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ABSTRACT  

Aims: Mutations in genes encoding desmosomal proteins have been implicated in the  

pathogenesis of arrhythmogenic right ventricular cardiomyopathy (ARVC). However, the  

consequences of these mutations in early disease stages are unknown. We investigated  

whether mutation-induced intercalated disc remodeling impacts on electrophysiological  

properties before the onset of cell death and replacement fibrosis.  

Methods and Results: Transgenic mice with cardiac overexpression of mutant Desmoglein2  

(Dsg2) Dsg2-N271S (Tg-NS/L) were studied before and after the onset of cell death and  

replacement fibrosis. Mice with cardiac overexpression of wild-type Dsg2 and wild-type  

mice served as controls. Assessment by electron microscopy established that intercellular  

space widening at the desmosomes/adherens junctions occurred in Tg-NS/L mice before the  

onset of necrosis and fibrosis. At this stage, epicardial mapping in Langendorff-perfused  

hearts demonstrated prolonged ventricular activation time, reduced longitudinal and  

transversal conduction velocities, and increased arrhythmia inducibility. A reduced action  

potential upstroke velocity due to a lower Na+ current density was also observed at this stage  

of the disease. Furthermore, co-immunoprecipitation demonstrated an in vivo interaction  

between Dsg2 and the Na+ channel protein NaV1.5.   

Conclusion: Intercellular space widening at the level of the intercalated disc (desmosomes/  

fascia adherens junctions) and a concomitant reduction in action potential upstroke velocity, 

as a consequence of lower Na+ current density, leads to slowed conduction and increased  

arrhythmia susceptibility at disease stages preceding the onset of necrosis and replacement  

fibrosis. The demonstration of an in vivo interaction between Dsg2 and NaV1.5 provides a  

molecular pathway for the observed electrical disturbances during the early ARVC stages.  
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RIASSUNTO 
 

Introduzione: Mutazioni nei geni che codificano per le proteine desmosomali giocano un 

ruolo fondamentale nella patogenesi della cardiomiopatia aritmogena del ventricolo destro 

(ARVC). Tuttavia, le conseguenze di tali mutazioni negli stadi precoci della malattia sono 

sconosciute.  

Scopo del nostro studio è stato di indagare se il rimodellamento dei dischi intercalari come 

conseguenza di mutazioni nelle proteine desmosomali modifichi le proprietà elettrofisiologiche 

cardiache prima dello sviluppo di morte cellulare e fibrosi sostitutiva. 

Metodi e Risultati: Topi transgenici con overespressione cardiaca della proteina 

Desmogleina2 mutata (Dsg2) -Dsg2-N271S (Tg-NS/L)- sono stati studiati prima e dopo lo 

sviluppo di morte miocitaria e fibrosi sostitutiva. Come controlli, abbiamo usato topi wild-type 

e topi con overespressione della Dsg2 normale.  

Studi di microscopia elettronica hanno evidenziato la presenza di spazi intercellulari allargati 

in corrispondenza delle giunzioni meccaniche desmosomi/giunzioni aderenti nei topi Tg-NS/L 

prima dello sviluppo di necrosi e fibrosi. Contemporaneamente, il mappaggio epicardico in 

cuori perfusi con soluzione Langendorff ha dimostrato prolungamento del tempo di attivazione 

ventricolare, riduzione della velocità di conduzione longitudinale e trasversale, ed aumento 

della inducibilità di aritmie. Inoltre, nello stesso stadio di malattia, si osservava ridotta velocità 

del potenziale d’azione dovuta a minore densità della corrente del sodio.  

Studi di co-immunoprecipitazione, infine, dimostravano un’interazione in vivo tra la Dsg2 e la 

proteina NaV1.5 dei canali del sodio.   

