

[’O2’, ’T3’, ’T4’]

[’O1’, ’T3’, ’T4’]

Table 2.4. The basic motifs extracted by our approach with αf set to its default value of

0.30
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Mπ Mπ Mππ Mππ CMππ CMππ

[’F8’, ’Fz’, ’P3’] [’C3’, ’Fz’, ’O1’] [’Fz’, ’P4’, ’T6’] [’Cz’, ’F4’, ’P4’]

[’Fz’, ’T3’, ’T4’] [’C3’, ’Fz’, ’O2’] [’Fz’, ’O2’, ’P4’] [’F4’, ’P4’, ’T4’]

[’F8’, ’Fz’, ’O1’] [’Fz’, ’O1’, ’P3’] [’Cz’, ’Fz’, ’P4’] [’C4’, ’F4’, ’P4’]

[’F4’, ’F8’, ’Fz’] [’Fz’, ’O2’, ’P3’] [’Fz’, ’P3’, ’P4’] [’F4’, ’O2’, ’P4’]

[’Cz’, ’F8’, ’Fz’] [’Cz’, ’Fz’, ’O1’] [’Fz’, ’O1’, ’P4’] [’F4’, ’P4’, ’T6’]

[’C4’, ’F8’, ’Fz’] [’C4’, ’Fz’, ’O1’] [’Fz’, ’P4’, ’Pz’] [’Cz’, ’F4’, ’O2’]

[’F8’, ’Fz’, ’T4’] [’Fz’, ’O1’, ’Pz’] [’Fz’, ’O2’, ’T6’] [’Cz’, ’F4’, ’T4’]

[’F8’, ’Fz’, ’Pz’] [’Fz’, ’O1’, ’P4’] [’Cz’, ’Fz’, ’T6’] [’C4’, ’Cz’, ’F4’]

[’F8’, ’Fz’, ’P4’] [’Fz’, ’O1’, ’O2’] [’Fz’, ’P3’, ’T6’] [’Cz’, ’F4’, ’T6’]

[’F8’, ’Fz’, ’T6’] [’F4’, ’Fz’, ’O2’] [’Fz’, ’O1’, ’T6’] [’F4’, ’O2’, ’T4’]

[’F8’, ’Fz’, ’O2’] [’Cz’, ’Fz’, ’O2’] [’Fz’, ’Pz’, ’T6’] [’C4’, ’F4’, ’O2’]

[’F4’, ’Fz’, ’T3’] [’C4’, ’Fz’, ’O2’] [’Cz’, ’Fz’, ’O2’] [’F4’, ’O2’, ’T6’]

[’F3’, ’F4’, ’Fp2’] [’Fz’, ’O2’, ’Pz’] [’Fz’, ’O2’, ’P3’] [’C4’, ’F4’, ’T4’]

[’F4’, ’Fp2’, ’T5’] [’Fz’, ’O2’, ’P4’] [’Fz’, ’O1’, ’O2’] [’F4’, ’T4’, ’T6’]

[’F3’, ’P4’, ’T3’] [’Fz’, ’O2’, ’Pz’] [’C4’, ’F4’, ’T6’]

[’C4’, ’Fp2’, ’P4’] [’Cz’, ’Fz’, ’P3’] [’F4’, ’P4’, ’Pz’]

[’Fp2’, ’P4’, ’T6’] [’Cz’, ’Fz’, ’O1’] [’F4’, ’O2’, ’Pz’]

[’F8’, ’Fp2’, ’P4’] [’Cz’, ’Fz’, ’Pz’] [’C4’, ’F4’, ’Pz’]

[’F7’, ’T3’, ’T4’] [’Fz’, ’O1’, ’P3’] [’F4’, ’Pz’, ’T6’]

[’F8’, ’T3’, ’T4’] [’Fz’, ’P3’, ’Pz’] [’F7’, ’Pz’, ’T3’]

[’C3’, ’T3’, ’T4’] [’Fz’, ’O1’, ’Pz’] [’F7’, ’T3’, ’T6’]

[’Cz’, ’T3’, ’T4’] [’F7’, ’O2’, ’T3’]

[’C4’, ’T3’, ’T4’] [’F7’, ’Pz’, ’T5’]

[’T3’, ’T4’, ’T5’] [’F7’, ’T5’, ’T6’]

[’P3’, ’T3’, ’T4’] [’F7’, ’O2’, ’T5’]

[’Pz’, ’T3’, ’T4’] [’F7’, ’O1’, ’Pz’]

[’O2’, ’T3’, ’T4’] [’F7’, ’O1’, ’T6’]

[’T3’, ’T4’, ’T6’] [’F7’, ’O1’, ’O2’]

[’O1’, ’T3’, ’T4’] [’F7’, ’Pz’, ’T6’]

[’F7’, ’P3’, ’Pz’]

[’F7’, ’O2’, ’Pz’]

[’F7’, ’P3’, ’T6’]

[’F7’, ’O2’, ’T6’]

[’F7’, ’O2’, ’P3’]

[’C3’, ’T5’, ’T6’]

[’C3’, ’C4’, ’T6’]

[’T3’, ’T4’, ’T5’]

[’O1’, ’T3’, ’T4’]

[’Pz’, ’T3’, ’T4’]

[’Cz’, ’T3’, ’T6’]

[’T3’, ’T4’, ’T6’]

[’C4’, ’F4’, ’P3’]

[’O2’, ’T3’, ’T4’]

[’Cz’, ’P4’, ’T3’]

[’P4’, ’T3’, ’T4’]

[’F4’, ’P3’, ’P4’]

Table 2.5. The basic motifs extracted by our approach with αf set to 0.20

From the analysis of this table, it emerges that all the basic motifs extracted by

our approach belong to CMππ and CMππ. However, in the columns of Table 2.4, we

have reported all the six possible sets to evidence that, if the human expert wants to

be more “permissive”, she can decrease the value of αf w.r.t. the default one. In this

case, she could find basic motifs also in the other sets. Just to give an idea of this

last case, in Table 2.5, we report the basic motifs extracted by our approach with αf

set to 0.20. Observe that: (i) much more basic motifs have been found; (ii) obtained

motifs belong not only to CMππ and CMππ but also to Mπ and Mππ.

On the other hand, we cannot exclude that, in presence of sets of available EEGs

richer than the one at our disposal, some basic motifs could appear in each possible

set also when αf is set to its default value of 0.30.
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Extraction of derived motifs

Once basic motifs have been extracted, and a first version of Mπ, Mπ, Mππ, Mππ,

CMππ and CMππ has been obtained, it is possible to construct derived (and, possibly,

much more complex and significant) motifs starting from them.

Our approach constructs new derived motifs starting from the already known ones.

It uses nodes common to two or more known motifs as “junction points”. Formally

speaking, let m1 = ⟨V1, E1⟩ and m2 = ⟨V2, E2⟩ be two motifs of Mπ such that

V1 ∩ V2 ̸= ∅. Then, it is possible to construct a candidate motif as the union of m1

and m2:

m12 = ⟨V1 ∪ V2, E1 ∪ E2⟩

Once m12 has been constructed, analogously to what we have seen for basic motifs,

it is necessary to evaluate noccπ, noccπ, noccππ, noccππ, cnoccππ and cnoccππ5. If,

for these parameters, conditions (1) and (2) presented in Section 2.4.2 hold, then m12

can be added to Mπ, i.e., Mπ = Mπ ∪ {m12}.

Clearly, the addition of a new motif in Mπ could lead to the possibility that new

candidate motifs are constructed. As a consequence, the enrichment process of Mπ is

iterative and terminates when, during an iteration, no new motif is added to Mπ. In

an analogous fashion, the derived motifs of Mπ, Mππ, Mππ, CMππ and CMππ can

be extracted.

In Figures 2.8, 2.9 and 2.10 we report the most significant derived motifs extracted

by our approach. The motif in Figure 2.8 derives from the tracing segments with

PSWCs. It indicates that, in presence of PSWCs, the most active areas of the human

brain reside in its right part. The motifs shown in Figures 2.9 and 2.10 derive from

the tracing segments without PSWCs. They indicate that, in absence of PSWCs, the

most active areas of the human brain reside in its left part (Figure 2.9) and in its

occipital part (Figure 2.10).

Clearly, these results will require much more efforts and investigations in the fu-

ture, especially by experts in neurological diseases, in order to understand their com-

plete meaningfulness. Nevertheless, they are an interesting “food for thought” that

our approach is providing to researchers in this sector.

Once all possible derived motifs have been obtained, it is possible to construct two

sets, namely:

GM = Mπ ∪Mππ ∪ CMππ GM = Mπ ∪Mππ ∪ CMππ

5 Clearly, for derived motifs, noccπ, noccπ, noccππ, noccππ, cnoccππ and cnoccππ refer to

the number of occurrences on motifs, instead of on triads.



2.4 PSWC Characterization 41

Fig. 2.8. The most significant motif characterizing the tracing segments with PSWCs

Fig. 2.9. One of the most significant motifs characterizing the tracing segments without

PSWCs

The former contains all motifs corresponding to the tracing segments with PSWCs,

whereas the latter comprises all motifs representing the tracing segments without

PSWCs.
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Fig. 2.10. A further significant motif characterizing the tracing segments without PSWCs



3

Mild Cognitive Impairment - Alzheimer’s disease

(AD)

3.1 Introduction

3.1.1 Motivations and Related Literature

In recent years, the incidence of Alzheimer’s Disease (hereafter, AD) is growing be-

cause the population is aging in most countries. For this reason, the efforts to design

approaches capable of determining the onset of this disease in advance are intensifying

[198, 374]. Even if this issue is challenging, it is extremely complex, as also evidenced

in past literature. As a matter of fact, it was shown that: (i) AD shares many clinical

features with other forms of dementia, and (ii) the molecular pathomechanism of AD

becomes active several years before neurons start dying and cognitive deficits appear.

For a definitive diagnosis of AD, the biopsy of brain tissues is even necessary.

A further important issue that makes the diagnosis on these patients difficult

concerns the fact that they, just by the very nature of their disease, do not easily

undergo examinations, like Magnetic Resonance Imaging, which force them to stay

motionless for a long time.

A non-invasive and well tolerated examination, which can be done on patients

with neurological disorders, is ElectroEncephaloGram (hereafter, EEG) [392, 231].

Indeed, in scientific literature, several signal theory-based approaches employing EEG

to investigate patients with Mild Cognitive Impairment (hereafter, MCI) or AD have

been proposed [117, 119, 250, 322, 321].

At the same time, taking into account that an EEG can be easily modeled as

a network, with nodes that represent electrodes and edges that denote connections

between electrodes, several approaches to investigating neurodegenerative diseases

have been recently proposed [385, 122, 169].

As specified in [364], MCI can be prodromal for AD. In fact, several papers suggest

that patients with MCI tend to convert to AD with a rate of about 10-15% annually

[120]. For this reason, a large variety of approaches aiming at characterizing both MCI
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and AD have been proposed in past literature. Several of these approaches are based

on the analysis of EEG.

The possibility of using EEG for characterizing patients with AD is evidenced in

[220, 207]. In fact, the EEGs of patients with AD present some peculiarities, namely

slowing, reduced complexity and perturbations in synchrony. However, it was shown

that these effects can be observed with different intensities in different patients. For

this reason, at present, none of them alone allows a reliable diagnosis of AD at an

early stage.

Several approaches investigate the slowing of EEGs in patients with AD (see,

for instance, [115, 444]). In particular, some of these papers also investigate the ef-

fect of AD in the tracings of EEGs in the sub-bands α, β, δ and θ. The changes in

spectral power are determined by means of Fourier Transform [115, 444] or sparsi-

fied time-frequency maps [444]. Other approaches analyze the reduced complexity of

EEG signals in patients with AD (see, for instance, [207, 63]). In this context, to

quantify this reduction, the authors apply several measures, namely approximate en-

tropy [207], auto mutual information [207], sample entropy [207], multiscale entropy

[207], Lempel-Ziv complexity [207], and fractal dimension [63, 355]. Finally, further

approaches investigate the decrease of synchrony in patients with MCI and AD w.r.t.

age-matched control subjects (see, for instance, [115, 119]). To quantify this decrease,

many measures have been proposed, e.g., Pearson correlation coefficient [119], coher-

ence [119, 395], Granges causality [119], information-theoretic [119], state space-based

synchrony measures [115, 119], phase synchrony indices [115, 119] and stochastic event

synchrony [119].

Few studies evidence an increase of EEG synchrony in patients, recorded during

working memory task [468]. This inverse effect is often interpreted as the result of

a compensatory mechanism in the brain. Several papers (e.g., [18, 34]) examine the

changes of brain activity in patients with MCI using MagnetoEncephaloGram (MEG),

instead of EEG.

Network analysis [21, 127, 69, 179] has been frequently applied in the investigation

of modern brain mapping techniques. Indeed, it provides several neurobiologically

meaningful and easily computable measures [197, 187] to reliably quantify the main

characteristics of brain networks. Furthermore, it is extremely useful to detect possible

connectivity abnormalities characterizing neurological and psychiatric disorders [370,

454]. Typical network analysis parameters and structures adopted for this purpose

are functional segregation [459, 330], functional integration [14], paths in functional

networks [206], anatomical motifs [312, 414, 339]. Network analysis was also adopted

to quantify the resilience of brain to insults [31].
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Several papers (e.g., [122, 472, 442, 218]) focus on the usage of network analysis to

investigate MCI or AD through the EEGs of the corresponding patients (an overview

of these studies can be found in [315]). The parameter generally adopted to measure

the connection level of brain areas is clustering coefficient, even if other basic network

analysis parameters, such as characteristic path length, global efficiency, connectiv-

ity degree and connectivity density, have been proven able to partially evidence the

loss of connectivity characterizing the progression of AD [319]. In some cases, these

measures are applied not only to the overall EEG but also to one or more sub-bands

(for instance, [417] considers the β sub-band). In [240], the authors investigate the

spatial distribution of EEG phase synchrony in patients with AD. For this purpose,

they analyze the surface topography of the Multivariate Phase Synchronization of

multichannel EEG. They investigate these features for both the overall EEG and its

sub-bands.

3.1.2 Objectives and general description of the proposed approach

This chapter presents a network analysis-based approach to help experts in their

analyses of subjects with MCI and AD and their evolution over time. The inputs of

our approach are the EEGs of the patients to analyze, performed at time t0 and, then

again three months later, at time t1.

Given an EEG of a patient, our approach constructs a network with nodes that

represent the electrodes and edges that denote connections between electrodes. Each

edge has associated a weight representing a measure of the connection level between

the brain areas covered by the corresponding electrodes.

Once the network associated with an EEG has been constructed, it is possible to

employ the enormous wealth of knowledge already existing in network analysis to face

the issues of our interest. In particular, since it is well known that, in AD progression

and in MCI progression towards AD, a key role is played by the loss of connectivity

among the different cortical areas, it appears reasonable to start our analysis from

the knowledge on connectivity gained in network analysis in the past. Here, one of the

most important tools available for this purpose is the concept of clique. We recall that

a clique of dimension k in a network represents a completely connected subnetwork

formed by k nodes.

Our approach applies the concept of clique to construct a suitable data structure,

which we call clique network, and an indicator of the connectivity level of the brain

areas, called connection coefficient, allowing us to distinguish patients with MCI from

patients with AD. This indicator or, better, a second one constructed starting from

it and called conversion coefficient, which associates the quantification of connection

loss with the probability that such a loss corresponds to MCI conversion to AD, has
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proven particularly useful in helping experts to understand if a patient with MCI is

converting to AD. In our opinion, connection and conversion coefficients represent

a first relevant contribution of our paper. Indeed, the literature lacks longitudinal

studies on MCI/AD, due to the difficulty in keeping such patients and their caregivers

loyal to a periodical follow-up program. We believe that the present research can be

a starting point for motivating other people to engage longitudinal studies on MCI

and AD.

We have striven to, at least partially, face the issue of the availability of a limited-

size database by performing a further experimental campaign on virtual patients with

MCI or AD, suitably constructed from the real ones (see Section 3.3.1). Furthermore,

our approach might be extended on other neurological disorders, related to an impair-

ment of cortical connectivity (Parkinson’s disease [427] [202], schizophrenia [105, 22],

epilepsy [242, 445], ADHD [19] and autism [20]).

In addition, our approach aims at facing a second issue. In fact, it aims at verifying

if network motifs exist, i.e., specific sub-networks, or network patterns, which are very

frequent in one kind of patient and absent, or very rare, in the other. Also for this issue

we have obtained interesting results, since we have found some motifs characterizing

patients with MCI from patients with AD. Interestingly, our concept of motif has a

further, much more important, feature. Indeed, it could provide a characterization

of the behavior of brain areas in presence of a disorder (or when a patient converts

from a disorder to another). For instance, motifs could denote what brain areas are

more connected and/or more active in presence of MCI and in absence of AD or,

dually speaking, what brain areas are most affected or damaged when a patient with

MCI converts to AD. As for this topic, the results obtained by our approach are very

similar to the ones obtained by the approach described in [240], acquired by applying

a completely different methodology.

Besides these two major contributions, this chapter presents some minor ones.

For instance, our analysis confirms the previous results, obtained in past literature

through completely different approaches [457, 160, 118, 64], about the capability of

helping experts to understand if a patient with MCI converts to AD, which charac-

terizes the tracings of some of the four sub-bands (i.e., α, β, δ and θ) of an EEG. In

particular, according to past results obtained in the literature, we have shown that

the sub-bands δ and θ play a key role in this context. Furthermore, we introduce the

connection coefficient. This parameter is strictly dependent on both the number and

the dimension of the cliques that can be found in the network. Since cliques represent

completely connected subnetworks, connection coefficient is well suited as an indica-

tor of the connection degree of a network. Actually, as we will show below, connection

coefficient shows a much better performance than clustering coefficient, which is the
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parameter classically adopted in Social Network Analysis to measure the connectivity

degree of a network.

This chapter is organized as follows: in Section 3.2, we illustrate the proposed

approach in detail. In Section 3.3, we describe the results of the experimental campaign

we conducted to determine the adequacy of our approach and discuss them.

3.2 Methods

3.2.1 Input and Support Data Structures

The input of our approach consists of a set EEGSet of EEGs at our disposal. It has

the following structure:

EEGSet = {CtrlSet,MCISet0, ADSet0,MCISet1, ADSet1}

where: (i) CtrlSet is the set of the EEGs of the control subjects; (ii) MCISet0

(resp., MCISet1) is the set of the EEGs of the patients with MCI at t0 (resp., t1);

(iii) ADSet0 (resp., ADSet1) is the set of the EEGs of the patients with AD at t0

(resp., t1).

Starting, Colored and Clique Networks

Let eeg be an EEG1 of EEGSet. Starting from eeg, it is possible to define a network:

N = ⟨V,E⟩

Here, V is the set of nodes of N . Each node vi ∈ V corresponds to an electrode

of the EEG. In our EEGs, electrodes were applied by following the 10-20 system and

|V | = 19.

E is the set of the edges of N . Each edge eij connects the nodes vi and vj and

can be represented as:

eij = (vi, vj , wij)

Here, wij is a measure of “distance” between vi and vj . It is an indicator of the

disconnection level of vi and vj . Even if our approach is orthogonal to the mea-

sure adopted for estimating synchrony, in our experiments we chose to employ PDI

(Permutation Disalignment Index), which proved to be well suited in quantifying the

overall coupling strength between EEG signals associated with MCI progression to-

wards AD [292]. In particular, PDI was compared with Coherence and Dissimilarity

1 At this moment, we do not make any assumptions about the subject whom eeg refers to.

She/he could be a control subject, a patient with MCI or a patient with AD.
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Index, a nonlinear and symbolic measure that proved to be promising in the pairwise

analysis of EEG data. PDI was shown to outperform both Coherence and Dissimi-

larity Index [292]. It can help whenever a multivariate, amplitude invariant, robust

to noise, nonlinear coupling strength analysis is necessary. All the above mentioned

features are useful in EEG processing because EEG is multivariate, influenced by the

distance from the reference electrode, affected by noise and nonlinear behavior. For

all these reasons, in our experiments, wij was set to the average PDI between vi and

vj . The interested reader can find a detailed description of PDI in Appendix A.1.

In order to make our model more “user-friendly” and “expressive” and, at the

same time, more capable of discriminating strong and weak connections between the

different brain areas, we decided to construct a new network, namely Nπ, obtained

from N by removing the edges with an “excessive” weight (see below) and by coloring

the others on the basis of their weight. As a matter of fact, edges with an “excessive”

weight represent connections between portions of the brain having a low connection

degree. In particular, blue edges denote strong connections (i.e., small weights), red

edges represent intermediate ones and, finally, green edges indicate weak connections.

In the following, we formalize this reasoning:

Nπ = ⟨V,Eπ⟩

Here, the nodes of Nπ are the same as the ones of N . To define Eπ, we employ

the distribution of the weights of the edges of N . Specifically, let maxE (resp., minE)

be the maximum (resp., minimum) weight of an edge of E. Starting from them, it is

possible to define a parameter stepE = maxE−minE
10 , which represents the length of

a “step” of the interval between minE and maxE . We can define dk(E), 0 ≤ k ≤ 9,

as the number of the edges of E with weights that belong to the interval between

minE + k · stepE and minE + (k+1) · stepE . All these intervals are closed on the left

and open on the right, except for the last one that is closed both on the left and on

the right. We are now able to formalize Eπ. Specifically, it consists of all the edges of

E belonging to dk(E), where k ≤ thmax.

Now, we can “color” the edges composing Eπ. Specifically, Eπ = Eb
π ∪ Er

π ∪ Eg
π.

Here:

• Eb
π =

{
eij ∈ E | eij ∈

⋃
thmin≤k≤thbr

dk(E)
}
;

• Er
π =

{
eij ∈ E | eij ∈

⋃
thbr<k≤thrg

dk(E)
}
;

• Eg
π =

{
eij ∈ E | eij ∈

⋃
thrg<k≤thmax

dk(E)
}
.

In this definition, we determined the bounds of Eb
π, E

r
π and Eg

π experimentally.

In particular, we set the values of thmin, thbr, thrg and thmax to 0, 1, 4 and 6,

respectively. From this definition, it is clear that discarded edges are those belonging

to the eighth, ninth and tenth intervals of the range [minE ,maxE ].
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To give an idea of the expressiveness of colored networks, in Figure 3.1 we report

the distribution of the edge weights and the colored network of a control subject (resp.,

a patient with MCI, a patient with AD). The disposal of nodes in the network reflects

the 10-20 system, even if they are rotated 90 degrees clockwise. It is straightforward

to observe that the control subject presents a weight distribution more biased on the

left than the patient with MCI, who, in turn, presents a weight distribution more

biased on the left than the patient with AD. A direct consequence of this fact is that

the colored network of the patient with AD presents lesser and weaker edges than

the colored network of the patient with MCI that, in turn, presents lesser and weaker

edges than the colored network of the control subject.

In order to quantify this phenomenon, in Table 3.1 we report the values of some

measures characterizing the three colored networks shown in the three figures above.

Specifically, the considered measures are: (i) the total number of colored edges; (ii)

the total number of blue (resp., red, green) edges2; (iii) the percentage of colored

edges against the total number of original edges; (iv) the percentage of blue (resp.,

red, green) edges against the total number of original edges. The quantitative results

reported in Table 3.1, fully confirm the qualitative analysis mentioned above.

Parameter Control Subject Patient with MCI Patient with AD

Total number of colored edges 170 141 69

Total number of blue edges 105 35 2

Total number of red edges 59 75 40

Total number of green edges 6 31 27

Percentage of colored edges 99.4% 82.5% 40.3%

Percentage of blue edges 61.4% 20.5% 1.2%

Percentage of red edges 34.5% 43.8% 23.4%

Percentage of green edges 3.5% 18.1% 15.8%

Table 3.1. Quantitative results representing the networks of Figure 3.1

As pointed out in the Introduction, the concept of clique3 can play a key role in the

investigation of those neurological diseases, like MCI and AD, where it is extremely

important to analyze the connection level between brain areas. For this reason, in our

approach, we introduce a further support data structure, called clique network.

In particular, let eeg be an EEG of EEGSet, let Nπ = ⟨V,Eπ⟩ be the correspond-

ing colored network and let C be the set of the cliques of Nπ. The clique network CN ,

corresponding to Nπ and C, is defined as:

CN = ⟨CV,CE⟩

Here:
2 Recall that blue edges are the strongest ones, red edges have an intermediate weight,

whereas green edges are the weakest ones.
3 Recall that a clique of dimension k in a network represents a completely connected sub-

network formed by k nodes.
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Fig. 3.1. Distributions of the edge weights and colored networks for the possible kinds of

subjects into consideration. In particular, the first row is associated with a control subject, the

second with a patient with MCI and the third with a patient with AD. In the distributions,

k denotes the subrange number between minE and maxE . In the networks, the disposal

of nodes reflects the 10-20 system even if nodes are rotated 90 degrees clockwise. Observe

that the control subject presents a high number of edges and most of them are blue; the

corresponding distribution is biased towards left. The patient with MCI presents many edges

and most of them are red; the corresponding distribution is balanced. The patient with AD

presents a small number of edges and most of them are green; the corresponding distribution

is biased towards right.

• CV denotes the set of the nodes of CN . There is a node vi ∈ CV for each node of

Nπ. A weight wi is associated with vi. It represents the number of cliques, which

vi is involved in. Formally speaking, let vi be a node of Nπ and let Ci be the set of

the cliques of Nπ which vi is involved in (clearly Ci ⊆ C). Then CV is defined as:

CV = {(vi, wi)|vi ∈ V,wi = |Ci|}
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• CE represents the set of the edges of CN . There is an edge (vi, vj , wij) ∈ CE if

the edge (vi, vj) is present in at least one clique of C. wij denotes the number of

cliques of C, which (vi, vj) is involved in.

The edges of CN can be “colored” in an analogous way to the edges of Nπ. Also in

this case, blue edges are the strongest ones, red edges have an intermediate strength

and green edges are the weakest ones. Formally speaking:

CE = CEb ∪ CEr ∪ CEg

Here:

• CEb = {(vi, vj , wij) | (vi, vj , wij) ∈ CE, wij > thrb};

• CEr = {(vi, vj , wij) | (vi, vj , wij) ∈ CE, (wij > thgr) ∧ (wij ≤ thrb)};

• CEg = {(vi, vj , wij) | (vi, vj , wij) ∈ CE,wij ≤ thgr}.

Analogously to what we have seen for Nπ, we experimentally determined the

values of thrb and thgr. In particular, we found that the best values for them are

thgr = 4 and thrb = 6. We point out that clique network is very expressive from a

visual point of view. Indeed, the color of an edge is an indicator of the strength of

the connection between the corresponding brain areas, whereas the dimension of a

node is an indicator of the connection degree of the corresponding brain area, and,

ultimately, an indicator of its activity level.

In Figure 3.2, we report the clique networks corresponding to the EEGs of three

patients at the time instants t0 and t1. Here, the dimension of a node is directly

proportional to the associated weight. In this figure and in the following, we use the

notation Patient X (MCI-MCI) - where X is a number - to denote a patient suffering

from MCI at both t0 and t1. Analogously, Patient X (MCI-AD) indicates a patient

with MCI at t0 and AD at t1. Finally, Patient X (AD-AD) represents a patient with

AD at both t0 and t1.

Analogously to what we have done for colored networks, also in this case, in Table

3.2, we provide some quantitative measures characterizing the clique networks of

Figure 3.2. Specifically, in this case, the considered measures are: (i) the total number

of colored edges; (ii) the total number of blue (resp., red, green) edges; (iii) the

percentage of colored edges against the total number of theoretically possible edges;

(iv) the number of nodes with weights from 1 to 10. Even in this case, the quantitative

values reported in this table fully confirm the qualitative analysis mentioned above.

In Appendix A.2, we report the pseudo-code for the construction of a clique net-

work.
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Fig. 3.2. The clique networks of Subjects 12 (Control Subject), 30 (MCI-MCI) and 51

(MCI-AD) at t0 (on the left) and t1 (on the right)

3.2.2 Connection Coefficient

As pointed out in the Introduction, one of the main features to investigate in neurode-

generative patients is the connection level of the brain areas. Previously, we introduced

the concept of clique, which is one of the most powerful tools in network analysis for

investigating the connection level of a network. Starting from cliques, it is possible

to define a quantitative coefficient, which we call connection coefficient, capable of

measuring the connectivity level of a network associated with an EEG.

This coefficient should take the following considerations into account:
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Parameter Control 12 Control 12 Patient 30 Patient 30 Patient 51 Patient 51

at t0 (Control) at t1 (Control) at t0 (MCI) at t1 (MCI) at t0 (MCI) at t1 (AD)

Total number of colored edges 129 171 123 122 148 107

Total number of blue edges 0 0 23 0 0 0

Total number of red edges 1 0 40 48 0 21

Total number of green edges 128 171 60 74 148 86

Percentage of colored edges 75.4% 100% 71.9% 71.3% 86.5% 62.6%

Percentage of blue edges 0% 0% 13.6% 0% 0% 0%

Percentage of red edges 0.6% 0% 23.4% 28% 0% 12.3%

Percentage of green edges 74.8% 100% 35.1% 43.3% 86.5% 50.3%

Number of nodes whose weight is 0 0 0 0 0 1 0

Number of nodes whose weight is 1 2 19 0 2 15 3

Number of nodes whose weight is 2 6 0 4 2 3 4

Number of nodes whose weight is 3 8 0 1 3 0 3

Number of nodes whose weight is 4 3 0 3 3 0 4

Number of nodes whose weight is 5 0 0 2 6 0 5

Number of nodes whose weight is 6 0 0 1 3 0 0

Number of nodes whose weight is 7 0 0 6 0 0 0

Number of nodes whose weight is 8 0 0 2 0 0 0

Number of nodes whose weight is 9 0 0 0 0 0 0

Number of nodes whose weight is 10 0 0 0 0 0 0

Table 3.2. Quantitative results representing the networks of Figure 3.2

• Both the dimension and the number of cliques are important as connectivity in-

dicators.

• The concept of clique is intrinsically exponential. In other words, a clique of di-

mension n+ 1 is exponentially more complex than a clique of dimension n.

• It is necessary to avoid the possible presence of outliers and noise. As a conse-

quence, it is inappropriate to consider only the cliques with the maximum di-

mension. By contrast, it is more equilibrate to consider, in addition to them, the

cliques with the sub-maximum and sub-sub-maximum dimension. On the other

hand, it is unnecessary and time consuming to consider the other cliques because

their contribution decreases exponentially against their dimension.

Starting from these considerations, we now define our connection coefficient. Let

Nπ = ⟨V,Eπ⟩ be the colored network associated with an EEG of EEGSet. Let C

be the set of the cliques of Nπ and let dim(·) be a function returning the dimension

of a set of cliques, all of the same dimension, received in input. Then, it is possible

to define: (i) the subset CM1 ⊆ C of the cliques with the maximum dimension; (ii)

the subset CM2 ⊂ C of the cliques with the sub-maximum dimension; (iii) the subset

CM3 ⊂ C of the cliques with the sub-sub-maximum dimension.

Finally, let |CM1 |, |CM2 | and |CM3 | be the cardinalities (i.e., the number of cliques)

of CM1 , CM2 and CM3 , respectively. Then, the connection coefficient ccNπ , associated

with Nπ, is defined as:

ccNπ =
3∑

i=1

(
| CMi | · 2dim(CMi )

)

This definition considers all the above observations in the most suitable way.
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3.2.3 Sub-band Analysis

In the previous sections, we have always considered the complete EEG tracing. How-

ever, in the literature, it is well known that an EEG tracing can be separated in several

sub-bands (e.g., α, β, δ and θ) whose analysis can provide significant information in

several neurological disorders. For instance, in the past, it was shown that the sub-

bands δ and θ can help in investigating the conversion from MCI to AD [118, 64]. For

this reason, we decided to extend all the previous analysis from the overall tracing to

the ones of the sub-bands α, β, δ and θ. In this section, we illustrate this extension

and the most important results we have obtained from it.

Preliminarily, we must introduce further support data structures and parameters.

Specifically, let eeg be a generic EEG of EEGSet. Starting from eeg, it is possible

to define four further tracings, namely eegα, eegβ , eegδ and eegθ, referred to the

sub-bands α, β, δ and θ.

In Section 3.2.1, we have defined the network N = ⟨V,E⟩ corresponding to eeg.

In an analogous way, it is possible to define the networks:

Nα = ⟨V,Eα⟩ N β = ⟨V,Eβ⟩ N δ = ⟨V,Eδ⟩ N θ = ⟨V,Eθ⟩

Here, V is the set of nodes, which coincides with the nodes of N . Eα (resp., Eβ ,

Eδ, Eθ) represents the set of the edges of Nα (resp., N β , N δ, N θ). Each edge of Eα

(resp., Eβ , Eδ, Eθ), connecting the nodes vi and vj , has the form (vi, vj , wij), where

wij is a measure of the “distance” between vi and vj in Nα (resp., N β , N δ, N θ). As

seen in Section 3.2.1, this “distance” is an indicator of the disconnection level of vi

and vj , and each measure representing this feature could be adopted in our model.

Analogously to the overall tracing, in the experiments associated with this research,

we adopted the Permutation Disalignment Index [292]. As a consequence, for the edge

(vi, vj , wij) ∈ Eα (resp., Eβ , Eδ, Eθ), wij is equal to the average value of PDI in eegα

(resp., eegβ , eegδ, eegθ).

Beside Nα, N β , N δ and N θ, it is possible to define:

• the colored networks Nα
π = ⟨V,Eα

π ⟩ (resp., N β
π , N δ

π , N θ
π ), corresponding to eegα

(resp., eegβ , eegδ, eegθ), by extending to this tracing what we have already done

in Section 3.2.1 for the overall tracing;

• the connection coefficient ccNα
π

(resp., ccNβ
π
, ccN δ

π
, ccN θ

π
), corresponding to eegα

(resp., eegβ , eegδ, eegθ), by extending to this tracing what we have already done

in Section 3.2.2 for the overall tracing.

3.2.4 Conversion Coefficient

We have introduced the connection coefficient and we have shown that it is well suited

for determining the connection degree of a network and, in our case, of the brain. In
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this task, this parameter presents a better performance than clustering coefficient

that is the parameter adopted in classical Network Analysis for this purpose. It also

proved to be adequate to verify the conversion from MCI to AD. Finally, its adoption

in sub-bands δ and θ proved to be well suited to predict the same conversion.

All these results, in the whole, suggest that, in order to quantitatively predict the

conversion from MCI to AD, it is reasonable to define a new coefficient (which we

call conversion coefficient) capable of detecting the conversion of a patient from MCI

to AD more exactly, by taking the connection coefficient relative to all these three

tracings into account.

The conversion coefficient can be defined as follows: let eeg be an EEG of EEGSet,

let Nπ (resp., N δ
π , N θ

π ) be the corresponding colored network associated with the

overall tracing (resp., the sub-bands δ and θ) of eeg, let cc0Nπ
, cc0N δ

π
, cc0N θ

π
(resp.,

cc1Nπ
, cc1N δ

π
, cc1N θ

π
) be the corresponding connection coefficients at t0 (resp., t1). The

conversion coefficient conveeg, corresponding to eeg, is defined as:

conveeg = 1
3 ·
(

cc1Nπ
−cc0Nπ

cc0Nπ

+
cc1Nδ

π
−cc0Nδ

π

cc0
Nδ

π

+
cc1Nθ

π
−cc0Nθ

π

cc0
Nθ

π

)

In other words, the conversion coefficient conveeg of an electroencephalogram eeg

considers the variations of the connection coefficients ccNπ , ccN δ
π
and ccN θ

π
associated

with the overall tracing and with the tracings corresponding to the sub-bands δ and

θ. All these contributions are taken with the same weight.

3.2.5 Network Motifs

In this section, we aim at investigating the possible presence of motifs characterizing

patients with MCI from patients with AD, and vice versa.

As a matter of fact, motifs have been already investigated and used in past ap-

proaches adopting network analysis (see, for instance, [312, 414, 339]). In this scenario,

they are considered as [312]:

“patterns of interconnections occurring in complex networks at numbers that are

significantly higher than those in randomized networks”.

In our approach, we use motifs in a completely different way. Indeed, we do not

examine a unique complex network to find patterns frequently repeated therein. By

contrast, we search for patterns appearing frequently in the networks corresponding

to the tracing segments of patients with MCI (resp., AD) and being absent in the ones

of patients with AD (resp., MCI), thus characterizing the patients with MCI (resp.,

AD) from the ones with AD (resp., MCI).

First, we must formalize our concept of motif. Specifically, let EEGSet be a set

of EEGs, let MCISet (resp., ADSet) be the subset of EEGSet corresponding to
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patients with MCI (resp., AD). Let NSetM (resp., NSetA) be the set of colored

networks corresponding to the EEGs of MCISet (resp., ADSet). Let CM (resp., CA)

be the set of the cliques of NSetM (resp., NSetA) and let TM (resp., TA) be the set

of totally connected triads of CM (resp., CA)4. Finally, let t be a generic triad. We call

noccM (resp., noccA) the number of occurrences of t in NSetM (resp., NSetA).

After having defined all support data structures and parameters, we are able to

describe our motif extraction approach. It consists of two main steps, the former de-

voted to the extraction of basic motifs and the latter conceived for the construction of

derived ones. In this section, we illustrate the extraction of basic motifs. Preliminarily,

it is necessary to specify what a basic motif is in our context. Specifically:

Let t be a totally connected triad of NSetM . If: (1) t is absent in the networks

of NSetA and is frequent in the networks of NSetM , or (2) t is very rare in the

networks of NSetA and very frequent in the networks of NSetM , then t is a

motif characterizing patients with MCI from patients with AD.

To really extract basic motifs, it is necessary to specify a quantitative definition

of this rule. To carry out this task, it is preliminarily necessary to associate numeric

values with the concepts of very rare, frequent and very frequent. For this purpose, we

can define the following thresholds:

thV R = αV R · |NSetA| thF = αF · |NSetM |

thV F = αV F · |NSetM |

We experimentally set the values of αV R, αF and αV F to 0.10, 0.25 and 0.40,

respectively. We chose these values as the default ones of our approach. In fact, they

proved to be the most “equilibrate” (i.e., neither extremely permissive nor extremely

restrictive) ones.

Therefore, let t ∈ TM be a totally connected triad of NSetM and let noccM (resp.,

noccA) be the number of occurrences of t in NSetM (resp., NSetA). If:

• (1) (noccA = 0) ∧ (noccM ≥ thF ), or

• (2) (noccA ≤ thV R) ∧ (noccM ≥ thV F )

then t is a basic motif characterizing patients with MCI from patients with AD.

In a dual fashion, it is possible to define the basic motifs characterizing patients

with AD from patients with MCI. Also in this case, we experimentally set the values

of αV R, αF and αV F to 0.10, 0.25 and 0.40, respectively.

4 We recall that a triad is a subnetwork consisting of three nodes. The totally connected

triad is considered the most stable structure in network analysis. A totally connected triad

can be considered as a clique of dimension 3.
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In the following, we indicate by MM (resp., MA) the set of motifs extracted

starting from the triads of NSetM (resp., NSetA).

Observe that a motif is not only an indicator of the tracing segments of the EEGs

of patients with MCI (or with AD). As a matter of fact, it is much more. Indeed, it

allows us to characterize the behavior of the brain areas of patients with MCI (resp.,

AD) from patients with AD (resp., MCI). For instance, it denotes what brain areas are

most connected (and, therefore, most active) in patients with MCI before converting

to AD (resp., in patients that converted from MCI to AD).

Once basic motifs have been extracted, and a first version of MM and MA has

been obtained, it is possible to construct derived (and, possibly, much more complex

and significant) motifs starting from them.

Our approach constructs new derived motifs starting from the already known ones.

For this purpose, it uses nodes common to two or more known motifs as “junction

points”. Formally speaking, let mi = ⟨Vi, Ei⟩ and mj = ⟨Vj , Ej⟩ be two motifs of

MM such that Vi ∩ Vj ̸= ∅. Then, it is possible to construct a candidate motif by

computing the union of the nodes and the edges of mi and mj :

mij = ⟨Vi ∪ Vj , Ei ∪ Ej⟩

Once mij has been constructed, analogously to what we have seen for basic motifs,

it is necessary to evaluate noccM and noccA5. If, for these parameters, condition (1)

or condition (2) for the extraction of basic motifs hold, then mij can be added to

MM , i.e., MM = MM ∪ {mij}.

The addition of a new motif in MM could make possible the construction of new

candidate motifs. As a consequence, the enrichment process of MM is iterative and

terminates when, during an iteration, no new motif is added to MM . In an analogous

fashion, the derived motifs of MA can be extracted. In Appendix A.3, we report the

pseudo-code for the computation of motifs.

3.3 Results

3.3.1 Testbed

We enrolled seven patients with AD and eight patients with MCI monitored at the

IRCCS Centro Neurolesi Bonino Pulejo of Messina (Italy), within a three-month

follow-up program. The main characteristics of these patients are reported in Table

3.3.

5 Clearly, for derived motifs, noccM and noccA refer to the number of occurrences of motifs,

instead of triads.
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Patient ID Age Gender Diagnosis at t0 Diagnosis at t1

pt 03 68 M MCI AD

pt 23 84 F MCI MCI

pt 30 69 M MCI MCI

pt 41 78 M MCI MCI

pt 51 71 F MCI AD

pt 57 83 M MCI MCI

pt 71 79 F MCI AD

pt 72 65 F MCI MCI

pt 31 74 M AD AD

pt 54 83 F AD AD

pt 64 74 F AD AD

pt 65 76 M AD AD

pt 76 79 F AD AD

pt 86 83 F AD AD

pt 87 78 F AD AD

Table 3.3. Main characteristics of the patients enrolled for our experiments

Every subject signed an informed consent form, in agreement with a clinical pro-

tocol approved by the Ethical Committee. We also enrolled eighteen control subjects.

The diagnostic procedure followed the guidelines of the Diagnostic and Statistical

Manual of Mental Disorders (fifth edition, DSM-5) [37] and consisted of a full cogni-

tive and clinical assessment, carried out by a multidisciplinary team of neurologists,

psychologists, psychiatrists and EEG experts. Each patient was evaluated at baseline

(time t0) and then again three months later (time t1). The patients were evaluated

neuroradiologically, in order to rule out other clinical conditions, like brain lesions,

which might have caused cognitive impairment. Current medical treatment (particu-

larly cholinesterase inhibitors - ChEis, Memantine, anti-depressants, anti-psychotics

and anti-epileptic drugs) was also taken into account in AD patients. MCI subjects

were not under medical treatment. Furthermore, we also had 18 EEGs of control

subjects.

The EEGs were recorded according to the 10-20 International System (19 chan-

nels), with 1024 Hz sampling rate. A 50 Hz notch filter was used, with linked

earlobe (A1-A2) reference. The EEG recordings were performed in a comfortable

resting state. The patients kept their eyes closed but remained awake. The EEG

was band-pass filtered at 0.5-32 Hz through the Matlab toolbox EEGLab (https:

//sccn.ucsd.edu/eeglab/) [126]. EEG preprocessing was fully carried out in Matlab

(The MathWorks, Inc., Natick, MA, USA). After filtering, the artifactual segments

in the EEG recordings were manually detected by the EEG experts and the artifac-

tual epochs were discarded. The average time length of the recordings, after artifact

cancellation, is 5.44 mins. After that, the four major EEG rhythms, i.e., α, β, δ and

θ were extracted from the EEG signals. In this way, a n-channels EEG recording was

eventually split into 4 n-channels sub-band EEG recordings: EEGα, EEGβ , EEGδ,

EEGθ. Each sub-band of the EEG was then downsampled to 256 Hz. Every record-
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ing of the sub-bands was partitioned into 5 s non-overlapping windows, and analyzed

window by window.

On the basis of the diagnosis at times t0 and t1, the patients into examination

were partitioned in three groups, namely: (i) patients with MCI at t0 that were still

diagnosed MCI at t1; (ii) patients with AD at t0 that remained with AD at t1; (iii)

patients with MCI at t0 that converted to AD at t1.

As pointed out in the Introduction, we have striven to (at least partially) face the

issue of the narrowness of the set of available patients. For this purpose, we realized a

simulator aimed to construct virtual control subjects and virtual patients with MCI

or AD. The simulator behaves as follows:

• It receives a set ASetCS (resp., ASetMCI , ASetAD) of matrices. Each element of

this set represents the adjacency matrix of the complex network associated with

the EEG of a control subject (resp., a patient with MCI, a patient with AD).

The set of real control subjects (resp., patients with MCI, patients with AD)

from which we constructed ASetCS (resp., ASetMCI , ASetAD) consisted of the

50% of the control subjects (resp., patients with MCI, patients with AD) at our

disposal, selected at random. In fact, as we will see below, the other 50% of control

subjects (resp., patients with MCI, patients with AD) were necessary for testing

our simulator.

• It constructs a new adjacency matrix ACS (resp., AMCI , AAD) whose generic

element ACS [i, j] (resp., AMCI [i, j], AAD[i, j]) represents the mean of the (i, j)

elements of the matrices of ASetCS (resp., ASetMCI , ASetAD).

• It computes the standard deviation σCS (resp., σMCI , σAD) of the elements of

ACS (resp., AMCI , AAD).

• It constructs the set ÂSetCS (resp., ̂ASetMCI , ÂSetAD) of the adjacency matrices

representing the complex networks associated with the EEGs of virtual control

subjects (resp., patients with MCI, patients with AD). In particular, the generic

element Â[i, j] of a matrix of ÂSetCS (resp., ̂ASetMCI , ÂSetAD) is obtained by

perturbing the corresponding element ACS (resp., AMCI , AAD) of a random value

comprising between − 1
2σ

CS (resp., − 1
2σ

MCI , − 1
2σ

AD) and 1
2σ

CS (resp., 1
2σ

MCI ,

1
2σ

AD).

After having obtained the three sets ÂSetCS , ̂ASetMCI , ÂSetAD, it was necessary

to couple the corresponding matrices appropriately in such a way as to represent

virtual control subjects (having an element of ÂSetCS at t0 and another one of the

same set at t1), virtual patients with MCI at both t0 and t1 (therefore, having an

element of ̂ASetMCI at t0 and another one of the same set at t1), and patients with

MCI at t0 and with AD at t1, and, finally, patients with AD at both t0 and t1. Each of
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the four sets constructed above consisted of 27 elements. After this, by following the

holdout technique, for each of the four groups mentioned above, we chose 18 elements

to train our approach and 9 elements to test it. After having verified the adequacy of

our approach on virtual people, we tested it on the 50% of the real people not used

for constructing the virtual models, in such a way as to verify its suitability on real

patients. We applied this technique first to evaluate the connection coefficient on the

overall EEG tracing, then to test the same coefficient on the four EEG sub-bands

and, finally, to evaluate the conversion coefficient.

Before discussing the “adequacy” of our approach, a discussion about the enroll-

ment of patients in neurological tests is in order. Nowadays it is still very difficult

to keep MCI and AD subjects and their caregivers actively involved in the follow-

up programs. On the other side, these programs are strictly necessary to develop

biomarkers for the objective quantification of the degeneration degree of cortical elec-

trical connectivity caused by dementia. Many subjects do not fulfil the timing of the

periodic assessments. This is often due to the difficulties caused by the disease itself.

This means that many recruited subjects must be later excluded from the analysis

because their EEGs were not recorded following the predetermined scheduling, which

implies that their inclusion would not allow the construction of a dataset with ho-

mogeneous characteristics. As a result, there are only a few longitudinal studies in

which the EEG of the subjects has been recorded and evaluated twice over time. To

the best of our knowledge, the largest sample ever analyzed (143 MCI subjects) was

constructed within a multicentric study described in [85]. In this paper, the authors

introduced a methodology, named Implicit Function As Squashing Time (IFAST),

based on artificial neural networks. IFAST succeeded to predict the conversion from

amnestic MCI to AD with a 85.98% accuracy in a 1-year follow-up study. Later, this

methodology was improved; however, it has been so far tested only on a classification

study concerning cross-sectional MCI vs AD.

Some other follow-up studies were carried out, but the EEG was recorded and

assessed only at baseline (i.e., at t0) and was later interpreted on the basis of the

new diagnosis formulated at time t1. In particular, [195] examined 35 amnestic MCI

subjects whose EEGs were recorded at time t0. Then, they retrospectively classified

these EEGs according to the diagnosis reformulated at time t1. The features were

extracted through a Phase Lag Index (PLI)-based connectivity analysis. [323] ana-

lyzed the correlation between higher alpha3/alpha2 frequency power, cortical decay

and perfusion rate with conversion to AD in a group of 76 subjects diagnosed as MCI

patients at time t0 and, then, re-evaluated at time t1. [176] recruited 205 nondemented

amyloid positive subjects (142 of them were MCI), and computed peak frequencies

and relative power in the four major sub-bands (δ, θ, α, β). Then, they retrospectively
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evaluated the relationship between normalized EEG measures and the probability of

conversion to AD. The study proposed by [368] included 86 MCI subjects. These au-

thors introduced a Neurophysiological Biomarker Toolbox, based on β band features,

to predict the conversion from MCI to AD.

All the aforementioned studies consisted in a retrospective cross-sectional classi-

fication between groups of subjects. They do not perform the longitudinal quantifi-

cation of changes in the EEGs of the same subject, which is the only way to find

possible correlations between changes in the characteristics of EEG signals and/or

physiological changes caused by the progression of the disease.

After this premise, we can proceed to quantitatively measure the “adequacy” of

our approach, we adopted the parameters generally used in the literature for this

purpose (see [191] for all details). In particular, let pos be the number of positives

in a clinical analysis (in our case, the number of patients converting from MCI to

AD in real life), let t pos be the number of true positives (in our case, the number

of patients converting from MCI to AD in real life and correctly detected by the

connection coefficient), let f pos be the number of false positives, let neg be the

number of negatives and, finally, let t neg be the number of true negatives. Starting

from these parameters, it is possible to define:

• sensitivity, or true positive rate, as the proportion of positives correctly identified

by the approach to evaluate: sensitivity = t pos
pos ;

• specificity, or true negative rate, as the proportion of negatives correctly identified

by the approach to evaluate: specificity = t neg
neg ;

• precision, as the proportion of subjects labeled as positives by the approach to

evaluate and being really positives: precision = t pos
t pos+f pos .

Clearly, in this medical context, sensitivity is much more important than specificity

and precision.

As a final remark, we performed a comparative evaluation of our connection and

conversion coefficients against clustering coefficient, which is much simpler and is the

classical parameter adopted in network analysis to evaluate the connection level of a

network.

3.3.2 Training of the proposed approach

First, we decided to perform a preliminary, yet rough, verification of the capability of

our EEG generator to produce plausible results. For this purpose, we computed the

average minimum weight, the average maximum weight and the average mean weight

for the following sets: (i) 50% of real EEGs (control subjects, patients with MCI,

patients with AD) used to “train” the EEG generator; (ii) virtual EEGs produced
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through our generator and used to train our approach; (iii) virtual EEGs produced

through our generator and used to test our approach; (iv) 50% of real EEGs used to

test our approach. Obtained results are reported in Table 3.4.

Set of persons Avg Min Weight Avg Mean Weight Avg Max Weight

Real control subjects for generator training 1.2852 1.8534 3.0923

Real control subjects for approach testing 1.2114 1.8355 3.0954

Virtual control subjects for approach training 1.1887 1.8543 2.9367

Virtual control subjects for approach testing 1.1511 1.8446 2.8912

Real patients with MCI for generator training 1.3612 2.0812 3.0224

Real patients with MCI for approach testing 1.2729 1.8854 2.7689

Virtual patients with MCI for approach training 1.2723 1.8838 2.4678

Virtual patients with MCI for approach testing 1.2863 1.8856 2.4643

Real patients with AD for generator training 1.2867 2.0243 2.9498

Real patients with AD for approach testing 1.3412 2.0976 3.0657

Virtual patients with AD for approach training 1.2643 2.0385 2.9564

Virtual patients with AD for approach testing 1.2712 2.0501 2.9504

Table 3.4. Average minimum weight, average mean weight and average maximum weight

for the sets of interest

From the analysis of this table we can observe that they appear plausible, similar to

the corresponding real ones and, at the same time, present a reasonable heterogeneity.

For instance, the maximum variation of the average minimum (resp., mean, maximum)

weight is 7.90% (resp., 9.62%, 18.24%).

After this verification, we trained our approach for making it able to detect the

conversion from MCI to AD. With regard to this task, we found that a decrease

of the connection coefficient higher than 80% is a potentially good indicator of the

conversion phenomenon. We found the identical threshold value also for the conversion

coefficient.

3.3.3 Testing of the proposed approach

The first test that we performed regarded the connection coefficient’s capability of

detecting the conversion of a patient from MCI to AD.

First we operated on virtual EEGs. As previously specified, we considered 27

virtual patients with MCI at both t0 and t1, 27 virtual patients with AD at both t0

and t1 and 27 virtual patients with MCI at t0 that converted to AD at t1. Obtained

results are shown in the first row of Table 3.5. Then, we considered real people and

operated exactly as in the previous test. Obtained results are reported in the second

row of Table 3.5. The analysis of this table shows that the connection coefficient

appears a good parameter for predicting the conversion from MCI to AD. Sensitivity,

specificity and precision obtained by this coefficient are very high, even if improvable,

both for virtual patients and for real ones. Interestingly, the values obtained for real

patients are higher than the ones returned for virtual patients.
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Set Sensitivity Specificity Precision

Virtual patients 0.94 0.91 0.72

Real patients 1.00 0.91 0.75

Table 3.5. Sensitivity, specificity and precision of the connection coefficient associated with

overall EEGs

The second test was analogous to the first one, but it regarded the sub-bands

of EEGs, instead of the overall tracing. The corresponding results are reported in

Tables 3.6 and 3.7. These tables show that δ and θ sub-bands are very adequate for

investigating the conversion of a patient from MCI to AD. This result is in line with

the ones obtained by [118, 64]. Also for these sub-bands, real patients behave better

than virtual ones. α and β sub-bands, instead, do not present particularly satisfying

results. For all these reasons, we decided to not consider these two sub-bands in the

computation of the conversion coefficient.

Set Sensitivity Specificity Precision

Virtual patients (α sub-band) 0.75 0.94 0.71

Virtual patients (β sub-band) 0.85 0.80 0.72

Virtual patients (δ sub-band) 0.94 0.95 0.69

Virtual patients (θ sub-band) 0.92 0.97 0.54

Table 3.6. Sensitivity, specificity and precision of the connection coefficient associated with

the sub-bands of EEGs (virtual patients)

Set Sensitivity Specificity Precision

Real patients (α sub-band) 0.67 0.91 0.67

Real patients (β sub-band) 0.80 0.80 0.67

Real patients (δ sub-band) 1.00 1.00 0.75

Real patients (θ sub-band) 1.00 1.00 0.60

Table 3.7. Sensitivity, specificity and precision of the connection coefficient associated with

the sub-bands of EEGs (real patients)

The next test regarded the conversion coefficient’s capability of detecting the con-

version of a patient from MCI to AD. For this purpose, we operated in an analogous

way to what we have seen for the connection coefficient, i.e., first we considered virtual

EEGs and, then, real ones. Obtained results are reported in Table 3.8.

Set Sensitivity Specificity Precision

Virtual patients 0.95 0.94 0.92

Real patients 1.00 1.00 1.00

Table 3.8. Sensitivity, specificity and precision of the conversion coefficient
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As shown in this table, the values of sensitivity, specificity and precision returned

by conversion coefficient are extremely high for virtual patients and maximum for real

ones. Again, real patients behave better than virtual ones.

As for the comparison between the connection and the clustering coefficients in

distinguishing control subjects from patients with MCI and patients with AD, from

the analysis of Table 3.9 we observe that:

• The average connection coefficient of virtual (resp., real) patients with MCI de-

creases of 14.45% (resp., 11.32%) w.r.t. the corresponding value of virtual (resp.,

real) control subjects. Instead, the average clustering coefficient of virtual (resp.,

real) patients with MCI decreases of 2.46% (resp., 2.39%) w.r.t. the corresponding

value of virtual (resp., real) control subjects.

• The average connection coefficient of virtual (resp., real) patients with AD de-

creases of 75.77% (resp., 69.63%) w.r.t. the corresponding value of virtual (resp.,

real) patients with MCI. Instead, the average clustering coefficient of virtual (resp.,

real) patients with AD decreases of 15.16% (resp., 12.81%) w.r.t. the corresponding

value of virtual (resp., real) patients with MCI.

These values clearly evidence that the connection coefficient is much better than

the clustering coefficient in distinguishing control subjects, patients with MCI and

patients with AD. As a consequence, even if the computation of this coefficient is

more expensive than the one of the clustering coefficient, this is balanced by its much

better capability of distinguishing the states of a person.

3.3.4 Comparison between Connection and Clustering coefficients

As previously pointed out, in Social Network Analysis, the most commonly used pa-

rameter for evaluating the connection level of a network is clustering coefficient. This

coefficient is simpler to compute than the connection and the conversion coefficients.

As a consequence, the adoption of these last ones makes sense only if they provide

more accurate results. To verify if this happens, we performed some tests.

The first one aimed at computing the average connection coefficient and the aver-

age clustering coefficient for virtual and real control subjects, patients with MCI and

patients with AD. The obtained results are reported in Table 3.9.

The second test aimed at comparing the capability of the conversion and the

clustering coefficients in determining the conversion of a patient from MCI to AD. In

Table 3.8, we report sensitivity, specificity and precision of the conversion coefficient

in carrying out this task.

We performed the same analysis for clustering coefficient. In this case, we ex-

perimentally set to 80% the percentage of the decrease of the clustering coefficient
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Set Average Connection Coefficient Average Clustering Coefficient

Virtual control subjects 232523 0.9675

Virtual patients with MCI 198785 0.9422

Virtual patients with AD 48223 0.7889

Real control subjects 226169 0.9592

Real patients with MCI 200548 0.9363

Real patients with AD 60904 0.8164

Table 3.9. Average connection coefficient and average clustering coefficient for all the sets

of virtual and real people of interest

necessary for saying that a patient converted from MCI to AD. The corresponding

sensitivity, specificity and precision are reported in Table 3.10.

Set Sensitivity Specificity Precision

Virtual patients 0.77 0.71 0.68

Real patients 0.82 0.84 0.75

Table 3.10. Sensitivity, specificity and precision of the clustering coefficient

The analysis of Tables 3.8 and 3.10 allows us to point out that conversion coefficient

returned much better results than clustering coefficient. In fact, for virtual (resp., real)

patients, sensitivity, specificity and precision increase of 26.31%, 32.86% and 34.78%

(resp., 21.95%, 19.05% and 33.33%) if the conversion coefficient is adopted in place

of the clustering coefficient.

These two tests allow us to conclude that, even if our coefficients are more complex

than the clustering coefficient, they can provide much better results and, therefore,

are worthwhile to be adopted.

3.3.5 Network Motifs

The basic motifs belonging to MM derived by our approach are reported in Table

3.11.

On the top of Figure 3.3, we represent two basic motifs belonging toMM , obtained

by applying our approach to the EEGs of the patients at our disposal.

With the current values of αV R, αF and αV F , we did not extract any motif

belonging to MA. This is in line with the results shown in Sections 3.3.4, where

we have seen that the networks corresponding to patients with AD are much less

connected than the ones corresponding to patients with MCI. However, if the human

expert wants to be more “permissive”, she/he can decrease the values of αF and αV F

and can increase the value of αV R w.r.t. the default ones specified above. In this case,

she/he could find basic motifs also in MA.

On the bottom of Figure 3.3, we show the most significant derived motifs extracted

by our approach. In order to provide a quantitative evaluation of derived motifs

(which implies characterizing the tracing segments of patients with MCI from patients
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Condition (1) Condition (2)

[Fp1, Fp2, O2] ; [Fp1, F3, O2] ; [Fp1, Fz, O2] [Fz, C3, O2]

[Fp1, F4, O2] ; [Fp1, F8, O2] ; [Fp1, C3, O2] [Fz, Cz,O2]

[Fp1, Cz, O2] ; [Fp1, C4, O2] ; [Fp1, T4, O2] [Fz, C4, O2]

[Fp1, Pz, O2] ; [Fp1, P4, O2] ; [Fp1, T6, O2] [Fz, T4, O2]

[Fp2, F3, O2] ; [Fp2, Fz, O2] ; [Fp2, F4, O2] [Fz, Pz, O2]

[Fp2, F8, O2] ; [Fp2, C3, O2] ; [Fp2, Cz, O2] [Fz, P4, O2]

[Fp2, C4, O2] ; [Fp2, T4, O2] ; [Fp2, Pz, O2] [Fz, T6, O2]

[Fp2, P4, O2] ; [Fp2, T6, O2] ; [F7, F3, O2] [C3, Cz, O2]

[F7, Fz, O2] ; [F7, Cz, O2] ; [F7, C4, O2] [C3, C4, O2]

[F7, P4, O2] ; [F3, Fz, O2] ; [F3, F4, O2] [C3, Pz, O2]

[F3, F8, O2] ; [F3, T3, O2] ; [F3, C3, O2] [C3, P4, O2]

[F3, Cz, O2] ; [F3, C4, O2] ; [F3, T4, O2] [C3, T6, O2]

[F3, T5, O2] ; [F3, P3, O2] ; [F3, Pz, O2]

[F3, P4, O2] ; [F3, T6, O2] ; [F3, O1, O2]

[Fz, F4, O2] ; [Fz, F8, O2] ; [Fz, T3, O2]

[F4, C3, O2] ; [F8, C3, O2] ; [F8, P3, O2]

[T3, C4, O2]

Table 3.11. The basic motifs belonging to MM derived by applying condition (1) and

condition (2)

Fig. 3.3. Two of the most significant basic motifs (on the top) and two of the most significant

derived motifs (on the bottom) characterizing the tracing segments of patients with MCI from

patients with AD

with AD), in Table 3.12, we report some quantitative measures characterizing them.

Specifically, the considered measures are: (i) the number of edges linking two nodes

of the right part of the brain (r-r edges); (ii) the number of edges linking a node of

the left part and a node of the right part of the brain (l-r edges); (iii) the number

of edges linking two nodes of the left part of the brain (l-l edges); (iv) the number of
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edges linking a node of the central part and a node of the right part of the brain (c1-r

edges); (v) the number of edges linking a node of the central part and a node of the

left part of the brain (c1-l edges); (vi) the number of edges linking two nodes of the

central part of the brain (c1-c1 edges); (vii) the number of edges linking two nodes

of the frontoparietal part of the brain (f-f edges); (viii) the number of edges linking

a node of the frontoparietal part and a node of the occipital part of the brain (f-o

edges); (ix) the number of edges linking two nodes of the occipital part of the brain

(o-o edges); (x) the number of edges linking a node of the central part and a node

of the frontoparietal part of the brain (c2-f edges); (xi) the number of edges linking

a node of the central part and a node of the occipital part of the brain (c2-o edges);

(xii) the number of edges linking two nodes of the central part of the brain (c2-c2

edges).

Let us now examine in detail the two derived motifs shown in Figure 3.3. The

former is centered on the electrodes O2 and Fp1, whereas the latter is centered on the

electrodes O2 and Fp2. The analysis of these motifs provides important information

about what happens in the brain areas when a patient converts from MCI to AD.

In fact, in both cases, the node O2 is central. This indicates that the corresponding

brain area is very active in patients with MCI and little active (or inactive) in patients

with AD. Furthermore, in both cases, it emerges a very intense activity in the right

part of the brain in patients with MCI, which reduces or disappears in patients with

AD. This could lead to conclude that the conversion from MCI to AD creates deeper

damages in the right part of the brain (especially, in the area corresponding to the

electrode O2) than in the left one.

As a further confirmation of these results, consider the quantitative values reported

in Table 3.12. They show that most of the edges connect two nodes of the right part

of the brain and that often one node is situated in the frontopolar area and the other

resides in the occipital area.

