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Abstract

This Thesis deals with the synthesis of innovative microwave devices via in-

verse scattering based theoretical tools and actual procedures. The electromagnetic

scattering phenomenon occurs when the presence of an inhomogeneity in the space

originates a perturbation of the field which is propagating. In the considered region

of space, a new electromagnetic field occurs and such a total field is nothing but a

superposition of the original one and the perturbation caused by the obstacle (or

scatterer), which is called “scattered field”. The usual aim of an inverse scattering

problem is to retrieve the location, the shape and the electromagnetic parameters of

the scatterer by processing measurements of the scattered field. Several difficulties

come into play in solving such a diagnosis problem, since the non linearity and the

ill-posedness of the problem must be faced. Therefore, efficient solution strategies

and regularization techniques have to be exploited to reach accurate and meaningful

solutions.

Interestingly, the inverse scattering problem can be turned into a synthesis problem,

provided the starting data is no longer a collection of measurements but rather some

field specifications arising from design constraints. In the Thesis, some methodolo-

gies already available in the inverse scattering community for diagnosis applica-

tions are extended and modified for design purposes. Theoretical results include a

new representation for non radiating sources and spectral analysis of some scat-

tering approximations which are both of interest for design of invisibility devices.

Methodological results include two new effective solution procedures for the general

inverse scattering problem. Moreover, a well known inversion procedure is consid-

erably modified and extended in order to include the synthesis of the excitations

of some primary sources. Last, but not least, a new procedure is proposed for the

synthesis of Artificial Materials based devices which outperforms a more intuitive

homogenization based method. Finally, the developed approaches and procedures

are validated through the synthesis of an optimal monopulse antennas as well as of

new invisibility cloaks.
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1

INTRODUCTION

1.1 Inverse scattering problems: basics and difficulties

The electromagnetic scattering [1–3] phenomenon occurs when the presence of an

inhomogeneity in the space originates a perturbation of the field which is propagating,

namely the incident field. In the considered region of space, a new electromagnetic field

occurs and such a total field it is nothing but a superposition of the original one and

the perturbation caused by the obstacle (or scatterer). This latter is called scattered

field and it is generated by the target that interacts with the incident field during its

propagation. As a matter of fact, from a physical point of view, the inhomogeneity

(penetrable or metallic, magnetic or not) becomes a “source” for the scattered field.

The electromagnetic scattering can be faced by considering two types of problem,

the forward scattering problem and the inverse scattering problem [4]. The former

deals with the evaluation of the scattered field given the electromagnetic properties

of the obstacle (and supposing obviously that the incident field is known). The latter

copes with retrieving information on the scatterer by handling the measurements of

the total (or scattered) field.

The direct and the inverse scattering problem are linked each other by a sort of duality.

In fact, from a physical point of view, the cause of the phenomenon is the interaction

between the incident field and the obstacles, while the corresponding effect is the

scattered field which originates in the space. Notably, the role of the two problems

can be inverted and the formulation of one implies the formulation of the other.

In the literature, the direct problem is the most investigated and a lot of work

has been done in developing more and more efficient numerical methods and com-

putational techniques. Conversely, the inverse scattering problem has deserved less

attention, probably because of its much increased difficulty. In fact, it is very challeng-

ing because of two different reasons, i.e., ill-posedness (according to the Hadamard’s

definition [5]) and non-linearity. Obviously, a strong effort has been done by research
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groups in developing effective solution strategies which counteract both ill-posedness

and non-linearity in order to solve the inverse problem at best.

Finding solution methods that allow to accurately solve the problem is an im-

portant task in a lot of application fields, thanks to the capability of microwaves of

investigating non-accessible scenarios in a non-invasive way. Among all possible ap-

plications involving in inverse scattering problems, it is worth to mention some of the

most relevant area, which are:

• subsurface prospection including ground penetrating radar (GPR) and humani-

tarian demining [6–9];

• non-destructive evaluation, as for example the search of small cracks inside struc-

tures [10,11];

• military and civil security surveillance, such as through-the-wall and intra-the-wall

imaging [12,13];

• medical imaging for tumor anomalies detection [14,15].

In a classical inverse scattering experiment, a given region of the space is assumed

to be illuminated by a set of incident fields radiated by some antennas located in

the close-proximity or in the far field of the interested area. The interaction of the

incident fields with the target in the region gives rise to a scattered field which is

measured by a set of receiving antennas. These measured fields become the data of

the inverse scattering problem and, by a proper processing of such data, the solution

of the problem is obtained. In particular, depending on the problem at hand, one may

attain information about position, dimension, shape, number of scatterers and so on.

Anyway, the most general problem consists in the retrieval of both the geometrical

and electromagnetic properties of the scenario at hand. Generally speaking, the more

refined and detailed information about the scenario are required, the more difficult

the solution of the inverse problem at hand.

For the reasons above, in the last three decades several models and approaches

have been proposed to provide accurate qualitative (geometrical features) or quantita-

tive (geometrical and electromagnetic features) solutions. However, several difficulties

come into play which challenge the inverse scattering community towards the devel-

opment of more and more convenient solution approaches.

First of all, the ill-posedness of the problem entails that only a finite number of

parameters can be extracted from the scattered field data, as these latter have a

finite essential dimension due to their band-limitedness property with respect to both

incidence and observation variables [16–18].
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Second, a crucial difficulty comes from the non-linearity of the problem. In fact,

the non linear relationship among the physical parameters and the scattered fields

represents a severe obstacle to the achievement of reliable solutions, as the so called

“false solutions” [19] (i.e. retrieved profiles completely different from the actual one)

may occur.

The mathematical formulation of the inverse scattering problem as well as a deeper

insight into the ill-posedness and non linearity are given in the Sections which follow.

1.2 The inverse scattering problem: basic equations

By the sake of simplicity (most results of the thesis can be easily extended), let us

consider the canonical bi-dimensional (2D) scalar scattering problem in a free space

homogeneous background. Also, let us suppose to deal with non-magnetic dielectric

scatterers whose cross-sections ⌃ are embedded in a region ⌦ ✓ R2. The electromag-

netic properties of the scatterer, at the angular frequency ! = 2⇡f , are described by

the contrast function:

�(r) =
"̃r(r)

"̃b
� 1 =

"r(r)� j�r(r)/(!"0)

"b � j�b/(!"0)
� 1 (1.1)

where r = (x, y) 2 ⌦, "0 is the permittivity of the free space, while "r, �r, "b, �b are

the relative permittivity and the electrical conductivity of the scatterer (subscript r)

and the homogeneous background medium (subscript b), respectively.

Let suppose that an electric field, oriented along the z-axis, is radiated by a set of

antennas located on a circumference � and impinges on ⌦ from a given incident

direction rt = (rr, ✓t) 2 � . By assuming and omitting, for the sake of brevity, the

time harmonic factor exp(j!t), the equations ruling the inverse scattering problem,

for the 2D TM scalar problem at hand, read [1–3]:

E(r, rt) = Ei(r, rt) + k2b

Z

⌦
g(r, r0)�(r0)E(r

0, rt)dr
0

= Ei(r, rt) +Ai[�(r)E(r, rt)], r 2 ⌦, rt 2 � (1.2)

Es(ro, rt) = k2b

Z

⌦
g(ro, r

0
)�(r0)E(r

0, rt)dr
0

= Ae[�(r)E(r, rt)], r 2 ⌦, ro, rt 2 � (1.3)

where Ei, Es and E are the incident, scattered and total field, respectively, ro =

(ro, ✓o) 2 � denotes the observation position, while Ae and Ai are a short notation

for the integral radiation operators, in which g(r, r0) = �j/4H(2)
0 (kb |r� r

0|) is the
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Green’s function of the background medium, H(2)
0 being the Hankel function of zero-

th order and second kind.

We refer to eq.(1.2) as state equation or, equivalently, electric field integral equation

(EFIE), and to eq.(1.3) as data equation. In particular, the first one describes the

total electric field inside the domain ⌦, while the second one represents the scattered

electric field in the region outside the investigation domain.

The aim of an inverse scattering problem is to retrieve the contrast function �(r)

from the knowledge of the scattered field Es(ro, rt), which represents the data of the

problem, and the incident field Ei. As already mentioned, the problem is both non

linear and ill-posed. In fact, one can immediately observe that the total field inside the

domain, which is obviously unknown as well, depends from the contrast function. In

particular, in terms of the couple (�(r), E(r), r 2 ⌦), the inverse scattering problem

is a bi-linear problem, i.e., the unknowns appear as a product between them: if we

fix one of the two unknowns, the problem would become linear in the other one. The

ill-posedness is instead related to the compactness of the radiation operator Ae [4].

More details on ill-posedness and non linearity properties, as well as on the corre-

sponding impact on the problem solution, are given in the subsections which follow.

As a possible alternative, one can consider the currents induced inside the object

as auxiliary unknowns instead of the total field. By defining the contrast source as

W (r) = �(r)E(r), the source type integral equation (STIE) formulation reads:

W (r, rt) = �(r)Ei(r, rt) + k2b�(r)

Z

⌦
g(r, r0)W (r

0, rt)dr
0

= �(r)Ei(r, rt) + �(r)Ai[W (r, rt)], r 2 ⌦, rt 2 � (1.4)

while the data equation is turned into:

Es(ro, rt) = k2b

Z

⌦
g(ro, r

0
)W (r

0, rt)dr
0
= Ae[W (r, rt)], r 2 ⌦, ro, rt 2 �

(1.5)

where the new unknowns are the contrast function �(r) and the contrast source W (r).

Notably, the new data equation is now linear in the unknown W (r) [20,21]. At a first

glance, it would seem that one can solve it, and then substitute the achieved value for

W (r) in the state equation and solve it for �(r). Unfortunately, this is not the case,

as one cannot safely invert eq.(1.5) since it is a severely ill-posed problem.

1.2.1 Ill-posedness

A problem is defined ill-posed if it is not well-posed in the Hadamard’s sense [5].

In particular, a problem is well-posed if its solution (i) exists, (ii) is unique and
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(iii) continuously depends on data. Otherwise, in the lack of one or more of these

requirements, the problem is ill-posed.

Since for the inverse scattering problem at hand (involving non magnetic isotropic

scatterers) the uniqueness of the solution is proved [22, 23] and it always exists, let

us focus on the third requirement, which is herein missing. Such a circumstance leads

to a ‘physical meaningless’ solution, since in presence of measurement uncertainties

it may happen that to small variations occurring on data, do not correspond small

variations in the solution which will be completely corrupted by noise.

From a mathematical point of view, in case of single-view experiment (i.e., a single

illuminating incident field is used) the ill-posedness is due to the “compactness” of the

scattering operator Ae [4] which relates the unknown target’s properties to scattered

fields. As a matter of fact, the inverse of a compact operator cannot be continuous,

so that the continuity requirement from the Hadamard’s definition is violated. In

particular, the generic unknown contrast belonging to an infinite dimensional space

cannot be retrieved from the finite dimensional space of the collected information. In

fact, whatever the kind of the scattering experiment, only a finite number of inde-

pendent information can be reached, the so-called Degrees of Freedom (DoF) of the

field [17,18]. Unfortunately, also in case of multi-view experiments (more illuminating

incident waves are used) the problem remains ill-posed. This is due to the fact that

also the incident fields belong to a compact set and, by paralleling the arguments for

the single-view case, the scattering operator is still compact. Therefore, the number

of independent equations is limited and a finite number of scattering experiments can

be actually considered [18].

Note this latter circumstance (which is indeed undesired in recovery problems) is

instead of interest in design problems, as one only needs to check (to enforce) a finite

number of equations.

1.2.2 Non-linearity

The solution of the inverse scattering problem is usually pursued, in a least square

sense, by minimizing a proper cost functional which takes into account both the data

and the state equations. Due to the non-linearity of the underlying problem, this cost

functional is a non-quadratic one, so that it may have many local minima which are

“false solutions” of the problem [19]. In this kind of problem, a key role is played by

the starting point of the minimization procedure, since if it does not belong to the

attraction basin of the actual solution, a local minimum is reached and a solution far

from the ground truth is obtained.
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To get a better insight into the non-linearity, a physical interpretation of the issue

could be sketched. When an incident wave interacts with objects in the space, a

mutual scattering phenomenon occurs, i.e., higher order mutual interactions must be

considered in the relationship between the scattered field and the objects.

By formally inverting the state equation (1.2) for the unknown E and substituting

the result in eq.(1.3), the following expression is obtained:

Es = Ae[�(I �Ai�)
�1Ei] (1.6)

By exploiting the Neumann series for the term in round brackets, for kAi�k < 1, the

final expression for the scattered field reads:

Es = Ae�[IEi +Ai�Ei +Ai�Ai�Ei + · · · ] (1.7)

where each addendum in brackets represents how gradually the mutual interactions

increase, thus increasing the non linearity of the problem.

1.3 Rationale and contents of the thesis

The inverse scattering problem involves reconstruction of the property of a scatterer

from the knowledge of its scattering data. During the years, the challenging nature

of the problem has brought the inverse scattering community to develop more and

more solution strategies for imaging problems. Needless to say, diagnosis methodolo-

gies deserved interest especially in fields in which the human’s health and safety is of

interest, like biomedical imaging for cancer detection and brain-stroke monitoring, in-

vestigation of the reinforcement and condition of roads, bridges, and airport runways,

the identification of structural integrity of buildings, demining, and so on.

On the contrary, in this thesis the inverse scattering problem is considered from the

point of view of design problems. Saying it in other words, starting from a specification

of a field pattern which takes the place of the scattering data, the corresponding

scatterer (and eventually the amplitude of the primary sources, see the following) are

synthesized. Note that such a change of the point of view allows to keep unaltered

the problem’s formulation and hence the more general applicability of the theory.

Obviously, the intrinsic difficulties of the inverse scattering problem keep un-

changed as well. However, since the imaging of an object is no longer of interest,

the non-linearity issue is not a crucial point. In fact, whatever synthesized contrast

function able to satisfy the (imposed) data of the problem is an admissible solution.

This notwithstanding, a priori information as well as similar arguments of the usual
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diagnosis problem can be exploited in order to proper conditioning the (still) ill-posed

problem at hand and find the optimal solution.

The remainder of this thesis is composed by four chapters (including Conclusions)

and five appendices (where mathematical details are deepened), and it is structured

as follows.

In Chapter 2, after a brief summary of existing results, new theoretical and

methodological contributions are presented for the inverse scattering problem.

Coming to details, first (in the same spirit of the Born approximation) a Fourier

based spectral analysis is derived for effective approximated solution strategies like

the Extended Born, the Contrast Source Extended Born and the Strong Permittivity

Fluctuation approximations. Beside their interest on the kind of profiles which can

be actually retrieved or synthesized, the results also open the way to an accurate and

reliable application of the recently introduced Compressive Sensing (CS) techniques

(whose hypothesis do hold true).

Among the approximation-based solution strategies, the ‘virtual experiments’ (VE)

framework has been recently introduced in literature as an effective approach for

imaging non weak objects. Starting from its basic formulation, in the Chapter is pre-

sented an extension of the VE to the case of inhomogeneous scenarios and hence the

so-called distorted virtual experiments (DVE) approximation. Interestingly, VE and

DVE can be jointly exploited into an iterative scheme to further enlarge the range

of validity of the approximation itself. To this aim, the distorted iterated virtual ex-

periments (DIVE) strategy is also derived and discussed. Beside the methodologies

handling the non linearity property of the inverse scattering problem, an effective reg-

ularization procedure based on CS is also proposed. In fact, CS has been developed,

in the last years, as an effective tool for the solution of linear problems by exploiting a

reduced number of data with respect to the unknowns; to this aim, this latter must be

‘sparse’ (i.e., with few elements different from zero) in a proper representation basis.

Starting from this concept, the CS-based regularization is exploited for the solution of

the approximated inverse scattering problem for both the DVE and DIVE strategies,

thus allowing to reach more and more accurate solutions with respect to common

regularization approaches in case of both numerical and experimental data.

Finally, by exploiting the well-known Devaney and Wolf’ theorems [24], a novel rep-

resentation for the non-radiating currents is derived and assessed. Such a result is of

interest both in the synthesis of invisibility devices as well as in antenna synthesis.

In fact, the addition of a “non radiating” source to a given already synthesized source

may simplify actual realization of the antenna.
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In Chapter 3, the formulation of the inverse scattering problem as a design prob-

lem is introduced. In this thesis, the problem is tackled in its full non linearity and the

well-known Contrast Source Inversion (CSI) method is adopted. However, a proper

reformulation of the CSI is proposed by considering the amplitudes of the incident

fields as further unknowns, in order to deal with an accurate matching of the field

specifications through possibly simpler devices. In this Chapter, the synthesis of di-

electric profile antennas is pursued. Firstly, the synthesis of canonical lenses is attained

as an assessment of the strategy. Then, antennas generating generic given patterns

are looked for.

Although the reached devices show good performances and hence represent an inno-

vative solution by per se, a further step toward actual manufacturing can be pursued

by looking at artificial materials (AMs) based devices. As a first possibility, the syn-

thesized gradient index (GRIN) dielectric profiles by means of the modified CSI is

turned into a graded artificial materials (GAMs) device by exploiting homogenization

theories. The second and more original strategy concerns instead to directly synthe-

size a GAMs by using a proper representation basis for the unknown contrast function

into the CSI functional.

Chapter 4 is then devoted to the synthesis of cloaks for invisibility scopes. In this

thesis, volumetric cloaks are considered and the CSI method as well as several regu-

larization techniques, already exploited for diagnosis problem, are herein adopted for

the synthesis of cloaks with different characteristics. Among them, physical feasibility

properties are the most interesting since they allow to deal with ‘natural’ material,

thus avoiding metamaterials, which are the common solution for this kind of prob-

lem. Moreover, the exploitation of the AMs-based solution introduced in Chapter 3

is also performed which make the GAMs cloaks the most effective solution. Finally,

the spectral analysis introduced in Chapter 2 is herein turned into a possible way to

design undetectable objects.

Conclusions and recommendations for further developments are finally drawn in

Chapter 5.



2

THEORETICAL AND METHODOLOGICAL

ADVANCES IN INVERSE SCATTERING

2.1 Some existing solution strategies

In this Chapter, some tools for inverse scattering facilities are first reviewed in or-

der to have a better insight of their possible usefulness in design problems. In this

spirit, some canonical strategies are briefly recalled, by taking care on the basic lin-

ear approximations as well as on their advanced variations which allow to extend

the range of validity and taking into account some a priori information of the un-

knowns of the problem. Along the same line, the recent paradigm of Compressive

Sensing is briefly recalled and commented. Then, a spectral analysis of different use-

ful approximations is introduced. As a second original contribution, two new solution

strategies are proposed, both based on the new framework of ‘virtual experiments’,

the distorted virtual experiments (DVE) and the distorted iterated virtual experiments

(DIVE) approximations. Last, but not least, a new approach for the representation

of non-radiating currents is proposed.

As already stressed, two not trivial issues make the inverse scattering phenomenon

a complex problem, namely the ill-posedness and the non-linearity. In the following

subsections, the main regularization techniques as well as strategies to counteract the

non-linearity are briefly reviewed.

2.1.1 Regularization techniques

It was explained that the DoF of the scattered field constitute an upper bound for the

significant data of the problem, for each scattering experiment [17, 18]. Therefore, a

first possibility to increase such an amount of data is to perform additional scattering

experiments. Several possibilities can be outlined: spatial diversity, frequency diversity

or a combination of them. More in details, the spatial diversity aims at performing

a number of experiments moving the illumination direction all around the investiga-

tion space, in such a way that the collected data include the system’s response from
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different points of view. Recently, new methods have been proposed in order to in-

crease diversity [25, 26]. However, the above mentioned solutions cannot restore the

well-posedness of the inverse scattering problem, since the number of independent

information remains limited [18].

In order to restore the well-posedness of the problem, a huge amount of regularization

techniques have been developed. The principle of the regularization methods is to use

additional a priori information on the unknown in an explicit way in order to restore

a unique solution compatible with the data.

As a first possibility, an energetic constraint can be added to the least square solu-

tion in order to keep minimum the energy of the solution; for instance, the Tikhonov

regularization method [4,27] aims to retrieve a minimum `2-norm energy.

However, some specific a priori information on the actual unknown (i.e., the contrast

function) can be exploited and/or enforced. Just to mention a few:

i. enforcing a piecewise constant behavior on the contrast function [28–31];

ii. inducing physics bounds on the values of the unknown permittivity and conduc-

tivity functions;

iii. imposing a given finite alphabet of values for the permittivity function [32];

iv. imposing an upper bound on the dimensionality of the space where the unknown

function is looked for (‘regularization by projection’) [33–40].

The above listed techniques act on the contrast function �; however, similar concepts

have been exploited on the auxiliary unknown W (r) [41].

Recently, the new paradigm of Compressive Sensing (CS) [42, 43] has been intro-

duced in literature for linear problems. The key idea is that an ill-conditioned problem

can be solved even if the number of data is lower than the number of unknowns, since

the ‘sparsity’ or ‘compressibility’ of the unknown can act as regularizer of the problem.

Essentials of the CS theory will be recalled with some detail in Section 2.2.

2.1.2 Methods to tackle the non-linearity

The adoption of linearizing approaches seems to be attractive to counteract the non-

linearity of the inverse scattering problem, since the problem itself is simplified and

different regularization techniques can be applied in a straightforward fashion. A lot

of approximations have been proposed in literature during the years. Obviously, each

approximation concerns a specific rationale and a situation of interest, that means

they look for a particular class of objects by exploiting proper a priori information.

On the other hand, they suffer from several limitations induced by the range of validity
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of the introduced approximation.

The main linear approximations are listed below.

• The Born approximation (BA) [44] is valid for ‘weak scatterers’, i.e., when the

internal characteristics of the scatterers are very close to those of the external

medium and its dimension is very small as compared to the incoming wavelength.

From a practical point of view, this assumption leads to substitute the unknown

total field inside the operator’s kernel with the incident field, thus completely ne-

glecting the presence of the object. Notably, by referring to eq.(1.7), the BA means

to consider only the first term of the series, thus neglecting higher order mutual

interactions. If the linearization is performed around a nominal scenario different

from a homogeneous background, the underlying approximation is referred to as

distorted Born approximation (DBA) [45].

• The Rytov approximation (RA) [46] holds for scatterers whose contrast function

is smooth and low with respect to the background medium; moreover, no limits

in the object’s dimension are considered since the total field is only approximated

in its phase.

• The Kirchhoff or Physical optics approximation (PO) [46] is suitable for electri-

cally large and strong scatterers; conversely with respect to the other methods,

PO refers to the auxiliary unknown contrast source W (r), thus dealing with a

kind of inverse source problem.

• The Strong permittivity fluctuation approximation (SPF) [47, 48] is instead valid

for a set of different small scatterers and the problem is linearized and solved by

means of an auxiliary unknown.

As an improvement with respect to the linearized methods, the quadratic approach

[49,50] is also worth being mentioned. In this latter, a weak degree of non-linearity is

introduced by adopting a second order approximation for the unknown-data mapping

operator. As a consequence, the range of validity is wider compared to the BA, but

also in this case the solution could be meaningfulness if the target’s parameters exceed

the validity of the approximation.

Interestingly, by looking at different classes of scatterers, the BA has given rise to

a number of different approximations. For instance, when non-weak scatterers are

considered, the BA can be incorporated inside an iterative scheme. The arising so-

lution approaches are the so-called Born iterative method (BIM) [51] and distorted

Born iterative method (DBIM) [52]. At each iteration, the inverse problem is solved

by applying the BA while the direct problem by updating the internal field (and the

Green’s function in DBIM). Obviously, both approaches outperform the standard BA
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but the final outcome and performances depend on the starting guess as well as on

the range of validity of the intermediate linearizations. Other solution methods deriv-

ing from BA are the Extended Born approximation (EBA) [53–56] and the Contrast

Source Extended Born approximation (CS-EBA) [35, 57], which are viable in case of

lossy host medium; in fact, by relying on the picked behavior of the Green’s function

and the reduced intensity of mutual interactions in such a case, the inverse scatter-

ing basic equations can be simplified and the arising linear problem is solved for an

auxiliary unknown.

A more detailed explanation of some of the above approximations which includes a

rigorous mathematical formulation is given in Section 2.3.

In order to overcome the limits due to the range of validity of each approximation,

iterative optimization procedures which tackle the inverse problem in its full non-

linearity have been proposed in literature. In this case, global optimization schemes

should be adopted in order to avoid ‘false solutions’ [19], but they are not viable in

case of large number of unknowns due to the exponential growth of the computational

complexity. On the other hand, local iterative optimizations seem to be good candi-

dates. Among these, the modified gradient method [34, 58, 59], the Contrast Source

Inversion (CSI) method [20], the Contrast Source Extended Born model [21, 35] and

the Subspace Optimization Method (SOM) [60] deserve to be mentioned.

It is worth to note that several strategies could be adopted in order to reduce the

occurrence of ‘false solutions’. In particular, a good initial guess (e.g., reached by a

pre-processing step) and/or some a priori information could constrain the minimiza-

tion procedure in such a way that the searching space is reduced.

2.2 The Compressive Sensing (CS) paradigm

In the last years, the Compressive Sensing (CS) framework has emerged as an effective

way to find meaningful solutions to undetermined systems describing linear models.

As demonstrated by several contributions [61–63], the field of CS evolves from four

decades. However, the idea of CS got a new life in 2004 when David Donoho, Em-

manuel Candes, Justin Romberg, and Terence Tao gave important results regarding

the mathematical foundation of CS [42,64,65].