Conclusioni: Un allargamento degli spazi intercellulari a livello dei dischi intercalari e una 

concomitante riduzione del potenziale d’azione, come conseguenza di una minore corrente 

del sodio, portano ad un ritardo di conduzione ed ad aumentata suscettibilità aritmica negli 
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stadi di malattia che precedono la necrosi e la fibrosi sostitutiva. La dimostrazione di 

un’interazione 

in vivo tra Dsg2 e NaV1.5 suggerisce una spiegazione a livello molecolare dei disturbi elettrici 

osservati negli stadi precoci dell’ARVC.  
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ABBREVIATIONS 

AP  Action potential  

ARVC Arrhythmogenic right ventricular cardiomyopathy 

Cx43 Connexin 43  

DSC2 Desmocollin-2  

DSG2 Desmoglein-2  

DSP  Desmoplakin 

ICDs  Implantable cardioverter defibrillators 

iPSC  Induced pluripotent stem cells  

LDAC Left Dominant Arrhythmogenic Cardiomyopathy  

LV  Left ventricle 

MRI  Magnetic resonance imaging 

PG  Plakoglobin 

PKP2 Plakophilin-2 

RYR2 Ryanodine receptor 2 

RV  Right ventricle 

SCD  Sudden cardiac death 

TGFB3 Transforming growth factor-β3 

TMEM43 Transmembrane protein 43  
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GENERAL PART 

Definition  

Arrhythmogenic right ventricular cardiomyopathy (ARVC), or just arrhythmogenic 

cardiomyopathy, is a genetically-determined heart muscle disease, associated with 

myocardial abnormalities and electrical dysfunction, characterized histopathologically by fibro-

fatty replacement of the ventricular myocardium (mainly localized in the right ventricle-RV) 

and clinically by severe ventricular arrhythmias at risk of cardiac arrest (Marcus et al., 1982; 

Thiene et al., 1988; Basso et al., 1996; Nava et al., 2000). It is one of the major causes of 

sudden cardiac death (SCD) in the young (Thiene et al., 1988) and in the athletes (Corrado et 

al., 1990; Corrado et al., 2003; Corrado et al., 2006). Heart failure is infrequent but may occur 

due to severe right or biventricular enlargement (Basso et al., 1996). 

Initially thought to be a developmental defect of RV myocardium and thus termed “RV 

dysplasia,” more recent advances in pathophysiology led to the recognition of ARVC as a 

cardiomyopathy (Basso et al., 2010). Since its entry into the classification of 

cardiomyopathies by the World Health Organization (Richardson et al., 1996), major progress 

has been achieved in the field of molecular pathophysiology, genetics, diagnosis, risk 

stratification, and treatment. Our concepts of the disease continue to evolve in parallel with 

wider recognition and identification of critical genetic, epigenetic and/or environmental factors 

that interact to determine disease severity and risk of SCD.  

 

Epidemiology 

ARVC occurs worldwide, but the incidence varies considerably among different geographic 

regions (Basso et al., 2009). The prevalence of 1:1,000 to 1:5,000 people has been estimated 

(Nava et al., 1988; Rampazzo et al., 1994; Norman et al., 1999; Peters et al., 2004; Sen-
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Chowdhry et al., 2010), however, it could be higher because of the existence of many 

misdiagnosed cases.  

 

Historical notes 

The first historic mention was in the eighteenth century in the book De Motu Cordis et 

Aneurismatibus, published in 1736 by Giovanni Maria Lancisi, who reported a family with 

palpitations, heart failure, aneurysms of the RV, and SCD, recurring in four generations 

(Lancisi, 1736; quoted by Basso et al., 2009).  

Osler was the first to describe a parchment heart with thinned and dilated cardiac chambers 

(Osler, 1905). In 1952, Uhl reported a case in which the wall of the RV was paper thin and 

nearly completely devoid of muscle fibers (Uhl, 1952). Until 1979, the term Uhl's anomaly was 

frequently used for the disease. It was in 1961 that Dalla Volta et al reported cases with 

“auricularization of the right ventricular pressure” showing a fibrofatty, nonischemic pathology 

of the RV (Dalla Volta et al., 1961). In 1979, Fontaine described a similar lesion of the RV and 

coined the term ARVC (Fontaine et al., 1979). In 1982 Marcus and colleagues provided the 

first clinical description of 24 patients with “right ventricular dysplasia” (Marcus et al., 1982), 

emphasizing the origin of arrhythmias from the RV and the histopathological substrate 

consisting of fibro-fatty replacement of the RV free wall. Years later, Nava and colleagues 

(Nava A. et al., 1988) demonstrated the variable clinical features and the genetic trait of the 

disorder. Thiene et al observed a case series of SCD in the young (≤35 years) with pathology 

consisting of ARVC, accounting for 20% of all SCD, mostly occurring during effort, and all 

characterized by inverted T-waves in the right precordial leads at electrocardiogram (ECG) 

and ventricular arrhythmias of left bundle branch block morphology. Thiene hypothesized that 

this disease affected primarily the myocardium with progressive atrophy, unrelated to 
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developmental defects (Thiene et al., 1988). 