Parameter First Derived Motif Second Derived Motif

r-r edges 7 13

l-r edges 8 4

l-l edges 2 0

c1-r edges 3 6

c1-l edges 3 0

c1-c1 edges 0 0

f-f edges 5 4

o-f edges 6 5

o-o edges 3 3

c2-f edges 4 4

c2-o edges 4 4

c2-c2 edges 0 0

Table 3.12. Quantitative results representing the derived motifs of Figure 3.3
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3.3.6 Comparison with other existing approaches

In this section, we compare our approach with the one illustrated in [292]. In our

opinion, this comparison is extremely interesting to highlight the potential of our

approach because: (i) both our approach and the one of [292] use the same metric

(i.e., Permutation Disalignment Index) for evaluating the connection degree of brain

areas; (ii) the authors of [292] showed that their approach is well suited for evaluating

the conversion fromMCI to AD, and they support their claim by means of comparisons

between their approaches and some related ones proposed in the past.

In [292], the authors used boxplots to verify whether a subject with MCI at t0

converts to AD at t1 or not. We applied both the approach of [292] and our own

to the EEGs of four patients. Two of them suffered from MCI at both t0 and t1,

whereas two other ones converted from MCI at t0 to AD at t1. Clearly, the number

of patients we are considering is very small. However, we point out that we do not

aim at precisely quantifying how much the performance of our approach is better (or

worse) than the one of the approach of [292]. Actually, we simply want to provide

the reader with an idea of the way of proceeding of our approach (which implies the

need to graphically show the colored networks and the boxplots associated with the

EEGs of the patients we are examining) and, possibly, to give a rough comparative

estimation of its performance.

In Figure 3.4, we report the boxplots of the four patients into examination. In

Table 3.13, we present the values of some parameters helping us to quantify the

results shown therein. Analogously, in Figure 3.5, we present the colored networks

of the same four patients. In Table 3.14, we show the values of the corresponding

conversion coefficient.

Fig. 3.4. Results of the application of the approach of [292] to the four subjects into con-

sideration
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Fig. 3.5. The networks N0π and N1π for the two patients not converting to AD (above)

and for the two other ones converting to AD (below)
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Variation of medians Variation of 25th percentile Variation of 75th percentile

from T0 to T1 from T0 to T1 from T0 to T1

I subject MCI-MCI 9.04% 8.59% 9.13%

II subject MCI-MCI 4.93% 5.75% 4.53%

I subject MCI-AD 20.65% 11.27% 35.97%

II subject MCI-AD 31.70% 19.59% 43.43%

Table 3.13. Quantitative results representing the results shown in Figure 3.4

Conversion coefficient conveeg

I subject MCI-MCI -25.00%

II subject MCI-MCI -4.96%

I subject MCI-AD -89.06%

II subject MCI-AD -99.41%

Table 3.14. Values of the conversion coefficient conveeg for the four patients into examina-

tion

From the analysis of Figures 3.4 and 3.5 and from the comparison of Tables 3.13

and 3.14, we can observe that our approach appears more adequate than the one of

[292] in distinguishing patients converting from MCI to AD from the ones who do not

convert. Indeed:

• When passing from t0 to t1 boxplot positions certainly vary more for patients

converting to AD than for patients who do not convert. However, this variation is

not very clear and marked (see Figure 3.4). Vice versa, when passing from t0 to

t1, the number and the color of network edges do not present a great variation for

patients who do not convert to AD, whereas both these indicators strongly vary

for patients converting to AD (see Figure 3.5).

• The variation of medians (resp., 25th percentile and 75th percentile) is about 6.5%

(resp., 7%, 6.5%) for patients who do not convert to AD, whereas it is about 26%

(resp., 15%, 44%) for patients converting to AD (see Table 3.13).

Instead, if we consider our conversion coefficient, we can observe that its value

is about 12% for patients not converting to AD, whereas it is about 9% for patients

converting to AD (see Table 3.14).

All these evaluations allow us to claim that our approach is really more adequate

than the one of [292] to help an expert to visually and quantitatively evaluate the

longitudinal history of a patient suffering from MCI and/or AD.

3.3.7 Discussion

Clearly, the results presented in all the previous subsections will require much more

efforts and investigations in the future, especially by experts in neurological diseases,

in order to completely “capture” their meaningfulness. Nevertheless, they are an in-

teresting “food for thought” that our approach is providing to researchers in this

sector.
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At the end of this research we can generalize the found results and draw the

following hypothesis about the conversion from MCI to AD:

• Conversion coefficient is a well suited indicator of the transition of a patient from

MCI to AD. In particular, a decrease of this coefficient of more than 80% in three

months is a clear indicator that the corresponding patient is converting from MCI

to AD.

• The activity of the brain area underlying the electrode O2 and of the right part

of the brain is a potential indicator of a possible transition of a patient from MCI

to AD. In particular, a marked reduction of the activity of these two brain parts

is a possible indicator that the corresponding patients is converting from MCI to

AD.





4

Childhood Absence Epilepsy

4.1 Introduction

Nearly 1% of the world population is affected by epilepsy, a neurological disorder char-

acterized by recurrent seizures. Epileptic seizures are still considered unpredictable,

despite the huge efforts spent in recent years by scientific community to develop pre-

dictive algorithms. These are mainly based on electroencephalography, which consists

in recording the scalp potentials produced by cortical electrical activity. Nearly 66%

of patients can be successfully treated with anti-epileptic drugs, which have remark-

able side effects, whereas nearly 8% of the drug-untractable patients are treated with

surgery, which is high-invasive and high-risk. There is no way to treat the remaining

26% of patients.

In this chapter, the attention is focused on Childhood Absence Epilepsy (CAE), an

idiopathic generalized epileptic disorder [138, 137] characterized by recurrent “absence

seizures” that cause disruption of awareness and are often associated with staring.

Subjects experiencing absence seizures must undergo electroencephalography, which

is a totally non-invasive and comfortable examination, consisting in recording the

cortical electrical activity by means of scalp electrodes that are wired to an acquisition

system, connected to a computer.

The electroencephalography acquisition can last from minutes to hours, depending

on the number of recorded seizures and of the specific goal of the examination. In order

to evaluate electroencephalograms (EEGs), a neurologist manually scrolls them, for

detecting and inspecting every possible ictal state (seizure) or abnormality in the inter-

ictal (seizure-free) activity. However, manual review is a time-consuming, inefficient

and subjective procedure.

To expedite it and to facilitate the diagnosis, worldwide researchers are working

to automatically mark the critical events occurring in an EEG, as well as to extract

meaningful features from EEG signals, which can help a neurologist to make a diag-

nosis, to understand the pathology and, therefore, to optimize the treatment.
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So far, many methodologies were proposed in the literature for the analysis of

EEGs registering absence seizures. Permutation Entropy (PE), a symbolic complex-

ity measure, was introduced in [51] and applied in [88] to analyze epileptic EEGs.

Authors of [88] used PE to discriminate the different phases of epileptic activity in in-

tracranial EEG time series, recorded from three intractable patients. In [267], PE was

tested as a possible predictor of absence seizures in Genetic Absence Epilepsy Rats

from Strasbourg (GAERS). PE outperformed Sample Entropy (SE) and detected the

pre-ictal state in 169 out of 314 seizures from 28 rats, and the average anticipation

time was 4.9s. In [81], the authors exploited complexity analysis to detect vigilance

changes in epileptic patients. In [343], Multiscale Permutation Entropy (MPE) was

proposed to analyze human EEG signals at different absence seizure states. MPE, used

in conjunction with Linear Discriminant Analysis (LDA), achieved a 90.6% sensitivity

and exhibited a reduction of MPE levels from the inter-ictal state to the ictal one. In

[484], the authors proposed Multi-Scale K-means (MSK-means) unsupervised learning

to classify epileptic EEG signals and detect epileptic areas. In order to analyze the dy-

namics of EEG time series, while taking their mutual spatial dependence into account,

a spatial-temporal analysis of epileptic EEGs was proposed in [298, 294, 295]. Due to

the ability of PE in capturing the dynamics of EEGs registering absence seizures, a

PE-based spatial-temporal analysis was proposed in [297, 296, 293]. Here, the authors

showed that the frontal temporal lobes exhibited relatively high PE levels, whereas

the parieto-occipital areas appeared associated with relatively low PE values. How-

ever, being PE univariate, it is only able to quantify the randomness of single EEG

channels independently; instead, it is not able to quantify the interaction between

channels. To investigate this last issue, the necessity arises of bivariate descriptors,

which can provide an estimation of the interaction between channels.

Among this last kind of descriptors, coherence is one of the most promising [370].

As a matter of fact, in [384], Partial Directed Coherence (PDC) was employed to

quantify the strength and the direction of the interactions between the electrodes

during the inter-ictal (i.e., seizure free) EEG segments in CAE patients. PDC revealed

an abnormal cortical network activity during the inter-ictal state, in particular in the

alpha band. In [377], the authors proposed a method consisting of a three level wavelet

decomposition, a coherence estimation and a phase synchrony feature extraction to

classify ictal vs inter-ictal EEG segments.

Since absence ictal states appear associated with an increased EEG synchro-

nization, coherence revealed a powerful descriptor of absence seizure EEG signals

[384, 370]. In [370], the authors constructed EEG networks, based on the estima-

tion of coherence and Synchronization Likelihood (SL), to investigate the network

changes associated with seizure onset. Ictal EEG segments were characterized by an
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increased synchronization and a more ordered network topology. In [380], the au-

thors applied PDC-based weighted directed graph analysis to EEGs of patients with

absence seizures to perform a classification of nodes (electrodes) according to their

source/sink nature.

This chapter aims at providing a contribution in this setting. In fact, it studies

the temporal variation of the synchronization between EEG signals to automatically

discriminate ictal vs inter-ictal states, while keeping the global view of how these

temporal variations involve the different areas of the cortex. For this purpose, an

EEG-based complex network model was developed, where nodes represent electrodes

(i.e., cortical areas) and the weight of edges represents the complementary of the co-

herence value between the EEG signals, recorded at the electrodes associated with

the corresponding nodes. A complex network-analysis was carried out to find possi-

ble changes in the network features driven by the onset of epileptiform activity. By

studying the behavior of the network and its subnetworks over time, a global eval-

uation of the behavior of the cortex is possible, and the presence of seizures can be

automatically detected.

The proposed approach differs significantly from previous studies related to EEGs

with absence seizure. To our best knowledge, this is the first time that social network

analysis is applied to the EEG of patients with absence seizures. Furthermore, in

previous studies, based on the use of complex networks for the detection of absence

ictal states, for every patient, only one seizure was manually selected [370], whereas,

in the present work, all the recorded seizures are considered, and an overall accuracy

is achieved for every patient. In our approach, the whole EEG recording is segmented

into overlapping windows and, then, it is processed window by window, so that an

overall and smooth analysis of it is achieved. Moreover, no artifact rejection prepro-

cessing was carried out in order to introduce no discontinuity in the dataset and to

track the dynamics of the EEG time series continuously. Furthermore, a novel complex

network parameter, called connection coefficient, is introduced. It proved particularly

adequate to quantify the connection level of a network. The present paper is mainly

methodological as it introduces a novel approach for the analysis of EEGs with ab-

sence seizures. However, since preliminary results, achieved over a dataset of 9 CAE

patients, are very encouraging, the proposed method will be tested on a larger dataset

in the near future.

This chapter is organized as follows: in Section 4.2, we describe available data and

define coherence. In Section 4.3, we introduce some support data structures employed

by our approach. Section 4.4 represents the core of this chapter, because it illustrates

our approach.
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4.2 Available data

4.2.1 EEG recording and preprocessing

A dataset including 9 EEG recordings from patients diagnosed with CAE was studied.

The children mean age was 7.44 years, with a standard deviation of 1.67 years. The

average duration of EEG recordings was 25.68 mins.

The dataset was provided by UNEEGTM medical A/S (Lynge, Denmark) within

a research cooperation agreement. The EEG montage was set according to the inter-

national 10/20 system. EEGs were recorded by means of Stellate Harmonie (Stellate

Systems, Inc., Montreal, Quebec, Canada) and Cadwell Easy II (Cadwell Laborato-

ries, Inc., Kennewick, WA) systems. EEG traces were reviewed by a board-certified

epileptologist, who marked all the paroxysms.

The method flowchart can be described as follows: 1) the n-channels EEG is

recorded, band-pass filtered between 0.5 and 32 Hz (because absence seizure activity

mainly lies in this range [175]), digitized with a sampling rate of 200 Hz and stored

on a computer; 2) the EEG is segmented into M overlapping windows (with 2s width

and 1s overlap) and analyzed window by window; 3) given the kth window EEG(k)

(where k = 1, . . . ,M), the complementary 1− Cvi,vj of the coherence between every

pair of electrodes (vi, vj) is estimated, and used as the weight of the edge between the

nodes corresponding to vi and vj .

The width of the overlapping windows was set at 2s because the paroxysms longer

than 2s are those considered to be clinically relevant. The 1s overlap ensures that

the EEG is processed smoothly and that there is no abrupt variation in estimated

descriptors. EEG processing was implemented and carried out in MATLAB R2016b

(The MathWorks, Inc., Natick, MA, USA).

4.2.2 Coherence estimation

The magnitude squared coherence between two signals vi and vj depends on the

frequency f and is defined as:

Cvi,vj (f) =
|Pvi,vj (f)|

2

Pvi,vi (f)Pvj,vj (f)

where Pvi,vi(f) and Pvj ,vj (f) are the Power Spectral Densities (PSD) of vi and vj ,

respectively, whereas Pvi,vj (f) represents the cross power spectral density between vi

and vj . Coherence Cvi,vj is a measure of synchronization between vi and vj and is

bounded between 0 and 1. In this work, it was estimated using the method of Welch’s

averaged, modified periodogram [461]. The kth EEG window under analysis, and the

estimated values of coherence Ck
vi,vj

(f) for every frequency f , were averaged over the

frequencies of the range under consideration (fL=0.5 Hz - fU=32 Hz):
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C
k
vi,vj

= 1
fU−fL

∫ fU
fL

Ck
vi,vj (f)df

Therefore, for every analyzed window EEG(k), and for every pair of electrodes

(vi, vj), an average value of coherence C
k
vi,vj is computed.

4.3 Support data structures

Let eeg be a generic EEG. Starting from it, a network (that we call brain network)

N = ⟨V,E⟩ can be defined.

Here, V is the set of nodes of N . Each node vi ∈ V corresponds to an electrode.

In our EEGs, electrodes were applied by following the 10-20 system and |V | = 19.

E is the set of edges of N . Each edge eij connects nodes vi and vj . It can be

represented as eij = (vi, vj , wij). Here, wij is a measure of “distance” between vi

and vj . It is an indicator of the disconnection level of vi and vj . Indeed, each measure

representing this feature could be adopted in our model. In the experiments presented

in this paper, we employed the complementary of the coherence value between vi and

vj (i.e., we set wij = 1− Cvi,vj ).

A preliminary investigation performed in our research consisted of determining

the edge weight distribution (averaged on all available patients) in ictal, pre-ictal,

post-ictal and inter-ictal states, even if, in this chapter, our focus is on ictal and inter-

ictal states. In carrying out this task, we separated the range of edge weights (which,

we recall, is [0, 1]) in ten intervals of the same length. The obtained distribution for

inter-ictal and ictal states is reported in Figures 4.1 and 4.2. From a deeper evaluation

of these distributions, we can observe that there are some intervals more relevant

than others for distinguishing the two states. As a consequence, to better detect and

characterize ictal states, it is reasonable to consider some ad-hoc subnetworks, each

taking only the edges belonging to specific intervals into account.

Fig. 4.1. Average edge weight distribution in inter-ictal states
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Fig. 4.2. Average edge weight distribution in ictal states

In particular, we defined the following subnetworks: N b = ⟨V,Eb⟩, Nm = ⟨V,Em⟩,

N r = ⟨V,Er⟩, N g = ⟨V,Eg⟩, N y = ⟨V,Ey⟩, N br = ⟨V,Ebr⟩. We used a color name to

provide a more mnemonic way of distinguishing sub-networks. Thus, the superscripts

b,m, r, g, y, br stand for blue, magenta, red, green, yellow and brown, respectively.

Given that the set of nodes is the same for all subnetworks, we focus on defining

only the set of edges of each of them:

Eb = {eij | eij ∈ E, 0.9 < wij ≤ 1},

Em = {eij | eij ∈ E, 0.8 < wij ≤ 0.9},

Er = {eij | eij ∈ E, 0.7 < wij ≤ 0.8},

Eg = {eij | eij ∈ E, 0.6 < wij ≤ 0.7},

Ey = {eij | eij ∈ E, 0.5 < wij ≤ 0.6},

Ebr = {eij | eij ∈ E, 0.3 < wij ≤ 0.4}.

Finally, we constructed two further subnetworks. The former was obtained by

merging blue, magenta, red, green and yellow subnetworks (we called “rainbow” this

network). The latter was constructed by considering all the edges of the original

network not belonging to the rainbow one (we called “black” this network). Formally

speaking, the two networks are defined as: N rbw = ⟨V,Erbw⟩,N blk = ⟨V,Eblk⟩, where:

Erbw = {eij | eij ∈ E, 0.5 < wij ≤ 1},

Eblk = {eij | eij ∈ E, 0 ≤ wij ≤ 0.5}.

Since each EEG is in the form of a time series, it could be useful to introduce the

concept of mean network. Thus, given q networks N1 = ⟨V,E1⟩, N2 = ⟨V,E2⟩, · · · ,

Nq = ⟨V,Eq⟩, we define the mean network N , corresponding to them, as: N = ⟨V,E⟩,

where:

E = {(vi, vj , wij) | eijk = (vi, vj , wijk) ∈ Ek, 1 ≤ k ≤ q, wij =

∑q
k=1 wijk

q
}.

Observe that 0 ≤ wij ≤ 1.
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4.4 Detection and characterization of ictal states

4.4.1 Connection coefficient

As pointed out before, one of the main features to investigate for the detection of

ictal states is the connection level of the brain areas. In network analysis, one of the

most powerful tools for investigating the connection level of a network is the concept

of clique [439]. Starting from cliques, it is possible to define a quantitative coefficient,

which we call connection coefficient, capable of measuring the connectivity level of a

network associated with an EEG. This coefficient takes the following considerations

into account: (i) both the dimension and the number of cliques are important as

connectivity indicators; (ii) the concept of clique is intrinsically exponential; in other

words, a clique of dimension n + 1 is exponentially more complex than a clique of

dimension n. We are now able to define the connection coefficient ccN of a network

N . In particular, let C be the set of the cliques of N ; let Ck be the set of cliques of

dimension k of N ; finally, let |Ck| be the cardinality (i.e., the number of cliques) of

Ck. Then, ccN is defined as:

ccN =
∑|V |

k=1 |Ck| · 2k

4.4.2 Detecting ictal states

Detecting ictal states is a very delicate and time consuming task for a neurologist,

who have to analyze a whole EEG. Our effort, in this case, was to compute, on a

time-slot base, the value of the connection coefficient for an EEG. And so, for each

patient and each time-slot, we computed the value of the connection coefficient of the

brain network associated with the EEG at that time-slot.

Indeed, in order to better evidence this phenomenon, we considered the brain

subnetworks N rbw and N blk, defined in Section 4.4. We recall that N rbw considers the

five intervals of edge distribution characterized by the heaviest weights, whereas N blk

encompasses the other ones. As a consequence, since edge weights represent distances,

on the basis of the results of [370], we can expect that, in presence of an ictal state,

the connection coefficient associated with N rbw presents a minimum, whereas the one

corresponding to N blk shows a maximum. This is explained by the fact that, during

the ictal states, the weights of the edges tend to decrease and, therefore, several edges

disappear from N rbw and appear in N blk. For the sake of brevity, we will only look

at the results obtained for Patient 18 as an example, but we obtained very similar

results for all of the other patients.

In Table 4.1, we report data about figures specified by an expert neurologist when

she examined the whole EEG of Patient 18. The physician identified 8 seizures, which

took place into the time-slots specified in this table.
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Table 4.1. Table produced by a neurologist about start and end time-slots for each seizure

of Patient 18

Seizure id Start time-slot End time-slot

1 4 26

2 120 122

3 165 205

4 306 332

5 449 451

6 470 496

7 642 659

8 891 913

We use this table as a starting point and a benchmark of accuracy for the detection

of ictal states performed by our approach.

In Figure 4.3, we plotted the values of the connection coefficient (y axis) for each

time-slots (x axis) for Patient 18 and for N rbw, whereas, in Figure 4.4, we represented

the values of the same coefficient for the same patient, but for N blk.

Fig. 4.3. Connection coefficient for the network N rbw of Patient 18

Fig. 4.4. Connection coefficient for the network N blk of Patient 18

Clearly, in Figure 4.3 it is straightforward to observe that there are some time-

slots in which connection coefficient is several orders of magnitude less than others.

The important result is that those time-slots are exactly the ones that the neurologist
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spotted as ictal states. For instance, in Figures 4.5 and 4.6, we show more closely

the part of the plot of Figure 4.3 corresponding to the first and the eighth seizures,

in such a way as to allow the reader to more appreciate the differences, in terms of

magnitude, of the value of connection coefficient in the involved states.

Fig. 4.5. Zoomed plot of the value of connection coefficient of Figure 4.3 - first seizure

Fig. 4.6. Zoomed plot of the value of connection coefficient of Figure 4.3 - eighth seizure

Thus, without having to manually analyze the whole EEG for a patient, thanks

to this coefficient, we can easily distinguish ictal states from the others.

In order to provide a quantitative evaluation of the performance of our approach,

we computed its sensitivity, specificity and precision for each patient and, then, for

the set of seizures of all patients, taken as a whole. Obtained results are reported in

Table 4.2. Taking into account that, in this application context, sensitivity is more

important than specificity, we have considered the union of the seizures detected by

using N rbw and N blk.

From the analysis of this table, we can see that our approach provides excellent

results, especially if we look at sensitivity. However, also specificity and precision are

very good. Clearly, we are conscious that the number of examined patients is small.

However, as previously pointed out, due to the encouraging results obtained, and due

the methodological nature of our paper, we believe the present research can contribute
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Table 4.2. Sensitivity, Specificity and Precision of our approach

Patient Sensitivity Specificity Precision

16 0.9032 0.8400 0.7272

18 1.0000 0.9291 0.9961

23 0.9629 0.9882 0.9167

29 1.0000 0.9483 0.9473

31 1.0000 0.9287 0.9438

32 1.0000 0.9356 0.8644

39 1.0000 0.8642 0.7400

47 1.0000 0.9610 0.9917

57 1.0000 0.9012 0.4375

Overall 0.9704 0.9169 0.6482

to motivate clinical centers to engage an experimentation of our approach with a much

higher number of patients.

4.4.3 Characterizing ictal states

In order to understand and characterize what happens during ictal states, we analyzed

the subnetworks defined in Section 4.3. For this purpose, we computed a mean network

for each inter-ictal time-slot, up to 40 time slots before the seizures, and we mediated

those networks among all patients. We did the same task for ictal time-slots, up to 8

time-slots after the start of a seizure, until the center-ictal time-slot.

The subnetworks we used were the blue one N b, the magenta one Nm, the red

one N r, the green one N g, the yellow one N y and the brown one N br. We computed

the values of connection coefficient for each colored subnetwork of the mean networks

previously derived. Obtained results are plotted in Figure 4.7. Here, we show the

average connection coefficient of some colored networks for 40 time-slots of inter-ictal

state and 8 time-slots of ictal state.

As we can see from this figure, during the inter-ictal state, the values of connection

coefficient do not deeply change until the first time-slot before ictal. At this time,

we can see that the values of connection coefficient increase for yellow and green

subnetworks and become higher than the corresponding ones of magenta and blue

subnetworks. An increase of the values of connection coefficient for yellow and green

subnetworks, coupled with a strong decrease of the values of this coefficient for blue

and magenta subnetworks, implies that, during ictal states, both the number and

the dimension of the cliques in yellow and green subnetworks increase, whereas the

corresponding ones in blue and magenta subnetworks decrease. In turn, this implies

that a certain number of edges migrate from magenta and blue subnetworks to green
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Fig. 4.7. Connection Coefficient for mean networks during pre-ictal and ictal states

and yellow ones. Now, recall that yellow and green edges have a weight between

0.5 and 0.7, whereas magenta and blue edges have a weight between 0.8 and 1. As a

consequence, the edge migration described above implies that a hyper-synchronization

of brain areas happens during ictal states.

This characterization result for ictal state is particularly interesting because we

were able to confirm, through a network analysis-based approach, what several authors

had found in the past, through completely different approaches (see, for instance,

[370]), namely that ictal states are characterized by hyper-synchronization, which can

be automatically detected. With reference to this feature, it is worth emphasizing

that we evaluated the sensitivity and the specificity of the proposed approach over

the whole EEG recording, and not over selected epochs, which makes our approach

suitable for possible real-time applications. Interestingly, in our tests, no artifactual

epoch was discarded, in order to track the behavior of the EEG continuously and to

evaluate the sensitivity, specificity and precision of our approach in real conditions,

when noise and artifacts may be present. Furthermore, the usage of complex networks

allows the investigation of the interactions between the different areas of the brain

in absence and in presence of a seizure, which we aim at deepening in the future.

Finally, we point out that, at the moment, the system can be used off-line to mark

the seizures automatically and allow the neurologist to skip the manual EEG review,

which is extremely time consuming. However, we plan to optimize it in the future in

such a way as to allow for a continuous, real time, long-term monitoring.
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In this part, we apply our network-based model and the associated social network-based
approach to data lake management. In particular we propose a new metadata model well
suited for data lakes. Our model starts from the considerations and the ideas proposed by
data lake companies (in particular, it starts from the general metadata classification also
used by Zaloni [341]). However, it complements them with new ideas and, in particular, with
the power guaranteed by a network-based and semantics-driven representation of metadata.

This part is organized as follows: in Chapter 5, we present an approach to uniformly
handle heterogeneous Data Lake sources. In Chapter 6, we illustrate our approach for the
extraction of interschema properties. Finally, in Chapter 7, we present an approach to the
extraction of complex knowledge patterns among concepts belonging to different sources.

.





5

Uniform Management of Heterogeneous Data Lake

Sources

5.1 Introduction

Metadata have always played a key role in favoring the cooperation of heterogeneous

data sources [124, 60, 373] [345]. This role was already relevant in the past architec-

tures (e.g., Cooperative Information Systems and Data Warehouses) but has become

much more crucial with the advent of data lakes [148]. Indeed, in this new architec-

ture, metadata represent the only possibility to guarantee an effective and efficient

management of data source interoperability. As a proof of this, the main data lake

companies are performing several efforts in this direction (see, for instance, the meta-

data organization proposed by Zaloni, one of the market leaders in the data lake field

[341]). For this reason, the definition of new models and paradigms for metadata rep-

resentation and management represents an open problem in the data lake research

field.

In this chapter, we aim at providing a contribution in this setting and we propose

a new metadata model well suited for data lakes. Our model starts from the consider-

ations and the ideas proposed by data lake companies (in particular, it starts from the

general metadata classification also used by Zaloni [341]). However, it complements

them with new ideas and, in particular, with the power guaranteed by a network-based

and semantics-driven representation of metadata. Thanks to this choice, our model

can benefit from all the results already found in network theory and semantics-driven

approaches. As a consequence, it can allow a large variety of sophisticated tasks that

the metadata models currently adopted do not guarantee. For instance, it allows the

definition of a structure for unstructured data, which currently represent more than

80% of available data sources. Furthermore, it allows the extraction of thematic views

from data sources [44], i.e., the construction of views concerning one or more topics

of interest for the user, obtained by extracting and merging data coming from dif-

ferent sources. This problem has been largely investigated in the past for structured

and semi-structured data sources stored in a data warehouse, and this witnesses its
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extreme relevance. These are only two of the tasks that can benefit from our model

and, in this chapter, we illustrate them. Actually, many other ones could be thought

and investigated, and they will represent the subject of our future research efforts.

This chapter is structured as follows: Section 5.2 illustrates related literature. In

Section 5.3, we propose our metadata model. Section 5.4 presents the application

of this model to the problems of structuring unstructured data and of extracting

thematic views from heterogeneous data lake sources. In Section 5.5, we present our

example case.

5.2 Related Literature

In the literature, several metadata classifications have been proposed in the past. For

instance, the authors of [65] propose a tree-based classification. They split metadata

into several categories, propose a conceptual schema of the metadata repository and

use RDF for metadata modeling. The strength of this model is undoubtedly its rich-

ness, whereas its weakness is its complexity that cannot guarantee a fast processing

of the corresponding data.

A metadata model well suited for data lakes in proposed in [341]. This is also the

model adopted by Zaloni. It divides metadata based on their generation time or on

the meaning and information they bring. In this latter case, metadata can be divided

in three categories, namely operational, technical and business metadata. As will be

clear in the following, our metadata model starts from this, but it goes much further.

In particular, it assumes that the three classes are not independent from each other

because there are several intersections of them. Some of these intersections are partic-

ularly expressive and important; for them, it provides a network-based representation

rich enough to allow several interesting tasks, but, at the same time, not excessively

complex in such a way as to prevent a slow processing.

Several metadata models and frameworks are widely adopted by the Linked Data

community (e.g., DCMI Metadata Terms and VoID). DCMI Metadata Terms is a set

of metadata vocabularies and technical specifications maintained by the Dublin Core

Metadata Initiative. It includes generic metadata, represented as RDF properties, on

dataset creation, access, data provenance, structure and format. A subset was also

published as ANSI/NISO and ISO standards and as IETC RFC. The Vocabulary of

Interlinked Datasets (VoID) is an RDF Schema vocabulary that provides terms and

patterns for describing RDF datasets. It is intended as a bridge between the publishers

and the users of RDF data. It focuses on: (i) general metadata, following the Dublin

Core model; (ii) access metadata, describing how RDF data can be accessed by means
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of several protocols; (iii) structural metadata, describing the structure and the schema

of datasets, mostly used for supporting querying and data integration.

As for the applications of our metadata model proposed in this chapter (i.e.,

structuring of unstructured data and thematic view extraction), most approaches

proposed in the literature to carry out this task do not completely fit the data lake

paradigm. Two surveys on this issue can be found in [189, 12].

Another family of approaches leverages materialized views to perform tree pattern

querying [452] and graph pattern queries [147]. Unfortunately, all these approaches

are well-suited for structured and semi-structured data, whereas they are not scalable

and lightweight enough to be used in a dynamic context or with unstructured data.

Interesting advances in this area can be found in [412, 67, 44].

Finally, semantic-based approaches have long been used to drive data integra-

tion in databases and data warehouses. More recently, in the context of big data,

formal semantics has been specifically exploited to address issues concerning data va-

riety/heterogeneity, data inconsistency and data quality in such a way as to increase

understandability. In the data lake scenario, semantic techniques have been success-

fully applied to more efficiently integrate and handle both structured and unstructured

data sources by aligning data silos and better managing evolving data model (see, for

instance, [188, 149]). Similarly to what happens in our approach, knowledge graphs

in RDF are used to drive integration. To reach their objectives, these techniques usu-

ally rely on tools assisting users in linking metadata to uniform vocabularies (e.g.,

ontologies or knowledge repositories, such as DBpedia).

5.3 A unifying model for representing the metadata of data

lake sources

In this section, we illustrate our network-based model to represent and handle the

metadata of a data lake, which we will use in the rest of this chapter.

Our model represents a data lake DL as a set of m data sources: DL =

{D1, D2, · · · , Dm}. A data source Dk ∈ DL is provided with a rich set Mk of meta-

data. We denote with MDL the repository of the metadata of all the data sources of

DL: MDL = {M1,M2, . . . ,Mm}.

5.3.1 Typologies of metadata

Following what it is said in [341], metadata can be divided into three categories,

namely: (i) Business metadata, which include business rules (e.g., the upper and

lower limit of a particular field, integrity constraints, etc.); (ii) Operational metadata,
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which include information generated automatically during data processing (e.g., data

quality, data provenance, executed jobs); (iii) Technical metadata, which include in-

formation about data format and schema. Based on this reasoning, Mk can be rep-

resented as the union of three sets MB
k ∪MO

k ∪MT
k .

As an advancement of the model of [341], we observe that these three subsets

are intersected with each other (as shown in Figure 5.1). For instance, since business

metadata contain all business rules and information allowing to better understand

data fields, and since the data schema is included in the technical metadata, we can

conclude that data fields represent the perfect intersection between these two subsets.

Analogously, technical metadata contain the data type and length, the possibility that

a field can be NULL or auto-incrementing, the number of records, the data format

and some dump information. These last three things are in common with operational

metadata, which contain information like sources and target location and the file size

as well. Finally, the intersection between operational and business metadata represents

information about the dataset license, the hosting server and so forth (e.g. see the

DCMI Metadata Terms).

Business Technical

Operational
- Source Location
- Target Location
- File Size

- Fields Description
- Business Rules

- Data’s Type
- Data’s Lenght

- N° of Records
- Data Format
- Dump Info

- Data’s License 
- Hosting Server
- DCMT

- Fields
 (Schema)

Fig. 5.1. The three kinds of metadata proposed by our model.

In this chapter, we focus on business metadata and on the intersection between

them and the technical ones. This intersection contains the data fields, both domain

description and technical details. For instance, in a structured database, this intersec-

tion contains the attributes of the tables. Instead, in a semi-structured one, it consists

of the names of the (complex or simple) elements and attributes of the schema. Finally,

in an unstructured source, it could consist of a set of keywords generally adopted to

give an idea of the source content.
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5.3.2 A network-based model for business and technical metadata

As already mentioned, in this chapter we focus especially on the business and technical

metadata and on their intersection. Indeed, they denote, at the intensional level, the

information content stored in the data lake sources and are those of interest for

supporting most tasks, including the ones described in this chapter.

We indicate by MBT
k the intersection between MB

k and MT
k . We denote by Objk

the set of all the objects stored in MBT
k . The concept of “object” depends on data

source typology. For instance, in a relational database, objects denote its tables and

their attributes. In an XML document or in a JSON one, objects include complex/sim-

ple elements and their attributes.

In order to represent MBT
k , our model relies on a suitable directed graph GBT

k

= ⟨Nk, Ak⟩. For each object okj ∈ Objk there exists a node nkj ∈ Nk. As there is

a one-to-one correspondence between a node of Nk and an object of Objk, in the

following, we will use the two terms interchangeably.

On the other hand, each aki = ⟨(ns, nt), lki⟩ ∈ Ak is an arc; here, ns is the source

node, nt is the target one, whereas lki is a label representing the kind of relationhip

between ns and nt. Some possible relationships are: (i) Structural relationship: it is

represented by the label “contains” and is used to represent the relationhip between

a relational table and its attributes, a complex object and its simple ones, or between

a simple object and its attributes. (ii) Similarity relationship: it is represented by the

label “similarTo” and denotes a form of similarity between two objects. We will see

an example of its semantics and usage in Section 5.4.1. (iii) Lemma relationship: it is

represented by the label “lemma” and denotes that the target node is a lemma of the

source one. Again, its usage will be clear in Section 5.4.1.

Our model enables a scalable and flexible approach in the representation and

management of metadata of heterogeneous data lake sources. Indeed, adding a new

data source only requires the extraction of its metadata and their conversion to our

model. Furthermore, the integration of metadata regarding different data sources can

be simply performed by adding suitable arcs between the nodes for which there exists

some relationship.

Similarly, GBT
k can be extended with external knowledge graphs (e.g., DBpedia1).

In the following, we refer to an extension of GBT
k as GExt

k . It consists of GExt
k =

GBT
k ∪ GE , where GE is an external knowledge graph. An arc from a node of GBT

k

and its corresponding node in GE will be labeled as “externalSource X”, where X is

the name of the external knowledge graph at hand.

1 http://wiki.dbpedia.org
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5.4 Examples of applications of our metadata model

As pointed out in the Introduction, in order to give an idea of the expressiveness and

the power of our data model, in this section, we will exploit it in two application

tasks, namely “structuring” unstructured data sources and extracting thematic views

from heterogeneous data lake sources.

5.4.1 Defining a structure for unstructured sources

Based on a generic graph representation, our model is perfectly fitted for representing

and managing both structured and semi-structured data sources. The highest diffi-

culty regards unstructured data because it is worth avoiding a flat representation,

consisting of a simple element for each keyword provided to denote the source con-

tent. As a matter of fact, this kind of representation would make the reconciliation,

and the next integration, of an unstructured source with the other (semi-structured

and structured) ones of the data lake very difficult. Therefore, it is necessary to (at

least partially) “structure” unstructured data. Our approach to addressing this issue

consists of four phases.

During the first phase, it creates a node representing the source as a whole and

a node for each keyword. Then, it links the former to the latter through arcs with

label “contains”. During the second phase, it adds an arc with label “lemma” from

the node nk1 , corresponding to the keyword k1, to the node nk2 , corresponding to the

keyword k2, if k2 is registered as a lemma2 of k1 in a suitable thesaurus (we adopted

BabelNet [326] for this purpose). During the third phase, our approach derives lexical

similarities. In particular, it states that there exists a similarity between the nodes

nk1 , corresponding to the keyword k1, and nk2 , corresponding to the keyword k2,

if k1 and k2 have at least one common lemma in a suitable thesaurus. Also in this

case, we have adopted BabelNet. After having found lexical similarities, it derives

string similarities and states that there exists a similarity between nk1 and nk2 if the

string similarity degree kd(k1, k2), computed by applying a suitable string metric on

k1 and k2, is higher than a suitable threshold thk. After several experiments, we have

chosen N-Grams [241] as string similarity metric. In both these cases, if there exist

a similarity between nk1 and nk2 , our approach adds an arc with label “similarTo”

from nk1 to nk2 , and vice versa. During the fourth phase, if there exists a pair of arcs

with label “similarTo” between two nodes nki and nkj , our approach merges them

into one node nkij , which inherits all the incoming and outgoing edges of nki and nkj .

2 In this chapter, we use the term “lemma” according to the meaning it has in BabelNet

[326]. Here, given a term, its lemmas are other objects (terms, emoticons, etc.) contributing

to specify its meaning.
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Finally, if there exist two or more arcs from a node nki to a node nkj with the same

label, our approach merges them into one node3.

5.4.2 An approach to extracting thematic views

Our approach to extracting thematic views operates on a data lake DL whose data

sources are represented by means of the model described in Section 5.3. It consists of

two steps, the former mainly based on the structure of the sources at hand, the latter

mainly focusing on the corresponding semantics.

Step 1 of our approach receives a data lake DL, a set of topics T = {T1, T2, · · · ,

Tl}, representing the themes of interest for the user, and a dictionary Syn of syn-

onymies involving the objects stored in the sources of DL. This dictionary could be a

generic thesaurus, such as BabelNet [326], a domain-specific thesaurus, or a dictionary

obtained by taking into account the structure and the semantics of the sources, which

the corresponding objects refer to (such as the dictionaries produced by XIKE [124],

MOMIS [60] or Cupid [288]). Let Ti be a topic of T . Let Obji = {oi1 , oi2 , · · · , oiq} be

the set of the objects synonymous of Ti in DL. Let Ni = {ni1 , ni2 , · · · , niq} be the cor-

responding nodes. First, our approach constructs the ego networks Ei1 , Ei2 , · · · , Eiq

having ni1 , ni2 , · · · , niq as the corresponding egos. Then, it merges all the egos into a

unique node ni. In this way, it obtains a unique ego network Ei from Ei1 , Ei2 , · · · , Eiq .

If a synonymy exists between two alters belonging to different ego networks, then these

are merged into a unique node and the corresponding arcs linking them to the ego ni

are merged into a unique arc. At the end of this task, we have a unique ego network

Ei corresponding to Ti. After having performed the previous task for each topic of

T , we have a set E = {E1, E2, · · · , El} of l ego networks. At this point, Step 1 finds

all the synonymies of Syn involving objects of the ego networks of E and merges the

corresponding nodes. After all the possible synonymies involving objects of the ego

network of E have been considered and the corresponding nodes have been merged, a

set V = {V1, · · · , Vg}, 1 ≤ g ≤ l, of networks representing potential views is obtained.

If g = 1, then there exists a unique thematic view comprising all the topics required

by the user. Otherwise, there exist more views each comprising some (but not all) of

the topics of interest for the user.

Step 2 starts by constructing the graph GExt
k obtained by extending GBT

k with an

external knowledge graph GE (in this work, we rely on DBpedia). For this purpose,

first it links each node nij of Vi to the corresponding entry neij ∈ GE through an arc

with label “externalSource DBpedia”. In our scenario, such a DBpedia node neij is

3 Please note that Phases 3 and 4 could be merged in a unique one, avoiding to define

arcs with label “similarTo”. Here, we maintain these arcs and both phases to keep the

information about similarity between nodes for future use.



96 5 Uniform Management of Heterogeneous Data Lake Sources

already specified in the BabelNet entry corresponding to nij (or to any of its synonyms

in Syn)4. Then, for each neij considered above, all the related concepts are retrieved.

In DBpedia, knowledge is structured according to the Linked Data principles, i.e.

as an RDF graph built by triples. Each triple ⟨s(ubject), p(roperty), o(bject)⟩ states

that a subject s has a property p, whose value is an object o. Therefore, retrieving the

related concepts for a given element x implies finding all the triples where x is either

the subject or the object. For each view Vi ∈ V , the procedure to extend it consists of

the following three substeps: (1) Mapping : for each node nij ∈ Vi, its corresponding

DBpedia entry neij is found. (2) Triple extraction: all the related triples ⟨neij , p, o⟩

and ⟨s, p, neij ⟩, i.e., all the triples in which neij is either the subject or the object, are

retrieved. (3) View extension: for each retrieved triple ⟨neij , p, o⟩ (resp., ⟨s, p, neij ⟩),

Vi is extended by defining a node for the object o (resp., s), if not already existing,

linked to nij through an edge labeled as p. Substeps 2 and 3 are recursively repeated

for each new added node. The procedure stops after a given number of iterations,

limiting the length of external incoming and outcoming paths of nodes in Vi. The

longer the path, the weaker the semantic link between nodes.

The enrichment procedure is performed for all the views of V . It is particularly

important if |V | > 1 because the new derived relationships could help to merge the

thematic views that was not possible to merge during the Step 1. In particular, let

Vi ∈ V and Vl ∈ V be two views of V , and let V ′
i and V ′

l be the extended views

corresponding to them. If there exist two nodes nih ∈ V ′
i ad nlk ∈ V ′

l such that

nih = nlk
5, then they can be merged in one node; in this way, V ′

i and V ′
l become

connected. After all equal nodes of the views of V have been merged, all the views of

V could be either merged in one view or not. In the former case, the process terminates

with success. Otherwise, it is possible to conclude that no thematic views comprising

all the topics specified by the user can be found. In this last case, our approach still

returns the enriched views of V and leaves the user the choice to accept of reject

them.

5.5 An example case

In this section, we present an example case aiming at illustrating the various tasks of

our approach. Here, we consider: (i) a structured source, called Weather Conditions

(W , in short), whose corresponding E/R schema is not reported for space limita-

tions; (ii) two semi-structured sources, called Climate (C, in short) and Environment

4 Whenever this does not happen, the mapping can be automatically provided by the DB-

pedia Lookup Service (http://wiki.dbpedia.org/projects/dbpedia-lookup).
5 Here, two nodes are equal if the corresponding name coincide.
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(E, in short), whose corresponding XML Schemas are not reported for space limita-

tions; (iii) an unstructured source, called Environment Video (V , in short), consisting

of a YouTube video and whose corresponding keywords are: garden, flower, rain,

save, earth, tips, recycle, aurora, planet, garbage, pollution, region, life, plastic,

metropolis, environment, nature, wave, eco, weather, simple, fineparticle, climate,

ocean, environmentawareness, educational, reduce, power, bike.

By applying the approach mentioned in Section 5.4.2, we obtain the corresponding

representations in our network-based model, shown in Figure 5.26.

Fig. 5.2. Network-based representations of the four sources into consideration.

6 In this figure, we do not show the arc labels for the sources C, W and E because all of

them are “contains” and their presence would have complicated the layout unnecessarily.
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Assume, now, that a user specifies the following set T of topics of her interest:

T = {Ocean,Area}. First, our approach determines the terms (and, then, the objects)

in the five sources that are synonyms of Ocean and Area. As for Ocean, the only

synonym present in the sources is Sea; as a consequence, Obj1 comprises the node

Ocean of the source V (V.Ocean7) and the node Sea of the source C (C.Sea). An

analogous activity is performed for Area. At the end of this task we have that Obj1 =

{V.Ocean,C.Sea} and Obj2 = {W.Place, C.P lace, V.Region,E.Location}.

Step 1 of our approach proceeds by constructing the ego networks corresponding

to the objects of Obj1 and Obj2. They are reported in Figure 5.38.

Fig. 5.3. Ego networks corresponding to V.Ocean, C.Sea, W.P lace, C.P lace, V.Region and

E.Location.

Now, consider the ego networks corresponding to V.Ocean and C.Sea. Our ap-

proach merges the two egos into a unique node. Then, it verifies whether further

synonyms exist between the alters. Since none of these synonyms exists, it returns

the ego network shown in Figure 5.4(a). The same task is performed to the ego net-

works corresponding to W.Place, C.P lace, V.Region and E.Location. In particular,

first the four egos are merged. Then, synonyms between the alters W.City and C.City

and the alters W.Altitude and C.Altitude are retrieved. Based on this, W.City and

C.City are merged in one node, W.Altitude and C.Altitude in another node, the arcs

linking the ego to W.City and C.City are merged in one arc and the ones linking the

ego to W.Altitude and C.Altitude in another arc. In this way, the ego network shown

in Figure 5.4(b) is returned. At this point, there are two ego networks, EOcean and

EArea, each corresponding to one of the terms specified by the user.

Step 1 verifies if there are any synonyms between a node of EOcean and a node

of EArea. Since this does not happen, it returns the set V = {VOcean, VArea}, where

VOcean (resp., VArea) coincides with EOcean (resp., EArea).

At this point, Step 2 is executed. As shown in Figure 5.5, first each term (synonyms

included) is semantically aligned to the corresponding DBpedia entry (e.g., Ocean

7 Hereafter, we use the notation S.o to indicate the object o of the source S.
8 In this figure, for layout reasons, we do not show the arc labels because they are the same

as the corresponding arcs of Figure 5.2.



5.5 An example case 99

Fig. 5.4. Ego networks corresponding to Ocean and Area.

is linked to dbo:Sea, Area is linked to dbo:Location and dbo:Place, while Country

to dbo:Country9, respectively). After a single iteration, the following triples are re-

trieved: ⟨dbo:sea rdfs:range dbo:Sea⟩ and ⟨dbo:sea rdfs:domain dbo:Place⟩. Other con-

nections can be found by moving to specific instances of the mentioned resources.

Indeed, the following triples are retrieved: ⟨instance rdf:type dbo:Sea⟩, ⟨instance

rdf:type dbo:Location⟩, ⟨instance rdf:type dbo:Place⟩. Furthermore, a triple ⟨instance

dbo:country dbo:Country⟩ can be retrieved. As a result, Step 2 succeeded in merging

the two views that were separated after Step 1.

Fig. 5.5. The integrated thematic view.

9 Prefixes dbo and dbr stand for http://dbpedia.org/ontology/ and http://dbpedia.

org/resource/
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Extraction of Interschema Properties

6.1 Introduction

In the last few years, we are assisting to a real revolution in the information system

scenario. In fact, the number and the size of available data sources have dramatically

increased. Furthermore, most of them (i.e., more than 80%) are unstructured [110, 95].

These facts are rapidly changing the scientific and technological “coordinates” of the

information system research field [61]. As a consequence of this phenomenon, even is-

sues successfully addressed in the past must be re-considered and re-investigated. One

of these issues is certainly the derivation of interschema properties (i.e., intensional

relationships between concepts represented in different data sources [347], like syn-

onymies, homonymies, hyponymies, overlappings, subschema similarities). This topic

has been widely studied in the past [373, 62]; however, the proposed approaches gen-

erally considered structured or, at most, semi-structured sources. Furthermore, the

number of involved sources, for which most of past approaches were targeted to, was

very small, if compared with a typical current source interaction and cooperation

scenario.

Interschema property derivation is not just one of the many topics to re-investigate

in information systems cooperation field. Actually, it represents the basis of most of

the other issues: for instance, the knowledge of interschema properties is necessary for

source integration, the construction of data warehouses and data lakes, data analytics,

and so forth.

In this chapter, we aim at providing a contribution in this setting. Indeed, we pro-

pose a novel approach to uniformly perform the extraction of interschema properties

from structured, semi-structured and unstructured sources. Our approach has been

specifically conceived having in mind two peculiarities that should characterize it,

namely: (i) the capability of handling unstructured sources; (ii) the lightweightness,

making it capable of managing a huge number of data sources.
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As for the capability of handling unstructured sources, our approach is provided

with a preliminary step capable of “structuring” unstructured sources, i.e., of (at least

partially) deriving a structure for them. This is possible because it assumes that each

unstructured source (e.g., a video, an audio, an image, a text) has associated a list of

keywords describing it. The “structuring” process is based exactly on these keywords.

This is another main contribution of this chapter, which, generally speaking, allows

the unstructured sources to be uniformly handled as the structured and the semi-

structured ones. With regard to this aspect, some clarifications of what we intend with

the terms “structured” and “semi-structured” sources are in order. In particular, we

use these terms as they are generally adopted in databases and information systems

research field. Here, a structured source consists of some concepts, each having a

precise set of attributes and relationships with other concepts of the source. A semi-

structured source has similar characteristics, but the set of attributes and relationships

characterizing a given concept is handled in a more flexible fashion. Indeed, given a

property p or a relationship r of a concept c, some instances of cmight have exactly one

instance of r and/or one instance of p; other instances of c might have more instances

of r and/or more instances of p; finally, other ones might have no instances of r and/or

no instances of c. A classical example of structured sources is a relational database

(that can be conceptually represented by means of an E/R diagram). A classical

example of a semi-structured source is an XML document (that can be conceptually

represented by means of a DOM).

Unstructured sources are videos, audios, images or texts. They do not generally

have a conceptual representation showing their concepts, along with the correspond-

ing properties and relationships. However, they are generally provided with a set

of keywords, denoting the main concepts they are representing. The purpose of our

approach for “structuring” unstructured sources is exactly the derivation of the rela-

tionships existing among the concepts represented by the keywords associated with

unstructured sources. If we are capable of performing this task, unstructured sources

can be handled similarly to structured and semi-structured ones. Furthermore, their

analysis and management could benefit from the wide amount of results found in the

past for structured and semi-structured sources. Finally, the integration, the cooper-

ation and the simultaneous querying of structured, semi-structured and unstructured

sources are possible.

Our approach also differs from other ones previously presented in related research

fields and that could be in principle extended to address the problem we are consid-

ering in this chapter. Think, for instance, of ontologies. We could link each available

keyword to an ontology and use this last one as the “infrastructure” through which

establishing the relationships among the keywords, once these last have been linked to
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it. This approach is certainly valid, but it needs a support ontology. As a consequence,

it can be employed only in those application fields for which an ontology exists and

only if all the involved information sources can be mapped onto a unique ontology. If

only some of the involved unstructured sources can be referred to an ontology and/or

some of them can be mapped onto another ontology and/or, finally, some of them

cannot be referred to any ontology, this way of proceeding cannot be adopted. From

this point of view, our approach is more general because it can be applied in all cases,

independently of the presence of none, one or more ontologies, which the unstructured

sources can be referred to. It only needs a thesaurus. If there exists a specific thesaurus

for the scenario which the unstructured sources into examination belongs to, then it

uses this theasurus. Otherwise, it can still work with a general-purpose thesaurus, like

BabelNet [326]. Clearly, if the unstructured sources are specific of a certain field, the

availability of a specific thesaurus can help to obtain a better accuracy. However, if

this kind of thesaurus is not available, a general-purpose one is sufficient to proceed

even if, in this case, accuracy could be lower.

As for the lightweightness of our approach, we observe that, in a big data sce-

nario, such as the one currently characterizing the information system field, a new

proposed approach must take scalability into a primary consideration [270, 268]. As

a matter of fact, the sources interacting in every task are always very numerous and

large (think, for instance, of a data lake constructed to support data analytics in an

organization) and the time allowed for each transaction is very limited (think, for

instance, of streaming applications). As a consequence, even approaches considered

very scalable in the past (such as DIKE [349], MOMIS [59], and Cupid [288]) are not

adequate anymore. In our opinion, the tests performed to evaluate our approach and

described in Section 6.6 confirm that it is really capable of satisfying the lightweight-

ness requirement without sacrificing, if not to a very small extent, result accuracy.

Summarizing, the main contribution of this chapter is an overall procedure capable

of extracting interschema properties from structured, semi-structured and unstruc-

tured sources. Our procedure is lightweight because it has been specifically conceived

to operate on big data. This feature is deeply investigated in the paper, where we

analyze its computational requirements and compare them with the one of similar

approaches conceived to work on smaller (only) structured and semi-structured data

sources. In spite of its lightweightness, the accuracy of our procedure is very satisfying,

as witnessed by the quantitative evaluations presented in the paper. An important

component of our approach, which could also be extrapolated to other contexts, is

the technique for “structuring” unstructured sources whose distinctive peculiarities

have been described above.
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The rest of this chapter is organized as follows: in Section 6.2, we examine re-

lated literature. In Section 6.3, we introduce a source representation model that we

exploit in our tasks. In Section 6.4, we show our approach for the construction of a

“structured representation” of unstructured data sources. In Section 6.5, we present

our interschema property derivation approach. In Section 6.6, we present some exper-

iments that we performed to test our approach.

6.2 Related Literature

6.2.1 Schema matching for structured and semi-structured sources

Schema matching is one of the most investigated topics in past database research.

The first schema matching approaches proposed by researchers were manual and oper-

ated only on structured databases. Subsequently, researchers proposed semi-automatic

or automatic schema matching approaches capable of handling both structured and

semi-structured data sources. With the advent of big data, unstructured sources are

becoming more and more frequent and important.

Schema matching approaches were thought to consider several kinds of hetero-

geneity; the most relevant of them are lexicographic, structural and semantic ones.

The first deals with names and terms; the second considers type formats, data repre-

sentation models and structural relationships among concepts; the third regards the

meaning of involved data.

Let us see, now, in more detail, an overview of several approaches to perform

schema matching from the beginning to the present day.

In [77], an approach to transform structured documents by leveraging schema

graph matching is proposed. In particular, an XML schema to map each structured

document is defined; for this purpose, some XSLT scripts are automatically generated.

In [288], Cupid, a system for deriving interschema properties among heterogeneous

sources, is proposed. Cupid leverages two different matchings, namely the structure

and the linguistic ones. In [59], MOMIS, a system supporting querying and informa-

tion source integration in a semi-automatic fashion, is presented. MOMIS implements

a clustering procedure for the extraction of interschema properties. DIKE and XIKE

[349, 124, 348], as well as the approaches described in [89, 135], also belong to this

generation. An overview of this generation of schema matching approaches can be

found in [373, 62].

More recent approaches, which significantly differ from the classical ones, are based

on probabilistic methods, applied to networks of schemas [213]. They allow the def-

inition of network-level integrity constraints for matching, as well as the analysis of

query/click logs [143, 325], specifying the class of desired user-based schema matching.
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In [26], an XML-based schema matching approach conceived to operate on large-

scale schemas is presented. This approach leverages Prufer sequences. It performs a

two-step activity; during the former step it parses XML schemas in schema trees; dur-

ing the latter one, it exploits Label Prufer Sequences (LPS) to capture schema tree

semantic information. In [332], SMART, a Schema Matching Analyzer and Reconcil-

iation Tool, designed for the detection and the subsequent reconciliation of matching

inconsistencies, is proposed. SMART is semi-automatic because it requires the inter-

vention of an expert for the validation of results. In [302], the authors propose an

approach to determine the semantic similarity of terms using the knowledge present

in the search history logs from Google. For this purpose, they exploit four techniques

that evaluate: (i) frequent co-occurrences of terms in search patterns; (ii) relation-

ships between search patterns; (iii) outlier coincidence on search patterns; (iv) fore-

casting comparisons. In [30], a framework for the management of a data lake through

the corresponding metadata is proposed. This framework leverages schema matching

techniques to identify similarities between the attributes of different datasets. These

techniques consider both schemas (specifically, attribute types and dependencies)

and instances (specifically, attribute values) [62]. The framework integrates different

schema matching approaches proposed in the last years, like graph matching, usage-

based matching, document content similarity detection and document link similarity

detection. [306] proposes an instance-based approach to find 1-1 schema matches.

It combines the semantics provided by Google and regular expressions. It does not

work well in a scenario where sources are very heterogeneous and data are stored

in their raw way. Another instance-based approach is presented in [217]. It faces the

heterogeneity of the different schemas by leveraging an ad-hoc mapping language.

Most schema matching approaches based on similarities often filter out unneces-

sary matchings and information [358] in such a way as to operate easier and faster.

As we have seen in this overview, schema matching has been widely investigated

in the past for very heterogeneous scenarios, and very different approaches have been

adopted to reach disparate goals. In this “mare magnum” of approaches, ours is

characterized by the following features: (i) it has been specifically conceived to handle

also unstructured sources; (ii) it has been designed to be scalable and, therefore, it is

lightweight; (iii) it is automatic; (iv) in spite of these two last features, it presents a

good accuracy, as we will see in Section 6.6.

6.2.2 Approaches to represent unstructured sources

The representation mechanisms of unstructured sources (basically texts) are mainly

based on two strategies, namely analysis of contents and analysis of references [430].

The former infers a representation of a document from the corresponding content,
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whereas the latter focuses on relationships among documents. Clearly, our interest

is mainly on the former strategy, because its objective is similar to the one of our

approach.

The most basic approach to represent texts leverages Bags of Words (BOW) [47,

398]. In this case, machine learning techniques are used to identify the set of words

that mostly characterizes a text. Some more sophisticated strategies are based on

the extraction of sentences [152]. In this case, a text is mapped onto semantic spaces,

such as WordNet or Wikipedia. Another strategy is Explicit Semantic Analysis (ESA)

[164], which mixes BOW and document references. In ESA, the relatedness between

documents is computed by extracting similarities between the concepts identified

within them, thanks to the cross-references expressed therein.

An important model in the BOW context is word2vec [309, 310]. This model

is based on neural networks. It constructs a vector space and associates each word

of the text into examination with a vector in this space in such a way that words

sharing common contexts have close corresponding vectors in the vector space. The

word2vec model was extended to the doc2vec one [254], which exploits similarities and

contextual information of each word to reduce the dimensionality of the vector space.

Other approaches reach the same objective (i.e., dimensionality reduction) by means

of Latent Semantic Analysis [234], which exploits matrix decomposition methods.

Word-based methods are currently flanked by concept-based ones. As an example,

[391, 390] introduce the idea of Bag of Concepts, in place of Bag of Words. In this

approach, concepts are generated by disregarding semantic similarities between words.

Semantic similarities have been considered only recently [235].

Another relevant set of approaches use ontologies or, in general, external sources

of semantics, to generate conceptual representations of documents by matching docu-

ment terms with ontology concepts (see, for instance, [66, 221, 450, 25]). The perfor-

mance of these approaches is strongly related to the quality of the adopted external

sources. As a consequence, in these approaches, very specific domains can strongly

benefit from the availability of dedicated ontologies.

The approaches examined above generally consider only texts; they do not operate

with other forms of unstructured sources, such as videos. Furthermore, they terminate

with the derivation of keywords or key concepts representing a source. In fact, none

of them tries to go a step over, i.e., to define a certain “structure” for an unstructured

source, which is one of the objectives of this chapter.

An attempt to define a “structure” for an unstructured source can be found in

[291]. This approach generates a rowset with n attributes, i.e., a tabular representation

from unstructured data. A single rowset is a set of tuples and is equivalent to a

relation in relational databases; logical associations may exist between rowsets, but
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these are not explicitly defined. The schema of a rowset may be defined on read.

Transformation functions, possibly based on fuzzy logic, are used to properly read the

complex unstructured data and map them on the rowset schema. These functions are

also exploited to address the data variety issue, by means of an interface for the dataset

extraction, which is unified and valid for all the sources. Different transformation

functions can be used to map different unstructured data onto the same schema. The

content of a rowset depends on the membership function associated with a fuzzy logic

and on the possible constraints regarding it. However, data extraction is only one of

the steps defined in [291], which develops a general data processing system based on

an Extract, Process, and Store (EPS) paradigm.

From the above description, it appears evident that the approach of [291] shares

several features with ours; in particular, the purpose of structuring unstructured data

is common to both of them. However, the two approaches also present several differ-

ences. Indeed, for the structuring task, the approach of [291] strongly depends on user

defined transformation functions and on rowset schemas (which are not automatically

inferred from the sources). Now, the definition of both the functions and the schema

may be difficult for complex sources. Furthermore, mapping more sources on the same

schema requires a manual integration step, which, again, may be a difficult task when

the number of involved sources is high. On the other hand, querying obtained data

sources is particularly effective with the use of fuzzy techniques and the declarative

U-SQL query language characterizing the approach of [291]. On the contrary, in our

proposal, to perform the structuring of unstructured sources, we leverage network

analysis, as well as lexical and string similarities, for automatically deriving a gen-

eral and uniform schema of different unstructured sources. In fact, as we will see in

the following, unstructured sources are “structured” by first representing them as a

network, starting from a set of keywords associated with them; then, this structure is

enriched by adding arcs that link nodes having lexical or string similarities even if they

belong to different sources. As a consequence, it is possible to state that the approach

presented in [291] is more effective and flexible in querying data lake contents, but it

requires a more complex design phase, with a heavy human intervention, difficult to

sustain in presence of numerous data sources. On the contrary, our approach simplifies

the structuring phase, because it does not need a preliminary structure to be used as

a model, and it does not require a human intervention. On the other side, its querying

capabilites are limited to the summarization of unstructured sources provided by the

keywords representing them. Therefore, in a certain sense, our approach and the one

of [291] can be considered orthogonal.



108 6 Extraction of Interschema Properties

6.3 A network-based model for uniformly representing

structured, semi-structured and unstructured sources

In this section, we present a network-based model for uniformly representing data

sources of different formats. This model will be extensively used in the rest of this

chapter. In order to understand the peculiarities of our model, we assume to have a

set DS of m data sources of interest possibly characterized by different data formats.

DS = {D1, D2, · · · , Dm}

Each data source Dk has associated a rich set Mk of metadata. We indicate with

MDS the repository of the metadata of all the data sources of DS:

MDS = {M1,M2, . . . ,Mm}

Given the source Dk, in order to represent the information content stored in

Mk, our model starts from a notation typical of XML, JSON and many other semi-

structured data models. According to this notation, Objk denotes the set of all the

objects stored in Mk. Objk consists of the union of three subsets:

Objk = Attk ∪ Smpk ∪ Cmpk

where:

• Attk denotes the set of the attributes of Mk;

• Smpk indicates the set of the simple elements of Mk;

• Cmpk represents the set of the complex elements of Mk.

Here, the meaning of the terms “attribute”, “simple element” and “complex element”

is the one typical of semi-structured data models.

Mk can be also represented as a graph:

Mk = ⟨Nk, Ak⟩

Nk is the set of the nodes of Mk . There is a node nkj in Nk for each object okj of

Objk. According to the structure of Objk, Nk consists of the union of three subsets:

Nk = NAtt
k ∪NSmp

k ∪NCmp
k

where NAtt
k (resp., NSmp

k , NCmp
k ) denotes the set of the nodes corresponding to

Attk (resp., Smpk, Cmpk). There is a biuniovocal correspondence between a node of

Nk and an object of Objk. Therefore, in the following, we will use these two terms

interchangeably. Each node has associated a name that identifies it in the schema

which the corresponding element or attribute belongs to.

Let x be a complex element of Mk. We denote by Objx the set of the objects

directly contained in x and by NObj
x the set of the corresponding nodes. Finally, let
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x be a simple element of Mk. We indicate by Attx the set of the attributes directly

contained in x and by NAtt
x the set of the corresponding nodes.

Ak denotes the set of the arcs of Mk. It consists of three subsets:

Ak = A′
k ∪A′′

k ∪A′′′
k

where:

• A′
k = {(nx, ny, Lxy)|nx ∈ NCmp

k , ny ∈ NObj
nx

}; in other words, there is an arc in

A′
k from a complex element of Mk to each object directly contained in it. Lxy

represents the label of A′
k.

• A′′
k = {(nx, ny, Lxy)|nx ∈ NSmp

k , ny ∈ NAtt
nx

}; in other words, there is an arc in

A′′
k from a simple element of Mk to each attribute directly contained in it. Lxy

represents the label of A′′
k .