The CS theory asserts that one can recover signals and images from far fewer

samples or measurements than is possible using traditional methods, like for instance

the Nyquist theory [65]. As it can be easily guessed, such a remarkable result is

useful in very many scenarios in which limited number of samples can be actually

collected [66].
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As a matter of fact, part of the success of the CS paradigm (as witnessed by the

very large number of papers being published on the subject) comes from statements

such as ‘the possibility of overcoming the Nyquist criterion’ or to achieve ‘super-

resolution’ in a number of recovery (and imaging) problems [65]. To make this possible,

CS relies on two principles: sparsity, which pertains to the signals of interest, and

incoherence, which pertains to the sensing modality. A signal is said sparse in a

given representation basis, if it can be exactly represented by means of few non-zero

elements; more precisely, the idea is that the ‘information rate’ of a continuous time

signal may be much smaller than suggested by its bandwidth, or that a discrete-

time signal depends on a number of DoF which is comparably much smaller than its

(finite) length. As far as the incoherence property concerns, it is a concept related to

the measurement process [65].

Provided the proper expansion is used in order to guarantee a sparse or compress-

ible representation of the unknown function, CS theory guarantees that an accurate

retrieval of the unknown is possible even for a number of data much lower than the

overall number of basis coefficient, but sufficiently larger than the number of non-zero

elements [65].

The above described peculiar features of CS has led to investigate such a recovery

algorithm for inverse scattering problems, in particular for biomedical monitoring

and non-invasive inspections [13, 67–74]. However, the adoption of the CS theory

is not straightforward and the reason is twofold: first, the choice of a convenient

representation basis for the specific problem at hand is not a trivial task; second, the

intrinsic non-linear nature of the electromagnetic inverse scattering problem does not

fulfill the theoretical results well developed and assessed for linear models.

For the reasons above, CS was firstly adopted for imaging of ‘point-like’ scatterers

in conjunction with linear approximations such as the BA [69,75] or the DBIM [72,76];

later, the recovery of extended target has been exploited by considering the RA and

the total variation (TV) approach [28]. Note that the CS tool allows to perform a

‘super resolution’ diagnosis by acting as a regularizer of the problem, but the validity

of the mentioned approximations keeps still limited.

Recently, an effective imaging approach which exploits CS facilities for the solution

of the inverse scattering problem in its full non-linearity has been proposed [77].

Interesting applicative and theoretical results have been also obtained in the field

of antenna arrays diagnosis, both for linear [78–80] and non linear [81] models. In

particular, for this latter case stimulating arguments about the incoherence property

have been derived [81].
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In this thesis, the CS paradigm will be exploited as a facilitator for design purposes.

In fact, supposing a sparse unknown for the problem means that such a function is

made by few elements different from zero. Correspondingly, the arising solution of the

inverse scattering problem will be a more easily realizable device.

Applications of the CS paradigm in inverse scattering for design will be shown in the

following Chapters, while for some simple understanding (and basics) the reader is

deferred to Appendix A.

2.3 A spectral interpretation of approximated solution

strategies.

In this Section, an insight into the implication of the approximated approaches for the

solution of the inverse scattering problem introduced in Sect.2.1 is given. In particular,

by paralleling the results of the well-known BA [82], a Fourier analysis is proposed for

the EBA, the CS-EBA and the SPF approximation (SPFA), which allows to gather

a spectral interpretation of the strategy at hand.

Since the formulation for the EBA and CS-EBA is actually the same, a unique

spectral analysis derivation will be tackled in the following.

2.3.1 The extended Born model

As is well known, the inverse scattering problem within the BA is viable and accurate

when weak scatterers are looking for. As a matter of fact, the total field inside the in-

vestigation domain is approximated with the background electric field, thus neglecting

the effects that the scatterer induces into the field itself.

An improvement over the BA is achieved in the extended Born model [53], which

results from an approximation arising from the peaked behavior of the Green’s func-

tion in case of lossy background. Notably, in the same way as for the Born model, an

extended Born series can be derived.

In this respect, let consider the STIE formulation for the state equation [21,35]:

W (r, rt) = �(r)Ei(r, rt) + �(r)

Z

⌦
g(r� r

0
)W (r

0, rt)dr
0 (2.1)

so that in the following it will refer to the contrast source extended Born (CS-EB)

model.

By adding and subtracting W (r, rt) into the integral operator, the new state equation

becomes:
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W (r, rt) = �(r)Ei(r, rt)

+ �(r)W (r, rt)

Z

⌦
g(r� r

0
)dr0 + �(r)

Z

⌦
g(r� r

0
) [W (r

0, rt)�W (r, rt)] dr
0

= �(r)Ei(r, rt) + �(r)W (r, rt)f⌦(r) + �(r)AiMOD [W (r, rt)] (2.2)

where:

f⌦(r) =

Z

⌦
g(r� r

0
)dr0

AiMOD [W (r, rt)] =

Z

⌦
g(r� r

0
) [W (r

0, rt)�W (r, rt)] dr
0

By formally inverting twice eq.(2.2), one initially achieves:

W (r, rt) = p(r)Ei(r, rt) + p(r)AiMOD [W (r, rt)] (2.3)

in which:

p(r) =
�(r)

I � �(r)f⌦(r)

and then, by defining I the identity operator:

W (r, rt) = (I � p(r)AiMOD)

�1 p(r)Ei(r, rt) (2.4)

If kp(r)AiMODk < 1, k·k being the `2-norm, a series expansion for the inverse operator

can be performed, thus obtaining the CS-EB series:

W (r, rt) =
+1
X

n=0

(p(r)AiMOD)

n p(r)Ei(r, rt) (2.5)

Note that, as discussed is [21], the CS-EB series has been proved to be more rapidly

converging that the Born series also in very many cases where the background is

lossless.

From the singular nature of g(r�r

0
) when r

0
= r one may expect that the dominant

contribution to the integral in eq.(2.2) is given by points close to r

0
= r. Moreover,

the integrand of the second integral in eq.(2.2) is now integrable since the quantity

in the square brackets vanish as r

0 ! r where g is singular. As a consequence, in the

CS-EB approximation (CS-EBA) the second integral in eq.(2.2) is neglected since the

first one plays a more significant role in deriving an approximation for the total field.

Saying it in other words, the first term in the series (2.5) is the dominant one, so that

the arising state equation for the CS-EBA reads:

W (r, rt) = p(r)Ei(r, rt) (2.6)

Finally, when the new approximation (2.6) is considered into the data equation, a

linear inverse scattering problem in the unknown p(r) is achieved [21,35]:
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Es(ro, rt) = Ae [p(r)Ei(r, rt)] (2.7)

Note that, if the EFIE is considered rather than the STIE and the term �(r)E(r)

is added and subtracted into the integral operator, the same approximated model

(2.6)-(2.7) can be derived for the extended Born approximation (EBA) [54,55].

By paralleling the results of the BA, interesting arguments can be inferred when

plane waves incident fields and far field observations are considered. In fact, under

these assumptions, the expression for the scattered field reads:

Es(kt,ko) = C

Z

⌦
p(r0)e�j(k

t

�k
o

)·r0dr0 (2.8)

in which kt and ko are the vector of incidence and observation direction, respectively,

while C is a constant value arising from the asymptotic expansion of the radiation

operator.

Interestingly, eq.(2.8) shows useful relationship with the Fourier transform F [·] of

the auxiliary function. In fact, when this latter is evaluated, the following expression

is gathered:

F [p(r)] = ep(K) =

Z

⌦
p(r0)e�jK·r0dr0 =

Z

⌦
p(x, y)e�j(k

x

x0+k
y

y0)dx0dy0 (2.9)

The above equations (2.8)-(2.9) show that exists a relation between the scattered field

and the spatial Fourier transform of the auxiliary variable p(r) encoding the original

contrast function �(r); in particular, Es(kt,ko) = ep(kt �ko). In other words, Es can

be considered to be the restriction of the Fourier transform to the circle such that:

kx = ktx + kox

ky = kty + koy

as long as k2tx + k2ty = !2"µ and k2ox + k2oy = !2"µ, " and µ being the permittivity

and permeability of the homogeneous free space, respectively. Therefore, the spatial

frequencies set K maps, 8 experiment kt, the surface of a sphere of radius |ko| that

is centered at the point K = �kt in the K space, see fig.2.1(a). This sphere is known

as Ewald sphere.

By considering a number of experiments |kt|, the final scattered field would be given

by ep(K) over the union of the surfaces of a number of Ewald spheres, namely over

the bigger sphere with a radius of 2|ko| (the so-called Ewald limiting sphere), see

fig.2.1(b).

2.3.2 Strong Permittivity Fluctuation model

The SPF approximation (SPFA) has been introduced by Tsang and Kong [47] by

exploiting the singularity of the Green’s function for the solution of the vectorial
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(a) (b)

Fig. 2.1. Spectral interpretation of the CS-EBA (and also EBA). (a) Spectral coverage for

the t-th experiment: the Ewald sphere. (b) Spectral coverage for a set of experiments: the

Ewald limiting sphere.

problem of wave scattering by random medium in case of both small and large variance

of the permittivity function. As a matter of fact, until then such a singular nature of

the dyadic Green’s function was not taken into account thus applying and validating

the random medium theory only in case of weak fluctuation.

Let us consider the state equation for the 2D vectorial case:

E(r, rt) = Ei(r, rt) +

Z

⌦
G(r, r0)�k2 ·E(r

0, rt)dr
0

= Ei(r, rt) +Ai

⇥

�k2 ·E(r, rt)
⇤

, r 2 ⌦ (2.10)

in which:

G(r, r0) =

✓

I � 1

k2b
rr

◆

g(r, r0)

is the dyadic Green’s function for homogeneous background medium, I is the 2D

identity operator, g(r, r0) is the 2D scalar Green’s function and �k2 = k2 � k2b , k

being the wavenumber of the random medium. The symbol (·) states for the inner

product.

As it is known, the g(r, r0) function becomes singular when the observation point is

inside the source region and therefore the integral equation (2.10) results indetermi-

nate. In order to overcome such a difficulty, by following the approach in [83], the

singularity can be treated by means of the principal volume method, namely, by split-

ting the integration domain into a small volume ⌦� surrounding the discontinuity and

then let it approaches to zero, plus the remain ⌦ �⌦� part:
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E(r, rt) = Ei(r, rt) + lim

⌦
�

!0



Z

⌦�⌦
�

G(r, r0)�k2 ·E(r

0, rt)dr
0

+

Z

⌦
�

G(r, r0)�k2 ·E(r

0, rt)dr
0
�

= Ei(r, rt) + lim

⌦
�

!0

Z

⌦�⌦
�

G(r, r0)�k2 ·E(r

0, rt)dr
0 � L ·�k2E(r, rt)

k2b
(2.11)

where L is a dyad depending on the shape of ⌦�. After simple manipulations, one

achieves:
✓

I +

�k2

k2b
L

◆

·E(r, rt) = Ei(r, rt) + P.V.

Z

⌦
G(r, r0)�k2 ·E(r

0, rt)dr
0 (2.12)

where P.V.
R

⌦ stands for a shape dependent principal value integral. In particular, if

a cylinder is considered as volume ⌦�, L =

I
2 , while for a sphere L =

I
3 [83].

By defining [47,48]:

F(r, rt) =

✓

I +

�k2

k2b
L

◆

·E(r, rt) =
⇣

I + �L
⌘

·E(r, rt)

q(r) = �k2
✓

I +

�k2

k2b
L

◆�1

= Iq(r)

q(r) = �k2
✓

1 +

�(r)

2

◆�1

the following state equation for the SPF model is derived:

F(r, rt) = Ei(r, rt) + P.V.

Z

⌦
G(r, r0)Iq(r0) · F(r0, rt)dr0

= Ei(r, rt) +AiSPF

h

Iq(r) · F(r, rt)
i

(2.13)

As already done in Section 2.3.1, it is possible to formally invert (2.13):

F(r, rt) =
⇣

I �AiSPF

h

Iq(r)
i⌘�1

·Ei(r, rt) (2.14)

and define a series in case of
�

�

�

AiSPF

h

Iq(r)
i

�

�

�

< 1, which reads:

F(r, rt) =
+1
X

n=0

⇣

AiSPF

h

Iq(r)
i⌘n

·Ei(r, rt) (2.15)

Finally, for
�

�

�

AiSPF

h

Iq(r)
i

�

�

�

⌧ 1 which surely holds true in case of the overall

scattering system is constituted by many different (unconnected) small scatterers,

the SPF approximation (SPFA) is obtained by considering only the first term of the

summation (2.15):

F(r, rt) = Ei(r, rt) (2.16)
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and by substituting the expression (2.16) into the data equation:

Es(ro, rt) = Ae

h

Iq(r) · F(r, rt)
i

= Ae

h

Iq(r) ·Ei(r, rt)
i

(2.17)

it becomes linear in the unknown q(r).

By exploiting the same arguments as in Section 2.3.1, a relationship in the spectral

domain between the scattered fields and the auxiliary variable of the linearized model

can be found also for the SPFA. In this respect, by referring to incident plane waves

and by considering far field measurements, one reaches that Es(kt,ko) = eq(kt � ko),

kt and ko being the vector of incidence and observation direction, respectively, and

eq(K) = F [q(r)].

In fig.2.2, a pictorial representation of the outcome of the Fourier-based analysis

which holds for the above described approximations is reported.

(a) (b)

Fig. 2.2. Pictorial view of the spectral meaning of the approximated inverse scattering

problem: (a) CS-EBA (and also EBA) (p̃ = F [p]) and (b) SPFA(q̃ = F [q]) .

2.3.3 Some useful remarks for Born, CS-EB and SPF approximations

In all cases of Born, CS-EB and SPF approximation the scattered field can be seen

as the restriction to a circle of radius 2|ko| = 2kb of the Fourier transform of some

variables embedding the constitutive relationship of the obstacles. In fact, these latter

variables are the contrast function �(r), the p(r) function and the q(r) function,

respectively. Such a circumstance has (at least) three interesting consequences, i.e.:

i. as �(r), p(r) and q(r) have limited support, their Fourier transform is band-

limited. If the overall scatterer is contained within a circle of radius a, the proper

sampling ratio in the transformed domain is less than or equal to 1
2a . Then, the

number (#) of independent equations one has at his/her disposal for the inversion

is given by (in terms of the angular frequency):
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# indep. eqs. = # of samples following within the circle of radius 2kb

In terms of frequencies rather that the angular frequencies, one has:

# indep. eqs. =
⇡ (2kb/2⇡)

2

(1/2a)2
=

⇡ (2/�)2

(1/2a)2
= 16⇡

⇣a

�

⌘2

so that, coherently with [18], the # of independent equations one has at his/her

disposal is finite and (whatever of the three approximations) the inverse scattering

problem is ill-posed.

Also note the average resolution one may achieve is given by:

resolution2
=

⇡a2

# indep. equations
=

�2

16

=

✓

�

4

◆2

which is slightly worse than the one in [18] (corresponding to �x = �y ' �/5,

rather than �/4, �x, �y being the sides length of the sampling cell).

ii. As the scattered fields are related to the unknown function (�(r), or p(r), or q(r))

by a Fourier transform, the incoherence properties required by the CS theory are

fully satisfied. As a consequence, CS can be reliably used provided �(r), p(r) or

q(r) are sparse (in a pixel sense).

iii. The spectral coverage clearly indicates which kind of profiles can be safely recon-

structed, and which of them are instead expected to be “invisible” (see Sect. 4.2

for more details).

2.4 Two new inversion methods: the “DVE” and the “DIVE”

approaches

2.4.1 The virtual experiments framework and the “VELI” approximation

The intrinsic non linear nature of the inverse scattering problem has led to develop a

number of solution strategies and approximations. It is worth to stress that any pos-

sible a priori information about the nature or the features of the problem’s unknowns

as well as pre-processing methods are helpful and have to be exploited in order to

reduce the problem’s difficulty.

Notably, some helpful features and/or behaviors of the actual unknown are not

necessarily assumed but enforced. Moving from this comment, the virtual experiments

(VE) based linear field approximation (VELI) has been recently proposed in literature

[84] paving the way for a number of publications confirming the effectiveness of the

solution strategy [41,73,74,85–94].
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The key point of the VELI approximation is to consider that, thanks to the lin-

earity of the Maxwell’s equations with respect to the primary sources, a linear combi-

nation of the causes (i.e., the incident fields Ei) with known coefficients, gives rise to

the same linear combination, with the same weighting coefficients, of the effects (i.e.,

the scattered and total fields, Es and E). In formulas:

Ei(r) =
N
X

t=1

↵tEi(r, rt) (2.18)

E(r) =
N
X

t=1

↵tE(r, rt) (2.19)

Es(ro) =
N
X

t=1

↵tEs(rt, ro) (2.20)

Note that a chance arises. In fact, one can try to determine the ↵t coefficients in such

a way to enforce a specific behavior on the total (or scattered) field. Then, such a

characteristics could be usefully exploited for the solution of the inverse problem.

In [95] has been shown that, if properly designed, the weighting parameters ↵t

allow to obtain a scattered field emerging as a cylindrical wave from a given point

(named ‘pivot point’) inside the scatterer. To accomplish such a goal, the original

scattered field can be used as available data and the arising design equation reads:

Es(ro, rp) =
N
X

t=1

↵(rt, rp)Es(rt, ro) = g(ro, rp) (2.21)

where ro 2 � , rp 2 ⌦ is the considered pivot point, ↵(rt, rp) are the set of coefficients

required to build the VE, while the right-hand side is the field radiated on � by an

elementary source located in rp, with p = 1, ..., P .

Interestingly, eq.(2.21) is nothing but the discretized version of the well-known Far

Field Equation (FFE), i.e., the basic (linear) equation underlying the Linear Sampling

Method (LSM) [96, 97], with rp playing the role of the sampling point. Accordingly,

the problem cast in (2.21) is ill-conditioned and has to be solved through some reg-

ularization strategies. Its regularized solution is commonly exploited to recover the

shape of unknown targets by simply plotting (in a logarithmic scale) the energy of

the solution over the sampling grid.

Obviously, in order to select the P pivot points, the scatterer’s support must be

previously estimated. To this end, the LSM can be again exploited.

By performing several (software) rearrangements of the original experiments, a set

of new experiments can be organized which do not require new experimental mea-

surements. For this reason, we denote them as ‘virtual’ experiments. Note that no a

priori information on the contrast function is needed to generate VE. Clearly, VE are
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just a different way to consider or to re-weight the originally collected information. In

fact, the amount of information carried by VE cannot exceed that of the original ones,

and some information could be actually lost if they are not properly designed. Natu-

rally, recombining in different way the original experiments acting on the coefficients

↵(rt, rp) gives rise to a different total fields E(r) exhibiting different given behaviors.

For more details on the VE physical interpretation as well as to the implementation

of the regularized solution of the FFE, please refer to [95,98,99].

Provided that a solution of (2.21) can be actually found, we are able to build new

experiments in such a way that the arising (virtual) scattered field exhibits a circular

symmetric behavior. The same holds for the (virtual) total field. Accordingly, the data

equation (1.3) can be recast as follow:

Es(ro) = Ae[�(r)E(r)] (2.22)

where E(r) and Es(ro) are defined in eqs.(2.19)-(2.20).

The new (virtual) data equation (2.22) is still non-linear in terms of the unknowns,

as both �(r) and E(r) are unknown. However, the peculiar nature of the design

equation, which enforces the target to behave like a point-like source (observing the

scattered field on � ), allows to perform a simple analytical prolongation of the field

from the measurement line to the investigated area, thus providing an alternative

approximation of the scattered field inside the target, and hence for the total field

E(r) in the whole domain ⌦.

Accordingly, for each pivot point rp the total field in ⌦ can be conveniently ap-

proximated by means of the following expression [84]:

E(r, rp) ⇡ Ei(r, rp) + LP [g(r, rp)] (2.23)

wherein the first addendum at the right-hand side is the incident field arising in the

VE and the second addendum is a low pass version of the internal Green’s function,

where the low-pass filtering is meant to avoid the field singularity in the pivot point.

As a final comment, it is worth to stress that the VELI approximation results

as a scatterer-aware approximation, since the pivot points on which build the new

experiments are chosen inside the support of the target and the ↵t coefficients depend

on the originally scattered fields. For this reason, its range of validity is wider than the

BA and it is viable for a large class of non-weak targets. The above statement has been

demonstrated with an extended numerical analysis in [86], where some guidelines to

foresee the capability of the approximated method in imaging an unknown object are

given. In particular, it has been found that the quantity p
"rd = 1.22� (d being the
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diameter of the scatterer) constitutes an upper bound for the method’s applicability,

which is more than three times larger than the one in the case of the BA (0.35�) [53].

2.4.2 The distorted virtual experiments (DVE) method

As a natural evolution of the above linearization strategy (which has been derived in

the case of free space or anyway homogeneous background), the basic approach can

be extended to the case where the scatterer of interest (i.e., the object of the imaging

procedure) is hosted in a known, or partially known, non-homogeneous scenario.

While this class of linearized methods has been originally inspired by the possibility

of using, if available, a closed form solution of the fields in the reference scenario, their

interest is nowadays motivated by the possibility of modeling complex, non-canonical

scenarios via accurate and efficient numerical tools, so to conveniently tackle more

and more realistic scenarios.

The basic and cornerstone contribution in such a framework is the well known

DBA [45]. In this approach, the problem is formulated as the search of the difference

in the permittivity distribution with respect to a nominal ground-truth by processing

the anomalous field. In so doing, the DBA approximates the internal field with the

background one, thus neglecting the effect of the ‘perturbation’ on the field. This is,

from a conceptual point of view, the same limitation underlying the first order BA,

where the effect of the scatterer on the incident field in the investigation domain is

completely neglected. As a result, this leads to a linearization of the problem that is

seldom fulfilled in practical instances.

By following the same reasoning, in the following the VELI method introduced in

the previous section is extended to the case of a partially known, non-homogeneous

scenarios and exploited to appraise the properties of non-weak anomalies. To this end,

the key step is to extend the concept of virtual experiments from the so far considered

canonical case to the case of a non-homogeneous scenarios. In practice, this is done

by exploiting the “distorted” version of the LSM [100].

Let ⌦ be the region of interest (ROI) of the imaging problem, given by the cross

section of an infinite cylinder with non homogeneous relative complex permittivity

distribution "̃r(r). Assume that the relative permittivity distribution within the ROI is

partially known so that the complex permittivity in the whole space can be expressed

as:

"̃r(r) = "̃b(r) +�"̃(r), (2.24)

with:
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"̃b(r) =

8

<

:

"̃1(r) r 2 ⌦

"̃host(r) r /2 ⌦
(2.25)

wherein r = (x, y), "̃host is the complex permittivity of the homogeneous medium

which surrounds ⌦ and "̃1 denotes the ‘nominal’ relative permittivity distribution in

⌦, i.e., when no perturbation is present. Saying it in other words, eq.(2.24) expresses

the complex permittivity of the scenario at hand as a “perturbation” with respect to

a nominal background permittivity distribution.

Note that, for the sake of simplicity, we are assuming that the medium outside the

ROI is homogeneous. However, the following discussion holds true also for the general

inhomogeneous case.

By considering transmitting and receiving probes positioned at rt and ro, respec-

tively, on a curve � external to the ROI, the anomalous field �Es(rt, ro) produced

by the perturbation �"̃ is expressed by the integral data equation which follows:

�Es(rt, ro) =

Z

⌦
gb(ro, r

0
)�"̃(r0)E(r

0, rt)dr
0
= Ae [�"̃E] (2.26)

in which, the total field E is given by the following state equation:

E(r, rt) = Eb(r, rt) +

Z

⌦
gb(r

0, r)�"̃(r0)E(r

0, rt)dr
0
= Eb(r, rt) +Ai [�"̃E] (2.27)

wherein Eb represents the background field (i.e., when no anomalies are present).

In eqs.(2.26) and (2.27) gb denotes the Green’s function for the assumed (non homo-

geneous) background scenario,
⇥r2

+ k2b (r)
⇤

gb(r0, r) = �(r0 � r), with kb being the

reference scenario wavenumber. Typically, this function is not known in a closed form

and it is computed numerically. Ae [·] : L2
(⌦) ! L2

(� ) is the short notation of the

radiation operator that relates the contrast source �"̃E to the anomalous field on � ,

while the operator Ai [·] : L2
(⌦) ! L2

(⌦), relates the contrast source to the field it

radiates in ⌦.

It is worth noting that the knowledge of the reference scenario is also exploited

to appraise the scattered field perturbation �Es starting from the quantity actually

measured by the receiving probes, say Mt, which is affected by both the perturbation

and the reference scenario. Accordingly, it is possible to extract the required field from

this latter as:

�Es(rt, ro) = Mt(rt, ro)�Mb(rt, ro) (2.28)

in which:

Mb(rt, ro) = Ei(rt, ro) +

Z

⌦
gh(ro, r

0
)�"̃(r0) ["̃1(r

0
)� "̃host]Eb(rt, r

0
)dr0 (2.29)

with Ei the field radiated by the transmitting antennas in the host medium and gh de-

noting the Green’s function of the same homogeneous medium. Note that, depending
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on the imaging problem at hand, Mb(rt, ro) can be actually measured (if the “pertur-

bation” arises in the nominal background) or estimated by properly simulating the

reference scenario.

The traditional DBA descends from the above equations by assuming that the

variation �"̃ is such to induce only a negligible perturbation of the background field

Eb. Accordingly, the data equation (2.27) is approximated as:

�Es(rt, ro) = Ae[�"̃Eb], rt, ro 2 � (2.30)

and the imaging task is reduced to the solution of a linear ill-posed inverse problem.

Obviously, when the reference scenario corresponds to a homogeneous unbounded

medium, this approximation exactly coincides with the classic BA, so that the DBA

will be subject to the same restrictions (in terms of applicability). In particular, the

approximation is expected to be successful as long as the perturbation is small enough

with respect to the background wavelength and its dielectric properties are close to

those of the ROI [44,45].