 

Pathologic substrates 

Gross Pathology  

The degree of RV involvement varies from localized infiltration of the RV apex, infundibulum, 

and the posterior wall (‘‘triangle of dysplasia’’), resulting in RV dilatation and aneurysms, to 

diffuse replacement of the myocardium of the RV and ultimately involvement of the left 

ventricle (LV), particularly the posterior-inferior wall (Thiene et al., 1988; Basso et al., 1996). 

In contrast to common heart diseases in which subendocardial muscle shows the greatest 

pathological changes (e.g., in ischemic heart disease), degeneration of cardiac myocytes and 

their replacement by fibro-fatty scar in ARVC occur mostly in subepicardial and 

midmyocardial muscle, and the subendocardial tissue is relatively spared. 

The septum is usually spared in ARVC probably because it is not a subepicardial structure. 

Recently, it has been recognized that the disease can show a phenotypic spectrum much 

wider than previously thought, with biventricular and predominantly left ventricular forms 

(Basso et al., 2009; Tavora et al., 2012; Rizzo et al., 2012). Moreover, some victims of SCD 

show little or no structural remodeling of ventricles. The coronaries are characteristically 

normal.  

In some cases, plaques of endocardial fibrosis, related or not to dystrophic areas, have been 

observed, probably resulting from the organization of a mural thrombus. 

Fatty infiltration of the RV has not to be considered "per se" a sufficient morphologic hallmark 

of ARVC. A certain amount of intramyocardial fat is present in the RV antero-lateral and  

apical region even in the normal heart and increases with age and body size. Moreover, 

ARVC should be kept distinct from adipositas cordis. Presence of replacement-type fibrosis 
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and myocyte degenerative changes at histology are essential to provide a certain diagnosis, 

besides remarkable fat replacement (Basso et al., 2005).  

 

Histopathology  

The typical histological pattern of ARVC consists of a progressive loss of RV myocardium with 

fibro-fatty replacement which starts from subepicardium towards the endocardium (Thiene et 

al., 1988; Basso et al., 2009), embedding strands or sheets of degenerated cardiomyocytes. 

Careful examination of the heart in classical ARVC reveals at least some pathological 

changes (foci of fibro-fatty tissue and/or mononuclear inflammatory infiltrates) in the 

interventricular septum or LV free wall in up to 75% of cases (Corrado et al., 1997). 

Affected cardiac myocytes show degenerative features such as myofibrillar loss and 

hyperchromatic changes in nuclear morphology (Basso et al., 2008). Clusters of myocytes 

can also be seen to be dying at histology, providing evidence of the acquired nature of 

myocardial atrophy. The myocardial loss is the consequence of cell death occurring after 

birth, usually during childhood. James was the first to suggest that apoptosis as the 

mechanism of cell death in ARVC (James, 1994). Later, the occurrence of apoptotic 

myocardial cell death in ARVC has been reported, either at post-mortem or in vivo in 

endomyocardial biopsy specimens (Mallat et al., 1996; Valente et al., 1998; Yamamoto et al., 

2000).  

These changes are frequently associated with inflammatory infiltrates, presenting as patchy 

myocarditis (Thiene et al., 1991; Basso et al., 1996). 

Nobody knows whether inflammation is a reactive phenomenon to cell death, or whether it is 

the consequence of an infection or immune mechanism. Cardiotropic viruses have been 

reported in the myocardium of patients with ARVC, thus supporting an infective pathogenesis, 
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even though viruses might not play a role or the dystrophic myocardium favours viral 

settlement (superimposed myocarditis) (Bowles et al., 2002; Calabrese et al., 2006).  

Rather than being a continuous process, disease progression might occur during periodic 

bursts in an otherwise stable disease. These disease exacerbations can be clinically silent in 

most patients but sometimes can be characterised by the appearance of life-threatening 

arrhythmias and chest pain. Environmental factors, such as exercise or inflammation, might 

facilitate disease progression by worsening cell adhesion.  