• A′′′
k = {(nx, ny, Lxy)|nx ∈ Nk, ny ∈ Nk, Dk is unstructured, σ(nx, ny)=true}.

Here, σ(nx, ny) is a function that receives two nodes and returns true if there

exists a similarity between nx and ny. For instance, σ(nx, ny) could return true

if the concepts represented by nx and ny are semantically similar or if the names

identifying nx and ny in the corresponding schema present a high string similarity.

Lxy represents the label of A′′′
k .

As for the label Lxy associated with each arc, in the current version of this model,

it is NULL for the arcs of A′
k and A′′

k . However, we do not exclude that, in the future,

enrichments of our model might lead us to use this field for storing some knowledge.

Instead, Lxy has an important meaning for the arcs of A′′′
k . In fact, as will be clear in

Section 6.5, it is used to denote the strength of the correlation between nx and ny.

From an abstract point of view, there is a “fil rouge” linking the three subsets of

Ak, which leads to the concept of homophily in Social Network Analysis. Indeed, A′
k,

A′′
k and A′′′

k are the three possible ways to represent the links between a concept and

its “direct homophiles”, i.e., the other concepts that can contribute to define (at least

partially) its meaning.

6.4 Structuring an unstructured source

Our network-based model for uniformly representing and handling data sources with

disparate formats is perfectly fitted for semi-structured sources. Indeed, it is sufficient:

• deriving the metadata of the source (if not yet provided) by applying one of the

several techniques and tools defined for this purpose w.r.t. the various kinds of

format;

• defining a complex element to represent the source as a whole;
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• introducing a complex element, a simple element and an attribute for each complex

element, simple element and attribute present in the metaschema of the source;

• defining an arc of A′
k from the source to the root of the document;

• introducing an arc of A′
k or A′′

k for each relationship existing between the objects

composing the source metadata.

Clearly, our model is sufficiently powerful to represent structured data. Indeed, it

is sufficient:

• deriving the E/R schema of the source (if not yet provided) by performing a

classical database reverse engineering activity;

• defining a complex element to represent the source as a whole;

• introducing a complex element for each entity of the E/R schema and an attribute

for each attribute of the schema;

• defining an arc of A′
k from the complex element corresponding to the source to

each complex element associated with an entity of the E/R schema;

• introducing an arc of A′′
k from an entity to each of its attributes;

• defining an arc of A′
k for each one-to-many relationship of the E/R schema; this

arc is from the entity participating to the relationship with a maximum cardinality

equal to 1 to the entity participating with a maximum cardinality equal to N ;

• representing a many-to-many relationship without attributes as a pair of one-to-

many relationships and, then, modeling them accordingly;

• representing a many-to-many relationship R with attributes that connects two

entities E1 and E2 as an entity having the same attributes as R and linked to

E1 and E2 by means of two one-to-many relationships; the new entity and the

new relationships are then suitably modelled by applying the rules defined in the

previous cases.

The highest modeling difficulty regards unstructured data because it is worth

avoiding a flat representation consisting of a simple element for each keyword pro-

vided to denote the source content. As a matter of fact, this flat representation would

make the reconciliation, and the next integration, of an unstructured source with the

other semi-structured and structured sources of DS very difficult. This is a very chal-

lenging issue to address. In the following, we propose our approach to “structure”

unstructured sources. As pointed out in the Introduction, this is one of the main

contributions of this chapter. It is in itself a major issue in the current information

systems scenario and, at the same time, plays a key role to provide our interschema

property derivation approach with the capability of operating on sources with dis-

parate formats.
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Our approach assumes that each unstructured source into consideration (e.g., a

video, an audio, an image, a text) is provided with a list of keywords describing it1.

They will play a key role, as will be clarified in the following. We observe that this

assumption is not particularly strong or out of place. As a matter of fact, in the

reality, most video, image or audio providers associate a list of keywords (sometimes,

in the form of tags) with the contents they deliver. As for text, representing keywords

can be also easily derived through suitable techniques, like TF-IDF [299].

Our approach consists of four phases, namely: (1) creation of nodes; (2) manage-

ment of lexical similarities; (3) management of string similarities; (4) management of

(temporary) duplicated arcs. We describe these phases below.

• Phase 1: Creation of nodes. During this phase, our approach creates a complex

node representing the source as a whole and a simple node for each keyword2.

Furthermore, it adds an arc of A′
k from the node associated with the source to any

node corresponding to a keyword. Initially, there is no arc between two keywords.

To determine the arcs to add, the next phases are necessary.

• Phase 2: Management of lexical similarities. During this phase, our approach

handles lexical similarities. For this purpose, it leverages a suitable thesaurus.

Taking the current trends into account, this thesaurus should be a multimedia

one; for this purpose, in our experiments, we have adopted BabelNet [326]. In

particular, our approach adds an arc of A′′′
k from the node nk1 , corresponding to

the keyword k1, to the node nk2 , corresponding to the keyword k2, and vice versa,

if k1 and k2 have at least one common lemma3 in the thesaurus. Furthermore,

it transforms the nodes nk1 and nk2 from simple to complex. The new arcs have

a label corresponding to the number of common lemmas for k1 and k2 in the

thesaurus.

• Phase 3: Management of string similarities. During this phase, our approach

derives string similarities and states that there exists a similarity between two

keywords k1 and k2 if the string similarity degree kd(k1, k2), computed by applying

a suitable string similarity metric on k1 and k2, is “sufficiently high” (see below).

In this case, it adds an arc of A′′′
k from nk1 to nk2 , and vice versa. Both the two arcs

1 Here, we assume that the list is ordered and the order is the one in which the keywords

appear in the list.
2 Here and in the following, to make the presentation smoother, we use the term “complex

node” to indicate a node belonging to NCmp
k and the term “simple node” to denote a

node of NSmp
k . Furthermore, we use the term “source” (resp., “keyword”) to denote both

the source (resp., a keyword) and the corresponding node associated with it.
3 In this chapter, we use the term “lemma” according to the meaning it has in BabelNet

[326]. Here, given a term, its lemmas are other objects (terms, emoticons, etc.) that

contribute to specify its meaning.
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have kd(k1, k2) as their label. We have chosen N-Grams [241] as string similarity

metric because we have experimentally seen that it provides the best results in

our context. In particular, we have selected bi-grams as the best trade-off between

accuracy and costs. In fact, mono-grams would require a lower cost but they would

also return a lower accuracy than bi-grams. By contrast, tri-grams would guarantee

a very high accuracy but at the expense of the computational cost, which would be

excessive. Again, if nk1 and nk2 are simple nodes, our approach transforms them

into complex ones.

Now, we illustrate in detail what “sufficiently high” means and how our ap-

proach operates. Let KeySim be the set of the string similarities for each pair

of keywords of the source into consideration. Each record in KeySim has the

form ⟨ki, kj , kd(ki, kj)⟩. Our approach first computes the maximum keyword sim-

ilarity degree kdmax present in KeySim. Then, it examines each keyword sim-

ilarity registered therein. Let ⟨k1, k2, kd(k1, k2)⟩ be one of these similarities. If

((kd(k1, k2) ≥ thk ·kdmax) and (kd(k1, k2) ≥ thkmin)), which implies that the key-

word similarity degree between k1 and k2 is among the highest ones in KeySim

and that, in any case, it is higher than or equal to a minimum threshold, then it

concludes that there exists a similarity between nk1 and nk2 . We have experimen-

tally set thk = 0.70 and thkmin = 0.50.

Observe that the choice to consider string similarities, in particular the one to

adopt N-Grams as the technique for detecting string similarities, makes our ap-

proach robust against mispelling errors possibly present in the keywords. In fact,

as shown in [194], N-Grams is well suited to handle also this kind of error.

• Phase 4: Management of (temporary) duplicated arcs. This phase is de-

voted to handle the possible simultaneous presence of both lexical and string

similarities for the same pair of keywords. Indeed, it may occur that, for a pair

of nodes nk1 and nk2 , there are two arcs from nk1 to nk2 belonging to A′′′
k and

generated by both lexical and string similarities, and two arcs from nk2 to nk1 .

In this case, the two arcs from nk1 to nk2 corresponding to these two forms of

similarities, must be merged in only one arc, which has associated a label denot-

ing both the number of common lemmas between k1 and k2 in BabelNet and the

value of kd(k1, k2). The same happens for the two arcs from nk2 to nk1 .

From this description, it emerges that, at the end of the four phases, given two nodes

nk1 and nk2 , four cases may exist, namely:

1. There is no arc from nk1 to nk2 .

2. A pair of arcs derived from a lexical similarity links them. In this case, the two arcs

actually coincide (also in their labels); therefore, one of them can be removed. Note
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that the choice of the arc to be removed has deep implications in the definition of

the topology of the corresponding network. Indeed, one of the two nodes involved

(i.e., the source node of the maintained arc) will be certainly a complex node,

whereas the other one may be a simple node (if no other arc starts from it) or a

complex node (if at least another arc, different from the removed one, starts from

it). In turn, the topology of the network has implications in the nature and the

quality of the interschema properties that can be extracted, as will be clear in

Section 6.5. Therefore, it is appropriate that the choice of the arc to be removed

is not random and that a clear rule guiding it is defined. The rule that we chose

for our approach is the following: given a pair of arcs between two nodes nk1 ,

corresponding to the keyword k1, and nk2 , corresponding to the keyword k2, with

k1 preceding k2 in the list of keywords associated with the source Dk, the arc

from nk1 to nk2 is maintained and the one from nk2 to nk1 is removed.

3. A pair of arcs derived from a string similarity links them. As in the previous

case, the two arcs coincide and one of them is removed. The policy adopted to

determine the arc to remove is the same as the one followed in the previous case.

4. A pair of arcs derived from Phase 4 links them. As in the previous case, the two

arcs coincide and one of them is removed.

Actually, arc labels introduced above are not necessary in our approach for the

extraction of semantic relationships described in Section 6.5. However, we have de-

cided to maintain them in our model because we aim at providing an approach to

“structure” unstructured sources that is general and that may be adopted in several

future applications, some of which could benefit from this information.

Moreover, we point out that, in the prototype implementing our approach, in order

to increase its efficiency, we directly added only one arc, namely (nk1 , nk2), during

Phases 2, 3 and 4, instead of adding two arcs and of removing one of them at the end

of the four phases.

6.4.1 Example

In this section, we propose an example of how our approach to construct a “struc-

tured” representation of an unstructured source operates. In particular, the unstruc-

tured source into consideration is a video, which talks about environment and pol-

lution. As we said before, for each unstructured source, our approach begins from a

list of keywords representing its content. In order to keep our description simple and

clear, in this example, we assume that our video has a limited number of keywords,

namely the ones shown in Figure 6.1.

Our approach starts with Phase 1. As we can see in Figure 6.1(a), during this

phase, it constructs a graph having a node for each keyword. A further node is added
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Fig. 6.1. Graphical representation of our approach to derive a “structure” for an unstruc-

tured source
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to represent the video as a whole; nodes representing keywords are colored in red,

whereas the other one is colored in green. Following our strategy, in Figure 6.1(b),

we added an arc from the node representing the whole video to each node associated

with a keyword.

Now, Phase 2 starts. During this phase, our approach uses a thesaurus. In our

example, we leveraged BabelNet. In particular, let k1 and k2 be two keywords of

Figure 6.1(a) having at least one common lemma in BabelNet. An arc is added from

the node nk1 , associated with k1, to the node nk2 , associated with k2, and vice versa.

In Figure 6.1(c), we show two keywords (“Save” and “Protect”) and the corresponding

lemmas in BabelNet. Common lemmas (i.e., “keep” and “preserve”) are in bold. Since

“Save” and “Protect” have at least one common lemma, an arc is added between

the corresponding nodes in Figure 6.1(d)4. This arc is highlighted in blue. Each arc

has a label representing the number of common lemmas between the corresponding

keywords in BabelNet.

After having examined lexical similarities, Phase 2 terminates and our approach

proceeds with Phase 3, which leverages string similarities. In particular, let k1 and

k2 be two keywords of Figure 6.1(a) having a string similarity degree higher than or

equal to thk · kdmax and, at the same time, higher than or equal to thkmin. An arc is

added from the node nk1 , corresponding to k1, to the node nk2 , corresponding to k2.

In Figure 6.1(e), we report the pairs of keywords that satisfy this feature. In Figure

6.1(f), we added an arc for each pair of keywords of Figure 6.1(e). Here, to better

highlight them, we have omitted the arcs constructed during Phase 2. Again, these

arcs are highlighted in blue. Each arc has a label representing the string similarity

degree (computed by means of N-Grams) between the corresponding keywords.

Finally, in Figure 6.1(g), Phase 4 of our approach combines the arcs derived in

Phases 2 and 3. In particular, it may happen that, for a pair of keywords (see, for

instance, the keywords “garden” and “gardens”), two arcs have been generated, one in

Figure 6.1(d) and one in Figure 6.1(f). In this case, in Figure 6.1(g), the two arcs are

substituted by only one arc, representing both of them. The label of this arc reports

the label of both the original ones.

6.5 Extracting interschema properties from disparate sources

We are now ready to illustrate our strategy for uniformly extracting interschema

properties from structured, semi-structured and unstructured sources. Here, we as-

sume that the content of the sources of interest is represented by means of the model

4 Here, we have directly added only one arc between “Save” and “Protect”, instead of

adding two arcs and removing one of them later, after the four phases.
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described in Section 6.3, and that our approach to “structure” unstructured sources,

described in Section 6.4, has been already applied on all unstructured sources.

Before delving into a detailed description of our approach, a discussion about the

role played by source metadata, and about the consequences of this role, is in order.

Indeed, as previously pointed out, our approach assumes that some metadata are

available for each structured, semi-structured and unstructured source. This assump-

tion is important because both our approach for structuring unstructured sources and

our approach for extracting interschema properties use these metadata. It is, then, of

outmost importance to analyze the possible issues (and the corresponding solutions)

in obtaining good quality metadata, when they are not directly provided with the

sources, and the impact that they have on the results returned by our approach.

Metadata generation received much attention in the literature. According to [23],

metadata relative to a data source are currently generated by crawlers, by professional

metadata creators, or, finally, by source creators. Generating metadata by means of

automatic crawlers has great advantages, such as low cost and high efficiency; however,

in some cases, the quality of generated metadata could be poor. In this context,

it could be extremely useful the support of several mechanisms for controlling the

quality of metadata, as well as the aid of metadata professionals, such as cataloguers

and indexers; these are people who have had a formal training and are efficient in

using metadata. Generally, they produce high-quality metadata. However, it has been

observed that, in some cases, even metadata generated by professionals or by source

authors may have poor quality and might hamper, rather than aid, the usage of

the corresponding sources. This happens because most authors have little previous

knowledge on metadata creation [23].

As pointed out in [353], the widespread adoption of several mechanisms for con-

trolling the quality of metadata witnesses a strong awareness of the importance of

having high-quality metadata at disposal. However, despite the relevance and the

impact of metadata quality are universally recognized in the literature, there is no

agreement yet on what metadata quality actually means. This implies, among the

other things, the impossibility of defining systematic approaches to its automatic

measurement and enhancement [432]. Metadata quality assurance should be verified

simultaneously to metadata creation [352]. Indeed, a poor quality of metadata nega-

tively affects the performance of systems using them and the overall user satisfaction.

Quality assurance procedures are generally complemented by manual quality review

and, if necessary, by the assistance of the technical staff during the process of meta-

data creation. Other mechanisms, such as metadata creation guidelines (sometimes

embedded into the metadata creation system) and metadata generation tools, are on

the rise.
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The great relevance given to the metadata quality improvement is observed in the

study presented in [226]. Here, the authors introduce a quality measure and analyze

the metadata quality in the Europeana context over the years. They observe that the

metadata quality improves not only in new collections but also in the same collection

over the years.

As pointed out in [353], in the metadata generation process, accuracy and consis-

tency are prioritized over completeness, whereas the semantics of metadata elements

is perceived to be less important. In principle, this might be an issue for our approach,

since it strongly relies on semantics. The authors of [353] also point out that semantic

overlaps and ambiguities are by far the two most critical factors. Actually, as our

approach exploits thesauruses, string, and semantic similarities to relate keywords,

these negative factors are significantly mitigated.

After this important discussion about the metadata of the involved sources, we can

start our discussion about the derivation of interschema properties. We recall that,

in the current big data scenario, any interschema property extraction strategy must

be lightweight. For this reason, in our effort to define a new approach for this task,

we avoided highly complex choices, such as the fixpoint computation characterizing

DIKE [349, 348] and XIKE [124], or the clustering-based computation characterizing

MOMIS [60], or, again, the wide range of parameter computation characterizing Cupid

[288]. These choices, as well as most of the other ones present in the past approaches

proposed for reconciling and integrating structured and semi-structured data sources

(e.g., the construction of a data warehouse) [373, 62], would certainly return very

accurate results. However, their speed is incompatible with the one required in many

current applications, which must allow the derivation of semantic relationships “on-

the-fly” from a very high number of data sources, most of which are unstructured,

i.e., in a format not considered by classic approaches. As a consequence, our strategy

must necessarily privilege quickness over accuracy even if, clearly, accuracy must be

high. In Section 6.6, we will see if, and how, this issue has been addressed.

Our strategy consists of two phases; the former computes the semantic similarity

degree of each pair of objects stored in the metadata of the involved sources. The latter

derives semantic relationships between the same objects starting from the results

returned by the former.

6.5.1 Semantic similarity degree computation

Our approach to semantic similarity degree computation consists of three steps,

namely:

• basic similarity computation;
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• standard similarity computation;

• refined similarity computation.

In the next subsections, we illustrate these three steps in detail.

Basic similarity computation

Basic similarities consider only lexicon (determined with the support of suitable the-

sauruses, such as BabelNet [326] and WordNet [311], and string similarity metrics,

such as N-Grams [241]), and object types.

Let D1 and D2 be two sources, let M1 and M2 be the corresponding metadata,

let x1 ∈ Obj1 and x2 ∈ Obj2 be two objects belonging to M1 and M2, respectively.

The basic similarity degree bs(x1, x2) between x1 and x2 can be computed as:

bs(x1, x2) = ω · σL(x1, x2) + (1− ω) · σT (x1, x2)

In other words, the basic similarity degree between x1 and x2 can be computed as

a weighted mean of two components. The former, σL, returns their lexical similarity,

whereas the latter, σT , specifies the similarity of their types. ω is a weight belonging

to the real interval [0, 1] and used to tune the importance of σL w.r.t. σT . We have

experimentally set ω to 0.90.

σL can be directly detected from a thesaurus. In our experiments, we used Word-

Net in the first beat, because it provides the similarity degree between the two objects,

and BabelNet, when WordNet did not provide any result. Since this last thesaurus

does not return the similarity degree of two objects that it considers similar, we cou-

pled BabelNet with a suitable string similarity metric (in particular, N-Grams). This

last is applied to the objects and the corresponding lemmas returned by BabelNet;

obtained results are, then, combined to compute the lacking similarity degree. Fur-

thermore, in very specific application contexts, specialized thesauruses could be used.

σT is defined as follows:

σT =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (x1 ∈ Cmp1 and x2 ∈ Cmp2) or (x1 ∈ Smp1 and x2 ∈ Smp2) or

(x1 ∈ Att1 and x2 ∈ Att2)

0.5 if (x1 ∈ Cmp1 and x2 ∈ Smp2) or (x1 ∈ Smp1 and x2 ∈ Cmp2) or

(x1 ∈ Smp1 and x2 ∈ Att2) or (x1 ∈ Att1 and x2 ∈ Smp2)

0 otherwise

Standard similarity computation

Standard similarities take both basic similarities and the neighbors of the involved

objects into account.
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Let Dk be a source of the set DS of the sources of interest, let Mk = ⟨Nk, Ak⟩ be

the corresponding set of metadata, let Objk be the set of the objects of Mk. The set

nbh(x) of the neighbors of an object x ∈ Objk is defined as:

nbh(x) = {y|y ∈ Objk, (nx, ny) ∈ Ak}

Let D1 and D2 be two sources, let M1 and M2 be the corresponding sets of

metadata, let x1 ∈ Obj1 and x2 ∈ Obj2 be two objects belonging to M1 and M2,

respectively. The standard similarity degree ss(x1, x2) between x1 and x2 can be

computed as follows:

• If both nbh(x1) = ∅ and nbh(x2) = ∅, then ss(x1, x2) = bs(x1, x2) 5.

• If either nbh(x1) = ∅ and nbh(x2) ̸= ∅ or nbh(x2) = ∅ and nbh(x1) ̸= ∅, then

ss(x1, x2) = fp · bs(x1, x2). Here, fp is a factor, whose possible values belong to

the real interval [0, 1], which “penalizes” the value obtained for basic similarities.

Indeed, these are the only similarities that we can compute and, therefore, we must

base our standard similarity computation on them. However, we must consider that

the sets of neighbors of x1 and x2 have different features, because one of them is

empty and the other one is not empty, and this fact must be taken into account.

We have experimentally set fp = 0.85.

• In all the other cases, i.e., if x1 ∈ (Smp1 ∪Cmp1) and x2 ∈ (Smp2 ∪Cmp2), then

ss(x1, x2) can be computed as follows:

1. nbh(x1) and nbh(x2) are determined.

2. A bipartite graph, whose nodes are the ones of nbh(x1) and nbh(x2), is con-

structed.

3. For each pair (p, q), such that p ∈ nbh(x1) and q ∈ nbh(x2), an arc is added in

the bipartite graph; the weight of this arc is set to bs(p, q).

4. The maximum weight matching is computed on this bipartite graph. Let AM

be the set of the returned arcs. Then:

ss(x1, x2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2·
∑

(p,q)∈AM
bs(p,q)

|nbh(x1)|+|nbh(x2)| if neither D1 nor D2 are unstructured

2·
∑

(p,q)∈AM
bs(p,q)

2·min(|nbh(x1)|,|nbh(x2)|) otherwise

In this formula, if neither D1 nor D2 are unstructured, ss(x1, x2) returns the

value of an objective function that takes into account how many nodes of

nbh(x1) and nbh(x2) are linked by basic similarity relationships and how strong

these relationships are. Furthermore, the objective function penalizes the pres-

ence of dangling nodes, i.e., nodes of nbh(x1) or nbh(x2) that do not participate

to the maximum weight matching.

5 For instance, this happens when both x1 and x2 are attributes; indeed, the nodes corre-

sponding to attributes do not have outgoing arcs.
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If D1 and/or D2 are unstructured, then it is necessary to consider that, even

if our approach performed a “structuring” task, its final structure is limited, if

compared with the rich structure characterizing the other kinds of source. As

a consequence, the sets of neighbors of the nodes belonging to unstructured

sources are generally much smaller than the ones characterizing the other kinds

of source. Therefore, in this case, using the same objective function adopted

when neitherD1 norD2 are unstructured would not take this important feature

into account, and the overall result would be biased. To address this issue, if

D1 and/or D2 are unstructured, in the denominator of ss(x1, x2) we consider

the minimum size between |nbh(x1)| and |nbh(x2)|, clearly multiplied by 2 to

indicate the maximum number of nodes that could be linked by a similarity

relationship in this situation.

Refined similarity computation

Refined similarities are based on standard similarities (for simple and complex ob-

jects), basic similarities (for attributes) and object neighbors.

Let D1 and D2 be two sources, let M1 and M2 be the corresponding sets of

metadata, let x1 ∈ Obj1 and x2 ∈ Obj2 be two objects belonging to M1 and M2,

respectively. The refined similarity degree rs(x1, x2) between x1 and x2 can be com-

puted as follows:

• If nbh(x1) = ∅ and/or nbh(x2) = ∅, then rs(x1, x2) = ss(x1, x2).

• Otherwise, if x1 ∈ (Smp1 ∪ Cmp1) and x2 ∈ (Smp2 ∪ Cmp2), then rs(x1, x2) is

obtained by applying the same four steps described for ss(x1, x2) with the only

difference that, in Step 3, the weight of the arc (p, q), such that p ∈ nbh(x1) and q ∈

nbh(x2), is set to ss(p, q), and no more to bs(p, q). In other words, while standard

similarity computation leverages basic similarities, refined similarity computation

is based on standard similarities.

Clearly, from a theoretical point of view, it would be possible to perform other

refinement steps. In this case, at the ith refinement step, the similarities would be com-

puted starting from the ones obtained at the (i− 1)th step, by setting these last ones

as the weights of the arcs of the bipartite graph. However, the advantages in accuracy

that these further refinement steps could produce do not justify the computational

costs introduced by them (see Section 6.6), especially in an agile and lightweight

context, such as the one characterizing the big data scenario.
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6.5.2 Semantic relationship detection

The derivation of semantic relationships among the objects of the sources of DS

represents the second phase of our strategy. It takes the refined semantic similarities

among the objects of DS as input. The semantic relationships that it can return are

the following:

• Synonymies: A synonymy between two objects x1 ∈ Obj1 and x2 ∈ Obj2 exists if

they have a high similarity degree, the same type (i.e., both of them are complex

objects or simple objects or attributes) and (possibly) different names.

• Type Conflicts: A type conflict between two objects x1 ∈ Obj1 and x2 ∈ Obj2

exists if they have a high similarity degree but different types.

• Overlappings: An overlapping exists between two objects x1 ∈ Obj1 and x2 ∈

Obj2 if they have (possibly) different names, the same type and an intermediate

similarity degree, in such a way that they can be considered neither synonymous

nor distinct.

• Homonymies: A homonymy between two objects x1 ∈ Obj1 and x2 ∈ Obj2 exists

if they have the same name and the same type but a low similarity degree.

Let D1 and D2 be two sources, let M1 and M2 be the corresponding sets of

metadata, let x1 ∈ Obj1 and x2 ∈ Obj2 be two objects belonging to M1 and M2,

respectively. Finally, let RefSim12 be the set of refined similarities involving the

objects of Obj1 and Obj2.

First, our approach computes the maximum refined similarity degree rsmax present

in RefSim12. Then, it examines each similarity ⟨x1, x2, rs(x1, x2)⟩ registered in

RefSim12 and verifies if a semantic relationship exists between the corresponding

objects as follows:

• If (rs(x1, x2) ≥ thSyn · rsmax) and (rs(x1, x2) ≥ thmin), which implies that the

refined similarity degree between x1 and x2 is among the highest ones in RefSim12

and, in any case, higher than or equal to a minimum threshold, then:

– if x1 and x2 have the same type, it is possible to conclude that a synonymy

exists between them;

– if x1 and x2 have different types, it is possible to conclude that a type conflict

exists between them.

• If (rs(x1, x2) < thSyn · rsmax) and (rs(x1, x2) ≥ thOv · rsmax) and (rs(x1, x2) ≥ thmin),

which implies that the refined similarity degree between x1 and x2 is higher than

or equal to a minimum threshold, it is not among the highest ones in RefSim12,

but it is significant, then:
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– if x1 and x2 have the same type, it is possible to conclude that an overlapping

exists between them.

• If (rs(x1, x2) < thHom · rsmax) and (rs(x1, x2) < thmax), which implies that the

refined similarity degree between x1 and x2 is among the lowest ones in RefSim12

and, in any case, lower than a maximum threshold, then:

– if x1 and x2 have the same name and the same type, it is possible to conclude

that a homonymy exists between them.

Here, thSyn, thmin, thOv, thHom and thmax have been experimentally set to 0.85,

0.50, 0.65, 0.25 and 0.15, respectively.

As pointed out in the Introduction, the knowledge of interschema properties is very

relevant for several applications, for instance source integration, source querying, data

warehouse and/or data lake construction, data analytics, and so forth. As an example,

as far as source integration is concerned:

• If a synonymy exists between x1 ∈ Obj1 and x2 ∈ Obj2, then x1 and x2 must be

merged in a unique object, when the integrated schema is constructed.

• If a homonymy exists between x1 and x2, then it is necessary to change the name

of x1 and/or x2, when the integrated schema is constructed.

• If an overlapping exists between x1 an x2, then it is necessary to restructure

the corresponding portion of network. Specifically, a node x12, representing the

“common part” of x1 and x2, is added to the network. Furthermore, each pair of

arcs (x1, xT ) and (x2, xT ), starting from x1 and x2 and having the same target

xT , is substituted by a unique arc (x12, xT ). Finally, an arc from x1 to x12 and

another arc from x2 to x12 are added to the network.

• If a type conflict exists between x1 and x2, then it is necessary to change the type

of x1 and/or x2 in such a way as to transform the type conflict into a synonymy.

Then, it is necessary to handle this last relationship by applying the corresponding

integration rule seen above.

The way of proceeding described above can be extended to the detection of hy-

ponymies. In particular, the extension already proposed in [346] for structured and

semi-structured data can be probably adapted to this scenario. We plan to investigate

this issue in the future. Finally, an analogous way of proceeding can be performed

when querying or other activities must be carried out on a set of sources of interest.

An example case

In this section, we provide an example of the behavior of our approach to the extrac-

tion of semantic relationships. To fully illustrate its potentialities, we derive these rela-
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tionships between objects belonging to an unstructured source and a semi-structured

one.

The unstructured source is a video. The corresponding keywords are reported in

Table 6.1. Its “structured” representation, in our network-based model, obtained after

the application of the approach described in Section 6.4, is reported in Figure 6.2.

The semi-structured source is a JSON file whose structure is shown in Figure 6.3. Its

representation in our network-based model is reported in Figure 6.4.

Keywords

video, reuse, flower, easy, tips, plastic, simple, environment, pollution, garbage, wave,

recycle, reduce, pollute, help,

natural environment, educational, green, environment awareness, bike, life,

environmentalism, planet,

earth, climate, clime, save, nature, environmental, gardens, power, recycling,

garden, protect, f lowers,

eco, fine particle, o3, atmospheric condition, ocean,metropolis, weather,

spot, waving, aurora

Table 6.1. Keywords of the unstructured source of our interest

Fig. 6.2. Representation, in our network-based model, of the unstructured source of our

interest
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Fig. 6.3. Structure of the JSON file associated with the semi-structured source of our interest

Fig. 6.4. Representation, in our network-based model, of the semi-structured source of our

interest

By applying the first phase of our approach we obtained the refined semantic

similarity degrees between all the possible pairs of nodes (nU , nS), such that nU
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belongs to the unstructured source and nS belongs to the semi-structured one. To

give an idea of these similarity degrees, in Figure 6.5, we report their distribution in a

semi-logarithmic scale. From the analysis of this figure, we can observe that a very few

number of pairs have a significant similarity degree, which could make them eligible

to be selected for synonymies, type conflicts and overlappings. At a first glance, this

trend appeared correct and intuitive, even if this conclusion had to be confirmed or

rejected by a much deeper analysis (see below).

Fig. 6.5. Distribution, in a semi-logarithmic scale, of the values of the the semantic similarity

degrees of the objects belonging to the two sources of interest

By applying the second phase of our approach, we obtained the synonymies, the

type conflicts and the overlappings reported in Tables 6.2 - 6.4. Instead, as for this

pair of sources, we found no homonymies.

Semi-Structured Source Node Unstructured Source Node

climate climate

climate clime

Table 6.2. Derived synonymies between objects of the two sources of interest

We asked a human expert to validate these results. At the end of this task, he

reported the following considerations:
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Semi-Structured Source Node Unstructured Source Node

pm10 fine particle

ozone o3

Table 6.3. Derived type conflicts between objects of the two sources of interest

Semi-Structured Source Node Unstructured Source Node

sea ocean

city metropolis

sunrise aurora

place spot

wind tips

sulfur dioxide garbage

weather clime

Table 6.4. Derived overlappings between objects of the two sources of interest

• The synonymies provided by our approach are correct. No further synonymy can

be manually found in the two considered sources.

• The type conflicts provided by our approach are correct. No further type conflict

can be manually found in the two sources.

• The overlappings provided by our approach are correct, except for the one linking

“wind” and “tips”, which actually represents two different concepts. A very inter-

esting overlapping found by our approach is the one between “sulfur dioxide” and

“garbage”, in that, even if they represent two seemingly different concepts, both

of them denote harmful substances. Some further overlappings could be manually

found in the two sources into consideration (for instance, the one between “cli-

mate” and “environment”), even if they are semantically weak, and considering

them as overlappings or as distinct concepts is subjective.

6.6 Experiments

Our test campaign had four main purposes, namely: (i) evaluating the performance

of our interschema property derivation approach when applied to the scenario for

which it was thought, (ii) evaluating the pros and the cons of this approach w.r.t.

analogous ones thought for structured and semi-structured sources, (iii) evaluating its

scalability, and (iv) evaluating the role of our approach for structuring unstructured

sources. We describe these four experiments in the next subsections.
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6.6.1 Overall performances of our approach

To perform our experiments, we constructed a set DS of data sources consisting of 2

structured sources, 4 semi-structured ones (2 of which were XML sources and 2 were

JSON ones), and 4 unstructured ones (2 of which were books and 2 were videos). All

these sources stored data about environment and pollution. To describe unstructured

sources, we considered a list of keywords for each of them. These keywords were

derived from Google Books, for books, and from YouTube, for videos. The interested

reader can find the schemas, in case of structured and semi-structured sources, and

the keywords, in case of unstructured sources, at the address http://daisy.dii.

univpm.it/dl/datasets/dl1. The password to type is “za.12&;lq74:#”.

It could appear that taking only 10 sources is excessively limited. However, we

made this choice because we wanted to fully analyze the behavior and the perfor-

mance of our approach and, as it will be clear below, this requires the human in-

tervention for verifying obtained results. This intervention would have become much

more difficult with a higher number of sources to examine. At the same time, our test

set is fully scalable. As a consequence, an interested reader, starting from the data

sources provided at the address http://daisy.dii.univpm.it/dl/datasets/dl1,

can construct a data set with a much higher number of sources, if necessary.

For our experiments, we used a server equipped with an Intel I7 Dual Core 5500U

processor and 16 GB of RAM with the Ubuntu 16.04.3 operating system. Clearly, the

capabilities of this server were limited. However, they were adequate for the (small)

data set DS we have chosen to use in our tests.

As the first task of our experiment, we represented the metadata of all the sources

by means of the data model described in Section 6.3. Then, we applied the approach

described in Section 6.4 to (at least partially) “structure” the unstructured sources

of our test data set. Finally, we extracted semantic relationships existing between all

the possible pairs of objects belonging to our test sources. After this, we asked the

human expert to examine all the possible pairs of our test sources and to indicate

us the semantic relationships that, in his opinion, existed among the corresponding

objects.

At this point, we were able to evaluate the correctness and the completeness of

our approach by measuring the classical parameters adopted in the literature for this

purpose, i.e., Precision, Recall, F-Measure and Overall [441].

Precision is a measure of correctness. It is defined as:

Precision = |TP |
|TP |+|FP |
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where TP are the true positives (i.e., semantic relationships detected by our approach

and confirmed by the human expert), whereas FP are the false positives (i.e., semantic

relationships proposed by our approach but not confirmed by our expert).

Recall is a measure of completeness. It is defined as:

Recall = |TP |
|TP |+|FN |

where FN are the false negatives (i.e., semantic relationships detected by the human

expert that our system was unable to find).

F-Measure is the harmonic mean of Precision and Recall. It is defined as:

F -Measure = 2 · Pecision·Recall
Precision+Recall

Overall measures the post-match effort needed for adding false negatives and re-

moving false positives from the set of matchings returned by the system to evaluate.

It is defined as:

Overall = Recall · (2− 1
Precision )

Precision, Recall and F-Measure fall within the interval [0, 1], whereas Overall

ranges between −∞ and 1; the higher Precision, Recall, F-Measure and Overall, the

better the performance of the evaluated approach.

In Table 6.5, we report obtained results. From the analysis of this table, we can

observe that, although our approach has been designed with the intent of privileg-

ing quickness and lightweightness over accuracy, for the reasons explained in the

Introduction, its performance, in terms of correctness and completeness, is extremely

satisfying.

We also point out that the values reported in Table 6.5 are those obtained by

applying the threshold values reported in Section 6.5. These are the ones guaranteeing

the best tradeoff between Precision and Recall and, consequently, the best values of

F-Measure and Overall.

Interestingly, if, in a given application context, a user must privilege correctness

(resp., completeness) over completeness (resp., correctness), it is sufficient to increase

(resp., decrease) the values of thmin and to decrease (resp., increase) the values of

thOv and thmax.

6.6.2 Evaluation of the pros and the cons of our approach

In order to provide a quantitative evaluation of the pros and the cons of our inter-

schema property extraction approach w.r.t. the past ones thought for structured and
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Property Precision Recall F-Measure Overall

Synonymies 0.82 0.87 0.84 0.68

Overlappings 0.77 0.69 0.73 0.48

Type Conflicts 0.78 0.73 0.75 0.52

Homonymies 0.95 0.92 0.93 0.87

Table 6.5. Precision, Recall, F-Measure and Overall of our approach

semi-structured sources6 [373, 62], we compared our approach with XIKE [124]. In-

deed, in [124], XIKE was already compared with several other systems having the

same purposes (namely, Autoplex, COMA, Cupid, LSD, GLUE, SemInt, Similarity

Flooding) and it was shown that it obtained comparable or better results.

First, we evaluated Precision, Recall, F-Measure and Overall of our approach and

XIKE. Clearly, since this last system (as well as all the other ones mentioned above)

did not handle unstructured data sources, we had to limit ourselves to consider only

structured or semi-structured sources. Furthermore, as performed in [124], we limited

our attention to synonymies and homonymies.

In a first experiment, we considered the same sources adopted in [124] for eval-

uating the performance of XIKE. In particular, we considered sources relative to

Biomedical Data, Project Management, Property Register, Industrial Companies,

Universities, Airlines, Biological Data and Scientific Publications. According to what

reported in [124], Biomedical Schemas have been derived from several sites; among

them we cite http://www.biomediator.org. Project Management, Property Regis-

ter and Industrial Companies Schemas have been derived from Italian Central Gov-

ernmental Office (ICGO) sources and are shown at the address http://www.mat.

unical.it/terracina/tests.html. Universities Schemas have been downloaded

from the address http://anhai.cs.uiuc.edu/archive/domains/ courses.html.

Airlines Schemas have been found in [356]; Biological Schemas have been down-

loaded from the addresses http://smi-web.stanford.edu/projects/helix/pubs/

ismb02/schemas/,

http://www.cs.toronto.edu/db/clio/data/GeneX\_RDB-s.xsd and http://www.

genome.ad.jp/

kegg/soap/v3.0/KEGG.wsdl. Finally, Scientific Publications Schemas have been sup-

plied by the authors of [256].

6 Actually, to the best of our knowledge, no approach to uniformly extract interschema

properties from structured, semi-structured and unstructured sources have been proposed

in the past.
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Application context Number Max Average Number Average Number

of Schemas depth of nodes of complex elements

Biomedical Data 11 8 26 8

Project Management 3 4 40 7

Property Register 2 4 70 14

Industrial Companies 5 4 28 8

Universities 5 5 17 4

Airlines 2 4 13 4

Biological Data 5 8 327 60

Scientific Publications 2 6 18 9

Table 6.6. Characteristics of the sources adopted for evaluating our approach

System Precision Recall F-Measure Overall

XIKE (Synonymies) 0.92 0.90 0.91 0.82

XIKE (Homonymies) 0.87 0.95 0.91 0.81

Our approach (Synonymies) 0.84 0.87 0.85 0.70

Our approach (Homonymies) 0.79 0.92 0.85 0.68

Table 6.7. Precision, Recall, F-Measure and Overall of XIKE and our approach

We considered 35 sources whose characteristics are reported in Table 6.6. The

minimum, the maximum and the average number of concepts of our sources were 12,

829 and 79, respectively.

The number of synonymies (resp., homonymies) really present in these sources was

498 (resp, 66). The number of synonymies (resp., homonymies) returned by XIKE was

541 (resp, 76). Finally, the number of synonymies (resp., homonymies) returned by our

system was 593 (resp., 84). By comparing real synonymies and homonymies with the

ones returned by XIKE and our approach we computed Precision, Recall, F-Measure

and Overall for these two systems. They are reported in Table 6.7.

From the analysis of this table we can observe that Precision, Recall, F-Measure

and Overall are better in XIKE, even if those obtained by our approach are satisfying.

This was expected because our approach has been designed to be lightweight and,

therefore, it introduces some approximations. For instance, while XIKE considers the

neighbors of many levels in the computation of the similarity degree of two objects,

our approach considers only the neighbors of levels 1 and 2.

Until now, our experimental campaign highlighted the cons of our approach. To

evidence and quantify the pros, we measured its response time and the one of XIKE

when the number of involved concepts represented in the corresponding metadata to

examine increases. Obtained results are reported in Figure 6.6.

From the analysis of this figure, it clearly emerges that, as for this aspect, our

approach is much better than XIKE. Indeed, the difference in the computation time
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Fig. 6.6. Computation time of XIKE and our approach against the number of concepts to

process

between it and XIKE is of various orders of magnitude and is such to make XIKE,

and the other systems mentioned above, unsuitable to handle the number and the

size of the data sources characterizing the current big data scenario.

With reference to this claim, we observe that, in this experiment, the response

time is measured against the number of concepts in the source metaschema. As such,

already a set of sources with 1500 concepts can be considered “large”. Indeed, it would

correspond, for instance, to a set of E/R schemas consisting of about 1500 entities or

a set of XML Schemas defining about 1500 different element types.

Furthermore, in this analysis, we must not forget that XIKE and the approaches

mentioned above are not capable of handling unstructured data, which represents the

second (and, for many verses, most important) peculiarity of our approach.

6.6.3 A deeper investigation on the scalability of our approach

The previous experiment represents a first confirmation of the quickness and the

scalability of our approach. In this section, we aim at finding a further confirmation

of this trend by considering a much more numerous and articulated set of sources and

by comparing the accuracy and the response time of our approach, of XIKE [124] and

DIKE [347]. This last is one of the approaches of its generation showing the highest

accuracy, as witnessed by the comparison tests described in [373].

Clearly, if we want to compare these three approaches, the only way of proceeding

is to consider structured sources because they are the only ones handled by DIKE.

In particular, we considered the database schemas of Italian Central Government

Offices (hereafter, ICGO). They include about 300 databases that are heterogeneous

both in the data model and languages (e.g., hierarchical, network, relational), as well

as in their structure and complexity, ranging from simple databases, with schemas

including few objects, to very complex databases [349].

Observe that our approach, XIKE and DIKE are all based on graphs and on the

computation of similarities of the neighbors of the involved objects. However, DIKE

was thought for relatively small structured databases. As a consequence, when it
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System Precision Recall F-Measure Overall

DIKE (Synonymies) 0.98 0.93 0.95 0.91

DIKE (Homonymies) 0.96 0.95 0.95 0.91

XIKE u = 5 (Synonymies) 0.96 0.91 0.93 0.87

XIKE u = 5 (Homonymies) 0.93 0.93 0.93 0.86

XIKE u = 2 (Synonymies) 0.84 0.86 0.85 0.70

XIKE u = 2 (Homonymies) 0.85 0.86 0.85 0.71

Our approach (Synonymies) 0.83 0.81 0.82 0.64

Our approach (Homonymies) 0.81 0.83 0.82 0.64

Table 6.8. Precision, Recall, F-Measure and Overall of DIKE, XIKE (u = 5, u = 2) and

our approach

computes the similarity of two objects belonging to different sources, it considers the

similarity of their direct neighbors, the one of the neighbors of their direct neighbors,

and so forth, until it terminates a fixpoint computation. In the worst case, the number

of iterations of the fixpoint computation could be equal to the number of concepts

of one of the involved sources. Clearly, performing such a high number of iterations

allows DIKE to return very accurate results, but the required computation time is

generally very high not only from the worst case computational complexity viewpoint,

but also from the real computation time point of view. In XIKE, the possible number

and dimension of data sources is higher than DIKE and they can be both structured

and semi-structured. As a consequence, there is the need to limit the number of

iterations of the fixpoint computation. For this reason, the concept of severity level is

introduced. In particular, a user can choose a severity level u between 1 and n and the

fixpoint computation is not completed but terminates after u iterations. The higher

u the more accurate and slower XIKE. Our approach privileges lightweightness over

accuracy for the reasons explained above. As a consequence, in this case, we limited

the fixpoint computation to only 2 iterations. This could cause a reduction of accuracy

but it is the only way to extend the approach of DIKE and XIKE also to a big data

scenario.

Analogously to what happened in the previous section, in order to verify the

theoretical conjectures explained above, we applied our approach, DIKE and XIKE

(with u = 5 and, then, with u = 2) to ICGO databases. The obtained results are

reported in Table 6.8.

The results of this table confirm our conjectures. DIKE provides a higher Precision,

Recall, F-Measure and Overall than XIKE which, in turn, provides better results than

our approach. Finally, XIKE, with a severity level equal to 5, provides better results

than XIKE with a severity level equal to 2. The former tend to be comparable with
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Fig. 6.7. Computation time of DIKE, XIKE (u = 5 and u = 2) and our approach against

the number of concepts to process

the ones of DIKE; the latter tend to be comparable with the ones of our approach.

This is in line with the fact that, when u tends to 5 the fixpoint computation tends

to be complete; instead, when u = 2, it is substituted by only three iterations.

In any case, we would like to remark that, analogously to what happened in the

previous experiment, the results obtained by our approach are still acceptable.

After having verified our conjectures about accuracy, we analyzed the ones regard-

ing computation time. In particular, the average computation time of DIKE, XIKE

(with u = 5 and u = 2) and our approach is reported in Figure 6.7.

From the analysis of this figure, it is easy to observe that the lower performance

in terms of accuracy of our approach is largely balanced by an increased performance

in terms of computation time. In a big data context, this aspect is mandatory. As a

matter of fact, Figure 6.7 shows that DIKE and XIKE (especially when the severity

level is high), even if very accurate, could not be applied in a big data scenario.

6.6.4 Evaluation of the role of our approach for structuring unstructured

sources

As previously pointed out, one of the main contributions of this chapter is the ap-

proach for structuring unstructured sources. In the Introduction, we have seen that

an important theoretical property of our approach (that distinguishes it from several

possible alternative ones, like those based on ontologies) is its applicability to all pos-

sible scenarios, because it does not require a support knowledge, except for a (possibly

generic) thesaurus, like BabelNet. In this section, we test its accuracy by comparing

it with an alternative approach. For this purpose, we extended to unstructured data

the clustering-based family of approaches defined for structured and semi-structured

sources (see, for instance [27, 371]).

We performed this extension as follows: we considered the keywords associated

with an unstructured source and used WordNet to derive a semantic distance coeffi-

cient for each pair of keywords. Then, we applied a clustering algorithm (specifically,

Expectation Maximization [191]) to group keywords into homogeneous clusters. In
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Property Precision Recall F-Measure Overall

Synonymies 0.76 0.82 0.79 0.56

Overlappings 0.69 0.65 0.67 0.36

Type Conflicts 0.72 0.64 0.68 0.39

Homonymies 0.91 0.88 0.89 0.79

Table 6.9. Precision, Recall, F-Measure and Overall of our approach when a clustering-

based technique for structuring unstructured sources is applied

this way, we obtained a possible structure for unstructured sources. This structure is

in line with what was done in the past for the clustering-based family of approaches,

when they were applied on structured and semi-structured sources. This way of pro-

ceeding gave us the possibility to still apply the interschema property extraction

approach defined in Section 6.5. In this case, we assumed that, given a keyword, the

corresponding neighborhood consisted of the other keywords of its clusters.

We performed the same experiment described in Section 6.6.1 on the same sources.

The only difference was the substitution of our approach for structuring unstructured

sources with the clustering-based approach outlined above. The obtained results are

shown in Table 6.9. Clearly, the differences between the performance reported in

Tables 6.5 and 6.9 were due exclusively to the merits or demerits of our approach

for structuring unstructured sources. From the analysis of this table we can observe

that our approach presents a better performance than the corresponding clustering-

based one described above. The differences are evident even if not extremely marked.

For instance, we can observe a gain in Precision (resp., Recall, F-Measure, Overall)

ranging from 4% (resp., 4%, 4%, 9%) to 10% (resp., 12%, 10%, 25%).

The results of this experiment, coupled with the theoretical analysis performed

in the Introduction and mentioned above, allow us to conclude that our approach

for structuring unstructured data is really capable of satisfying the requirements for

which it was defined.



7

Extraction of Knowledge Patterns

7.1 Introduction

In the last few years, the “big data phenomenon” is rapidly changing the research and

technological “coordinates” of the information system area [93, 451]. For instance, it is

well known that data warehouses, generally handling structured and semi-structured

data offline, are too complex and rigid to manage the wide amount and variety of

rapidly evolving data sources of interest for a given organization, and the usage of

more agile and flexible structures appears compulsory [128]. Data lakes are one of the

most promising answers to this exigency. Differently from a data warehouse, a data

lake uses a flat architecture (so that the insertion and the removal of a source can be

easily performed). However, the agile and effective management of data stored therein

is guaranteed by the presence of a rich set of extended metadata. These allow a very

agile and easily configurable usage of the data stored in the data lake. For instance,

if a given application requires the querying of some data sources, one could process

available metadata to determine the portion of the involved data lake to examine.

One of the most radical changes caused by the big data phenomenon is the pres-

ence of a huge amount of unstructured data. As a matter of fact, it is esteemed that,

currently, more than 80% of the information available on the Internet is unstructured

[110]. In presence of unstructured data, all the approaches developed in the past for

structured and semi-structured data must be “renewed”, and the new approaches

will be presumably much more complex than the old ones [228, 429]. Think, for in-

stance, of schema integration: unstructured sources do not have a representing schema

and, often, only a set of keywords are given (or can be extracted) to represent the

corresponding content [129].

This chapter aims at providing a contribution in this setting. In particular, it

proposes an approach to the extraction of complex knowledge patterns among con-

cepts belonging to structured, semi-structured and unstructured sources in a data

lake. Here, we use the term “complex knowledge pattern” to indicate an intensional
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relationship involving more concepts possibly belonging to different (and, presumably,

heterogeneous) sources of a data lake. Formally speaking, in this chapter, a complex

knowledge pattern consists of a logic succession {x1, x2, . . . , xw} of w objects such

that there is a semantic relationship (specifically, a synonymy or a part-of relation-

ship) linking the kth and the (k + 1)th objects (1 ≤ k ≤ w − 1) of the succession.

Our approach is network-based in that it represents all the data lake sources by

means of suitable networks. As a matter of facts, networks are very flexible structures,

which allow the modeling of almost all phenomena that researchers aim at investigat-

ing. For instance, they have been used in the past to uniformly represent data sources

characterized by heterogeneous, both structured and semi-structured, formats [124].

In this chapter, we also use networks to represent unstructured sources, which, as

said before, do not have a representing schema. Furthermore, we propose a tech-

nique to construct a “structured representation” of the flat keywords generally used

to represent unstructured data sources. This is a fundamental task because it highly

facilitates the uniform management, through our network-based model, of structured,

semi-structured and unstructured data sources.

Thanks to this uniform, network-based representation of the data lake sources, the

extraction of complex knowledge patterns can be performed by exploiting graph-based

tools. In particular, taking into consideration our definition of complex knowledge

patterns, a possible approach for their derivation could consist in the construction of

suitable paths going from the first node (i.e., x1) to the last node (i.e., xw) of the

succession expressing the patterns. In this case, a user specifies the “seed objects”

of the pattern (i.e., x1 and xw) and our approach finds a suitable path (if it exists)

linking x1 to xw.

Since x1 and xw could belong to different sources, our approach should consider

the possible presence of synonymies between concepts belonging to different sources,

it should model these synonymies by means of a suitable form of arcs (cross arcs, or

c-arcs), and should include both intra-source arcs (inner arcs, or i-arcs) and c-arcs

in the path connecting x1 to xw and representing the complex knowledge pattern of

interest.

Among all the possible paths connecting x1 to xw, our approach takes the shortest

one (i.e., the one with the minimum number of c-arcs and, at the same number

of c-arcs, the one with the minimum number of i-arcs). This choice is motivated

by observing that a knowledge pattern should be as semantically homogeneous as

possible. With this in mind, it is appropriate to reduce as much as possible the number

of synonymies to be considered in the knowledge pattern from x1 to xw. This because

a synonymy is weaker than an identity and, furthermore, it involves objects belonging

to different sources which, inevitably, causes an “impairment” in the path going from
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x1 to xw. Moreover, there is a further, more technological reason leading to the choice

of the shortest path. Indeed, it is presumable that, after a complex knowledge pattern

has been defined and validated at the intensional level, one would like to recover

the corresponding data at the extensional level. In this case, in a big data scenario,

reducing the number of the sources to query would generally reduce the volume and

the variety of the data to process and, hence, would increase the velocity at which

the data of interest are retrieved and processed.

As it will be clear in the following, there are cases in which synonymies (and,

hence, c-arcs) are not sufficient to find a complex knowledge pattern from x1 to

xw. In these cases, our approach performs two further attempts in which it tries

to involve string similarities first, and, if even these properties are not sufficient,

part-whole relationships. If neither synonymies nor string similarities nor part-whole

relationships allow the construction of a path from x1 to xw, our approach concludes

that, in the data lake into consideration, a complex knowledge pattern from x1 to xw

does not exist.

Summarizing, the main contributions of this chapter are the following:

• it proposes a new network-based model to represent the structured, semi-structured

and unstructured sources of a data lake;

• it proposes a new approach to, at least partially, “structuring” unstructured

sources;

• it proposes a new approach to extracting complex knowledge patterns from the

sources of a data lake.

This chapter is structured as follows: in Section 7.2, we illustrate related literature.

In Section 7.3, we present our network-based model for data lakes. In Section 7.4, we

describe our approach to enriching the representation of unstructured data sources

in such a way as to, at least partially, “structure” them. In Section 7.5, we present

our approach to the extraction of complex knowledge patterns. In Section 7.6, we

describe some case studies conceived to illustrate the various possible behaviors of our

approach. In Section 7.7, we present a critical discussion of several aspects concerning

our approach.

7.2 Related Literature

In the literature there is a strong agreement in the definition of data lake. For instance,

[188] defines data lakes as “big data repositories which store raw data and provide func-

tionality for on-demand integration with the help of metadata descriptions”. [434] claims

that “a data lake is a set of centralized repositories containing vast amounts of raw data
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(either structured or unstructured), described by metadata, organized into identifiable

data sets, and available on demand”. Analogously, [313] says that “a data lake refers

to a massively scalable storage repository that holds a vast amount of raw data in its

native format (≪as is≫) until it is needed plus processing systems (engine) that can

ingest data without compromising the data structure”. Finally, [375] says that “a data

lake uses a flat architecture to store data in their raw format. Each data entity in the

lake is associated with a unique identifier and a set of extended metadata, and consumers

can use purpose-built schemas to query relevant data, which will result in a smaller set of

data that can be analyzed to help answer a consumers question”. A step forward, but in

the same direction, can be found in [291], where the authors introduce the concept of

Big Data Lake as “a central location in which users can store all their data in its native

form, regardless of its source or format. Big data lake can be used as an environment

for the development of in-depth analytics oriented toward fast decision making on the

basis of raw data”. Clearly, this strong agreement on the data lake definitions does not

prevent the possibility to have very different architectures, management approaches

and querying techniques in the data lake context, as we will see in the following.

The data lake paradigm requires each raw data to have associated a set of meta-

data. These represent a key component in the data lake architecture because they

let data to be searchable and processed whenever this is necessary [447]. In [149],

metadata are also used for bringing quality to a data lake. Here, the authors present

CLAMS, a system for discovering integrity constraints from raw data and metadata.

To validate obtained results, CLAMS needs human intervention.

In [151], the authors propose a data lake management approach that aims at

extracting metadata from the Hive database. To reach its objective, it applies Social

Network Analysis based techniques. Instead, in [411], iFuse, a data fusion platform

that uses a Bayesian graphical model for both managing and querying a data lake, is

proposed.

In the literature, there are many approaches to querying and managing both struc-

tured and semi-structured data (see [288, 60, 124, 349], to cite a few of them). However,

they are generally incapable of managing unstructured data and are not lightweight

and flexible enough to be used in the new data lake context. Furthermore, most of the

approaches used for representing unstructured data are limited to texts [391]. In or-

der to address this issue, the authors of [485, 96] propose a generalized data model to

represent unstructured data, a method to process it (called RAISE) and an associated

SQL-like query language. The authors of [155] propose the usage of machine learning

for managing and extracting information from unstructured data. They motivate this

proposal by observing that, currently, unstructured data represent about the 80% of
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stored information and, therefore, they must be necessarily processed with a limited

human intervention.

The extraction of Complex Knowledge Patterns (CKPs) is a topic widely inves-

tigated in the literature. This is due to the fact that CKPs can refer to a lot of

research fields and, therefore, their extraction is a challenging issue in several re-

search areas. Research concerning CKPs goes from keyword search and rank (see

[116, 192, 174, 264], just to cite a few approaches) to visual knowledge extraction

[388, 98]. In the literature, a huge variety of approaches to extracting CKPs has been

proposed. Some of them are based on Network Analysis [473], others are centered

on “questions and answers” mechanisms [219], further ones exploit Similarity Join

[402], and so forth. Each family of approaches has its pros and cons, as well as its

corresponding tools [407].

As for the approaches most related to ours, there are four main families that

we need to investigate, namely: (i) extraction of keyword patterns; (ii) extraction

of knowledge from structured sources; (iii) extraction of knowledge from heteroge-

neous sources; (iv) extraction of knowledge patterns through network analysis-based

approaches.

As far as the first family is concerned, it is necessary to further differentiate the

corresponding approaches. A first sub-family focuses on RDF analysis. In this context,

several proposals can be found in the literature. For instance, in [116], approaches to

keyword search inside RDF data are proposed. These approaches exploit user feedback

to relax the search constraints and to identify a higher number of matches. The authors

of [192] build a bipartite graph from RDF data and aim at solving a graph assembly

problem. Since this problem is NP-hard, they propose two heuristics for facing it.

In [324], models letting knowledge patterns to be represented by means of RDF are

investigated. The second sub-family, instead, aims at extracting keyword patterns in

a graph database. In [196], the authors propose BLINKS, a system consisting of an

algorithm for bi-level indexing and a query processor useful for searching the top-

k keywords in a graph. In [174], an engine for enumerating keywords and evaluating

their search in a data graph is proposed. In the same way, in [264], EASE, a framework

allowing indexing and keyword querying, is described.

As for the second family, most of the corresponding approaches are summarized

in [278]. Here, the authors claim that, thanks to metadata, it is possible to think of

a new, completely automated, approach.

As for the third family, in [100], the authors provide an overview of techniques used

in the literature to support keyword search in structured and semi-structured data. In

[274], the authors operate on semi-structured sources and try to make the extraction

process as automated as possible. More recent approaches try to extract knowledge
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from heterogeneous sources. In fact, as evidenced in [271], the big data phenomenon

led to the creation of a lot of heterogeneous sources that include unstructured data.

These need to be integrated exactly as it was made before for structured data. Starting

from this consideration, the authors analyze the most important challenges introduced

by this new reality and present a unique query format taking this issue into account.

In [388], the authors assert that, in order to have a user-friendly graph query engine, it

is necessary to support different kinds of task, like synonymy detection and ontology

usage. Based on this assertion, they propose a framework allowing these operations on

data without schema or structure. In [402], the authors argue that Similarity Join is a

fundamental operation for clearing data and integrating different sources. It involves

two big challenges, namely quantifying knowledge aware similarities and identifying

similarity pairs efficiently. To address these issues, they propose a new framework.

Likewise, in [431], a system to integrate different sources through keyword search,

and an evaluation system based on user feedback, are proposed.

The last family of approaches is based on network analysis. In [393], network com-

munities and the apriori algorithm are used to identify rhythmic knowledge patterns

of musical work. In [281], the authors represent patent data as a network and, then,

propose a new approach that analyzes this network for extracting CKPs about patent

applicants. In [290], the authors propose a new formalism to represent a knowledge

base through a network whose edges denote the semantic proximity between two or

more concepts. This representation allows the discovery of association models among

different concepts. In [227], the authors propose an algorithm that uses the cliques in

a graph for searching the keywords linked to a given input. According to what the

authors claim, keyword search is necessary because it facilitates the identification of

sub-graphs in a network.

7.3 A network-based model for data lakes

In this section, we illustrate our network-based model to represent and handle a data

lake, which we will use in the rest of this chapter.

In our model, a data lake DL is represented as a set of m data sources:

DL = {D1, D2, · · · , Dm}

A data source Dk ∈ DL is provided with a rich set Mk of metadata. We denote with

MDL the repository of the metadata of all the data sources of DL:

MDL = {M1,M2, . . . ,Mm}

According to [341], our model represents Mk by means of a triplet:
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Mk = ⟨MT
k ,MO

k ,MB
k ⟩

Here:

• MT
k denotes technical metadata. They represent the type, the format, the structure

and the schema of the corresponding data. They are commonly provided by the

source catalogue.

• MO
k represents operational metadata. They include the source and target locations

of the corresponding data, the associated file size, the number of their records,

and so on. Usually, they are automatically generated by the technical framework

handling the data lake.

• MB
k indicates business metadata. They comprise the business names and descrip-

tions assigned to data fields. They also cover business rules, which can become

integrity constraints for the corresponding data source.

Since our approach focuses on the semantics of data sources, in this chapter,

we consider only business metadata. Indeed, they denote, at the intensional level,

the information content stored in Mk and are those of interest for supporting the

extraction of complex knowledge patterns from a data lake, which is our ultimate

goal.

Our model adopts a notation typical of XML, JSON and many other semi-

structured models to represent MB
k . According to this notation, Objk indicates the

set of all the objects stored in MB
k . It consists of the union of three subsets:

Objk = Attk ∪ Smpk ∪ Cmpk

Here:

• Attk indicates the set of the attributes of MB
k ;

• Smpk represents the set of the simple elements of MB
k ;

• Cmpk denotes the set of the complex elements of MB
k .

Here, the meaning of the terms “attribute”, “simple element” and “complex ele-

ment” is the one typical of semi-structured data models.

MB
k can be also represented as a graph:

MB
k = ⟨Nk, Ak⟩

Nk is the set of the nodes of MB
k . There exists a node nkj ∈ Nk for each object

okj ∈ Objk. According to the structure of Objk, Nk consists of the union of three

subsets:

Nk = NAtt
k ∪NSmp

k ∪NCmp
k
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Here, NAtt
k (resp., NSmp

k , NCmp
k ) indicates the set of the nodes corresponding to

Attk (resp., Smpk, Cmpk). There is a biuniovocal correspondence between a node

of Nk and an object of Objk. Therefore, in the following, we will use the two terms

interchangeably.

Let x be a complex element of MB
k . Objkx indicates the set of the objects directly

contained in x, whereas NObj
kx

denotes the set of the corresponding nodes. Further-

more, let x be a simple element of MB
k . Attkx represents the set of the attributes

directly contained in x, whereas NAtt
kx

denotes the set of the corresponding nodes.

Ak indicates the set of the arcs of MB
k . It consists of three subsets:

Ak = A′
k ∪A′′

k ∪A′′′
k

Here:

• A′
k = {(nx, ny)|nx ∈ NCmp

k , ny ∈ NObj
nx

}. This definition specifies that there is an

arc from a complex element of MB
k to each object directly contained in it.

• A′′
k = {(nx, ny)|nx ∈ NSmp

k , ny ∈ NAtt
nx

}. This definition specifies that there is an

arc from a simple element of MB
k to each attribute directly contained in it.

• A′′′
k = {(nx, ny)|nx ∈ Nk, ny ∈ Nk, Dk is unstructured and between nx and ny}

there exists a correlation. The meaning of A′′′
k will be clear after reading Section

7.4, where we illustrate our approach for “structuring” unstructured data.

Interestingly, our data lake formalization uses a model similar to the one adopted

in [291]. Here, a data lake is defined as a pair DL = {V,M}, where V is a set of

values in the data lake and M is a set of metadata describing the values of DL.

In this definition, the authors introduce the concept of fully description in terms of

attribute names and data types. This definition is similar to the components MT
k and

MO
k of our model’s metadata. However, the two approaches present several differences

because our own also introduces the concept of business metadata (thus enriching the

data description component), whereas the approach of [291] proceeds with the formal

definition of the Extract, Process and Store (EPS) process (thus enriching the process

description component).