To overcome the above recalled limitations, the VE framework has been extended

to the case at hand. As already introduced in the previous section, a first pre-

processing step is needed to solve qualitatively the inverse scattering problem and

chose the pivot points. The problem of retrieving the shape of targets hosted in a

partially known non canonical scenario has been faced in [100], wherein the necessary

steps to generalize the LSM to this case have been defined and tested. The resulting

distorted LSM equation becomes the new design equation in the unknowns ↵(rt, rs),

with rs denoting the sampling point, which reads:

N
X

t=1

↵(rt, rs)�Es(rt, ro) = gb(ro, rs) (2.31)

The virtual experiments designed through (2.31) make use of the available knowledge

on the scenario at hand, since they force the unknown perturbation to scatter a wave

that matches on � the background Green’s function for the considered sampling point

rs in the ROI. As a matter of fact, by paralleling the arguments for the homogeneous

case, a regularized solution for (2.31) can be found in order to compute and plot the

following function:

⌥ (rs) =
log10 k↵k � log10 k↵kmax

min {log10 k↵k � log10 k↵kmax}
(2.32)

wherein k·k is the `2-norm, and ⌥ defines an indicator for the support of �"̃ on which

we can select evenly spaced P (at most) pivot points. Then, P virtual experiments

are built. In each of these experiments, the total field is exactly given by:
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E(r, rp) = Eb(r, rp) +Ai [�"̃E ] (2.33)

wherein the first addendum Eb(r, rp) =
PN

t=1 ↵(rt, rp)Eb(r, rp) is the background field

arising in the reference scenario for the considered virtual experiment. This latter has

the remarkable property of depending on the unknown permittivity perturbation �"̃

in an implicit fashion through the combination coefficients ↵(rt, rp).

Then, a first order approximation would be immediately achieved by neglecting the

second term in (2.33). However, thanks to the features of the designed virtual exper-

iments, a more refined field approximation can be considered. To this end one has to

observe that the field scattered on � in the generic virtual experiment matches (in

the `2-norm) the Green’s function for the reference background medium, gb. Notably,

such a scattered (anomalous) field does not depend on �"̃, but only depends on the

pivot points. As such, it is known for any r. Accordingly, the first order approximation

(i.e., E ⇡ Eb) can be improved by assuming that the virtual anomalous field matches

gb not only on � , but everywhere. Hence, we can introduce the approximated total

field:

E(r, rp) ⇡ Eb(r, rp) + LP [gb(r, rp)] (2.34)

with rp denoting the pivot point identifying the virtual experiment at hand and LP

being a low-pass circular filter which avoids singularity of the approximated total field

for r = rp [84].

As discussed in [84, 86] for the corresponding free space case, this approximation

is superior to the straightforward linearization on which BA and DBA are based,

although of course has itself a limited validity due to the fact that near field effects

and non-radiating components of the fields are neglected.

Approximation (2.34) relies on the applicability of the design equation (2.31),

which is the case in all those situations wherein LSM is successful [84, 97, 101]. Ac-

cording to literature results, the LSM equation and its distorted formulation are

successful as long as the anomalies are comparable with the wavelength of the prob-

ing field. When the scattering system becomes too large (with respect to the probing

wavelength) it is more difficult to induce a contrast source resembling the radiating

properties of an elementary source point placed in the pivot point. An accurate study

of the validity range of the considered approximation has yet to be done. However,

relying on the results in [86] it can be expected that approximation (2.34) starts to

fail for increasing values of �"̃ (with respect to "̃1). In particular, the larger �"̃, the

smaller electrical dimension (with respect to the probing wavelength) of the anomaly

that can be retrieved.
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By means of such an approximation, we finally come to a new linear distorted-wave

data equation that reads:

�Es(ro, rp) = Ae [�"̃(r)E(r, rp)] (2.35)

It is worth to note that the problem (2.35) is linear but it is still ill-posed, so that a

regularization is needed to obtain physically meaningful solutions. In the following,

two regularization approaches have been considered.

The first one is the usual ‘truncated singular value decomposition’ (TSVD) [4],

which gives the following solution:

�"̃ =

N
T

X

j=1

1

�j
h�Es,wjizj (2.36)

wherein zj and wj are the right and left singular vectors of the matrix A relating

the unknown vector �"̃ to the data vector �Es according to the linear relationship

(2.35), respectively, �j are its singular values, while the truncation index NT enforcing

the regularization is appraised by means of the Picard’s plot [84, 102, 103]. In fact,

this plot exhibits a change of slope when the solution passes from being dominated

by regularization error to being dominated by noise: the index corresponding to such

a change represents the right choice for NT .

While the TSVD is a sort of “general purpose” regularization, the second strategy

involves a ‘sparsity promotion’ scheme. In particular, a TV approach has been imple-

mented to assess the inversion procedure for extended objects exhibiting piece-wise

constant complex permittivity distributions, which is a rather common circumstance

when dealing with man-made objects. Recently, also the adoption of a wavelet-based

regularization has demonstrated the effectiveness to achieve multiresolution in case

of biomedical imaging [104].

By using one of the typical CS procedure, the linearized inverse problem (2.35) can

be solved by means of minimization of the following objective function:

min

�"̃

n

kDh�"̃k`1 + kDv�"̃k`1 +
�

�Dd
+�"̃

�

�

`1
+

�

�Dd
��"̃

�

�

`1

o

subject to kA�"̃��Esk`2  � (2.37)

where Dh, Dv and Dd are the vectors containing the horizontal, vertical and diagonal

(i.e., along direction parallel to the principal (+) and secondary (-) diagonal) forward

differences of the considered function �"̃, respectively.

A crucial point is the choice of the parameter � in (2.37), which represents the level

of accuracy required in satisfying (2.35). Of course, it has to take into account the

noise level as well as the model error introduced by the approximation (2.34). In order
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to avoid the trivial solution, that is the null vector, � must be selected lower than

k�Esk`2 , since with � � k�Esk`2 the null vector could satisfy the constraint on the

data and simultaneously minimize the objective function. Accordingly, in performing

the numerical analysis, it is considered � =

ˆ� k�Esk`2 with 0 < ˆ� < 1 [105].

Note that the solution approach adopted here is not meant to be a rigorous im-

plementation of the standard CS recovery strategies but it is rather inspired from

CS. As a consequence, we will not need to discuss RIP and the like. On the other

side, contents of Sect.2.3 give a reasonable basis for a successful application of the CS

framework.

As a final comment, let us compare the computational burden and the expected

performances of the DVE method with respect to DBA, as well as to the well-known

EBA [53,55] and diagonalized contrast source inversion (DCSI) [56] approaches.

Notably, with respect to DBA, the additional computational burden just resides in the

first step of the procedure, namely the solution of the design equation to retrieve the

weighting coefficients and define the new linear approximation. In fact, the inversion

step has exactly the same computational burden of DBA as, in both cases, one needs

the knowledge of the Green’s function of the reference scenario for all pairs of points

(r0 2 ⌦, r 2 � ), which has to be computed numerically (but for special cases). This

task can be accomplished by first considering at each measurement position ro an

elementary source and solving the corresponding forward scattering problem 8r 2 ⌦.

Then, exploiting the reciprocity theorem, gb(r, ro) = gb(ro, r). In eq.(2.34) one also

needs the overall Green’s functions for all the pivot points (i.e., all functions gb(rp, r),

p = 1, ..., P, r 2 ⌦). This latter can be numerically computed by solving P forward

problems considering for each of them a unitary filamentary current placed in the

considered pivot point, and computing the field for r 2 ⌦. Moreover, the solution of

the design equation (2.31) requires a SVD of a matrix whose dimension is related to

the number of experiments (and not to the number of pixels), so that such a step has

a negligible computational weight even in case of 3D problems. As the solution of the

additional forward problems which are needed to compute gb(rp, r) functions can be

performed by taking advantage of parallel computing, the overall computational time

can be kept only slightly larger than in DBA.

As far as comparison with EBA is concerned, note that such a method also consists in

the sequence of two linear inversion steps. However, it requires the knowledge of the

Green’s function for all possible couples (r 2 ⌦, r

0 2 ⌦) so that the computational

burden is greatly increased with respect to DBA and to the proposed method as well.

Moreover, EBA is based on the assumption that interactions among distant points can
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be neglected. As such, it will be possibly accurate only in the presence of a sufficient

amount of losses, which is obviously not the more general case.

The DCSI, which can be considered an evolution of EBA, simultaneously looks for

the contrast function and an auxiliary function ⌘(r) representing a proportionality

function among the incident field and the contrast source (for all views). As such,

it is a fast method. However, one cannot be sure that such a function exists, as

one can have a total field different from zero also in points where Ei is zero, so

that the auxiliary function cannot be used in these cases. Also note that such a

proportionality assumption is deeply different in spirit from our approximation (2.34),

where a part of the total field (the second term) is not proportional to Ei at all. Hence,

different performances and/or ranges of convenience are expected between DCSI and

the proposed method. Moreover, it is worth noting that, to the best of my knowledge,

both EBA and DCSI have been applied to the canonical homogeneous space case, and

not to the distorted wave problem we are tackling herein.

To give an assessment of the proposed approach, the above described procedure

has been applied both to simulated data and experimental data taken from the 2005

Fresnel database [106] and we have compared the performance with those achieved

with both DBA and a modified version of EBA adapted to handle “distorted” problems

(DEBA).

Results: numerical data

In this section, the proposed approach has been tested against a complex scenario,

consisting of a cross-section of a radially stratified structure made of three concentric

layers and an inner core, see figs.2.3(a)-2.3(b). This structure can be thought as a

rough phantom for different applications such as medical [15] and living tree trunk

microwave diagnostics [107]. The dimensions and the dielectric properties of the layers

are reported in Table 2.1.

Table 2.1. DVE with numerical data: stratified scenario. Geometrical and dielectric prop-

erties (permittivity and conductivity) of the radially layered scatterer from the outermost to

the innermost layer

"r � [mS/m] Thickness [cm]

6.2 2 1

22 5 4.8

16 1 8.67

9 0.5 10.6
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The diameter of the overall structure is 50 cm and it is embedded into an imaging

domain of side 52.5 cm. The ROI has been discretized into 79⇥ 79 cells according to

[108], and it is probed by means of a circular array of antennas placed at 12.5 cm from

the outermost layer. The number of antennas is set to 21 at the working frequency of

650 MHz. The total field at the receivers is measured in presence of an elliptic shaped

anomaly placed in the core at (4.2,-2) cm, representing a void with axes’ dimensions

of 8 cm and 12 cm, see figs.2.3(c)-2.3(d). In order to cope with an optimized imaging

setup, a lossless matching medium with "̃host = 4.7 has been considered by following

the transmission line model developed in [36], in order to guarantee a good coupling

between the incoming incident wave and the structure.

To take into account the effect of the measurement noise, the useful signal defined

in eq.(2.28) has been corrupted by white random Gaussian noise with given Signal-to-

Noise Ratio (SNR). In order to show the robustness of the proposed approach against

the measurement noise, in the following two different levels of noise, i.e., SNR=20dB

and SNR=7dB will be considered. The accuracy of the result is appraised by exploiting

the mean square error:

err =

||�"̃� c�"̃||2
||�"̃||2 (2.38)

where �"̃ is the actual perturbation profile as shown in figs.2.3(e)-2.3(f), c�"̃ the

estimated one.

The first step of the procedure is the application of the (distorted) LSM in or-

der to identify the presence of the anomalies. Thereafter we take advantage of the

energy indicator (2.32) to choose the pivot points and to design the virtual exper-

iments. The LSM energy indicators with superimposed the pivot points are shown

in figs.2.4(a)-2.4(d), while the outcome of the inversion procedure by means of the

TSVD regularization scheme is shown in figs.2.4(b)-2.4(c) and figs.2.4(e)-2.4(f), re-

spectively for the two considered SNR. As it can be seen, the proposed approach is

able to achieve a quite satisfactory reconstruction of the unknown both for SNR=20dB

(err = 38%) and SNR=7dB (err = 62%). In particular, as far as the real part of �"̃ is

concerned, the procedure is able to recover the dielectric constant of the void despite

of the distribution of the imaginary part because of its very low value. In figs.2.4(g)-

2.4(h) the retrieved electromagnetic properties by means of the DEBA strategy are

shown. The adopted inversion procedure deals with the two linear step introduced

in [55]. The first step is the inversion of the data equation in which the unknown is

an auxiliary function. Thereafter, the Fredholm integral equation of second kind is

solved by adopting a least square minimization. In this case, the result is not satis-
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.3. DVE with numerical data: stratified scenario. (a) Real and (b) imaginary part of

the permittivity function of the reference scenario. (c) Real and (d) imaginary part of the

permittivity function of the perturbed scenario: in the inner layer a ‘void’ is considered as

anomaly. (e) Real and (f) imaginary part of the actual unknown �"̃.

factory (err = 137%), even if it outperforms the results obtained with the DBA (see

figs.2.4(i)-2.4(j)) in recovering the imaginary part (err = 146%).

As an alternative to the more general TSVD based scheme, a sparsity promoting

regularization approach formalized in eq.(2.37) has been also exploited for the inver-

sion step. The achieved result for ˆ� = 0.3 is shown in figs.2.5(a)-2.5(b) from which it is

possible to note the accuracy deriving from the CS based strategy, also confirmed by

the very low synthetic error corresponding to err = 10%. Conversely, the exploitation

of the sparsity promoting strategy for the DBA model does not allow to improve the

reconstruction which is reported in figs.2.5(c)-2.5(d) (err = 148%, ˆ� = 0.1).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

Fig. 2.4. DVE with numerical data: stratified scenario. (a) Logarithmic plot of the LSM

map indicator when normalized to its maximum with superimposed the pivot points marked

as stars for SNR=20 dB. (b) Real and (c) imaginary part of the retrieved perturbation �"̃

by means of DVE-TSVD. (d)-(f) are the same of (a)-(c) but for SNR=7 dB. (g) Real and

(h) imaginary part of the retrieved perturbation �"̃ by means of DEBA-TSVD. (i)-(j) are

the same of (g)-(h) but for DBA-TSVD. The black contour lines represent the geometry of

the actual scenario.

Results: experimental data

In this section we test the proposed method against the experimental data of the 2005

Fresnel dataset [106]. This data set deals with non homogeneous scatterers obtained
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(a) (b)

(c) (d)

Fig. 2.5. DVE with numerical data: stratified scenario. (a) Real and (b) imaginary part of

the retrieved perturbation �"̃ in case of DVE with sparsity promoting regularization. (c)-(d)

are the same of (a)-(b) but for DBA.

by considering several configurations of nested cylinders with different dimensions and

materials. This experimental setup introduces the additional difficulty of dealing with

a partially aspect limited configuration, in which however illuminations completely

surround the targets. In particular, for each transmitter’s position, the measurements

are taken only on an arc of 240�, excluding the 120

� angular sector centered on the

source. To apply the LSM to this kind of measurement configuration, a “zero filling”

procedure has been exploited in arranging the matrix �Es. This procedure consists in

adding zero entries for those measurement locations not available in the experimental

setup.

The first considered target is the FoamDielIntTM in fig.2.6(a), in which a circular

cylinder with radius 4 cm, with relative permittivity 1.45, embeds a smaller higher

contrast circular cylinder of radius 1.5 cm and relative permittivity 3±0.3. The second

target is the FoamTwinDielIntTM (fig.2.7(a)), which is made by placing an additional

higher contrast circular cylinder in contact with the FoamDielIntTM target.

In both cases, to apply the proposed distorted wave method, we have assumed as

reference scenario the foam cylinder, that implies to compute the background field

for all the considered positions of the transmitters and receivers. Since this informa-

tion is not supplied by the database, we have computed the reference field with the

COMSOL R�1 2D electromagnetic forward solver. It is worth noting that, in doing so,
1 Courtesy of Università di Catania.
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we have assumed as nominal position and nominal permittivity (of the foam cylin-

der) those provided by the dataset. However, since in the literature some inaccuracies

in the position of the Fresnel scatterers have been experienced, it is worth noting

that this could introduce a model error affecting the final result. Similar considera-

tions can been argued for the background field, which has been performed considering

an incident field obtained by means of a multipole expansion approach as suggested

in [84].

The data for the FoamDielIntTM target have been directly supplied by the In-

stitute Fresnel and consists of 72 incident fields and 61 measurements for each view.

The ROI is a square region of side 20 cm hosting the foam cylinder and single fre-

quency data have been processed at 3 GHz. Fig.2.6(d) reports the qualitative image

of the high contrast cylinder. Such an image has been achieved by adopting a 72⇥ 90

multiview-multistatic data matrix in which the data entries not available are replaced

with zeros. As it can be seen, the solution of the distorted LSM equation allows to

image the support of the anomaly so that a number of evenly spaced pivot points can

be chosen within it. Figs.2.6(e)-2.6(f) reports the final result obtained by applying

the quantitative imaging step with respect to the selected pivot points. The retrieved

permittivity, i.e., the retrieved perturbation �"̃, is added to the nominal background

scenario. Notably, the approach achieves a satisfactory reconstruction of the target

especially when compared with the DBA reconstruction (figs.2.6(b)-2.6(c)).

The outcome of the two steps for the FoamTwinDielIntTM target are shown in

fig.2.7. In this case, the dataset consists of 18 illuminations and 241 measurements

for each view. Also in this case, the foam has been assumed as background scenario.

The investigated domain is a square of side 17.5 cm, the working frequency is 4 GHz.

The LSM indicator shown in fig.2.7(d) has been obtained by adopting a 18 ⇥ 45

multiview-multistatic data matrix obtained by undersampling the original data and

exploiting the “zero filling” procedure. On the basis of the retrieved support of the two

cylinders, it is then possible to choose evenly spaced pivot points in order to apply

the inversion strategy. Also in this case, the final result shown in figs.2.7(e)-2.7(f) is

very satisfactory from a quantitative point of view. As a matter of fact, the estimated

permittivity values for both cylinders are in full agreement with the nominal ones, thus

confirming the capability of the method to deal with the quantitative imaging task of

non-weak target and then to outperform the standard DBA (see figs.2.7(b)-2.7(c)).
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(a) (b) (c)

(d) (e) (f)

Fig. 2.6. DVE with experimental data: FoamDielIntTM target at 3 GHz. (a) Reference

profile. (b) Real and (c) imaginary part of the retrieved perturbation �"̃ by means of DBA-

TSVD, superimposed to the reference permittivity function. (d) Logarithmic plot of the LSM

map indicator when normalized to its maximum with superimposed the pivot points marked

as stars. (e)-(f) are the same of (b)-(c) but for DVE-TSVD.

(a) (b) (c)

(d) (e) (f)

Fig. 2.7. DVE with experimental data: TwinFoamDielIntTM target at 4 GHz. (a) Reference

profile. (b) Real and (c) imaginary part of the retrieved perturbation �"̃ by means of DBA-

TSVD, superimposed to the reference permittivity function. (d) Logarithmic plot of the LSM

map indicator when normalized to its maximum with superimposed the pivot points marked

as stars. (e)-(f) are the same of (b)-(c) but for DVE-TSVD.
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2.4.3 The distorted iterated virtual experiments (DIVE) method

A new iterative inversion procedure for microwave imaging based on the VE frame-

work is herein proposed as an effective approach to tackle non-linear inverse scattering

problems [91]. The structure and the complexity of the distorted iterated virtual exper-

iments (DIVE) approach are comparable with those of the widely adopted DBIM [52],

but its performances are remarkably better, thanks to extended validity of the ‘ba-

sic bricks’ (i.e., the different subsequent linear approximations). In particular, each

iteration of DIVE is based on properly re-designed VE, which are updated on the

basis of intermediate results. This means that, at each step, the information is rear-

ranged (through the VE update) in such a way to take into account the features of

the currently estimated background. As it can be easily guessed, each step of DIVE

corresponds to the solution of a ‘distorted’ inverse scattering problem by means of

the DVE scheme introduced in the previous section.

The proposed imaging scheme is shown in the flowchart of fig.2.8.

It is articulated in five steps:

Fig. 2.8. Flowchart of the DIVE scheme.

i) Initialization: the initial estimate for the contrast function, �1, is obtained by

using the VELI approximation [84]. Of course, one can consider other, more

favorable, starting guesses, when available.

ii) Scenario update: at each iteration the scenario is updated solving the forward

scattering problem for the contrast reconstructed at the previous iteration, say

�k, which represents the background at the current iteration, say k. Such a solu-

tion updates the background field Eb
k and the anomalous field �Es

k. Further-
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more, the Green’s function gbk for the updated background is computed exploiting

reciprocity.

iii) Convergence control : a stopping rule is considered by appraising the relative

residual error (RRE) at k-th iteration, RREk
=

�

�

�

�Es
k
�

�

�

2
/
�

�

�

Es
k
�

�

�

2
. If RREk

is less than a pre-set threshold or larger than the RREk�1 , the procedure is

stopped and �k is taken as the solution of the overall problem. Otherwise, the

iterative procedure continues.

iv) VE update: at each iteration, we build a new set of VE with respect to the current

background, �k. This step and the following one are the main and most important

differences between DBIM and DIVE. The updated VE are designed using the

distorted version of the LSM [96, 100], so that they are adaptive to �k. In fact,

from the physical interpretation of the LSM [98,109], the so-designed virtual total

fields will be focused on the perturbation ��k resembling the field radiated by a

filamentary current in the reference background �k (see Section 2.4.2).

The design equation, for each couple of rs and ro, reads:

N
X

t=1

↵k
(rt, rs)�Es

k
(rt, ro) = gb

k
(ro, rs) (2.39)

where rs is the generic point of an arbitrary grid that samples the imaging region

and ↵k
(rt, rs) are the unknown coefficients. For points wherein (2.39) can be

solved (in the least square sense), the coefficients provide the VE excitations,

which enforce a (virtual) scattered field that matches that of an elementary source

in the current background, i.e., gbk(ro, rs).

To preserve diversity in the data, we create a set of VE by selecting several pivot

points rp among the sampling sets where the virtual fields are focused. To this

end, the regularized solution of (2.39) is found in order to compute the function:

⌥ k
(rs) =

log10
�

�↵k
�

�� log10
�

�↵k
�

�

max

min {log10 k↵kk � log10 k↵kkmax}
(2.40)

wherein k·k is the `2-norm, while ⌥ k is an indicator for the support of ��k on

which we can select evenly spaced P (at most) pivot points.

v) Contrast update via linear inversion: the coefficients ↵k
(rt, rp) corresponding to

the selected pivot points are used to compute the updated virtual background

field as:

Ebk(r, rp) =
N
X

t=1

Eb
k
(r, rt)↵

k
(rt, rp) (2.41)

Then, exploiting the properties of the designed VE [98,100], the virtual total field

Ek is approximated as:
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Ek
(r, rp) ⇡ Ebk(r, rp) + LP [gb

k
(r, rp)] (2.42)

i.e., the sum of the virtual background field Ebk and a low pass filtered version of

gbk, as numerically computed by means of a forward solver [84,87]. This represents

the distorted virtual experiment (DVE) approximation [87]. By using (2.42), we

can cast the linear equation for the contrast update:

�Esk(ro, rp) =
Z

⌦
Gb

k
(ro, r

0
)��k

(r

0
)Ek

(r

0, rp)dr
0
= Ae

k
[��kEk

] (2.43)

where �Esk is the virtual anomalous field and Ae
k is the external radiation

operator at k-th iteration, as computed in step ii).

After solving (2.43), a new reference profile is generated as �k+1
= �k

+��k.

vi) Return to step ii). The iteration continues until the stopping criterion is fulfilled.

In step v), the updated solution �k+1 can be evaluated after that the eq.(2.43) is

solved. Notably, one still has to face an ill-posed (linear) inverse problem, which

requires a regularization to obtain physically meaningful solutions. Inside the DIVE

scheme, the TSVD regularization approach as well as the sparsity promoting scheme

defined in eq.(2.44) have been considered. In particular, the k-th iteration of the CS

based inversion scheme reads:

min

��k

n

�

�Dh�
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�

`2
 � (2.44)

wherein all the involved quantities are defined as in eq.(2.37).

Note that, at each DIVE iteration, the TSVD regularization only acts on the

perturbation ��k as in eq.(2.36), whereas the sparsity promoting regularization in

eq.(2.44) enforces sparsity on the whole contrast profile. This is expected to further

improve the accuracy in the unknown profile reconstructions.

Results: numerical data

To get a better understanding of the DIVE scheme and performances, let us report

a numerical example dealing with a ‘kite’ target shown in fig.2.9, whose leading di-

mension is 1� (� being the wavelength of the homogeneous background, assumed air).

We refer to such an object since in [86] has been shown the incapability of the VELI

approximation to effectively retrieve its electromagnetic properties, i.e., "r = 2.2 and

�r = 0.1 S/m at 5 GHz. The target is positioned inside a square domain of side about

2� and discretized into 42⇥ 42 cells, according to the Richmond’s rule [108]. In order

to collect in a non-redundant way as much information as possible [18], the synthetic
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data are collected by assuming a multiview-multistatic illumination setup with 24 fil-

amentary currents acting as primary sources and receivers. The antennas are evenly

spaced on a circumference � surrounding the region ⌦ at a distance ro = 1.6� from

the origin of the reference system. The scattered field data are simulated by means

of a full-wave forward solver based on the Method of Moments and a CG-FFT proce-

dure, and it is corrupted with a random Gaussian noise with SNR=25dB to simulate

measurement uncertainties.

To evaluate the accuracy of the retrieved contrast function, we use the normalized

mean square error defined by err = k�� �̃k2 / k�k2, where � is the actual contrast

profile and �̃ the estimated one.

Initially, a TSVD based regularization is adopted. In fig.2.10(a), the support in-

dicator (2.40) obtained in the Initialization step is shown. As it can be seen, the

LSM is able to fairly identify the support of the target, thus allowing the selection

of the pivot points and the design of the initial set of VE (k = 1). As expected,

the VELI approximation, whose outcome is given in fig.2.10(b) and 2.10(c), fails in

reconstructing the targets. Nevertheless, this partial unsatisfactory reconstruction is

assumed as the new reference scenario and the pertaining forward scattering problem

is solved. The VE are updated on the basis of the new indicator shown in fig.2.10(d),

which allows to identify the support of the (geometrical and physical) variation ��1;

then, the contrast profile in fig.2.10(e) and 2.10(e) can be achieved by adding ��1 to

the previous reconstruction. As it can be seen, such a reconstruction is far from the

ground truth and hence the iterative procedure continues since the stopping criterion

is not fulfilled. By iterating the design of VE, DIVE progressively turns the initial

reconstruction �1 into a reliable quantitative estimate as shown in fig.2.10(h) and

2.10(i), corresponding to a reconstruction error as low as 18%. This result requires

eight iterations (with NT = 76, 91, 118, 126, 69, 108, 88, respectively, chosen on the

base of the guidelines given above).