Troponin-I elevation in the context of ARVC indicates a “hot phase” of the disease, and  

might be used as a prognostic marker in the course of the disease (Kostis et al., 2008;  

Lazaros et al., 2009). 

 

Ultrastructural pathology 

Electron microscopic studies, performed in cases that underwent heart transplantation, 

disclosed that most of the surviving myocytes did not exhibit any specific alteration. Within the 

fibrotic areas, lymphocytic infiltrates around capillary vessels, as well as myocyte debris 

ascribable to recent death, could be observed (Basso et al., 2006). 

Intercalated disc ultrastructural abnormalities consisting of decreased desmosome number 

and intercellular gap widening have been observed in ARVC biopsy samples (Basso et al., 

2006). Moreover, abnormally located and irregularly oriented desmosomes were identified in 

the majority of cases, often with pale internal plaques. Furthermore, some of the adhering 

junction-like junctions appeared widened in the intercalated disc (Lahtinen et al, 2008). 

Recently (Noorman et al., 2012), focal accumulation of electron dense material at the Z-lines 

was observed in the myocardium of an ARVC patient underwent to heart transplantation, a 

finding previously reported only in boxer dogs suffering from ARVC (Oxford et al., 2011), 
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suggesting an involvement of cytoskeletal components in the disease. The presence of 

similar electron dense material corresponding to aggregation of alpha-actinin within 

sarcomeres, is the hallmark of the nemaline myopathy, a disease due to mutations in genes 

encoding for actin filament proteins and affecting both skeletal muscle and heart (Clarkson et 

al., 2004). Whether mislocalization of one group of proteins is consequent to the other, or the 

events occur independently, is to be determined in future studies.  

 

Genetics 

In approximately half of all cases, ARVC is familial (Nava et al., 2010; Basso et al., 2009; 

Hamid et al., 2002). Familial forms have been reported since the beginning of the 1980s.’ 

(Marcus et al., 1982). Different genetic variants of ARVC have been mapped and over 140 

disease-causing ARVC mutations have been published, reflecting high genetic heterogeneity. 

Most of the mutations encod desmosomal proteins, residing in the intercalated disc that 

connects adjacent cardiomyocytes, and are predicted to cause loss of function. 

The ARVC Genetics Variants Database (www.arvcdatabase.info) was recently established to 

provide a public repository for variants in genes that cause ARVC in order to assist with 

genotype–phenotype correlations and help determine pathogenicity. 

Studies of individuals from the Greek island of Naxos with an autosomal recessive syndrome 

characterized by the triad of ARVC with diffuse non-epidermolytic palmoplantar keratoderma 

and woolly hair led to the identification of the first causative gene of an ARVC-associated 

disorder. Initial mapping of this disorder pointed to the chromosomal locus 17q21, and 

candidate-gene sequencing within this region revealed a homozygous deletion in the 

plakoglobin (PG) gene (Coonar et al., 1998; Mckoy et al., 2000). In 2000, homozygosity 

mapping led to the discovery of a desmoplakin (DSP) gene mutation in three Ecuadorian 
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families with Carvajal syndrome (Norgett et al., 2000). These mutational discoveries in the PG 

and DSP genes prompted attention to be focused on the desmosome in the ARVC 

pathogenesis.  

Finding mutations in genes encoding desmosomal proteins, namely DSP (Rampazzo et al., 

2002), Plakophilin-2 (PKP2, Gerull et al., 2004; van der Zwaag et al., 2010), Desmocollin-2 

(DSC2, Syrris et al., 2006; Heuser et al., 2006; Beffagna et al., 2007), Desmoglein-2 (DSG2, 

Pilichou et al., 2006; Awad et al., 2006) and PG (Asimaki et al., 2007) led to current idea that 

ARVC is due to desmosomal dysfunction (Basso et al., 2011).  

Although rare, mutations in some non-desmosomal additional proteins, such as transforming 

growth factor-β3 (TGFB3), which encodes for a cytokine-stimulating fibrosis and modulating 

cell adhesion (Beffagna et al., 2005), transmembrane protein 43 (TMEM43), which function as 

a response element for PPAR gamma (peroxisome proliferator-activated receptor gamma), 

an adipogenic transcription factor which may explain the fibrofatty replacement of the 

myocardium (Merner et al., 2008), ryanodine receptor 2 (RYR2), which induces the release of 

calcium from the myocardial sarcoplasmic reticulum (Tiso et al., 2001), desmin (Klauke et al., 

2010), lamins A/C (Quarta et al., 2012), titin (Taylor et al., 2011) and phospholamban (van der 

Zwaag et al., 2012; Groeneweg et al., 2012) have also been associated with human ARVC.  