7.4 Enriching the representation of unstructured data

Our network-based model for representing and handling a data lake is perfectly fitted

for representing and managing semi-structured data because it has been designed hav-

ing XML and JSON in mind. Clearly, it is sufficiently powerful to represent structured

data. The highest difficulty regards unstructured data because it is worth avoiding a

flat representation consisting of a simple element for each keyword provided to de-

note the source content. As a matter of fact, this kind of representation would make
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the reconciliation, and the next integration, of an unstructured source with the other

(semi-structured and structured) ones of the data lake very difficult. Therefore, it is

necessary to (at least partially) “structure” unstructured data.

Our approach to addressing this issue creates a complex element for representing

the source as a whole and a simple element for each keyword. Furthermore, it adds an

arc from the source to each of the simple elements. Initially, there is no arc between

two simple elements. To determine the arcs to add, our approach exploits lexical and

string similarities.

In particular, lexical similarity is considered by stating that there exists an arc

from the node nk1 , corresponding to the keyword k1, to the node nk2 , corresponding

to the keyword k2 (and vice versa), if k1 and k2 have at least one common lemma1

in a suitable thesaurus. Taking the current trends into account, this thesaurus should

be a multimedia one; for this purpose, in our experiments, we have adopted BabelNet

[326]. When this pair of arcs has been added, nk1 and nk2 must be considered complex

elements, instead of simple elements.

String similarity is applied by stating that there exists an arc from nk1 to nk2

(and vice versa) if the string similarity degree kd(k1, k2), computed by applying

a suitable string similarity metric on k1 and k2, is “sufficiently high” (see below).

We have chosen N-Grams [241] as string similarity metric because we have exper-

imentally seen that it provides the best results in our context. Also in this case,

when this pair of arcs has been added, nk1 and nk2 change their types from sim-

ple elements to complex ones. Now, we illustrate in detail what “sufficiently high”

means and how our approach operates. Let KeySim be the set of the string sim-

ilarities for each pair of keywords of the source into consideration. Each record in

KeySim has the form ⟨ki, kj , kd(ki, kj)⟩. Our approach first computes the maximum

keyword similarity degree kdmax present in KeySim. Then, it examines each key-

word similarity registered therein. Let ⟨k1, k2, kd(k1, k2)⟩ be one of these similarities.

If ((kd(k1, k2) ≥ thk · kdmax) and (kd(k1, k2) ≥ thkmin)), which implies that the key-

word similarity degree between k1 and k2 is among the highest ones in KeySim and

that, in any case, it is higher than or equal to a minimum threshold, then an arc is

added from nk1 to nk2 , and vice versa. We have experimentally set thk = 0.70 and

thkmin = 0.50.

From this description, it emerges that, given two nodes nk1 and nk2 , corresponding

to two keywords k1 and k2 of the unstructured source, four cases may exist, namely:

(1) no arcs link nk1 and nk2 ; (2) an arc derived from an object similarity links them;

1 In this chapter, we use the term “lemma” according to the meaning it has in BabelNet

[326]. Here, given a term, its lemmas are other objects (terms, emoticons, etc.) semantically

associated with it and, therefore, contributing to specify its meaning.
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(3) an arc derived from a string similarity links them; (4) an arc derived from both

an object and a string similarity links them.

In our approach, the component devoted to “structuring” unstructured data,

which we are describing in this section, plays a key role. On the other hand, this

last issue has been investigated in the recent past. For instance, in Section 7.3, we

have cited the approach of [291] and we have seen that an important component of

this approach is the EPS (Extract, Process and Store) process. The management of

unstructured data is performed during the extract subtask of this process, when data

are extracted from the data lake. This last is represented as a pair consisting of values

and metadata. Instead, dataset schemas are dynamically defined, according to the

“schema on read” approach. Starting from these three elements, the approach of [291]

generates a rowset with n attributes.

To correctly interpret data and/or metadata of unstructured sources, in the con-

struction of rowset, the approach of [291] uses some transformation rules allowing

the extraction and/or the correction of values and data acquired from the involved

sources. To perform this task, the approach uses U-SQL and fuzzy logics. As a con-

sequence of this way of proceeding, it can generate a tabular representation (i.e., the

rowset) from unstructured data. The content of the rowset depends on the member-

ship function associated with the fuzzy logic and on the possible constraints regarding

it.

Our approach operates in a different way. Indeed, to perform structuring of un-

structured sources, it leverages network analysis, as well as lexical and string similar-

ities. In fact, unstructured sources are “structured” thanks to the addition of the arcs

in the networks representing the sources themselves. These arcs can be created only

when the similarity between nodes is higher than a certain degree. Interestingly, in

both approaches, the final result of the structuring activity depends on a threshold.

The approach of [291] addresses the data variety issue by extending the operations

that can be performed on unstructured sources by means of fuzzy techniques. These

carry out the structuring task, and the consequent rowset creation, by means of an

interface for the dataset extraction, which is unified and valid for all the sources. By

contrast, our approach bases the structuring activity on business constraints involving

the schemas of the data lake sources and on lexical and string similarities among the

elements represented therein.

7.4.1 Example

Consider an unstructured data source consisting of a video about environment and

pollution. As we said before, for each unstructured source, our approach begins from

a set of keywords representing its content. In order to keep our description simple and
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Fig. 7.1. Graphical representation of our approach to deriving a “structure” for an unstruc-

tured source

clear, in this example, we assume that our video has a limited number of keywords,

namely the ones shown in Figure 6.1.

First, as we can see in Figure 6.1(a), our approach constructs a graph having a

node for each keyword. A further node is added to represent the video as a whole;
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nodes corresponding to keywords are colored in red, whereas the other one is colored

in green. Following our strategy, in Figure 6.1(b), we added an arc from the node

representing the whole video to each node associated with a keyword. The next step

consists of using BabelNet. In Figure 6.1(c), we show two keywords (“Save” and

“Protect”) and the corresponding lemmas in BabelNet. Common lemmas (i.e., “keep”

and “preserve”) are in bold. Since “Save” and “Protect” have at least one common

lemma, two arcs are added between the corresponding nodes in Figure 6.1(d). These

arcs are highlighted in blue in this figure and, due to layout reasons, we report only

one arc with two arrows, instead of two arcs with one arrow. Each arc has a label

representing the number of common lemmas between the corresponding keywords in

BabelNet. After having added the new arcs, caused by the common lemmas present

in BabelNet, we proceed by analyzing string similarities. In Figure 6.1(e), we report

the pairs of keywords that satisfy this feature. In Figure 6.1(f), we add a pair of arcs

for each pair of keywords of Figure 6.1(e). Again, these arcs are highlighted in blue

and, due to layout reasons, we report only one arc with two arrows, instead of two

arcs with one arrow. Each arc has a label representing the string similarity degree

(computed by means of N-Grams) between the corresponding keywords. Finally, in

Figure 6.1(g), we combine the arcs derived in the previous two steps. Clearly, it may

happen that, for a pair of keywords (see, for instance, the keywords “garden” and

“gardens”), two pairs of arcs have been generated, one in Figure 6.1(d) and one in

Figure 6.1(f). In this case, in Figure 6.1(g), we do not report two pairs of arcs; instead,

we report only one pair, representing both of them. The label of this pair is obtained

by merging the labels of the two corresponding pairs.

7.5 Extraction of complex knowledge patterns

7.5.1 General description of the approach

Our approach to the extraction of complex knowledge patterns operates on a data

lake DL whose data sources are represented by means of the formalism described in

Section 7.4.

It receives a dictionary Syn of synonymies involving the objects stored in the

sources of DL. This dictionary could be a generic thesaurus, such as BabelNet [326],

a domain-specific thesaurus, or a dictionary obtained by taking into account the struc-

ture and the semantics of the sources, which the corresponding objects refer to (such

as the dictionaries produced by XIKE [124], MOMIS [60] or Cupid [288]). Further-

more, it receives two objects xih , belonging to a source Dh of DL, and xjq , belonging

to a source Dq of DL. xih and xjq represent the base on which the complex knowledge

pattern to extract should be constructed. As a matter of fact, we recall that, in this
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chapter, a complex knowledge pattern consists of a logic succession {x1, x2, . . . , xw}

of w objects such that: (i) x1 coincides with xih ; (ii) xw coincides with xjq ; (iii) there

is a semantic relationship (specifically, a synonymy or a part-of relationship) linking

the kth and the (k + 1)th objects (1 ≤ k ≤ w − 1) of the succession.

Before illustrating our approach in detail, it is necessary to introduce some prelim-

inary concepts, namely the ones of i-arcs, c-arcs and pw-arcs. In Section 7.4, we have

seen that, given a source Dk of DL, Mk
B = ⟨Nk, Ak⟩ and Ak = A′

k ∪A′′
k ∪A′′′

k . All the

arcs of Ak are internal to Dk; we call them i-arcs (i.e., internal arcs) in the following.

Now, let xih and xjq be two objects for which a synonymy exists in Syn. We call c-

arcs (i.e., cross arcs) the arcs (nih , njq ) and (njq , nih) corresponding to this synonymy.

These arcs are extremely important because they allow the extraction, the processing

and the management of information coming from different sources. Finally, given an

arc (nik , njk) ∈ A′
k ∪ A′′

k , we call pw-arc (i.e., part-whole arc) the arc (njk , nik). The

pw-arc (njk , nik) is the “reverse” arc of (nik , njk) because it starts from the part and

ends to the whole2. The name of this arc clearly indicates its nature. As it is evident

from the definition of A′
k and A′′

k , the i-arc (nik , njk) specifies the existence of a part-of

relationship, from the whole (nik) to the part (njk). The arc (njk , nik) is the reverse

one going from the part to the whole.

Our approach operates as follows. Let nih (resp., njq ) be the node corresponding

to xih (resp., xjq ).

• If h = q, we have a trivial case and the complex knowledge pattern from nih to

njq is obtained by selecting the set of the arcs belonging to the shortest path from

nih to njq .

• If h ̸= q, then c-arcs and pw-arcs must be considered. First, our approach deter-

mines the set of complex knowledge patterns each formed by a c-arc from nih to

a node ntl synonymous of nih , followed by a complex knowledge pattern from ntl

to njq . Then, it determines the set of complex knowledge patterns each formed

by an i-arc from nih to a node nth , being a part of nih , followed by a complex

knowledge pattern from nth to njq . If at least one of these two sets is not empty,

it returns the complex knowledge pattern having the minimum number of c-arcs.

If both these sets are empty, then our approach performs a last attempt to find a

complex knowledge pattern by considering pw-arcs having nih as target, if they exist.

In this case, it determines the set of complex knowledge patterns each formed by a

pw-arc from nih to a node nth followed by a complex knowledge pattern from nth

2 In order to keep the layout simple, in the graphical representation of our model, we

explicitly show only the arcs from the whole to the parts; the corresponding pw-arcs are

considered implicit.
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to njq . If this set is not empty, it returns the complex knowledge pattern having the

minimum number of pw-arcs.

7.5.2 Technical Details

As previously pointed out, our approach operates on a data lake DL. It receives a

dictionary Syn of synonymies regarding the objects of DL, along with two objects

xih , belonging to a source Dh of DL, and xjq , belonging to a source Dq of DL. Let

nih (resp., njq ) be the node corresponding to xih (resp., xjq ), then the computation of

CKP (nih , njq ), i.e. of the complex knowledge pattern from nih to njq , is recursively

performed as follows:

• If h = q, xih and xjq belong to the same source and, therefore, nih and njq belong

to the same network. In this case, the complex knowledge pattern CKP (nih , njq )

from nih to njq is obtained by selecting the set of the arcs belonging to the shortest

path from nih to njq . Any algorithm previously proposed in the literature for

computing the shortest path between two nodes can be adopted.

• If h ̸= q, then nih and njq belong to different networks.

First, the set NSynSetih of the nodes corresponding to the objects synonymous

of xih in Syn is determined as:

NSynSetih = {ntl | (nih , ntl) ∈ Syn}

Then, the set CKPSynSet(nih , njq ) of the complex knowledge patterns from nih

to njq and passing through a node of NSynSetih is computed. Formally:

CKPSynSet(nih , njq ) = {SynCKP (nih , njq , ntl)|ntl ∈ NSynSetih}

where:

SynCKP (nih , njq , ntl) = {(nih , ntl) ∪ CKP (ntl , njq )}

After this, the set NPartSetih of the nodes representing a part of nih (which, in

this case, is the whole) is determined as:

NPartSetih = {nth |(nih , nth) ∈ A′
h ∪A′′

h}

Then, the set CKPPartSet(nih , njq ) of the complex knowledge patterns from nih

to njq and passing through a node of NPartSetih is computed. Formally:

CKPPartSet(nih , njq ) = {PartCKP (nih , njq , nth)|nth ∈ NPartSetih}

where:

PartCKP (nih , njq , nth) = {(nih , nth) ∪ CKP (nth , njq )}
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If CKPSynSet(nih , njq ) ̸= ∅ and/or CKPPartSet(nih , njq ) ̸= ∅, our approach

selects as CKP (nih , njq ) the complex knowledge pattern having the minimum

number of c-arcs. If more than one pattern exists with the same minimum number

of c-arcs, it returns the one with the minimum number of i-arcs. If more than one

pattern exists with these characteristics, it randomly selects one of them.

If CKPSynSet(nih , njq ) = ∅ and CKPPartSet(nih , njq ) = ∅, then c-arcs are not

sufficient to find a complex knowledge pattern from nih to njq . However, a last

attempt to find such a pattern can be performed by exploiting a pw-arc having

nih as target, if it exists.

In particular, let NWholeSetih be the set of the nodes of which nih is a part. It

is determined as:

NWholeSetih = {nth |(nth , nih) ∈ A′
h ∪A′′

h}

Then, if NWholeSetih = ∅, there is no possibility to find a complex knowledge

pattern from nih to njq . Otherwise, the set CKPWholeSet(nih , njq ) of the com-

plex knowledge patterns between nih and njq and passing through a node of

NWholeSetih is computed. Formally:

CKPWholeSet(nih , njq ) = {WholeCKP (nih , njq , nth)|nth ∈ NWholeSetih}

where:

WholeCKP (nih , njq , nth) = {(nih , nth) ∪ CKP (nth , njq )}

Once WholeCKP (nih , njq , nth) has been constructed, if it is not empty, our ap-

proach selects as CKP (nih , njq ) the complex knowledge pattern having the mini-

mum number of pw-arcs. If more than one pattern exists with the same minimum

number of pw-arcs, it returns the one with the minimum number of c-arcs. If more

than one pattern exists with these characteristics, it selects the one with the min-

imum number of i-arcs. Finally, if more than one pattern exists with the same

minimum number of i-arcs, it randomly selects one of them.

Computational complexity

As for the computational complexity of this approach, we can observe that:

• If h = q, any algorithm previously proposed in the literature for computing the

shortest path between two nodes can be adopted. For instance, if the Dijkstra

algorithm using a binary heap is implemented, the computational complexity of

this step is O(|A| · log|N |), where |A| is the total number of arcs of the data lake

and |N | is the total number of its nodes.
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• If h ̸= q, in the worst case, it is necessary to determine the sets NSynSetih ,

NPartSetih and NWholeSetih and, then, for each node of these sets, to compute

the shortest path from ni to nj bounded to pass through it.

Now, |NSynSetih | is O(|DL|) because there could be at most one synonymous of

a node for each source. |NPartSetih | is O(|Nmax|), where |Nmax| is the number of

nodes of the largest source of the data lake. For the same reason, |NWholeSetih |

is O(|Nmax|).

The complexity of the computation of the shortest path from ni to nj bounded to

pass through a node is O(|A| · log(|N |), if the Dijkstra algorithm with the support

of the binary heap is applied.

Therefore, in this case, the computational complexity of the algorithm is:

O(|A| · log|N |) ·O(max(|Nmax|, |DL|))

Now, since generally |Nmax| ≫ |DL|, we have that the computational complexity

of this step is:

O(|A| · log|N | · |Nmax|)

Since the computational complexity of the case h ̸= q is higher than the one of

the case h = q, we can conclude that the overall computational complexity of our

approach is O(|A| · log|N | · |Nmax|).

This computational complexity can be judged very good if we consider the problem

to solve. Actually, one could say that it is high for real data lakes consisting of many

sources. However, in these cases, we have that, in the reality, the corresponding graphs

are very sparse and, therefore, |A| is small. To better quantify this fact, in Section

7.7.3, we compare the theoretical and the real computation time of our approach

against the number of nodes of the data lake.

7.6 Some case studies

In this section, we present some case studies devoted to illustrate the behavior of our

approach in the various possible cases. To perform our test cases, we constructed a

data lake consisting of 2 structured sources, 4 semi-structured sources (i.e., 2 XML

sources and 2 JSON ones) and 4 unstructured sources (i.e., 2 books and 2 videos). All

these sources store data about environment and pollution. To describe unstructured

sources, we initially considered a set of keywords derived from Google Books, for

books, and from YouTube, for videos. The interested reader can find the schemas, in

case of structured and semi-structured sources, and the keywords, in case of unstruc-

tured sources, at the address http://www.barbiana20.unirc.it/dls/datasets/

dl2. The password to type is “za.12&;lq74:#”.
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Fig. 7.2. The network corresponding to the source Climate

The case studies we present in this section involve five sources of our data lake.

These sources are the following:

• Climate. This is a JSON source storing data about weather and climatic conditions

of several places. In this dataset, space and time are expressed at several granu-

larity levels. In particular, time is expressed in years, seasons and days, whereas

space is expressed in countries and cities; these last ones have associated the cor-

responding latitude and longitude. The network representing Climate is reported

in Figure 7.2.

• Energy. This is a JSON source storing data about renewable and non-renewable

energy sources used in the countries worldwide. Energy also stores data about

the investments on the various kinds of energy source. The network representing

Energy is reported in Figure 7.3.

• Environment disasters. This is an XML source storing data about environment

disasters (e.g., earthquakes, seaquakes, volcanic eruptions, etc.), the places where

they happened, the damages caused by them, and so forth. The network repre-

senting Environment disasters is reported in Figure 7.4.

• Environment risks. This is a book discussing about environment risks, their prob-

abilities, their damages, etc. This is an unstructured source and, as such, it is

represented by a set of keywords, which is reported in Table 7.1.

• Air pollution. This is a book focusing on air pollution, its causes, its consequences

and the possible control strategies that can mitigate their impact on the environ-

ment. This is an unstructured source. Its keywords are reported in Table 7.2.

The first case study we are considering is very simple because the two “seed ob-

jects” of the complex knowledge pattern are Energy and Population, both belonging

to the source Energy. Since both the source and the target node of the knowledge
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Fig. 7.3. The network corresponding to the source Energy

Fig. 7.4. The network corresponding to the source Environment disasters

pattern belong to the same network, the pattern is obtained simply by computing the

shortest path from Energy to Population in the network of Figure 7.3. Actually, in
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Keywords

absorptivecapacity, action, adjustments, adopted, agencies, agricultural,

air, appraisal, areas,Bangladesh,Burton, capita, catastrophe, choice, coast,

alcomprehensive, coping, cost, crops, damage, deaths, developingcountries,

relief, drought, earthquake, economic, effects, effort, emergency, environment,

environmental, estimated, evacuation, experience, extremeeventsfarmers, federa,

F igure, flood, floodplain, forecasting, frequency, global, globalwarming, groups,

hazardevent, hazardresearch, human, hurricane, impact, income, increase, individual,

industrial,Kates, LabourBrigade, land, LiuLing, loss,magnitude,maize,major,

measures,ment,million, naturaldisasters, naturalevents, naturalhazards,

hazard,Nicaragua, occur, organization, pattern, people′scommunepercent, percent,

population, possible, potential, prevent, protection, range, reduce, regions,

risk,River, scale, scientific, social, society, SriLanka, storm, studies,

threshold, tion, tornado, TristandaCunha, tropical, cyclone, T ropicalStormAgnes,

tsunami, UnitedKingdom, urban, vulnerable, warning, systems, zone,Managua,

air, plant, disaster, airpollution, natural, Tanzania, TropicalStormAgnes.

Table 7.1. Keywords of the source Environment risks

Keywords

acid, activatedsludge, activity, aerosol, airpollution, airquality, air,

anaerobicdigestion, approach, aquatic, areas,Assesment, atmosphere, biofuels,

carbon, catalyst, cause, chemical, chlorine, climatechange, combustion,

concentrations, contaminated, cycle, CycleAssessment, deposition, diesel,

dose, drinkingwater, ecosystem, effects, effluent, emissions, energy,

EnvironmentAgency,European,EuropeanCommission,EuropeanUnion,

exposure, F igure, fuel, gases, global, human, hydrocarbons, impacts, important,

industrial, landfill, legislation, levels, London,major,materials,measures,

models,monitoring, nanoparticles, nitrate, nitrogen, nitrogendioxide, nuisance,

operation, organic, oxidation, oxygen, ozone, particles, PBDEs, PCBs, pesticides,

plant, potential, radiation, radiativeforcing, radioactive, range, reaction,

recycling, reduce, regulation, regulatory, release, response, result, risk, sewage,

significant, sludge, soil, sources, species, standards, stratosphere, studies,

substances, sulfurdioxide, surface, temperature, toxic, transport, treatment,

typically, urban, vehicles, wastemanagement, ambient, biological, compounds,

Directive, engine, example, increase,metals, petrol, reactor, eutrophication.

Table 7.2. Keywords of the source Air pollution

this case, we have only one possible path, shown in Figure 7.5. This path consists of

4 i-arcs, no c-arcs and no pw-arcs.
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Fig. 7.5. Complex knowledge pattern from the node Energy to the node Population of the

source Energy

Fig. 7.6. Complex knowledge pattern from the node Position of the source Environment

disasters to the node Energy of the source Energy

The second case study we are considering involves as “seed objects” Position,

belonging to Environment disasters, and Energy, belonging to Energy. In this case, it

is evident the necessity of passing through at least one c-arc because the two objects

belong to different sources. One of the synonyms of the object Position is the object

Place, belonging to the source Energy. As a consequence, it is possible to define at

least one path, starting from Position, passing through Place and reaching Energy.

This path is shown in Figure 7.6 and consists of 1 i-arc, 1 c-arc and no pw-arc. An

alternative path would involve the nodes Position and Continent of Environment

disasters and the nodes Country, Place and Energy of Energy. However, this path

would consist of 3 i-arcs, 1 c-arc and no pw-arc and, clearly, it is not the shortest

path. As a consequence, in this case, our approach returns the path shown in Figure

7.6 as the complex knowledge pattern from Position to Energy.

The third case study we are considering involves, as “seed objects”, Fujita scale

of Environment disasters and Risk of Environment risks. In this case, synonymies

are not sufficient because there is no synonymy involving Fujita scale. However,
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Fig. 7.7. Complex knowledge pattern from the node Fujita scale of the source Environ-

ment disasters to the node Risk of the source Environment risks

the “whole” node of Fujita scale is Hurricane and there is a synonymy between

Hurricane and Tornado. As a consequence, it is possible to define at least one path

starting from Fujita scale, passing through Hurricane and Tornado and ending to

Risk. This path is shown in Figure 7.7. It consists of 1 i-arc, 1 c-arc and 1 pw-arc.

This is also the shortest path from Fujita scale to Risk and, therefore, the complex

knowledge pattern between these two nodes.

The fourth and last case study is the most complex one because it involves more

alternative synonymies that could be selected, with the consequent need to deter-

mine the best one. The “seed objects” are Risk degree of Environment disasters and

Emergency of Environment risks. Risk degree presents two synonymies in the dictio-

nary; the former involves the object Risk of Environment risks; the latter regards the

object Risk of Air pollution. As a consequence, at least two extremely different paths

could exits. However, the path involving the node Risk of Environment risks can reach

the target source through only 1 c-arc. The other one would need at least another

c-arc to reach the target source. In particular, it should use the synonymy between

Risk of Air pollution and Hazard of Environment risks. In Figure 7.8, we report both

these paths. The former involves the nodes Risk degree, Risk, Book and Emergency

and consists of 2 i-arcs and 1 c-arc. The latter involves the nodes Risk degree, Risk,

Hazard, Book and Emergency and consists of 2 i-arcs and 2 c-arcs. Clearly, the short-

est path is the former, which is selected as the complex knowledge pattern between

the two seed nodes.

7.7 Discussion

This section is devoted to present a critical discussion of several aspects concerning our

approach. It consists of four subsections. In the first, we present a comparison between
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Fig. 7.8. Complex knowledge pattern from the node Risk degree of the source Environment

disasters to the node Risk of the source Environment risks

our approach and the related ones. In the second, we evaluate the performance of our

technique for structuring unstructured data. In the third, we evaluate the performance

of our overall approach. Finally, in the fourth, we measure its efficiency for large

datasets. To carry out the experiments described in this section, we used a server

equipped with an Intel I7 Dual Core 5500U processor and 16 GB of RAM with the

Ubuntu 16.04.3 operating system. Clearly, especially for the last experiments, the

capabilities of this server were limited. However, as we will see below, we were mostly

interested to compare theoretical worst case response times with the real ones. Clearly,

in real contexts, whenever necessary, much more powerful servers could be used to

reduce the response time.

7.7.1 Comparison between our approach and the related ones

In Section 7.2, we have seen that we can distinguish four main families of approaches

that are most related to ours. Specifically, these approaches aim at extracting: (i) key-

word patterns; (ii) knowledge from structured sources; (iii) knowledge from hetero-

geneous sources; (iv) knowledge patterns through network analysis-based techniques.

As for the first family, the corresponding approaches share with ours the objective,

i.e. the extraction of some form of knowledge. However, the knowledge derived by

them consists simply in keyword patterns. Furthermore, the techniques they leverage

to carry out this task are different from ours, especially if we consider the sub-family

operating on RDF data. A higher similarity can be found with the other sub-family,

i.e., the one operating on graph databases [116].

As for the second family, the corresponding approaches present some analogies,

but also some differences, with ours. In particular, both of them exploit metadata

to perform the knowledge extraction task. However, the approaches of this second

family operate only on structured sources, whereas our approach manages sources

with disparate formats.
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The approaches of the third family extract knowledge from heterogeneous (both

structured and semi-structured) sources. For instance, the approach of [274] aims at

querying heterogeneous data in fuzzy XML documents by using a tree-pattern based

algorithm. This approach has several differences with respect to ours. In fact, it focuses

mainly on querying, whereas our approach considers the extraction of knowledge pat-

terns. Furthermore, it operates on XML documents, whereas our approach operates

on sources with different formats. Interestingly, the approach of [274] leverages a tree

pattern-based algorithm, whereas ours exploits a graph pattern-based one. Another

approach of this family is the one described in [402], which is based on Similarity

Join. This approach and ours are similar in that both of them have a step in which

a similarity detection task is performed. However, the approach of [402] needs a sup-

port knowledge hierarchy, whereas our approach exploits one or more thesauruses.

Furthermore, the data sources considered by the approach of [402] are just collections

of objects (e.g., documents) and not a variegate data lake, which is the reference data

structure for our approach.

The fourth family comprises network-based models and algorithms that exploit

network analysis to extract knowledge patterns. One of these approaches is described

in [393]. It operates in the context of Music Information Retrieval, which is actually

quite far from the scenarios of interest to our approach. However, both this approach

and ours share the usage of network to represent available data and of network analy-

sis to extract the desired knowledge. The approach of [393] focuses on non-traditional

data sources, and, in this fact, is similar to ours. However, the source typology con-

sidered by it has a very specific nature, whereas the ones handled by our approach

are numerous and are the most common ones encountered in the reality. Another

approach belonging to the last family is the one described in [281]. This approach

and ours present some analogies in that both of them use network analysis to extract

knowledge of interest. However, the approach of [281] operates on only one kind of

databases (e.g., relational ones) and focuses on a very specific topic, i.e., patent and

applicant analysis. By contrast, our approach considers heterogeneous data formats

and can operate on sources concerning different topics.

Other two approaches of this family that we have mentioned in Section 7.2 are

the ones presented in [290] and [227]. [290] proposes a network-based formalism for

representing available knowledge. In this formalism, nodes indicate concepts and arcs

denote relationships between concepts. This representation coincides with the one

adopted by our approach. The main difference between them consists in the fact that

the approach of [290] operates only on information organized in structured databases.

This fact contributes to perform data investigation and formalization very easily but,

on the other hand, it prevents from managing semi-structured and unstructured data.
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Fig. 7.9. Average clustering coefficient, density and transitivity of the network returned by

our approach against the number of available keywords of the corresponding source

Fig. 7.10. A zoom of the graphs of Figure 7.9 referred to the case in which the number of

keywords ranges between 5 and 20

The approach of [227] aims at performing keyword search in a graph to facilitate

the identification of sub-graphs. This approach and ours are similar in that both of

them are network-based. However, they also present several differences. Indeed, the

algorithm underlying the approach of [227] is centered on cliques, whereas the one

underlying our approach is based on paths. Furthermore, the approach of [227] focuses

on keyword search, and the consequent subgraph identification, whereas ours aims at

detecting knowledge patterns.

7.7.2 Evaluation of our approach to structure unstructured data

One way to evaluate the performance of our approach to structuring unstructured

sources consists of determining how much it is able to connect the concepts corre-

sponding to the flat keywords commonly used to characterize unstructured sources.

Given a network-based model, like ours, a logical way to quantify this feature is based

on the exploitation of some measures tipically adopted in network analysis to quantify

the structuring level of a network. These measures are: (i) average clustering coeffi-

cient, (ii) density, and (iii) transitivity. All of them range in the real interval [0, 1];

the higher their value, the more structured the corresponding network.

We computed the values of these measures against the number of keywords repre-

senting unstructured sources. Obtained results are reported in Figure 7.9, whereas in

Figure 7.10 we propose a “zoom” referred to the case in which the number of keywords

ranges between 5 and 20.

From the analysis of these figures we can observe that our approach is really

capable of structuring unstructured sources provided that the number of keywords
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representing each source is higher than a reasonable minimum value (i.e., 5). As

long as the number of provided keywords increases, the values of all our structuring

capability indicators increase, even if this increase is very slow.

In our opinion, the growth slowness, far from being a problem, is an indicator

of correctness. Indeed, we must consider that we are trying to assign a structure to

an originally unstructured source. Our approach can provide a certain structuring

level but it cannot (and it must not) upset the original nature of the source, which is

unstructured.

All these reasonings allow us to say that our approach to structuring unstructured

sources presents a very satisfying behavior.

7.7.3 Performance of our overall approach

In Section 7.5.2, we have seen that the computational complexity of the extraction of

complex knowledge patterns is O(|A| · log|N | · |Nmax|). We have also seen that this

complexity can be judged very satisfactory, if we consider the problem to solve.

However, in real data lakes, the number of involved sources is high and so, in

principle, |N | (and |A|, which is O(|N |2) could be very high. Nevertheless, in real

situations, the number of relationships among attributes and elements is very small

and, consequently, the corresponding networks are very sparse. As a consequence, |A|

should be very low, if compared with |N |2, and, therefore, we were confident that, in

real cases, the performance of our approach should be very good.

To verify this hypothesis we measured the response time of our approach when

the number of involved nodes to examine increases; in particular, we measured the

response time obtained by considering the theoretical computational complexity and

the real response time. Obtained results are reported in Figure 7.11, whereas in Figure

7.12 we propose a “zoom” for those cases that in Figure 7.11 appeared superimposed

on the axis of abscissas. In these graphs, in the computation of the theoretical response

time, we considered several values of graph density.

From the analysis of these figures, it clearly emerges that, in real cases, the response

time of our approach is much smaller than the one determined by the worst case time

complexity, even when the network density is low or very low. This fact leads our

approach to work very well also in presence of large data lakes, provided that the

corresponding networks are sparse or very sparse, which is the general condition that

is found in practice. As a consequence, we can conclude that our hypothesis was true

and, therefore, that our approach shows a good performance in real scenarios.
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Fig. 7.11. Real and theoretical response time against data lake dimension and density

Fig. 7.12. Real and theoretical response time against data lake dimension and density (zoom

of Figure 7.11)

7.7.4 Efficiency of our overall approach for large data sets

In Section 7.5.2, we have seen that, from a theoretical point of view, in order to

determine the computational complexity of our approach, we must consider two main

scenarios, namely:

1. the detected path involves nodes of only one source, in which case the theoretical

computational complexity is O(|A| · log(|N |);

2. the detected path involves nodes of more sources, in which case the theoretical

computational complexity is O(|A| · log|N |) ·O(max(|Nmax|, |DL|)).
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Fig. 7.13. Real and theoretical response time against dimension and density for large data

lakes (Scenario 1)

Now, in presence of large data lakes, both |Nmax| and |DL| are much smaller than

|N |; as a consequence, from a theoretical point of view, the two cases could be referred

to a single one. However, since we aim at measuring the efficiency of our approach

in the reality (and not only from a theoretical viewpoint), we prefer to keep the two

cases separate and to verify if this hypothesis is also confirmed in practice.

To carry out this experiment, we decided to repeat the tasks already performed in

the previous one, but with a data lake having a number of nodes that is three orders of

magnitude higher than the maximum one considered in the previous experiment. This

number of nodes is clearly much higher than the ones we can currently meet in real

situations. However, we preferred to put our approach under stress to see if, even in

these extreme cases, it shows an acceptable behavior. Also in this case, we computed

the response time of our approach against the number of nodes of the data lake and

compared the response time obtained by considering the theoretical computational

complexity against the real response time.

Obtained results are reported in Figure 7.13, for the Scenario 1 mentioned above,

and in Figure 7.15, for the Scenario 2 considered previously. A “zoom” of these fig-

ures, limited to those cases that appeared superimposed on the axis of abscissas, are

reported in Figures 7.14 and 7.16, respectively. From the analysis of these figures we

can observe that, in presence of very large data sets, the theoretical response time

of our approach would make it not applicable for high values of density. Instead, our

approach shows an acceptable response time for low values of density.

Actually, we have already seen that, in real cases, data lake density is very low. This

is also witnessed by the trend of the real response time shown in Figures 7.13 - 7.16,
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Fig. 7.14. Real and theoretical response time against dimension and density for large data

lakes (zoom of Figure 7.13)

Fig. 7.15. Real and theoretical response time against dimension and density for large data

lakes (Scenario 2)

which is even better than the response time derived from the theoretical computational

complexity obtained with a small density (i.e., 0.005). Interestingly, the trends of the

real response time for Scenarios 1 and 2 are actually the same. The only difference

regards the corresponding values that, in case of Scenario 2, are about two orders of

magnitude higher than the ones shown in Scenario 1.

All the results described in this section, coupled with the fact that we stressed

our approach in extreme cases generally not found in the current reality, lead us to
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Fig. 7.16. Real and theoretical response time against data lake dimension and density for

large data lakes (zoom of Figure 7.15)

conclude that our approach presents a very good efficiency, which makes it well suited

also for large datasets.
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In this part, we apply our network-based model and the associated social network-based
approach to IoT and we propose a new social IoT paradigm, called MIoT. A Multiple-IoT
can be seen as a set of things connected to each other by relationships of any kind and, at the
same time, as a set of related IoTs, one for each kind of relationship. This part is organized
as follows: in Chapter 8, we present an approach to extract knowledge from heterogeneous
sensor data streams. In Chapter 9, we present the MIoT paradigm. Finally, in Chapter 10,
we introduce the concept of topic-guided virtual IoTs in a MIoT.

.
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Extracting knowledge from heterogeneous sensor

data streams

8.1 Introduction

In the last few years, research on Wireless Sensor Networks (WSNs) has been ignited

by important advances in various technological areas, such as wireless communica-

tions, digital electronics and micro-electro-mechanical systems. These improvements

allowed for an easy development of low-power and low-cost multi-functional sensors

and networks thereof. Sensor networks usually include a large number of nodes, each

of which may sense several measures. Cooperation among nodes is usually sought for

in such networks. Sensor nodes are usually positioned either inside or very close to

observed events, and the main objective is to provide users with a better understand-

ing of the environment in which sensors are deployed, thus giving the opportunity

to acquire new information and intelligence. While the management of sensor net-

works and the development of robust data acquisition layers received much attention

in the literature, one big open challenge in this research area is anomaly detection

[74, 75]. Anomalies can be generated by either malfunctioning sensors or changes in

the monitored environment. In most cases, being able to distinguish between the two

scenarios is a challenging task. Most of the past approaches for anomaly detection fo-

cused on the analysis of data produced by each single device [477]. The most notable

approaches in this setting can be grouped in four categories, namely: (i) rule-based

detection [204], (ii) statistical techniques [263], (iii) graph-based techniques [331],

and (iv) data mining and computational intelligence-based techniques [471]. Instead,

network-based approaches for anomaly detection in WSNs received less attention

[114, 216, 113, 165]. In fact, in spite of a strict complementarity and correlation be-

tween network analysis and WSNs, only in the latest years, researchers have begun

to apply network analysis-based techniques to WSNs. However, they have only pro-

posed the application of classical network analysis parameters to this context. Indeed,

most of the proposed approaches employ centrality measures [350], which allow the

detection of anomalies of only one node at a time.
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In this chapter, we aim at introducing new solutions for the analysis of heteroge-

neous sensors organized as a network. In particular, our techniques will be based on

the evaluation of the connectivity of the whole WSN and its subnetworks (instead of

on node centrality), and are mainly focused on potential anomalies involving more

sensors located therein. They adopt a metric capable of uniformly handling measures

provided by heterogeneous sensors, as well as a dashboard of network analysis param-

eters. This way, they allow the detection of anomalies involving more (heterogeneous)

sensors, and the evaluation of the impact of these anomalies on the whole sensor net-

work and its subnetworks. The plan of this chapter is as follows. In Section 8.2, we

introduce our model used to represent WSNs and our anomaly detection approach.

In Section 8.3, we present some preliminary results on tests carried out on a sensor

network, along with some discussions.

8.2 Methods

8.2.1 Network construction

Let W be a WSN. Without loss of generality, assume that the corresponding sensors

can be partitioned along two orthogonal dimensions1. In the scenario considered here,

these dimensions are location and physical quantities to evaluate (in particular, we

consider p = 3 physical quantities, i.e., temperature, lightness and humidity). Assume

that the WSN covers l locations (in particular, we consider l = 3 locations, named A,

B and C in the following) and that one location contains n devices, each measuring

p physical quantities. As a consequence, the overall number of sensors is s = pln.

A network N = ⟨V,E⟩ can be associated with W. Here, V is the set of the nodes

of N . Each node vi ∈ V corresponds to a sensor and has associated a label ⟨li, pi⟩,

where li represents its location and pi denotes the physical quantity it measures. E

is the set of the edges of N . Each edge eij connects the nodes vi and vj . It can be

represented as eij = (vi, vj , wij). Here, wij is a measure of “distance” between vi and

vj . It is an indicator of the non-correlation level of the sensors associated with vi

and vj . Actually, each parameter representing this feature could be adopted in our

model. In the experiments presented in this chapter we adopted Multi-Parameterized

Edit Distance (MPED) [91] for its capability of measuring the non-correlation level of

sensors regarding heterogeneous physical quantities, characterized by different units

of measure and possible data shifts.

N can be partitioned along one or both dimensions. We indicate by Np = ⟨Vp, Ep⟩

the subnets obtained by taking only the nodes that correspond to the sensors mea-

1 Actually, the number of dimensions could be greater than two, without requiring any

change of the approach.
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suring the physical quantity p. Here, p ∈ {l, t, h} can denote lightness, temperature

and humidity, respectively. Analogously, we indicate by Nq = ⟨Vq, Eq⟩ the subnets

obtained by taking only the nodes that correspond to the sensors operating at the

location q. Here, q ∈ {A,B,C}. Finally, we denote by Npq = ⟨Vpq, Epq⟩ the subnet

obtained by considering only the nodes corresponding to the sensors that measure the

physical quantity p and operate in the location q, along with the edges linking them.

8.2.2 Network parameters

As pointed out in the Introduction, we use several parameters to construct our

dashboard supporting the extraction of knowledge about environment changes. The

first four parameters are derived from classical network theory; the fifth is derived

from a particular centrality measure proposed in [243]; the last is introduced by

us. In this section, we present an overview of these parameters. In the following,

we define all of them on a reference network N = ⟨V,E⟩. The first parameter is

the Characteristic Path Length, also known as the Average Shortest Path Length.

It is defined as the average length of the shortest paths connecting all possible

pairs of network nodes. More formally, let l(vi, vj) be the length of the shortest

path between vi and vj . The Characteristic Path Length LN of N is defined as:

LN = 1
|V |(|V |−1)

∑
vi∈V

∑
vj∈V,vj ̸=vi

l(vi, vj). The second parameter is the Average

Node Connectivity. Given two nodes vi and vj , their connectivity c(vi, vj) represents

the minimum number of edges that need to be removed to disconnect them. The Aver-

age Node Connectivity CN is defined as: CN = 1
|V |(|V |−1)

∑
vi∈V

∑
vj∈V,vj ̸=vi

c(vi, vj).

The third parameter is the Average Number of Simple Paths. Given two nodes vi and

vj , we indicate by p(vi, vj) the number of simple paths (i.e., paths with no repeated

nodes) between them. Then, we define the Average Number of Simple Paths PN

as: PN = 1
|V |(|V |−1)

∑
vi∈V

∑
vj∈V,vj ̸=vi

p(vi, vj). The fourth parameter is the Aver-

age Clustering Coefficient. In order to define it, we must preliminarily introduce the

neighborhood nbh(vi) of a node vi as follows: nbh(vi) = {vj |eij ∈ E}. Then, we define

the Clustering Coefficient of a node vi as: s(vi) =
2·|{ejk|vj ,vk∈nbh(vi),ejk∈E}|

|nbh(vi)|·(|nbh(vi)|−1) . Finally,

we define the Average Clustering Coefficient as: SN = 1
|V |
∑

vi∈V s(vi). The fifth pa-

rameter is the Average Closeness Vitality. Given a node vi, the closeness vitality t(vi)

represents the increase in the sum of distances between all the pairs of nodes of N ,

when vi is excluded from N [243]. The Average Closeness Vitality TN is defined as:

TN = 1
|V |
∑

vi∈V t(vi). The sixth parameter (i.e., the one introduced by us) is the

Connection Coefficient. It starts from the observation that, in network analysis, one

of the most powerful tools for investigating the connection level of a network is the

concept of clique. As a consequence, it is reasonable to adopt this concept to evalu-

ate the cohesion of a network. This coefficient takes the following considerations into
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account: (i) both the dimension and the number of cliques are important as connec-

tivity indicators; (ii) the concept of clique is intrinsically exponential; in other words,

a clique of dimension n+1 is exponentially more complex than a clique of dimension

n.

In order to define the Connection Coefficient it is necessary to introduce a support

network N π = ⟨V,Eπ⟩, obtained by removing from N the edges with an “excessive”

weight; observe that the nodes of N π are the same as the nodes of N . To formally

define Eπ, we employ the distribution of the weights of the edges of N . Specifically,

let maxE (resp., minE) be the maximum (resp., minimum) weight of an edge of

E. It is possible to define a parameter stepE = maxE−minE
10 , which represents the

length of a “step” of the interval between minE and maxE . We can define dk(E),

0 ≤ k ≤ 9, as the number of the edges of E whose weights belong to the interval

between minE + k · stepE and minE + (k + 1) · stepE . All these intervals are closed

on the left and open on the right, except for the last one that is closed both on the

left and on the right. Eπ can be defined as: Eπ = {eij ∈ E|eij ∈
⋃

k≤thmax
dk(E)}.

We have experimentally set thmax = 6. We are now able to define the Connection

Coefficient QN of N . In particular, let C be the set of the cliques of N π; let Ck be

the set of cliques of dimension k of N π; finally, let |Ck| be the cardinality (i.e., the

number of cliques) of Ck. Then, QN is defined as: QN =
∑|V |

k=1 |Ck| · 2k.

8.2.3 Approach to knowledge extraction

The idea underlying our approach is that, if some changes occur on sensor data

streams, then some variations can be observed in some or all the dashboard param-

eters, when measured on the whole network, and/or on some of its subnetworks, de-

pending on the number, the kind and the location of involved sensors. Our approach

consists of a training phase and a testing phase. To carry out them, we employed

available data (see Section 8.3.1) and, according to the holdout technique, we parti-

tioned these data in such a way as to use 2/3 of them for the training phase and 1/3

of them for the testing phase. As for the training phase, we considered the following

situations: (1) all sensors behaved correctly; (2) two sensors in location A and two

sensors in location B were perturbed, in such a way as to decrease humidity; (3) two

sensors in location B and two sensors in location C were perturbed, in such a way as

to decrease lightness; (4) two sensors in location A and two sensors in location C were

perturbed, in such a way as to increase lightness. Obtained results, along with the

corresponding discussion, are presented in Section 8.3. After the training phase, we

started the testing phase. In this case, we considered the following situations: (1) all

sensors behaved correctly; (2) two sensors in location B and two sensors in location

C were perturbed, in such a way as to decrease humidity; (3) two sensors in location
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A and two sensors in location C were perturbed, in such a way as to decrease light-

ness; (4) two sensors in location A and two sensors in location B were perturbed, in

such a way as to increase lightness. Obtained results, along with the corresponding

discussion, are presented in Section 8.3. Here, we simply point out that our approach

behaved very well and was capable of correctly identifying all perturbations.

Finally, we applied our approach to the following situations: (1) one sensor in the

location A and one sensor in the location B were perturbed, in such a way as to

decrease humidity; (2) one sensor in the locations A and C was perturbed, in such a

way as to increase lightness, and one sensor in the locations B and C was perturbed,

in such a way as to decrease the same physical quantity; (3) three sensors in the

location A and one sensor in the location B were perturbed, in such a way as to

decrease humidity; (4) one sensor in the location A was perturbed, in such a way as

to increase humidity; (5) one sensor in the location B was perturbed, in such a way as

to increase lightness. Obtained results, along with the corresponding discussion, are

presented in Section 8.3. Here, we anticipate that our approach showed its suitability

to detect almost all perturbations.

8.3 Results

8.3.1 Testbed

To collect data for the experiments introduced in Section 8.2.3, we built a WSN by fol-

lowing specific guidelines. In particular, we organized devices in a multi-hop Wireless

Sensor Area Network (WSAN) and managed them through the Building Management

Framework (BMF) [159]. This is a framework for domain-specific networks, which of-

fers an efficient and flexible management of WSANs deployed in indoor areas by

allowing users to take advantage of sensing/actuation intelligent techniques and fast

prototyping of WSAN applications. BMF enabled the use of heterogeneous WSANs

through a base station, which acted both as data collector and network configurator.

Communication between base station and devices was carried out by means of the

BMF Communication Protocol, an application level protocol built on top of multi-hop

network protocols [261, 172]. We composed the WSAN using MICAz sensor devices,

providing 128 kB for program storage, 512 kB for data storage, and 4 kB of RAM.

Devices were powered mainly by means of external power. They were configured to

communicate with the base station, sending data every minute. To test our approach,

we synthetically injected several anomalies at pre-determined time slots. In particu-

lar, to increase lightness, we employed artificial sources of lightness with controlled

intensity, whereas to reduce lightness, we applied artificial lightness filters. Finally,

humidity was controlled by chemicals. Our network consisted of 9 devices labeled by
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increasing numbers. Each device included 3 sensors, which retrieved values for humid-

ity, lightness and temperature. Devices 1, 2 and 3 have been positioned in location A,

devices 4, 5 and 6 operated in location B, devices 7, 8 and 9 were situated in location

C. A, B and C were three different rooms on the same floor of a building. Finally,

we collected data for 24 days without perturbations and other 36 days with several

perturbations, as described in Section 8.2.3.

8.3.2 Obtained results and Discussion

In this section, we report the results obtained by performing all the experiments

mentioned in Section 8.2.3. Preliminarily, we observe that the definition of the six

coefficients forming our dashboard suggests that a decrease of the connection level of

a network or a subnetwork leads to: (i) an increase of LN and TN ; (ii) a decrease

of CN , PN , SN and QN . The purpose of the training phase was to find the optimal

values of some thresholds underlying our approach (for instance, the value of thmax

in the definition of Connection Coefficient - see Section 8.2.2) and to have a first idea

of its behavior. In Table 8.1, we report all the results regarding the training phase

after the optimal values of thresholds were set. In particular, this table consists of

four sub-tables, each corresponding to one of the four situations mentioned in Section

8.2.3. For each situation, we report the values of the six parameters of the dashboard

for the overall network and the subnetworks Nt, Nl, Nh, NA, NB and NC (see Section

8.2.1). In this table, Situation 1 represents the correct one. In Situation 2, we observe:

(i) a very high increase of LN and TN , along with a very high decrease of CN , PN ,

SN and QN for the network Nh; (ii) a high increase of LN and TN , along with a

high decrease of CN , PN , SN and QN for the networks NA and NB ; (iii) a moderate

increase of LN and TN , along with a moderate decrease of CN , PN , SN and QN for

the overall network. In Situation 3 (resp., 4), we observe: (i) a very high increase of

LN and TN , along with a very high decrease of CN , PN , SN and QN for the network

Nl; (ii) a high increase of LN and TN , along with a high decrease of CN , PN , SN and

QN for the networks NB and NC (resp., NA and NC); (iii) a moderate increase of

LN and TN , along with a moderate decrease of CN , PN , SN and QN for the overall

network. These results confirm that our approach is really capable of capturing the

perturbations in wireless sensor networks or subnetworks caused by sensor anomalies

(and, indirectly, it is able to evaluate the network and subnetwork resilience to sensor

anomalies). The only weakness revealed by this first test is that, in its current version,

our approach is not able to tell us if these perturbations are caused by an increase or

a decrease of the corresponding physical quantity.

The purpose of the testing phase was to verify both the setting of the threshold

values and the corresponding results detected during the training phase. In Table 8.2,
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Network LN CN PN TN QN SN

Overall 1.1054 22.4387 6508290 64.2548 1163264 0.8944

Nt 1.0322 7.1056 14232 15.1429 592 0.8413

Nl 1.0451 7.1111 13200 16.6667 592 0.8595

Nh 1.0278 7.5833 16758 16.9143 512 0.9722

NA 1.1944 5.6944 8012 23.7241 224 0.8339

NB 1.1667 5.9444 9274 22.4000 256 0.8582

NC 1.1944 6.0556 7896 23.7241 288 0.7794

Overall 1.1795 20.0684 4652472 74.7500 227328 0.8239

Nt 1.1189 6.4444 10376 21.1613 384 0.8212

Nl 1.1011 6.5833 11816 20.0000 320 0.7905

Nh 1.4167 3.9444 2268 38.0952 96 0.5270

NA 1.3611 4.5000 3208 34.0870 120 0.5582

NB 1.3456 4.7778 4572 32.0800 144 0.5858

NC 1.1833 6.0444 7828 26.9091 248 0.7832

Overall 1.2194 19.1937 3790486 81.2263 99840 0.7796

Nt 1.2556 5.8778 9924 20.8824 412 0.7392

Nl 1.5000 4.1111 6102 26.3704 192 0.6000

Nh 1.0556 7.2778 14924 17.8824 512 0.9392

NA 1.2111 5.4000 7990 23.0000 200 0.8571

NB 1.3222 4.5278 5990 29.1429 108 0.5630

NC 1.3333 4.7778 3824 32.0000 120 0.5407

Overall 1.2394 18.1937 3480632 80.2263 97650 0.7823

Nt 1.2356 5.6648 9633 21.2435 408 0.7491

Nl 1.5200 3.9345 6260 27.3221 192 0.5800

Nh 1.0776 6.9318 13924 17.7623 512 0.9154

NA 1.3782 4.4987 5843 28.2322 108 0.661

NB 1.1911 5.1000 7232 23.0000 206 0.8200

NC 1.3433 4.6578 3126 31.6850 120 0.5207

Table 8.1. Results obtained by our approach during the training phase
we report all the results regarding this phase. Observe that the situations considered

during this phase are the same as the ones examined during the training phase; how-

ever, we modified the subnetworks (among A, B and C) involved in each perturbation

in such a way as to prevent overfitting. Obtained results confirm that the selection

of the threshold values performed during the training phase was correct. They also

confirm all the observations about the features of our approach, which we drew at the

end of the training phase.

After the testing phase confirmed the suitability of our approach, we applied it

to new situations not considered during the previous phases. These situations are

described in detail in Section 8.2.3. In Table 8.3, we report the corresponding results.

From their analysis we can draw very interesting observations. In particular, in Situ-

ation 1, we obtain the same trend as the one seen in Situation 2 of the training phase.

However, the perturbation degree is more reduced. This is correct because, for loca-

tions A and B, we perturbed one sensor, instead of two. In Situation 2, we observe:

(i) a very high increase of LN and TN , along with a very high decrease of CN , PN ,

SN and QN for the network Nl; these increases and decreases are comparable with

the ones observed in Situation 3 of the training phase; (ii) a moderate (resp., high,
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Network LN CN PN TN QN SN

Overall 1.1135 20.4387 7120293 65.3746 1163264 0.9144

Nt 1.0411 6.5306 13939 15.1529 592 0.8712

Nl 1.0361 6.2480 13737 17.1227 592 0.8891

Nh 1.0235 7.3311 16123 16.8242 512 0.8920

NA 1.1826 5.4129 7910 22.7241 228 0.8451

NB 1.1700 5.8331 8992 21.4000 256 0.8112

NC 1.1929 6.2410 7786 23.7241 288 0.8042

Overall 1.1896 20.1224 4993459 72.63 294629 0.8484

Nt 1.1289 6.2468 11001 22.1982 320 0.8391

Nl 1.2133 6.6631 10829 21.0782 384 0.8081

Nh 1.5177 3.8104 3124 37.1719 112 0.5328

NA 1.1922 6.2324 7128 27.8801 208 0.7312

NB 1.3232 4.9188 4492 31.9500 128 0.5558

NC 1.3511 4.4780 3198 33.0870 118 0.5182

Overall 1.2766 20.2308 4290486 81.3094 97744 0.7824

Nt 1.3111 5.5833 9850 20.0000 258 0.7825

Nl 1.4389 4.0833 3438 25.9750 96 0.6412

Nh 1.0242 7.3611 13978 18.4421 384 0.9825

NA 1.3056 4.5278 4762 30.1515 108 0.5713

NB 1.1896 5.5278 7288 22.1429 216 0.8462

NC 1.2825 4.9444 3594 32.9143 96 0.5356

Overall 1.2251 17.9876 3990563 82.2263 97650 0.7769

Nt 1.2944 5.8326 9112 22.7241 408 0.7839

Nl 1.4678 4.6161 6383 26.3352 112 0.5455

Nh 1.1111 6.5833 13816 17.6686 384 0.9005

NA 1.4001 4.7144 6152 27.8652 96 0.6148

NB 1.3675 4.3056 3886 30.9850 88 0.5198

NC 1.1887 6.2421 7341 22.7692 256 0.8825

Table 8.2. Results obtained by our approach during the testing phase
very high) increase of LN and TN , along with a moderate (resp., high) decrease of

CN , PN , SN and QN , for the networks NA and NB (resp., NC , Nl); (iii) a moderate

increase of LN and TN , along with a moderate decrease of CN , PN , SN and QN , for

the overall network. Observe that, since our approach considers perturbations, but it

currently does not distinguish between increases and decreases, even if, in the net-

work Nl, there are opposite perturbations in two lightness sensors, their consequences

are not nullified by our approach, but, on the contrary, are “combined” by it. In our

opinion, this is a correct behavior of our approach. In Situation 3, we observe: (i) an

increase (resp., decrease) of LN and TN (resp., CN , PN , SN and QN ), comparable

with the one of Situation 2 of the training phase for both the overall network and

the network Nh; (ii) a significant (resp., moderate) increase of LN and TN , along

with a significant (resp., moderate) decrease of CN , PN , SN and QN for the network

NA (resp., NB). In Situation 4 (resp., 5), we observe: (i) a very moderate increase of

LN and TN , along with a very moderate decrease of CN , PN , SN and QN for the

overall network and for the networks Nh and NA (resp., Nl and NB). This reveals a

second weakness of our approach, which shows a difficulty to find a single anomaly.

Indeed, in this case, it found a slight change in the dashboard parameters for both
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Network LN CN PN TN QN SN

Overall 1.1435 21.5534 5580928 70.0000 114264 0.8534

Nt 1.0712 6.3159 11432 18.2221 384 0.8613

Nl 1.0572 6.4354 11202 18.6667 384 0.8564

Nh 1.2578 4.5673 4564 22.2124 144 0.8123

NA 1.2235 5.1843 6006 28.3673 200 0.7034

NB 1.2351 5.4992 8842 27.4332 224 0.6982

NC 1.1833 5.3556 7828 24.7347 248 0.7792

Overall 1.2199 19.3747 3948573 80.3252 97650 0.7856

Nt 1.2456 5.6658 8562 21.9383 388 0.7467

Nl 1.6100 3.5039 5987 28.2392 192 0.5971

Nh 1.0877 6.4837 12527 17.3877 512 0.8672

NA 1.2292 4.5948 7873 27.223 228 0.6823

NB 1.2334 5.1229 7367 26.2391 228 0.6891

NC 1.2921 4.6578 3834 32.2320 120 0.5012

Overall 1.1235 21.9987 3977283 74.5673 231872 0.8223

Nt 1.1312 6.2989 12345 21.3939 512 0.8323

Nl 1.1433 6.5643 12234 20.3332 512 0.8340

Nh 1.4872 3.9440 3542 38.9412 120 0.7795

NA 1.8342 2.2338 1987 35.1843 96 0.4032

NB 1.2151 4.4738 6932 25.6230 224 0.5820

NC 1.1933 6.0872 8239 23.3235 284 0.7780

Overall 1.1228 21.3789 6184736 67.3233 131872 0.8534

Nt 1.0613 6.4599 12341 17.3939 592 0.8613

Nl 1.0732 6.8865 12854 16.3452 592 0.8564

Nh 1.1640 5.6534 9532 20.9482 288 0.8123

NA 1.2132 5.1928 6987 26.1212 288 0.7034

NB 1.1951 5.4738 9928 24.7210 320 0.6982

NC 1.19445 5.5872 8239 23.3235 320 0.7792

Overall 1.1289 21.8729 6857326 67.3252 131662 0.8556

Nt 1.0782 6.7654 12662 17.2352 592 0.8467

Nl 1.1728 5.9987 5987 20.4568 288 0.8023

Nh 1.0654 6.2356 12277 16.4555 592 0.8553

NA 1.1892 5.6457 9854 25.3356 320 0.7061

NB 1.2234 5.0101 5346 26.4564 288 0.7072

NC 1.1921 5.5482 8899 23.2845 284 0.7843

Table 8.3. Results obtained by our approach during the examination of some situations of

interest
the whole network and the involved subnetworks. This is mainly due to the purpose

of our approach, which does not aim at performing anomaly detection in one sensor

(actually, a long list of approaches carrying out this task - e.g., [204, 263, 331, 471]

- already exists) but, instead, it aims at detecting the consequences, on the whole

network and its subnetworks, of anomalies involving more (heterogeneous) sensors

installed in different locations. In fact, in this case, the interaction of these anomalies

in the network could be extremely variegate and could depend on the number, the

kind and the location of perturbed sensors, so that their detection, along with the

detection of their effects, becomes extremely difficult and justifies the employment of

quite time-expensive approaches like ours. As for this issue, the results described in

this section allow us to conclude that our approach reaches the objectives for which

it was designed.
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Multiple IoTs

9.1 Introduction

We already pointed out in Section 1 that the idea underlying SIoT is extremely inter-

esting and, as a matter of fact, has received, and is still receiving, a lot of attention in

the literature. However, we think that, in the next future, the number of relationships

that might connect things could be much higher than five, and relationships could be

much more variegate than the ones currently considered by SIoT. As a consequence,

we think that a new paradigm, taking into account this fact, is in order.

In [82, 335], we introduced the concept of Social Internetworking System (SIS,

for short) as a system comprising an undefined number of users, social networks

and resources. The SIS paradigm was thought to extend the Single Social Network

paradigm by taking into account that: (i) a user can join many social networks, (ii)

these joins can often vary over time, and (iii) the presence of users joining more social

networks can favor the cooperation of users, who do not join the same social networks.

We think that the key concepts of SIS can also be applied to things (instead of to

users) and to relationships between things and, in this chapter, we propose the MIoT

(Multiple Internets of Things) paradigm. The core of the SIS paradigm is modeling

users and their relationships as a unique big network and, at the same time, as a set

of related social networks connected to each other thanks to those users joining more

than one social network. In this chapter, we propose to extend the ideas underlying

the concept of SIS to IoT. The MIoT paradigm arises as a result of this objective.

Roughly speaking, a MIoT can be seen as a set of things connected to each other

by relationships of any kind and, at the same time, as a set of related IoTs, one for

each kind of relationship. Actually, a more precise definition of MIoT would require

the introduction of the concept of instance of a thing in an IoT. According to this

concept, the instance of a thing in an IoT represents a virtual view of that thing

in the IoT. Having this in mind, a MIoT can be seen as a set of related IoTs, one

for each kind of relationship into consideration. The nodes of each IoT represent the
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instances of the things participating to it. As a consequence, a thing can have several

instances, one for each IoT to which it participates. As will be clear in the following,

the existence of more instances for one thing plays a key role in the MIoT paradigm

because it allows the definition of the cross relationships among the different IoTs of

the MIoT.

Differently from SIoT, in the MIoT paradigm, the number of relationships is not

defined a priori. In a MIoT, there is a node for each thing; furthermore, there is an

edge between two nodes if the corresponding things are linked by a relationship. If

more kinds of relationship exist between two things, then more edges exist between

the corresponding nodes, one for each kind of relationship. All the nodes linked by a

given kind of relationship, together with the corresponding edges, form an IoT of the

MIoT.

Observe that, under this MIoT definition, SIoT can be seen as a specific case of

MIoT in which the number of the possible kinds of relationship is limited to 5 and these

kinds are pre-defined. IoTs are interconnected thanks to those nodes corresponding

to things involved in more than one kind of relationship. We call cross nodes (c-nodes,

for short) these nodes and inner nodes (i-nodes, for short) all the other ones. Then,

a c-node connects at least two IoTs of the MIoT and plays a key role to favor the

cooperation among i-nodes belonging to different IoTs. As a consequence, differently

from SIoT, the nodes of a MIoT are not all equal: c-nodes will presumably play a

more important role than i-nodes for supporting the activities in a MIoT.

Note that the MIoT paradigm can be seen as an attempt to address an open

issue evidenced in [40] about some improvements that should be made on the SIoT

paradigm. Among these improvements, two very relevant ones evidenced in this chap-

ter are the following:

• defining inter-objects relationships; this issue requires a correct representation of

a smart object and the definition of both methods and tools to crawl and discover

other (possibly heterogeneous) objects with which interactions can be established;

• modeling the new social networks thus obtained, characterizing them and defining

new algorithms to perform their analysis.

The MIoT paradigm already mentioned, and the crawling strategy, which we

present below, taken together, can represent an answer to these exigencies of im-

provement.

From a more applicative point of view, having some IoTs that can “communicate”

through c-nodes can lead to some beneficial synergies. For instance, assume that an

environment-related IoT can communicate with a home-related IoT through a cross

node. Assume that the former IoT evidences an abnormal presence of dioxin in a place
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located some kilometers away from the home (for instance, owing to a fire of a plastic

deposit). Assume, also, that this IoT is evidencing that the wind direction is pushing

the dioxin towards the home. The home-related IoT could be “informed” through a

cross node about this fact and could close all windows before the arrival of the dioxin.

Once a MIoT has been defined, it is possible to apply Social Network Analysis-

based techniques on it to extract powerful knowledge concerning its things, their

relationships, the IoTs formed by them, etc. However, in order to perform knowledge

extraction, especially when the number of the things to investigate is huge, an impor-

tant pre-requisite is having a good approach to crawl the underlying graph. Crawling

is also extremely useful in a second family of applications, based on the exploration

of the “neighborhood” (i.e., things and relationships) of a given thing (think, for in-

stance, of the case in which a new thing is added to the Internet of Things and wants

to create relationships with other things). There are also a lot of further possible

applications of crawling, already known in the literature [338, 436], and that can be

extended to the Internet of Things.