For the sake of comparison, we have tried to reconstruct the electromagnetic prop-

erties of the ‘kite’ target by using the DBIM in conjunction with a TSVD regular-

ization (see figs.2.10(j)-2.10(k)). In this case, the iterative scheme diverges, with a

reconstruction error of 199%. Due to the large model error associated with the DBA,

the Picard’s plot cannot be exploited. Hence, we have heuristically set the truncation

index NT at the cutoff value of �15 dB below the relevant maximum singular value

of the operator. Notably, this is in the order of the noise on the data.

The same analysis has been performed by using the CS inspired approach to carry

out the inversion at each iteration of DIVE. From figs.2.11(a)-2.11(i) the evolution of
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(a) (b)

Fig. 2.9. DIVE with numerical data: the ‘kite’ target. (a) Real and (b) imaginary part of

the actual contrast profile.

the iterative reconstruction can be appreciated. In fig.2.11(h) and 2.11(i) the outcome

of the DIVE scheme is shown; as it can be seen, the joint use of DIVE and the

sparsity promoting approach provides a nearly optimal reconstruction, with a final

reconstruction error as low as 3%. In this case, we have considered ˆ� = 0.75 for the

Initialization step, and ˆ� = 0.55 for the following iterations. The power of the sparsity-

promoting approach in giving multi-resolution images can be also observed in the

retrieved contrast profile by means of the DBIM equipped with sparsity enhancement

(ˆ� = 0.3 for the Initialization step, while ˆ� = 0.6 for the following iterations). As it

can be seen from fig.2.11(j) and 2.11(k), the reconstruction is improved but the DIVE

scheme is still outperforming the DBIM one, which achieves a final synthetic error as

large as 76%.

More details on the number of iterations, err and RRE for each method are

reported in Table 2.2.

Table 2.2. DIVE for ‘kite’ target: details of the inversion procedure for different analyzed

approaches.

err (k=0) err RRE # iterations

DIVE-TSVD 0.89 0.18 0.005 8

DIVE-CS 0.76 0.03 0.003 7

DBIM-TSVD 1.00 1.99 0.194 3

DBIM-CS 0.94 0.76 0.109 4



2.4 Two new inversion methods: the “DVE” and the “DIVE” approaches 41

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 2.10. DIVE with numerical data: TSVD regularization. (a) Normalized LSM indicator

for the Initialization step with superimposed the pivot points marked as stars. (b) Real and

(c) imaginary part of the obtained starting guess. (d) Normalized LSM indicator and pivot

points for the first step of the iterative procedure (k = 1); (e) real and (f) imaginary part

of the corresponding retrieved contrast profile at k = 1. (g) Normalized LSM indicator and

pivot points for the last step of DIVE-TSVD scheme (k = 8); (h) real and (i) imaginary part

of the final retrieved contrast function. (j) Real and (k) imaginary part of the final retrieved

contrast profile by means of DBIM-TSVD after k = 3 iterations.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 2.11. DIVE with numerical data: sparsity promoting regularization. (a) Normalized

LSM indicator for the Initialization step with superimposed the pivot points marked as stars.

(b) Real and (c) imaginary part of the obtained starting guess but with a sparsity promoting

scheme. (d) Normalized LSM indicator and pivot points for the first step of the iterative

procedure (k = 1); (e) real and (f) imaginary part of the corresponding retrieved contrast

profile at k = 1. (g) Normalized LSM indicator and pivot points for the last step of DIVE-CS

scheme (k = 7); (h) real and (i) imaginary part of the final retrieved contrast function. (j)

Real and (k) imaginary part of the final retrieved contrast profile by means of DBIM with a

sparsity promoting scheme and after k = 4 iterations.



2.4 Two new inversion methods: the “DVE” and the “DIVE” approaches 43

Results: experimental data

In this section, we have considered three targets from the Fresnel database: the

FoamDielIntTM and the FoamTwinDielIntTM [106] described in Sec.2.4.2, and the

TwinDielTM which consists of two identical dielectric cylinders of radius 1.5 cm and

relative permittivity 3± 0.3 [110].

It is worth noting that all the reconstructions have been obtained using single

frequency data. Besides being different from what is usually done in the literature

(see [54, 57, 111]), it is important to remark that the chosen frequency is such that

the targets cannot be assumed to be “weak”. In addition, no a priori information on

the admissible values of permittivity and conductivity is enforced through regulariza-

tion, neither explicit support information provided by eq.(2.40). Finally, to appraise

the robustness of DIVE equipped with the sparsity promoting scheme, we have also

carried out an analysis when decreasing the number of data exploited in the quan-

titative inversion procedure. In particular, the reduction affects both the number of

transmitting and receiving antennas. The dimension of the processed data matrix is

referred to as Z in Tables 2.3-2.5.

For the TwinDielTM target, the working frequency is 6 GHz, and the investigated

area (0.15 ⇥ 0.15 m2 large) is discretized into 64 ⇥ 64 cells. The results reported in

fig.2.12 have been achieved with Z = 72 ⇥ 36. The outcome of the DIVE-TSVD

approach is shown in fig.2.12(b) and 2.12(c). As it can be seen, the method is able

to retrieve the two cylinders. Nevertheless, the reconstruction with DIVE-CS (see fig.

2.12(d) and 2.12(e)) is remarkably better, in terms of both electromagnetic properties

and scatterers’ shapes. Even when reducing experiments and data, using a 36 ⇥ 18

multiview-multistatic data matrix, the results are fully satisfactory, see fig.2.12(f)

and 2.12(g). For more details on the number of iterations and RRE relative to each

method, please see Table 2.3.

Table 2.3. DIVE for Fresnel TwinDielTM target: details of the inversion procedure

RRE # iterations

DIVE-TSVD, Z = 72 ⇥ 36 0.06753 12

DIVE-CS, Z = 72 ⇥ 36 0.06826 5

DIVE-CS, Z = 36 ⇥ 18 0.05374 7

For the FoamTwinDielIntTM target, the results are reported in fig. 2.13 and Table

2.4, respectively. The working frequency is 4 GHz and the side of the investigated area

is 0.175⇥ 0.175 m2, while the discretization grid is 78⇥ 78. The sizes of the exploited
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 2.12. DIVE with experimental data: Fresnel TwinDielTM target at 6 GHz. (a) Refer-

ence profile. (b) Real and (c) imaginary part of the retrieved contrast function with DIVE-

TSVD (during the iterative procedure N
T

= [117, 90, 148, 106, 91, 126, 115, 154, 122, 131, 142],

for the initial guess N
T

= 140); (d)-(e) are the same of (b)-(c) but for DIVE with sparsity

promoting regularization; (f)-(g) are the same of (d)-(e) but for a reduced number of pro-

cessed data (see Table 2.3).

multiview-multistatic data matrices are 45 ⇥ 18 and 23 ⇥ 18, respectively. Again,

DIVE-CS gives back a more accurate reconstruction in terms of both shape and

electromagnetic properties of the target (figs.2.13(d)-2.13(g)) with respect to DIVE-

TSVD (fig.2.13(b) and 2.13(c)).

It is worth noting that, at the considered frequency of 4 GHz, the separation between

the two higher permittivity cylinders is 2 cm, that is, 0.267 in terms of the wavelength

in the background medium. Hence, DIVE is able to resolve targets well below the

half-wavelength Rayleigh limit. Actually, the separation is just slighlty larger than a

quarter of the wavelength, i.e., the resolution limit for BA, when using full aperture

(multiview multistatic) data.
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 2.13. DIVE with experimental data: Fresnel FoamTwinDielIntTM target at

4 GHz. (a) Reference profile. (b) Real and (c) imaginary part of the re-

trieved contrast function with DIVE-TSVD (during the iterative procedure N
T

=

[86, 73, 96, 72, 50, 74, 34, 67, 68, 83, 69, 48, 68, 91, 79, 89], for the initial guess N
T

= 86); (d)-

(e) are the same of (b)-(c) but for DIVE with sparsity promoting regularization; (f)-(g) are

the same of (d)-(e) but for a reduced number of processed data (see Table 2.4).

Table 2.4. DIVE for Fresnel FoamTwinDielIntTM target: details of the inversion procedure

RRE # iterations

DIVE-TSVD, Z = 45 ⇥ 18 0.01669 17

DIVE-CS, Z = 45 ⇥ 18 0.01419 7

DIVE-CS, Z = 23 ⇥ 18 0.09123 6

Finally, for the FoamDielIntTM target, we have considered the data at 4 GHz and

an investigated domain of 0.125⇥ 0.125 m2 discretized into 78⇥ 78 cells. The results

are reported in fig.2.14 and have been achieved with 23 ⇥ 18 and 9 ⇥ 9 multiview-

multistatic data matrices. DIVE-TSVD results are shown in fig.2.14(b) and 2.14(c),

while DIVE-CS ones in figs.2.14(d)-2.14(g). As it can be seen, even in this case, the
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improvements provided by the CS tool are clear, as indeed DIVE-CS is able to provide

a nearly optimal reconstruction of the nominal electromagnetic properties of both the

two nested cylinders. More details on the number of iterations, and the final value of

RRE, are given in Table 2.5.

Note that in processing these data, we have used the same values of the regularization

parameter of the simulated data, except for the cases of unsampled data matrices for

witch we have used ˆ� = 0.40, since a higher level of accuracy can be required.

Finally, in all the cases, the iterative procedure stops because of the fulfillment of

the convergence criterion in terms of RRE. For the sake of brevity, the unsuccessful

inversions obtained with DBIM in the same conditions have not been reported.

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 2.14. DIVE with experimental data: Fresnel FoamDielIntTM target at 4 GHz. (a)

Reference profile. (b) Real and (c) imaginary part of the retrieved contrast function with

DIVE-TSVD (during the iterative procedure N
T

= [55, 36, 51, 40, 47, 35, 46, 51, 55], for the

initial guess N
T

= 47); (d)-(e) are the same of (b)-(c) but for DIVE with sparsity promoting

regularization; (f)-(g) are the same of (d)-(e) but for a reduced number of processed data

(see Table 2.5).
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Table 2.5. DIVE for Fresnel FoamDielIntTM target: details of the inversion procedure

RRE # iterations

DIVE-TSVD, Z = 23 ⇥ 18 0.0182 10

DIVE-CS, Z = 23 ⇥ 18 0.0188 5

DIVE-CS, Z = 9 ⇥ 9 0.0354 6

2.5 A representation for non-radiating sources

As is well known, the so-called non radiating (NR) source are non trivial sources

compactly supported in a given domain and that have the interesting (and surprising)

property that they generate fields that vanish identically outside the source region

[24,82]. In an inverse scattering problem, such an amazing property of the NR sources

is closely related to questions concerning the uniqueness and ill-posedness.

The subject of NR sources distribution has been studied for many years and partic-

ular interest has been devoted to define the field that they generate within the region

they occupy [24,112]. In design problems, non radiating sources are of interest for at

least three different reasons. In fact, in antenna synthesis the addition of a NR source

to an already synthesized distribution may considerably simplify the realization of the

actual antenna. Also, the synthesis of invisibility devices could be interestingly dealt

with by looking (for each situation of interest) for contrast sources such to be non ra-

diating [113–117]. Last, but not least, note that in any inverse scattering problem the

NR part of the contrast source is the actual unknown part, as the radiating part can

be eventually determined2 from the data equation. Hence, a general representation of

NR sources is of interest.

As demonstrated by Devaney and Wolf [24], a NR source can be easily constructed

by solving the following relation:

WNR(r,!) = [r2
+ k2b ]f(r,!) (2.45)

namely, by applying the Helmholtz operator (i.e., the term in square brackets) to a

function f(r,!) that is compactly supported in the spatial volume ⌦ bounded by a

closed surface ⌃ at any given frequency ! and possesses continuous partial spatial

derivatives throughout this volume but is otherwise arbitrary.

The above assumptions of f imply that:

2 but for the “poorly radiating” part corresponding to the smaller singular values of A
e

.
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:

f(r,!)|r2⌃ = 0

@f(r,!)
@n

�

�

�

r2⌃
= 0

(2.46)

where @/@n denote differentiation along outward normal to ⌦.

Then, the simple idea pursued in the following is to exploit the definition (2.45)

to get a representation and eventually design NR currents. To this aim, let consider

the 2D scenario depicted in fig.2.15 in which the spatial volume is a square domain

2a⇥ 2b large, with a = b.

Fig. 2.15. 2D scenario for non-radiating currents.

A possible definition for the function f [(r = x, y)] could read:

f(x, y) =
+1
X

n=�1

+1
X

m=�1
anm ej(

n⇡

a

x+m⇡

b

y
) (2.47)

so that it possesses continuous partial spatial derivatives. Accordingly, constraints

(2.46) particularize as:
8

>

>

>

>

>

>

>

>

<

>

>

>

>

>
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>

>

:

f(x = a, y) = f(x = �a, y) = 0

f(x, y = b) = f(x, y = �b) = 0

f 0
(x = a, y) = f 0

(x = �a, y) = 0

f 0
(x, y = b) = f 0

(x, y = �b) = 0

(2.48)

in which the superscript 0 indicates the first derivative.

By substituting the function f as defined in (2.47) into the equation (2.45) and

by applying the Helmholtz operator (see Appendix B for the extended calculations),

the following expression for WNR is achieved:

WNR(x, y) =
+1
X

n=�1

+1
X

m=�1



k2b � ⇡2

✓

n2

a2
+

m2

b2

◆�

anm ej(n
⇡

a

x+m⇡

b

y
)

=

+1
X

n=�1

+1
X

m=�1
cnm ej(n

⇡

a

x+m⇡

b

y
) (2.49)
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where:

cnm = anm



k2b � ⇡2

✓

n2

a2
+

m2

b2

◆�

(2.50)

By following the math in Appendix B, constraints (2.48) turn as follow:
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(2.51)

Then, expression (2.49) subject to constraints (2.51) is a possible representation for (a

class of) NR sources. Notably, any current obeying to (2.49) and (2.51) is NR, but the

reverse is not true, so that some NR sources could exist which cannot be represented

in such a way [118].

As an example of usefulness, and a test of numerical effectiveness (i.e., robustness

to numerical approximations) we have considered a region ⌦ 2.6� ⇥ 2.6� large and

discretized into 52 ⇥ 52 square cells. Moreover, the involved summations have been

truncated by setting the total number of coefficients equal to 2601, so that they are

of a similar order of the number of cells.

In fig.2.16(a) some coefficients cnm obeying (2.51) are depicted. They have been ob-

tained as the outcome of the Matlab R� optimization toolbox by considering equations

(2.51) as constraints of an “optimization” problem without any objective function.

The effectiveness of the representation is proved by plotting the field radiated by the

synthesized WNR current on 24 points located all around ⌦ at distance of about 2�.

In particular, in fig. 2.16(b) it is shown a comparison with the field radiated by the

purely radiating current defined by a properly weighted Bessel function J0(kbr)3. As

it can be seen, the field radiated from WNR is five orders of magnitude smaller than

the field radiated from J0, and smaller and smaller fields can be obtained by using a

denser grid.

2.5.1 A possible physical interpretation

In the 2D TM scalar problem dealt with in this thesis, the z-component of the total

electric field fulfills the following equation:

r2Ez + k2bEz = j!µWz (2.52)

3 Note that the sources are scaled in such a way that they have the same energy.
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(a) (b)

Fig. 2.16. Design of non radiating sources. (a) Synthesized coefficients and (b) compari-

son of the radiated field by the purely radiating Bessel function (continuous line) and the

synthesized NR source (dashed line).

since Ez = �j!Az in the scalar case, Az being the z-component of the vector potential

associated to the source.

By comparing eq.(2.52) with eq.(2.45), the auxiliary function f we have used can be

interpreted as the total electric field Ez (but for an unessential constant).

Therefore, one can apply the equivalence theorem on a surface ⌃ embedding ⌦

and the equivalent magnetic and electric sources can be respectively defined as:

Wms = �in ⇥ E (2.53)

W s = in ⇥H (2.54)

wherein in is the normal vector to ⌃, while E and H are the vector electric and

magnetic field, respectively.

One of the possibility to have null field outside ⌦ is that both Wms and W s are

equal to zero. Let us consider for the sake of simplicity the edge of ⌃ at x = a (the

same arguments will hold for the others edges). Accordingly:

Wms = �ix ⇥ Eziz = Eziy (2.55)

W s = ix ⇥ (Hxix +Hyiy) = Hyiz = �@Ez

@x
= �@Ez

@n
(2.56)

so that, the conditions Wms = 0 and W s = 0 imply:
8

>
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>

:

Ez(r)|r2⌃ = 0

@E
z

(r)
@n

�

�

�

r2⌃
= 0

(2.57)

that are exactly the same conditions in eq.(2.46).

Unfortunately, as pointed out in [118], conditions Wms = 0 and W s = 0 are not

the unique conditions for defining non radiating equivalent currents, so that repre-

sentation (2.49) subject to conditions (2.51) does not cover the representation of all
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possible non radiating sources. A more general (complete) representation would be

obtained by using representation (2.47) for f = Ez and using condition (10b) of [118].

Unfortunately, this latter appears to be difficult to be practically implemented/ap-

plied.

2.6 Concluding remarks

The content of this Chapter deals with contributions to both electromagnetic theory

and the solution of inverse scattering problems. As far as the theoretical part is con-

cerned, a spectral analysis of the information content of the data (i.e., the scattered

field) in an inverse scattering problem has been proposed for different approximated

models. As a matter of fact, the spectral content of such a scattered field is bounded

and a relation for the unknown object of the problem to be detected (or ‘undetected’,

see the remainder of the thesis) has been derived for the CS-EB and the SPF ap-

proximations. As a further theoretical contribution, a novel representation for non

radiating sources has been given, which is useful for a simpler realization of antennas,

or for imaging problems, or for invisibility problems.

Regarding the solution of the inverse scattering problems, two novel strategies have

been proposed that derive from the new framework of the ‘virtual experiments’ (VE)

and the pertaining linear approximation. In particular, the distorted virtual experi-

ment (DVE) strategy is devoted to retrieve the electromagnetic properties of anoma-

lies embedded in a non-homogeneous scenario, while the distorted iterated virtual

experiment (DIVE) approach aims at enlarging the range of validity of the VE-based

linear approximation by iteratively solving a differential problem by means of DVE.

The two inversion schemes have been validated with both numerical and experimental

data provided by the Institute Fresnel of Marseille.

The developed theories and procedures, as well as all more traditional results and

tools in inverse scattering, can be effectively exploited in the synthesis and design of

innovative devices, which is the subject of the remainder of the thesis.





3

SYNTHESIS OF VARIABLE MULTI-PURPOSE

DIELECTRIC PROFILE ANTENNAS

3.1 Introduction

A class of dielectric lenses qualify as GRadient refractive INdex (GRIN) devices. As

is well known, GRIN media allow to control the electromagnetic field path, so the

design of this kind of devices is of interest in very many practical instances.

Classical well known GRIN devices are the Luneburg lens [119, 120] and the

Maxwell fish-eye lens [121]. The Luneburg lens allows to transform the point source

radiation into a plane wave; vice versa, each point on the surface of an ideal Luneburg

lens is the focal point for parallel radiation incident on the opposite side. Differently,

in the Maxwell fish-eye lens if a point is located at the rim of the spherical surface,

the lens will focus the ray to the opposite point on the same surface.

From a practical point of view, the realization of a GRIN lens with a generic

gradient index profile poses difficult fabrication challenges. Hence, the above described

lenses are normally layered structures of discrete concentric shells, each of them having

a different refractive index, thus leading to a stepped-index lenses [122–124]. As it can

be easily guessed, such a strategy results in a tradeoff between the number of shells and

the achieved performances. As a matter of fact, a huge amount of work has been done

in literature in the synthesis of GRIN devices by exploiting several methodologies and

theoretical arguments, ranging from metamaterials (MTM) and metasurfaces (MTS),

by exploiting Transformation Optics (TO) [125].

The Luneburg lens and the Maxwell fish-eye lens are elegant solutions of the

Maxwell equations, but they are of course unable to realize a different given behavior of

the electromagnetic field. To overcome this limit, MTS and TO have been exploited to

develop non-canonical solutions, leading to conductors and dielectrics based solutions,

respectively [126–133].

Unfortunately, the bi-anisotropic materials generally obtained by TO are so com-

plicated that cannot be easily realized. So, in order to use the potential of TO for
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practical design of devices, it is important to relax the exact required parameters

of the material leading to an unavoidable deterioration of the performances of the

device.

As already argued, an effective alternative is represented by inverse scattering,

which provides an interesting framework for the synthesis of dielectric profile antennas

[104, 134, 135], as well as of other devices [136, 137]. In fact, it represents a general

methodology which allows to control the electromagnetic waves behavior in order

to obtain generic far field specifications. In fact, in an inverse scattering problem the

aim is to retrieve location, shape and electromagnetic properties of an unknown object

starting from the knowledge of the incident field and the measurements of the arising

scattered or total field. Then, if a specific behavior of the total field is considered as

available data of the problem (rather than the measured total field), the diagnosis

problem can be turned into a synthesis one [104,134,135].

On the other side, a number of issues have to be fixed in order to exploit inverse

scattering as a design tool. As a first question, it is readily noted that for a target

total field the resulting dielectric profile will be a function of the amplitude of the

primary source. Second, the actual feasibility of the resulting profile will depend on

questions such as symmetry, number of different materials involved, and actual phys-

ical feasibility1 of this latter. These issues and possible way to conveniently tackle

them (as well as demonstration of the usefulness of the developed tools) will be the

subject of the remainder of this Chapter.

3.2 A new formulation of the Contrast Source Inversion (CSI)

method: determining the amplitude of the primary sources

Let us recall the compact formulation of the data and state equations governing the

inverse scattering phenomenon:

Es(ro, rt) = Ae[W (r, rt)], r 2 ⌦, ro 2 �o, rt 2 �t (3.1)

W (r, rt) = �(r)Ei(r, rt) + �(r)Ai[W (r, rt)], r 2 ⌦, rt 2 �t (3.2)

in which Ae and Ai are a short notation for the radiation operators, whose explicit

expressions are given in (1.3) and (1.2). Note that, differently from (1.3) and (1.2), two

distinct surfaces are considered for the transmitting (�t) and detecting (�o) antennas,

in order to have an increased flexibility for the tools which follow.
1 By “physically feasible” statement, permittivity values larger than 1 and conductivity

values larger than 0 are meant.
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As is well known, the inverse scattering problem is non linear since both the

contrast function �(r) and the contrast source W (r, rt) are unknowns [1–3]. In order

to face with such a difficulty, several efforts have been carried out in the literature to

develop effective solution methods [19,20,34,138,139]. The contrast source inversion

(CSI) method [20, 138] is one of the most popular and effective inversion schemes

which allows to face the inverse scattering problem in its full non-linearity, while

dealing with a mathematical problem involving just linear and quadratic equations.

In particular, it simultaneously looks for both the contrast � and the contrast source

W , and the solution is iteratively built by minimizing a cost functional which takes

into account the data-to-unknown relationship and the state equation [19,20,34,138].

The mathematical formulation of the CSI method is reported in Appendix C.

When a synthesis problem is considered instead of a diagnosis one, the aim of

the inverse scattering problem becomes the design of a device able to realize given

fields. In particular, one wants to determine �(r) (i.e., the electromagnetic properties

of the ⌦ region) starting from the knowledge of the incident field and obeying given

specifications on the total field on �o. Let us note explicitly that design constraints

are in terms of the total fields, which is slightly different from more usual inverse scat-

tering problems (where equations are usually written in terms of the scattered field).

Obviously, one can easily go from one formulation to another by simply subtracting

or adding the incident fields.

It is also worth to note that for a given total field on the observation domain �o,

different amplitudes of the incident fields give rise to different requirements on the

scattered fields (and hence to different profiles). For this reason, it proves convenient to

modify the standard CSI algorithm by considering one more set of complex unknowns

⌧ (v) modulating the amplitudes of the primary sources. In fact, the exploitation of

these additional degrees of freedom will allow for a better matching of the desired

fields, and/or to simpler contrast profiles. Then, it is convenient to distinguish among

a ‘basic’ incident field bE(v)
i (corresponding to unitary excitation) and an ‘actual’

incident field E(v)
i (corresponding to the synthesized excitations of the primary sources

times the corresponding bE(v)
i ).

From the above, we recast the CSI functional as follow:

�(W,�, ⌧) =
T
X

v=1

�

�

�

Ae
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W (v)
⇤� E(v)

+ ⌧ (v) bE(v)
i

�

�

�

2

2
�

�E(v)
�

�

2

2

+

T
X

v=1

�

�

�

�Ai

⇥

W (v)
⇤

+ �⌧ (v) bE(v)
i �W (v)

�

�

�

2

2
�

�

�

bE(v)
i

�

�

�

2

2

(3.3)
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where k·k2 is the `2-norm and T is the number of different incident fields. Note that

we have written the scattered field as Es(ro, rt) = E(ro, rt) � ⌧ bEi(ro, rt), E(ro, rt)

being in this case the assigned total field on �o, i.e., our design constraint.

As it can be seen, the normalization herein considered for the first addendum is not

the same as in functional (C.1). In fact, the total field is considered rather than the

scattered field, since this latter would change its value at each iteration due to the

rescaling of the incident field by ⌧ (v).

The solution of the inverse scattering design problem can still be solved by mini-

mizing the cost functional (3.3) and by adopting the procedure developed in [34]. In

particular, the minimization is pursued by means of a conjugate gradient algorithm

in which, at each step, the values of �, W (v) and ⌧ (v) are updated according to a

procedure of the kind:
2
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(3.4)

in which, k and (k+1) indicate the k-th and (k+1)-th iteration, respectively, r�, rW

and r⌧ are the gradients of the functional � with respect to �, W and ⌧ , while �k

is a scalar parameter that has to be evaluated at each iteration in order to guarantee

the maximum decrease of the functional along the direction given by Hr� (H being

a dyadic obeying the Polak-Ribiere scheme) [34].