Recently, screening for novel candidates of ARVC causing genes have been extended to 

typical fascia adhaerens components, leading to the identification of α-T-catenin as a new 

disease-causing gene (van Hengel et al., 2012). 

The disease is usually transmitted as an autosomal dominant trait with reduced penetrance 

and variable clinical expression, even within members of the same family who carry the same 

disease-associated mutation. This indicates the presence of genetic and/or epigenetic 

modifiers that interact with environmental factors such as exercise to determine the risk of 
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SCD or other adverse events. Single mutations in individual genes may not be sufficient to 

cause ARVC development; compound heterozygous mutations in the same gene (two or 

more gene variants) or digenic mutations in desmosomal genes (gene variants in two or more 

desmosomal genes) may be required for disease development and clinical manifestation.  

Co-inheritance of multiple desmosomal gene sequence variations has been reported to be 

associated with a higher risk of developing ARVC (Lahtinen et al., 2008; Bhuiyan et al., 2009; 

den Haan et al., 2009) and with a more severe cardiac phenotype (Bauce et al., 2010; Xu et 

al., 2010; Quarta et al., 2011).  

The availability of molecular genetic testing allows the identification of gene-positive 

individuals. However, because of the lack of knowledge about long-term outcome in 

genetically-affected relatives, lifelong follow-up of these relatives is required for early 

detection of signs of disease.  

Despite the ability to positively identify genotypes in a majority of patients 

with ARVC, genotype–phenotype correlations are still limited and the pathogenic significance 

of some mutations remains unclear (Bauce et al., 2005; Norman et al., 2005; Sen-Chowdhry 

et al., 2005; Syrris et al., 2007; Cox et al., 2011; van der Smagt et al., 2012). 

Patients carrying PKP2 mutations present at an earlier age than those without mutations and 

the arrhythmia-free survival is lower (). DSG2 and DSC2 mutations have been predominantly 

associated with predominantly LV involvement. Finally, it is hypothesised that DP mutations 

predispose to early LV involvement from disruption of cytoskeletal integrity.  

More in-depth knowledge from functional genotype–phenotype analyses and additional 

identification of disease-modifying factors (genetic or environmental) could allow a reliable 

preclinical diagnosis of the disease and may open the way for the target-directed therapeutic 

interventions to refine individualized treatment strategies, and finally to prevent SCD. 
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Intercalated disc 

The end-to-end connection between cardiomyocytes is maintained by the intercalated disc, 

an electron-dense structure harbouring the intercellular junctions that provide electrical and 

mechanical coupling in the heart.  

The classical definition of intercalated disc involves three main junctional complexes: gap 

junctions, adherens junctions, and desmosomes (Figure 1A and B).  

The gap junction provides intercellular communication via small molecules and ions that pass 

through a channel generated by a family of proteins called connexins, allowing 

electrical/metabolic synchronization between cells. Connexin 43 (Cx43) is the most abundant 

connexin isotype localized in gap junctions of the heart.  

 

Figure 1. Intercellular mechanical and electrical junction of the cardiomyocyte. (A) Schematic 
representation of junctional components. (B) Transmission electron microscopy of 
cardiomyocyte intercalated disc. (B) (From Sheikh et al., 2009) 
 

A B  

  
The adherens junction provides strong cell-cell adhesion, which is mediated by the 

cadherin/catenin complex via linkage to the actin cytoskeleton. In the classic adherens 
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junctions, the cytoplasmic tail of N-cadherin interacts with either -catenin or PG. -Catenin or 

PG links cadherins to -catenin, and -catenin interacts with either the cadherin/catenin 

complex or the actin cytoskeleton.  