In the literature, several crawling strategies for single social networks have been

proposed. Among them, the most representative ones are: (i) Breadth-First Search

(BFS, for short) [470], which moves in breadth by exploring the neighborhood of each

node; (ii) Random Walk (RW, for short) [283], which moves in random directions;

(iii) Metropolis-Hastings Random Walk (MH, for short) [426, 247, 376], which moves

in random directions, disfavoring high-degree nodes. These strategies were largely

investigated for single networks, and their pros and cons have been highlighted in

[171, 249].

However, we have seen that, in a MIoT, there exist two different kinds of node,

and none of the previous strategies considers this fact, as they were developed for

crawling a single network. We argue that a new strategy, capable of distinguishing

c-nodes from i-nodes and of performing a right tradeoff between breadth, depth and

randomicity, is in order. Therefore, a second objective of this chapter is addressing this

issue. In fact, we propose a new crawling strategy, called Cross Node Driven Search

(CDS, for short). CDS is centered on c-nodes; in fact, it allows users to privilege the

visit of c-nodes over the one of i-nodes, if necessary, and to tune how much c-nodes

should be privileged over i-nodes.

To prove the correctness of CDS, we tested it against the three main classic strate-

gies mentioned above. In carrying out this task, we defined, and, then, used different

metrics aimed to evaluate the quality of each crawler under consideration. The re-

sults of these experiments confirm our assumption about the inadequacy of the classic

crawling strategies for a MIoT and, by contrast, the suitability of the new CDS strat-

egy in this context.
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This chapter is organized as follows: in Section 9.2, we illustrate related literature.

In Section 9.3, we present the MIoT paradigm. In Section 9.4, we describe the CDS

crawler and illustrate the experimental campaign, which we performed to test it. In

Section 9.5 we propose a comparison between our model and approach and other,

more or less conventional, ones.

9.2 Related Literature

Several years have passed since the IoT paradigm was introduced [38, 41, 314, 363].

During this period, the term “Internet of Things – IoT” has been associated with a

huge variety of concepts, technologies and solutions. For instance, in the last few years,

new technologies, such as Big Data [86] and Social Networking, have been applied to

IoT and have changed, and are currently changing, the very definition of this term.

What IoT will become in the future depends on the evolution of these technologies

[438].

The current research on IoT focuses on the capability of connecting every object

to the Internet. This way of thinking IoT led to the Web of Things (hereafter, WoT)

paradigm [184, 183, 215] and to the application of Social Networking to the IoT

domain [40]. In the next future, these technologies will be combined with other ones,

such as Information Centric Networks [425, 479, 480, 32, 372, 33, 361] and Cloud

[131, 433, 229]. As a matter of fact, the strengths of these last ones are exactly the

features necessary to overcome the weaknesses of the current IoT concept [467]. Some

examples of this combination can be already found in the literature [150, 180, 449,

448].

Significant efforts have been made to apply the Social Networking ideas to the

IoT domain. Actually, the implementation of reliable IoTs [39] passes through the

definition of a complex architecture capable of managing services. In this research

direction, the authors of [362] propose CASCOM, a model devoted to simplify the in-

teraction between consumers and data in an IoT context. It is also necessary that this

complex architecture enables a complete connectivity among things [248], guarantees

quick reactions to frequent state variations and, finally, ensures a good scalability.

Furthermore, as IoT is based on the Internet, it must address the same security

issues characterizing this network [222]. Therefore, the development of new architec-

tures capable of fulfilling security and privacy requirements is in order [483].

The first attempts to apply Social Networking to the IoT domain can be found in

[182, 333, 245, 205]. In these papers, the authors propose to use human social network

relationships to share services provided by a set of things.
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An important step forward is performed in [39], where the SIoT paradigm is in-

troduced. Here, the authors propose an approach to creating relationships among

things, without requiring the owner intervention. Thanks to this idea, things can

autonomously crawl the network to find services and resources of their interest pro-

vided by other things. In [42], the same authors clearly highlight what are the main

strengths of SIoT. Specifically: (i) the SIoT structure can be dynamically modified to

ensure network navigability and to find new things; (ii) scalability is guaranteed, like

in human social networks; (iii) a level of trustworthiness between things can be es-

tablished; (iv) the past social network approaches can be redefined to solve problems

typical of the IoT context [342].

Today, the connection level of humans and things is continuously increasing, so

that it appears reasonable to start to investigate the “network of networks” scenario,

thus passing from Social Networking to Social Internetworking. One of the most in-

teresting attempts in this direction is Social Internetworking System (hereafter, SIS);

it regards the connection of several human networks to form a network of human

networks [82, 335]. The strength of SIS resides in the fact that this structure is ca-

pable of interconnecting users joining different social networks. In this new scenario,

concepts and tools of Social Network Analysis can be adapted to evaluate the main

features concerning the interactions between users belonging to the same network or

to different networks. This new paradigm aims at guaranteing a tradeoff between the

autonomy of each network of the SIS and the possibility of increasing power, efficiency

and effectiveness, obtained through the interaction of the networks of the SIS. To the

best of our knowledge, no architecture similar to SIS has been proposed for networks

of things yet.

In [40], the authors point out that there are still several open issues that must be

investigated in the SIoT paradigm. In particular, making things capable of establishing

heterogeneous social relationships requires specific investigations and new approaches.

Among them, the most relevant ones for our context are: (i) Defining inter-objects

relationships. This task requires a correct digital representation of a smart object and

the definition of a methodological and technological solution capable of crawling and

discovering other (possibly heterogeneous) objects, with which interactions can be

established. (ii) Modeling the new social graphs thus obtained, in such a way as to

characterize them and to define new algorithms for performing their analysis.

Crawling represents a key issue for the implementation of the IoT paradigm. The

necessity of addressing this issue is mentioned in many papers (e.g., [40, 286, 404,

168, 133], to cite a few). In spite of this high demand, just few papers addressing this

problem can be found in the past literature on IoTs. Most of the approaches proposed

in these papers focus on the creation of search engines conceived to operate on IoT
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[286, 289] or, more often, on the Web of Things [436, 104]. In [436], an accurate survey

on this last research area is presented.

In [154], the authors propose a geo-based crawler for IoT aiming at minimizing

inter-site communication costs. Every site uses its own crawler that is provided with

some predefined rules for fetching and parsing the Web. In [133], a framework to

automatize the search, and the next classification, of services belonging to a digital

health ecosystem, is proposed. This framework exploits both a focused web crawler,

which explores the network, and a social classification system. In [269], the authors

propose an approach aimed at improving the existing web crawlers, when they operate

on IoT, and to catch up the fingerprints of the IoT nodes. This approach is based on

an incremental crawler, which periodically classifies nodes in such a way as to ensure

the highest classification accuracy for the most important ones.

In [266], the crawling problem is approached from a different perspective. Indeed,

one of the main problems in a network of things is battery consumption. To avoid it, in

most cases, sensors perform a working-sleeping duty cycle. The authors of [266] model

the crawling problem as a scheduling one and define a sleep-aware schedule method

called EasiCrow. This method is well suited to crawl sensors with an asynchronous

sleeping cycle. In [403], the authors, starting from the assumption that things are

becoming the major producers and consumers of data, propose a system to extract

data from different sources. Once data has been acquired, this system provides suitable

interfaces allowing both humans and machines to share and dynamically search the

services of their interest.

9.3 The MIoT paradigm

We define a MIoT M as a set of m Internets of Things (see Figure 9.1 for a schematic

representation of it)1. Formally speaking:

M = {I1, I2, · · · , Im}

where Ik is an IoT.

Let oj be an object of M. We assume that, if oj belongs to Ik, it has an instance

ιjk , representing it in Ik. As pointed out in the Introduction, in this chapter, the

instance ιjk indicates a virtual view (or, better, a virtual agent) representing oj in Ik.

1 In this chapter, the term “IoT” is intended according to the new trends that characterize

this research field [40]. These trends suggest that, with the explosion of the number of

available things, it is not realistic to talk about a unique Internet of Things. By contrast,

it is more appropriate to consider several IoTs, each consisting of a (social) network of

things.
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Fig. 9.1. Schematic representation of the proposed MIoT structure

For instance, it provides all the other instances of Ik, as well as the users interacting

with Ik, with all necessary information about oj . Interestingly, this information is

represented according to the format and the conventions adopted in Ik.
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InM, a set MDj of metadata are associated with an object oj . We define a rich set

of metadata of an object, because these play a key role in favoring the interoperability

of IoTs and of their objects, which is the main objective of a MIoT. As a consequence,

MDj consists of three different subsets:

MDj = ⟨MDD
j ,MDT

j ,MDO
j ⟩

Here:

• MDD
j represents the set of descriptive metadata. It denotes the type of oj . For

representing and handling descriptive metadata, a proper taxonomy, such as the

one defined by the IPSO Alliance [5], can be adopted.

• MDT
j represents the set of technical metadata. It must be compliant with the

object type. In other words, there is a different set of metadata for each object

type of the taxonomy. Also in this case, the IPSO Alliance provides a well defined

set of technical metadata for each object type. It is worth pointing out that, in

principle, we could have allowed much richer descriptive and technical metadata.

However, we did not make this choice because we preferred to relate our definition

of metadata to an international IoT standard, such as the one defined by the

IPSO Alliance. Furthermore, as will be clear in the following, our approach needs

mainly operational metadata. As a consequence, making descriptive and technical

metadata more complex would have added a useless level of complexity to our

model.

• MDO
j represents the set of operational metadata. It regards the behavior of oj .

The operational metadata of an object oj is defined as the union of the sets of

the operational metadata of its instances. Specifically, let ιj1 , ιj2 , . . . , ιjl , l ≤ m,

be the instances of oj belonging to the IoTs of M. Then:

MDO
j =

l⋃

k=1

MDO
jk

MDO
jk is the set of the operational metadata of the instance ιjk . In order to

understand the structure ofMDO
jk , we first have to analyze the structure ofMDO

jqk ,

i.e. the set of operational metadata between two instances ιjk and ιqk , of the objects

oj and oq, in the IoT Ik.

Specifically,MDO
jqk is given by the set of metadata associated with the transactions

between ιjk and ιqk . In particular:

MDO
jqk = {Tjqk1

, Tjqk2
, . . . , Tjqkv

}
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where Tjqkt
, 1 ≤ t ≤ v, represents the metadata of the t-th transaction between

ιjk and ιqk , assuming that v is the current number of transactions between the

two instances.

Tjqkt
can be represented as follows:

Tjqkt
= ⟨reasonjqkt

, typejqkt
, inst1jqkt

, inst2jqkt
, successjqkt

, startjqkt
, finishjqkt

⟩

where:

– reasonjqkt
denotes the reason causing the transaction, chosen among a set of

default values.

– typejqkt
indicates the transaction type (e.g., unicast, multicast, and so forth).

– inst1jqkt
and inst2jqkt

denote the two instances involved in Tjqkt
. Observe that

a transaction between ιjk and ιqk could be part of a longer path whose source

and/or target nodes could be different from ιjk and ιqk . In principle, the source

and/or the target nodes of a transaction could belong to an IoT different from

Ik. In this last case, it is necessary to reach Ik from the source, and/or to

reach the target from Ik, through one or more cross nodes, if possible.

– successjqkt
denotes if the transaction succeeded.

– startjqkt
is the timestamp associated with the beginning of the transaction.

– finishjqkt
is the timestamp associated with the end of the transaction (its

value is NULL if Tjqkt
failed).

In our model, the direction of a transaction is not considered. Furthermore, the

parameter v, i.e., the number of transactions for each pair of instances, varies when

moving from a pair of instances to another.

Observe that we have made our model powerful enough to represent and handle

all the transactions between two instances of each IoT. Having all these detailed

historical data at disposal could help the analysis of the real “social” behavior

of each object. Furthermore, these data could be exploited in many applications;

think, for instance, of the computation of the trust and reputation of each ob-

ject, the investigation of objects with similar or complementary behaviors, and

so forth. On the other hand, maintaining a full history of transactions may be

very expensive and useless in many real life applications; in some cases, suitable

data summarizations could be enough. As a consequence, when passing from the

abstract model definition to real life applications, the transaction representation

could be removed, extended or restricted on the basis of a tradeoff between costs

and benefits for the current application.

We are now able to define the set of the operational metadata MDO
jk of an instance

ιjk of Ik. Specifically, let ι1k , ι2k , . . . , ιwk be all the instances belonging to Ik. Then:
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MDO
jk =

⋃

q=1..w,q ̸=j

MDO
jqk

In other words, the set of the operational metadata of an instance ιjk is given by

the union of the sets of the operational metadata of the transactions between ιjk and

all the other instances of Ik.

Given an instance ιjk , relative to an object oj and an IoT Ik, we define the

metadata MDjk of ιjk as:

MDjk = ⟨MDD
j ,MDT

j ,MDO
jk⟩

In other words, the descriptive and the technical metadata of an instance ιjk coin-

cide with the ones of the corresponding object oj . Instead, the operational metadata

of ιjk is a subset of the operational metadata of oj that comprise only those ones

regarding the transactions, which ιjk is involved in.

It is possible to associate a graph:

Gk = ⟨Nk, Ak⟩

with Ik. Here, Nk indicates the set of the nodes of Ik. There is a node njk for each

instance ιjk of an object oj in Ik. Ak denotes the set of the edges of Ik. There is an

edge ajqk = (njk , nqk) if there exists a link between the instances ιjk and ιqk of the

objects oj and oq in the IoT Ik.

Also the overall MIoT M can be represented as a graph:

M = ⟨N,A⟩

Here:

• N =
⋃m

k=1 Nk;

• A = AI ∪AC , where:

– AI =
⋃m

k=1 Ak;

– AC = {(njk , njq )|njk ∈ Nk, njq ∈ Nq, k ̸= q}; observe that njk and njq are the

nodes corresponding to the instances ιjk and ιjq of the object oj in Ik and Iq.

In other words, a MIoT M can be represented as a graph whose set of nodes is

the union of the sets of nodes of the corresponding IoTs. The set A of the arcs of M

consists of two subsets, AI and AC . AI is the set of the inner arcs of M and is the

union of the sets of the arcs of the corresponding IoTs. AC is the set of the cross arcs

of M; there is a cross arc for each pair of instances of the same object in different

IoTs. We call:

• i-edge an edge of M belonging to AI ;
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• c-edge an edge of M belonging to AC ;

• c-node a node of M involved in at least one c-edge;

• i-node a node of M not involved in any c-edge;

• c-object an object having at least one pair of instances whose corresponding nodes

are linked by a c-edge; clearly, any object with at least two different instances is

a c-object.

It is worth pointing out that, as mentioned in the Introduction, there is a strict

correlation between the MIoT paradigm and the concept of Social Internetworking

System (hereafter, SIS) already presented in the literature [82]. In particular: (i) the

concept of c-edges shares several features with the one of “me”-edge in a SIS; (ii) the

concept of c-node is similar to the one of bridge in a SIS; (iii) a c-object corresponds

to a user joining more social networks.

9.3.1 An example of a MIoT

Since the MIoT paradigm is new, in the Internet there is no known case study or

real example about it yet. As a consequence, to provide the reader with an example,

and, at the same time, to have a testbed for our experiments, we constructed a MIoT

starting from some open data about things available on the Internet. In particular, we

derived our data from Thingful [3]. This is a search engine for the Internet of Things,

which allows us to search among a huge number of existing things, distributed all

over the world. Thingful also provides some suitable APIs allowing the extraction of

all the data we are looking for.

In order to construct our MIoT, we decided to work with 250 things whose data

was derived from Thingful. Given the huge number of things available in Thingful, it

could appear that the number of things composing our testbed is excessively limited.

However, we observe that:

• This was the first attempt to construct a real MIoT and, then, it was extremely

important for us to have a full control of it in order to verify if we were proceeding

well. A full human control with a much higher number of nodes was not possible.

• We wanted to fully analyze the behavior, the strengths and the weaknesses of our

crawler and to understand, step by step, its way of operating vs the ones of other

crawlers. Again, a full human verification of these aspects was not possible with a

larger testbed.

• As it will be clear in the following, our approach to obtaining the testbed is fully

scalable. As a consequence, an interested researcher can apply it to construct a

much larger testbed, if necessary.

We considered three dimensions of interest for our MIoT, namely:
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a. Category: It specifies the application field which a given thing operates in. The

categories we have chosen were five, namely home, health, energy, transport, and

environment. Each category originated an IoT. Each thing was assigned to exactly

one category.

b. Coastal distance: It specifies the coastal distance (i.e., the distance from any sea,

lake or river) of each thing. The distance values we have set were:

• near, for things distant less than 20 kilometres from the coast, for the cate-

gories environment and energy, and less than 5 kilometres, for the other three

categories;

• mid, for things whose minimum distance from the coast was between 20 and

105 kilometres, for the categories environment and energy, and between 5 and

25 kilometres, for the other three categories;

• far, for things whose minimum distance from the coast was higher than 105

kilometres, for the categories environment and energy, and higher than 25

kilometres, for the other three categories.

An IoT was created for each distance value. The different coastal distance values

for environment and energy, on the one hand, and for the other three categories,

on the other hand, have been determined after having analyzed the distribution

of the involved categories of things against the coastal distance, in such a way

as to produce a uniform distribution of each category of things in the three IoTs

related to the coastal distance dimension.

c. Altitude: it specifies the altitude of the place where the thing is located. The

altitude values we have defined were: plain (corresponding to an altitude less than

500 meters), hill (corresponding to an altitude between 500 and 1000 meters), and

mountain (corresponding to an altitude higher than 1000 meters). An IoT was

created for each altitude value.

As a consequence, our MIoT consists of 11 IoTs. We associated an object with

each thing; therefore, we had 250 objects. In principle, for each object, we could have

associated an instance for each dimension. However, in order to make our testbed

closer to a generic MIoT, representing a real scenario, where it is not said that all

the objects have exactly the same number of instances, we decided not to associate

three instances with each object. Instead, we associated only one instance (distributed

uniformly at random among the three dimensions, and based on the features of the

things of the IoTs of a given dimension) to 200 of the 250 objects. Analogously,

we associated two instances (distributed by following the same guidelines mentioned

above) to 35 of the 250 objects. Finally, we associated three instances, one for each
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IoT Number of instances

a.home 22

a.health 22

a.energy 22

a.transport 22

a.environment 22

b.near 14

b.mid 38

b.far 53

c.plain 44

c.hill 50

c.mountain 6

Table 9.1. Number of instances present in the IoTs of our MIoT

possible dimension, to 15 of the 250 objects. At the end of this phase, we had 315

instances, distributed among the 11 IoTs of our MIoT as shown in Table 9.1.

To complete our MIoT and its network representation, we had to define a policy

to create i-edges. In fact, it was clear that our MIoT should have had a node for

each instance and a c-edge for each pair of instances referring to the same object.

Therefore, the last decision regarded how to define i-edges. Given our scenario, it

appeared reasonable to consider distances among things as the leading parameter for

the creation of i-edges. To carry out this last task, we have preliminarily computed

the distribution of the number of connected components possibly created from our

instances against the maximum possible distance. Obtained results are reported in

Figure 9.2. Based on this figure, in order to obtain a balanced number of connected

components, we decided to connect two instances of the same IoT if the distance of

the corresponding things was lesser than 1000 kilometres.

After this last choice, our MIoT was fully defined. In order to help the reader

to mentally portray it, in Figure 9.3, we provide a graphical representation. The

interested reader can find the corresponding dataset (in the .csv format) at the

address www.barbiana20.unirc.it/miot/datasets/miot1. The password to type is

“za.12&;lq74:#”.

9.3.2 Why use the MIoT paradigm?

In the Introduction, we have specified that the MIoT paradigm goes in the direction

suggested by some authors, who observe that it is no longer possible to think of a

single global Internet of Things [40].
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distance (Km)

Fig. 9.2. Distribution of the number of connected components of the instances of our MIoT

against distances

Fig. 9.3. Graphical representation of our MIoT

In this section, we present a case study aiming at comparing the classical vision

of a unique global Internet of Things with the new MIoT-based vision of several

Internets of Things connected to each other through cross nodes and cross edges. In

our opinion, this case study can help the reader to be convinced of the practicality of

the MIoT paradigm.

First, we must clarify that a slavish comparison between the previous vision of

IoT and the MIoT-based vision is not possible, because this last paradigm associates

more instances with the same object, one for each network joined by it. By contrast,

the classical global IoT-based vision considers only objects and does not allow the
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Fig. 9.4. Our case study

existence of more instances of the same object. In other words, the global IoT-based

vision returns a coarser model of the involved things and their relationships, incapable

of verifying if the same object shows different features or behaviors in different sub-

networks of the global network. Vice versa, this verification is not only possible, but

also natural, in the MIoT paradigm. Indeed, it is sufficient to investigate the different

features and behaviors of the various instances of the same object in the IoTs they

belong to.

After having made this important premise, which already represents a justification

of the usefulness of the MIoT paradigm, we start by presenting our case study by which

we aim at showing that the global IoT-based vision can provide imprecise information

about the features and the roles of the corresponding things.

Since the global IoT-based vision does not consider object instances, in this case

study we assume that all the instances of a cross object have been merged in a unique

c-node.

With this considerations in mind, let us consider Figure 9.4. Here, we report a

set of nodes each associated with an object. If we consider the global IoT-based

vision, all these nodes form a unique IoT where it is possible to distinguish two quite

separated subnetworks, called S1 and S2 in the figure, connected only thanks to the

object represented by Node 1. If we consider the MIoT-based vision, we have two IoTs

connected, by means of the object represented by Node 1, to form a MIoT.

Let us focus our attention on this node. Clearly, it is the most important node

of this scenario because it is the only one allowing the communication and the co-
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Nodes Betweenness Centrality Degree Centrality Closeness Centrality Eigenvector Centrality

1 0.39 (3) 0.19 (4) 0.44 (4) 0.30 (4)

2 0.07 (6) 0.09 (8) 0.41 (5) 0.20 (6)

3 0.00 (11) 0.05 (11) 0.33 () 0.13 (14)

4 0.00 (12) 0.05 (12) 0.33 () 0.13 (15)

5 0.07 (7) 0.14 (6) 0.47 (3) 0.34 (3)

6 0.52 (1) 0.38 (1) 0.48 (2) 0.34 (2)

7 0.01 (9) 0.09 (9) 0.34 () 0.19 (7)

8 0.01 (10) 0.09 (10) 0.34 () 0.19 (8)

9 0.04 (8) 0.14 (7) 0.37 (6) 0.23 (5)

10 0.0 (13) 0.04 (13) 0.35 (9) 0.13 (10)

11 0.0 (14) 0.04 (14) 0.35 (10) 0.13 (11)

12 0.0 (15) 0.04 (15) 0.35 (11) 0.13 (12)

13 0.0 (16) 0.04 (16) 0.35 (12) 0.13 (13)

14 0.48 (2) 0.38 (2) 0.52 (1) 0.49 (1)

15 0.35 (4) 0.23 (3) 0.35 (7) 0.11 (16)

16 0.0 (17) 0.05 (17) 0.26 (17) 0.03 (19)

17 0.0 (18) 0.05 (18) 0.26 (18) 0.03 (20)

18 0.0 (19) 0.05 (19) 0.26 (19) 0.03 (21)

19 0.0 (20) 0.05 (20) 0.26 (20) 0.03 (22)

20 0.0 (21) 0.05 (21) 0.26 (21) 0.04 (17)

21 0.18 (5) 0.14 (5) 0.35 (8) 0.15 (9)

22 0.0 (22) 0.05 (22) 0.26 (22) 0.04 (18)

Table 9.2. Betweenneess Centrality, Degree Centrality, Closeness Centrality and Eigenvector

Centrality, and the corresponding ranks, for all the nodes of the case study of Figure 9.4

operation between the nodes of the subnetwork S1 and the ones of the subnetwork

S2.

However, if we compute the classical centrality measures for the nodes of this

network, we have that the rank of Node 1 is not very high in any centrality measure

(see Table 9.2). In other words, if we adopt the global IoT-based vision, no centrality

measure is capable of capturing the importance of this node. By contrast, the MIoT

paradigm is capable alone of intrinsically evidencing the key role played by Node 1,

without the need of computing any centrality measure.

With regard to this last observation, we are also aware that, in a real scenario,

where the IoTs composing a MIoT are many and the number of c-objects is high,

it could be extremely challenging to define a new MIoT-oriented centrality measure.

This should be capable of determining the most relevant nodes in a MIoT taking also
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(but not exclusively) into account if they are c-nodes or not. In the future, we plan

to investigate the possibility to define such a measure.

9.4 CDS: a crawler tailored for MIoTs

9.4.1 Motivations underlying CDS

As pointed out in the Introduction, in real cases, when the number of involved things

is huge, in order to investigate the main features of a MIoT and to extract useful

knowledge from its data, a crawling strategy is mandatory. This strategy must be able

to consider not only the instances and their connections in a single IoT (i.e., i-nodes

and i-edges), but also the instances of the same objects (along with the corresponding

connections) in different IoTs (i.e., c-nodes and c-edges). Furthermore, it must take

into consideration that c-nodes and i-nodes have different nature and that c-nodes

are more important than i-nodes in a MIoT, which implies that it must be possible

to privilege c-nodes over i-nodes, if necessary. Finally, it must allow users to specify

how much c-nodes must be privileged over i-nodes. Observe that this problem has

a correspondence with the one of finding a crawler specifically tailored for a Social

Internetworking Scenario and, therefore, a crawler privileging “me”-edges over intra-

network edges and bridges over intra-network nodes.

In the past, several crawling strategies operating in a single network (and, there-

fore, in a single IoT) have been proposed. Among them, three very popular ones are

Breadth First Search (BFS, for short), Random Walk (RW, for short) and Metropolis-

Hastings Random Walk (MH, for short). BFS implements the classical Breadth First

Search visit. RW selects the next node to visit uniformly at random among the neigh-

bors of the current node. Both BFS and RW tend to favor power nodes (i.e., nodes

having high outdegrees). As a consequence, both of them present bias in some net-

work parameters [249]. MH is a more recent crawling strategy, conceived to unfavor

power nodes in such a way as to remove the bias, in BFS and RW, caused by their

tendency to favor this kind of node. It was shown that MH performs very well in a

single network [171], especially for the estimation of the average degree of nodes. At

each iteration, MH randomly selects a node nj from the neighbors of the current node

ni. Then, it randomly generates a number p, belonging to the real interval [0, 1]. If

p ≤ outdeg(ni)
outdeg(nj)

, where outdeg(ni) and outdeg(nj) are the outdegrees of ni and nj , it

selects nj as the new current node. Otherwise, it maintains ni as the current node.

The higher the outdegree of a node, the higher the probability that MH discards it.

The way of proceeding of MH has been specifically conceived to reach the goal of

disfavoring high-degree nodes in such a way as to remove the bias caused by them, as

explained above.
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In the past, BFS, RW and MH were deeply studied for single networks and it was

found that none of them is always better than the other ones. However, no investigaton

about the application of these strategies in a set of related IoTs (of which, SIoTs and

MIoTs are specific cases) has been carried out. Thus, there is no evidence that they

are still valid in this new context. Rather, it is easy to foresee that they will show

some weaknesses, since they do not take into account the main actors of related IoTs,

i.e., the instances of the same things in different IoTs and their connections (which

represent c-nodes and c-edges in the MIoT paradigm).

We expect that these instances and their connections play a crucial role in crawling

a set of related IoTs, since they allow different IoTs to be crossed, thus evidencing the

main actors of related IoTs, i.e. c-nodes and c-edges, allowing their interconnections.

These nodes and edges are not “standard” ones, due to their role. As shown in Section

9.3.2, we cannot see a set of related IoTs just as a unique huge IoT. By contrast, its

nature, specificities and behavior must be strongly considered by a crawling strategy

that aims to be effective and efficient for a set of related IoTs.

As it will be described in the next section, this original intuition has been fully

confirmed by our experimental campaign, which clearly highlights the drawbacks of

BFS, RW an MH when passing from a single IoT to a set of related IoTs.

9.4.2 Description of CDS

In the design of CDS, we start by analyzing some aspects limiting BFS, RW and MH

in a set of related IoTs (and, therefore, also in a MIoT), in such a way as to overcome

them.

BFS performs a Breadth First Search of a local neighborhood of the current node.

Now, the average distance between two nodes of a single IoT is generally less than the

one between two nodes of different IoTs. In fact, to pass from an IoT to another, it is

necessary to cross a c-node and, since, in real cases, c-nodes are (much) less numerous

than i-nodes, it could be necessary to generate a long path before reaching one of

them. As a consequence, the local neighborhood considered by BFS includes one or

a small number of IoTs.

To overcome this problem, a Depth First Search, instead of a BFS, could be

performed. For this purpose, the way of proceeding of RW and MH should be included

in our crawling strategy. However, since, generally, there is a limited number of c-nodes

in an IoT, the simple choice to go in-depth blindly does not favor the crossing from

an IoT to another. A solution that addresses the above issues could consist in the

implementation of a “non-blind” Depth-First Search that favors c-nodes in the choice

of the next node to visit. This is exactly the strategy we have chosen, and the name
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we give to it, i.e., Cross Node Driven Search (CDS, for short), clearly reflects its way

of proceeding.

Observe that this problem has a correspondence with the one of finding a crawler

specifically tailored for a Social Internetworking Scenario and, therefore, a crawler

privileging “me”-edges over intra-network edges and bridges over intra-network nodes.

However, following exactly the strategy mentioned previously would make it im-

possible to explore (at least partially) the neighborhood of the current node because

the visit would proceed in-depth very quickly and, as soon as a c-node is encoun-

tered, there is a cross to another IoT. The overall result of this strategy would be

an extremely fragmented crawled sample. To avoid this problem, given the current

node, our crawling strategy explores a fraction of its neighbors before performing an

in-depth search of the next node to visit.

To formalize our crawling strategy, we need to introduce the following parameters:

• inf (i-node neighbors fraction). It represents the fraction of the i-node neighbors

of the current node that should be visited. It ranges in the real interval (0, 1].

When inf tends to 1, CDS behaves as BFS. By contrast, when inf tends to 0, CDS

behaves as MH and RW2. In all these cases, CDS inherits all the strengths and

the weaknesses of the corresponding strategies. Intermediate values of inf, suitably

determined (see Section 9.4.3), allow CDS to maximize the pros and to minimize

the cons of BFS, RW and MH.

• cnf (c-node neighbors fraction). It represents the fraction of the c-node neighbors

of the current node that should be visited. It ranges in the real interval (0, 1]. It

allows the tuning of the number of IoT crossings performed by CDS. The higher

its value, the higher this number. Clearly, an excessive number of crossings could

return a sample involving many IoTs of the MIoT but with a very little number of

connections between each pair of IoTs. This could cause, in the Multiple-Network

context, the same problem caused by RW in the Single-Network scenario. As a

consequence, also for this parameter, a tradeoff is necessary.

For instance, in a configuration where inf = 0.15 and cnf = 0.30, CDS visits 15%

of the i-node neighbors of the current node and 30% of the c-node neighbors of the

current node.

We are now able to formalize our crawling strategy. We report its pseudocode in

Algorithm 1.

2 To be extremely accurate and precise, this is true if the parameter cnf (that we introduce

below) is fixed to 1, in case we want to visit the whole MIoT, or to 0, in case we want to

restrict our visit to just one IoT of the MIoT.
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Algorithm 1 CDS
Notation We denote by I(n) a function returning the number of i-node neighbors of the node n and by

C(n) a function returning the number of c-node neighbors of n.

Input M: a MIoT composed of m IoTs; nit: a non-negative integer; cnf , inf : a real number in the range

[0,1]; SeenNodes, VisitedNodes, VisitedCNodes: a set of nodes

Output SeenNodes; VisitedNodes;

Variable v, w: a node

Variable p: a real number in the range [0,1]

Variable c: an integer number

Variable NodeQueue: a queue of nodes

1: NodeQueue := ∅
2: select a seed node s (not already present in V isitedNodes) from M uniformly at random

3: insert s in NodeQueue

4: while nit > 0 do

5: extract a node v from NodeQueue

6: insert v in VisitedNodes

7: insert all the nodes adjacent to v in SeenNodes

8: if (C(v) ≥ 1) then

9: clear NodeQueue

10: c := 0

11: while ((c < ⌈cnf · C(v)⌉) and (nit > 0)) do

12: let w be one c-node neighbor of v not in VisitedCNodes selected uniformly at random

13: generate a number p in the real interval [0, 1] uniformly at random

14: if
(
p ≤ C(v)+I(v)

C(w)+I(w)

)
then

15: insert w in NodeQueue and in VisitedCNodes

16: c := c + 1

17: nit := nit − 1

18: end if

19: end while

20: end if

21: if (I(v) ≥ 1) then

22: c := 0

23: while ((c < ⌈inf · I(v)⌉) and (nit > 0)) do

24: let w be one of the i-node neighbors of v selected uniformly at random

25: generate a number p in the real interval [0, 1] uniformly at random

26: if
(
p ≤ I(v)

I(w)

)
then

27: insert w in NodeQueue

28: c := c + 1

29: nit := nit − 1

30: end if

31: end while

32: end if

33: if ((nit > 0) and (NodeQueue = ∅)) then

34: goto 37

35: end if

36: end while

37: if (nit = 0) then

38: return SeenNodes, V isitedNodes

39: else

40: return CDS(M, nit, cnf , inf , SeenNodes, V isitedNodes, V isitedCNodes)

41: end if

CDS receives: (i) a MIoT M, consisting of m IoTs; (ii) a non-negative integer

nit, denoting the number of iterations that must be still performed; (iii) cnf and inf ;

(iv) three sets of nodes, called SeenNodes, V isitedNodes and V isitedCNodes, whose
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semantics will be clear in the following. It returns SeenNodes and V isitedNodes after

having updated them.

It exploits: (i) a function I(n) returning the number of i-node neighbors of the

node n; (ii) a function C(n) returning the number of c-node neighbors of the node

n; (iii) two support nodes v and w; (iv) a support real number p in the real interval

[0, 1]; (v) a support counter c; (vii) a support queue NodeQueue of nodes.

First CDS selects a seed node s (not already present in the list V isitedNodes of

the nodes already visited) fromM uniformly at random, and inserts it in NodeQueue.

Then, it starts a cycle that ends when the number nit of iterations to be still performed

is 0.

During each iteration, CDS extracts a node v from NodeQueue and inserts it in

V isitedNodes. At the same time, it inserts all the node neighbors of v in the list

SeenNodes.

At this point, it computes C(v) to verify if there exist c-node neighbors of v. In

the affirmative case, it clears NodeQueue3 and starts to examine these nodes until

to either the number of examined c-nodes reaches the maximum value established

through cnf or there are no available iterations.

During each of these internal iterations, CDS selects a node w, among the c-node

neighbors of v not already present in the set V isitedCNodes of the already visited

c-nodes; the selection of w is performed uniformly at random. Then, it generates a real

number p in the range [0, 1] uniformly at random. If p ≤ C(v)+I(v)
C(w)+I(w) , then w is inserted

in both NodeQueue and V isitedCNodes, c is increased of 1 and nit is decreased of

1. Note that the last condition implements the strategy of MH into CDS, in such a

way as to let CDS to inherit the pros of MH.

After having processed the c-node neighbors of v, CDS starts to process the i-node

neighbors of v in an analogous way. In particular, it selects a node w among the i-node

neighbors of v uniformly at random. Then, it generates a number p in the real interval

[0, 1] uniformly at random and, if p ≤ I(v)
I(w) , it inserts w into NodeQueue, increases c

of 1 and decreases nit of 1.

CDS terminates the external cycle started at row 4 when nit = 0 or when there

are no nodes that can be visited starting from the current seed. In the former case, it

returns SeenNodes and V isitedNodes. In the latter case, it recursively calls another

instance of itself in such a way as to re-start all the previous tasks from another seed

node not already visited in the past.

3 Observe that this task is performed to privilege c-nodes over i-nodes and to favor crossings

from one IoT to another. Indeed, if NodeQueue would have not been cleared, there was

the risk to remain in the same IoT or, in any case, to visit a very small number of IoTs.
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Iterations 10 20 30 40 50 60 70 80 90 100

Seen nodes 50 78 107 150 165 163 183 187 181 198

Visited nodes 11 21 34 48 59 68 94 102 105 125

IoT Crossings 4 9 14 17 24 24 33 40 30 43

Visited IoTs 5 6 7 9 9 9 10 10 10 10

Table 9.3. Number of seen nodes, number of visited nodes, number of IoT crossings and

number of visited IoTs against the number of iterations performed by CDS

9.4.3 Experimental campaign

We carried out our experiments on the testbed presented in Section 9.3.1. In partic-

ular, we performed two kinds of experiment, namely:

• setting of CDS; in this case, we aimed to choose the most suitable values of the

input parameters of CDS;

• evaluation of CDS; in this case, we compared CDS with BFS, RW and MH to

quantitatively determine its strengths and weaknesses.

In the next subsections, we present each of these experiments.

Setting of CDS

As pointed out in Section 9.4.2, CDS needs three input parameters that can be used

to make it more responsive to our needs. These parameters are: (i) inf , i.e. the i-node

neighbors fraction that should be visited; (ii) cnf , i.e. the c-node neighbors fraction

that should be visited; (iii) nit, i.e. the maximum number of iterations.

We recall that our testbed consists of 315 nodes; 200 of them are i-nodes, whereas

115 of them are c-nodes.

First, we computed the variation of the number of seen and visited nodes, IoT

crossings and visited IoTs against the variation of the number of performed iterations.

Obtained results are reported in Table 9.3.

From the analysis of this table, we can see that:

• after 20 iterations, 24.76% of all nodes are seen, 6.67% of all nodes are visited and

54.55% of IoTs are visited;

• after 50 iterations, 52.38% of all nodes are seen, 18.73% of all nodes are visited

and 81.81% of IoTs are visited;

• after 70 iterations, 58.10% of all nodes are seen, 29.84% of all nodes are visited

and 90.91% of IoTs are visited;

• after 100 iterations, 62.85% of all nodes are seen, 39.68% of all nodes are visited

and 90.91% of IoTs are visited.
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Fig. 9.5. Trends of the number of seen nodes, visited nodes, IoT crossings and visited IoTs

against the number of iterations performed by CDS (trends are separated in the first two

graphs and put together in the last one)

Taking into account these observations, as well as the trends of the corresponding

measures reported in Figure 9.5, we observe that setting the number of iterations to

70 (or, more formally, setting nit = 0.22·|N |) is a good tradeoff between the capability

of sampling the highest possible number of the MIoT nodes and the effort required

to perform this task.

After having set nit = 70, we computed the variation of the number of seen and

visited nodes, IoT crossings and, finally, visited IoTs against the variation of the values

of inf and cnf . In particular, we considered five possible values of inf (i.e., inf = 0,

inf = 0.25, inf = 0.50, inf = 0.75, and inf = 1) and five possible values of cnf (i.e.,

cnf = 0, cnf = 0.25, cnf = 0.50, cnf = 0.75, and cnf = 1). Obtained results are

reported in Table 9.4.

From the analysis of this table, we can see that the best values for the four pa-

rameters are found when inf is low and cnf is high. This is totally in line with the

semantics of these two coefficients, as well as with the role that they play in CDS. In

particular, we observe that, if we consider the four parameters overall, the best pair

of values is inf = 0.25 and cnf = 0.75.

Evaluation of CDS

In this experiment, we compared CDS with BFS, RW and MH. In this activity, the

first preliminary task was to find reasonable metrics for evaluating the performances

of crawlers that operate on a set of related IoTs. For this purpose, first we extended to

the Multiple-Network context the metrics designed for evaluating the performances of

crawlers that operate on a Single-Network context. Then, we introduced some other

metrics specific for a set of related IoTs.

This section illustrates all our efforts in this direction and the results we have

obtained. Specifically, it is organized in three subsections. The first presents our basic

evaluation measures. The second describes a combined evaluation measure introduced
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Seen nodes

inf = 0 inf = 0.25 inf = 0.50 inf = 0.75 inf = 1

cnf = 0 152 144 159 132 161

cnf = 0.25 200 178 201 212 171

cnf = 0.50 189 183 206 196 170

cnf = 0.75 199 212 204 172 204

cnf = 1 208 174 181 181 194

Visited nodes

inf = 0 inf = 0.25 inf = 0.50 inf = 0.75 inf = 1

cnf = 0 55 55 56 54 56

cnf = 0.25 64 61 65 65 62

cnf = 0.50 65 64 70 67 63

cnf = 0.75 71 70 69 62 70

cnf = 1 70 63 66 65 68

IoT crossing

inf = 0 inf = 0.25 inf = 0.50 inf = 0.75 inf = 1

cnf = 0 23 20 22 19 24

cnf = 0.25 29 26 31 31 26

cnf = 0.50 30 28 36 32 37

cnf = 0.75 36 37 34 26 35

cnf = 1 35 25 29 29 33

Visited IoTs

inf = 0 inf = 0.25 inf = 0.50 inf = 0.75 inf = 1

cnf = 0 9 8 8 8 10

cnf = 0.25 10 9 10 10 9

cnf = 0.50 9 9 10 9 9

cnf = 0.75 9 10 10 9 10

cnf = 1 10 9 9 9 9

Table 9.4. Number of seen nodes, visited nodes, IoT crossings and visited IoTs against the

variation of inf and cnf

by us. Finally, the last presents the results of the test that we have performed by means

of these measures.

Basic evaluation measures

The basic evaluation measures that we designed for our experimental campaign

are the following:

• Cross Node Ratio (CNR): This is a real number, in the interval [0, 1], defined as

the ratio of the number of crawled c-nodes to the number of all the c-nodes of the

MIoT.

• IoT Crossings (IC): This is a non-negative integer and denotes how many times

the crawler switches from one IoT to another.
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• Visited IoTs (VI): This is a positive integer and measures how many different IoTs

are visited by the crawler.

• Unbalancing (UB): This is a non-negative real number defined as the standard

deviation of the fraction of nodes discovered for each IoT w.r.t. the overall number

of nodes discovered in the sample. UB ranges from 0, corresponding to the case in

which each IoT is sampled with the same number of nodes, to a maximum value,

corresponding to the case in which all sampled nodes belong to the same IoT.

• Degree Bias (DB): This is a real number defined as the root mean squared error,

for each IoT of the MIoT, of the average node degree estimated by the crawler

and the one estimated by MH, which is considered the best crawling strategy for

the estimation of the degree of a network node in the literature [249, 171]. If the

crawled sample does not cover one or more IoTs, then these are not considered in

the computation of DB.

If we consider the parallelism between MIoTs and Social Internetworking, we have

that, in a Social Internetworking System: (i) CNR would return the ratio of the

number of bridges discovered to the number of all the nodes in the sample; (ii) IC

would measure how many times the crawler switches from one social network to

another; (iii) V I would return how many different social networks are visited by the

crawler; (iv) UB would represent the standard deviation of the percentages of nodes

discovered for each social network w.r.t. the overall number of nodes discovered in the

sample; (v) DB would denote the root mean squared error, for each social network of

the SIS, of the average node degree estimated by the crawler and the one estimated

by MH.

As for CNR, IC and V I, the higher their value, the higher the performance of

the crawling strategy. By contrast, as far as UB and DB are concerned, the lower

their values and the higher the performance of the crawling strategy. Observe that V I

allows the evaluation of the crawler’s capability of covering many IoTs of the MIoT.

With regard to this measure, a further consideration is in order. Indeed, one could

think that a fair crawling strategy should sample different IoTs proportionally to

their respective overall size. Actually, this crawler behavior could result in incomplete

samples in case of a high variance of these sizes. In fact, it could happen that some

small IoTs would be not represented, or would be insufficiently represented, in the

sample. CNR and IC are related to the coupling degree of the IoTs of the MIoT,

whereas DB is related to the average degree.

A combined evaluation measure
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Besides some separated metrics, each capturing an important aspect of the crawl-

ing strategy, it is certainly important to define a synthetic measure capable of cap-

turing a sort of “overall” crawler behavior. Furthermore, this overall measure should

allow users to tune the importance of the five metrics in it, which could be different

in different application cases. A reasonable way to do this consists in defining the

overall metric as a linear combination of the five ones introduced above, where the

coefficients reflect the importance that users want to associate with them. We call

Overall Crawling Quality (OCQ, for short) this measure and define it as:

OCQ =

wCNR · CNR
CNRmax

+wIC · IC
ICmax

+wV I · V I
V Imax

+wUB · (1− UB
UBmax

)+wDB · (1− DB
DBmax

)

Here, CNRmax, ICmax, V Imax, UBmax and DBmax are the upper bounds of CNR,

IC, V I, UB andDB, which, in a comparative experiment, can be set to the maximum

value obtained by the crawlers into consideration. Furthermore, wCNR, wIC , wV I ,

wUB and wDB are real numbers belonging to the interval [0, 1] such that their overall

sum is 1.

Before reasoning about the possible values of the five weights of OCQ, we point

that the defined metrics are not completely independent of each other. In fact, if

CNR = 0, then IC and V I are also 0. Furthermore, the value of CNR influences

the values of both V I and UB. As a consequence, it is reasonable to assign different

weights to the five metrics by associating the highest weights with the most influential

ones. To perform this task, we defined an algorithm that is based on the Kahn’s

approach for topological sorting of graphs [224]. This algorithm uses a data structure

called Metric Dependency Graph. This graph has a node ni for each metric Mi; there

exists an edge from ni to nj if the metric Mi influences the metric Mj . Each node

has associated a weight. Initially all the node weights are set to 0.20 (see Figure 9.6).

Our algorithm starts from a node with no outgoing edges and splits the corresponding

weight (in equal parts) between itself and the nodes it depends on. Clearly, if a node

has no incoming edge, it maintains its weight. After the split of the weight, our

algorithm removes all the incoming edges from the corresponding nodes and repeats

the previous tasks until all the nodes of the graph have been processed.

It is worth pointing out that the node processing order could be not unique, if

there exists more than one node with no outgoing edges. However, it is possible to

prove that the final metric weights returned by our algorithm do not depend on the

adopted node processing order.

It is possible to formalize the previous algorithm in a closed formula allowing us

to compute the weight wi associated with each node ni of the Metric Dependency

Graph. In particular, we have:
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Fig. 9.6. Our Metric Dependency Graph

wi =
1

1+indeg(ni)
·
(
w+

∑
nj∈OSet(nj)

wj

)

∑5
k=1 wk

Here, indeg(ni) is the indegree of ni, w is a number representing the initial weight

of ni (that, in our case, is 0.20 for all the five nodes) and OSet(nj) is the set of the

nodes reachable from nj through its outgoing edges. This formula indicates that wi

consists of two components; the former is the initial weight w; the latter represents

the weight gained by ni thanks to the fact that other nodes depend on it. In turn,

ni splits its weight among the nodes it depends on and itself; this is handled by the

term 1 + indeg(ni). The denominator of the formula is used to normalize wi in the

interval [0, 1].

By applying the previous formula to our five metrics we obtained the following

weight values: wCNR = 0.45, wIC = 0.18, wV I = 0.07, wUB = 0.10 and wDB = 0.20.

Test results

We are now ready to analyze the performances of CDS, BFS, RW and MH when

applied on a MIoT. For this activity, we used the testbed described in Section 9.3.1.

We applied BFS, RW and MH to each MIoT by regarding it as a unique graph.

Furthermore, in order to make the MIoT graph totally compliant with the inputs

classically received by BFS, RW and MH, we considered a “condensed version” of the

MIoT graph by putting just one node for each c-object. We run CDS with inf = 0.25

and cnf = 0.75, which, as pointed out in Section 9.4.3, are the parameter settings

that guarantee the maximum number of IoT crossings. We report the obtained results

in Table 9.5.

We recall that the higher the values of CNR, IC and V I and the lower the values

of DB and UB, the better the performances of the strategies into examination.

From the analysis of Table 9.5, we can observe that, as far as CNR, IC, V I and

UB are concerned, CDS outperforms BFS, RW and MH. For instance, the value of
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CDS BFS RW MH

CNR 0.211 0.064 0.057 0.053

IC 9.133 6.400 2.333 2.333

V I 27.000 10.933 7.467 7,467

DB 3.476 0.844 0.026 0

UB 0.142 0.269 0.236 0.199

Table 9.5. Values of the five metrics obtained by CDS, BFS, RW and MH

CNR obtained by CDS is about 230% (resp., 273%, 296%) better than the one of

BFS (resp., RW, MH).

The only metric for which CDS shows a worse performance than the other strate-

gies is DB. In fact, as for this metric, the value obtained by MH is 0. This was

expected because DB is measured having the value of MH as the reference one since,

in the literature, it is well known that MH guarantees the best Degree Bias among all

crawling strategies [249, 171]. BFS and RW obtain values of DB near to the ones of

MH, whereas CDS shows the worst performance, even if it is still acceptable. The re-

sults obtained by CDS for DB were also expected because the purpose of this crawler

is to privilege c-nodes over i-nodes. As a consequence, when a c-node is encountered,

the node queue is cleared (see Line 4 in Algorithm 1) in such a way as to stimulate

the IoT crossings and, ultimately, the visit of c-nodes, which is the main objective

of our crawler. Clearing the node queue produces a distortion because several nodes

directly connected to the current one will not be put in the set of visited nodes. In

turn, this produces an effect in the degree bias and, ultimately, the worst performance

of CDS, as far as the value of DB is concerned. However, observe that these results

are obtained with the default configuration of CDS (i.e., inf = 0.25 and cnf = 0.75).

Actually, if necessary, it is possible to configure CDS in such a way that it behaves as

RW and MH, which present the best values of DB. In fact, as seen in Section 9.4.2,

this behavior can be obtained by making inf tend to 0.

Since there is one parameter for which CDS shows the worst results w.r.t. the

other three crawlers, it is particularly important the computation of the values of

OCQ, because this parameter summarizes the overall performance of the crawlers

into examination. We computed the values of OCQ for both the configuration that

sets all the metric weights to 0.20 (we call it “Configuration A” in the following)

and the one that takes the parameter dependencies into account (wCNR = 0.45,

wIC = 0.18, wV I = 0.07, wUB = 0.10 and wDB = 0.20 - we call it “Configuration B”

in the following). In Table 9.6, we report the obtained results (we recall that the higher

the value of OCQ and the better the performance of the corresponding crawler).
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CDS BFS RW MH

Configuration A 0.695 0.433 0.383 0.409

Configuration B 0.747 0.410 0.399 0.407

Table 9.6. Values of OCQ obtained by CDS, BFS, RW and MH for the two weight config-

urations into examination

From the analysis of this table we can observe that, in both cases, CDS outperforms

BFS, RW and MH. Interestingly, in the configuration taking the Metric Dependency

Graph into account, CDS obtains even better results than in the other one.

In our opinion, these results clearly evidence that, in a MIoT scenario:

• The crawling strategies defined for single networks do not perform well because

they do not consider the important differences existing between c-nodes and i-

nodes and between c-edges and i-edges.

• A cross node centered crawler, like CDS, shows very satisfying results and, cer-

tainly, indicates a way to go for further crawler strategies specifically designed to

operate on a set of related IoTs.

9.5 Analytical Discusssion

In this section, we propose an analytical discussion aiming at comparing our model

and approach with other, more or less conventional, ones. We start by observing that,

in the last years, the interest and the attention towards IoTs and sensor networks

are enormously increased. This has led, and is currently leading, to a large variety of

models and approaches. Some, very common and particularly interesting, families of

approaches that can be recognized are the ones based on:

• fuzzy logic;

• neural networks;

• hierarchical models.

In the following, we present a comparison between our approach and each of these

families.

Fuzzy logic based approaches allow the possibility that a thing belongs to more sets

simultaneously [248, 357, 396, 28]. Also in our model, an object can belong to more

IoTs, thanks to its instances. However, differently from fuzzy logic based approaches,

in our case, when there is the instance of an object in an IoT, this means that the

object surely belongs to that IoT. Instead, in fuzzy logic based approaches, an object

belongs to a given IoT with a certain plausibility.
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Neural network based approaches can exploit the potentialities of a highly dynamic

structure, such as neural network [101, 378]. The dynamism of the support data struc-

ture certainly represents an analogy with our approach, which is based on an equally

dynamic structure, i.e. social network. However, even if these two support data struc-

tures are graph based, they have totally different objectives. Indeed, neural networks

are well suited for performing classifications and for handling non-linear scenarios.

Social Networks are centered on node cooperation, node centralities and information

diffusion. Furthermore, in a MIoT, there is no need to handle non-linearity.

Hierarchical approaches are certainly a bit more different from the MIoT paradigm

than the other two families considered above [275, 440]. In fact, they mainly aim

at detecting (more or less) hidden relationships among objects at different abstrac-

tion levels. Even if such a family of approaches is quite far from the current MIoT

paradigm, it could represent a good starting point for an evolution of our model. In-

deed, the current MIoT architecture consists of only two levels of control. Increasing

the hierarchy length and, therefore, the granularity level, would allow the definition

of more instances of one object in the same IoT, which could provide our model with

a higher refinement capability.

Finally, to the best of our knowledge, the approach most similar to ours is the one

described in [97]. In fact, analogously to what happens in a MIoT, in this approach an

object is described by means of an ennuple. This choice allows an ordered represen-

tation of an object, its activities and its instances. However, very differently from our

approach, the one of [97] models data coming from an IoT as a big data stream. This

forces a kind of sampling allowing only the registration of the probability that a given

object is in a given condition or in a given place. Interestingly, the approach of [97]

provides the user with a strong support for data cleaning and integration. Instead,

the MIoT paradigm does not address this issue because it assumes that cleaning and

integration tasks have been performed before the construction of the MIoT graph.
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Building Virtual IoTs in a Multiple IoTs scenario

10.1 Introduction

The Internet of Things (hereafter, IoT) is currently considered the new frontier of

the Internet. As a matter of fact, a lot of research results, along with the continuous

emergence of increasingly challenging issues to address, can be found in the literature

[183, 397, 131, 354, 38, 180, 255].

One of the most effective ways to represent and handle the IoT scenario lever-

ages social networking paradigm [35]. In this direction, several social network-based

approaches to modeling and managing IoTs have been presented in the litera-

ture. Three of the most advanced ones are the SIoT (Social Internet of Things)

[39, 150, 40, 394], the MIE (Multiple IoT Environment) [49] and the MIoT (Mul-

tiple IoTs) [50] paradigms. The MIoT paradigm is the last of these proposals; it aims

at extending both SIoT and MIE in such a way as to preserve their strengths and

avoid their weaknesses [50]. Roughly speaking, a MIoT can be seen as a set of related

IoTs, i.e., as a set of related networks of things. Actually, a more precise definition

of MIoT requires the introduction of the concept of instance of a thing in an IoT.

Specifically, the instance of a thing in an IoT represents a virtual view of that thing

in the IoT. The nodes associated with a thing in a MIoT represent the instances of

the same thing in the different IoTs of the MIoT. Indeed, a thing can have several

instances, one for each IoT which it participates to. The existence of more instances

for one thing plays a key role in the MIoT paradigm because it allows the definition

of cross relationships among the different IoTs.

We adopted the MIoT paradigm as the reference one in this chapter. There are

several reasons which justify this choice. Indeed:

• The MIoT paradigm, like the SIoT and the MIE ones, introduces the idea that

objects can show a social behavior in the environment where they operate. This

feature allows several advantages, like the possibility of resource sharing (see [150,

40, 394] for a comprehensive idea of these advantages).
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• Differently from SIoT, which introduces a social behavior of objects but still mod-

els IoT as one huge network of objects extended worldwide, MIE, and much more

MIoT, allow the “breakdown” of the whole huge IoT into multiple networks of

smart objects interconnected with each other. This way to proceed is analogous to

the evolution of social networking into social internetworking [82]. In particular,

MIoT allows the management of situations in which the same object shows differ-

ent behaviors in different networks it joined. Furthermore, MIoT makes an object

to act as a bridge between two objects allowing them to communicate even if they

belong to different networks and, therefore, are not directly connected with each

other.

Another important trend characterizing the current IoT scenario regards the exis-

tence of increasingly sophisticated and intelligent things. These are becoming increas-

ingly smart and social, as well as more and more capable of performing computations

and storage on their own. Furthermore, they are increasingly connected to each other

through more and more complex and sophisticated frameworks, often based on cloud

and edge computing [150, 40, 394]. The new smart and social capabilities of things

and of the environments handling their interoperability paves the way to a sort of

“humanization” of things, i.e., to apply to things concepts and ideas typically con-

sidered prerogative of humans. One of them is certainly the presence of a profile of a

thing. Indeed, if a thing interacts with other things and exchange data with them, it

is possible to determine what are the most common concepts handled by it and, based

on them, to construct a corresponding profile. Analogously to the profile of a human,

the one of a thing depends on its past behavior and on the profile of the other things

with which it interacts. As a consequence, it could be possible to think about both a

content-based and a collaborative-filtering approach to handling thing profiles.

Furthermore, starting from the real IoTs of a MIoT, it is possible to construct

virtual communities of things, based on common interests. Once again, this is an

attempt to transfer behaviors typical of humans to things. As a matter of fact, in

Social Network Analysis, it is well recognized that, accordingly to the homophily

concept [305, 408], humans tend to group together in communities sharing the same

interests.

In the literature, a lot of efforts have been made to investigate human profiles and

virtual communities of people, especially (but not only) in Social Network Analysis

[400, 367]. Instead, these topics have been little investigated in the Internet of Things.

In this chapter, we aim at providing a contribution in this direction. First of all,

we introduce the concept of profile of a thing. As the profile of a human, the one

of a thing has two components. The former denotes its past behavior and can be

used, for instance, to support content-based recommendations. The latter reflects its
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neighbors, i.e., the other things with which it most frequently comes into contact; it

can be exploited, for instance, to support collaborative filtering recommendations.

After this, we introduce the concept of topic-guided virtual IoTs in a MIoT and we

propose two approaches (one supervised and one unsupervised) to the construction

of them in a MIoT. Differently from the real IoTs of a MIoT, which may encompass

things with very heterogeneous profiles, topic-guided virtual IoTs should include all

and only those things whose profile refers to specific topics. The supervised approach

requires a user to provide a set of keywords of her interest. It aims at constructing

a thematic IoT comprising all the keywords specified by the user. If such an IoT

does not exists, it returns more thematic IoTs that, in the whole, comprise all the

keywords specified by the user. She can choose whether to accept this set of virtual

IoTs or to modify her query. The unsupervised approach tries to partition a MIoT

into a set of virtual IoTs characterized by the maximum internal cohesion (in terms of

topics present in the profiles of the corresponding things) and the minimum external

coupling. Virtual IoTs in a MIoT provide a logic representation of the objects of a

MIoT, which is not based on real links but on the content exchanged by them. As

will be clear in the following, this can favor the effectiveness of information exchange,

the construction of communities of objects (and, possibly, of the corresponding users)

sharing the same interests and the suggestions of the objects most adequate to a given

exigency.

This chapter is organized as follows: in Section 10.2, we examine related liter-

ature. In Section 10.3, we provide an overview of the MIoT paradigm, because its

comprehension is necessary to understand the rest of this chapter. In Section 10.4,

we introduce our definition of a thing’s profile. In Section 10.5, we propose our ap-

proaches to construct topic-guided virtual IoTs in a MIoT. In Section 10.6, we present

our tests devoted to verify the performance of our approach.

10.2 Related Literature

Since its introduction some years ago, the term “Internet of Things - IoT” has been

associated with a huge variety of concepts, technologies and solutions [38, 41, 314, 363].

In the latest years, with the advent of new technologies, such as big data and social

networking, the very definition of this term is continuously changing. What IoT will

become in the future depends on the evolution of these technologies [438] and their

interaction with several other ones, such as Information Centric Networks [425, 479,

480, 32, 372, 33, 361] and Cloud [131, 433, 229]. As a matter of fact, the strengths of

these last ones are exactly the features necessary to overcome the weaknesses of the
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current IoT concept [467]. Some examples of this combination can be already found

in the literature [150, 180, 449, 448].

The first attempts to apply social networking to the IoT domain can be found

in [182, 333, 245, 205]. In these papers, the authors propose to use human social

network relationships to share services provided by a set of things. An important step

forward is performed in [39], where the SIoT paradigm is introduced. Here, the authors

propose an approach to creating relationships among things, without requiring the

owner intervention. Thanks to this idea, things can autonomously crawl the network

to find services and resources of their interest provided by other things. In [42], the

same authors clearly highlight what are the main strengths of SIoT. Specifically: (i)

the SIoT structure can be dynamically modified to ensure network navigability and

to find new things; (ii) scalability is guaranteed, like in human social networks; (iii) a

level of trustworthiness among things can be established; (iv) the past social network

approaches can be redefined to solve problems typical of the IoT context [342].

One of the major drawbacks of the current IoT scenario is the presence of different

technologies and solutions proposed by independent vendors to enable networking

among objects. This poses the basis to a subsequent set of issues ranging from concept

matching to technical compatibility, if heterogeneous smart-object-network solutions

should be involved in the creation of a unique interoperable IoT [336, 413]. In this

research context, different works partially addressing and solving these problems have

been proposed. Specifically, [166] presents a study on how ontologies and semantic

data processing can be used to improve interoperability across heterogeneous IoT

platforms. The authors consider two use cases, namely Health Care and Trasportation

and Logistics, and, for each of them, provide a survey on the main ontologies available

to describe and generalize concepts and relations.

In [265], instead, the authors focus their attention on the definition of a new

framework for a fully functional mobile ad-hoc social network. In this chapter, the

term “mobile ad-hoc social network” refers to an IoT made of mobile devices. Of

course, communication between this type of objects may happen in such a wide range

of modes so that the referring scenario can be considered as a constellation of mobile

networks interacting with each other. Concepts from real social networks are borrowed

to define user profiles, which are built starting from the objects they own and the

social network they belong to. One of the main contributions of this proposal is the

definition of a profile-matching strategy based on semantics.

Another contribution in the context of interoperability is the one proposed in

[428]. Here, the authors illustrate a novel architecture in which objects interact with

each other by leveraging an open source cloud platform. The interaction among smart

devices is information-and-service-driven and can be performed in both a centralized
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and a peer-to-peer mode. In [481], the authors propose Acrost, a system capable

of retrieving data spread among heterogeneous IoT platforms by leveraging topics

and semantics awareness. To build the metadata, Acrost uses two methodologies: the

former exploits regular expression-based approaches, whereas the latter makes use of

random fields-based strategies.

In order to address the issues arising when the interoperability among heteroge-

neous IoTs must be guaranteed, another research line proposes the extension of the

results concerning Social Internetworking [82, 335] (instead of social networking) to

the Internet of Things. By following this strategy, the MIE (Multiple IoT Environ-

ment) [49] and the MIoT (Multiple IoTs) [50] paradigms have been proposed. As

specified in the Introduction, this last paradigm is the reference one for this chapter.

In [130], the authors present an approach to constructing a virtual data mart

on which several knowledge discovery tasks can be performed. Clearly the kinds of

virtual source constructed in the approach of [130] and in our own are very different.

However, the general ideas underlying the two approaches are similar.

In the past, a lot of efforts have been made to investigate human profiles and

virtual communities of people, especially (but not only) in Social Network Analysis

([400, 367] provide two surveys about these topics). Instead, these issues have been

little investigated in the Internet of Things. Specifically, to the best of our knowledge, a

comprehensive, high-level abstraction approach to building and managing a profile of

a thing, which also takes into account the content it exchanges during its interactions

with other things, has not yet been proposed. Instead, some approaches focusing on

community detection in IoT have been presented in the very recent literature. Even

if they are very different (both in their purposes and in their ways proceed) from the

ones of our approach, in the following we present an overview of some of them.

The approach of [453] uses structural information derived from the complex graph

of an IoT to extract communities. It exploits a neighbor-based strategy to detect

also overlapping communities. The approach of [230] uses data produced by sensors

to define a multi-dimensional clustering. The obtained clusters are then mapped to

communities of nodes in the original IoT network. To cope with the size of the data

graph, the authors leverage state-of-the-art community detection approaches. Finally,

they present a new community detection approach that enhances the Girvan-Newman

algorithm by using hyperbolic network embedding.

Other works, instead, use knowledge from social networks to refine their results.

As an example, [317] proposes a community definition strategy combining both IoT

information and structural data coming from the social network (relationship among

users), which object owners belong to. This approach does not consider semantics and

contents, but leverages only network structure. A similar method is proposed in [55],
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even though here the strategy works in the opposite way. In fact, first communities

are derived from structural information of owners’ social networks and, then, objects

are seen as resources available inside each community.