Obviously, the gradient of the functional and the coefficients of the fourth order

polynomial in the variable �k involved in the line minimization step are properly

modified with respect to [34]. Their expression can be found in Appendix D.

3.3 Further modifications: enforcing desired properties on the

unknown profile

As previously discussed, the intrinsic non linearity of the inverse scattering problem

makes it difficult to develop reliable algorithms. Since (3.3) is a non quadratic func-

tional of the unknowns and may depend on thousands of variables, the problem arises

on how to find its global minimum avoiding globally minimization schemes or approx-

imations. In fact, a gradient-based minimization scheme could be trapped into local

minima, which are false solutions of the problem.

In [34] has been shown that the functional (C.1) involved into the standard CSI

has a polynomial nature and such a circumstance led in [19] to infer some general rules

affecting occurrence of local minima. As gathered by Isernia and co-workers [19], a
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priori information can play a crucial role in reducing the number of unknowns and

simplify the solution of the problem. In particular, such a priori knowledge can be

exploited as deterministic constraints by adding a suitable penalty term �p to the cost

functional, in such a way that all local minima of (3.3) not satisfying �p disappear in

the penalized functional:

�0
= �+ wp�p (3.5)

where wp is a positive weighting coefficient that (provided it is sufficiently large)

enforces the minimization to evolve inside or close to the set implicitly defined from the

meant constraints. Hence, �p is a regularization function and wp is the regularization

parameter. Notably, the choice of the parameter wp plays a key role, since it determines

the relative weight of the regularization term with respect to the other terms of the

cost functional. As usual, if it is too small, the enforced behavior does not come to

light, whereas a too large value entails that less importance is given to the fitting of

the data with respect to the behavior enforcement.

The interest of these arguments and tools for the present design problem is readily

understood: if the penalizing term is a functional of the unknown �, it allows to enforce

some desired behavior on the contrast profile.

A first useful requirement could be enforcing lossless and physical feasibility prop-

erties of the contrast function. To this aim, the pertaining additional term can be

given as:

�p = �f (�) = k�� f(�)k22 (3.6)

where f(�) is the projection of � into the set of admissible functions (for example,

the set of real and positive functions). Note that this latter condition could allow to

avoid metamaterials in the design of microwave devices since the adoption of natural

(or better, bulk) materials can allow an easier manufacturing of the device.

A second possible requirement on � could be enforcing a circular symmetry. In

this case, the additive penalty term would read:

�p = �s(�) =

�

�

�

�

@�

@✓

�

�

�

�

2

2
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in which ✓ is the angular coordinate of the polar reference system. Notably, minimiza-

tion of �s allows to minimize the angular variation of the contrast function around

the center of the coordinate system.

Additionally, in some circumstances a gently varying profile can be useful, so that

a suitable penalty term is:

�p = �⇢2(�) =

�

�

�

�
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(3.8)
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wherein ⇢ is the radial coordinate of the polar reference system and such a `2-

minimization enforces a smooth variation of � along the radial coordinate.

It is worth to note that the optimization of (3.5) within a conjugate gradient

scheme requires the computation of the gradients of the different addenda. Their

expressions as well as the coefficients occurring in the line minimizations are reported

in Appendix D.

3.3.1 Exploiting inverse scattering and Compressive Sensing for design

problems

The CS theory provides many useful tools for solving, in an accurate fashion, linear

problems when the unknown signal is known to be S-sparse (i.e., it has S non-zeros

coefficients, whose location is unknown, of a proper basis). Also, CS is of the outmost

interest in design problems, as “sparsest” solution may correspond to the most effective

(or cheapest) solution to a given problem. However, as already stressed, the inverse

scattering problem is non linear and hence the exploitation of CS methodologies is

not straightforward. This notwithstanding, in [77] some smart strategies have been

proposed to extend the applicability of CS to CSI scheme.

By paralleling the previous Section, it is possible to refer to the `1-norm penalized

CSI developed in [77] in order to enforce some other desired behavior on the contrast

function. For instance, in case of circularly symmetric profiles, an interesting chance

for simplified manufacturing is the use of a reduced number of different materials.

From a mathematical point of view, such a circumstance leads to define a proper

basis in which the unknown � is expected to be sparse. As a matter of fact, by

considering the `1-minimization of the radial derivative of � (with respect to the

center of the region of interest), the arising function will be sparse in the space of

radial step functions. Hence, the penalty term reads [77,135]:

�p = �⇢1(�) =
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(3.9)

in which k·k1 is the `1-norm, ⇢ is the radial coordinate of the polar reference system,

while the minimization of the `1-norm of the radial derivative of � both enforces

a piece-wise constant behavior on the contrast profile and guarantees the minimal

number of hops. Therefore, a stepped-index profile is (in principle) achieved.

As far as the modification of the gradient of the functional for the pertaining

penalty term is concerned, it is worth to note that due to the presence of the `1-

norm, the functional (3.9) is non-differentiable when its argument is equal to zero.

This drawback has been overcome in [77] by considering the sub-gradients technique

[140,141]. The arising expressions can be found in Appendix D as well.
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3.3.2 On the choice of the weighting parameters

Some consideration on the choice of the weighting parameters is needed. As a matter

of fact, in a synthesis problem, location and shape of the device are fixed design

parameters (only the electromagnetic properties are unknown) and hence one can

take advantage from these a priori information to define wp. In particular, by taking

into account that the functional is dimensionless, a possible choice for the physical

feasibility constraint enforced by �f is wp ⌘ wf = 1/A�2 (A2
� being the area of

the device normalized to the square amplitude of the considered wavelength). In

the same manner, for the circular symmetry constraint one could indeed consider

wp ⌘ ws = An (An being the area of the pixel). As far as the penalty terms �⇢2 and

�⇢1 is concerned, in order to enforce the sparsity requirement in the best possible

way (and without prevailing on data fitting) the weighting coefficient is set according

to [142], in which an iterative algorithm for reweighted `1-minimization is proposed.

In particular, wp ⌘ w⇢ is updated at each step of CSI on the basis of the intermediate

result as w⇢(k+1)
= 1/[|�k| + ⇠], while fixing w⇢(0)

= 1. The parameter ⇠ > 0 has

been introduced in [142] in order to provide stability and to ensure that a zero-valued

component in |�k| does not strictly prohibit a nonzero estimate at the next step;

however, robustness on the choice of ⇠ has been experienced in [142].

3.4 Assessment of the synthesis procedure

In this Section, the effectiveness of the above proposed design procedure by means of

inverse scattering methodologies is proved. For all the examples, the main steps can

be summarized as follows:

i. the design constraints are enforced in terms of the total field on the observation

surface. In order to deal with non super-directive antennas, caution has to be ex-

ercised in order to fix specifications compatible with the DoF of the field radiated

by given dimensions antennas (see [17] for more details);

ii. the CSI method is applied to obtain the electromagnetic properties of a lens

antenna (whose dimensions are previously fixed) as well as the amplitudes of the

considered primary sources . In this step, suitable penalty terms are exploited as

“design facilitators”;

iii. a forward scattering problem is solved on the synthesized lens in order to com-

pare the arising actual radiated field with the target one (as well as with initial

specifications).
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In the following, a ‘controlled’ assessment is firstly carried out with canonical lenses.

Then, antennas generating generic given patterns are dealt with.

3.4.1 Validating the proposed tool: (re)designing canonical lenses and

beyond

The first example deals with the synthesis of a dielectric profile which emulates the

well-known Luneburg lens [119, 120]. As said, the Luneburg lens antenna transforms

the point source radiation into the plane wave and vice versa. Ideally, it consists of

a spherically symmetric (lossless) dielectric sphere with continuous varying permit-

tivity from two at the center of the inner core to the one at the outer surface, i.e.,

"r = 2� (r/R)

2, where R is the radius of the sphere. The dielectric profile of the

Luneburg lens is shown in fig.3.1(a), while from fig.3.1(b) and fig.3.1(c) it is possible

to observe the field it generates on the domain and in the far field, respectively.

The aim of the design procedure is then to determine a GRIN profile which is

able to convert a cylindrical wave from a point source to a plane wave. To this end,

a lens with radius R = 1.5� is considered and a mask with the same dimensions is

defined to force the CSI’s algorithm to evolve inside that region of the space. Note

that this (available) a priori information allows to further regularize the inverse scat-

tering problem. The lens is embedded in a square domain ⌦ with side 3.1� that has

been discretized into 86 ⇥ 86 square cells, according to the Richmond’s rule [108].

The primary source, located at �1.5� from the origin of the reference system (that

is, centered on the lens rim), is defined as Ei(r) = H(2)
0 (kbr). The design constraint

is a field with constant phase assigned on 13 equally spaced points belonging to a

linear fictitious array 3.1� long and located at ro = 1.7�. Note that such a constraint

represents an aperture field.

Since the angular symmetry of the Luneburg lens’ profile naturally allows to accommo-

date multibeam and scanning capabilities without any degradation, in the synthesis

procedure the CSI scheme is constrained by adding the penalty term �s(�) defined as

in (3.7). The synthesized dielectric profile is shown in fig.3.1(d). In order to prove the

success of the design, the forward scattering problem is solved and the phase of the

arising total field is shown in fig.3.1(e) in which a larger domain has been considered.

As it can be seen, the cylindrical wave which originates on the left side of the lens is

converted on a plane wave on the right hand side, despite the achieved permittivity

distribution is different with respect to the canonical lens. Moreover, also the far field

power pattern in fig.3.1(f) is in agreement with the design constraints.
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Interestingly, the proposed framework is however able to easily produce something

more. For example, if a smoother radial variation is desired on the GRIN lens, the

penalty term �⇢2 can be added so that the functional �0
= � + �s + �⇢2 can be

minimized. By so doing, the lens profile of fig.3.1(g) (as well as the phase front of

fig.3.1(h) and the far field pattern of fig.3.1(i)) are obtained. As it can be seen, a

second satisfactory solution to the problem at hand has been easily obtained, which

is more similar to Luneburg lens in fig.3.1(a).

A third interesting solution is also easily found when looking for “easily manu-

facturable” lens. To this end, the penalty term �⇢1 as in (3.9) can be considered in

conjunction with �s. The arising lens is reported in fig.3.1(j) while in figs.3.1(k)-3.1(l)

the phase of the total field and the pertaining far field are depicted; from these latter

(and from all the above cases) it is possible to state that the design procedure is able

to furnish GRIN lens carrying out the required waves transformation.

Although the minimization of the `1-norm involved in the functional �⇢1(�) aims

at retrieving a ‘sparse’ unknown, the arising solution of fig.3.1(j) does not exhibit a

step-wise behavior and this is due to the joint minimization with �s(�). In this re-

spect, an a posteriori discretization of the synthesized permittivity profiles has been

performed. The so obtained step-wise constant profiles are shown in fig.3.2, in which

the permittivity functions of figs.3.2(a),3.2(b),3.2(c) are the discretized version of the

profiles in figs.3.1(d),3.1(g) and 3.1(j), respectively. In figs.3.2(d),3.2(e),3.2(f) is de-

picted a comparison between the far fields radiated by the continuous lens and the

respective disctretized lens for the three achieved solutions. As it can be seen, the

performances keep almost unchanged, thus showing the actual possibility of manu-

facturing this kind of devices.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3.1. Design of a dielectric antenna emulating the Luneburg lens. On the left: permittiv-

ity distribution of the (a) canonical Luneburg lens and of the synthesized lens by exploiting

(d) symmetry penalty term �
s

(w
s

= 1.148 · 10�4, ⌧ = 1), (g) symmetry �
s

and smooth

�
⇢2 (⇠ = 8.7 · 103, ⌧ = 0.6188 + j0.7146) penalty terms, (j) symmetry �

s

and smooth �
⇢1

(⇠ = 10�8, ⌧ = 1) penalty terms. In the central column: phase of the corresponding total

field on a larger domain, in which the black line depicts the contour of the synthesized lens

on the left. On the right: the radiated far fields from the lenses evaluated starting from the

aperture field.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.2. Design of a dielectric antenna emulating the Luneburg lens. On the top: discretized

permittivity distribution of the synthesized one by exploiting (a) symmetry penalty term �
s

(see Fig.3.1(d)), (b) symmetry �
s

and smooth �
⇢2 penalty terms (see Fig.3.1(g)) and (c)

symmetry �
s

and smooth �
⇢1 penalty terms (see Fig.3.1(j)). On the bottom: comparison of

the radiated far fields between the continuous and the discretized lens for the three cases

above.
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In a second set of examples, the design of an antenna emulating the Half Maxwell

Fish Eye (HMFE) lens [121] is carried out. Through a Maxwell fish-eye lens, the energy

of a point source, placed at one side of the lens, converges into a focus point on the

diametrically opposite side of the lens. Due to the symmetry of the structure, a spher-

ical wave at the surface of the lens is converted into a local plane wave at the center

of the lens and reemerges as a spherical wave at the surface on the opposite side. Such

a behavior is due to the GRIN profile which follows the rule "r = 4/
h

1 + (r/R)

2
i2

,

R being the radius of the lens. Thus, the HMFE lens transforms a point source into a

plane wave and, by reciprocity, a beam of parallel rays incident upon the flat side of

the HMFE lens is focused on a point. The permittivity distribution of the canonical

HMFE lens is shown in fig.3.3(a), while in figs.3.3(b) and 3.3(c) the generating field

on the domain and in the far field are reported, respectively.

The goal is to synthesize a lens with radius R = � which behaves as a HMFE lens.

To this aim, a rectangular domain 1.1�⇥2.2� large and discretized into 22⇥44 square

cells has been considered. Also in this case, the design constraint is a constant phase

aperture field assigned in 9 equally spaced points on a segment 2.2� long and located

just in front of the lens at ro = 0.7�. The same primary source of the previous example,

located at rt = 0.5� is considered. Also in this case, for the synthesis procedure

different design facilitators have been adopted and a comparison of the achieved results

is reported in fig.3.3. In particular, the dielectric profiles shown in figs.3.3(d),3.3(g)

and 3.3(j) have been obtained by exploiting the penalty terms �s, �⇢2 and �⇢1 as

for the previous case. By computing a forward problem on the synthesized lens, the

total field inside the ROI is retrieved. As it can be observed from the phase of such a

field on a larger domain (see the central column in fig.3.3), the designed lenses fulfill

the assigned constraints even although the permittivity distribution is quite different

with respect to the canonical case (see fig.3.3(a)). The successful of the design is

also confirmed from the radiated far field (evaluated starting from the aperture field)

depicted on the right side of fig.3.3.

In order to deal with step-wise constant profiles, which are more easily man-

ufacturable, an a posteriori discretization has been performed on the synthesized

continuous lenses of figs.3.3(d),3.3(g) and 3.3(j). The arising devices are shown in

figs.3.4(a),3.4(b) and 3.4(c), respectively. As it can be observed, the radiating perfor-

mances of these latter are almost comparable with the case of continuous lenses, even

if a small degradation is present (see figs.3.4(d),3.4(e),3.4(f))
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Such results (and all the above ones) show the actual capability of the inverse scat-

tering based design in pursuing assigned field specifications and radiating behaviors

by going beyond the canonical solutions.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3.3. Design of a dielectric antenna emulating the half Maxwell fish eye (HMFE) lens. On

the left: permittivity distribution of the synthesized lens by exploiting (a) symmetry penalty

term �
s

(w
s

= 10�6, ⌧ = 1), (c) symmetry �
s

and smooth �
⇢2 (⇠ = 108,⌧ = 0.9135+j0.0842)

penalty terms, (e) symmetry �
s

and smooth �
⇢1 (⇠ = 10�7, ⌧ = 1) penalty terms. On the

right: phase of the corresponding total field on a larger domain; the black line depicts the

contour of the synthesized lens on the left.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.4. Design of a dielectric antenna emulating the half Maxwell fish eye (HMFE) lens.

On the top: discretized permittivity distribution of the synthesized one by exploiting (a)

symmetry penalty term �
s

(see Fig.3.3(d)), (b) symmetry �
s

and smooth �
⇢2 penalty terms

(see Fig.3.3(g)) and (c) symmetry �
s

and smooth �
⇢1 penalty terms (see Fig.3.3(j)). On the

bottom: comparison of the radiated far fields between the continuous and the discretized

lens for the three cases above.

3.4.2 Design of antennas generating generic reconfigurable given patterns

The proposed inverse scattering based design tool is quite general and hence viable

for different kinds of devices. Notably, if a “multi-view” inverse scattering problem

is considered, the above devised procedure immediately leads itself to the synthesis

of (easily) reconfigurable antenna, which is the case we deal in the remainder of the

Chapter. In this Section, the proposed strategy is assessed with the design of a lens

antenna generating a ⌃/� reconfigurable pattern. This is useful for monopulse radar

applications in which the target’s position is calculated by comparing two signals, the

so-called sum and difference signals. To this aim, monopulse antennas are required

to provide both sum (⌃) and difference (�) patterns, the former having one main

lobe along the target direction and the latter exhibiting a null in the same direction

[143]. In the literature, a lot of methods are available for the synthesis of monopulse

antennas, usually relying on either arrays or reflectors [144–147]. With respect to

common architectures, circularly symmetric dielectric lenses achievable by means of

inverse scattering methodologies represent an interesting alternative, since they allow

to overcome beam degradation or mechanical scanning problems.
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The synthesis of the above mentioned lens antenna is pursued by adopting the

proposed design method. In particular, the overall procedure can be summarized as

follows:

i. Definition of the far field target fields: by exploiting the approach in [146], and

taking into account the available DoF [18], a circular harmonics expansion is con-

sidered for the fields and two convenient far field patterns are synthesized which

obey to given mask constraints. Notably, by exploiting the framework of “opti-

mal synthesis” developed during the years at Università Mediterranea, “optimal”

patterns are looked for in such a step. In particular (see Appendix E) we look

for profiles maximizing the slope in the � mode, and subject to some minimal

guaranteed performance in the ⌃ mode, as well as to upper bounds on sidelobes

in both modalities.

ii. Determination of the equivalent near field target fields: in order to avoid possible

numerical drawbacks which could arise when reasoning in terms of far fields, the

observation domain �o is positioned in the near field region and a backpropagation

(from the synthesized far fields) is used in order to evaluate the target fields E

on �o. As just harmonics having an index n : |n|  kbR are used (R being the

radius of the lens), the step is stable with respect to a small variations of the far

field.

iii. Solution of the inverse scattering problem: once the total field E on �o has been

defined, the optimization problem involved in the modified CSI method is solved.

More details about points i. and ii. are given in Appendix E.

In order to solve the inverse scattering problem, let us set the radius of the antenna

equal to R = 2� and consider bE(v)
i (r) = H(2)

0 (�0r) cos4# as primary source, r = (r,#)

being the coordinate of the generic point belonging to a reference system centered on

the phase center of the feed. In particular, the design constraints imply that T = 2

primary incident fields have to be used. By referring to Fig. 3.5, if the one placed

at (rt = 3.1�, ✓t = 0) is active, the ⌃-pattern is provided, while when the two feeds

located at (rt = 3.1�, ✓t > 0 , ✓t = 20

�) are simultaneously active and excited with an

opposite phase, the corresponding total field will provide the �-pattern. In particular,

the design constraints are imposed on an arc of circumference �o located at ro = 4.5�

(which is in the near field) and ✓o 2 [�120

� ÷ 120

�
]. Fitting the actual field to the

reference field (as determined in the first step) requires of course a sampling of (both)

the reference and the actual field. Adopting a number of sampling points as discussed

in [18] allows to enforce such a fitting in an accurate while non redundant fashion.
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Finally, the region of interest ⌦ which is 4.5� ⇥ 4.5� large has been discretized into

80⇥ 80 square cells, according to [108].

Fig. 3.5. Synthesis of a ⌃/� reconfigurable pattern antenna: the reference scenario. Two

sets of excitations are depicted: if the “black triangle” antenna is active, then a sum (⌃)

pattern is radiated; if the “white triangle” antennas are active and excited with an opposite

phase, then a difference (�) pattern is radiated.

The synthesized continuous GRIN lens is shown in fig.3.6(a). In using the modified

CSI method, we added the penalty terms �s and �f to the cost functional (3.3), in

order to enforce on the permittivity profile a circularly symmetric behavior and real

values larger than 1. Moreover, we enforced conductivity values �r(r) = 0 in order to

avoid power losses due to the propagation of the field inside the lens.

In order to keep under control the overall process, we computed the total field cor-

responding to the synthesized continuous profile and to the synthesized value of ⌧

(⌧ = [�2.6084 � j7.8221, 1.7136 + j8.1632]). The resulting far field patterns are re-

ported in fig.3.6(b) and 3.6(c) (see dot-dashed blue lines). As it can be seen, the

synthesized GRIN lens well satisfies the far field mask constraints keeping almost un-

changed the beamwidth (BW) of the main lobes and the sidelobes level (SLL) [148]

(see Table 3.1 for a quantitative comparison).

For completeness, the solution of the inverse scattering problem by exploiting the

penalty term �⇢2 in conjunction with �s and �f has also been carried out. The out-

come is shown in fig.3.7(a) and the corresponding far field patterns in fig.3.7(b) and

3.7(c), relative to the pertaining synthesized ⌧ (⌧ = [�4.5029 � j7.0872, 4.1795 +

j6.8097]), still shown the effectiveness of the approach, as also demonstrated by pa-

rameters in Table 3.1.
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(a)

(b) (c)

Fig. 3.6. Synthesis of a ⌃/� reconfigurable pattern antenna. (a) Real part of the permittiv-

ity function of the synthesized GRIN lens by inverse scattering and penalty terms �
s

and �
f

(w
s

= 2.5 ·10�3, w
f

= 0.1, N
c

= 80⇥80). Far field (c) sum and (d) difference power patterns

radiated by the synthesized lens (dot-dashed blue lines). Continuous black and green lines

represent the specified far field power patterns and the mask constraints, respectively.

Table 3.1. Synthesis of a ⌃/� reconfigurable pattern antenna: comparison of the synthetic

parameters for the far field patterns.

BW @ -20dB [deg] SLL [dB]

⌃ � ⌃ �

mask constraints 28 56 -20 -20

GRIN lens by �0 = �+ �
s

+ �
f

38 58 -17.9 -25.27

GRIN lens by �0 = �+ �
s

+ �
f

+ �
⇢2 38 58 -17.9 -25.27
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(a)

(b) (c)

Fig. 3.7. Synthesis of a ⌃/� reconfigurable pattern antenna. (a) Real part of the permit-

tivity function of the synthesized GRIN lens by inverse scattering and penalty terms �
s

, �
f

and �
⇢2 (w

s

= 2.5 · 10�3, w
f

= 0.1, ✏ =, N
c

= 80⇥ 80). Far field (c) sum and (d) difference

power patterns radiated by the synthesized lens (dot-dashed blue lines). Continuous black

and green lines represent the specified far field power patterns and the mask constraints,

respectively.
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3.5 An Artificial Materials based solution

Up to now, the solutions resulting from the modified CSI have shown a far from

trivial GRIN profile also in presence of penalty terms, since the involved unknowns

are implicitly expressed in the common pixel representation basis which is meant to

mimic a generic continuous profile. As already stressed, the actual manufacturing

realization of a GRIN device with a generic gradient index profile is not however a

trivial task.

In the last decades, a great interest was devoted to realize GRIN structures by

means of conveniently designed Photonic Crystals (PCs) [149]. PCs are periodic di-

electric or metallic structures that are artificially designed to control and manipulate

the propagation of light. A photonic crystal can be made either by arranging a lattice

of air holes on a dielectric background (“hole-type” crystal) or by forming a lattice

of high refractive index material embedded in a transparent medium with a lower

refractive index (“rod-type” crystal). Applications of PCs depend on either their pho-

tonic band gaps or tunable dispersion achieved by suitable engineering of the basic

structure, e.g., the filling factor, the lattice period, and/or material index. In partic-

ular, the lattice period (i.e., the distance between two adjacent unit cells) defines the

feature of a photonic crystal. Usually, it is set to be comparable to the wavelength

in the background medium, especially when the photonic bandgap is exploited to en-

sure proper functioning of PCs. However, when the gradient of the basic structure is

considered to guide the electromagnetic wave, such a constraint can be relaxed. This

condition is referred in literature as “PCs in metamaterials regime” [150] and it is

widely used and successfully applied for the realization of canonical lenses [151–155].

As a matter of fact, in these papers the canonical GRIN lens is linked to the graded

PCs by means of the homogenization theory, which instead holds in case of smaller

and smaller lattice period.

In the following, the above mentioned graded PCs based structures in the metamateri-

als regime will be dealt. However, to avoid any kind of terminology misunderstanding,

we will refer to graded Artificial Materials (GAMs). In particular, 2D circular GAMs

structures made by cylindrical dielectric rods will be considered and their design by

means of either a gradient of the refractive index or a gradient of the filling factor

will be proposed.
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3.5.1 Engineering the inclusions values: a new expansion for the contrast

function

Let us consider that the arrangement of the rods in the basic structure of the GAMs

as well as their radius (which is assumed the same) are known a priori. In order to

directly look for a synthesis of a GAMs device exhibiting a gradient of the refractive

index (GAMR), one can expand the unknown contrast function by means of a proper

basis function which projects it into the ‘space of rods’ and adopt it into the modified

CSI functional (3.3). Such an expansion can be given as:

�(r) =
K
X

k=1

�k⇧k(rk), r 2 ⌦ (3.10)

in which ⇧k(rk) are suitable circular (on-off) windows centered in rk, �k are the

actual unknowns of the problem and K is the total number of these unknowns.

By modifying the representation basis, it is possible to design different kinds of devices

exhibiting different permittivity’s spatial variation.

A first possibility amounts of course to allow for K different permittivity values,

K being in this case the total number of rods which made up the structure. As a

consequence, each rod will be made by a different material.