The desmosome include proteins from at least three distinct gene families: cadherins, 

armadillo proteins and plakins (Garrod et al., 2002). Desmosomal cadherins, DSG2 and 

DSC2 form extracellular connections by homophilic and heterophilic binding with cadherins on 

neighboring cells. The cytoplasmic tails of desmosomal cadherins bind to the armadillo 

proteins PG and PKP-2, which in turn bind to the plakin protein DP. DP links desmosomes to 

intermediate-filament desmin, playing a key role in ensuring mechanical integrity and 

intercellular force transmission of tissues which undergo high mechanical stress, such as 

epidermis and heart (Cheng and Koch, 2004; MacRae et al., 2006; Stokes 2007). 

It is not surprising, therefore, that human diseases related to mutations in desmosomal 

proteins manifest clinically as cardiac or cutaneous diseases whose phenotypic expression is 

determined by the specific tissue distribution of the mutant protein and by the severity of the 

mutation.  

Recent evidence has emerged to suggest that these junctions are more structurally and 

functionally complex than once thought.  A study of the ultrastructure of the adult mammalian 

heart supports the notion that desmosome and adherens junctions are not morphologically 

distinct; rather, the cardiac intercalated disc shows (in addition to gap junctions) the “area 

composita” with mixed characteristics of the 2 types of mechanical junctions and 

colocalisation of the usually distinct components of desmosomes and adherens junctions. In 

area composita desmosomal proteins are therefore indirectly involved in supporting the 

myofibrillar actin anchorage in N-cadherin mediated cell–cell adhesion complexes (Franke et 

al., 2006). Recognition of the “area composita” and the determination of interactions between 
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intercellular adhesion molecules and gap junctions suggests that these may be 3 elements of 

a single functional unit. Moreover, there is growing evidence that other molecules, not directly 

involved in intercellular coupling, also reside at the intercalated disc. Among them is NaV1.5, 

the major a-subunit of the cardiac sodium channel (Kucera et al., 2002). 

 

Clinical features and natural history  

The phenotype of ARVC is highly variable, ranging from the asymptomatic to a severely 

symptomatic state due to arrhythmias (palpitations, dizziness related to syncopal episodes or 

aborted SCD) (Basso et al., 2009). Often the first and only symptom is SCD. Although 

mutations are present throughout the earliest stages of cardiac development, clinical 

symptoms are manifested in the early adulthood. ARVC clinically manifests sooner and more 

severely in athletes but also in individuals not physically active, and can be identified later in 

life. Sex influence with greater clinical severity in males has been described (Blomstrom-

Lundqvist et al, 1987). More recently, although men are more frequently affected than 

women, gender appears a priori not to harbor adverse effects on long-term survival (Bauce et 

al., 2008). Exercise may be a precipitating factor, suggesting adrenergic inputs as a culprit in 

generating these tachycardias, that may be due to increased sympathetic tone.  

Based on the long-term clinical follow-up, the natural history of ARVC was distinguished in 

four phases in the past (Thiene et al., 1990): 

1. in the first subclinical phase, the patients are usually asymptomatic, but may be at 

risk of SCD, especially during exercise. The structural changes in the early “concealed” 

phase, when present, are of small extent and may locate at the inferior, apical, and 

infundibular walls of the RV (triangle of dysplasia).  

2. In the second, “overt” electrical phase, symptomatic ventricular arrhythmias of RV 
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origin, usually triggered by effort, are observed, while the morphological and functional 

changes in the RV are more apparent.  

3. The third phase is characterized by diffuse damage of the RV, accounting for 

severe pump failure, while LV function is preserved by comparison.  

4. In the fourth, advanced phase, there is severe, diffuse biventricular involvement, 

mimicking dilated cardiomyopathy. Endocavitary mural thrombosis may develop within 

aneurysms or in the atrial appendages, when heart failure is complicated by atrial 

fibrillation, leading to thromboembolism. In such conditions, contractile dysfunction may 

require cardiac transplantation.  

SCD can occur at any time during the disease course, and the incidence of SCD varies from 

0.1% to 3.0% per year (Basso et al., 2012), but may be higher in adolescents and young 

adults, in whom the disease is concealed.  

SCD is generally the result of an abrupt ventricular tachyarrhythmia that compromises cardiac 

output. Despite great advances in the treatment of SCD using implantable cardioverter 

defibrillators (ICDs), the incidence of SCD continues to rise, probably due to our inability to 

clearly identify all high-risk patients who will benefit from ICDs, and uncomplete 

understanding of the arrhythmic mechanisms in ARVC.  