Finally, the authors of [244] propose a new community detection algorithm working

in a Social Internet of Things (SIoT) scenario. To achieve their objective, they make

use of three metrics, namely social similarity, preference similarity and movement

similarity. Social similarity is defined according to the concept of cooperativeness and

community interest proposed in [334]. Preference similarity takes into account resource

and service preferences of the involved things in the network. Finally, movement

similarity specifies how much and how long two or more nodes are spatially close.

In [316], the authors propose a community detection approach working on an

architecture capable of integrating the Internet of Things and social networking. This

approach assumes that two nodes belong to the same community only if they are

at most one hop apart and have at least two mutual friends. In order to construct

communities, it exploits graph mining techniques.

10.3 The MIoT paradigm

In this section, we provide an overview of the MIoT paradigm, described in detail in

[50], because it is the reference one for our definitions of virtual IoTs in a MIoT.

A MIoT M consists of a set of m Internets of Things. Formally speaking:

M = {I1, I2, · · · , Im} (10.1)

where Ik is an IoT.

Let oj be an object of M. We assume that, if oj belongs to Ik, it has an instance

ιjk , representing it in Ik. The instance ιjk consists of a virtual view (or, better, a

virtual agent) representing oj in Ik. For example, it provides all the other instances

of Ik, and the users who interact with Ik, with all the necessary information about oj .

Information stored in ιjk is represented according to the format and the conventions

adopted in Ik.

A MIoT M can be represented by means of a graph-based notation. In particular,

each IoT Ik ∈ M can be modeled by means of a graph Gk = ⟨Nk, Ak⟩. In this case:

• Nk is the set of the nodes of Gk; there is a node njk for each instance ιjk ∈ Ik,

and vice versa.

• Ak is the set of the arcs of Gk; there is an arc ajqk = (njk , nqk) if there exists a

physical link from njk to nqk .

Finally:
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M = ⟨N,A⟩ (10.2)

Here:

N =
m⋃

k=1

Nk; (10.3)

A = AI ∪AC , (10.4)

where

AI =
m⋃

k=1

Ak (10.5)

and

AC = {(njk , njq )|njk ∈ Nk, njq ∈ Nq, k ̸= q}. (10.6)

AI is the set of the inner arcs (hereafter, i-arcs) of M; they relate instances (of

different objects) belonging to the same IoT. AC is the set of the cross arcs (hereafter,

c-arcs) of M; they relate instances of the same object belonging to different IoTs.

The description of the MIoT paradigm presented above highlights that it is possible

to model a MIoT at two abstraction levels. The former represents a MIoT as a network

and exploits concepts typical of this environment (such as nodes, arcs and so on). The

latter models a MIoT as a set of IoTs and makes use of concepts closer to this scenario

(such as instances, objects and so forth). Clearly, these two representations are simply

two viewpoints of the same environment, and the concepts adopted by them can be

used interchangeably. For example, there is a biunivocal correspondence between a

node and an instance. However, in the reality, there are some cases in which it is

better to use the concept of a node (for example, when we discuss about paths in

a network - see below), whereas there are other situations in which it is better the

use of the concept of instance (for example, when we discuss about the transactions

carried out by two smart objects).

Furthermore, in a MIoT context, a set MDj of metadata can be associated with

an object oj . Our metadata model refers to the one of the IPSO (Internet Protocol

for Smart Objects) Alliance [5]. Specifically MDj consists of three subsets, namely:

(i) MDD
j , i.e., the set of descriptive metadata; (ii) MDT

j , i.e., the set of technical

metadata; (iii) MDB
j , i.e., the set of behavioral metadata. All details about these

metadata can be found in [50].
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10.4 Definition of a thing’s profile

In this section, we present our definition of a thing’s profile, which represents a first im-

portant contribution of this chapter. As pointed out in the Introduction, analogously

to what happens for human profiles, the profile of a thing can have two components.

The former registers its past behavior and is extremely useful for content-based rec-

ommendations; for this reason, we call it “content-based component” in the following.

The latter registers the main features of those things with which it mostly interacted in

the past and can be used for collaborative filtering recommendations; for this reason,

we call it “collaborative filtering component” in the following.

Before illustrating in detail the profile of a thing, we must introduce some prelim-

inary concepts. First of all, given two instances ιjk of oj and ιqk of oq in Ik, we can

define the set tranSetjqk of the transactions from ιjk to ιqk as follows:

tranSetjqk = {Tjqk1
, Tjqk2

, · · · , Tjqkv
} (10.7)

A transaction Tjqkt
∈ tranSetjqk is represented as:

Tjqkt
= ⟨reasonjqkt

, sourcejqkt
, destjqkt

, startjqkt
, finishjqkt

, successjqkt
, contentjqkt

⟩

(10.8)

Here:

• reasonjqkt
denotes the reason why Tjqkt

occurred, chosen among a set of predefined

values.

• sourcejqkt
indicates the starting node of the path followed by Tjqkt

.

• destjqkt
represents the final node of the path followed by Tjqkt

.

• startjqkt
denotes the starting timestamp of Tjqkt

.

• finishjqkt
indicates the ending timestamp of Tjqkt

.

• successjqkt
denotes whether Tjqkt

was successful or not; it is set to true in the

affirmative case, to false in the negative one, and to NULL if Tjqkt
is still in

progress.

• contentjqkt
indicates the content “exchanged” from ιjk to ιqk during Tjqkt

. In its

turn, contentjqkt
presents the following structure:

contentjqkt
= ⟨formatjqkt

, fileNamejqkt
, sizejqkt

, topicsjqkt
⟩ (10.9)

Here:

– formatjqkt
indicates the format of the content exchanged during Tjqkt

; the

possible values are: “audio”, “video”, “image” and “text”.

– fileNamejqkt
denotes the name of the transmitted file.
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– sizejqkt
indicates the size in bytes of the content.

– topicsjqkt
indicates the set of the content topics; it consists of a set of key-

words representing the subjects exchanged during Tjqkt
. It can be formalized

as: topicsjqkt
= {(kw1

jqkt
, nkw1

jqkt
), (kw2

jqkt
, nkw2

jqkt
), . . . , (kww

jqkt
, nkww

jqkt
)}.

In other words, the set of the topics of the tth transaction from ιjk to ιqk con-

sists of w pairs; each pair consists of a keyword and the corresponding number

of occurrences.

Now, we can define the set tranSetjk of the transactions performed by ιjk in Ik.

Specifically, let Instk be the set of the instances of Ik. Then:

tranSetjk =
⋃

ιqk∈Instk,ιqk ̸=ιjk

tranSetjqk (10.10)

In other words, the set tranSetjk of the transactions performed by an instance ιjk

is given by the union of the sets of the transactions from ιjk to all the other instances

of Ik.

After having defined tranSetjk , we must introduce the following operators:

•
⊎
: it receives a set {entitySet1, entitySet2, · · · , entitySett} of entity sets and per-

forms their union not eliminating the duplicates but reporting the number of their

occurrences. Therefore, this operator returns a set of pairs {(entity1, ne1),

(entity2, ne2), · · · , (entityw, new)} in which the pair (entityr, ner) indicates the

rth entity and the number of its occurrences. In counting it,
⊎

takes the presence

of synonymies and homonymies into account. These properties can be computed

(for terms, images, etc.) by applying the classical approaches proposed in the past

literature [62, 124].

• avgF ileSize: it receives a set of files and computes their average size.

We are now able to define the profile Pjqk of the relationship existing between two

instances ιjk and ιqk , which performed a set tranSetjqk = {Tjqk1
, Tjqk2

, · · · , Tjqkv
} of

transactions. As we will see in the following, this profile plays a crucial role in the

definition of the content-based component of a thing’s profile and is indirectly used

also in the definition of the collaborative filtering component of it. Specifically:

Pjqk = ⟨reasonSetjqk , sourceSetjqk , destSetjqk , avgSzAudiojqk , avgSzV ideojqk ,

avgSzImagejqk , avgSzTextjqk , successFractionjqk , topicSetjqk⟩
(10.11)

where:

• reasonSetjqk =
⊎

t=1..v(reasonjqkt
);

• sourceSetjqk =
⊎

t=1..v(sourcejqkt
);
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• destSetjqk =
⊎

t=1..v(destjqkt
);

• avgSzAudiojqk = AvgFileSizet=1..v{fileNamejqkt
|formatjqkt

= “audio”};

• avgSzV ideojqk = AvgFileSizet=1..v{fileNamejqkt
|formatjqkt

= “video”};

• avgSzImagejqk = AvgFileSizet=1..v{fileNamejqkt
|formatjqkt

= “image”};

• avgSzTextjqk = AvgFileSizet=1..v{fileNamejqkt
|formatjqkt

= “text”};

• successFractionjqk =
|{Tjqkt

|Tjqkt
∈tranSetjqk ,successjqkt

=true}|
v ;

• topicSetjqk =
⊎

t=1..v(topicsjqkt
).

If we introduce the operator
⊔
, which compactly represents the set of operations

for obtaining a profile of a pair of instances Pjqk starting from the corresponding

transactions, we can formalize the previous tasks by means of only one operation as

follows:

Pjqk =
⊔

t=1..v

Tjqkt
(10.12)

Now, let ιjk be the instance of the object oj in the IoT Ik. Let Instjk be the set

of the instances of Ik with which ιjk performed at least one transaction in the past.

In this case, we can define the content-based component of the profile Pjk of ιjk as:

Pjk =
⊔

ιqk∈Instjk

Pjqk (10.13)

Finally, let oj be an object and let {I1, I2, · · · , Il} be the set of the IoTs which it

participates to. Let ObjInstj be the instances of oj in the IoTs of the MIoT. We can

define the content-based component of the profile Pj of oj as:

Pj =
⊔

ιjk∈ObjInstj

Pjk (10.14)

After having defined the content-based component of an instance and an object,

in order to present the corresponding collaborative filtering components, we must

introduce the concept of neighborhoods of an instance ιjk in an IoT Ik. Specifically,

the structural neighborhood sNbh(ιjk) of ιjk is defined as:

sNbh(ιjk) = sNbhout(ιjk) ∪ sNbhin(ιjk) (10.15)

where:

sNbhout(ιjk) = {ιqk |(njk , nqk) ∈ AI} (10.16)

sNbhin(ιjk) = {ιqk |(nqk , njk) ∈ AI} (10.17)

Furthermore, we can also define the behavioral neighborhood bNbh(ιjk) of ιjk as:
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bNbh(ιjk) = bNbhout(ιjk) ∪ bNbhin(ιjk) (10.18)

where:

bNbhout(ιjk) = {ιqk |ιqk ∈ sNbhout(ιjk), |tranSetjqk | > 0} (10.19)

bNbhin(ιjk) = {ιqk |ιqk ∈ sNbhin(ιjk), |tranSetqjk | > 0} (10.20)

In other words, bNbh(ιjk) consists of those instances directly connected to ιjk from

the structural viewpoint that shared at least one transaction with ιjk .

We are now able to present the collaborative filtering component P ′
jk of the profile

of an instance ιjk in Ik. It can be defined as follows:

P ′
jk =

⊔

ιqk∈bNbh(ιjk )

(Pqk 1 P ′
qk) (10.21)

Clearly, this definition is recursive and an accurate computation would require the

resolution of a system with a number of equations and variables equal to the number

of instances. In real situations, as there could be thousands or millions of instances

in a MIoT, the time necessary to solve this system may easily become unacceptable.

As a consequence, it appears reasonable to consider an approximate definition of Pqk

that is much simpler to handle. It is formalized as:

P ′
jk =

⊔

ιqk∈bNbh(ιjk )

Pqk (10.22)

After having introduced the two components of the profile of an instance ιjk of

Ik, we can combine them for defining the overall profile Pjk of ιjk . It is defined as the

union of the profiles Pjk and P ′
jk performed by means of the operator 1:

Pjk = Pjk 1 P ′
jk (10.23)

Finally, we can define the overall profile of an object oj as follows:

Pj =
⊔

k=1..l

Pjk (10.24)

10.5 Topic-guided virtual IoTs in a MIoT and approaches to

constructing them

In this section, we present a supervised and an unsupervised approach to constructing

topic-guided virtual IoTs in a MIoT.
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10.5.1 Supervised approach

The supervised approach for the construction of topic-guided virtual IoTs in a MIoT

requires the user to specify a query Q consisting of some keywords of her interest.

It tries to construct a thematic virtual IoT in such a way that each of its instances

contains at least one keyword of Q in the content-based component of its profile. If

such a virtual IoT does not exist, our approach returns a minimal set of thematic IoTs

that, on the whole, contain, in the content-based component of the profile of their

instances, all the keywords specified by the user. In this last case, she can choose

whether to accept this set of IoTs or modify her query.

Before describing in detail this approach, we must introduce a new operator J∗

that represents a modified Jaccard coefficient, as we will see below.

J∗ receives two sets of topics1 topicSet = {(kw1, nkw1), (kw2, nkw2), · · · , (kwp, nkwp)}

and topicSet′ = {(kw′
1, nkw

′
1), (kw

′
2, nkw

′
2), · · · ,

(kw′
p, nkw

′
p)} and computes the Jaccard coefficient between them. In carrying out

this task, it considers the number of occurrences of each keyword and its possible

synonyms.

More formally, first it computes the set:

commonTS = {(kw, nkw + nkw′)|(kw, nkw) ∈ topicSet, (kw′, nkw′) ∈ topicSet′,

kw is identical to or synonymous of kw′}
(10.25)

Then, it computes the final result as:

J∗(topicSet, topicSet′) =

∑
(kw,nkw)∈commonTS nkw

∑
(kw,nkw)∈topicSet nkw +

∑
(kw′,nkw′)∈topicSet′ nkw

′

(10.26)

After having introduced J∗, we can describe our approach. Specifically:

• It starts when a user specifies a query Q consisting of r keywords:

Q = {kw1, kw2, · · · , kwr} (10.27)

It searches for all the instances of the MIoT having at least one topic whose

keyword is identical to, or synonymous of, at least one keyword specified in Q.

These instances, as a whole, represent the set of candidate instances to be included

in the new thematic view. We call this set CI (Candidate Instances).

1 We recall that, in our context, a topic is a pair (kw, nkw), where kw is a keyword and

nkw is the corresponding number of occurrences.
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• However, the fact that an instance ι ∈ CI has a keyword in common with Q is

necessary but not sufficient for it to be chosen. In fact, it is advisable that ι has

more keywords in common with Q and, possibly, that the common keywords are

among the ones of ι with the highest number of occurrences. This condition can

be guaranteed by the usage of the operator J∗.

In particular, our approach first constructs Q′ = {(kw, 1)|kw ∈ Q} in such a way

as to make the application of J∗ on the keywords specified by the user possible.

Then, it constructs the set RI (Real Instances) of those instances of CI whose

topics have a significant similarity with the keywords of Q:

RI = {ι ∈ CI|J∗(topicSetι, Q
′) > thJ} (10.28)

Here, thJ is a suitable tuning threshold.

• Now, our approach can start to construct the thematic view VQ corresponding to

Q.

– It first creates a node nι in VQ for each instance ι of RI. Let nι1 and nι2 be

the nodes corresponding to two instances ι1 and ι2 belonging to RI.

· If an i-arc exists between the nodes corresponding to ι1 and ι2 in the MIoT

M, then an i-arc is also created between the nodes nι1 and nι2 in VQ.

· Instead, if a c-arc exists between the nodes corresponding to ι1 and ι2 in

M, then nι1 and nι2 are merged in a unique node nι12 in VQ. This task is

motivated by the fact that nι1 and nι2 represent different instances of the

same object in different real IoTs, but they represent the same instance in

the same virtual IoT; as a consequence, they must be merged and no cross

arc can exist between them. The profile P12 of nι12 is obtained by applying

the operator
⊔

on the profiles P1 of ι1 and P2 of ι2.

• Finally, our approach adds a disconnected node in VQ for each keyword in Q such

that there is no MIoT instance having at least one topic whose keyword is identical

to, or synonymous of, it2.

• At this point, two cases may occur. In particular:

– It could happen that VQ is connected. In this case, it is returned as the answer

to the query Q submitted by the user.

– If VQ is not connected and if the number of its connected components is less

than a certain threshold, our approach adds the minimum number of “ficti-

tious” i-arcs necessary to make VQ connected.

– Otherwise, if the number of connected components of VQ is higher than a

certain threshold, our approach concludes that a unique thematic virtual IoT

2 The rationale underlying this step will be clearer in the following.
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corresponding to the keywords specified by the user does not exist and returns

the thematic views related to the connected components of VQ. At this point,

the user can decide whether to accept these thematic views or to modify the

query in such a way as to construct a unique thematic view by re-applying all

the above mentioned steps starting from the new query.

10.5.2 Unsupervised approach

The unsupervised approach begins with the construction of a support network N

starting from the MIoT M. In particular:

• For each node nιk of M, a node nιk is added in N .

• For each i-arc (nιjk
, nιqk

) in M, an (unoriented) arc (nιjk
, nιqk

) is added in N .

The arcs of N are weighted. The weight of the arc (nιjk
, nιqk

) is obtained by

applying the operator J∗ on the topic sets topicSetjk and topicSetqk of ιjk and

ιqk , respectively. Therefore, the weight of an arc in N belongs to the real interval

[0, 1]; the higher this weight the higher the semantic similarity between the topics

of the profiles Pjk and Pqk of ιjk and ιqk , respectively.

• For each c-arc in M, which relates two instances nιjk
and nιjq of the same object

oj in two different IoTs Ik and Iq, the two nodes nιjk
and nιjq in N , corresponding

to the nodes nιjk
and nιjq in M, are merged into a unique node nιj . This node

inherits all the arcs of nιjk
and nιjq .

At the end of these steps, it could happen that two or more arcs relate the same

nodes n and n′ in N . In this case, all these arcs must be merged into a single arc.

Clearly, it is necessary to determine the weight of this arc. Here, it appears reasonable

that it must be higher than or equal to the maximum weight of the merged arcs. To

reach this objective, our approach operates as follows. Let {(n, n′, w1), (n, n′, w2),

· · · , (n, n′, ws)} be the arcs to merge, ordered by decreasing weight. The new arc

(n, n′, w) will have a weight equal to:

w = min

(
1, w1 + α

∑

k=2..s

wk

)
(10.29)

In other words, in the computation of w, the arcs with the maximum weight will

contribute with all their weight. All the other arcs will contribute to a lesser extent,

with a fraction of their weight. This last is determined by means of the coefficient α.

Once the construction of N has been completed, the thematic views are derived

by applying on N a graph clustering algorithm among the ones already existing in

the literature (see [399] for a survey on them).
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10.5.3 Discussion

An important issue about the supervised and the unsupervised approaches to address

regards their scalability or, better, the possibility to use them in MIoTs comprising

thousands or even millions of nodes.

With regard to this issue, first of all we observe that both approaches aim at

deriving virtual IoTs which are, then, exploited by users to perform their desired

tasks (such as querying). As a consequence, we can distinguish two moments in the

life of a MIoT, namely: (i) the construction of virtual IoTs, which can be performed

offline, and (ii) their usage, which is generally carried out online.

The first moment is computationally expensive because it involves several network

operations in the supervised approach and a clustering activity in the unsupervised

one. Clustering’s computational cost is intrinsically exponential even if all the corre-

sponding methods adopted in the reality are heuristic and most of them have a linear

or a quadratic computational complexity. In any case, as pointed above, this task is

performed offline and rarely because it is necessary only when many changes have

been made in the MIoT.

The second moment is certainly less expensive; its cost depends on the size of the

involved clusters; in fact, each user activity generally involves one or a few clusters.

Concerning this aspect, it is important to verify: (i) if clustering is possible in presence

of huge MIoTs, and (ii) how the size of clusters increases against the growth of the

MIoT. As for the first point, we observe that, in the past, several algorithms have

been specifically conceived to cluster a huge amount of elements [146]. Concerning

the second point, instead, first we observe that the size of clusters can be determined

by suitably tuning the parameters of the selected clustering algorithm. However, it

could be interesting to verify how much the size of clusters increases if we maintain

constant all the clustering algorithm parameters and the MIoT size increases. We

decided to perform this experiment. It is described in detail in Section 10.6.6. Here,

we evidence the obtained results, i.e., that when the MIoT size highly increases, the

cluster size slightly grows, whereas the number of clusters increases very much. This is

a positive result for our purposes because the parameter to monitor for investigating

the performance obtained during the second moment is just cluster size.

Another important issue to investigate regards the possible existence of a unique

framework handling all the objects of the MIoT and, therefore, in principle, thousands

or millions of objects. With regard to this aspect, we evidence that, in the past, several

attempts have been successfully performed in this direction (think, for instance, of

the SIoT framework proposed in [39, 42]). Clearly, we understand that, in the future,

the number of objects possibly belonging to a MIoT is enormously higher than the

number of objects available in the past IoT frameworks. However, we point out that:
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(i) our approach needs to store only the metadata of the involved objects, and these

are small; (ii) the real objects can operate in a distributed environment thanks to the

new available technologies, such as cloud, edge and fog computing, which can ease

the organization and the management of distributed contexts.

10.6 Experiments

In this section, we present the experimental campaign that we carried out to evaluate

the performance of our approach from several viewpoints. Specifically, we describe

our dataset in a subsection, whereas, in the next ones, we illustrate our tests, along

with the underlying motivations and the obtained results.

10.6.1 Adopted Dataset

To perform our experiments, we had the necessity to create several MIoTs with differ-

ent sizes, ranging from hundreds to thousands of nodes. Since, currently, real MIoTs

with the size and the variety handled by our model do not exist yet, we had to realize

a MIoT simulator, i.e., a tool that, starting from real data, is capable of simulating

MIoTs with certain characteristics specified by the user.

The MIoTs created by our simulator follow the model described in Section 10.3.

In order to perform its task, our simulator carries out the following steps: (i) creation

of objects; (ii) creation of object instances; (iii) creation of instance connections; (iv)

creation of instance profiles.

Our MIoT simulator is also provided with a suitable interface allowing a user

to “personalize” the MIoT to construct by specifying the desired values for several

parameters, such as the number of nodes, the maximum number of instances of an

object, and so forth.

To make “concrete” and “plausible” the created MIoT, our simulator lever-

ages a real dataset. It regards the taxi routes in the city of Porto from July 1st

2013 to June 30th 2014. It can be found at the address http://www.geolink.pt/

ecmlpkdd2015-challenge/dataset.html. Each route contains several Points of In-

terests corresponding to the GPS coordinates of the vehicle.

We partitioned the city of Porto in six areas and associated a real IoT with each of

them. Our simulator associates an object with a given route recorded in the dataset

and an object instance for each partition of a route belonging to an area. It creates a

MIoT node for each instance and a c-arc for each pair of instances belonging to the

same route. Furthermore, it creates an i-arc between two nodes of the same IoT if

the length of the time interval between the corresponding routes is less than a certain

threshold tht. The weight of the i-arc indicates the length of this time interval. The
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value of tht can be specified through the constructor interface. Clearly, the higher tht

the more connected the constructed MIoT.

As far as instance profiles are concerned, since there are no thing profiles avail-

able (indeed, the concept of thing profile is one of the main novelties introduced in

this chapter), we had to simulate them. However, we aimed to make them as real as

possible. In order to increase the likelihood of constructed MIoTs, we performed a

sentiment analysis task for each of the six areas in which we partitioned the city of

Porto and for each day which the dataset refers to. For this purpose, we leveraged

IBM Watson on the social media and blogs it uses as default. Having this data at

disposal, our simulator assigns to each instance the most common topics (along with

the corresponding occurrences) discussed in that area in the day on which the corre-

sponding route took place. The constructed MIoTs are returned in a format that can

be directly processed by the cypher-shell of Neo4J (see below).

Some features of the constructed MIoTs are reported in Table 10.1. The interested

reader can find the MIoTs adopted in the experiments described in this section at the

address http://daisy.dii.univpm.it/miot/datasets/virtualIoTs.

MIoT (size) Number of arcs Mean in-degree Mean out-degree Number of i-arcs Number of c-arcs

M1 (176) 1176 6.29 6.61 980 126

M2 (301) 2050 7.76 7.74 1709 341

M3 (485) 3756 8.80 8.54 3130 626

M4 (778) 5866 8.89 9.11 4895 971

M5 (946) 7624 8.64 8.84 6422 1202

M6 (1256) 9860 7.87 7.98 7917 1943

M7 (1725) 12263 7.94 8.18 9964 2299

M8 (2028) 15568 8.22 8.38 12857 2711

M9 (3544) 26428 8.36 8.42 22718 3710

M10 (5024) 38642 8.44 8.54 33724 4918

Table 10.1. Main features of the constructed MIoTs

We carried out all the tests presented in this section on a server equipped with

an Intel I7 Quad Core 7700 HQ processor and 16 GB of RAM with Ubuntu 16.04

operating system.

To implement our approaches we adopted:

• Python, powered with the NetworkX library, as programming language;

• Neo4J (Version 3.4.5) as underlying DBMS; we also exploited some plugins of

Neo4J to perform community detection and to compute clustering coefficients.

10.6.2 Cohesion of the obtained topic-guided virtual IoTs

Our first test started from the idea that if our approach aims at extracting virtual the-

matic IoTs, they should present both a structural and a semantic cohesion higher than

the corresponding ones characterizing the original IoTs of the MIoT. This experiment



226 10 Building Virtual IoTs in a Multiple IoTs scenario

was devoted to evaluate if this assumption is verified. We considered two well known

structural cohesion parameters used in network analysis literature, namely clustering

coefficient and density [439]. Both of them range in the real interval [0, 1]; the higher

their value the higher the corresponding network cohesion. In the following, first we

test the supervised approach and, then, we consider the unsupervised one.

Supervised approach

In this test, we run our supervised approach on ten MIoTs, M1, . . . , M10, consisting

of 176, 301, 485, 778, 946, 1256, 1725, 2028, 3544 and 5024 nodes. Clearly, the number

of IoTs for each MIoT was equal to six, one for each area of the city of Porto that we

have defined. For each MIoT, we submitted a set of 10 queries consisting of 1 (resp.,

2, 4, 6, 8 and 10) word(s).

Each query returned a virtual thematic IoT for which we computed the corre-

sponding clustering coefficient and density. Finally, we averaged the obtained results

for each MIoT and for each set of queries, and we compared them with the aver-

age clustering coefficient and the average density of the corresponding real IoTs. The

obtained results are reported in Tables 10.2 and 10.3.

MIoT (size) Avg. clustering coeff. (real IoTs)
Avg. clustering coeff. (virtual IoTs)

|Q| = 1 |Q| = 2 |Q| = 4 |Q| = 6 |Q| = 8 |Q| = 10

M1 (176) 0.230 0.318 0.368 0.389 0.394 0.401 0.408

M2 (301) 0.272 0.343 0.388 0.419 0.424 0.434 0.446

M3 (485) 0.293 0.396 0.437 0.477 0.482 0.488 0.497

M4 (778) 0.353 0.447 0.478 0.503 0.508 0.511 0.517

M5 (946) 0.371 0.452 0.492 0.512 0.522 0.524 0.526

M6 (1256) 0.385 0.486 0.511 0.529 0.530 0.532 0.535

M7 (1725) 0.386 0.501 0.524 0.536 0.537 0.538 0.539

M8 (2028) 0.388 0.519 0.536 0.541 0.541 0.542 0.543

M9 (3544) 0.392 0.522 0.540 0.544 0.544 0.545 0.546

M10 (5024) 0.395 0.534 0.546 0.546 0.546 0.547 0.548

Table 10.2. Values of the clustering coefficient for real and virtual IoTs against the size of

MIoTs and queries used to generate the virtual IoTs (supervised approach)

MIoT (size) Average density (real IoTs)
Average density (virtual IoTs)

|Q| = 1 |Q| = 2 |Q| = 4 |Q| = 6 |Q| = 8 |Q| = 10

M1 (176) 0.348 0.260 0.264 0.280 0.289 0.296 0.301

M2 (301) 0.262 0.292 0.303 0.309 0.315 0.320 0.324

M3 (485) 0.274 0.390 0.395 0.400 0.402 0.405 0.408

M4 (778) 0.269 0.476 0.483 0.490 0.501 0.509 0.514

M5 (946) 0.276 0.492 0.509 0.521 0.536 0.534 0.556

M6 (1256) 0.284 0.547 0.556 0.567 0.572 0.576 0.581

M7 (1725) 0.278 0.582 0.582 0.594 0.598 0.598 0.601

M8 (2028) 0.273 0.609 0.610 0.620 0.626 0.630 0.639

M9 (3544) 0.269 0.626 0.628 0.630 0.634 0.636 0.637

M10 (5024) 0.262 0.636 0.636 0.638 0.638 0.640 0.642

Table 10.3. Values of the density for real and virtual IoTs against the size of MIoTs and

queries used to generate the virtual IoTs (supervised approach)



10.6 Experiments 227

From the analysis of these tables, we can observe that, in almost all circumstances,

the values of both clustering coefficient and density are higher or much higher for the

virtual thematic IoTs than for the real ones. This is clearly a confirmation of the

goodness of our supervised approach, which returns topic-guided IoTs more cohesive

than the original ones. We also observe that when |Q| increases, the values of both

clustering coefficient and density increases. This can be explained by observing that,

in processing Q, our approach takes the portions of networks containing at least one

keyword of Q. When |Q| increases, the portion of networks selected by our approach

increases too, and the probability of selecting a very high number of edges (i.e., a

number so high to lead to an increase of clustering coefficient and density) increases

as well.

Unsupervised approach

In this test, we run our unsupervised approach, powered with the Louvain graph

clustering algorithm [68] as underlying engine, on the same MIoTs described in Section

10.6.2. For each MIoT, we computed the average clustering coefficient and the average

density of real and virtual IoTs. The obtained results are reported in Table 10.4.

MIoT (size)
Average clustering coefficient Average density

Real IoTs Virtual IoTs Real IoTs Virtual IoTs

M1 (176) 0.230 0.473 0.348 0.315

M2 (301) 0.272 0.499 0.262 0.350

M3 (485) 0.293 0.500 0.274 0.375

M4 (778) 0.353 0.511 0.269 0.318

M5 (946) 0.372 0.509 0.276 0.316

M6 (1256) 0.385 0.506 0.284 0.314

M7 (1725) 0.386 0.522 0.280 0.328

M8 (2028) 0.388 0.535 0.273 0.360

M9 (3544) 0.394 0.547 0.271 0.364

M10 (5024) 0.398 0.562 0.269 0.368

Table 10.4. Values of both clustering coefficient and density of real and virtual IoTs against

the size of MIoTs (unsupervised approach)

From the analysis of this table we can observe that, in this case, analogously to

what happened for the supervised approach, the cohesion level of the virtual IoTs is

higher or much higher than the corresponding ones of the real original IoTs. Inter-

estingly, both clustering coefficient and density values obtained by the unsupervised

approach are generally higher than those returned by the supervised one, at least

when the MIoT size is small. Instead, when the MIoT size is large, they become lower

than the ones of the supervised approach. Actually, the increase of both clustering

coefficient and density when the MIoT size increases is significant for the supervised

approach, whereas it is more limited for the unsupervised one.
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10.6.3 Average fraction of merged c-nodes and analysis of node

distribution in virtual IoTs

Another quality parameter for virtual IoTs returned by our approach regards the

average number of merged c-nodes present in each of them. Indeed, the presence

of merged c-nodes in an IoT is an indicator of the fact that this IoT is capable of

connecting concepts coming from different real IoTs, and, therefore, from concepts

whose relationships would have been uncaptured otherwise, or, in other words, that

the knowledge it is presenting is new and did not exist previously. Clearly, the higher

the fraction of merged c-nodes and the higher the fraction of different original IoTs

they belong to, the higher the connecting capability of virtual IoTs.

Also for this experiment, we considered the ten MIoTs described in Section 10.6.2

and performed the same tasks illustrated therein for both the supervised and the

unsupervised approaches. The obtained results are reported in Tables 10.5, 10.6 and

10.7.

MIoT (size)
Average fraction of merged c-nodes

|Q| = 1 |Q| = 2 |Q| = 4 |Q| = 6 |Q| = 8 |Q| = 10

M1 (176) 0.304 0.455 0.517 0.532 0.554 0.572

M2 (301) 0.380 0.515 0.608 0.627 0.652 0.679

M3 (485) 0.539 0.661 0.782 0.798 0.813 0.823

M4 (778) 0.690 0.786 0.860 0.874 0.883 0.892

M5 (946) 0.724 0.812 0.884 0.898 0.916 0.924

M6 (1256) 0.808 0.883 0.939 0.943 0.946 0.948

M7 (1725) 0.862 0.908 0.952 0.961 0.961 0.963

M8 (2028) 0.908 0.959 0.974 0.975 0.976 0.977

M9 (3544) 0.928 0.963 0.976 0.977 0.977 0.978

M10 (5024) 0.936 0.968 0.978 0.979 0.980 0.981

Table 10.5. Average fraction of merged c-nodes against the size of MIoTs and queries used

to generate the virtual IoTs (supervised approach)

MIoT (size)
Average fraction of involved real IoTs

|Q| = 1 |Q| = 2 |Q| = 4 |Q| = 6 |Q| = 8 |Q| = 10

M1 (176) 0.373 0.467 0.488 0.476 0.452 0.448

M2 (301) 0.365 0.469 0.525 0.501 0.488 0.480

M3 (485) 0.482 0.477 0.448 0.442 0.435 0.432

M4 (778) 0.457 0.432 0.418 0.415 0.413 0.411

M5 (946) 0.455 0.482 0.624 0.628 0.647 0.644

M6 (1256) 0.453 0.514 0.805 0.864 0.917 0.924

M7 (1725) 0.482 0.577 0.815 0.872 0.917 0.924

M8 (2028) 0.514 0.672 0.833 0.898 0.917 0.924

M9 (3544) 0.584 0.704 0.844 0.905 0.924 0.926

M10 (5024) 0.624 0.727 0.888 0.911 0.928 0.934

Table 10.6. Average fraction of real IoTs involved in a virtual IoT against the size of MIoTs

and queries used to generate the virtual IoTs (supervised approach)

From the analysis of these tables, we observe that both the supervised and the

unsupervised approaches return satisfying results. As for the supervised approach,
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MIoT (size) Average fraction of merged c-nodes Average fraction of involved real IoTs

M1 (176) 0.227 0.361

M2 (301) 0.306 0.353

M3 (485) 0.309 0.357

M4 (778) 0.342 0.356

M5 (946) 0.334 0.359

M6 (1256) 0.326 0.361

M7 (778) 0.332 0.360

M8 (2028) 0.335 0.358

M9 (3544) 0.341 0.371

M10 (5024) 0.344 0.378

Table 10.7. Average fraction of merged c-nodes and average fraction of real IoTs involved

in a virtual IoT against the size of MIoTs (unsupervised approach)

we can observe that the fraction of merged c-nodes increases when the size of MIoT

increases. Furthermore, we can also observe a slight increase of this fraction when |Q|

increases. The same trends can be observed for the average fraction of involved real

IoTs, even if, for this parameter, its increase against the increase of |Q| is more pro-

nounced. As for the unsupervised approach, we can observe that the average fraction

of merged nodes is always very high, independently of the MIoT size. By contrast,

in this case, the fraction of involved real IoTs is quite high even if lower than the

ones generally observed for the supervised approach. Furthermore, its value does not

significantly change when the MIoT size increases.

In order to deepen this investigation, for each virtual IoT, we compared the dis-

tribution of its nodes against the real IoTs they belong to. Indeed, if almost all the

nodes of a virtual IoT derive from only one real IoT, the information contribution

provided by the virtual IoT would be very small because it would be analogous to

the one provided by the corresponding real IoT. By contrast, if the nodes of a virtual

IoT homogeneously derive from several real IoTs, then the knowledge it provides is

really new, and this knowledge would be uncaptured and lost if the new IoT had not

been extracted. On the basis of this reasoning, we evaluated the heterogeneity of the

provenance of the various nodes of each virtual IoT (see below). For this purpose, we

adapted the Herfindahl Index [203] to our context. This index is very used in sev-

eral research fields of Economics from several decades; for instance, it is exploited to

evaluate the concentration degree in an industry.

In order to adapt the Herfindahl Index to our scenario, consider a MIoT M con-

sisting of s real IoTs (R1,R2, . . . ,Rs). Consider, also, a virtual IoT Vj derived by

either the supervised or the unsupervised approach. Let nj be the number of nodes of

Vj and let
njk
nj

, 1 ≤ k ≤ s, be the fraction of the nodes of Vj belonging to Rk (i.e., the

kth real IoT of the MIoT). The Herfindahl Index Hj of Vj is defined as
∑s

k=1

(
njk
nj

)2
.

Hj ranges in the real interval
[
1
s , 1
]
; the higher its value, the higher the concentration

degree of the nodes of Rk in Vj . Clearly, as previously pointed out, one property

desired for our approach is the ability to construct virtual IoTs connecting nodes that
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belong to different real IoTs in such a way as to extract knowledge that would be lost

otherwise. If we report this property to the Herfindahl Index, this implies to obtain a

value of this index as lower as possible3.

We computed the average Herfindahl Index of the thematic IoTs returned by

both the supervised and the unsupervised approaches by considering the ten MIoTs

described in Section 10.6.2 and performing the same tasks illustrated therein. The

obtained results are reported in Tables 10.8 and 10.9.

MIoT (size)
Average Herfindhal Index

|Q| = 1 |Q| = 2 |Q| = 4 |Q| = 6 |Q| = 8 |Q| = 10

M1 (176) 0.207 0.186 0.177 0.175 0.173 0.172

M2 (301) 0.204 0.183 0.174 0.173 0.172 0.171

M3 (485) 0.178 0.173 0.170 0.170 0.169 0.168

M4 (778) 0.172 0.172 0.170 0.170 0.169 0.168

M5 (946) 0.172 0.170 0.169 0.169 0.169 0.168

M6 (1256) 0.173 0.168 0.167 0.169 0.168 0.167

M7 (1725) 0.170 0.168 0.167 0.169 0.168 0.167

M8 (2028) 0.168 0.167 0.167 0.167 0.167 0.167

M9 (3544) 0.168 0.167 0.167 0.167 0.167 0.167

M10 (5024) 0.167 0.167 0.167 0.167 0.167 0.167

Table 10.8. Average Herfindahl Index of virtual IoTs against the size of MIoTs and queries

used to generate the virtual IoTs (supervised approach)

MIoT (size) Average Herfindahl Index

M1 (176) 0.658

M2 (301) 0.543

M3 (485) 0.658

M4 (778) 0.636

M5 (946) 0.654

M6 (1256) 0.694

M7 (1725) 0.656

M8 (2028) 0.635

M9 (3544) 0.664

M10 (5024) 0.686

Table 10.9. Average Herfindahl Index of virtual IoTs against the size of MIoTs (unsuper-

vised approach)

These tables evidence that also the analysis based on object distribution and

Herfindahl Index returns very satisfying results that confirm and strengthen those

obtained by examining the average fraction of merged nodes involved in a virtual

IoT. Interestingly, as for this parameter, we observe that the supervised approach

returns excellent results, very close to the best ones. By contrast, the unsupervised

approach returns good results, even if those returned by the supervised approach are

better.

3 Consider that, since we have six real IoTs in our MIoTs, the minimum value of the

Herfindahl Index is 1
6 = 0.167.
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10.6.4 Computation time

In this experiment, we aimed at evaluating the variation of the computation time of

both the supervised and the unsupervised approaches against the variation of the size

of the involved MIoT. Furthermore, as for the supervised approach, we also evaluated

the variation of the computation time against the variation of the size of queries.

To perform this task, we considered the ten MIoTs described in Section 10.6.2 and

carried out the same tasks illustrated therein. Finally, we measured the corresponding

average computation times. The obtained results are reported in Figures 10.1, 10.2

and 10.3.

Fig. 10.1. Computation time (in seconds) against the size of MIoTs and queries used to

generate the virtual IoTs (supervised approach) - first part

Fig. 10.2. Computation time (in seconds) against the size of MIoTs and queries used to

generate the virtual IoTs (supervised approach) - second part

From the analysis of these figures, we can observe that our approaches obtain

satisfying results. Specifically, as for the supervised approach, the computation time
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Fig. 10.3. Computation time (in seconds) against the size of MIoTs (unsupervised approach)

is always very low for MIoTs having at most 1256 nodes. Instead, for MIoTs with

more than 2028 nodes, the computation time is low for |Q| = 1 or |Q| = 2. Then, it

increases, even if it remains acceptable for |Q| = 4 and |Q| = 6, whereas it becomes

excessive for |Q| = 8 and |Q| = 10. However, with regard to this fact, we must point

out that queries consisting of 8 or 10 keywords are very uncommon4.

As for the unsupervised approach, its computation time is still acceptable also

for 2028 nodes. It starts to become excessive with MIoTs consisting of at least 10000

nodes.

10.6.5 Our approaches’ capability of improving the efficiency of

information dissemination

This experiment was devoted to measure the efficiency of both supervised and unsu-

pervised approaches. The rationale underlying this experiment is that if some infor-

mation must be transferred from a source object os to a target one ot, the number

of objects to be contacted for this task should be minimized. At the same time, if an

object is involved in an information dissemination task, it would be desiderable that

the information it is transmitting is also useful for it (which, in our case, means that

it is in line with the interests of its profile).

In order to perform this experiment, we randomly selected some pairs of (source,

target) nodes from our MIoT. Let (ns, nt) be one of these pairs. We verified if there

4 It is worth pointing out that the topics considered by our approach for constructing a

thing’s profile are extremely generic and heterogeneous. As a consequence, in our scenario,

a query with 8 or 10 keywords would encompass a great number of different topics and,

as such, it would not be generally able to capture a clear and specific desire of a user.
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existed at least one virtual IoT comprising both ns and nt
5. In the negative case, we

discarded that pair. Let V be a virtual IoT comprising both ns and nt.

After this, we computed the number numV
st (resp., n̂um

V
st) of MIoT nodes involved

in the dissemination of information in presence (resp., absence) of the virtual IoT V.

Specifically, we computed numV
st by performing the information dissemination task

only through its nodes; instead, we obtained n̂umV
st by performing the same task on

the whole MIoT. Finally, we computed: fst =
numV

st

n̂umV
st

. Clearly, the lower fst, the higher

the contribution of the virtual IoTs in reducing the number of nodes necessary for the

information dissemination task and, consequently, the higher the contribution that

our virtual IoT detection approach can provide to information dissemination.

We computed the average values of fst by operating on the ten MIoTs introduced

in Section 10.6.2 and by performing the same tasks described therein for both the

supervised and the unsupervised approaches. The obtained results are reported in

Tables 10.10 and 10.11.

MIoT (size)
Average fst

|Q| = 1 |Q| = 2 |Q| = 4 |Q| = 6 |Q| = 8 |Q| = 10

M1 (176) 0.144 0.220 0.290 0.304 0.336 0.347

M2 (301) 0.126 0.170 0.177 0.175 0.178 0.179

M3 (485) 0.104 0.112 0.074 0.052 0.041 0.037

M4 (778) 0.057 0.051 0.028 0.038 0.047 0.049

M5 (946) 0.048 0.034 0.022 0.028 0.032 0.024

M6 (1256) 0.031 0.015 0.017 0.011 0.007 0.007

M7 (1725) 0.026 0.014 0.011 0.010 0.008 0.008

M8 (2028) 0.016 0.010 0.009 0.009 0.009 0.009

M9 (3544) 0.012 0.009 0.009 0.009 0.009 0.009

M10 (5024) 0.011 0.008 0.007 0.007 0.007 0.007

Table 10.10. Average values of fst against the size of MIoTs and queries used to generate

the virtual IoTs (supervised approach)

MIoT (size) Average fst

M1(176) 0.904

M2(301) 0.722

M3(485) 0.635

M4(778) 0.584

M5(946) 0.580

M6(1256) 0.576

M7(1725) 0.516

M8(2028) 0.477

M9(3544) 0.452

M10(5024) 0.426

Table 10.11. Average values of fst against the size of MIoTs (unsupervised approach)

From the analysis of these tables we can observe that both the supervised and

the unsupervised approaches really contribute to decrease the number of the nodes

5 This is always true for the unsupervised approach, whereas it could not happen for the

supervised one.
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of a MIoT involved in the information dissemination, and, therefore, to increase the

efficiency of this task. As for the supervised approach, we observe that the decrease of

the number of involved nodes is always high. It becomes very high as the MIoT size

and the number of keywords composing the query increase. As for the unsupervised

approach, we observe that it leads to a decrease of the number of the MIoT nodes in-

volved in the dissemination task. However, this decrease is minimum for small MIoTs,

whereas it becomes significant for large ones (i.e., for MIoTs with a number of nodes

higher than 1256).

We performed a second experiment in this direction. Specifically, given a pair

(ns, nt) of a MIoT such that information must be disseminated from ns to nt and

there exists at least one virtual IoT V comprising both ns and nt, we computed the

fraction gVst (resp., ĝ
V
st) of the nodes of the MIoT involved in the diffusion of informa-

tion from ns to nt and having at least one content of the disseminated information

registered in their profile (which implies that, in principle, they could benefit from

the information they are required to disseminate). As in the previous experiment, we

computed gVst by assuming the existence of V and, hence, by performing the infor-

mation dissemination task through it; by contrast, we computed ĝVst by carrying out

the information dissemination task through the whole MIoT. Finally, we computed

gst =
gV
st

ĝV
st

. Roughly speaking, it denotes how much the presence of the virtual IoT V

can contribute to require information dissemination tasks only to nodes possibly ben-

efiting of it. A value of this coefficient higher than 1 denotes a positive contribution

of V; the higher this value the higher the contribution. As in the previous experiment,

we computed the average values of gst by operating on the ten MIoTs introduced

in Section 10.6.2 and by performing the same tasks described therein for both the

supervised and the unsupervised approaches. The obtained results are reported in

Tables 10.12 and 10.13.

MIoT (size)
Average gst

|Q| = 1 |Q| = 2 |Q| = 4 |Q| = 6 |Q| = 8 |Q| = 10

M1 (176) 4.018 2.792 2.223 1.918 1.331 1.321

M2 (301) 3.563 2.619 2.445 2.009 1.683 1.664

M3 (485) 3.269 2.370 1.426 1.528 1.626 1.674

M4 (778) 3.130 2.168 2.367 1.916 1.494 1.325

M5 (946) 3.232 2.102 1.864 1.712 1.461 1.391

M6 (1256) 3.467 1.979 1.378 1.412 1.438 1.452

M7 (1725) 3.476 2.224 1.414 1.444 1.494 1.492

M8 (2028) 3.496 2.669 1.489 1.491 1.521 1.545

M9 (3544) 3.507 2.712 1.612 1.624 1.631 1.632

M10 (5024) 3.517 2.926 1.783 1.841 1.864 1.874

Table 10.12. Average values of gst against the size of MIoTs and queries used to generate

the virtual IoTs (supervised approach)
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MIoT (size) Average gst

M1 (176) 1.341

M2 (301) 1.269

M3 (485) 1.211

M4 (778) 1.177

M5 (946) 1.173

M6 (1256) 1.171

M7 (1725) 1.194

M8 (2028) 1.273

M9 (3544) 1.281

M10 (5024) 1.301

Table 10.13. Average values of gst against the size of MIoTs (unsupervised approach)

The analysis of these tables is a further confirmation of the efficiency of our ap-

proach. Indeed, thanks to the presence of virtual IoTs, the fraction of nodes partici-

pating to the spreading of information that can also benefit from this task increases

remarkably.

The results of Tables 10.10 and 10.11, along with the ones of Tables 10.12 and

10.13, agree to evidence that the discovery of virtual IoTs is highly beneficial in

terms of efficiency for the information dissemination task in a MIoT. In this case,

the contribution of V in increasing the efficiency of the spreading task, by limiting it

mainly to nodes that could benefit from the information they are disseminating, is

very high for the supervised approach when |Q| = 1 or |Q| = 2. When |Q| increases,

this contribution decreases, even if it remains still significant. As for the unsupervised

approach, the contribution of V can be always observed even if it is less evident than

the one characterizing the supervised approach.

10.6.6 Number and size of returned virtual IoTs

This last experiment makes sense only for the unsupervised approach. Through it

we aimed at investigating how the number and the size of returned virtual IoTs

(and, therefore, the number and the size of returned clusters) vary when the MIoT

size increases. To make this experiment significant, we maintained constant all the

parameters of the adopted clustering algorithm. We considered the MIoTsM1 · · ·M10

used in the previous experiments because, in this way, we had the possibility to

investigate MIoT sizes ranging from 176 to 5024 nodes. We report the obtained results

in Table 10.14.

From the analysis of this table we can observe that the average size of virtual

IoTs:

• increases when the MIoT size ranges from 176 to 946;

• slightly increases when the MIoT size ranges from 946 to 2028;

• remains essentially constant when the MIoT size is higher than 2028.

In the meantime, the number of clusters:
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MIoT (size) Average size of virtual IoTs Number of virtual IoTs

M1 (176) 22.44 10

M2 (301) 28.21 13

M3 (485) 36.64 16

M4 (778) 40.82 22

M5 (946) 44.66 24

M6 (1256) 46.74 30

M7 (1725) 48.12 39

M8 (2028) 50.24 45

M9 (3544) 50.46 78

M10 (5024) 50.64 105

Table 10.14. Average size and number of virtual IoTs against the increase of the MIoT size

(unsupervised approach)

• slightly increases when the MIoT size ranges from 176 to 946;

• increases when the MIoT size ranges from 946 to 2028;

• highly increases when the MIoT size is higher than 2028.

The obtained results are extremely interesting because they confirm the soundness

of the reasoning made in Section 3.3.7. In particular, this experiment confirms the

scalability of our approach. As a matter of fact, after the virtual IoTs have been

constructed offline, their usage for querying and for the other tasks of interest for the

user can be performed online. Now, we observed that the number of available virtual

IoTs highly increases when the MIoT size increases. However, because the size of each

virtual IoT is only slightly impacted by the growth of the corresponding MIoT, and

because user tasks generally involve one or at most a few of available virtual IoTs, we

can conclude that our approach is scalable with respect to the size variation of the

MIoT.
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In this part, we apply our network-based model and the associated social network-based
approach to support decision making in the field of innovation management. This part is or-
ganized as follows: in Chapter 11, we propose a well-tailored centrality measure for evaluating
patents and their citations. In Chapter 12, we present a new approach to extract knowledge
patterns about research activities and hubs in a set of countries. Finally, in Chapter 13, we
introduce new metrics specifically conceived to evaluate the innovation level of each country
based on patent data.

.





11

Evaluating patents and their citations

11.1 Introduction

Patents have been largely investigated in the past scientific literature [8, 285, 446, 141,

424, 252]. In fact, their analysis can supply a large amount of information concern-

ing both the state of art and the protagonists of a certain Research & Development

(R&D) field [466, 156, 181, 200, 208, 308, 410, 281]. This also because the submission

of a patent is usually the first public claim of a new invention or innovation. Patent

analysis allows decision makers to investigate the experiences of other (possible com-

petitor) institutions and/or countries, in such a way as to know the past and the

current R&D activities in the fields of interest, to delineate their evolution and to

foresee their future developments. Furthermore, patent analysis allows the construc-

tion of a detailed picture of the R&D cooperations among different institutions and/or

countries and can be an indicator of geo-political evolutions happening all over the

world [109, 405, 73].

Most of the past approaches for patent analysis were based on classical statistics.

However, the impressive development of innovations in all the R&D fields is leading to

a huge increase of patent data. Therefore, it is reasonable to foresee that, in the next

future, Big Data centered techniques will be compulsory to fully exploit the potential

of patent data. In this last scenario, the adoption of approaches based on network

analysis is extremely promising [458, 106, 107, 258, 476, 87]. As a matter of facts,

network analysis allows a full comprehension and a complete management of those

phenomena where relationships among objects to investigate play the key role and,

at the same time, the corresponding variables are strictly related to each other. This

is exactly the future scenario characterizing patent and innovation management, and,

at the same time, it is the “worst-case scenario” for classic statistic-based approaches,

which present several limitations when operating therein [439].



242 11 Evaluating patents and their citations

As a confirmation of the adequacy of network analysis for patent investigation,

in the past literature, several approaches to facing this issue can be found (see, for

instance, [87, 214, 142, 209, 469]).

Centrality is one of the most investigated issues in network analysis. It aims at

measuring the importance of a node in a network. It allows experts: (i) to measure the

relevance and the criticity of nodes in their networks; (ii) to define forms of distance

between network nodes or areas; (iii) to measure the cohesion degree of a subnetwork;

(iv) to identify cohesive subnetworks or network communities.

In the past, several centrality measures have been proposed in the literature [94,

386, 162, 186, 161, 423, 80]. Among them, the most general and best known ones are:

(i) degree centrality, based on the number of arcs incoming in, or outgoing from, each

node; (ii) closeness centrality, based on distances between nodes; (iii) betweenness

centrality, based on the shortest paths connecting pairs of nodes; (iv) eigenvector

centrality, based on both the number and the centrality of nodes whose outgoing

arcs are incident on the nodes of interest. All these measures, as well as the other

ones proposed in the literature, could be adopted in the investigation of patents.

However, they are not tailored to this scenario and could return approximate results.

This because patents have a very relevant peculiarity that is not found elsewhere (for

instance, in scientific papers [153]), in that, if a patent pi cites a patent pj , then pi

looses a part of its value.

If we report this reasoning to the network analysis context, we have that, for a

node, having incoming arcs is extremely positive; by contrast, having outgoing arcs

is negative. Past centrality measures certainly distinguish between these two kinds of

arc; for instance, degree centrality distinguishes between indegree and outdegree [193].

However, they do not combine centrality values originated from the incoming arcs

with those derived from the outgoing ones. What is missing is precisely a centrality

measure that first assigns a positive ranking to incoming arcs and a negative ranking

to outgoing ones and, then, combines these rankings to obtain a unique value.

In this paper, we aim at providing a contribution in this setting. In fact, we propose

a well-tailored centrality measure for evaluating patents and their citations.

For this purpose, we preliminarily introduce a suitable support directed network,

whose nodes represent patents. An arc from a node vi to a node vj indicates that the

patent represented by vi cited the patent represented by vj .

After this, we introduce our centrality measures, namely “Naive Patent Degree”

and “Refined Patent Degree”, and we show that they are well tailored to capture the

specificities of the patent scenario. To investigate the adequacy of our centrality mea-

sures, we carried out several experiments. The corresponding patent data derives from

PATSTAT-ICRIOS database [108]. This is a large dataset about patents constructed
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and maintained by the Invernizzi Centre of Research and Innovation, Organization

and Strategy (ICRIOS) at Bocconi University. It stores patent data, from 1978 to the

current year, coming from about 90 patent offices worldwide, including, of course, the

most important and largest ones, such as European Patent Office (EPO) and United

States Patent and Trademark Office (USPTO).

Finally, we present three possible applications of our measures, namely: (i) the

computation of the “scope” of a patent, whose purpose is the evaluation of the width

and the strength of the influence of a patent on a given R&D field; (ii) the computation

of the lifecycle of a patent; (iii) the detection of the so-called “power patents”, i.e.,

the most relevant patents, and the investigation of the importance, for a patent, to

be cited by a power patent.

The plan of this paper is as follows: in Section 11.2, we present related literature.

In Section 11.3, we illustrate the patent database that we used for our experiments,

and the support network model that we defined to represent patents and their rela-

tionships. In Section 11.4, we present our centrality measures and evaluate them. In

Section 11.5, we describe the three applications of our centrality measures that we

mentioned above.

11.2 Related Work

Centrality has always been one of the core topics of network analysis and has been

largely investigated in the literature. It allows people to quantify the importance

of nodes in their network and to understand the structural properties of this last

one. As a matter of facts, already [366] developed a self-consistent methodology for

determining citation-based influence measures for scientific journals, subfields and

fields. Specifically, these authors formulate an eigenvalue problem leading to a size-

independent influence weight for each journal or aggregate. Then, they define two

other measures, namely the influence per publication and the total influence. Finally,

they present some hierarchical influence diagrams and numerical data to display inter-

relationships for journals on physics. In the same years, [162] examined and explained

the role of centrality metrics in network analysis.

As illustrated in detail in [284, 111], the influence of a node mainly depends on

its position in the corresponding network, as well as on the structural properties

of this last one. Centrality metrics aim at assigning a rank to each network node,

summarizing its importance in the network. As previously pointed out, this rank is

strictly related to the needs of the application scenario, which the network refers to.

Since these needs can be heterogeneous, several different metrics have been proposed

in the past network analysis literature.



244 11 Evaluating patents and their citations

The study of the neighborhood of a node is adopted as the starting point of some

of the most important centrality metrics. In this context, degree centrality is one

of the most famous metrics; it aims at measuring the visibility of a node within its

network. Degree centrality presents several strengths but also some weaknesses. This

is the reason why, in the literature, researchers proposed some approaches that try to

overcome the problems of this metric. An example is ClusterRank, proposed in [94];

it also considers clustering coefficient in the score computation. In [134], the authors,

starting from the observation that the position of a node is more important than its

degree for measuring its relevance, apply k-core decomposition. It iteratively breaks

down the network according to the residual degree of its nodes. K-core decomposition

is considered as one of the most valid approaches to understanding the influence of a

node and its role in information diffusion. Another well known centrality measure is

h-index [201], which returns the influence of a user in a social network.

Another family of centrality approaches is based on the number of paths, which a

node is involved in. In this path-based centrality, the higher the number of paths where

a certain node is present the higher the node’s importance. Closeness centrality [386],

eccentricity centrality [186] and betweenness centrality [161] belong to this family of

approaches. From a general point of view, a node with a high closeness centrality can

have access to a high number of communications; therefore, it can perform a high

control on information flow. Instead, a node with a high betweenness centrality, in

most cases, operates as a bridge between two communities; therefore, it can have a

strong control on information exchange. Other techniques belonging to this family of

centrality metrics are Kats centrality [232], subgraph centrality [145], and information

index [423].

As pointed out in [465], in most cases, centrality does not depend only on the

number of neighbors of a node on the paths it is involved in. In some cases, not only

the number of neighbors, but also their relevance is important to assess the relevance

of a node in its network. Starting from this consideration, authors have defined a

third family of centrality measures. Eigenvector centrality [70], PageRank [80] and

HITs [239] are the most known metrics of this family.

Even if centrality is one of the most important topics in network analysis, it was

rarely adopted for investigating the relevance of a patent based on citations. Actually,

the idea of analyzing patents based on their citations was proposed by Seidel in 1949

[401]. From that time, a large variety of tools for performing this analysis has been

proposed in the literature. Network analysis is one of the most adopted tools because

it allows the creation of suitable networks representing patent citations.

Bibliometrics is certainly an optimum starting point for patent investigation, as it

shares many common aspects with patent analysis. Clearly, besides many similarities,
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paper and patent citations also present several significant differences, as evidenced in

[307].

If we focus on patent citations, several variegate approaches to investigating

patents based on them have been proposed in the past. For instance, the authors

of [469] consider both direct and indirect citations, as well as patent couplings co-

citations. An approach to investigating patent outliers is described in [381], whereas

the small world phenomenon in the context of patent citation networks is analyzed in

[214]. The definition of the lifecycle of a given technology starting from patent citation

networks is proposed in [211], whereas the technological focus of patents is studied in

[210].

In several cases, the typical problems of network analysis are investigated in the

context of patent citation networks. For instance, the approach to analyzing network

connectivity proposed in [212] is extended to patent citation networks in [54, 157, 443].

Specifically, [54] shows how the analysis of network connectivity can be extended

to the patent scenario for detecting reliable knowledge on technological evolutions.

[157] exploits network connectivity to reconstruct the most relevant technological

trajectories of data communication standards. [443] performs a similar investigation

but for fuel cells technology.

Finally, the application of the standard centrality metrics to patent citation net-

works has been proposed in very few cases. For instance, the authors of [87] propose

an approach to determining the relevance of companies in the industry they operate

on, based on the application of classic centrality metrics on the citation networks of

the patents published by them. An analogous effort can be found in [92], but for Intel-

ligent Transportation System companies. The authors of [257] apply degree centrality,

betweenness centrality and closeness centrality on patent citation networks to inves-

tigate several mechanisms underlying technological innovations. Finally, in [144, 303],

the authors carefully examine the usage of PageRank in patent citation networks, and

evidence its strengths and weaknesses.

However, to the best of our knowledge, none of the approaches proposing the

application of centrality measures to patent citation networks considers the main

peculiarity of this scenario, i.e., that, if a patent pi cites a patent pj , then the value of

pi decreases. By contrast, this important feature represents the core of our approach.



246 11 Evaluating patents and their citations

11.3 Preliminaries

11.3.1 Patent Database

Data regarding patents adopted in our analyses has been taken from PATSTAT-

ICRIOS database [108]. This is a large database about patents handled by ICRIOS

Center at Bocconi University.

PATSTAT (i.e., EPO worldwide PATent STATistical database) is a database stor-

ing raw data about patents. It was constructed by EPO in cooperation with the World

Intellectual Property Organization (WIPO), OECD and Eurostat. It is currently man-

aged by EPO. It stores data about all patents, from 1978 to the current year, coming

from about 90 patent offices worldwide, comprising the most relevant ones, such as

EPO and USPTO.

As pointed out above, data is registered in PATSTAT in a raw format. To fa-

cilitate its analysis, ICRIOS processed it and produced a cleaned and harmonized

database, i.e., PATSTAT-ICRIOS. This includes all bibliographic variables concern-

ing each patent application. In particular, it stores application number and date,

publication number and date, priority, title and abstract, application status, designed

states for protection, main and secondary International Patent Classification (IPC)

codes, name and address of both the applicant and the inventor, references (i.e., cita-

tions) to prior-art patent and non-patent literature, the corresponding Nomenclature

of Units for Territorial Statistics (NUTS3) and, finally, File Index concordance tables,

allowing the conversion of IPC codes into more aggregated and manageable techno-

logical classes.

To perform our investigation in the most correct and effective way, we carried out

a pre-processing activity on the data of our interest. For this purpose, we used the

framework R [7]. Our pre-processing activity consisted of the following tasks:

• Data Extraction. During this task, we first identified all the tables of PATSTAT-

ICRIOS necessary for our analyses. To increase the effectiveness of the next tasks,

we removed all the unnecessary and redundant attributes from these tables. This

led to a strong reduction of the size of the data to process.

• Data Normalization. During this task, we removed some inhomogeneities regarding

the data types of some fields (i.e., strings and dates).

• Data Aggregation. During this task, we performed a data integration activity aim-

ing at storing all data about a concept in a unique collection.

• Data Loading. During this task, we loaded available data (represented in the CSV

format) into a MongoDB [6] final database, which we used for our next activities.

At the end of these four tasks, the size of the dataset to analyze was reduced from

12.5 GB to 2.5 GB.



11.3 Preliminaries 247

11.3.2 Support model

In this section, we introduce the data model representing data about patents and

used by our approach. Before illustrating it, we must introduce two sets allowing us

to formalize data at our disposal. These are: (i) the set Pat of all the patents stored in

PATSTAT-ICRIOS, and (ii) the set Patk of the patents filed by at least one inventor

of the country k.

We are now able to present our data model. It consists of a network N = ⟨V,A⟩.

V denotes the set of the nodes (or vertices) of N . A node vi ∈ V corresponds exactly

to a patent pi ∈ Pat. Since there is a biunivocal correspondence between a node of

V and the corresponding patent of Pat, in the following, in some cases, we adopt the

symbol vi to represent both of them and we adopt the terms “patent” and “node”

interchangeably. Each node vi ∈ V has an associated label li, denoting the set of the

countries of the inventors of pi. A is the set of the arcs of N . There exists an arc

aij = (vi, vj) ∈ A if pi cites pj . Clearly, N is a directed network.

Starting from N , we can define some sets representing the neighborhoods of a node

in V . In particular, given a node vi ∈ V , we can define the following neighborhoods:

• Citedi, i.e., the set of the patents cited by pi:

Citedi = {vj |(vi, vj) ∈ A, vj ̸= vi}

In other words, Citedi is the set of the nodes (and, therefore, the set of the patents)

vj such that there exists an arc from vi to vj (which implies that vj was cited by

vi) in the set A of the arcs of N .