A second possibility, which is the one of interest in what follows, amount to con-

sider circularly symmetric distributions. In fact, such a property is useful when the

functionality of the device should keep unchanged when changing the illumination

direction. In this case, the permittivity value to synthesize must be the same for the

rods belonging to the same ring. From a mathematical point of view, in such a case

the expansion (3.10) can be written as:

�(r) =
K
X

k=1

�k

H
k

X

h=1

⇧kh

✓

r� rkh

ak

◆

, r 2 ⌦ (3.11)

in which �k is the contrast value associated to the k-th ring of rods, K is in this

case the total number of the rings for the arrangement of the rods, Hk is the number

of inclusions along the k-th ring, rkh is the position of the center of the h-th rod

belonging to the k-th ring, and |rkh| = rk. Moreover, each ⇧kh

⇣

r�r
kh

a
k

⌘

function

(which is associated to a single rod) is a circular window of radius ak centered in

rkh. As a consequence, the internal summation defines a composite window which

is different from zero in each rod belonging to the k-th ring, and zero elsewhere.

A graphic representation of the ⇧kh(r) functions for this circumstance is shown in

fig.3.8.
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Fig. 3.8. Graphic representation of the expansion’s basis in case of circularly symmetric

distribution.

A third possibility which is also of interest, is enforcing that different rings exhibit

rods having exactly the same permittivity, which would further simplify realization of

the device at hand. Notably, in case this property is required on adjacent rings, and

if clustering is not fixed a priori, enforcement of such a property could be effectively

performed by CS tool (where finite difference �k�k = �k ��k+1 would be the sparse

unknown). In fig.3.9 is shown the graphical representation of this circumstance in

conjunction with the previous symmetry property.

Fig. 3.9. Graphic representation of the expansion’s basis in case of circularly symmetric

and sparse distribution.

3.5.2 Engineering the filling factor: a smart analytical tool

A more interesting design solution is to determine GAMs with a gradient of the filling

factor (GAMF ), namely a structure in which the contrast value of the rods is always

the same in all rings, and the radii (in each ring) are instead the actual degrees of

freedom of the problem. In fact, just a single material is required in such a case.

However, the direct search for the radii is a very difficult task because of the indirect

way the actual unknowns ak enter into the inverse scattering problem, thus increasing

its non linearity.

Very interestingly, by using classical analytical tools one can exploit the outcomes

of the (partial) result in Section 3.5.1 to synthesize GAMF in a simple fashion. To

be specific, let us take advantage from the fact that the scattering behavior of each

inclusion can be conveniently analyzed in terms of a so-called scattering matrix [156],

thus allowing some smart determination of the radii. In particular, by adopting a
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cylindrical coordinate system centered on the axis of a dielectric2 circular cylinder of

radius a, we can write an expansion in cylindrical harmonics for the incident ( eEi),

total ( eE) and scattered ( eEs) field, respectively, pertaining to the single inclusion [156]:

eEi(⇢, ✓) =
+1
X

n=�1
anJn (kb⇢) e

jn✓ (3.12)

eE(⇢, ✓) =
+1
X

n=�1
bnJn (kr⇢) e

jn✓ (3.13)

eEs(⇢, ✓) =
+1
X

n=�1
cnH

(2)
n (kb⇢) e

jn✓ (3.14)

where an, bn and cn are the expansion’s coefficients, Jn and H(2)
n being the n-th

order Bessel function and Hankel function of second kind, respectively, while kr is

the wave number of the dielectric medium filling the cylinder. Hence, the “response”

of a homogeneous cylindrical scatterer can be conveniently analyzed in terms of the

scattering coefficients sn = cn/an. By considering the expansion (3.12)-(3.14) and by

applying the boundary conditions on the cylinder interface (i.e., for r = a), one easily

achieves [156]:

sn =

cn
an

=

krJ 0
n (kra) Jn (kba)� kbJn (kra) J 0

n (kba)

kbJn (kra)H
(2)0
n (kba)� krJ

0
n (kra)H

(2)
n (kba)

(3.15)

By applying the recurrence formulas for derivatives of the Bessel and Hankel functions

[157], eq.(3.15) can also be turned into:

sn =

(kra) Jn�1 (kra) Jn (kba)� (kba) Jn (kra) Jn�1 (kba)

(kba) Jn (kra)H
(2)
n�1 (kba)� (kra) Jn�1 (kra)H

(2)
n (kba)

. (3.16)

Note that, besides the dependence on the radius a, sn intrinsically depends also on the

contrast function � through kb and kr. Both analytical and numerical studies indicate

that in case of electrically small cylinders |s0| � |si| , i 6= 0, which is the circumstance

that we will exploit in the following.

A numerical study of the sn coefficients’ values is summarized in fig.3.10, in which

the amplitude of the first three terms (i.e., s0, s1 and s2, also being |s�1| = |s1|
and |s�2| = |s2|) is depicted. In particular, the curve’s behavior has been evaluated

varying the contrast function and fixing the radius of the cylinder in fig.3.10(a), and

varying instead the radius and fixing the contrast value in fig.3.10(b). Notably, three

possibilities have been considered for each case.

The numerical study shows that, as long as the dielectric cylinder is sufficiently

small with respect to the wavelength, the term s0 is much larger than all the other, and

2 Same arguments can be exploited for metallic inclusions.



3.5 An Artificial Materials based solution 75

(a) (b)

Fig. 3.10. Magnitude of the scattering coefficient s0 (magenta lines), s1 (blue lines) and

s2 (black lines) for: (a) varying the contrast function at fixed a = �/20 (continuous line),

a = �/15 (dashed line) and a = �/10 (dash-dotted line), (b) varying the radius of the

cylinder at fixed � = 1 (continuous line), � = 2 (dashed line) and � = 3 (dash-dotted line).

the scattering phenomenon is essentially determined from the n = 0 term. Then, one

can keep unaltered the behavior of s0 (and in a first instance of the overall scattering

phenomena) by performing an interchange between the local contrast value �k of the

k-th rod and the radius ak.

Such an interchange can be performed as follow:

i. solve the inverse scattering problem by minimizing functional (3.3) using the

representation (3.11) for the contrast (with ak equal to a fixed value of a);

ii. for each k-th ring, namely for each �k, evaluate s0(�k, a) from eq. (3.16) which

becomes the sk0
target

;

iii. fix a value for � meant to realize the GAMF and solve, for each k-th ring, the

following fitting problem:

Find ak such that |s0(�, ak)� sk0
target

|2 is minimum. (3.17)

3.5.3 Validating the developed tools

The assessment of the proposed methodologies for GAMR and GAMF is performed

by considering the same example of Section 3.4.2, namely by looking at synthesizing

a GAMs lens radiating a reconfigurable ⌃/� pattern. Therefore, the design proce-

dure keeps the same, as well as all the involved parameters, except for the numerical

discretization which is herein considered very dense in order to correctly model the

small circular windows involved in representation (3.11) (and also in the interchanging

tool). The penalty term �f (�) is also considered in the cost functional (3.3) in order

to deal with bulk materials.
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In order to achieve a circularly symmetric radiating behavior, the expansion (3.11)

for the contrast function is adopted in the cost functional (3.3), wherein a number

of rings equal to K = 11 and a radius for each inclusion equal to a = �/15 have

been fixed. As far as the arrangement of the rods is concerned, by taking inspiration

from [152] a six-fold rotational symmetry is considered (see fig.3.11); in particular,

the rods positions on the xy plane (except for the center one) are given by:

xk,h = dk cos

✓

2h⇡

6k

◆

yk,h = dk sin

✓

2h⇡

6k

◆

(3.18)

wherein k = 1, ..,K � 1 is the radial index scanning the rings, h = 1, ..., 6Hk is the

angular index, while d = (R� �/10) /K is the periodicity of the adopted triangular

unit cell reported in fig.3.11.

Fig. 3.11. AM-based structure with a six-fold rotational symmetry. The triangular unit cell

is marked with solid black lines.

The permittivity profile of the obtained GAMR-based lens is shown in fig.3.12(a).

Note that the synthesis procedure leads to a permittivity value for the external ring

equal to 1, so that the overall device results smaller (and actually composed by 10

rings). By using the synthesized value of ⌧ (⌧ = [0.8348�j8.5656,�1.7077+j8.7196]),

one achieves the corresponding ⌃ and � far field patterns, which are depicted in fig.

3.12(c) and 3.12(d) (dot-dashed blue lines). As it can be seen, the new strategy that

allows to directly synthesize GAMR works well, since the design constraints as well

as the far fields masks are fulfilled.

Although the achieved device is of interest by per se (as several fabrication strat-

egy can be exploited for manufacturing), a GAMF solution is even more interesting.

Therefore, the analytic interchanging tool detailed in Sec.3.5.2 has been applied on

the GAMR by adopting a dielectric material with "r = 4.5 (SiO2) for the inclusions.

The so-obtained GAMF profile is given in fig.3.12(b), and the corresponding fields

is depicted in fig.3.12(c) and 3.12(d) with red dotted lines. As it can be observed,



3.5 An Artificial Materials based solution 77

the resulting gradient of the filling factor allows to control the electromagnetic field

path and to fully satisfy the initial specifications, thus keeping almost unchanged the

GAMR’s performances. Such a result proves that the analytic interchanging allows to

preserve the scattering behavior of the lens.

(a) (b)

(c) (d)

Fig. 3.12. Synthesis of a ⌃/� reconfigurable pattern GAMs antenna, K = 11. (a) Real part

of the permittivity function of the synthesized GAM
R

lens by inverse scattering, expansion

(3.11) and penalty term �
s

(w
f

=, N
c

= 408 ⇥ 408) and (b) equivalent GAM
F

lens by

interchanging procedure ("
r

= 4.5, N
c

= 1224 ⇥ 1224). Far field (c) sum and (d) difference

power patterns radiated by the synthesized lens (dot-dashed blue lines). Continuous black

and green lines represent the specified far field power patterns and the mask constraints,

respectively.

With the aim to further reduce the complexity of the synthesized devices, the

same procedure has been applied by reducing the number of rings; in particular, the

minimization of (3.3) is pursued by using K = 9 and a = �/10 for the inclusions.

In fig.3.13(a) the corresponding GAMR lens is reported. Note that also in this case

the rods in the outer ring have unitary permittivity and hence the lens is actually

composed by 8 rings. As it can be seen from the corresponding patterns in fig.3.13(c)

and 3.13(d) (dot-dashed blue lines), it still allows to perform at best the patterns

reconfiguration (⌧ = [0.2553 � j8.4487,�1.2238 + j8.7385]). Interestingly, also the
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analytical interchanging is successful, so that an effective GAMF antenna is finally

achieved (see fig.3.13(b) and the dotted red lines in fig.3.13(c) and 3.13(d)).

(a) (b)

(c) (d)

Fig. 3.13. Synthesis of a ⌃/� reconfigurable pattern GAMs antenna, K = 9. (a) Real part

of the permittivity function of the synthesized GAM
R

lens by inverse scattering, expansion

(3.11) and penalty term �
s

(w
f

=, N
c

= 408 ⇥ 408) and (b) equivalent GAM
F

lens by

interchanging procedure ("
r

= 4.5, N
c

= 1224 ⇥ 1224). Far field (c) sum and (d) difference

power patterns radiated by the synthesized lens (dot-dashed blue lines). Continuous black

and green lines represent the specified far field power patterns and the mask constraints,

respectively.

3.5.4 A comparison with an alternative and more straightforward

strategy

In order to better emphasize the usefulness and the effectiveness of the proposed strat-

egy, a comparison with an alternative strategy is now given. In particular, by starting

from the GRIN profile obtained in Sect.3.4.2, the mixing formulas [158] arising from

the Maxwell-Garnett effective medium theory can be applied to obtain an equivalent

GAMF device. Note that, to the best of my knowledge, such an approach is a novelty

as well when considering non canonical patterns and profiles. As a matter of fact, up
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to now the mixing formulas have just been applied to canonical devices and, in par-

ticular, to the realization of the Luneburg lens [151–155]. Conversely, they are herein

exploited for generic GRIN distribution as follows:

• the synthesized GRIN profile "r(r) ⌘ "r(rs), s = 1, .., Np pixels, by means of the

modified CSI, is re-sampled in a very dense grid, i.e., "r(r) ⌘ "r(rs̃), s̃ = 1, .., ˜Np,

with ˜Np � Np;

• by referring to representation (3.11), K, Hk and ⇧kh are set at will;

• 8 k-th ring, the permittivity value "r
kh

= "r(rkh) is considered to estimate the

pertaining radius for each h-th rod by [152]:

akh =

s

S

⇡N

("b � "r
kh

)("b + "F )

("b + "r
kh

)("b � "F )
(3.19)

wherein "F is the chosen value for the GAMF , S is the area of the adopted unit

cell and N is the number of rods in the unit cell.

Note that the GRIN profile dealt herein are circularly symmetric, and hence the radius

will be the same for all the rods belonging to the k-th ring, i.e., akh ⌘ ak.

In fig.3.14(a) the GAMF arising from the GRIN profile in fig.3.6(a) (from here

on out referred to as #1), by adopting K = 11 and "F = "r = 4.5 is shown. The

forward problem is solved on this profile by using the synthesized ⌧ pertaining to

the profile in fig.3.6(a) in order to evaluate the far field power patterns reported in

fig.3.14(b) and 3.14(c). As it can be seen, the antenna does not fulfill expectations,

since its patterns do not match the given ones and the mask constraints are also

violated. Such a circumstance can be attributed to the homogenization itself, which

may get into troubles in case of a (relatively) rapidly varying refractive index. In fact,

when applying the formula (3.19) on the smooth profile synthesized in Sect.3.4.2 and

reported in fig.3.7(a) (referred to as #2), the same strategy comes out to be effective,

as the homogenization procedure leads now to a much better solution (see the patterns

in fig.3.15(b) and 3.15(c), which are relative to the GAMF in fig.3.15(a)). However,

even starting from a smooth profile, the homogenization based procedure fails when

using a reduced number of rings, as pointed out from the synthetic parameters in

Table 3.2. Finally, it has also been observed that if the material of the rods is set to

a lower permittivity value as, for instance, "r = 1.8, the homogenization gives better

performances, but this corresponds to uncommon materials.

All the above statements are proved by a comparison of the SLL and BW of the

radiated patterns reported in Table 3.2.

As a consequence of the above numerical examples (and many others) it can be

concluded that the strategy proposed in Sections 3.5.1-3.5.2 outperforms the more
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straightforward homogenization procedure. This can be attributed to the circum-

stance of avoiding in the first case the intermediate synthesis of a continuous profile,

whose characteristics may be difficult to emulate by means of a GAMs.

(a)

(b) (c)

Fig. 3.14. Synthesis of a ⌃/� reconfigurable pattern GAM
F

antenna by homogenization:

case #1. (a) GAM
F

device derived from circularly symmetric profile in Fig. 3.6(a) ("
r

= 4.5,

N
c

= 1224⇥1224) and the corresponding far field (b) sum and (c) difference power patterns

(dot red lines). Continuous black and green lines represent the specified far field power

patterns and the mask constraints, respectively.
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(a)

(b) (c)

Fig. 3.15. Synthesis of a ⌃/� reconfigurable pattern GAM
F

antenna by homogenization:

case #2. (a) GAM
F

device derived from circularly symmetric profile in Fig. 3.7(a) ("
r

= 4.5,

N
c

= 1224⇥1224) and the corresponding far field (b) sum and (c) difference power patterns

(dot red lines). Continuous black and green lines represent the specified far field power

patterns and the mask constraints, respectively.
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Table 3.2. Synthesis of a ⌃/� reconfigurable pattern GAMs antenna: comparison of the

synthetic parameters for the far field patterns.

BW @ -20dB [deg] SLL [dB]

⌃ � ⌃ �

mask constraints 28 56 -20 -20

Case 1: GAMs from inverse scattering

GAM
R

lens with K = 11 34 56 -19.3 -23.7

equivalent GAM
F

by analyt. tool (" = 4.5) 37.5 66 -18.65 -22.45

GAM
R

lens with K = 9 34 56 -19.3 -23.9

equivalent GAM
F

by analyt. tool (" = 4.5) 45 55 -18.45 -21.3

Case 2: GAMF from MG

GAM
F

from #1 with K = 11 and " = 4.5 66 103.6 -18.2 -18

GAM
F

from #1 with K = 9 and " = 4.5 66 97 -18.5 -17.8

GAM
F

from #2 with K = 11 and " = 4.5 34.5 70 -15.75 -22.15

GAM
F

from #2 with K = 9 and " = 4.5 56 72 -15.1 -19.6
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3.6 Concluding remarks

In this Chapter the design of new GRIN antennas has been pursued by exploiting the

well-known CSI scheme. In particular, novel synthesis strategies have been proposed

which are based on a proper extension and modification of the CSI algorithm. As a

first contribution, the synthesis of the excitations of otherwise fixed primary sources

has been proposed as a further useful possibility. Then, further modifications have

been proposed which allow to enforce desired properties on the unknown antenna’s

permittivity distribution. Finally, a new representation for the contrast function has

been proposed in order to deal with the synthesis of GAMs devices. In this respect,

two strategies have been discussed allowing the design of the inclusions values and

dimensions, respectively.

The developed tools have been firstly validated with the design of canonical lenses,

thus showing the capability of the approach to realize antennas other than canonical

solutions. Then, the design of an antenna generating an optimal ⌃/� reconfigurable

pattern has been carried. The achieved results confirm the effectiveness of the pro-

posed GAMs synthesis strategy, which outperforms the more straightforward and

intuitive homogenization procedure.

In it worth to stress that all the above inverse scattering-based tools are not

restricted to the realization of ‘canonical’ fields, and that they can be applied to

generic (physically feasible, see [17]) field specifications.





4

SYNTHESIS OF CLOAKING DEVICES

4.1 Motivation and state of the art

The concept of invisibility always had great interest. From mythology it is said about

heroic deeds accomplished thanks to special objects making the hero disappeared, thus

allowing him to mislead the enemy and launch the winning attack.

The current idea of making objects (and not people!) invisible is pursued by several

research groups around the world, since it has been observed that is is possible to

achieve anomalous transparency effects, or “hide” a given object, making it effectively

invisible to the electromagnetic radiation, by means of ad-hoc materials [159]. In

military scenarios such a reduction of ‘observability’ has been performed through

camouflage techniques inspired by nature observing (e.g., chameleons and squids).

However, they often create undesired shadows that can reveal the presence of the

object to hide or do not allow the signals to pass through (or around) the object,

revealing, thus, its presence. In addition to radar detection, defense and military

applications, invisibility concept has been proposed to improve near-field sensors,

detectors and communication technologies requiring low levels of interference and

noise [159,160].

In this respect, the new concept of invisibility cloaking has been recently proposed.

A cloak is a device capable of minimizing the field scattered and absorbed by an

illuminated object.

A first experimental verification of the phenomenon occurred in 2003. Only two

years later, Alù and Engheta developed the well-known “scattering cancellation” (SC)

or Plasmonic Cloaking theory [161]. As qualitatively shown in fig.4.1, the SC explains

how the invisibility of a dielectric object can be achieved by covering it with a volu-

metric material (cloak), such that the positive polarization of the dielectric and the

negative polarization of the cloak are balanced and a cancellation effect is induced on
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the scattered field [161]. Starting from this new concept, a number of papers concern-

ing invisibility by means of plasmonic cloaks have been published [162–166].

Fig. 4.1. Scattering Cancellation: a schematic interpretation of the transparency phe-

nomenon.

A number of comments can be derived from the above discussions. First of all, it is

worth to note that, by paying the price of becoming object-dependent, the plasmonic

approach simplifies cloaking and allows to achieve some bandwidth for the devised

cloak [161, 167]. Second, according to the degrees of freedom of scattered fields, the

number of relevant scattering harmonics grows up with the size of the objects, so

that the cancellation of low order harmonics is paid by the arising of higher order

harmonics. As a consequence, the applicability of the method in case of objects that

are large compared to the wavelength is quite cumbersome and for this reason practical

implementations have been proposed under a quasi-static limit approximation [161,

167]. Last, but not least, the cancellation effect induced on the scattered field entails

a null average value for the contrast function [116,161,163], so that artificial materials

exhibiting properties which do not exist in nature (i.e., having contrast values lower

than zero at the frequencies of interest) have to be involved as cloaks.

Beyond the plasmonic theory, in 2006 a new architecture scheme for design invisi-

bility devices (based on the invariance of the Maxwell equations) has been introduced

by Pendry and co-workers under the name of “coordinate transformation” or “trans-

formation optics” (TO) theory [125, 168]. The TO is able to exclude fields from the

interior of an invisible system while bending the radiation just outside. Interestingly,

the invisibility device is object independent, as any object located in the excluded

region of the space will be invisible. Unfortunately, the price to pay is that the con-

stitutive parameters of coats should change continuously point by point and require

the cloaking material to be inhomogeneous and strongly anisotropic. The schematic

representation of such a behavior is shown in fig.4.2. Note that the effect yielded by

TO is similar to the ‘mirage’, where a region of the space becomes invisible to the

observer, due to the gradient of the refractive index of the atmosphere. Similarly, a

suitable gradient on the cloak can bend the rays path such that they do not cross
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the center region. By referring to fig.4.2, it is possible to guess that in order to pre-

serve the phase, waves must travel faster than light within the cloak material, i.e., a

superluminal propagation is required. Applicability of such a concept for invisibility

purposes can be found in [169–172].

Fig. 4.2. Transformation Optics: a schematic interpretation of the transparency phe-

nomenon.

In this thesis, the design of invisibility devices is pursued by exploiting inverse

scattering methodologies. The idea has been recently explored in [136, 137] and very

few contributions can be found in literature [173–175]. Note that it is either simpler

with respect to TO, and more performing in some sense with respect to SC. In par-

ticular, inverse scattering is a more flexible tool since it allows to assign invisibility

constraints of different kinds (by admitting, for instance, field delays) and/or on ar-

bitrary surfaces (see the following); moreover, the approach could be easily extended

to the case of objects embedded in media different from vacuum.

As a first contribution, theoretical arguments on invisibility, as well as possible

procedures, are proposed starting from the spectral analysis introduced and discussed

in Section 2.3. Then, in Section 4.3 the inverse scattering formulation is turned into

a design problem by enforcing null scatterd field and cloaking system made up of

bulk materials. Moreover, the synthesis of dielectric inclusions realizing invisibility

is pursued in Section 4.4 as an innovative way to obtain artificial materials needed

to actually realize the devices at hand. Finally, the flexibility of the inverse scatter-

ing based design tool is exploited in the last Section to achieve a ‘quasi-invisibility ’

behavior.

4.2 Invisibility within approximated models: spectral solutions

As already stressed, one of the main difficulty when dealing with the solution of an

inverse scattering problem is the non linearity, so that approximation strategies can
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be eventually adopted to overcome such a drawback (but paying the price of a limited

range of validity).

By referring to the above mentioned strategies, a deepening into the spectral inter-

pretation of some common approach has been proposed in Section 2.3 by paralleling

the results derived for the well-known BA. Just to recall the key points, the analysis

has been performed to extend the Ewald’s sphere concept concerning the BA to other

types of approximated approach, such as EBA, CS-EBA and SPFA.

By referring to fig.2.2, it was found that for any scattering experiment, the scattered

field is related to the spatial Fourier transform of the auxiliary unknown function,

involved in the approximation at hand, over the surface of a single Ewald sphere.

Interestingly, such a circumstance can be conveniently used in case of invisibility

problems. As a matter of fact, when an invisibility condition is looked for, the aim

is to cancel out the scattered field from an object by cloaking it with a properly

designed cloak. Therefore, the pictorial representation in fig.2.2 can be renewed as in

the following fig.4.3; namely, if the spectral content of the auxiliary unknown is null

inside the Ewald sphere, the arising scattering field will be null as well.

(a) (b) (c)

Fig. 4.3. Pictorial view of the spectral meaning of the approximated inverse scattering prob-

lem for invisibility conditions: (a) BA (�̃ = F [�]), (b) CS-EBA (and also EBA) (p̃ = F [p])

and (c) SPFA (q̃ = F [q]).

Consequently, by following these simple arguments it could be possible, at least

in principle, to reach invisibility conditions for each scattering experiment.

Quite interestingly, the condition depicted in fig.4.3(a) includes the result [116] by

Labate and co-workers (which includes in turn the SC formula (10) in [161], partic-

ularized for the TM case) as special cases. As a second interesting consideration, let

us note that conditions depicted in figs.4.3(a), or 4.3(b), or 4.3(c), can be eventually

implemented in a simple fashion. In fact, by considering by the sake of simplicity the
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case in fig.4.3(a), the design of an invisibility cloak can be developed by following at

least two different procedures.

Fig. 4.4. Geometry of the problem for the synthesis of dielectric cloaking: ⌦ is the compu-

tational domain which includes an arbitrarily shaped scattering system made by the object

to hidden (�0 2 ⌃0) and the cloaking region (�� 2 ⌃), while � is the observation region.

Let �0 be the contrast function of the (lossless) object to be hidden, and �� the

contrast function pertaining to the (unknown) cloak, see fig.4.4. Obviously, the two

functions have distinct supports (say ⌃0 and ⌃), and the total scattering system is

characterized by � = �0 +��. Then, if �̃ = F [�], a first straightforward approach

for invisibility, leading to the minimization of a quadratic function, would be:

Find �� such that :
Z Z

k2
x

+k2
y

4k2
b

|�̃ (kx, ky)|2dkxdky is minimum (4.1)

A second simple possibility deals with the exploitation of the ‘alternate projections’

method [176], that relies on the iterative projection of the unknown function �0+�� 2
R2 into the Fourier domain in which all the components belonging to the circle of

radius 2kb are forced to be zero. A schematic representation of the method is shown

in fig.4.5.