In the fully expressed form, the diagnosis of ARVC is not difficult. However, the classical 

findings may not be apparent in the early stages of the disease, during which patients may 

still be at risk of ventricular arrhythmias, leading to diagnostic difficulties. So the main clinical 

targets are early detection of concealed forms and risk stratification for preventive strategies. 
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Diagnosis 

Diagnosis of ARVC carries serious implications both for the affected patient and also for 

family members, especially because SCD can be the first manifestation of the disorder. In 

many cases, families first become aware of ARVC when an index case dies suddenly and the 

disease is diagnosed at autopsy.  

Several factors, including marked phenotypic variation, incomplete and low (30%) 

penetrance, and age-related disease development and progression contribute to the 

complexity of clinical diagnosis (Sen-Chowdhry et al., 2005).  

In 1994 a Task Force proposed criteria, encompassing structural, histological, 

electrocardiographic, arrhythmic and genetic factors, that are used as a standard in clinical 

diagnostics (McKenna et al., 1994). According to this classification, the presence of two major 

criteria or one major and two minor criteria or four minor criteria are required in order to 

confirm ARVC. Despite a standardized approach designed to facilitate assessment, arriving at 

a definitive diagnosis remains challenging in many individuals. The original criteria focused on 

the diagnosis of overt and severe disease and lacked sensitivity for early forms common 

among family members. 

The diagnostic criteria have been recently revised by an international Task Force (Marcus et 

al., 2010), to incorporate new –predominantly electrophysiological - knowledge and 

technology (i.e.MRI), to enhance the detection of “nonclassic” patterns of ARVC through 

advanced cardiac imaging and to include quantitative parameters, aiming to increase 

sensitivity while maintaining the already high specificity of the 1994 guidelines. These new 

criteria are particularly useful for the identification of early phenotypes, such as in cases of 

familial disease. Moreover, it appears that the revised criteria can better identify individuals 

who carry disease-causing mutations in one or more desmosomal genes.  



 21 

The diagnostic criteria are divided in six categories: depolarization/conduction  abnormalities, 

repolarization abnormalities,ventricular arrhythmias, right ventricular structural or functional 

characteristics as demonstrated by imaging techniques, histological criteria, and 

familial occurrence of ARVC or presence of mutations associated with ARVC (Figure 2). 

Clinical suspicion of ARVC is the most important factor in diagnosis (Basso et al., 2009). This 

condition should be considered in any young healthy patient who presents with frequent 

palpitations, lightheadedness, or syncope in the absence of a clear precipitating cause. Other 

warning signs include a positive family history of SCD and an abnormal ECG. 

Most of the patients are evaluated for the above-mentioned symptoms and undergo screening 

Holter or excersise testing, which shows multifocal premature ventricular contractions, short 

runs of nonsustained ventricular tachycardia, or sustained ventricular tachycardia of left 

bundle branch block morphology, which prompts further diagnostic workup.  

 
Figure 2. Schematic diagram of the recently modified diagnostic criteria for ARVC (From Paul 
et al, 2012) 
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Electrocardiography  

It is one of the key screening diagnostic modalities, resulting abnormal in 70% of cases. The 

diagnosis of ARVC can often be suspected on the basis of ECG abnormalities. Precordial T-

wave inversion in V1-V3 is the most common finding. A unique finding is the presence of the 

"Epsilon Wave" in the right precordial leads, which represents a relative prolongation of the 

QRS complex as a result of slow conduction in the diseased RV free wall. The presence of a 

QRS greater than 110 ms along with precordial T wave inversion is said to have high 

sensitivity and specificity for ARVC. Among electrocardiographic parameters, right precordial 

QRS prolongation, QRS dispersion, and late potentials on signal-averaged ECG (SAECG), 

have been associated with an increased arrhythmic risk in ARVC. 

Holter monitoring and excersise testing may show ventricular tachycardia of left bundle 

branch block morphology with a superior axis orientation, which helps to differentiate it from 

RV outflow tract tachycardias, which are more benign and have an inferior axis orientation.  

 

Echocardiography  

2-D Echocardiography is the standard modality used for diagnosis of ARVC. 

Echocardiography is noninvasive and represents the first-line approach in evaluating patients 

with suspected ARVC or in screening family members.  