• Citingi, i.e., the set of the patents citing pi:

Citingi = {vj |(vj , vi) ∈ A, vj ̸= vi}

In other words, Citingi is the set of the nodes (and, therefore, the set of the

patents) vj such that there is an arc from vj to vi (which implies that vj cited vi)

in the set A of the arcs of N .

• Vk, i.e., the set of the nodes associated with the patents of Patk:

Vk = {vi|vi ∈ V, k ∈ li}

or, analogously:

Vk = {vi|vi ∈ V, pi ∈ Patk}

In other words, Vk is the set of the nodes of N having the country k among the

ones forming its label l. This is equivalent to say that Vk is the set of the patents

having at least one inventor of the country k.
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11.4 Centrality measures

11.4.1 Theoretical definition

The definition of the new centrality measure, well tailored for the patent scenario,

represents the core of this paper. In fact, as pointed out in the Introduction, patent

citations have a very important specificity because, if a patent pi cites a patent pj ,

the value of pi decreases. As a consequence, differently from many other contexts,

such as scientific papers, making a citation is not painless for the citing patent.

If we report this reasoning to our model, it implies that having incoming arcs is

extremely positive for a node (and this is in line with the classic centrality metrics

of network analysis). By contrast, having outgoing arcs is penalizing for a node (and

this fact is not captured by classic centrality measures).

Since our support network is a directed one, it is necessary to define both the

indegree and the outdegree of a node. The former indicates the number of its incoming

arcs (i.e., the number of citations received by the corresponding patent), whereas the

latter denotes the number of its outgoing arcs (i.e., the number of citations performed

by the corresponding patent).

We propose two centrality measures, which we call:

• Naive Patent Degree (NPD);

• Refined Patent Degree (RPD).

We start by analyzing Naive Patent Degree. Given a node vi ∈ V , the correspond-

ing Naive Patent Degree NPDi is defined as:

NPDi = |Citingi|− |Citedi|

Clearly, this definition is immediate and captures the specificity mentioned above.

However, we tried to find a more rigorous centrality metric, capable of capturing the

synergies characterizing the patent scenario. Refined Patent Degree is the result of

this effort. Its definition is based on the following considerations:

• C1: given a patent pi, the higher its capability of being cited by patents making

very few citations, the higher its importance.

• C2: given a patent pi, the higher its capability of being cited by important patents,

the higher, in turn, its importance. Observe that, in principle, Condition C2 is very

complex because it implies that the RPD of a node ni depends on the RPD of a

node nj . This implies that, for the computation of this metric, complex systems

characterized by hundreds, or even thousands, of equations and variables should

be solved, at least in the most complex cases. As a consequence, the computation

of RPD appears difficult to handle without a heuristic. A reasonable one could
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consider the NPD of nj , instead of the RPD of this node, in the computation of

the RPD of ni.

• C3: the weight of a citation of a patent pj , which a patent pi must make, is

inversely proportional to the number of citations received by pj . In other words,

if pj is a very important patent, which received a very high number of citations,

the fact that pi must cite pj does not considerably decrease the innovativity of pi.

By contrast, if pi must cite a little cited patent pj , it is possible to conclude that

it is strongly influenced by pj , and this significantly undermines its innovativity.

Taking all these conditions into account, RPDi can be defined as:

RPDi =

|Citingi|∑

j=1

ωj −
|Citedi|∑

q=1

1

1 + |Citingq|

where:

ωj = α
(

1
1+|Citedj |

)
+ (1− α)

(
NPDj

NPDmax

)

Here, |Citingi| (resp., |Citedi|) is the cardinality of the set Citingi (resp., Citedi).

ωj is a weighted mean of two terms. The former expresses Condition C1, whereas the

latter represents Condition C2. The weight α allows the tuning of the mutual relevance

of these two terms. In our case, we chose to assign the same importance to them; as a

consequence, we set α equal to 0.5. Finally, the second term of the formula for RPDi

allows the formalization of Condition C3.

As it will be clear in the next subsection, RPD does not overturn NPD. It simply

refines this last metric, thanks to the three conditions, which it is based on. Specif-

ically, it can produce acceptable distributions also for those countries having a low

number of patents associated with them. This is exactly the scenario where NPD

shows its main weaknesses.

11.4.2 Experimental evaluation

We started the evaluation of our metrics by computing the distribution of NPD for

many world countries. Obtained results show that, for most countries, the distribution

of NPD follows a power law. However, this power law is very singular and completely

different from the ones generally characterizing degree distribution in network analy-

sis.

In order to give an idea of the peculiarities of the distribution of NPD, in Figure

11.1, we show its values for Italy. From the analysis of this figure, we can see that,

actually, there are two power law distributions almost mirrored with respect to the

zero value of NPD.
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Another interesting phenomenon, which can be observed in this figure, regards

the two tails of the power law distributions. In fact, the right tail is much longer than

the left one. This means that the number of citations received by Italian patents is

much higher than the number of citations made by them. Furthermore, if we consider

the shape of the tails, we can observe that the right tail is much steeper than the left

one. This means that the distribution of citations received by Italian patents follows a

more pronounced power law than the distribution of citations made by them. Finally,

the ratio between the area formed by the curve of NPD and the axis of the abscissae

to the left and the right of NPD=0 is equal to 0.55.

Fig. 11.1. Distribution of the values of NPD for Italy

As previously pointed out, the same trend (with the same specificities) can be

observed for most countries.

For some countries, the distribution of NPD is similar to the one of Italy, even

if much more disturbed than it. An example of this trend is shown in Figure 11.2,

where we report the case of Estonia. A first result emerging from the comparison of

this figure with Figure 11.1 is that the number of patents of Estonia is much lower

than the one of Italy. Furthermore, we can note that, in this case, the trend of NPD

values differs from the optimal one. This fact is more evident in the left power law

distribution. Here, it is possible to observe some peaks that evidence the presence of

a considerable number of Estonian patents that make many citations, especially if we

compare their number with the total number of Estonian patents. As a further result,

we observe that the length of the right and the left tails are comparable. However, also

in this case, the right tail is steeper than the left one. All the previous observations

are valid for all the countries with such a kind of trend for NPD. In this case, the
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ratio between the area formed by the curve of NPD and the axis of the abscissae to

the left and the right of NPD=0 is equal to 1.05.

Fig. 11.2. Distribution of the values of NPD for Estonia

For some countries, the distribution of NPD does not follow a power law. As an

example of this situation consider Figure 11.3, where we report the distribution of

NPD for Tunisia. In this figure, we can also observe that the left tail is longer than

the right one and that the number of Tunisian patents is very low. Even if this case

is not very significant from a statistic point of view, we can again observe that the

right “tail” is “steeper” than the left one. Furthermore, the ratio between the area

formed by the curve of NPD and the axis of the abscissae to the left and the right of

NPD=0 is equal to 2.64. This also happens for the other countries with an analogous

distribution of NPD.

The comparison of the results obtained for the three kinds of country mentioned

above suggests that the most innovative and rich countries present a power law dis-

tribution for NPD. Furthermore, since these countries drive the innovation and the

technological progress of the other ones, their patents receive many more citations

than the ones they must make.

Those countries, like Estonia, showing a disturbed power law for NPD do not have

a patent patrimony allowing them to be innovation leaders currently. However, they

are accumulating a certain number of patents allowing them to become innovation

leaders in the near future.

Finally, those countries, like Tunisia, having an irregular distribution of NPD are

characterized by a very low number of patents. They have not reached an adequate
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Fig. 11.3. Distribution of the values of NPD for Tunisia

research and innovation level yet. Their very limited number of patents does not allow

a detailed analysis about their situation.

After having evaluated NPD, we proceed to investigate RPD. We start with the

most innovative countries. In Figure 11.4, we report the distribution of the values

of RPD for Italy on the left, and a zoomed representation of the same distribution

around the zero value of RPD on the right. If we compare the distribution of RPD

with the one of NPD, reported in Figure 11.1, we can observe that RPD confirms (or,

even better, magnifies) all the results returned by NPD. The only exception regards

the steepness of the two tails. In fact, differently from NPD, in this case, the left tail

is steeper than the right one. Finally, the ratio between the area formed by the curve

of NPD and the axis of the abscissae to the left and the right of NPD=0 is equal to

0.14.

Fig. 11.4. Distribution of the values of RPD for Italy
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In Figure 11.5, we report the distribution of the values of RPD for Estonia, as a

representative of the countries with an intermediate number of patents. If we compare

this distribution with the corresponding one of NPD for the same country, we can

observe that RPD removes many of the disturbances observed in NPD. Therefore,

the corresponding distribution is much “cleaner”. Differently from what happens in

Figure 11.4, and analogously to the trend shown in Figure 11.2, we have that, in this

case, the right tail is steeper than the left one. In this case, the ratio between the area

formed by the curve of NPD and the axis of the abscissae to the left and the right of

NPD=0 is equal to 0.20.

Fig. 11.5. Distribution of the values of RPD for Estonia

An analogous reasoning can be drawn for those countries having a low number

of patents. If we compare the distribution of RPD for Tunisia, shown in Figure 11.6,

with the corresponding one of NPD, shown in Figure 11.3, we can see that the RPD’s

capability of cleaning the distortions of NPD is even magnified for countries with a

small number of patents. In this case, the steepness of the left tail is slightly higher

than the one of the right tail, even if the differences are not remarkable. Furthermore,

the ratio between the area formed by the curve of NPD and the axis of the abscissae

to the left and the right of NPD=0 is equal to 0.33.

In conclusion, both NPD and RPD appear well suited as centrality measures for

patents. However, RPD is capable of removing some distortions that have been shown

by NPD when this last is adopted for evaluating countries with a small number of

patents.

To make our analysis about NPD and RPD more exhaustive, we computed the

“similarity rate” of the results returned by NPD and RPD. For this purpose, given

a country k, we computed the set TopNPD
k (resp., TopRPD

k ) of the top 5% of the

patents of Patk with the highest values of NPD (resp., RPD). Then, we computed

the parameter:
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Fig. 11.6. Distribution of the values of RPD for Tunisia

rTopk = |TopNPD
k ∩TopRPD

k |
|TopNPD

k |

The possible values of rTopk range between 0 and 1, where 0 denotes that NPD and

RPD return completely different results, whereas 1 indicates that they have exactly

the same behavior.

We computed the value of rTopk for the world countries and, in Table 11.1, we

report some of them. From the analysis of this table, we can observe that the value of

rTopk is generally much higher than 0.5. Its average value for all world countries is

0.65. This result, along with the previous ones specified above, allows us to conclude

that RPD does not overturn NPD. Actually, the former refines the latter thanks to

the three conditions, which it is based on. RPD can return acceptable and clean

distributions also for those countries having a low number of patents, in which case

NPD is excessively sentitive to disturbances.

11.5 Some possible applications

Our new patent centrality measures can have a lot of applications. In order to give an

idea of them, in this section, we present three applications, namely: (i) the computa-

tion of the “scope” of a patent; (ii) the definition of the lifecycle of a patent; (iii) the

detection of “power patents”.

11.5.1 Computation of the scope of a patent

We use the term “scope” to indicate the width and the strength of the influence of a

patent pi ∈ Pat on the other patents, that is the width and the strength of the influ-

ence of a node vi ∈ V on the other nodes of N . We argue that the scope of vi is strictly
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Country rTopk

Algeria 1.00

Austria 0.86

Brazil 0.62

Bulgaria 0.68

China 0.56

South Corea 0.62

Denmark 0.59

Estonia 0.77

Finland 0.52

France 0.57

Germany 0.65

Japan 0.73

Greece 0.50

India 0.61

Italy 0.59

Luxembourg 1.00

Polan 0.63

United Kingdom 0.59

Romania 0.67

Russia 0.59

Spain 0.48

South Africa 0.57

Taiwan 0.60

Tunisia 0.67

Table 11.1. Similarity Rate of NPD and RPD for some countries

connected to the number and the centrality of the nodes citing it, either directly or

indirectly. As a consequence, in the scope definition, the main roles are played by the

centrality measure, which we have already seen, and by the neighborhood of a node,

which we introduce now.

With regard to this last concept, we point out that there could exist several levels of

neighborhood of a node vi. For this reason, it is possible to introduce the neighborhood

of level t of a node vi ∈ V . This is defined as follows:

nbht
i =

⎧
⎨

⎩
Citingi if t = 0

{vj |(vj , vl) ∈ A, vl ∈ nbht−1
i } if t > 0

We are now able to define the Naive Scope NSt
i and the Refined Scope RSt

i of a

node vi ∈ V w.r.t. the nodes of its tth neighborhood nbht
i as follows:

NSt
i =

∑
j∈nbht

i
NPDj RSt

i =
∑

j∈nbht
i
RPDj

Once the scope of a node has been defined, it is possible to perform an investigation

at the country level to analyze the average trend of the scope of the nodes of a country

k. In particular, the Average Naive Scope ANSt
k and the Average Refined Scope ARSt

k

of the patents of a country k with respect to their tth-level neighbors can be defined

as:
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ANSt
k =

∑
vi∈Vk

NSt
i

|Vk| ARSt
k =

∑
vi∈Vk

RSt
i

|Vk|

We computed the trends of ANSt
k and ARSt

k for most world countries. As an

example, in Figures 11.7 - 11.9, we show the trend of ANSt
k (in blue) and ARSt

k (in

red) for three countries, namely China, Luxembourg and Poland. Analogous trends

have been found for the other countries. From the analysis of Figures 11.7 - 11.9, we

can observe that, for all cases, the average scope decreases when the neighborhood

level increases. This general result was expected. However, the really interesting anal-

ysis concerns how fast this decrease is. As for this issue, we generally observe a steep

decrease so that, after the third-level neighborhoods, patent scopes are almost null. If

we compare the trends of ANSt
k and ARSt

k in these figures, we can observe that they

are similar, even if the trends of ARSt
k are always steeper than the ones of ANSt

k. This

is in line with the results of the comparison of NPD and RPD presented in Section

11.4.2, where we have seen that RPD refines and magnifies the trends characterizing

NPD.

Fig. 11.7. Trend of ANSt
k and ARSt

k against the neighborhood level t for China

11.5.2 Computation of the lifecycle of a patent

This activity aims at verifying if, by computing, year by year, the NPD and the RPD

of patents published all over the world, it is possible to determine one or more charac-

teristic patterns. In the affirmative case, each characteristic pattern would represent a

lifecycle template for the patents following it. Defining lifecycle templates for specific

categories of patents is extremely useful because, given a new patent pi belonging to

a category for which there exists a lifecycle template, it is possible to foresee the NPD

and the RPD of pi over time, and, ultimately, the number and the relevance of the

citations received by it.
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Fig. 11.8. Trend of ANSt
k and ARSt

k against the neighborhood level t for Luxenbourg

Fig. 11.9. Trend of ANSt
k and ARSt

k against the neighborhood level t for Poland

In order to show how lifecycle templates could be defined, in the following, we

associate categories with years and introduce a category per year. However, we could

adopt the same technique with a completely different taxonomy, for instance by asso-

ciating a category per IPC class (in such a way as to define a patent lifecycle template

for each IPC class), a category per country, and so forth.

To construct a lifecycle template for each year, we must preliminarily introduce

the measures NPDy
i and RPDy

i . These two measures are analogous to NPDi and

RPDi, except that they consider only the patents published in the year y.

To carry out our analysis, for each year from 1985 to 2013, we considered all the

patents published in that year and, for each of them, we computed the values of

NPD and RPD from that year until 2013. For instance, in Figure 11.10 (resp., 11.11,
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11.12 and 11.13), we show the trends of RPD for the patents published in the year

1985 (resp., 1990, 1995 and 2000). By analyzing the obtained results we have seen

that, independently of the publication year of patents, there exists a unique pattern

representing the patent lifecycle.

We aimed at expressing this lifecycle template matematically and we observed

that it can be represented by a sixth-degree polynomial function of the form:

y = ax6 + bx5 + cx4 + dx3 + ex2 + fx+ e

To give a visual intuition of this fact, in Figures 11.10 – 11.13, we traced, along

with the real values of patent lifecycle, the sixth-degree polynomial function that best

approximates it. It is possible to observe that the deviations between the real values

and the ones of the polynomial function are very small.

By analyzing each figure, we can observe that RPD is negative in the publication

year of patents. This is due to the fact that all the citations performed by a given

patent pi are concentrated in its publication year, whereas, in that year, no patents,

or a little number of them, cite pi. After the first year from the publication of pi, the

corresponding RPD starts to increase. This increase reaches a maximum after about 5

years from publication. Then, a stall phase can be observed until to about the eighth

year; this phase is followed by a phase of decline, which becomes stronger and stronger

until the RPD of pi reaches an almost null value. This decline can be easily explained

by considering that, for most patents, after about ten years from their publication,

new technologies and/or more innovative patents appear, which make them obsolete.

In Table 11.2, we report the values of the coefficients of the sixth-degree polynomial

function that represents the lifecycle templates regarding patents published in the

years 1985-2000, obtained by applying the least square method. The coefficients of

the lifecycles regarding patents published after 2000 are not reported because these

lifecycles are too recent and, consequently, they are not complete yet.

Very similar trends and conclusions can be derived for NPD.

11.5.3 Definition of power patents and investigation of their importance

The definition of patent-tailored centrality measures like ours allows the identification

of the most relevant patents. As a matter of fact, since both NPD and RPD follow a

power law, it is reasonable to assume that there exist some power patents, i.e., a very

small number of patents that have been cited very much. In order to investigate this

aspect, in the following, we will consider RPD, even if analogous reasonings can be

made for NPD.

Clearly, in principle, the fraction of power patents could differ for each country

because it depends on the trend of the corresponding distribution of the RPD values.
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Years a b c d e f g

1985 -1E-06 1E-04 -0,0039 0,0778 -0,8166 3,9637 -3,9546

1986 -1E-06 0,0001 -0,0046 0,0890 -0,8942 4,1551 -3,9498

1987 -2E-06 0,0002 -0,0056 0,1033 -0,9902 4,4030 -4,0791

1988 -2E-06 0,0002 -0,0066 0,1171 -1,0779 4,6154 -4,0942

1989 -3E-06 0,0002 -0,0078 0,1312 -1,1494 4,7282 -4,1012

1990 -3E-06 0,0003 -0,0084 0,1350 -1,1406 4,5921 -3,9704

1991 -4E-06 0,0004 -0,0113 0,1668 -1,3066 4,9941 -4,4076

1992 -5E-06 0,0005 -0,0118 0,1768 -1,4087 5,2030 -4,7034

1993 -8E-06 0,0006 -0,0154 0,2149 -1,5778 5,6661 -4,9479

1994 -1E-05 0,0008 -0,0198 0,2619 -1,8236 6,2006 -5,1879

1995 -1E-05 0,0009 -0,0225 0,2841 -1,8956 6,2383 -5,2146

1996 -2E-05 0,0011 -0,0260 0,3124 -1,9979 6,3822 -5,4142

1997 -2E-05 0,0014 -0,0305 0,3474 -2,1273 6,5878 -5,6143

1998 -3E-05 0,0014 -0,0306 0,3380 -2,0453 6,3775 -5,5960

1999 -3E-05 0,0016 -0,0341 0,3659 -2,1663 6,6400 -5,8417

2000 -4E-05 0,0020 -0,0393 0,4066 -2,3270 6,9163 -6,1626

Table 11.2. Values of the coefficients of the sixth-degree polynomial function that best

approximates the lifecycles of patents published from 1985 to 2000

However, thanks to the features of RPD illustrated in Section 11.4.1, if we choose to

select as power patents those ones whose values of RPD lie at the right of the elbow

of the RPD distribution function, we obtain that, for most countries, it is sufficient

to take as power patents the top 5% of patents having the highest values of RPD.

To give an idea of this reasoning, in Figures 11.14, 11.15 and 11.16, we show three

examples concerning the RPD value distribution of India, France and Japan. In all

the three cases, it is evident that taking as power patents the top 5% of patents is

sufficient. Analogous trends can be found for almost all the other world countries. In

the following, we indicate with Patk the power patents of the country k.

After having defined a way to detect the power patents of each country, we aimed

at investigating if, for a patent pj , being cited by a power patent pi can bring benefits,

i.e., citations performed by patents that, having cited pi, must also cite pj .

To answer this question, we must preliminarily introduce some parameters. In

particular, let pi ∈ Patk be a patent of the country k:

• The set of potential beneficiaries PBi of pi is defined as:

PBi = {pj |pj ∈ Citedi, pi ∈ Citedr, pj ∈ Citedr}

• The fraction of potential beneficiaries of pi is defined as:

FPB
i = |PBi|

|Citedi|

• The average fraction of the potential beneficiaries of the patents of a country k is

defined as:

AvgFPB
k =

∑
pi∈Patk

FPB
i

|Patk|
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• The average fraction of the potential beneficiaries of the power patents of a country

k is defined as:

AvgFPB
k =

∑
pi∈Patk

FPB
i

|Patk|

We are now able to define the benefit capability bck of the power patents of a

country k. Specifically:

bck =
AvgFPB

k

AvgFPB
k

The value of bck ranges between 0 and +∞. If bck ≤ 1, the power patents of k do

not provide benefits to the patents cited by them. By contrast, if bck > 1, they are

beneficial for the patents cited by them, and the higher bck the greater these benefits.

In Table 11.3, we report the value of bc for several countries. From the analysis of

this table, we can see that bc is generally much higher than 1. This clearly evidences

that, for a patent, obtaining a citation from a power patent is highly beneficial.

Country bc

Austria 10.73

Brazil 0.47

China 13.30

South Korea 17.23

Denmark 6.58

Finland 7.93

France 10.37

Germany 9.72

Japan 5.19

Greece 1.47

India 21.63

Italy 10.11

Poland 6.32

United Kingdom 4.98

Romania 12.46

Russia 21.23

Spain 12.36

South Africa 6.24

Taiwan 17.73

Table 11.3. Values of bc for several countries
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Fig. 11.10. Average values of RPD over time for the patents published in 1985

Fig. 11.11. Average values of RPD over time for the patents published in 1990
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Fig. 11.12. Average values of RPD over time for the patents published in 1995

Fig. 11.13. Average values of RPD over time for the patents published in 2000
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Fig. 11.14. Distribution of the values of RPD for India, along with the levels corresponding

to the top 5%, 10%, 15% and 20% of patents with the highest values

Fig. 11.15. Distribution of the values of RPD for France, along with the levels corresponding

to the top 5%, 10%, 15% and 20% of patents with the highest values
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Fig. 11.16. Distribution of the values of RPD for Japan, along with the levels corresponding

to the top 5%, 10%, 15% and 20% of patents with the highest values
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Extraction of Knowledge Patterns

12.1 Introduction

In the last years, scientometrics and bibliometrics received a growing interest both

in research literature and as objective ways for evaluating the performances of re-

searchers, universities, institutions, etc. Indeed, research collaborations across institu-

tions, firms and countries have been largely investigated in strategy and management

literature [409, 308, 79, 318, 170, 344, 173, 383, 379, 121]. Moreover, different stud-

ies have been performed to understand whether international flows from developed

countries to developing and less-developed ones have some positive effects in these

last ones [178]. Furthermore, many studies investigate the impact and the effects of

international knowledge flows by focusing on R&D collaborations and inventions and

on their impact on innovation [260, 300, 163, 177, 410, 78, 29, 16, 251, 236, 273, 285].

Currently, data available for scientometrics and bibliometrics investigations are

growing at a very rapid rate. As a matter of fact, the problem of extracting useful

knowledge from these data can be seen as a Data Mining problem, and in the very next

future, big data approaches for solving it will be unavoidable. The obvious consequence

of this reasoning is that more and more innovative approaches to addressing this issue

are necessary.

Social Network Analysis [458, 53, 52, 24, 106, 107, 258, 328] and, more in general,

graph theory, have been a prominent family of approaches adopted in the past in this

context (see, for istance [276, 36, 46, 72, 446, 359, 10, 13, 277, 237, 103, 71, 11]).

Furthermore, it is possible to foresee that they will be even more employed in the

future, due to the more and more increasing number of proposals someway involving

them.

All these studies have certainly contributed to a development of the research in

innovation dynamics. However, there are still several aspects that need to be deepened.

For instance:
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• Most of these approaches focus on authors, whereas investigations on institutions

would be extremely interesting. This fact is also valid for the paper that, to the

best of our knowledge, is the only one analyzing hubs in the past [36]. In fact, in

this chapter, the definition of hub is centered on authors.

• Most of the previous approaches employed only centrality measures in their anal-

ysis, whereas, in Social Network Analysis, there are several other parameters (e.g.,

the connection level of a network), which are at least as important as centrality.

• The past approaches did not investigate the neighbors of authors or institutions,

whereas we know that, owing to the concept of homophily (that is a key concept

in Social Network Analysis), the neighbor of a node can strongly influence the

behavior of the corresponding author or institution.

This chapter aims at providing a contribution in this setting. Indeed, it proposes

a new Social Network Analysis-based (hereafter, SNA-based) approach to extracting

knowledge patterns about research activities and hubs in a set of countries of interest.

As for this chapter, a hub is a research institution that operates as a guide or stim-

ulus to the research in its country and, at the same time, is capable of stimulating

cooperations with institutions of other countries. Our hub definition is strongly fitted

to our scenario of interest. It strongly benefits from the observations, suggestions and

experience of innovation management researchers, who guided us in its formulation.

Our approach is general and can be directly applied to any set of countries. The

only requirement is to have at disposal the set of the publications of all the research

institutions of the countries to investigate. In this chapter, we applied it to four

North African countries (e.g., Algeria, Egypt, Morocco and Tunisia) and we used all

the publications of all the research institutions of the four countries of interest in the

time interval [2003, 2013], as stored in the Web of Science repository [4].

The most important support data structure (already introduced in the past liter-

ature) is a social network with nodes that represent institutions and with edges that

denote collaborations among institutions. Starting from it, other important support

data structures and accompanying parameters (some of which were never defined in

the literature) are introduced.

Thanks to our approach, it is possible to reconstruct a very detailed and multi-

dimensional picture of the research scenarios of a set of countries, as well as to deter-

mine analogies and differences among them. In this way, innovation managers have

at their disposal some empirical instruments helping their decisions. Beside providing

several knowledge patterns about institutions and their collaboration, not known in

the past, this chapter provides several other contributions and, in our opinion, some

of them are even more important than the extracted knowledge patterns. Indeed:
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• it presents a general SNA-based approach that can be applied to extract knowledge

about research scenarios and the corresponding institutions for a set of countries;

• it redefines some SNA metrics in such a way as to make them suitable for this

application scenario;

• it defines new metrics about institutions and their cooperations not presented in

the past;

• it introduces the concept of hub and provides a method to determine the hubs of

each country, as well as to investigate their main features;

• it defines new data structures (such as the clique social network and the nbh social

network) allowing the extraction of interesting knowledge about hubs and their

neighbors;

• it provides both a visual and a quantitative method to determine the core hubs

(if they exist) of a given country.

For an expert, the extracted knowledge patterns are important for at least two

reasons. First of all, they may improve her understanding of the impact of different

socio-economic conditions on the structure and evolution of scientific collaborations.

In this sense, the four countries, which our approach was applied on, present a great

heterogeneity along several socio-economic dimensions, such as type and degree of

economic specializations, language and culture. Secondly, this analysis may help the

design of policy interventions aimed to sustain the accumulation of scientific and tech-

nological capabilities in the countries on which our approach is applied. For instance,

the identification and analysis of hubs and their interactions with local research com-

munities may lead to the design of policies that explicitly target hubs as key vectors

to access and disseminate knowledge from advanced countries.

The algorithms implementing our approach are in Python [2] and the underlying

DBMS is MongoDB [6]. As a consequence, our approach is already compliant with

big data technology and, therefore, can help very large investigations (for instance, a

large set of countries, or countries having a very high number of research institutions

and publications, like United States and European countries).

this chapter is organized as follows. In Section 12.2, we present related literature.

In Section 12.3, we describe available data and illustrate the pre-processing activities

performed on them. In Section 12.4, we present our approach. In Section 12.5, we

apply it to the four North African countries mentioned above. In Section 12.6, we

illustrate the main novelties of our approach w.r.t. the related ones and we compare

it with three commercial systems, i.e., Elsevier Pure, Scopus and Fingerprint Engine.

Finally, in Section 12.6, we draw our conclusions and overview some possible future

developments.
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12.2 Related Literature

Research collaborations across firms and countries have been largely investigated in

strategy and management literature. In this field, authors showed that these collabo-

rations play a key role in the acquisition of external knowledge [409, 474] and in the

creation of new knowledge [308, 382].

Specifically, in [308], the authors show that cross-regional networking positively

influences innovation, at least in Europe. However, they also show that regional labor

mobility plays an even more relevant role. In line with the approach adopted in [308],

[79] investigates patent application in biotechnology, organic chemistry and phar-

maceutical, and shows that network activity across firms and location is extremely

important in the localization of knowledge flows. In [474], the authors employ data

mining techniques to show that local research groups, characterized by a very high

internal cohesion, hinder knowledge transmission. At the same time, they show that

scientists with a centralized position in a network have a positive effect on knowledge

flow. [318] analyzes the interactions among researchers coming from developing and

advanced countries and finds that innovation in Latin American countries was largely

influenced by R&D activities carried out on some OECD countries. [170] investigates

cross-border inventions between BRICS firms and European Union actors and finds

that these inventions are growing more valuable than the domestic ones. [344] stud-

ies and analyzes some survey interviews about Nigerian firms and employs them to

determine which factors guide these firms to successfully or unsuccessfully adopt in-

dustrial innovations. [173] investigates the learning processes and the linkage behavior

of small and large, local and foreign firms in Tanzania. [383] analyzes the efficiency of

South Africa’s innovation system. [379] investigates innovation in Ghana through a

multi-level theoretical framework. In [121], the author proposes a framework aimed to

evaluate the optimal conditions for innovation in emerging economies, with a special

focus on Kenya and Uganda. The paper shows that, in both countries, the human

capital and the firm’s internal infrastructure play a significant role in innovation.

Another important investigation in innovation is aimed to understand whether in-

ternational flows from developed countries to developing and less-developed ones have

some positive effects in these last countries. The role played by knowledge spillovers

is well known in the literature (see, for instance, [178]). These spillovers can operate

through many channels, ranging from formal communication methods (e.g., scientific

publications) to informal ones (e.g., person-to-person contacts).

In [382], the authors analyze the institutions having the highest impact on collabo-

ration networks. Their researches confirm the existence of elite groups that cooperate
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with other minor institutions. This form of cooperation allows the creation and dif-

fusion of knowledge on management.

Many studies investigate the impact and the effects of international knowledge

flows by focusing on international R&D collaborations and inventions and on their

impact on innovation. This investigation was performed at two different levels (i.e.,

theoretical and empirical ones). From a theoretical point of view, some authors argued

that these collaborations can lead to higher-quality innovations, thanks to the contam-

ination of different skills and pieces of knowledge [260, 300]. Other authors hypoth-

esized that international collaborations are not efficient owing to high coordination

costs and difficulties to integrate knowledge of different research teams [163, 177, 410].

Empirical studies produced mixed results. In fact, [78] found that, as far as Indian

and Chinese inventors are concerned, cross-border inventions receive more citations

than the ones produced by the inventors of only one country. In [29], the authors show

that international collaborations positively influence patent quality; at the same time,

they evidence the difficulties of research teams to absorb external knowledge. In [16],

the authors show that research collaboration in Africa presents an inhomogeneous

structure. They also evidence that these collaborations are strongly constrained by

several factors, ranging from geography to history, culture and language. In [251], the

authors conduct a study on North African countries. They evidence that, in these

countries, research collaborations are rapidly changing although they are still weak.

In [236], the authors analyze the international transmission of knowledge in USA. In

[273], the authors present a deep research about the geography of innovation, based

on patent analysis. They show how localized knowledge flows are largely mediated

by labor and technology markets. In [285], the author shows that both the links and

the h-indexes of co-inventors and co-authors highly enhanced the flows of academic

knowledge into industrial patents in South Africa’s firms, as well as knowledge diffu-

sion in large R&D and innovation clusters and hubs. In [43], the authors investigate

the diffusion of European knowledge. Specifically, they analyze the diffusion of knowl-

edge between European countries and European Neighboring Countries (ENCs). For

this purpose, they use several indicators allowing them to evaluate how European

knowledge is employed by ENCs. Obtained results show that ENCs can benefit from

the interaction with European countries and can “transform” European knowledge

and tools in new knowledge and innovation.

Social Network Analysis and, more in general, graph theory have been largely

employed to investigate co-authorship networks and research scenarios in the past.

The structure of co-authorship networks in three different fields (i.e., Nanoscience,

Pharmacology and Statistics) in Spain in the time interval [2006, 2008] is analyzed in

[71]. Here, the authors investigate if there exists a relationship between the research
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performance of authors and their position in co-authorship networks. A co-authorship

network in the interdisciplinary field of “evolution of cooperation” is analyzed in [276].

To carry out their investigation, the authors adopt SNA and a modularity measure.

A co-authorship network regarding Digital Libraries is investigated in [277]. For this

purpose, some support social networks are constructed and analyzed to determine

the impact of authors in the co-authorship network. To evaluate this impact, several

SNA measures, such as centrality and PageRank, along with a new metric, called

AuthorRank, are employed. In [36], the authors investigate co-authorship networks

involving four institutions to understand how information flows therein and to detect

the leader authors (called hubs). Hubs are defined as those authors having both a

high eigenvector centrality and a high betweenness centrality. Hub detection is per-

formed by means of SNA-based techniques. After the detection of the hubs of the

four considered institutions, the authors analyze the relationships among them. In

[46], a co-authorship network is analyzed to understand if it is possible to link cen-

trality measures with author performances and if the authors’ gender can have an

impact on their performance. A co-authorship network, constructed starting from the

publications in “information visualization” field in the time interval [1974, 2004], is

investigated in [72]. In [446], the authors hypothesize that international cooperation

networks are self-organizing. To verify their hypothesis, they employ SNA-based tech-

niques, capable of analyzing the growth of these networks. A method for building link

predictors in networks with nodes that represent researchers and with links that de-

note collaborations is proposed in [359]. SNA-based techniques are employed in [10]

for examining the effect of social networks on the performance of scholars in a given

discipline. A co-authorship network concerning the “industrial ecology” field is in-

vestigated in [237], with the goal of evaluating the corresponding research efforts and

results. Blockmodeling techniques are employed in [103] for analyzing a co-authorship

network. In [11], the authors investigate whether preferential attachment in scientific

co-autorship networks is different for authors with different forms of centrality. An

exploratory analysis of co-authorship in the field of management and organizational

studies is presented in [13]. Here, the authors determine the frequency of collabora-

tion in the most prominent journals in the field. In [233], the authors apply classical

SNA-based techniques on a complex co-authorship network to find knowledge patterns

about paper citation, cooperation trends, the evolution of key components and author

ranking. Furthermore, they employ the network diameter, clustering coefficient and

degree distribution to find connectivity patterns, small-world network phenomena,

and several other properties. In [125], the authors analyze a set of shared papers by

constructing a two-mode network with node that represent both authors and papers,

and by applying new regression models on it. After this, they employ the obtained
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knowledge to perform an empirical analysis on a larger co-authorship network. In

[139], the authors apply SNA-based techniques on a co-authorship network for es-

timating cooperation trends and for identifying the most important scientists and

institutions. Furthermore, they investigate the possible application of their approach

and of the derived knowledge to a medical context. In [99], the authors start from

a demographic analysis to provide an overview of the corresponding distribution of

both scientific labels and academic titles. In particular, they employ Social Network

Analysis to investigate a co-authorship network and several citation metrics.

12.3 Available data and preprocessing

The dataset we used was derived from Web of Science of Thomson Reuters. It stores

all the publications performed by all the research institutes of the four countries into

examination from 2003 to 2013. It consisted of four parts concerning:

• Institutions. This part contains information about all the research institutions of

the four countries into consideration, as well as about the research institutions of

the other countries cooperating with them from 2003 to 2013.

• Authorships. This part contains information about all the authorships concerning

papers involving at least one of the institutions into consideration from 2003 to

2013.

• Publications. This part stores information about the publications of the authors

affiliated to at least one of the institutions into consideration.

• Research areas and fields. This part stores information about the research areas

and fields, as classified by Web of Science.

A first analysis of our dataset allowed us to verify that the parts concerning in-

stitutions and publications needed some adjustments. In the following subsections we

describe these adjustments.

12.3.1 Choice of similarity metrics

The first task to do for cleaning data was the choice of one or more metrics capable of

indicating if two strings are similar or not. In the literature, several string similarity

metrics have been already proposed in the past. When adopted, they are generally

coupled with a threshold in such a way that two strings can be considered similar

if the value returned by a similarity metric is higher than the threshold. The choice

of the threshold is extremely difficult. In fact, if it is excessively low, too much false

positives could be obtained; in this case, dissimilar strings would be considered similar.

By contrast, an excessively high threshold would lead to too much false negatives.



272 12 Extraction of Knowledge Patterns

In the literature the most used similarity metrics are Levenshtein, Needleman-

Wunch, Smith-Waterman, Jaro, QGram Distance, Block Distance, and Jaccard Sim-

ilarity. After a first analysis of the strengths and the weaknesses of the most known

metrics, it was necessary to determine the most suited to our scenario. For this pur-

pose, we considered all the institutions of a country (i.e., Afghanistan) and we applied

all metrics to them. We chose Afghanistan because it was the first country in our list

and because the number of its institutions made it possible a manual (and, therefore,

much more precise) check of the results obtained by applying all candidate metrics.

We almost immediately determined that only one metric was not sufficient to

obtain accurate results. After several tests, we found that it was sufficient to detect a

pair of (at least partially) complementary metrics. Further tests showed that the most

promising pair was formed by Jaccard Similarity and QGram Distance. As previously

pointed out, the choice of the metrics was strictly connected with computing the

most suited thresholds. For this purpose, we conducted an experimental campaign

by executing an optimization algorithm, based on a hill climbing methodology. This

algorithm aimed at maximizing the number of corrected results on Afghanistan data.

It found that the best threshold value was 0.71 for Jaccard Similarity and 0.75 for

QGram Distance.

12.3.2 Description of the algorithm for determining string similarity

After having chosen metrics and thresholds, we had to define a cleaning algorithm

to use in the next steps of our ETL activity. This task was difficult. In fact, it was

necessary to guarantee a possible “transitive closure” of similarities, assuming that

the choice of thresholds in the previous step was capable of avoiding that an excessive

usage of this closure would have led to consider as similar some strings that actually

were dissimilar. To better explain this problem, consider the following example. We

have three strings, namely “Paolo Russo”, “Pao Russo” and “Pao Ru”, representing

the (possibly abbreviated) surname and name of an author. If our algorithm would

have determined a similarity between “Paolo Russo” and “Pao Russo” and another

similarity between “Pao Russo” and “Pao Ru”, it should have been capable of under-

standing that there exists a similarity between “Paolo Russo” and “Pao Ru”.

In order to handle transitive closure to the best, we adopted the support data

structure that appeared the most adequate to conceptually representing and explain-

ing this phenomenon, i.e., a graph. This graph GSym consists of a set NSym of nodes

and a set ESym of edges. There is a node ni for each string to evaluate. There is an

edge (ni, nj) if the strings associated with ni and nj have been found to be similar by

applying the Jaccard Similarity with a threshold of 0.71 and/or the QGram Distance

with a threshold of 0.75.
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Once GSym has been created, finding all the possible similarities among sets of

strings can be carried out by finding all possible connected components in GSym. After

the sets of similar strings have been found, ETL represents all the strings associated

with the same university by means of a unique string in the underlying database.

12.3.3 Application of our ETL algorithm on available data

Our ETL activities concern the fields City and Inst name of the part Institutions. As

for City, our approach clusters the values of this field on the basis of the corresponding

country. In this way, it avoids homonymies concerning cities having the same name

but belonging to different countries. For the same reason, the values of Inst name are

clustered on the basis of the country, the city and the category.

For each cluster of City, we constructed a graph GSym and applied the algo-

rithm described in Section 12.3.2. This algorithm computed the connected compo-

nents and, for each of them, selected a city name to represent it and stored this name

in City accordingly. For each cluster of Inst name, we proceeded analogously to City,

but the strings representing connected components were suitably stored in the field

Institution Name1. Furthermore, for each connected component, we registered an

auto-increment number in the field Inst ID.

12.4 Description of our approach

As pointed out in the Introduction, our approach is aimed to extract knowledge

patterns about research activities and hubs in a set of countries of interest starting

from the publications of their research institutions, as stored in the Web of Science

repository. Before starting its description, we must define some sets that formalize

available data and, therefore, will be extensively used below.

The first set regards the set RA of research areas. It consists of the following

elements:

RA = {‘NS’, ‘AS’, ‘MH’, ‘SS’, ‘HU’, ‘ET’}

where ‘NS’ (resp., ‘AS’, ‘MH’, ‘SS’, ‘HU’, ‘ET’) stands for ‘Natural Science’ (resp.,

‘Agricultural Science’, ‘Medical and Health Science’, ‘Social Science’, ‘Humanities’,

‘Engineering and Technology’).

The second set concerns the overall set Pub of publications at our disposal. Given

a publication p ∈ Pub, we indicate by Authorsp the set of its authors and by Areasp

the set of the research areas it belongs to.

The third basic set regards the set C of the countries to investigate.
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12.4.1 Hub characterization and detection

In this section, we define a method for detecting both hubs and their features in

a set of countries. For this purpose, we preliminarily introduce a first support data

structure. It is a social network:

G = ⟨N,E⟩

N is the set of the nodes of G. A node ni ∈ N corresponds to exactly one institution

registered in our database. Since there is a biunivocal correspondence between a node

of N and the corresponding institution, in the following, we will use the symbol ni to

indicate both of them. Each node of N is labeled with an element of C depending on

the country of the corresponding institution. We indicate by li the label of ni. E is

the set of the edges of G. There exists an edge eij = (ni, nj , wij) ∈ E if there exists

at least one publication involving one author of ni and one author of nj . wij is the

weight of eij ; it denotes the number of publications having at least one researcher of

ni and one researcher of nj among their authors.

Starting from this support structure, we can now define some sets regarding the

neighborhoods of a node in G. Specifically, we define the neighborhood nbhi of a node

ni ∈ N as the set of the nodes of G directly connected with ni:

nbhi = {nj |(ni, nj , wij) ∈ E, nj ̸= ni}

Then, we can define the sets nbhI
i (resp., nbhF

i ) of the neighbors of ni belonging

to the same country as (resp., to different countries from) the one of ni:

nbhI
i = {nj |nj ∈ nbhi, li = lj} nbhF

i = {nj |nj ∈ nbhi, li ̸= lj}

Now, we introduce the set Nk of the nodes (i.e., institutions) of a given country

k:

Nk = {ni|ni ∈ N, li = k}

Another group of sets can be defined for representing several features about pub-

lications:

Pubk = {p ∈

Pub| at least one element of Authorsp operates at an institution of Nk}

PubIk = {p ∈ Pub| all the elements of Authorsp operate at institutions of Nk}

After this, we introduce Pubij as the set of publications simultaneously having

researchers of both ni and nj as their authors. We also introduce the set JPub (resp.,

CPub) as the set of papers published in a journal (resp., proceedings of a conference).

We define JCPub as JCPub = JPub ∪ CPub. We also define the set Pubq of the

publications belonging to the research area q:
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Pubq = {p ∈ Pub|q ∈ Areasp}

Finally, we define Pubqk as the subset of Pubq having at least one author operating

at an institution of the country k.

Now, we are able to introduce the concept of hub. For this purpose we need to

introduce three metrics.

The first metric, M1, is defined in such a way that, given a node ni, M1i is equal to

the sum of the weights of the edges linking ni. Observe that this metric coincides with

the classical weighted degree centrality [193, 460, 246, 238, 9]. Formally speaking:

M1i =
∑

j∈nbhi
wij

The second metric, M2, is defined in such a way that, given a node ni, M2i is

the ratio of the sum of the weights of the edges linking ni to nodes associated with

foreign institutions to the average number of publications relative to the country of

ni. Observe that this metric coincides with the normalized weighted degree centrality

[193, 460, 246, 238, 9]. Formally speaking:

M2i =

∑
j∈nbhF

i
wij

AvgPubk

where AvgPubk =
∑

ni∈Nk,nj∈N,ni ̸=nj
wij

|Nk| .

The third metric,M3, is analogous toM2 except that, in the numerator, the sum of

the weights of the edges linking ni to nodes of the same country is considered, since

this metric takes publications with internal institutions into account. Interestingly,

this metric is analogous to the E-I index [193, 304, 199, 435]. Formally speaking:

M3i =

∑
j∈nbhI

i
wij

AvgPubk

According to both the theoretical and the experimental results described in [193,

460, 246, 238, 9, 304, 199, 435], and as verified in our case study (see Section 12.5.1),

M1, M2 and M3 follow a power law distribution.

Taking all these considerations into account, the set HX of hubs can be defined as

the set of those institutions simultaneously belonging to the topX% of the institutions

with the highest values of M1, M2 and M3 (we call IX1 , IX2 and IX3 these three sets,

when considered separately).

The set HX of hubs is defined as:

HX = {ni ∈ N |ni ∈ (IX1 ∩ IX2 ∩ IX3 )}

where:

IX1 = {ni ∈

N |M1i belongs to the top X% of the values of M1, when applied to the nodes of N}
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IX2 = {ni ∈

N |M2i belongs to the top X% of the values of M2, when applied to the nodes of N}

IX3 = {ni ∈

N |M3i belongs to the top X% of the values of M3, when applied to the nodes of N}

In this definition, X is a threshold allowing the selection of the institutions having

the highest values of M1, M2 and M3. The choice to use X as a threshold parameter

derives from the power law distributions characterizing all the three metrics. Rea-

sonable values of X could be 10, 15 and 20. After several experiments (see Section

12.5.1), we decided to consider a default value of X equal to 20. As a consequence, in

the following, when X is not specified, we intend that it is equal to 20.

The rationale underlying this definition is that a hub is an institution that simul-

taneously belongs:

• to the top X% of the institutions publishing more papers (we call this condition

C1; it is handled by metrics M1);

• to the top X% of the institutions publishing more papers with institutions of a

country different from their own (we call this condition C2; it is handled by metrics

M2);

• to the top X% of the institutions publishing more papers with institutions of their

own country (we call this condition C3; it is handled by metrics M3).

It is worth pointing out that our hub definition could be seen as an attempt to

introduce a new form of node centrality (specific to the context of interest), which

takes into account both the number of edges relative to a node and their weights. In

this sense, our hub definition follows the same general philosophy proposed in [340],

where the authors present new versions of degree, closeness and betweenness centrality

that take both incoming edges and their weights into consideration.

In the following, we use the symbol HX
k to indicate the hubs of a given country

k. The application of the parameters introduced in this section to our case study can

be found in Section 12.5.1.

12.4.2 Investigation of the research scenarios for the countries of interest

In this section, we aim at analyzing the research scenarios of the countries of C in

such a way as to detect their most important features and to highlight similarities

and differences among them. Initially, we define I ′1 as the set of the institutions of I1

belonging to a country of C.

Now, we can introduce three indicators that could give us some knowledge about

the research scenarios of the countries of C.
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• The first one, RQ, is an indicator of the overall research quality in the countries

of C:

RQ =
|I ′1|
|I1|

• The second one, FC, indicates how many institutions, among the top ones of the

countries of C, publish many papers with foreign institutions:

FC =
|I ′1 ∩ I2|
|I ′1|

• The third one, TP , indicates how many institutions that publish very much with

foreign institutions belong to the top institutions of the countries of C:

TP =
|I ′1 ∩ I2|
|I2|

In the investigation of the research scenario of a country k and of the role of its

hubs, it appears very interesting to study its paper distribution. For this purpose, we

introduce the average number AvgPubHk of the publications of its hubs:

AvgPubHk =
∑

ni∈Hk,nj∈N,ni ̸=nj
wij

|Hk|

Another interesting issue to investigate is to verify if a hub of k publishes more

with institutions of k (we call “internal” the corresponding publications) than with

foreign ones (we call “external” the corresponding publications) or alone. To carry

out this investigation, we introduce:

• the average number AvgHubPubIk of publications performed by the hubs of Hk

with other institutions of the same country (here, the apex “I” stands for “Inter-

nal”):

AvgHubPubIk =
∑

ni∈Hk,nj∈Nk,ni ̸=nj
wij

|Hk|

• the average number AvgHubPubFk of publications performed by the hubs of Hk

with other institutions of a country different from k (here, the apex “F” stands

for “Foreign”):

AvgHubPubFk =
∑

ni∈Hk,nj∈N−Nk
wij

|Hk|

• the average number AvgHubPubAk of publications performed alone by the hubs

of Hk, i.e., with authors that belong all to the same institution of the country k

(here, the apex “A” stands for “Alone”):

AvgHubPubAk =
∑

ni∈Hkwij

|Hk|
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A further interesting analysis is devoted to understand if, in their cooperation with

foreign institutions, the hubs of Hk privilege one or few countries. For this purpose,

we specialize the Herfindahl Index to our research context. Specifically, in our case, we

define the Herfindahl Index HIk associated with the papers published by the hubs of

Hk to verify if these hubs published in cooperation with institutions of few (implying

high values of HIk) or many (implying low values of HIk) countries.

In order to apply the Herfindahl index to our context, we must introduce the

following support parameters:

• number of publications that the hubs of Hk performed with foreign institutions:

PubHF
k =

∑
ni∈Hk,nj∈N−Nk

wij

• fraction of the external publications that the hubs of Hk performed with the

institutions of a country q: PubFrFkq =
∑

ni∈Hk,nj∈Nq
wij

PubHF
k

• set of countries having at least one paper with the institutions of a country k:

CntrFk = {q|∃(ni, nj , wij) ∈ E, ni ∈ Hk, nj ∈ Nq}

We can, now, define the Herfindahl Index associated with the papers published by

the hubs of Hk as follows:

HIk =
∑

q=1..|CntrFk |

(
PubFrFkq

)2

The possible values of the Herfindahl Index range in the real interval
[

1
|CntrFk | , 1

]
,

where 1
|CntrFk | is obtained when each paper is published with an institution of a

different country, and 1 in the opposite case.

The application of the parameters introduced in this section to our case study can

be found in Section 12.5.2.

Cooperation among hubs of the same country

In this section, we aim at investigating the cooperation levels of the hubs Hk of a

given country k. For this purpose, we preliminarily define a support data structure

called clique social network.

In particular, let G be the social network defined in Section 12.4.1 and let Gk be

its “projection” on the country k. Let Ck be the set of cliques of Gk and let Hk be

the set of the hubs of k. A clique social network CGk has a node for each hub of Hk

belonging to at least one clique of Ck. Each node ni of CGk has associated a weight

wi denoting the number of cliques of Ck which it belongs to. An edge (ni, nj) of CGk

denotes that ni and nj together belong to at least one clique of Ck.

Some measures capable of quantitatively representing the differences that charac-

terize the cooperation among hubs are the following: (i) the number of cliques |Ck|;

(ii) the absolute dimension dCk of the largest clique in Ck; (iii) the relative dimension
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dCk
|Hk| of the largest clique in Ck; (iv) the fraction fH

Ck
of hubs belonging to at least one

clique of Ck.

In order to avoid that results are biased by the number of publications (which can

be very different in the different countries of interest), we define a normalized version

ĈGk of CGk.

ĈGk is obtained by performing the same steps carried out for constructing CGk

but on a graph Ĝk, instead of on Gk. Ĝk has the same nodes as Gk. There is an edge

(ni, nj) in Ĝk only if Pubij
Pubk

is higher than a threshold th. We have experimentally

verified that, generally, Pubij
Pubk

follows a power law distribution. As a consequence, we

have chosen to set th in such a way as to discard the 20% of the lowest values of Pubij
Pubk

.

Finally, we searched for some measures to compare clique social networks. After

several experiments, we found that the most significant ones were: (i) the number of

nodes; (ii) the number of edges; (iii) density1.

The application of these parameters to our case study is reported in Section 12.5.2.

12.4.3 Investigation of research areas

All reasonings and computations performed above for countries can be repeated for

research areas. For this purpose, we define a support social network, called RA social

network. In particular, the RA social network Sq, associated with the research area q,

is defined as:

Sq = ⟨Nq, Eq⟩

Here, Nq is the set of the nodes of G having at least one publication belonging

to Pubq. There exists an edge eij = (ni, nj , wij) ∈ Eq if there exists at least one

publication of Pubq involving one author of ni and one author of nj . wij indicates the

number of publications of Pubq performed by at least one author of ni and an author

of nj .

Another important parameter, very useful in this context, is the set Hq of the

hubs related to the research area q. Its detailed definition and the way to compute it

are analogous to the corresponding ones we have described for H in Section 12.4.1.

The application of these data structures and concepts to our case study can be

found in Section 12.5.3.

12.4.4 Investigation of the quality of publications

All indicators introduced above are based only on the number of publications. How-

ever, it would be important to take also their quality into account. One way to do this

1 As a matter of facts, this last measure can be derived from the two other ones, but it is

very expressing and, consequently, we decided to explicitly consider it.
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consists in taking impact factor into consideration; another way consists in considering

the number of citations received by papers.

Impact factors are measured only for journal papers. As a consequence, if we want

to employ this measure, we must define a new support data structure. This structure,

that we indicate by G′, is, once again, a social network. It is defined as:

G′ = ⟨N ′, E′⟩

There is a node ni ∈ N ′ for each institution having at least one author that

published at least one journal paper. An edge e′ij = (n′
i, n

′
j , w

′
ij) has a semantics

similar to the one of eij except that the weight w′
ij =

∑
p∈(Pubij∩JPub) IFp considers

both the number of publications simultaneously performed by ni and nj and the

corresponding impact factors.

Paper citations are valid both for conference proceedings and for journal papers.

However, in order to make our analyses about the quality of publications homoge-

neous, we chose to investigate only journal papers. In this case, we used the same

support social network as the one employed for impact factors but the edge weights

w′
ij was computed as: w′

ij =
∑

p∈(Pubij∩JPub) CitNp, where CitNp is the number of

citations of p.

The application of these data structures and concepts to our case study is reported

in Section 12.5.4.

12.4.5 Characterization of hub neighborhoods

A first parameter useful to characterize hub neighbors is the average number AvgPub

of publications of the hub neighborhoods. It is defined as:

AvgPub =
∑

i∈H AvgNbhPubi
|H|

where AvgNbhPubi =

∑
nj∈nbhI

i

∑
nk∈nbhI

j
wjk

|nbhI
i |

.

Since, in the hub neighborhoods, there could be other hubs, which clearly can

strongly influence the neighborhood behavior, we define an additional version of hub

neighborhoods n̂bhi, n̂bhI
i and n̂bhF

i , obtained by filtering out hubs from nbhi, nbhI
i

and nbhF
i , respectively. Then, we define ÂvgPub by simply substituting nbhi with

n̂bhi.

We call AvgPubk (resp., ̂AvgPubk) the “projection” of AvgPub (resp., ÂvgPub)

on the country k: AvgPubk =
∑

i∈Hk
AvgNbhPubi

|Hk| .

A second parameter for evaluating hub neighborhoods regards their average di-

mension AvgDim:

AvgDim =
∑

i∈H |nbhi|
|H|
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Also in this case, we disaggregate data per country and we call AvgDimk the

corresponding parameter for the country k.

A next analysis regards the cooperation level among the institutions belonging to

neighborhoods. To perform this task, we define a new support social network. We call

it nbh social network and we represent it by means of the symbol NbhGi. Given a

neighborhood nbhi, the corresponding nbh social network is defined as follows:

nbhGi = ⟨nbhi, nbhEi⟩

There is a node in NbhGi for each node of nbhi; there is an edge (ni, nj) ∈ nbhEi

if there exists at least one publication between an author of ni and an author of nj .

After having introduced this social network, we define a first parameter on it.

This parameter is called AvgCFrac and corresponds to the average fraction of the

real number of cliques existing in hub neighborhoods against the possible number of

them. It is an indicator of the cooperation level among hubs. It is defined as:

AvgCFrac =
∑

i∈H NbhCFraci
|H|

Here, NbhCFraci =
C̃i

2|nbhi|−|nbhi|−
|nbhi|(|nbhi|−1)

2

, where C̃i represents the number

of cliques in NbhGi, whereas the denominator of NbhCFraci indicates the possi-

ble number of cliques in nbhi. As usual, we call AvgCFrack the “projection” of

AvgCFrac on the country k.

A second parameter about intra-neighborhood cooperation regards the average

fraction AvgCNbh of the number of cliques existing in hub neighborhoods against

the number of neighborhood nodes:

AvgCNbh =
∑

i∈H NbhCNumi

|H|

Here, NbhCNumi = C̃i
|nbhi| . Again, we call AvgCNbhk the “projection” of

AvgCNbh on the country k.

A final parameter measuring the cooperation level between hub neighbors is the

average density AvgDens of the nbh social network:

AvgDens =
∑

i∈H NbhSNDensi
|H|

Here, NbhSNDensi = |nbhEi|
|nbhi|(|nbhi|−1)

2

. As usual, we call AvgDensk the “projec-

tion” of AvgDens on the country k.

The application of these parameters to our case study is reported in Section 12.5.5.
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12.5 Application of our approach to four North African

countries

As pointed out in the Introduction, we applied our approach to four North African

countries, namely Algeria, Egypt, Morocco and Tunisia. As a consequence, in our case

study, the set C introduced in Section 12.4, consisted of the following elements:

C = {‘A’, ‘E’, ‘M’, ‘T’, ‘O’}

where ‘A’ (resp., ‘E’, ‘M’, ‘T’, ‘O’) stands for ‘Algeria’ (resp., ‘Egypt’, ‘Morocco’,

‘Tunisia’, ‘Others’). Clearly, ‘O’ does not represent a specific country, but it indicates

all the ones different from the four into examination. The reasons for adding ‘O’ will

be clear below.

Our dataset was stored in a MongoDB database [6]. To give an idea of it, we report

some of its features: (i) dimension = 10.27 GB; (ii) number of institutions = 278,696

; (iii) number of authorships = 89,008,846; (iv) number of publications = 6,599,104;

(v) number of research areas = 6; (vi) number of research fields = 251.

12.5.1 Hub characterization and detection

We computed the distribution of M1 for the publications of JCPub for each year. For

instance, in Figure 12.1, we show the distribution of M1 for JCPub in the year 2013.

It is a very steep power law distribution; in other cases, the trends are less steep, but,

anyhow, they follow power law distributions. We do not report the other trends for

space reasons; in any case, all of them are similar to the one of Figure 12.1. Obtained

results confirm that, in our case study, the theoretical conjecture about the trend of

weighted degree centrality [193] is valid.

Fig. 12.1. Distribution of M1 for the publications of JCPub in the year 2013
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Then, we computed the distribution of M2 and M3 for the publications of JCPub

for each year. Analogously to what happened for M1, all the trends were the same

and followed power law distributions, thus confirming what theoretically said in [193].

In order to understand the filtering level of hubs against the increase of X, and in

order to choose a default value for this parameter, we computed the number of hubs

belonging to the four countries into consideration over time for the three values of X

chosen in Section 12.4.1. We report obtained results in Figure 12.2. From the analysis

of this figure, we can see that the trend of selected hubs is always increasing over

time and very similar for the three values of X. This implies that all the three values

of X would lead to the same behavior of our approach. The only difference regards

the desired tradeoff between the number and the strength of the identified hubs. The

higher X, the stronger (but, the less numerous) the identified hubs. We have preferred

to let our approach to be more “permissive”, i.e., to let it privilege hub number on

hub strength. As a consequence, we set X to a default value of 20. However, in case

of hub strength needs be privileged on hub number, it would be sufficient to set X to

a low value, for instance to set it to 10.

Fig. 12.2. Hub number over time for several values of X

In many research fields, conferences are not considered in the computation of bib-

liometric indices. As a consequence, we judged interesting to remake all the previous

investigations considering journals only. This corresponded to analyze publications

belonging to JPub, instead of to JCPub. All the analyses performed for JPub con-

firmed the general trends and the results found for JCPub. For instance, also in this

case, M1, M2 and M3 presented a power law distribution for all the four countries

into consideration. Interestingly, in case of JPub, power law distributions are generally

steeper than the ones of JCPub.
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Another very interesting, and quite unexpected, result regards the number of hubs

when only journals are considered. In fact, although the number of involved institu-

tions decreases, the number of hubs generally does not decrease and, in several cases,

increases. This quite surprisingly result can be explained by considering that the pub-

lication of a paper on conference proceedings has quite high costs (think, for instance,

of costs for conference registration, travel, stay, etc.). These can disadvantage the in-

stitutions of the four countries into consideration, since all of them are characterized

by a low average income per capita. If we consider X = 10 or X = 15, we obtain the

same results.

An important characterization of hubs regards their capability of cooperating each

other. In other words, it is interesting to verify if there exists a sort of backbone

comprising hubs of different countries. To perform this investigation, we considered

the concept of clique. Recall that a clique of dimension η is simply a complete subgraph

consisting of η nodes. To conduct our analysis we carried out the following steps:

• We considered two time intervals. The former is [2003, 2009], the latter is [2007, 2013].

We considered them expressly overlapped to avoid the risk of discontinuity.

• We “projected” the social network G in two social networks G′ and G′′ in such a

way as to consider only hubs and only publications of the period [2003, 2009] in

the former, and of the period [2007, 2013] in the latter.

• We computed all the cliques of G′ and G′′.

After this, we analyzed the number and the dimension of obtained cliques, as well

as the institutions belonging to them. As a general trend, we found that there are

many cliques and most of them are very small. This indicates that there are some

contacts among hubs but there is not a strict cooperation among many of them in

such a way as to have “research backbones”.

Furthermore, the largest clique of the period [2003, 2009] consisted of 13 hubs,

whereas the largest one of the period [2007, 2013] was formed by 17 hubs. In both

cases all hubs forming these cliques are only Egyptians. From this analysis, we can

draw the following knowledge patterns:

• Cliques tend to enlarge over time, although slowly. For instance, the largest clique

of the period [2007, 2013] is obtained by aggregating four further hubs to those

belonging to the largest clique of the period [2003, 2009].

• The largest cliques are formed by hubs of the same country; for instance, the

top 5 cliques in the two periods are all formed by Egyptian hubs only. This last

result has a further important consequence in that it shows that hubs of different

countries tend to not cooperate each other.
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Years RQ FC TP

2003 0.0593 0.667 0.785

2004 0.0572 0.731 0.819

2005 0.0577 0.748 0.865

2006 0.0598 0.616 0.850

2007 0.0574 0.638 0.860

2008 0.0555 0.629 0.830

2009 0.0612 0.602 0.852

2010 0.0555 0.621 0.891

2011 0.0516 0.658 0.892

2012 0.0503 0.660 0.888

2013 0.0471 0.701 0.894

Table 12.1. Values of RQ, FC, and TP in the year interval [2003,2013] when both confer-

ences and journals are considered

12.5.2 Investigation of the research scenarios for the countries of interest

First of all, we computed the three indicators RQ, FC and TP , whose formalization

has been provided in Section 12.4.2, for the four North African countries of interest.

This computation (for both JCPub and JPub) returned very interesting knowledge

patterns about the research scenarios in the four countries (see Table 12.1). In par-

ticular, the first indicator shows that the research institutions in the four countries

do not present excellent performances. Furthermore, this indicator does not show

a significant increase over time. The second and the third indicators highlight that

an institution of one of the four countries benefits very much from the cooperation

with foreign institutions for reaching and maintaining a high performance in its own

country.

After these analyses, we started to investigate the similarities and the differences

for hubs in the four countries. First, we computed the values of M1, M2 and M3

in the four countries for all the years into consideration. We obtained that both

M1 an M3 present a power law distribution and, therefore, confirm what we have

seen for the general case. An interesting trend is shown by M2 for these countries

(Figure 12.3). Indeed, this measure presents a distribution characterized by a broken

line with quite a rapid decrease and a possible starting peak. This suggests a very

interesting scenario for the hubs in each of the four countries. This scenario is the

typical one of an oligarchy of hubs for each country and is very different from the two

ones we had initially hypothesized (i.e., a lot of quite weak hubs, corresponding to a

smoothly decreasing distribution for M2, or a very few number of very strong hubs,

corresponding to a power law distribution for M2).