A first proof of concept has been performed by exploiting the ‘alternate projec-

tions’ approach and considering the small circular object depicted in fig.4.6(a) with a

varying permittivity profile from 1.3 to 1 and radius 0.12�b. The investigation domain

is 1.5� ⇥ 1.5� large, with � the wavelength in the free space at f = 300 MHz, and

it has been discretized into 64 ⇥ 64 square cells. The radius of the circular cloak-

ing region ⌃ has been set equal to 0.6� and �� = 0.1 for the starting point of the
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Fig. 4.5. Schematic representation of the ‘alternate projections’ synthesis approach.

iterative procedure. The synthesized profile achieved after 20 iterations is shown in

fig.4.6(b). As it can be seen, the Fourier transform of this latter satisfies the expected

properties, namely the alternate projections iteratively get out the dominant Fourier

harmonics of the circle of radius 2kb, see figs.4.6(c)-4.6(d). Accordingly, the field scat-

tered from the so-obtained cloaking system is reduced with respect to the bare case,

see fig.4.6(e)-4.6(f).

The second and more complex example deals with the system of three circular

objects depicted in fig.4.7(a). The radius of the cylinders and their permittivity values

are the same and equal to 0.12� and 1.3, respectively, while the parameters for the

cloaking region ⌃ have been considered as for the previous example. The synthesized

profile is shown in fig.4.7(b). From the scattered field in a larger investigation domain

depicted in fig.4.7(f) it is possible to appraise the effectiveness of the procedure,

since a strong reduction of the field with respect of the bare case (fig.4.7(e)) has been

achieved 8r /2 ⌃[⌃0. Accordingly, differently from the bare case, the spectral content

of the synthesized cloaking system is mainly outside of the so-called Ewald sphere,

see figs.4.7(c) and 4.7(d).

The above results as well as the preliminary results achieved with the other pro-

cedure confirm the effectiveness of both methods, even if further numerical examples

and checks are still needed at the time this thesis is being written.

Note that similar approaches can be developed under the CS-EB or SPF approxi-

mations and that further properties can be eventually enforced on �� (and the like)

in both approaches. Obviously, in each case one has to also check/enforce the validity

of the corresponding approximation.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.6. Spectral invisibility via ‘alternate projections’ approach: a circular object. Permit-

tivity function of the (a) bare and (b) synthesized profile. Fourier transform of the (c) bare

object (�̃0) and of the (d) synthesized cloaking system (�̃); the white contour line represents

the Ewald sphere with radius 2k
b

. Scattered field from the (e) bare and (f) cloaking system

on a larger domain with superimposed the contour line of the object.

As a final comment, let note that, as in the corresponding retrieval problems,

the Compressive Sensing (CS) tools can be useful for the design problem at hand.

As a matter of fact, the Fourier relationship between the scattered fields and the

auxiliary unknown function entails that some peculiar properties of CS such as RIP,

incoherence and the like are automatically satisfied (see [43, 65]), so that the design

of ‘sparse’ invisibility devices by exploiting the above discussed spectral analysis can

be pursued. Such a topic will be object of future developments as well.

4.3 ‘Full invisibility’ via inverse scattering methodologies

The determination of the constitutive parameters of a coat by means of inverse scat-

tering methodologies deals with the problem sketched in fig.4.4. By referring to such
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.7. Spectral invisibility via ‘alternate projections’ approach: three circular objects.

Permittivity function of the (a) bare and (b) synthesized profile. Fourier transform of the

(c) bare object (�̃0) and of the (d) synthesized cloaking system (�̃); the white contour line

represents the Ewald sphere with radius 2k
b

. Scattered field from the (e) bare and (f) cloaking

system on a larger domain with superimposed the contour line of the object.

a scenario, the basic state equation of the inverse scattering problem introduced in

eq.(1.4) is recast as:

W (r, rt) = �0(r)Ei(r, rt) + �0(r)Ai[W (r, rt)]

+��(r)Ei(r, rt) +��(r)Ai[W (r, rt)], r 2 ⌦, rt 2 � (4.2)

while the data equation keeps the same:

Es(ro, rt) = Ae[W (r, rt)], r 2 ⌦, ro, rt 2 � (4.3)

The invisibility constraints can be imposed on � in the same way as for the

radiation problem dealt in the previous chapter. Therefore, the solution of eqs.(4.2)-

(4.3) can be still faced with the CSI method. Accordingly, the cost functional involved

in the CSI is turned as follows:
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wherein the explicit definition for the operators Ai and Ae can be found in eqs.(1.4)-

(1.5). Notably, since in an invisibility problem the goal is to reach null scattered field

from the system under investigation, the first addendum is normalized with respect

to the incident field Ei.

In order to generalize the approaches in [136,137], it is possible to take advantage

of the skills and facilities developed in Chapter 3, as well as to consider additive

penalty terms to the cost functional �(W,��). In particular, by supposing to look

for circularly symmetric cloaks1, the optimization problem employed in the following

reads:

min

W,��
�0
(W,��) = �+ wf k��� f(��)k22 + ws

�

�

�

�

@��

@✓

�

�

�

�

2

2

(4.5)

in which the second term at the right hand side can be eventually removed, f(��)

is the projection of �� into the set of real and positive functions, ✓ is the angular

coordinate of the polar reference system, while the positive wf and ws coefficients

allow to properly weigh the regularization terms with respect to the original ones.

Note that the novel set of unknowns ⌧ introduced in Section 3.2 are not considered

in this case, since we do not have any degree of freedom about impinging waves.

Hereinafter, plane waves Ei(r) = e�jkb·r are supposed as incident fields.

It is worth to explicitly note that formulating the invisibility problem as in (4.4)

allows to understand since from beginning the actual limitations of cloaking devices

when excluding non superdirective contrast sources. In fact, scattered fields are no-

thing else than the fields radiated by the contrast sources, and, as such, are subject to

given properties in terms of spatial bandlimitedness as long as the contrast sources are

not superdirective [18,134]. Notably, non superdirective contrast sources are required

as soon as some bandwidth is required to the device looked for.

In this section, a full-invisibility condition is pursued, namely the design constraint

results into canceling the scattered field, in such a way that the impinging plane wave

can be detected unperturbed beyond the object whatever the impinging direction. In

formulas:

1 which is of interest for circularly symmetric object to be hidden
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full-invisibility condition

E(rt, ro) = Ei(rt, ro) =) Es(rt, ro) = 0 (4.6)

The numerical simulations have been performed by considering the same target in

[137], in which the inverse scattering problem has been solved by applying the CSI

method to the standard cost functional (4.4). Moreover, by referring to the weighted

cost functional (4.5), ws has been chosen roughly equal to the side of the discretization

pixel, while wf has been set equal to the area of the cloaking region.

By referring to a free space background, the object to cover is a circular scat-

terer made up of lossless allumina ("r = 10) whose radius is 0.42 cm (' 0.35� at

f = 25 GHz), while the radius of the cloak is set equal to b = 1.2 cm (i.e., 1�). Ac-

cording to [108], when a GRIN coat is looked for, the step size of the unit cell for the

discretization of ⌦ has been set to 0.5 mm. As a consequence, 48 ⇥ 48 pixels have

been considered in this case. Since the cloaking effects is required all around the cloak

(full-aspect invisibility) the scattered field has been forced to be zero in 24 equispaced

observation points located on a circumference � placed in the close proximity of the

cloaking system with radius ro ' 1.45b. Note that the number of these points is linked

to the number of DoF of the scattered field [17]. The initial guess of the dielectric

cover has been set as homogeneous in the whole ⌃ with relative permittivity equal to

4.5. The permittivity function of the bare object, as well as the total field it generates

on the domain are depicted in fig.4.8.

(a) (b)

Fig. 4.8. Full-aspect invisibility for cylindrical object. (a) Permittivity function of the bare

object and (b) real part of the total field for ✓
t

= 0� on a larger domain with superimposed

the contour of the bare object as a black line.

The cloaking system resulting from minimization of �0
(W,��) is shown in

fig.4.9(a), while in fig.4.9(b) the real part of the total field on a larger domain ⌦

is depicted for the direction of arrival of the plane wave ✓t = 0

� (i.e., from the right

side). As is can be observed, the synthesized plasmonic cover is in cloaking opera-
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tion with the flat phase fronts well recognizable behind the object and, thanks to the

circular symmetry of the dielectric profile, this holds for any arrival direction.

In order to further reduce the complexity of the electromagnetic parameters for

the coat, one more penalty term has been added to �0
(W,��) that allows to attain

a radially smoother dielectric profile; this reads as �⇢2(��) = w⇢

�

�

�

@��
@r

�

�

�

2

2
, wherein

it has been set w⇢ = 10

�12 to make �⇢2 not overwhelming with respect to the other

terms. The resulting dielectric coat is shown in fig.4.9(c) and it still allows to attain

invisibility, as demonstrated by the constant phase fronts of the total field in fig.4.9(d).

(a) (b)

(c) (d)

Fig. 4.9. Full-aspect invisibility for cylindrical object. From top to bottom: features of the

GRIN cloaking system in case of circular symmetry (w
s

= 10�4, w
f

= 4 · 10�4) and circular

symmetry in conjunction with smoothness (w
⇢

= 10�12) penalty terms. (a)-(c) Synthesized

permittivity function and (b)-(d) real part of the total field on a larger domain, on which

the contour of the cloaking system is superimposed as a black line.

As a final comment, it is worth to note that the achieved cloaking systems employ

all ‘natural’ materials and hence the invisibility condition can be reached without

resort to metamaterials. Moreover, let us also note that even if we limited ourselves to

objects having a circular symmetry, the developed approach and tools have a general

validity, and no symmetric objects (and cloaks) could be easily dealt with (see the

following).
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4.4 Graded Artificial Material invisibility devices

In the previous Section, it has been demonstrated how the exploitation of inverse scat-

tering methodologies and the extension of the approaches developed in Sections 3.2-3.3

yield good performances in designing plasmonic GRIN invisibility cloaks.

On the other side, contents of the previous Sections also emphasize two relevant

drawbacks of such a solution. The first, and more obvious one, is related to the

fact that one has to realize these continuous profiles, which could be eventually be

done by some ad-hoc bulk materials organized into proper shells. But, then, a second

difficulty comes into play. In fact, the spectral analysis of Sect.4.2 (as well as the result

is [116, 161]) implies that in many cases one needs materials having � < 0, and one

cannot find them in a bulk form. Hence, one has to recur to alternative strategies in

order to realize some kind of artificial dielectrics.

By taking advantage from the tools and discussions of Chapter 3, a possible way

to proceed is to exploit the same strategies as the ones introduced for the design of

antennas [177]. Hence, by still looking at circularly symmetric dielectric profiles, so

that a kind of ‘full-aspect’ invisibility could be achieved, the pertaining expansion for

the unknown contrast function of the cloak reads as follow:

��(r) =
K
X

k=1

��k

H
k

X

h=1

⇧kh

✓

r� rkh

ak

◆

, r 2 ⌦ \⌃0 (4.7)

in which ��k is the contrast value associated to the k-th ring of rods, K is the total

number of the rings for the arrangement of the rods, Hk is the number of inclusions

along the k-th ring, rkh is the position of the center of the h-th rod belonging to

the k-th ring, and |rkh| = rk. Also in this case, the internal summation defines a

composite window which is different from zero in each rod belonging to the k-th ring,

and zero elsewhere.

As long as the expansion (4.7) is adopted in the minimization of the cost functional

�(W,��), the synthesized cloak will be made up by rods arranged on K rings and,

each of them, will exhibit a different permittivity value. As a consequence, the CSI

method in conjunction with the expansion (4.7) give rise to the so-called GAMR

invisibility cloak system. Moreover, the original interchanging methodology developed

in Section 3.5.2 can be still adopted in order to obtain a GAMF invisibility system

from the GAMR one [177]. Clearly, such a possibility allows to look at more practical

realizations of the invisibility devices, since a single material with permittivity "F is

involved for the cloak.

The effectiveness of the GAMs synthesis procedure is demonstrated developing

two different solutions (where the first one also acts as an input to the second). First,
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the design of a GAMR is tackled for different arrangements of the rods. In particular,

the same structure shown in fig.3.11 is adopted in ⌃ and a numerical study has

been performed by varying the number of rings K, periodicity of the unit cell d and

the radius of rods. Then, the interchanging procedure is applied to design equivalent

GAMF invisible cloaks for different materials (i.e., "F ).

By referring to the same object in fig.4.8, as a first study it was considered a

GAMs cloak with radius b = � and made up of K = 4 rings of rods with radius

a = �/15 arranged with a periodicity d = �/7. The synthesized GAMR invisibility

system is shown in fig.4.10(a) and, as it can be observed from the field in fig.4.10(b),

it makes the detection of the impinging plane wave unperturbed behind it. Starting

from such a well-functioning device, the interchanging procedure has been applied

to retrieve the equivalent GAMF invisibility systems depicted in figs.4.10(c)-4.10(d)

when "F = 5.5 is chosen, and in figs.4.10(e)-4.10(f) for "F = 10 (note it is the same

material of the object). In both cases, the incident field results unperturbed and no

deterioration of performances with respect to the GAMR case occurs.

In order to further reduce the complexity of the cloak’s structure, a reduced num-

ber of rings has been defined (K = 3), while slightly increasing the dimension of the

rods as well as the periodicity (a = �/11, d ' �/5). Interestingly, the synthesis pro-

cedure leads to a permittivity value equal to 1 for the inner ring, so that the overall

GAMR cloak is made up of 2 rings (see fig.4.11(a)), while providing excellent perfor-

mances (see fig.4.11(b)). The same comment holds for the equivalent GAMF cloaks

in figs.4.11(c)-4.11(d) ("F = 5) and figs.4.11(e)-4.11(f) ("F = 9).
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.10. Full-aspect invisibility for cylindrical object. From top to bottom: features of the

GAMs cloaking system. On the left: synthesized permittivity function; on the right: real part

of the total field on a larger domain with the contour of the system as a black line. Features

and performances of (a)-(b) GAM
R

with K = 4, a = �/15 and d = �/7 (w
f

= 1.3 · 10�4);

GAM
F

for (c)-(d) "
F

= 5.5 and (e)-(f) "
F

= 10.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.11. Full-aspect invisibility for cylindrical object. From top to bottom: features of the

GAMs cloaking system. On the left: synthesized permittivity function; on the right: real part

of the total field on a larger domain with the contour of the system as a black line. Features

and performances of (a)-(b) GAM
R

with K = 3, a = �/11 and d ' �/5 (w
f

= 9.7 · 10�5);

GAM
F

for (c)-(d) "
F

= 5 and (e)-(f) "
F

= 9.
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4.4.1 Figures of merit and bandwidth performances

Appraising the results of the synthesized cloaks in terms of the total field generated in

the investigation domain is not an unbiased method, since it only gives a qualitative

analysis of the performances. In order to quantitatively appraise the results, the Figure

of Merit (FoM) introduced in [163] is considered herein. In particular, it refers to the

ratio between the scattering cross-section (SCS) of the bare and the covered object.

For the 2D problem at hand and for each given direction of arrival rt of the plane

wave, the SCS is defined as:

SCS(rt) =
1

2⇡|ro|
N
X

o=1

|Es(rt, ro)|2
|Ei(rt, ro)|2 (4.8)

ro being the observation direction, while |ro| is the radius of the (circular) observation

curve.

Accordingly:

FoM = 10log10(SCSbare)� 10log10(SCSobj+cover). (4.9)

Since the synthesized cloaks all exhibit a circular symmetry, a single direction of

arrival rt = 0 has been considered for the calculation of the FoM2, while N = 72 and

|ro| = 1.45b have been set for the observation points. In Table 4.1 are summarized

the FoM relative to the examples above and they actually show the effectiveness of

the synthesis procedure, i.e., the reduction of the SCS for the synthesized cloaks, in

a quantitative fashion.

Table 4.1. Figures of merit for the synthesized cloaking devices.

Device FoM [dB]

GRIN with circular symmetry (fig.4.9(a)) 3.93

GRIN with circular symmetry and radial smoothness (fig.4.9(c)) 4.36

GAM
R

with K = 4 (fig.4.10(a)) 5.47

equivalent GAM
F

for "
F

= 5.5 (fig.4.10(c)) 5.08

equivalent GAM
F

for "
F

= 10 (fig.4.10(e)) 4.75

GAM
R

with K = 3 (fig.4.11(a)) 2.74

equivalent GAM
F

for "
F

= 5 (fig.4.11(c)) 3.26

equivalent GAM
F

for "
F

= 9 (fig.4.11(e)) 2.74

Finally, the cloaking effect as a function of the frequency has been also analyzed.

In particular, the SCS for each synthesized device has been calculated from 20GHz to
2 The numerical value of the SCS when calculated for different directions of arrival does

not substantially change.
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30GHz with a step of 1GHz. In fig.4.12(a) it is shown a comparison between the GRIN

and the GAMR devices, while in fig.4.12(b) the GAMR performances are compared

to those of the relative GAMF devices. As it can be seen, all the devices share the

minimum at the design frequency of 25GHz and their SCS is actually reduced with

respect to the bare case (black continuous line). Moreover, as expected, the frequency

behavior of the GAMF devices keeps almost unchanged with respect to the pertaining

GAMR profiles, thus confirming that the two structures can be considered similar.

(a) (b)

Fig. 4.12. Full-aspect invisibility for cylindrical object. SCS calculated as a function of

frequency for synthesized cloaks and comparison with the bare object.

4.5 ‘Quasi-invisibility’ via inverse scattering methodologies

In all engineering applications (and beyond) relaxing requirements allow for an ex-

tended set of solutions, so that one can find solutions which are simpler or more con-

venient. This has been indeed the case by dropping the requirement for a universal

cloak and looking instead for ad-hoc cloaks by means of SC or inverse scattering. This

latter also has an extended flexibility with respect to SC as for as the geometry of the

different scatterers is concerned. Along this line of reasoning, it is interesting to note

that the general framework of inverse scattering also offers another possibility, which

is the one of looking for “nearly invisible” objects, rather that for “exactly invisible”

objects. In fact, inverse scattering can manage a number of situations of interest in-

cluding “aspect-limited” invisibility (for example, just in Tx or Rx, or in a reduced set

of angles), or situations where the scatterer is “quasi-invisible” (as discussed below),

or any combination of the above.
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In order to check for capabilities and performances, in the following different con-

ditions for “quasi-invisibility” (QI) are considered, which turn into the design con-

straints reported below:

quasi-invisibility conditions

[QI#1] Ecloaked
s (rt, ro) = c2Euncloaked

s (rt, ro) (4.10)

[QI#2] E(rt, ro) = c2Ei(rt, ro) (4.11)

[QI#3] E(rt, ro) = Ei(rt, ro)e
�j↵ (4.12)

In particular, the QI#1 is referred as a ‘reduction of the transverse scattering cross-

section’, since it looks at a suitable cloak giving a percentage decay of the field scat-

tered by the overall system with respect to the bare object. Conversely, the QI#2 and

#3 aim at bring about a ‘perturbation’ of the incident field instead of cancel out the

scattered field: the former turning into a drop of the energy of the field, the latter into

a wave’s delay. In both cases QI#2 and #3, the observer will still perceive the field

as generated by the primary source (i.e., the unperturbed field) but for a reduction in

amplitude and a delay, respectively. Note in both conditions one is not looking any

more for Es = 0.

In order to prove the effectiveness of the QI conditions, two different scenarios are

considered in the following.

The first object is a circular cylinder, embedded in the free space, with diameter

equal to 1�, � being the wavelength of the background at f = 1 GHz, while the

dimension of the cloak’s diameter is set to be 3�. The discretization of the analysis

domain has been fixed according to rules of the integral equation method (MoM) [108];

in particular, the side of the unit square cell has been set about equal to �r/15, �r

being the wavelength with respect to the object ("r = 2.3), so that the entire domain

3� ⇥ 3� large has been discretized into 70 ⇥ 70 cells. In order to possibly guarantee

a 360-degree invisibility, a circularly symmetric cloak’s profile is needed. To this end,

the inverse scattering problem has been solved by considering the functional (4.5)

with T = 1, by setting ws equal to the area of the discretization cell. As far as

the physical feasibility properties is concerned, at each iteration of the minimization

of the CSI functional the negative contrast values have been forced to zero. Note

that the starting point of the minimization procedure has been set by considering a

permittivity distribution �� equal to the Maxwell fish-eye lens. Such a choice would

allow to better encourage the rays’ bending. The design constraints are imposed on

a linear array � of 6 equispaced fictitious antennas located at ro ' 2�, just in front
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of the direction of arrival of the plane wave, ✓t = 180

�. The considered object as well

as the adopted measurement configuration are shown in Fig.4.13.

(a) (b)

Fig. 4.13. Quasi-invisibility for cylindrical object. (a) Permittivity function of the bare

object. (b) Geometry of the adopted measurement configuration: the observation region �

is a linear array at distance r
o

from the origin of the reference system; the arrow on the left

is the impinging plane wave from ✓
t

= 180�.

In order to give a comparison in terms of convenience of the achieved solution,

in fig.4.14(a) it is shown the synthesized cloak when the full-invisibility condition is

attempted, while the corresponding radiated total field is reported in figs.4.14(b) and

4.14(c).

(a)

(b) (c)

Fig. 4.14. Quasi-invisibility for cylindrical object. (a) Permittivity function of the synthe-

sized cloak for a full invisibility requirement. (b) Magnitude and (c) phase of the radiated

total field on � .
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As first quasi-invisibility design constraint, the condition (4.10) is considered. In

particular, the goal is to synthesize a coat allowing a reduction of 90% for the scattered

field with respect to the bare case (c2 = 0.1). The synthesized dielectric profile for

the invisibility cloak is shown in Fig. 4.15(a). By comparing the magnitude and the

phase of the scattered fields on � , respectively depicted in Fig. 4.15(c) and 4.15(e), it

is possible to state that a 90% reduction of the scattering cross section is achieved by

the coat at hand (marked blue line) with respect to the uncloacked object (continuous

blue line).

The second design constraint deals with the condition (4.11). In this case, the

goal is to synthesize a coat such that the detected total field arising from the cloaking

system is almost the original incident field; in particular, a small perturbation (namely,

a decreasing in its amplitude) is permitted (c2 = 0.9). In Fig.4.15(b) the cloaking

system arising from the minimization of functional (4.5), while forcing constraints

(4.11), is reported. In order to verify the effectiveness of the QI#2, the magnitude

and phase of the total fields on � is plotted in Fig.4.15(d) and 4.15(f), respectively.

As it can been seen, the synthesized cloak allows to perfectly reach the assigned

specification.

Finally, the condition (4.12) is enforced in minimizing �0
(W,��). Notably, QI#3

entails an admissible delay in the propagation of the plane wave. The phase delay ↵ in

(4.12) has been set by spanning the angular circle. In fig.4.16 the achieved solutions

are depicted for ↵ = 70

� (fig.4.16(a)), ↵ = 220

� (fig.4.16(b)), ↵ = 250

� (fig.4.16(c))

and ↵ = 310

� (fig.4.16(d)). As it can be observed, the synthesized cloaks are different

from each other, but each of them satisfies the assigned specifications very well, see

fig.4.16(e) and 4.16(f). Notably, some of the achieved cloaking systems are simpler

with respect to solution in fig.4.14(a) and their practical realization would be more

reasonable.

Moreover, it is possible to join conditions QI#2 and QI#3 in order to further

relax the invisibility requirements. The synthesized cloaking systems for the same

conditions of the previous case are shown in fig.4.17.

As a final comment, let us note that all the synthesized cloaks have (about) a

2� diameter, while the ⌃1 region has been set to be a circle of radius 3�. Therefore,

inverse scattering allows to reach the assigned invisibility requirements with a coat

even smaller that the given dimensions.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.15. Quasi-invisibility for cylindrical object. Features of the synthesized cloaking sys-

tem for: QI#1 on the left, QI#2 on the right. From top to bottom: (a)-(b) permittivity

function; comparison of the performances in term of magnitude and phase of the (c)-(e)

scattered and (d)-(f) total field on � . The continuous blue line is the assigned design con-

straint, while the dotted green line and the marked blue line are the fields from the bare and

cloaked object, respectively.



106 4 SYNTHESIS OF CLOAKING DEVICES

(a) (b)

(c) (d)

(e) (f)

Fig. 4.16. Quasi-invisibility for cylindrical object. Features of the synthesized cloaking

system for QI#3. Synthesized permittivity function for (a) ↵ = 70�, (b) ↵ = 220�, (c)

↵ = 250� and (d) ↵ = 310�. Comparison of the performances in term of (e) magnitude and

(f) phase of the total field on � . The dotted green line is relative to the bare object, while the

continuous and marked lines are relative to the assigned design constraints and the achieved

solutions, respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.17. Quasi-invisibility for cylindrical object. Features of the synthesized cloaking

system for joint QI#2-QI#3. Synthesized permittivity function for (a) ↵ = 70�, (b) ↵ =

220�, (c) ↵ = 250� and (d) ↵ = 310�. Comparison of the performances in term of (e)

magnitude and (f) phase of the total field on � . The dotted green line is relative to the bare

object, while the continuous and marked lines are relative to the assigned design constraints

and the achieved solutions, respectively.
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The second test case refers to the grid of square objects depicted in fig.4.18(a),

with "r = 2 and whose leading dimension is about 1.5�. The cover region is set to be

a square of side 2�, while the entire analysis domain is 3�⇥ 3� large. Following [108],

it has been discretized into 90 ⇥ 90 square cells about �r/20 large. In this case,

the minimization of �0
(W,��) is pursued by considering ws = 0, since no circular

symmetry is required for the square cloak, while no physical feasibility constraints have

been imposed. The design constraints (4.10)-(4.12) are assigned on 4 linear arrays,

each of them made by 43 equispaced fictitious antennas, located at distance ro ' 2.10�

from the origin and in front of the impinging plane waves from ✓t = 0, 90�, 180�, 270�,

respectively, see fig.4.18(b).

(a) (b)

Fig. 4.18. Quasi-invisibility for grid object. (a) Permittivity function of the bare object. (b)

Geometry of the adopted measurement configuration: the observation region � is composed

by four linear arrays at distance r
o

from the origin of the reference system; the arrows

represent the corresponding impinging plane waves from ✓
t

= 0�, 90�, 180�, 270�.