In Figure 12.4, we report the variation of the number of hubs for each country.

From the analysis of this figure, we can see that the country with the highest number

of hubs is Tunisia. This result was unexpected also because both the extension and the

number of citizens of Tunisia were smaller than the ones of the other three countries.
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Fig. 12.3. Trend of M2 for the four countries in the year 2013

Fig. 12.4. Number of hubs for each country in the year interval [2003,2013]

In Figure 12.5, we report the values of the average number AvgPubHk of hub

publications over time (see Section 12.4.2) for the four countries of interest. From the

analysis of this figure we can see that Egyptian hubs generally publish much more

papers than the hubs of the other countries. This result, along with the ones of Figure

12.4, suggests that research in Egypt is much more concentrated than in the other

three countries.

A final report about this issue regards the total number of publications |Pubk| (see

Section 12.4.1) over time for each country. Obtained results evidence that that Egypt

has a number of publications much higher than the other three countries. This result,

along with the ones reported in Figure 12.4, is a further confirmation that research

in Egypt is much more concentrated than in the other three countries.

After this, we computed the average number of internal, external and alone pub-

lications for the four countries of interest. Obtained results evidence that the hubs of
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Fig. 12.5. Average number of publications per hub over time for the four countries

all countries always publish more with foreign institutions than with internal ones.

Interestingly, Egyptian hubs have a significant fraction of alone publications.

In Figure 12.6, we report the Herfindahl index HIk for the four countries (see

Section 12.4.2). From the analysis of this figure we can observe that Tunisia and

Algeria have a high Herfindahl index, which implies that their hubs cooperate mostly

with one or few countries. By contrast, Egypt has a very low Herfindahl index, i.e.,

its hubs cooperate with many countries. An interesting trend is the one of Morocco;

in fact, it initially has a behavior like the ones of Tunisia and Algeria, whereas, in the

last years, it shows a behavior like the one of Egypt.

Fig. 12.6. Herfindahl index over time for the four countries

A possible objection to the previous way of proceeding could be that the compu-

tation of the Herfindahl index of a country k (e.g., Egypt) could be “biased” by the

presence of many institutions of different countries each having only one publication

with a hub of k. To overcome this objection, for each country k, we considered the top

5 countries Tk sharing publications with its hubs. Then, we recomputed the Herfind-

ahl index considering, for each k, only the institutions belonging to the countries of

Tk. Obtained results show that all the main conclusions we have drawn from Figure

12.6 are still valid. This not only overcomes the previous objection, but it is also a
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further confirmation of the power law distribution of hubs’ publications, which we

have detected by studying the trend of M1.

Cooperation among hubs of the same country

To determine the cooperation levels among hubs for the four North African countries

into consideration, for each country k, we performed the following tasks:

• We considered the two time intervals [2003, 2009] and [2007, 2013].

• We computed the clique social networks (see Section 12.4.2) CG1k (resp., CG2k),

corresponding to the first (resp., the second) time interval.

• We measured the four parameters introduced in Section 12.4.2 for quantitatively

evaluating clique social networks.

Obtained results are reported in Table 12.2. From the analysis of these tables we

can draw the following conclusions:

• Egypt has the largest clique in both periods; the clique is much larger than the

maximum cliques of the other countries;

• in Egypt almost all hubs belong to at least one clique.

Country |C1k| d1Ck

d1Ck
|Hk| f1HCk

Algeria 292 7 0.152 0.913

Egypt 38 13 0.351 0.973

Tunisia 130 8 0.116 0.942

Morocco 82 7 0.127 0.818

Country |C2k| d2Ck

d2Ck
|Hk| f2HCk

Algeria 234 8 0.121 0.939

Egypt 94 17 0.27 1.0

Tunisia 304 9 0.081 0.847

Morocco 106 9 0.134 0.821

Table 12.2. Quantitative differences characterizing the cooperation behaviors of hubs in

the four countries (first time interval on the top and second time interval on the bottom)

These results indicate that Egyptian hubs are more prone to cooperation than the

hubs of the other countries.

In Figure 12.7, we report the graphs CG2k for all the four countries; in these

graphs the dimension of nodes is proportional to the corresponding weight, i.e., to the

number of cliques they belong to. The analysis of this figure confirms the previous

conjecture; in fact, the number of edges in the Egyptian graph is much higher than

in the other graphs. This fact, along with the presence of many little nodes, allows

us to derive another important knowledge pattern, i.e., that research cooperation in

Egypt is more advanced than in the other countries.
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Fig. 12.7. Graphs CG2k for the four countries

In Figures 12.8 and 12.9, we report the graphs ĈG1k and ĈG2k (corresponding to

ĈGk for the first and the second time interval) for the four countries. From the analysis

of these figures we can observe that the different behavior of Egyptian hubs with

respect to the ones of the other countries is confirmed, although slightly attenuated.

Finally, we computed the number of nodes, the number of edges and the density of

CG1k and CG2k for all countries. Obtained results are reported in Table 12.3. From

the analysis of this table we can observe that the three measures quantitatively depict

very well what we have expressed previously. Furthermore, if we compare their values

in the two periods, we can draw some interesting knowledge patterns. In fact, we can

observe that the number of nodes always increases, which implies an increase of the

hub capability of cooperating each other. This increase is quite high (i.e., about 38%)

for Morocco, high (i.e., about 50%) for Algeria and Tunisia, and very high (i.e., about

76%) for Egypt. The same trends can be observed for the increase of the number of

edges (i.e., about 27% for Morocco, about 50% for Algeria and Tunisia, and about

129% for Egypt). By contrast density always decreases. These last results represent

a further confirmation about the fact that hubs continue to cooperate a little each

other.

Finally, if we consider the ratio of the increase of the number of edges to the

increase of the number of nodes for the four countries when passing from the first to

the second time interval, we can observe that this ratio is about 1 for Algeria and

Tunisia, about 1.70 for Egypt and about 0.73 for Morocco. This indicates that, in the
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Fig. 12.8. Graphs ĈG1k for the four countries

Fig. 12.9. Graphs ĈG2k for the four countries
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Country number of nodes number of edges density

Algeria 41 166 0.200

Egypt 34 196 0.349

Tunisia 66 272 0.127

Morocco 45 174 0.176

Country number of nodes number of edges density

Algeria 62 249 0.132

Egypt 60 450 0.254

Tunisia 103 416 0.079

Morocco 62 221 0.117

Table 12.3. Number of nodes, number of edges and density of CG1k (on the top) and of

CG2k (on the bottom) for all countries

second time interval, Egypt had a spectacular increase of the hub cooperation. This

also reflects in the density decrease, which is much more reduced in Egypt than in

the other countries (in fact, it is about -27% for Egypt, -34% for Algeria, -38% for

Tunisia and -59% for Morocco). As for density, its decrease must not be misleading

since, to avoid it, the number of edges should have increased against the square of

the number of nodes, which is almost impossible. As a matter of fact, the number of

edges always increases in all the four countries, but slightly.

12.5.3 Investigation of research areas

For each research area of RA (see Section 12.4), we computed the corresponding RA

network and, then, we repeated all the tasks described in the previous sections in such

a way as to disaggregate the corresponding results per research area.

A first analysis regarded the distribution of M1, M2 and M3 over time for each

research area. In this case, we obtained that these distributions are analogous to the

ones obtained for aggregated data.

For each research area, we computed the number of publications of hubs over time.

Obtained results show that the research areas having the highest number of hubs are

‘NS’, ‘ET’ and ‘MH’. This result confirms the ones reported in [251] concerning the

diffusion of research areas in the same countries.

Then, we computed the number of publications per hub over time for each research

area. Obtained results are in line with the ones shown in the previous figures.

A further, very interesting, disaggregation of results is obtained by separating

data for pairs (country, research area). In fact, in this way, we can verify if the four

countries into consideration present similar or dissimilar features and behaviors in the

different research areas.

A first analysis of this disaggregation level regarded the distribution of M1, M2

and M3. Obtained results confirm that these metrics follow a power law distribution
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Fig. 12.10. Average number of publications of hubs over time for each research area

for ‘NS’, ‘ET’ and ‘MH’. For the other three research areas, the number of publications

performed in the four countries was small and, therefore, we had to discard obtained

results, because they were not reliable.

A second investigation at the same disaggregation level concerned the number of

hubs over time. Obtained results confirm in principle the ones about the distribution

of hubs per country, shown in Figure 12.2.

We have seen that a particular feature of hubs was the fact that they published

more with foreign institutions than with internal ones (see Section 12.4.2). We re-

peated this investigation at the new disaggregation level and found that this trend is

always valid except for the pair (Tunisia, ‘MH’), where it is never valid, and for the

pair (Egypt, ‘ET’), where it is valid only for the time interval [2009, 2013]. Interest-

ingly, for the pair (Egypt, ‘ET’), the number of alone publications is higher than the

number of internal and external ones in the time interval [2003, 2010].

After this, we investigated the Herfindahl index. Obtained results generally con-

firm the corresponding aggregated ones (see Figure 12.6), although with some slight

differences. In particular, the trend of ‘NS’ is identical. As for ‘MH’, differently from

the aggregated case, Morocco always shows a behavior similar to the ones of Algeria

and Tunisia. An intermediate behavior w.r.t. the ones of ‘NS’ and ‘MH’ is obtained

for ‘ET’.

The next investigation regarded backbones and cliques, clearly at the new disag-

gregation level. In this case, after having constructed the corresponding clique social

networks, we found that the general trend (i.e., the aggregated results) about coun-

try backbones and hub cooperation in the different countries are confirmed in almost

all research areas. However, there are a couple of interesting situations and/or ex-

ceptions. In fact, we can observe: (i) a very few number of hubs and cliques, along

with a scarce cooperation, in Algeria for ‘MH’ and in Morocco for ‘ET’ in the time
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interval [2003,2009], and in Morocco for ‘MH’ in the time interval [2007,2013]; (ii)

the presence of two disconnected components in Algeria for ‘MH’ in the time interval

[2007,2013] and in Morocco for ‘MH’ in the time interval [2003,2009]; (iii) a much

more scarce cooperation for ‘MH’ than for ‘NS’ and ‘ET’ in all the countries and in

both time intervals.

Analogously to the aggregated case, also at this disaggregation level we decided to

construct the normalized RA social networks. To perform this task, we preliminarily

had to verify that weight distribution in the edges followed a power law (see Section

12.4.3). After this, we constructed the normalized clique social networks and analyzed

them. From this analysis we found that the general trends detected for aggregated

data are still valid, although the following specificities/exceptions were observed: (i)

there are few hubs and cliques and a scarce cooperation in Algeria for ‘MH’ in the time

interval [2003,2009]; (ii) there is the presence of two disconnected components in Mo-

rocco for ‘MH’ in the time interval [2003,2009], and the presence of three disconnected

components in Algeria for ‘MH’ in the time interval [2007,2013].

12.5.4 Investigation of the quality of publications

As for this issue, after having constructed G′ (see Section 12.4.4), we computed the

distributions of the metrics M1, M2 and M3. We found that these distributions are

analogous to the previous ones.

After this, we determined the number of hubs in the four countries of interest.

In this case, we observed that, when considering the impact factor, the number of

hubs generally decreases w.r.t. the case in which we consider only the number of

publications (see Table 12.4). This is another indicator of the fact that the research

performance for the four countries is low. In any case, we found that this number is

always increasing over time.

Years Number of hubs Number of hubs Number of hubs

(without impact factors and citation numbers) (with impact factors) (with citation numbers)

2003 90 71 58

2004 85 70 65

2005 97 79 69

2006 100 95 82

2007 124 101 103

2008 140 118 111

2009 155 132 120

2010 165 142 123

2011 190 152 140

2012 199 157 127

2013 202 175 147

Table 12.4. Hub number over time in the three different situations into examination
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As a final analysis, we computed the metrics M1, M2 and M3 for each research

area. We found that all the previous power law trends, obtained without considering

impact factors, are fully confirmed and, even, reinforced, since the new power law

distributions are steeper.

After the analyses based on impact factors, we made different analyses taking the

citation number into account. In this case, we repeated all the computations already

made for impact factors. In particular, we computed: (i) the distributions of the

metrics M1, M2 and M3; (ii) the number of hubs in the four countries (see Table

12.4); (iii) the distributions of the metrics M1, M2 and M3 for each research area. All

the results obtained in these computations totally confirm the ones seen for impact

factors. Only the distributions of the metrics M1, M2 and M3 present some noise near

the elbow of the corresponding curves.

In our opinion, the fact that the previous results are confirmed in this case is

extremely important, because this is an indicator of their stability; indeed, although

we consider two totally different quality factors, the obtained results are always the

same.

12.5.5 Characterization of hub neighborhoods

The first task we carried out for characterizing hub neighborhoods was the compu-

tation of the average number AvgPub (see Section 12.4.5) of the publications of hub

neighborhoods. As in Section 12.5.2, we distinguished among internal, external and

alone publications. Obtained result is reported in Figure 12.11.

Fig. 12.11. Average number of internal, external and alone publications for hub neighbor-

hoods

This result was quite unexpected. In fact, in Section 12.5.2, we have seen that

hubs tend to publish more with foreign institutions than with internal ones. However,
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in order to “fulfill its mission” to be a guide for its country, a hub must maintain a

strict contact with internal institutions. So, we had hypothesized that this task was

performed through its directed neighbors. Nevertheless, this graph seems to contradict

this hypothesis.

As a matter of facts, a deeper investigation allows us to better understand this

phenomenon. In fact, we must recall that, in the hub neighborhoods, there could

be other hubs, which clearly can strongly influence the neighborhood behavior. As

a consequence, it appears more correct to consider the trend of ÂvgPub, instead of

AvgPub (see Section 12.4.5), over time.

We carried out this last task by distinguishing among internal, external and alone

publications. Obtained results, reported in Figure 12.12, fully confirm our hypothesis.

In fact, in this case, the average number of internal publications is higher than the av-

erage number of external ones. Interestingly, the average number of alone publications

is significant, at least from 2003 to 2010.

Fig. 12.12. Average number of internal, external and alone publications for hub neighbor-

hoods (after the hubs present therein have been filtered out)

To verify if the four countries showed identical or different behaviors in this anal-

ysis, we disaggregated data per country and considered AvgPubk and ̂AvgPubk. We

obtained that the trends described above for aggregated data are always confirmed

for each country. We also observed an enormous decrease of the average number of

publications when we consider the neighborhoods without hubs. This is a further con-

firmation that the distribution of the publications among institutions follows a power

law. Finally, as usual, the number of alone publications performed by Egyptian hubs

is quite significant.

A second investigation about neighborhoods regarded their average dimension. For

this purpose, we computed AvgDim over time. Obtained results are reported in Figure

12.13. From the analysis of this figure, we can observe that the average dimension of
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hub neighborhoods always increases. This implies that the number of institutions

cooperating with hubs is increasing over time constantly. As usual, we disaggregated

these data per country. Specifically, we computed AvgDimk over time for the four

countries. Obtained results evidence that the average dimension of neighborhoods

increases in all countries, although with some irregularities.

Fig. 12.13. Values of AvgDim over time

After this, we investigated the cooperation level among the institutions belonging

to hub neighborhoods. We started by computing AvgCFrac over time. Obtained

results are reported in Figure 12.14. Their analysis shows that AvgCFrac tends to

increase over time, although with some irregularities. This implies an increase over

time of the cooperation among institutions belonging to hub neighborhoods. We also

disaggregated data per country. For this purpose, we computed AvgCFrack for the

four countries. Obtained results evidence that the four countries show very different

behaviors.

Fig. 12.14. Values of AvgCFrac over time
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A second measure about intra-neighborhood cooperation is AvgCNbh. We com-

puted it over time. Obtained results are reported in Figure 12.15. From the analysis

of this figure, we can observe that this parameter is significantly increasing over time,

which is a further confirmation that cooperation among hub neighbors is increasing.

In fact, its increase implies an increase of NbhCNumi and, since we have seen that

|nbhi| increases over time, this implies a higher increase of the number of cliques. We

disaggregated data per country. For this purpose, we computed AvgCNbhk for the

four countries. Obtained results show that, in this case, the four countries present

very different behaviors.

Fig. 12.15. Values of AvgCNbh over time

The final measure about intra-neighborhood cooperation regarded the average

density AvgDens of the nbh social networks. We computed this parameter over time

and we reported obtained results in Figure 12.16. From the analysis of this figure, we

can observe an increase of this parameter. This is a further confirmation, obtained

via a different fashion (based on edge number, instead of on clique number), that

hub neighbors tend to increase their cooperation over time. We disaggregated data

per country and we computed AvgDensk over time for the four countries. Obtained

results show that this parameter is significantly increasing over time for all countries.

12.6 Discussion

In the Introduction, we have outlined the main innovations of our approach. Fur-

thermore, in Section 11.2, we have examined related literature. Now, after having

examined our approach in all details, and after having seen its behavior on a real case

study, we can provide a more detailed presentation of its main features and novelties

w.r.t. the previous ones.
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Fig. 12.16. Values of AvgDens over time

First, differently from most of the previous approaches described in Section 11.2,

which focus on authors, our approach is centered on institutions.

One of the specific goals of our approach, i.e. hub detection and characterization,

is novel in the literature. As matter of fact, to the best of our knowledge, the only

paper investigating hubs is [36]. However, in [36], the definition of hubs is centered

on authors and centrality measures, and is much simpler than the one we adopted in

this chapter.

Our approach also aims at investigating the similarities and the differences of

the research scenarios in a set of countries of interest. This is another contribution

provided by it, which is generally not found in the previous approaches proposed in

the past.

Also the techniques employed to carry out investigations are very different from

the ones adopted in the past. In fact, past researches in this field were centered on the

concept of centrality, whereas our approach employs more specific and ad-hoc data

structures and parameters.

Furthermore, to better evaluate cooperation among involved institutions, we have

employed the concept of clique and we have defined the clique social network, i.e., a

specific support social network in which the dimension of a node is directly propor-

tional to its tendence of cooperating with the other ones. We have also introduced

some metrics to quantitatively evaluate the difference between two or more clique

social networks.

Moreover, we have carried out a deep study of hub neighbors by introducing several

metrics for quantitatively analyzing and comparing them.

As a further specificity of our approach, we have deepened our investigation about

its main features, as well as about the similarities and the differences of research

scenarios, by disaggregating data not only per country but also per research area and

per pairs (country, research area).
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In our evaluations, we considered not only the number of publications but also the

corresponding quality by taking both their impact factor and their citation number

into account.

Last, but not the least, we provided a re-definition of the Herfindahl index (largely

used in the past research in Biology and Economics) to measure how much, in a

given country, research activities are guided by few hubs or distributed among many

institutions.

Another interesting issue could regard the comparison of our approach with some

commercial systems, like Elsevier Pure, Elsevier Fingerprint Engine and Elsevier Sco-

pus.

Elsevier Pure supports an institution in the definition of the optimal research and

cooperation strategies, in assessment activities and in making business decisions. Pure

aggregates information regarding the research activities of a given institution stored

in different, both internal and external, sources. Furthermore, it ensures that data

guiding strategic decisions is trusted, comprehensive and accessible in real time. It

has an underlying centralized system, which is very versatile and supports the con-

struction of reports, the evaluation of performances, the management of researchers’

profile, the construction and the maintenance of research networks, the expertise de-

tection, etc. Pure can be integrated with Elsevier Fingerprint Engine for stimulating

the cooperation among researchers.

Elsevier Fingerprint Engine mines scientific documents ranging paper abstracts,

funding announcements and awards, project summaries, patents, proposals/applica-

tions, etc., to create an index of weighted terms called Fingerprint visualization. The

construction of Fingerprints is made through Natural Language Processing techniques

and through the support of suitable thesauri. By aggregating and comparing the Fin-

gerprints of people, publications, funding opportunities and ideas, Elsevier Fingerprint

Engine mines metadata to detect connections among people, publications, funding op-

portunities and ideas. The thesauri adopted by Elsevier Fingerprint Engine make this

last tool well suited in life science, engineering, earth and environmental sciences, arts

and humanities, social sciences, mathematics and agriculture. Elsevier Fingerprint

Engine can be integrated with Pure, to create expertise profiles aiming at helping co-

operation, with Expert Lookup, to identify referees and potential conflicts of interest,

and with Elsevier Journal Finder, to find the journal most suited to publish a given

article.

Elsevier Scopus is the greatest database of abstracts and citations of scientific lit-

erature. It encompasses scientific journals, books and conference proceedings. Scopus

supplies several functionalities. In particular, Scopus supports the search of docu-

ments, authors, affiliations and several forms of advanced search. It also allows the def-
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inition of alerts regarding search, documents and authors, the browsing of resources,

the creation of personalized lists of documents, the export of data to reference man-

agers, the discovery of the documents citing selected articles, the visualization of the

list of references included in an article, the analysis of search results, the comparison

of journals, the quick visualization of the citation impact and the scholarly commu-

nity engagement for an article, the analysis of the citation trend for an article, the

analysis and tracking of an individual’s citation history including total citations and

document count, the computation of the h-index of an individual. Finally, Scopus has

a comprehensive suite of metrics to facilitate evaluations and provide a better view

of research interests.

Differently from Scopus, which bases most of its features on article citations, our

approach is based on co-authorships. Furthermore, Scopus is more focused on single

authors or single institutions, whereas our approach focus mainly on cooperations

among authors or institutions. In its main objectives, our approach is more similar

to Pure than to Scopus. However, Pure finds cooperation and network information

based on text analysis performed by Fingerprint Engine. By contrast, as previously

pointed out, our approach is based on co-authorship information.

Furthermore, our approach introduces the concept of hub, which is fundamental

to help innovation managers in their decision making activities. This concept is not

directly present in Pure and Fingerprint Engine. Only after several computations

of the information directly provided by these systems, followed by a strong human

intervention, it could be possible to derive (at least partial) information on hubs.

Analogously to Scopus, also our approach introduces several metrics to evaluate

the level of the research activities in a scenario of interest, although the metrics used

by the two systems take different pieces of information into account.

Once hubs have been detected, our approach allows a deep analysis of their main

features and their relationships. For instance, it can indicate if there is a strong

cooperation among the hubs of a given country or among the hubs (possibly of different

countries) that operate in a given research area. Furthermore, it can investigate the

characteristics of the hub neighbors and how they can be influenced by the hub

themselves for the different countries and research areas of interest. Interestingly, our

approach can incorporate in its metrics also citation counts and impact factors (i.e.,

the main parameters used by Scopus) to obtain more refined results.
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Deriving knowledge on research scenarios in a set of

countries

13.1 Deriving Knowledge

Patents have been one of the main topics investigated in several fields of scientific

literature [8, 285, 446, 158, 141, 424]. In fact, they provide a wealth of useful infor-

mation on the state of art and on the protagonists of a Research & Development

(R&D) sector [466, 48, 156, 181, 200, 208, 272, 251, 308, 410, 285]. Patent submission

is usually the first public claim of a new invention or innovation.

The investigation about both inventors and the patents submitted by them has ap-

pealed many researchers and economists, mainly in the last 15 years, and the interest

on this topic has substantially increased over time.

Patent analysis can represent a useful tool for investigating the scientific develop-

ment of a country. Moreover, understanding innovation evolution can allow decision

makers to decide where it is better to concentrate investments. Furthermore, knowl-

edge about patents allows decision makers to know the experiences of other (possibly

competitor) organization/institutions/countries to verify the past and the current

R&D activities and evolutions and to foresee the future ones. Finally, it provides a

precise and detailed picture of the R&D cooperations between different organizations

and/or countries and can represent an indicator of geo-political evolutions.

Several approaches for patent analysis have been proposed in the past. Most of

them were based on classical statistics. However, currently, data about patents is

rapidly increasing. As a consequence, the adoption of Data Mining and Big-Data-

centered techniques appears compulsory. Among these last techniques, Social Network

Analysis (SNA) appears particularly adequate [458, 53, 24, 106, 107, 258, 328, 476].

In fact, SNA allows the investigation of phenomena where involved data are huge and

adopted variables are strictly related to each other, in which case classical statistical

approaches present several difficulties to operate [439].
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As a confirmation of the suitability of SNA for patent investigation, in the past,

several approaches have been proposed in this sense (see, for instance, [48, 446, 158,

141, 208, 424]).

13.2 Approach description and knowledge pattern extraction

In this section, we present our approach, along with its support data structures and

parameters, and we show how it can answer the ten research questions mentioned in

the Section 13.1. In this chapter we used same data presented in Section 12.3 However,

before starting our presentation, we must define some sets allowing the formalization

of data at our disposal.

The first set regards IPC classes. It consists of the following elements:

IPC = {“ICT”, “INS”, “CM”, “PB”, “IP”, “ME”, “CE”}

where “ICT” (risp., “INS”, “CM”, “PB”, “IP”, “ME”, “CE”) denotes “Information

and Communication Technologies” (risp., “Instruments”, “Chemicals and Materials”,

“Pharmaceuticals and Biotechnology”, “Industrial Processes”, “Mechanical Engineer-

ing”, “Civil Engineering”).

The second set, called Pat, represents all the patents registered in our database.

Given a patent p ∈ Pat, we indicate with Inventorsp the set of its inventors, and

with Classesp the set of the IPC classes it belongs to.

Now, we can define:

• the set Patk of the patents filed by at least one inventor of the country k;

• the set Patq of the patents belonging to the IPC class q;

• the subset Patqk of Patk whose elements refer to the IPC class q.

Finally, we define a social network that represents our main support data structure

for our investigations. Specifically, it is represented by:

G = ⟨N,E⟩

N indicates the set of nodes of G. A node ni ∈ N corresponds to exactly one inventor

registered in our database. Since there is a biunique correspondence between a node

of N and the corresponding inventor, in the following we will use the symbol ni to

denote both of them. A label is associated with each node of N ; it represents the

country of the corresponding inventor. We denote by li the label of ni. E is the set

of the edges of G. There exists an edge eij = (ni, nj , wij) ∈ E if there exists at least

one patent filed by both ni and nj . wij is the weight of eij ; it denotes the number of

patents filed by both ni and nj .
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Starting from this support data structure, we can define some sets representing

the neighborhood of a node in G. Specifically, we define the direct neighborhood nbhi

of a node ni ∈ G as the set of the nodes of G directly connected to ni. Then, we can

define the set nbhI
i (resp., nbhF

i ) of the direct neighbors of ni belonging to the same

country as (resp., a country different from) the one of ni. Finally, we define the set

Nk of the nodes (i.e., inventors) of a country k.

As previously pointed out, the amount of data to process, along with the objective

to define a general approach that can be adopted also in the future (when available

data about patents will enormously grow), led us to exploit Big Data technology.

In particular, we adopted the MongoDB [6] DBMS. We also adopted NetworkX [1],

a powerful Python library providing all the basic algorithms for SNA. NetworkX

can interact with MongoDB via Python. Thanks to the flexibility and the power

of this last language, we could easily exploit the basic SNA functions provided by

NetworkX to construct the (often very complex) algorithms underlying our parameters

and knowledge extraction tasks.

In the following, we answer the ten research questions, one per subsection. In

carrying out this task, we introduce new metrics, parameters and data structures; we

also derive several knowledge patterns.

13.2.1 RQ1: What is the distribution of patents against inventors

To answer this question, given a node ni, we defined a metric M1 such that M1i de-

notes how much patents were filed by the inventor ni. This metric coincides with the

classical weighted degree centrality [193]. We measured M1 for the following coun-

tries: all European Union countries, all Mediterranean countries, all North African

countries, all countries of BRICS (Brazil, Russia, India, China and South Africa),

South Korea, Japan, Vietnam and Taiwan.

For most of these countries, M1 follows a power law distribution. This implies

that, in the corresponding countries, there are few inventors filing many patents and

many inventors filing very few patents. For instance, in Figure 13.1, we show the

distribution of M1 for France.

Some countries (i.e., Greece, Croatia, Principate of Monaco, Slovenia, Turkey and

all countries of BRICS) show a slightly disturbed power law. For instance, in Figure

13.1, we show the distribution of M1 for Greece. This result is motivated by the fact

that, in these countries, the maximum number of inventors and filed patents is quite

low.

Other countries (i.e., Egypt, Lebanon, Malta, Morocco and Tunisia) present a

disturbed power law. For instance, in Figure 13.2, we show the distribution of M1 for

Egypt. Also in this case, the obtained trend is justified by the low number of inventors
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Fig. 13.1. Distribution of M1 for France and Greece

Fig. 13.2. Distribution of M1 for Egypt and Algeria

and filed patents in the corresponding countries. Finally, for some countries (i.e.,

Albania, Algeria, Libya and Montenegro), the distribution of M1 is totally different

from a power law. In some cases, even a linear distribution can be observed. For

instance, in Figure 13.2, we show the distribution of M1 for Algeria. For all the cases

in which the distribution of M1 is totally different from a more or less disturbed power

law, the number of inventors and filed patents is so scarce to make little significant

and unreliable any investigation about them.

13.2.2 RQ2: How the number of inventors and their cooperation degree

evolve over time?

To answer this question, given a country k, first we constructed a support social

network:

Gk = ⟨Nk, Ek⟩

The set Nk was defined previously. There exists an edge eij = (ni, nj) ∈ Ek if both

ni and nj belong to Nk.

After this, we computed the temporal evolution of the number of nodes |Nk|, the

number of edges |Ek| and the density Dk for Gk.

The computation of these parameters is important to understand the temporal

evolution of both the inventors of a given country and their collaborations. Generally,
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Fig. 13.3. Trend of |Nk| and |Ek| over time for China

Fig. 13.4. Trend of |Nk| and |Ek| over time for Italy

all countries into consideration present a growing number of nodes and edges against

years. Some countries (e.g., those of BRICS, South Korea, Taiwan, Turkey and Israel)

present an exponential growth. For instance, in Figure 13.3, we show the trend of the

number of nodes for China. From the analysis of this figure, we can observe that this

number grows exponentially, with a sudden rise from 2002. If we continue to analyze

China, and we consider the number of edges against time (quantifying the level of

cooperation among inventors), we observe an analogous trend, i.e., an exponential rise

starting from 2002, as shown in Figure 13.3.

Most of the European Union countries, instead, show an increasing linear trend.

For instance, in Figure 13.4, we show the trend of the number of nodes for Italy.

From the analysis of this figure, we can observe that this significantly grows up to

2008. After this year, the trend is roughly constant. In an analogous fashion, also the

number of edges shows an increasing linear trend up to 2008 and has stalled from

2008 onwards (see, again, Figure 13.4). North African countries and some European

Union ones show, instead, a growing but irregular trend.

As for Density D, it generally decreases. This behavior can be explained by the

fact that the value of the density of a network is inversely proportional to the square

of the number of nodes. To obtain a constant trend against time, it would be necessary

that the number of edges grows proportionally to the square of the number of nodes,

which is unthinkable in real scenarios. As an example, in Figure 13.5, we show the

trend of D for China and Italy. Observe that the decrease is more marked for China

than for Italy. This is justified by the fact that the increase of the number of nodes

was exponential for China and linear for Italy (see, Figures 13.3 and 13.4).
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Fig. 13.5. Trend of |Dk| over time for China and Italy

Fig. 13.6. Distribution of clique size for Japan and UK

13.2.3 RQ3: Do cliques of inventors exist in some countries?

In Social Network Analysis, a clique is a subgraph where every node is adjacent to

every other. In our scenario, it is an indicator of a compact group of inventors, who

cooperate each other intensively.

To answer RQ3, we initially computed the distribution of the dimension of cliques

of the social network Gk for the countries of interest. In fact, since, in a clique, all

nodes are totally connected to each other, the dimension of a clique can be considered

as a valid metric to understand how much the inventors of a given country tend to

form more or less large work groups. The general trend we found for this phenomenon

is the one of a power law with a dimension of the maximum clique different in the

different countries. For instance, in Figure 13.6, we report the distribution of cliques

for Japan and United Kingdom. In both cases, there is a power law distribution, with

a different maximum number of cliques. In fact, in spite Japan has a number of nodes

much higher than UK, the dimension of its maximum clique is lower than the one of

UK.

A case of particular interest is represented by Israel, which presents a maximum

dimension of cliques equal to 7. This is a very high value if we consider that the

number of Israelis inventors (i.e., 30,358) is much lower than the one of Japan (i.e.,

924,554) and UK (i.e., 231,128) inventors.

To capture and quantify this last observation, we decided to define a parameter

that indicates how much the inventors of a country k are aggregated in cliques. The

previous result suggests that the difficulty to have larger and larger cliques grows
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Country |Nk| |Ck| (ν|Ck|) |Ck| − 1 (ν|Ck|−1) |Ck| − 2 (ν|Ck|−2) Aggk

Brazil 7721 5(1) 4(8) 3(118) 0.143

Russia 12813 7(2) 6(5) 5(16) 0.085

Taiwan 18729 7(7) 6(20) 5(118) 0.317

India 26516 6(1) 5(0) 4(101) 0.063

Israel 30358 7(8) 6(12) 5(42) 0.103

Denmark 30762 9(1) 8(0) 7(22) 0.108

Finland 31903 7(1) 6(17) 5(72) 0.110

Austria 40734 7(7) 6(20) 5(118) 0.146

Spain 43131 9(6) 8(13) 7(41) 0.270

Belgium 48073 8(1) 7(4) 6(33) 0.059

China 54419 8(5) 7(17) 6(37) 0.107

Sweden 63593 9(10) 8(5) 7(6) 0.113

South Korea 115272 9(2) 8(16) 7(58) 0.109

United Kingdom 231128 9(4) 8(11) 7(7) 0.025

Japan 924554 6(26) 5(244) 4(2294) 0.049

Table 13.1. Values of Aggk for several countries

exponentially. Therefore, to define a corresponding index, we judged suitable to con-

sider only the cliques of maximum, sub-maximum and sub-sub-maximum dimension,

as well as to assign an exponentially decreasing weight to these cliques. Specifically, to

define the aggregation index Aggk of inventors on cliques for the country k, we have

preliminarily defined: (i) the maximum clique Ck of the country k; (ii) the dimension

|Ck| of this clique;(iii) the number νx of cliques having dimension x. Aggk is defined

as:

Aggk =
∑2

l=0 2(|Ck|−l)·ν(|Ck|−l)
|Nk|

In Table 13.1, we report the dimension of the maximum, sub-maximum and sub-

sub-maximum cliques for several countries, along with the value of the corresponding

aggregation index. We decided to organize this table in such a way as to group coun-

tries having a similar number of inventors. For this reason, we divided it in three parts:

the first for countries having less than 35,000 inventors, the second for countries hav-

ing a number of inventors between 40,000 and 65,000, and the third for countries

having more than 110,000 inventors.

In the first sub-table, the country having the highest aggregation index is Taiwan.

This result can be explained by observing that, even if Taiwan has a number of nodes

quite low w.r.t. that of the other countries of this sub-table, it has a high number

of cliques of maximum, sub-maximum and sub-sub-maximum dimension. In this sub-

table, India has the lowest value of Aggk; in fact, despite the number of cliques of

sub-sub-maximum dimension is high, there is only one clique of maximum dimension

and no clique of sub-sub-maximum dimension. Analogous reasonings can be made for

the second sub-table, where the country with the highest (resp., lowest) value of Aggk

is Spain (resp., Belgium). As for the third sub-table, we can observe that the values

of Aggk are generally small. The highest value is reached by South Korea that, even
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Fig. 13.7. Visualization of the values of Aggk for the countries reported in Table 13.1

Fig. 13.8. Distribution of foreign collaborations for Algerian and Moroccan inventors

if it has much less inventors than UK and Japan, presents a dimension of maximum

clique equal to the one of UK and even higher than the one of Japan. In Figure 13.7,

we report a map providing an intuitive visualization of the values of Aggk for the

countries reported in Table 13.1.

13.2.4 RQ4: With whom and how inventors cooperate?

This RQ aims at analyzing the distribution of the countries with which a given coun-

try mostly cooperates (at least, as far as patents are concerned). To answer this

question, given a country k, for each node ni ∈ Nk, we considered nbhF
i . Then, we

computed the distribution of countries which the nodes associated with these neigh-

borhoods belonged to. We performed this analysis for all Mediterranean countries, for

the countries of BRICS and for some European Union and North African countries.

In particular, we focused our attention mainly on some past colonies. In Figures 13.8

and 13.9, we show the results obtained for some French past colonies (e.g., Algeria,

Morocco and Tunisia) and for a British past colony (e.g., Egypt).

As one would expect, most of the inventors of Algeria, Morocco and Tunisia co-

operate mainly with French inventors. As a further interesting observation, for both

Morocco and Tunisia, beside cooperation with France, there is a significant cooper-

ation with Germany. This does not happen for Algeria, where the distribution with

non-French inventors is “pulverized”. Now, we focus on Egypt, which (we recall)
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Fig. 13.9. Distribution of foreign collaborations for Tunisian and Egyptian inventors

Fig. 13.10. Distribution of foreign collaborations for Israelis and Austrian inventors

is a British past colony. Differently from Algeria, Morocco and Tunisia, we observe

that Egyptian inventors do not show a prevalent collaboration with inventors of their

motherland (i.e., United Kingdom - GB in Figure 13.9). In fact, the highest number

of collaborations can be found with inventors of United States, Germany and France.

Interestingly, there is a good contribution with inventors coming from Saudi Arabia.

This result is a confirmation of a study about research cooperation in North African

countries reported in [251].

In Figure 13.10, we show the results obtained for Israel. In this case, we can observe

a strong cooperation with US inventors and, beside them, with German ones.

In Figures 13.10 and 13.11, we show the results obtained for Austria and Slovenia.

From the analysis of this figures it is possible to observe that, for both these countries,

most of foreign collaborations are performed with German inventors. In particular, as

for Slovenian inventors, we can observe a high concentration of collaborations with

inventors coming from Germany and Austria (as evidence of the very strong links

between Slovenia and German-speaking countries dating to the period of the Austro-

Hungarian Empire) and, to a lesser extent, with inventors from Croatia.

Finally, we focused on Taiwan. The corresponding results are shown in Figure

13.11. From their analysis, we can see that the country with which Taiwan inventors

mostly cooperate is China. This result is quite surprising if we consider the quite

conflicting political relations between these two countries after the Second World

War.

After this first activity, we computed the variety level of the countries, which

the inventors of a country k cooperate with. Drawing on a measure of biodiversity
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Fig. 13.11. Distribution of foreign collaborations for Slovenian and Taiwan inventors

introduced by Simpson (1949), we build an indicator of the internationalization level

of the inventor teams relying on cross-patent data. Such indicator was used to conduct

an explorative empirical analysis of the trends and the features in research groups’

internationalization level using data from the Worldwide Patent Statistical Database.

It was also adopted to measure the size of firms in relation to the industry and the

amount of competition among them, and is known as Herfindahl Index. As far as this

research question is concerned, the Herfindahl Index HIk indicates if the inventors

of a given country privilege collaborations with the inventors of one or more foreign

countries. The higher the Herfindahl Index of a country k, the more concentrated the

external collaborations of k.

The values of the Herfindahl Index obtained for several countries are reported in

the second column of Table 13.2.

Among the North African countries, the highest value of HI is obtained by Al-

geria. This result is due to the fact that Algerian inventors cooperated mainly with

the inventors of one country, i.e., France. An analogous observation can be drawn

for Tunisia and Morocco. Differently from these three countries, Egypt has a much

lower value of HI, because the collaborations of Egyptian inventors are more dis-

tributed among several countries. Analogous reasonings can be drawn for European

Union countries (where the highest value of HI is obtained by Austria). As for the

countries of BRICS, we can observe that the values of HI are generally small. In fact,

Brazil, South Africa, China and India tend to cooperate with several countries. High

values of HI can be obtained also for Taiwan, Israel and Turkey (this last country

cooperates mainly with USA). In Figure 13.12, we report a map providing an intuitive

visualization of the values of HI for the countries reported in Table 13.2.

Actually, this definition of the Herfindahl Index has a weak point in that the

obtained value could be strongly distorted by the presence of a large number of ex-

temporaneous collaborations between an inventor of k and an inventor of another

country, who cooperated for one or two patents only. Taking the power law trend,

typical of the measures in our reference scenario, we thought to use a modified ver-

sion of the Herfindahl Index obtained by limiting the countries into consideration to
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Country HIk HIk Top 80% HI∗
k Top 80%

Egypt 0.144 0.148 0.147

Morocco 0.358 0.367 0.365

Tunisia 0.434 0.442 0.441

Algeria 0.502 0.527 0.521

Libya 0.180 0.250 0.143

Spain 0.138 0.138 0.137

Estonia 0.128 0.130 0.129

Poland 0.118 0.119 0.119

Austria 0.343 0.343 0.343

Bulgaria 0.176 0.179 0.179

Romania 0.173 0.175 0.175

Slovenia 0.095 0.096 0.095

Croatia 0.132 0.135 0.134

Brazil 0.138 0.138 0.137

India 0.128 0.130 0.129

China 0.118 0.119 0.119

South Africa 0.159 0.160 0.160

Israel 0.369 0.370 0.370

Taiwan 0.415 0.442 0.441

Turkey 0.253 0.255 0.254

Bosnia-Herzegovina 0.176 0.187 0.156

Table 13.2. Values of HI, HI Top 80% and HI∗ Top 80% for North African countries

Fig. 13.12. Visualization of the values of HI for the countries reported in Table 13.2

the top 80%. In this way, the tail of the power law distribution, which is the main cause

of the distortions mentioned above, is removed. The obtained results are reported in

the third column of Table 13.2.

From the analysis of this table, we can observe that values obtained in this way

are slightly higher than the ones obtained previously. Libya represents an exception

in these results since, for this country, the values obtained with this new definition

are much higher than the ones obtained previously. This fact is due to the extremely

low number of Lybian patents, which makes any result about this country unreliable.
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Fig. 13.13. Distribution of M2 for Brazil and Austria

Nevertheless, a problem is still present. In fact, owing to its definition, the Herfind-

ahl Index ranges in the interval
[

1
0.8·|FCntrk| , 1

]
, where FCntrk denotes the set of the

countries having at least one inventor that filed a patent with at least one inventor

of the country k. As a consequence, the range of values of this index differs from one

country to another. Owing to this fact, the comparison of the values of the Herfindahl

Index for different countries could produce distorted results. To avoid this problem,

and to make sure that the range of the values of the Herfindahl Index is identical for

all countries, we decided to adopt the modified version of the Herfindahl Index HI∗k

proposed in [190]. The obtained results are reported in the four column of Table 13.2.

For most countries, obtained values of HI∗ are very similar to (more precisely, slightly

lower than) the ones obtained after the first refinement. Also in this case, Libya is an

exception. The reason for this fact is the same as the one we discussed previously.

13.2.5 RQ5: What about the “neighbors” of inventors?

To answer this question, first we defined a new metric M2 such that M2i indicates

the dimension of the neighborhood of ni. M2 is effective for helping us to understand

how much the inventors of a given country k tend to cooperate for filing patents.

We measured this metric for the same countries considered in RQ4. For most

of them, it follows quite a disturbed power law distribution. For instance, in Figure

13.13, we show the distribution of M2 for Brazil. It presents a peak for a value of M2

between 0 and 10. The only country presenting a perfect power law distribution is

Austria, as shown in Figure 13.13.

After this, we investigated the level of cooperation with foreign colleagues for the

inventors of a given country k. For this purpose, we defined a metricM3 such thatM3k

denotes the average fraction of foreign collaborations carried out by investors of k.

Actually, M3 allows us to understand how much the inventors of k tend to cooperate

with foreign colleagues. It ranges between 0 and 1; the higher M3 the higher the

tendency of the inventors of k to cooperate with foreign ones.
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Fig. 13.14. Trend of M3 over time for South Korea and Austria

Fig. 13.15. Trend of M3 over time for Romania

We computed the trend of M3 over time for several countries to understand if

(and, in the affirmative case, how much) a given country has become international

over time. As for this analysis, we considered some European Union countries, some

countries of BRICS, some North African countries, South Korea and Taiwan.

Obtained results are very heterogeneous. Some countries (e.g., Spain, Taiwan,

South Korea, China and Brazil) present a generally decreasing trend. As an example,

in Figure 13.14, we report the trend of M3 for South Korea. From the analysis of

this figure, we can observe that, in the last years, South Korean inventors tend to

cooperate more and more with internal ones. Other countries (e.g., Austria, Italy and

South Africa), instead, present an increasing trend for this measure. For instance, in

Figure 13.14, we show the trend of M3 for Austria. From the analysis of this figure,

we can observe that, in the last 20 years, Austrian inventors tend to internationalize

more and more. Finally, other countries present quite an irregular trend for M3,

characterized by the presence of peaks and decays over time. For instance, in Figure

13.15, we show the trend of M3 for Romania.

13.2.6 RQ6: Do power inventors exist?

To answer this question, we had to preliminarily specify who is a “power inventor”.

With regard to this definition, we point out that we do not aim at proposing a

new concept characterized by a mathematical foundation supporting it. Instead, we

would like to introduce an informal and empirical, yet reasonable, concept, which can

give a picture about this phenomenon and can support the extraction of innovation
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geography knowledge patterns about it. Taking this premise into account, we defined

a “power inventor” as an inventor that fulfills the following conditions:

• C1: she files many patents;

• C2: she has a lot of collaborations;

• C3: she has an international feel, which implies that she cooperates very much

with inventors of foreign countries.

The reasoning underlying these conditions are the following:

• If an inventor filed very few patents, even if all of them were in cooperation with

foreign inventors, she cannot have such a weight to influence the scenario of her

country.

• If an inventor filed many patents, but all of them were in cooperation with few

inventors, she would not have the capability (fundamental for power inventors) to

stimulate, through collaborations, other inventors to file patents.

• If an inventor filed many patents, but all of them were in cooperation with in-

ventors of her countries, she would certainly be an important protagonist in her

country, but she would not have the capability (fundamental for power inventors)

to stimulate contacts with foreign countries.

To the best of our knowledge, the term “power inventor”, or a concept analogous

to it, has not been previously introduced in the literature.

A metric for evaluating condition C1 (resp., C2) is the metric M1 (resp., M2)

defined in Section 13.2.1 (resp., Section 13.2.5). A metric for evaluating condition

C3 (we call M4 this metric in the following) is analogous to M2 except that nbhi

is substituted by nbhF
i , since C3 is focused on collaborations with foreign countries.

Interestingly, M2 and M3 are analogous to E-I index [193].

We measured M4 for the Euro-Mediterranean countries, the North African ones

and, finally, the countries of BRICS. For most of these countries, M4 follows a power

law distribution. As an example, in Figure 13.16, we show the distribution of M4 for

France. Some countries (e.g., Greece, Turkey and Principate of Monaco) present a

slightly disturbed power law distribution for M4. For instance, in Figure 13.16, we

show the distribution ofM4 for Greece. For other countries, such as Morocco, Slovenia,

Tunisia, Croatia, Cyprus and Egypt, M4 follows a disturbed power law distribution.

For instance, in Figure 13.17, we show the distribution of M4 for Croatia. Finally, for

other countries, like Syria, Albania, Algeria, Bosnia-Herzegovina, Lebanon, Libya and

Malta, M4 does not follow a power law distribution. As an example, in Figure 13.17,

we show the distribution of M4 for Malta. This last case refers to countries having a

very low number of collaborations with foreign countries, which makes any analysis

for them not reliable.
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Fig. 13.16. Distribution of M4 for France and Greece

Fig. 13.17. Distribution of M4 for Croatia and Malta

Taking all these considerations into account, the set PX
k of the power inventors of

a country k can be defined as the set of those inventors simultaneously belonging to

the top X% of the inventors with the highest values of M1, M2 and M4.

As previously pointed out, M1, M2 and M4 generally follow a power law (possibly

disturbed) distribution. Since available data are huge, and since the power law distri-

butions characterizing M1, M2 and M4 are generally steep, we decided to consider a

low value for X and we set X = 5. As a consequence, in the following, when X is not

specified, we intend that it is equal to 5.

13.2.7 RQ7: Does a backbone of power inventors exist?

To answer this question, first we constructed a support data structure that we called

power inventor social network. Given a country k, it is defined as:

GP
k = ⟨Pk, EP

k ⟩

where Pk is the set of the power inventors of k (see Section 13.2.6) and EP
k =

{(ni, nj , wij)|ni, nj ∈ Pk, wij is the number of patents filed by ni and nj together}.

Then we computed:

• the aggregation index Aggk related to the inventors of k;

• the aggregation index AggPk related to the power inventors of k;
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Country rAggk rfk

Brazil 5.595 6.763

Taiwan 29.012 6.541

China 23.483 5.846

Austria 44.084 4.193

Italy 47.472 5.100

Israel 22.583 3.674

Russia 10.034 5.149

Spain 25.498 6.624

Table 13.3. Values of rAggk and rfk for some countries

• the fraction fk of the nodes of Nk belonging to at least one clique of Gk having a

dimension greater than or equal to 3;

• the fraction fP
k of the nodes of Pk belonging to at least one clique of GP

k having

a dimension greater than or equal to 3;

• the ratio rAggk = AggP
k

Aggk
;

• the ratio rfk = fP
k
fk

.

The values of these last two parameters for some countries are reported in Table

13.3.

We recall that the aggregation index is an indicator of how much the inventors

of a country k are aggregated in cliques. By examining Table 13.3 we can see that,

for countries like Austria and Italy, which present the highest value of rAggk, the

corresponding power inventors are much more aggregated in cliques than the inventors

of their countries. As for rfk, we can note that the corresponding values are quite

homogeneous and range between 3 and 7. Since, for all countries, both rAggk and

rfk present values higher or much higher than 1, we can undoubtedly conclude that,

in each country, there exists a backbone among power inventors. In Figure 13.18,

we report a map providing an intuitive visualization of the values of rAggk for the

countries reported in Table 13.3.

.

To deepen our research about this issue, we defined a new data structure called

clique social network. In particular, let CSk be the set of cliques of GP
k having dimen-

sion greater than or equal to 3. A clique social network CGP
k , corresponding to GP

k ,

is defined as:

CGP
k = ⟨Pk, CEP

k ⟩

CGP
k has a node for each power inventor of Pk that belongs to at least one clique of

CSk. Each node ni of CGP
k has associated a weight denoting the number of cliques
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Fig. 13.18. Visualization of the values of rAggk for the countries reported in Table 13.3

Fig. 13.19. The clique social network of Spain and a zoomed portion of it

Fig. 13.20. The clique social network of Israel and a zoomed portion of it

of CSk which it belongs to. An edge eij = (ni, nj) ∈ CEP
k indicates that ni and nj

simultaneously belong to at least one clique of CSk.

In Figure 13.19, we present the clique social network of Spain. As shown in this

figure, we can observe that this social network is characterized by a particular dense

core denoting that, in this country, there is a group of particularly active inventors,

who often cooperate each other. In Figure 13.20, we show the clique social network

of Israel. In this case there is not a dense core but, on the contrary, there are several

nodes whose dimension is generally smaller than the ones belonging to the core of

Spain.

Now, we want to define some parameters providing a quantitative measure of what

an expert could visually capture by observing clique social networks. In particular, in

Table 13.4, we report the number of nodes, the number of edges and the density of

the clique social networks for some countries.
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Country Number of Nodes Number of Edges Density

Brazil 19 23 0.135

India 209 417 0.019

China 577 1299 0.008

Israel 336 744 0.013

France 3452 8615 0.001

Italy 2125 5763 0.003

Spain 618 1672 0.009

Table 13.4. Number of nodes, number of edges and density of the clique social networks of

some countries

Fig. 13.21. Visualization of the number of nodes of the clique social networks of the countries

reported in Table 13.4

From the analysis of this table, we can see, for instance, that France and Italy have

the lowest values of density. This can be explained by observing that both these two

countries have many nodes only partially connected to each other. By contrast, Brazil

has a very low number of nodes and edges but, at the same time, the highest density

among the countries into consideration. This denotes that Brazilian power inventors

are strongly connected to each other. In Figures 13.21, 13.22 and 13.23, we report

some maps providing an intuitive visualization of the number of nodes, the number of

edges and the density of the clique social networks of the countries reported in Table

13.4.

13.2.8 RQ8: What are the main characteristics of the neighbors of power

inventors?

To answer this question, we focused on two parameters. The first, calledAvgPatNumNbhP
k

represents the average number of patents filed by the neighbors of the power inventors

of a country k. Given a country k. This metric can represent an important support

to understand how the cooperation with a power inventor is beneficial for a given
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Fig. 13.22. Visualization of the number of edges of the clique social networks of the countries

reported in Table 13.4

Fig. 13.23. Visualization of the density of the clique social networks of the countries reported

in Table 13.4

Country AvgPatNumNbhP
k AvgPatNumNbhk rPatNumNbhk

Brazil 10.979 3.329 3.299

Taiwan 3.437 1.344 2.557

China 6.554 2.680 2.445

India 3.876 2.264 1.712

Italy 7.210 3.397 2.122

Spain 7.668 2.639 2.906

South Africa 2.986 1.466 2.037

Israel 4.675 3.153 1.482

Table 13.5. Average number of patents of the neighbors of a power inventor, of a generic

inventor and values of the parameter rPatNumNbh

inventor. In fact, high values of this metric indicate that being in the neighborhood

of a power inventor stimulates patent filings. In the second column of Table 13.5 we

report the obtained values.
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Fig. 13.24. Visualization of the values of rPatNumNbhk for the countries reported in Table

13.5

To better investigate this issue, we considered the average number AvgPat-

NumNbhk of patents filed by the neighbors of the nodes of a given country k. Ob-

tained results are reported in the third column of Table 13.5. The comparison of the

second and the third columns of Table 13.5 clearly evidences that being in the neigh-

borhood of a power inventor leads to an increase of the capability of filing patents.

To better quantify this intuition, we have defined the following measure:

rPatNumNbhk = AvgPatNumNbhP
k

AvgPatNumNbhk
.

A value of rPatNumNbhk higher than 1 indicates that belonging to the neigh-

borhood of a power inventor is beneficial for patent filing. The obtained results are

reported in the fourth column of Table 13.5. From the analysis of this column, we

can observe that obtained values are higher than 1 for all countries. In some countries

(e.g., Brazil and Spain), the value of rPatNumNbhk is higher than or near to 3. This

is a clear evidence that the cooperation with power inventors leads to an increase of

patent filing. In Figure 13.24, we report a map providing an intuitive visualization of

the values of rPatNumNbhk for the countries reported in Table 13.5.

The second parameter we considered is the average dimension AvgDimNbhP
k of

the neighborhoods of a power inventor. This metric is an indicator of the importance

and the centrality of a power inventor. We computed its variation over time for all the

countries considered in Table 13.3. For instance, in Figure 13.25, we show the trend

of AvgDimNbhP
k over time for Spain. From the analysis of this figure, we can observe

that this parameter remained almost constant for Spain from 1990 to 2003 and, then,

had an increase.

Then, we considered the average dimension AvgDimNbhk of the neighborhoods of

a generic node of Nk; in Figure 13.25, we show the trend of this parameter over time
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Fig. 13.25. Trend of AvgDimNbhP
k and AvgDimNbhk over time for Spain

Country rDimNbh

Austria 2.214

Italy 2.249

Spain 2.454

South Korea 2.360

Russia 2.561

Brazil 1.597

China 2.579

India 2.135

Poland 2.235

South Africa 2.311

Taiwan 2.870

Israel 1.974

Table 13.6. Values of rDimNbh for several countries in the year 2013

for Spain. From the analysis of this figure, we can observe that it tends to increase

over time.

Finally, we computed the ratio of the two parameters:

rDimNbhk = AvgDimNbhP
k

AvgDimNbhk
.

When rDimNbhk is higher than 1, the average dimension of the neighborhoods of

power inventors is higher than the corresponding one of generic nodes. In Table 13.6

we report the values of rDimNbhk for several countries in the year 2013. From the

analysis of this table, we can observe that the values obtained for all the countries

into consideration are always higher than 1 and range from 1.597 (for Brazil) to 2.870

(for Taiwan). In Figure 13.26, we report a map providing an intuitive visualization of

the values of rDimNbhk for the countries reported in Table 13.6.

13.2.9 RQ9: How are patents distributed against IPC classes?

To answer this question, we computed the distribution of patents against IPC classes

for several countries. To give an idea of obtained results, in Figure 13.27, we report

the distribution of patents for China and Spain, which represent two extreme cases.



322 13 Deriving knowledge on research scenarios in a set of countries

Fig. 13.26. Visualization of the values of rDimNbhk for the countries reported in Table

13.6

Fig. 13.27. Distribution of patents against IPC classes for China and Spain

Fig. 13.28. Trend of the distributions of patents against IPC classes for India (Part 1)

In fact, as for China, most of its patents belong to the class “ICT”. By contrast, the

distribution of Spanish patents is much more uniform.

After this, for several countries, we computed the trend of patent distributions

for IPC classes over time. For most of these countries, we observed an increasing

trend against time, even if the steepness of the increase is not uniform for the dif-

ferent classes. For instance, in Figures 13.28 and 13.29, we show the trend of patent

distributions against IPC classes for India.

To quantify the variety of IPC classes related to the patents of a country k, we

computed the corresponding Herfindahl Index HI∗k , modified on the basis of what

suggested by Hall [190] (see Section 13.2.4). In particular, we carried out this task
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Fig. 13.29. Trend of the distributions of patents against IPC classes for India (Part 2)

Country HI∗
k HI∗

k limited to power inventors

Brazil 0.156 0.247

Taiwan 0.244 0.350

China 0.294 0.374

Austria 0.151 0.159

Italy 0.151 0.178

Israel 0.196 0.223

Russia 0.157 0.196

Spain 0.146 0.246

Table 13.7. Modified Herfindahl Index concerning the IPC classes of some countries

for several countries. The corresponding results are reported in the second column of

Table 13.7.

From the analysis of this table, we can observe that China and Taiwan present the

highest values of HI∗k , since the corresponding inventors tend to file patents mostly in

one IPC classes (in particular, in “ICT” class). In other countries (e.g., Spain) there

does not exist a strongly predominant IPC class; for this reason, the corresponding

HI∗k is low. In Figure 13.30, we report a map providing an intuitive visualization of

the values of the modified Herfindahl Index concerning the IPC classes of the countries

reported in Table 13.7.

Finally, we computed HI∗k for the only patents filed by at least one power inventor.

Obtained results are shown in the third column of Table 13.7. From the analysis of

this column, we can observe that for Brazil, Taiwan and Spain (and, even if to a lesser

extent, for China), when passing from generic nodes to power inventors, there is a

significant increase of the corresponding Herfindahl Index value. This implies that, in

these countries, power inventors, to a much greater extent than the other nodes, tend

to focus on only some IPC classes.
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Fig. 13.30. Visualization of the values of the modified Herfindahl Index concerning the IPC

classes of the countries reported in Table 13.7

Fig. 13.31. Distribution of the foreign neighbors of the Egyptian inventors for “ICT” and

“INS” classes

13.2.10 RQ10: How are foreign collaborations distributed against IPC

classes?

To answer this question, given a country k, we computed the distribution of foreign

neighbors against IPC classes. Due to space limitations, in the following, we focus

on one case that we found extremely interesting, namely Egypt. In Figures 13.31 -

13.34, we show the distribution of the foreign neighbors of the Egyptian inventors for

the seven IPC classes. Observe that Egyptian inventors cooperated mainly with: (i)

US inventors in “ICT”, “PB” and “ME” classes; (ii) German inventors in the “CM”,

“IP” and “CE” classes; (iii) French inventors in “INS” class.

Another very interesting country from this point of view is Greece. In fact, we

found that Greek inventors cooperated mainly with: (i) US inventors in “ICT” and

“INS” classes; (ii) German inventors in “CM” and “IP” classes; (iii) Spanish inventors

in “PB” class; (iv) UK inventors in “ME” and “CE” classes.
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Fig. 13.32. Distribution of the foreign neighbors of the Egyptian inventors for “CM” and

“PB” classes

Fig. 13.33. Distribution of the foreign neighbors of the Egyptian inventors for “IP” and

“ME” classes

Fig. 13.34. Distribution of the foreign neighbors of the Egyptian inventors for “CE” class
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Conclusions

In this thesis, we have proposed a unified model and an associated approach to uni-

formly extract knowledge and face (complex) decision problems in heterogeneous ap-

plication contexts. We have shown that, thanks to this model and approach, we can

manage data coming from several research contexts and we can transpose an approach

designed to solve an open problem in one context in such a way as to address other

open issues in other contexts. Our model is network-based and our approach is social

network analysis-based. We have applied it to four research contexts, namely Biomedi-

cal Engineering, Data Lakes, Internet of Things, and Innovation Management. In each

of these contexts we have exploited it to address some open problems. In particular,

in Biomedical Engineering, we have investigated three neurological disorders, namely

Creutzfeldt-Jacob Disease (CJD), Alzheimer Disease (AD) and Childhood Absence

Epilepsy (CAE). In Data Lakes, we have adopted it to extract interschema properties

and knowledge patterns. In Internet of Things, we have used it to extract knowl-

edge from heterogeneous sensor data streams and to build virtual IoTs in a Multiple

IoTs scenario. Finally, in Innovation Management, we have exploited it to extract

knowledge concerning patents, their characteristics and their applicants, as well as

information about the influence and the scope of a patent on the other ones.

This thesis should not be considered as an ending point. On the contrary, it should

be intended as a first step in the attempt to define models and approaches capable

of uniformly handling similar issues in very heterogeneous contexts. This could be

extremely beneficial for research, because, often, a solution identified in a certain

context could be easily transposed in several other ones and, in a scenario character-

ized by the contamination and interweaving of knowledge, an approach like ours can

represent a pioneering attempt in this effort.

As for our future research efforts, first of all we plan to apply our model and

approach to several other research contexts, such as Process Mining and Cognitive

Computing. Then, we aim at extending our model and approach used for EEG to

the analysis of Electrocardiograms in such a way as to investigate heart diseases. Af-
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ter this, we plan to extend our approach for patent investigation to the analysis of

research papers. Last, but not the least, we aim at extending our approach for ex-

tracting knowledge from Data Lakes in such a way as to make it capable of extracting

knowledge from images. In this way, it can be well suited to operate in computer

vision and robotic vision, which represent two of the hot topics in the current and

future ICT research scenario.
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Cancún, México, 2008. IEEE.

144. P. Erdi and P. Bruck. Patent Citation Network Analysis: Ranking: from web pages

to patents. In Proc. of the International Conference on Artificial Neural Networks,

(ICANN 2016), page 544, Barcelona, Spain, 2016. Springer Verlag.



References 341

145. E. Estrada and J. Rodriguez-Velazquez. Subgraph centrality in complex networks.

Physical Review E, 71(5):056103, 2005. APS.

146. A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A.Y. Zomaya, S. Foufou, and

A. Bouras. A survey of clustering algorithms for big data: Taxonomy and empiri-

cal analysis. IEEE transactions on emerging topics in computing, 2(3):267–279, 2014.

IEEE.

147. W. Fan, X. Wang, and Y. Wu. Answering pattern queries using views. IEEE Transac-

tions on Knowledge and Data Engineering, 28(2):326–341, 2016. IEEE.

148. H. Fang. Managing data lakes in big data era: What’s a data lake and why has it became

popular in data management ecosystem. In Proc. of the International Conference on

Cyber Technology in Automation (CYBER’15), pages 820–824, Shenyang, China, 2015.

IEEE.

149. M. Farid, A. Roatis, I.F. Ilyas, H. Hoffman, and X. Chu. CLAMS: bringing quality

to Data Lakes. In Proc. of the International Conference on Management of Data

(SIGMOD/PODS’16), pages 2089–2092, San Francisco, CA, USA, 2016. ACM.

150. I. Farris, R. Girau, L. Militano, M. Nitti, L. Atzori, A. Iera, and G. Morabito. Social

virtual objects in the edge cloud. IEEE Cloud Computing, 2(6):20–28, 2015. IEEE.

151. A. Farrugia, R. Claxton, and S. Thompson. Towards social network analytics for under-

standing and managing enterprise data lakes. In Proc. of the International Conference

on Advances in Social Networks Analysis and Mining (ASONAM’16), pages 1213–1220,

San Francisco, CA, USA, 2016. IEEE.

152. F. Feng and W.B. Croft. Probabilistic techniques for phrase extraction. Information

Processing & Management, 37(2):199–220, 2001.
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