The invisibility conditions to be reached by the synthesized devices have been set

as for the previous example. In fig.4.19 the synthesized cloaking systems for QI#1

(left) and QI#2 (right) are shown. For the sake of brevity, it is shown only the field on

� in front of the impinging plane wave from ✓t = 180

�. As in can be observed, the two

solutions in fig.4.19(a) and 4.19(b) match very well the assigned design constraints, as

demonstrated by the radiated scattered and total field, respectively, on the observation

points, see figs.4.19(c)-4.19(e) and figs.4.19(d)-4.19(f). Notably, the achieved profiles

are quite similar and therefore in this case inverse scattering allows to accommodate

more than one requirement with essentially the same permittivity distribution.

Then, a numerical study has been performed in order to retrieve the performances

of the cloaking systems under the condition (4.12) for different requirements on the

phase delay. In particular, in fig.4.20 the results obtained for ↵ = 10

�, ↵ = 70

�,
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.19. Quasi-invisibility for grid object. Features of the synthesized cloaking system for:

QI#1 on the left, QI#2 on the right. From top to bottom: (a)-(b) permittivity function;

comparison of the performances in term of magnitude and phase of the (c)-(e) scattered and

(d)-(f) total field on � . The continuous blue line is the assigned design constraint, while the

dotted green line and the marked blue line are the fields from the bare and cloaked object,

respectively.

↵ = 210

� and ↵ = 350

� are shown. As it can be seen, the matching of the assigned

specifications is quite good, even if power losses are present in some case.

Finally, in fig.4.21 are reported the results achieved when condition (4.12) is ex-

ploited in conjunction with condition (4.11). Also in this case, it is possible to observe

a good matching of the design constraints.

In conclusion, it can be state that the inverse scattering procedures are suitable to

design dielectric cloaks for canonical and non-canonical objects, which yield to quasi-

invisibility behaviors and that work beyond the quasi-static regime. Note that results

for the non-canonical scenario are just preliminary results and hence a detailed study
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.20. Quasi-invisibility for grid object. Features of the synthesized cloaking system for

QI#3. Synthesized permittivity function for (a) ↵ = 10�, (b) ↵ = 70�, (c) ↵ = 210� and (d)

↵ = 350�. Comparison of the performances in term of (e) magnitude and (f) phase of the

total field on � . The dotted green line is relative to the bare object, while the continuous

and marked lines are relative to the assigned design constraints and the achieved solutions,

respectively.

on the actual performances of inverse scattering in dealing with such a case is an on

going activity.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.21. Quasi-invisibility for grid object. Features of the synthesized cloaking system

for joint QI#2-QI#3. Synthesized permittivity function for (a) ↵ = 10�, (b) ↵ = 70�, (c)

↵ = 210� and (d) ↵ = 350�. Comparison of the performances in term of (e) magnitude and

(f) phase of the total field on � . The dotted green line is relative to the bare object, while the

continuous and marked lines are relative to the assigned design constraints and the achieved

solutions, respectively.
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4.6 Concluding remarks

In this Chapter new approaches for invisibility applications, as well as for the re-

duction of observability, have been proposed. As a first contribution, the invisibility

within approximated models has been dealt with and some interesting guidelines have

been proposed and detailed to design invisible objects. Second, the synthesis strategy

proposed and discussed in the previous Chapter has been herein applied to design

GRIN dielectric cloaks. Interestingly, the GAMs based synthesis procedure has been

successfully exploited, thus showing the effectiveness of the developed tool and its ca-

pability in realizing artificial dielectrics (which are indeed mandatory for a large class

of objects to be hidden). Finally, by taking advantage from the general framework of

the inverse scattering problem, the synthesis of ‘nearly invisible’ object has been pur-

sued by just admitting a perturbation (i.e., a reduction in amplitude or/and a delay)

of the primary source perceived by the observer, and in order to achieve simpler or

more convenient solutions.
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SUMMARY AND POSSIBLE DEVELOPMENTS

Differently from the large majority of contributions on the subject, in this thesis

inverse scattering procedures and methodologies have been exploited as an electro-

magnetic design tool. In fact, the most common goal of an inverse scattering problem

is the non-invasive diagnostics of an unknown target by means of an effective pro-

cessing of the measured scattered field. To this aim, a huge number of contributions

can be found in literature which propose innovative and practical inversion strategies

devoted to simplify the solution of the problem and make it as accurate as possible.

Conversely, a different point of view of the inverse scattering problem has been

considered in the thesis. In fact, by simply substituting the measured scattered field

with some desired specifications for the field, the original diagnostics problem is turned

into a synthesis problem. In this way, it is possible to design innovative dielectric

devices by keeping unchanged the mathematical formulation of the inverse scattering

problem.

Interestingly, regularization techniques usually exploited in imaging problems be-

come here ways to enforce given properties, multi-view imaging problems turn into

multi-purpose design problems, multi-frequency inverse scattering may serve to real-

ize multi-band devices, thus opening the way to a large number of relatively simple

possibilities.

More in detail, the contributions of the thesis can be summarized as it follows.

After a brief recall of the inverse scattering problem formulation and properties in

the first Chapter, in the second Chapter the main approximated solution strategies of

the inverse scattering problem have been first discussed using a spectral based anal-

ysis. In particular, by paralleling results holding for the Born approximation (BA),

a Fourier relationship between the scattered field and the unknown of the problem

has been derived for the extended Born approximation and the strong permittivity

fluctuation approximation.

Then, by referring to the recently introduced ‘virtual experiment’ (VE) framework and
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linear approximation (VELI), two inversion strategies have been also proposed which

aim at extending the VELI approximation to more complex scenarios: the distorted

virtual experiment (DVE) method deals with the retrieving of anomalies occurring

in known (or partially known) inhomogeneous scenarios, while the distorted iterated

virtual experiment (DIVE) approach aims at enlarging the range of applicability of

the VE-based approximation (i.e., non-weak targets are dealt) by exploiting the DVE

procedures in an iterative scheme. Notably, the assessment of the strategies has been

carried out in case of both numerical and experimental data, and the satisfactory re-

sults have shown the actual capability of the approaches to image non-weak scatterers

and to overcome the canonical strategies arising from the BA.

Finally, by taking inspiration from the main results by Devaney and Wolf [24], a novel

representation for (a class of) non-radiating currents has been derived, which allows a

general representation by means of a constrained orthonormal expansion basis. Such

a result is indeed of interest in the design of antennas, in inverse scattering based di-

agnostics techniques (where radiating currents are easily found, so that non radiating

harder ones are of interest) and, of course, in the design of invisibility devices.

The third Chapter has been devoted to the adoption of inverse scattering facilities

as a design tool. To this aim, a modified version of the Contrast Source Inversion

(CSI) method has been developed by considering one more set of unknowns which

are the amplitudes of the primary sources (usually assumed unitary). Interestingly,

the fields’ amplitudes arising from the minimization of the new functional involved

in the CSI allow a proper rescaling of the field itself in order to guarantee a better

and easier fitting of the design equation. Further manipulations of the CSI functional

have been performed to enforce desired behaviors of the unknown dielectric profile.

In this respect, the CSI scheme has been constrained by adding penalty terms able to

design dielectric devices exhibiting physically feasible, circularly symmetric and gen-

tly varying profiles. Moreover, the Compressive Sensing tool has been also exploited

as design facilitator to enforce sparsity on the radial variation of the permittivity

function. Notably, such a condition deals with piece-wise constant profiles which are

more suitable for manufacturing.

The formulation of the CSI method as a design tool, as well as the adoption of design

facilitators allowing to synthesize more easily realizable devices, are important results

by themselves, as up to now the exploitation of GRIN antennas has been limited to

the case of canonical solutions (like Luneburg or Maxwell fish-eye lenses). Besides

allowing the introduction of non canonical GRIN devices, the power of the synthesis

strategy has been considerably enlarged by defining a novel representation basis for
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the unknown contrast function which allows to directly synthesize dielectric inclu-

sions of small size and fixed arrangement embedded in a vacuum background. Such a

kind of profile is the basic structure of an Artificial Materials (AMs) device, in which

the gradient of the refractive index, or of the filling factor, or even of the lattice,

guides the in-plane electromagnetic field path. In this respect, two strategies have

been proposed, the first one dealing with the design of the permittivity values for the

inclusions and the second one concerning the determination of their dimensions. Note

that the first result is of interest by itself, since a discrete profile is directly looked

for, while avoiding post-discretization procedures (e.g., by means of homogenization

theories) that lead to an unavoidable performances degradation. Moreover, the latter

allows to further reduce the complexity of the synthesized device, since a single mate-

rial would be involved in manufacturing. Interestingly, the proposed procedures have

shown the capability of design dielectric profile antennas emulating canonical lenses

(and beyond) as well as antennas generating generic given patterns.

Finally, the fourth Chapter has been devoted to the synthesis of cloaking devices.

As is known, invisibility requirements have been always an interesting topic in many

application fields. For this reason, several approaches, such as scattering cancellation

and transformation optics, have been proposed. However, the physical properties un-

derlying the problem lead to deal with cloaks made up by artificial materials. In this

respect, the inverse scattering framework constitutes a powerful tool, since by sim-

ply modifying the data of the problem (i.e., by imposing a null scattered field on an

observation domain) it allows to synthesize the dielectric properties of an invisibility

cloak. In the chapter, the design of GRIN profiles has been firstly carried out in order

to prove the effectiveness of the approach. In this spirit, several examples have been

considered by pursuing both a ‘full aspect invisibility’ as well as ‘quasi-invisibility’

conditions, these latter allowing a sort of relaxation of invisibility requirements (i.e.,

an attenuation and/or a delay of the incident field are allowed). Then, the tool devel-

oped in the previous chapter for design AMs-based antennas has been applied also in

this case, so that graded Artificial Materials cloaks have been synthesized and very

good performances have been reached.

In addition to that, the spectral analysis discussed in the second Chapter has been re-

formulated in order to give useful guidelines for design invisibility devices. As a matter

of fact, the existing Fourier relationship between the scattered field and the auxiliary

unknown function can be handled to enforce null scattered fields. In particular, such a

condition can be reached by synthesizing a contrast function (for the cloaking region)

such that the contrast function of the overall system has a null Fourier transform
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inside the Ewald sphere. Notably, such a result seems to include results implicitly or

explicitly given in [161] and [116], respectively. Hints for a simple design procedure

have been given and work is in progress on the subject.

Possible developments

Starting from the solution of an inverse scattering problem, new innovative tools

have been proposed for the design of two-dimensional variable dielectric profiles and

graded AMs devices. Interestingly, the proposed synthesis approaches and tools are

not restricted to the realization of ‘canonical’ fields, so that they can be applied to

generic field specifications, thus looking forward the design of innovative devices.

Because of the achieved results, additional possible developments are worth being

mentioned.

Firstly, an extension of the procedures for AM based design to the out-of-plane

propagation could allow to handle AMs-based fibers. In particular, by properly syn-

thesizing the electromagnetic properties of inclusions surrounding the defect could

lead to a better confinement of the propagating field. Also, the exploitation of the

above concepts and tools for the synthesis of antennas based on metasurfaces [127] is

indeed expected.

Strongly related with the above cases, a second possibility concerns the adoption

of the generalized Scattering Matrix Method tool developed in [178–180], in which

a convenient aggregation into macrocells has been exploited for the analysis of two-

dimensional Electromagnetic Band Gap structures. In this respect, from a synthesis

point of view, one could in principle determine the response of a macrocell in a first

step and its internal structure at a second stage, thus obtaining remarkable benefits

in terms of computational time and complexity of the scattering problem at hand. In

fact, some modularity and multiscale characteristic can also be inserted in the design

problem one is dealing with.

As far as the invisibility problem is concerned, several possibilities also come into

play. First, as already sketched, spectral solutions can be developed. As a second

possibility, one could exploit inverse scattering methodologies to achieve universal

cloaks; in fact, a null field could be enforced on a limited domain so that whatever

the object inside such a region would become invisible. Third, the invisibility problem

could be dealt with by looking for contrast sources of the kind described by the original

representation in Section 2.5.

All the introduced approaches have been discussed with reference to the canonical

scalar electromagnetic TM case. The (needed) extension to the 3D case, which is
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conceptually simple, requires anyway non trivial effort, and represents one of the

activities currently running at the LEMMA group in Reggio Calabria.
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Mathematical basics of Compressive Sensing

In order to recall the basics of Compressive Sensing (CS) theory, let us consider a

generic linear problem:

y = Ax (A.1)

where y is the M ⇥ 1 data vector, x is the N ⇥ 1 vector that represents the unknown

function, while A is the M ⇥N matrix which relates the unknown vector to the data

vector. By assuming the usual CS terminology, A represents the sensing matrix.

Let us now suppose to adopt a convenient representation M ⇥N matrix  for the

unknown:

x =  s (A.2)

so that the columns of  contain the basis function, while the representation coeffi-

cients s are sparse (i.e. only few coefficients are different from zero). Accordingly, the

new formulation of the linear problem reads [43]:

y = A s = ⇥s (A.3)

According to CS theory, by taking advantage from the sparsity of the unknown coef-

ficients s, it is possible to solve the inverse problem even if M is (much) less than N ,

but it is anyway sufficiently larger than the number S of coefficients different from

zero (with S < M < N). In particular, the correct number of measurements M , nec-

essary to obtain a faithful solution, is lower-bounded and has to satisfy the inequality

M � M
0
, where M

0
is proportional to S and to logN [42, 43].

A very relevant non intuitive circumstance is that it is not just the number of

measurements which plays a role, since also the kind of performed measurements

plays a role as well. Intuitively, the matrix ⇥ = A has to be deeply different from

a subset of the identity matrix and should not cancel out any information about the
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original signal. In particular, the image of the columns of  should be spread out in

the domain defined by the rows of A. As a matter of fact, the larger this incoherence,

the better the possibility to retrieve sparse signals by compressed measurements.

Moreover, the matrix ⇥ should approximately preserve the Euclidean length of S-

sparse signals, so each S-sparse vector cannot be mapped in the null space of ⇥, and

each S-sparse vector has to show a non-negligible image in the space of data. The

exact requirements can be formalized by means of the so-called Restricted Isometry

Property (RIP) [43,64], which guarantees conditions for an exact recovery.

Provided the above conditions are fulfilled, it is possible to solve the linear problem

(A.3) by means of the following optimization constrained problem:

min

s
ksk`1 subject to k⇥s � yk`2  � (A.4)

where k · k`1 is the `1-norm and � is a positive parameter which depends on the level

of required accuracy as well as on the modeling and measurement errors.

The problem (A.4) is known as Basis Pursuit denoising (BPDN) or Least Absolute

Shrinkage and Selection Operator (LASSO) problem [181]. In eq.(A.4) the minimiza-

tion of the `1-norm promotes the search of sparse solutions, while the constraint en-

forces the data consistency. In other words, among all solutions which are consistent

with the measured data within a given error, the sparsest one is sought. Note that,

while the optimization problem should consider indeed the so called `0-norm [43], the

relaxation into `1-norm adopted in eq.(A.4) reduces the problem to a convex pro-

gramming one, and it has been shown that the two formulations are equivalent for a

very wide range of cases [42,64].

Moreover, by referring to fig.A.1 it is possible to understand the reason why the

`1-norm is considered instead of the more usual `2-norm. As a matter of fact, the set of

all x vectors that satisfy (A.3) is a plane. The `2 minimization is equivalent to blowing

up a hypersphere and picking point where it touches the solution plane. Since `2 ball

is spherical, usually it picks points away from coordinate axes (non-sparse members

of solution plane), whereas `1 ball has aligned shape axes which help to introduce a

preference for sparse members of solution set [43,94].
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(a) (b) (c)

Fig. A.1. Graphical representation for Compressive Sensing understanding. (a) A sparse

vector s lies on a K-dimensional hyperplane aligned with the coordinate axes in RN and

thus close to the axes. (b) Compressive sensing recovery via `2 minimization does not find

the correct sparse solution s on the translated nullspace (green hyperplane) but rather the

non-sparse vector ŝ. (c) With enough measurements, recovery via `1 minimization does find

the correct sparse solution s.
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Analytic expression for non-radiating sources

Let us recall the given expression for f(r,!) involved in (2.45):

f(x, y) =
+1
X

n=�1

+1
X

m=�1
anm ej(

n⇡

a

x+m⇡

b

y
) (B.1)

In order to evaluate the non-radiating sources WNR, the Helmholtz operator must

be applied on f(r,!). Since the bi-dimensional Laplace operator is r2
=

@2

@x2 +

@2

@y2 ,

where x and y are the standard Cartesian coordinates of the xy-plane, we evaluate:

f 0
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then, the final expression for WNR reads:

WNR(x, y) =
+1
X

n=�1

+1
X

m=�1


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✓

n2
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Once the expressions for derivatives is given, constraints in (2.48) can be evaluated.

In particular, let us refer to the first condition in (2.48):

f(x = a, y) = f(x = �a, y) = 0 =)
+1
X

n=�1

+1
X

m=�1
anm e±jn⇡ ej

m⇡

b

y
= 0 (B.7)
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in which e±jn⇡
= (�1)

n; by inverting the order of the summations and defining

↵m =

P+1
n=�1 anm(�1)

n, one achieves:

+1
X

m=�1
↵m ej

m⇡

b

y
= 0 (B.8)

which holds if and only if ↵m = 0 for each index m. Therefore, the first constraint

arises:
+1
X

n=�1
anm(�1)

n
= 0 8m (B.9)

Notably, by inverting the relation (2.50) and substituting the expression for anm, eq.

(B.9) turns into the first condition in (2.51).

The same procedure can be applied for the other conditions in (2.48).
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The contrast source inversion scheme

The contrast source inversion (CSI) method [20, 34, 35] is one of the most popular

and effective inversion scheme which allows to face the inverse scattering problem in

its full non-linearity by contemporary looking for both the unknown contrast � and

the auxiliary unknown W . The solution of the problem is iteratively built by mini-

mizing the following cost functional, which takes into account the data-to-unknown

relationship and the physical model [34,35]:

�(�,W (1),W (2), . . . ,W (V )
) = �� (W

(1),W (2), . . . ,W (T )
)
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) (C.1)

in which:
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where k·k is the `2-norm, T is the number of impinging directions and w(v)
� and w(v)

⌦

are normalization coefficients defined as follow:
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Note that, as far as the normalization coefficient w(v)
⌦ concerns, the definition in (C.4)

is non the usual one proposed in [20]. In fact, it is usually set equal to the norm of

the product of the contrast function times the incident field, but such a metric will

change at each iteration of the minimization procedure in an unpredictable way.

The equation (C.1) allows to define the estimates of the contrast parameters and

of the contrast source parameters inside the object (for each view), as the solution of

the nonlinear least square problem:
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(�̂, ˆW (1), ˆW (2), . . . , ˆW (V )
) = argmin

(�,W (1),W (2),...,W (V ))

�(�,W (1),W (2), . . . ,W (V )
) (C.5)

Since (C.1) is a non-quadratic functional of the unknowns, it may depends on thousand

of variables and hence the problem arise of how to find the global minimum. As a

matter of fact, global optimization procedures lead to a high computational burden,

while gradient-based minimization schemes could be trapped into local minima [19]

unless a very favorable initial guess is provided.

As a suitable compromise between convergence properties and computational bur-

den, the solution of (C.5) is pursed by following a quasi-Newton minimization proce-

dure, whose scheme is:
2
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in which, k and (k + 1) indicate the k-th and (k + 1)-th iteration, respectively, r�

and rW are the gradient of the functional � with respect to � and W , while �k is

a scalar parameter that has to be evaluated at each iteration in order to guarantee

the maximum decrease of the functional along the direction given by Hr� (H being

evaluated by means of a Polak-Ribiere scheme) [34].

As far as the numerical efficiency of the single minimization step is concerned, first

note that the line minimization step can be performed in a very efficient and precise

manner through the solution of the optimization problem:

�k = argmin �(�k + �k��k,W
(1)
k + �k�W (1)

k , . . . ,W (T )
k + �k�W (T )

k ) (C.7)

where ��k and �Wk represent the descent research directions considered at the k-th

iteration.

Notably, in [34] it has been shown that (due to the involved operators) eq.(C.7)

implies the solution of a third degree algebraic equation available in a closed form.

Accordingly, the solution of the line minimization steps involved in the overall opti-

mization problem is fast and accurate. Moreover, differently from [20] in which the

unknowns are alternatively updated, � and W (v) are herein contemporary updated

at each step of the optimization scheme.

For more details about the general structure of the optimization procedure and

computation of the gradient of the functional � with respect to � and W , the reader

is deferred to [34].
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Modified Contrast Source Inversion scheme

Let us refer to the modified functional (3.3). As found in [34], the mathematical

formulation of the functional evaluated along an arbitrary line whose direction is

given by W = [W (1)
+ ��W (1), · · · ,W (T )

+ ��W (T )
], � = [� + ���], ⌧ = [⌧ (1) +

��⌧ (1), · · · , ⌧ (T )
+ ��⌧ (T )

] can still be written as a fourth degree polynomial:
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+ ã1�+ ã0 (D.1)

in which the new coefficients are the following:
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Note, the subscripts w� and w⌦ stand for a normalization of the term at hand with

respect to
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, respectively, in which k·k2 is the `2-norm.

As far as the gradient of the functional is concerned, due to an increment �W (v),

�� and �⌧ (v), respectively, by following [34] it gets:

rW = 2

T
X

v=1

0

B

@

A†
e

h

Ae[W (v)
]� E(v)

+ ⌧ (v) bE(v)
i

i

�

�E(v)
�

�

2

2

�
�
h

⌧ (v) bE(v)
i +Ai[W (v)

]

i

�W (v)

�

�

�

bE(v)
i

�

�

�

2

2

+

A†
i

n

�⇤
h

�
⇣

⌧ (v) bE(v)
i +Ai[W (v)

]

⌘

�W (v)
io

�

�

�

bE(v)
i

�

�

�

2

2

!

(D.7)

r� = 2

T
X

v=1

0

B

@

h

⌧ (v) bE(v)
i +Ai[W (v)

]

i⇤ n
�
h

⌧ (v) bE(v)
i +Ai[W (v)

]

i

�W (v)
o

�

�

�

bE(v)
i

�

�

�

2

2

1

C

A

(D.8)

r⌧ = 2

T
X

v=1

 

bE(v)⇤
i

h

Ae[W (v)
]� E(v)

+ ⌧ (v) bE(v)
i

i

�

�E(v)
�

�

2

2

+

h

bE(v)
i �

i⇤ n
�
h

⌧ (v) bE(v)
i +Ai[W (v)

]

i

�W (v)
o

�

�

�

bE(v)
i

�

�

�

2

2

!

(D.9)

Addition of physical feasibility penalty term

The addition of penalty terms to the cost functional entails a modification on the

parameters reported above. In particular, when the term related to physical feasibility

constraints (3.6) is involved, the new expressions read:

ã2 = ã2 + k��k22 (D.10)

ã1 = ã1 + 2Re [< �,�� > � < ��, f(�) >] (D.11)

ã0 = ã0 + k�k22 + kf(�)k22 � 2Re < �, f(�) > (D.12)

r� = r�+ 2 [�� f(�)] (D.13)
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Addition of circular symmetry penalty term

When the penalty term (3.7) is added to the cost functional, the coefficients and

the gradient of the overall functional with respect to the contrast function modify as

follow:
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Addition of sparsity promoting penalty term

The introduction of the sparsity promoting penalty term does not allow anymore

to reduce the line minimization procedure to the solution of an algebraic equation.

As a consequence, the step length must be evaluated numerically, thus affecting the

computational burden.

As far as the gradient of the functional concerns, it is worth to note that this

latter is non-differentiable when its argument is equal to zero. This drawback can be

overcome by considering the sub-gradients technique [140,141] as in [77], thus leading

to:
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Appendix E

Synthesis of ⌃/� patterns

The aim of the field synthesis procedure is the determination of the target fields

E on the observation points ro 2 �o in the near field region, such to fulfill given

mask constraints and specifications on the corresponding far fields. To this end, let us

consider an expansion of the ⌃-field in circular harmonics for a 2D TM polarization:

E⌃ (✓, ro
FF

) =

dk
b

Re
X

n=�dk
b

Re

b�ne
jn✓ (E.1)

where ✓ denotes the angular variable, R is the radius of the lens, ro
FF

is the radius

of a far field observation circle, and:

b�n = �nH
(2)
n (kbro

FF

) (E.2)

are the expansion’s coefficients. In eq.(E.1), the summation has been limited to

�dkbRe, dkbRe in accordance with the finite number of degrees of freedom associ-

ated to a source enclosed in a circle of radius R [17].

Then, the �-field can be expressed as a linear combination of two ⌃-fields shifted by

✓t, namely:
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where b�n = �2j sin(n✓t)b�n . By so doing, only one between the b�n and b�n sets of

coefficients has to be evaluated in order to perform the synthesis (the other one being
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related to it by a simple linear relationship).

Then, by noticing that expressions (E.1) and (E.3) resemble the expression of uni-

formly spaced array factors, one can follow the approaches respectively developed in

the optimal “separate” synthesis of pencil [182] and difference [183] beams, as well

as recent extensions to reconfigurable fields [146, 147]. By exploiting these results,

the unknown coefficients can be finally determined by solving the following Convex

Programming problem:
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where the objective function (E.4) and constraint (E.5a) allow to maximize the am-

plitude of the derivative of E� in the target direction, constraints (E.5b),(E.5d) and

(E.5e) define the amplitude of the two fields in the target direction, and constraints

(E.5c) and (E.5f) allow to keep under control the sidelobes level of the two power

patterns (UB� and UB⌃ being suitable user-defined upper-bound masks).

As far as ✓t is concerned, it is easy to show that an optimal choice is the first null

of the sum pattern. In fact, this allows a physical superposition between the difference

pattern’ maxima and the pencil beam’s null.

After solving problem (E.4)-(E.5), the final expression of the two patterns on

ro 2 �o can be identified by a field backpropagation, i.e.,
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wherein, by virtue of (E.2), it is �n = b�n/H
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