Findings include RV enlargement or multiple outpouchings and dyskinetic areas which cause 

RV dysfunction. Diastolic bulging of the infero-basal wall, structural abnormalities of the 

moderator band, isolated dilatation of the RV outflow tract, apical dyskinesia, and trabecular 

disarrangement have also been reported.  

Echocardiography has value in overt cases and may be negative in cases with localized 

disease not associated with significant RV morphologic change. Moreover, conventional 
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echocardiography cannot be detect LV involvement in ARVC because of the relatively late 

appearance of overt LV structural and functional abnormalities (Marcus et al., 2007; Corrado 

et al., 2011).  

 

Magnetic Resonace Imaging and Computerized Tomography  

Computerized tomography (CT) and MRI provide better structural evaluation and offer the 

advantage of noninvasive tissue characterization.  

CT features of ARVC are a localized or diffuse RV involvement and dilatation, thinning of the 

free wall, and hypokinesis. The distinguishing feature is the marked increase in subepicardial 

fat delineated by densitometric analysis of the CT image.  

As an imaging modality, MRI offers many advantages for the evaluation of ARVC, including 

noninvasive detection of structural changes in vivo, avoidance of exposure to ionizing 

radiation, and visualization of the RV without restriction by acoustic windows. Moreover, MRI 

plays a pivotal role, especially thanks to its unique ability to detect LV involvement and early 

and subtle cases of ARVC which may otherwise be misdiagnosed (Hunold et al, 2005; Sen-

Chowdhry et al., 2008; Marra Perazzolo M et al. 2012), using the late enhancement technique 

even in the setting of preserved morpho-functional features. Cine-MRI may be of value in 

estimating RV volume and wall motion abnormalities with akinesia, dyskinesia and 

aneurysms. However, recent studies have shown a high degree of interobserved variability in 

assessing fatty deposition, which may be observed even in normal hearts.  

It is becoming clear that this non-invasive tool is a valuable diagnostic tool that complements 

echocardiography and substantially enhances the sensitivity of clinical diagnosis, particularly 

in early disease (Sen-Chowdhry et al., 2006).  
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Endomyocardial Biopsy  

In patients suspected of ARVC by clinical and diagnostic modalities, transvenous 

endomyocardial biopsy may help to confirm the diagnosis, through histological demonstration 

of fibro-fatty myocardial replacement. Biopsy may give false negative results in cases with 

localized involvement. The major limitation is that the biopsy is usually obtained from the 

septum, which is spared in ARVC leading to a false negative result (Basso et al., 2008; 

Marcus et al., 2010). Samples should be retrieved from the RV free wall, since the fibro-fatty 

replacement is usually transmural and thus detectable from the endocardial approach. 

A residual amount of myocardium <60%, due to fibrous or fibro-fatty replacement, has been 

proven to have a high diagnostic accuracy and is now considered a major criterion for ARVC 

diagnosis. To improve the diagnostic sensitivity for ARVC, an endomyocardial biopsy 

procedure guided either by voltage mapping or by MRI has been suggested (Avella et al., 

2008). Moreover, biopsy is essential to rule out the so-called ARVC “phenocopies”, such as 

myocarditis, sarcoidosis or idiopathic RV outflow tract tachycardia (Corrado et al., 2005; 

Corrado et al., 2008; Vasaiwala et al., 2009; Corrado et al., 2009; Ladyjanskaia et al., 2010).  

Very recently, a new diagnostic test based on immunohistochemical desmosomal analysis  

of human myocardial samples obtained by endomyocardial biopsy has been shown to be 

sensitive and moderately specific in diagnosing ARVC (Asimaki et al., 2009). This study 

showed that the immunoreactive signal level for the desmosomal protein PG was reduced at 

intercalated discs in patients with ARVC, not only in diseased RV myocardium, but also in 

normal-appearing LV and interventricular septum, potentially expanding the diagnostic utility 

of a conventional endomyocardial biopsy.  

However, the extent to which this test may be used in the routine diagnosis of early-stage      

disease in the clinical setting remains to be seen. A more complete understanding of the 
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specificity of this test in the full spectrum of ARVC will be required.  

 

Electrophysiologic Study  

Emerging data suggest an increasing role for endocardial voltage mapping in identifying the 

presence of scarring in the RV in early phases of the disease. The technique has the potential 

to accurately identify the presence, location and extent of the pathologic substrate of ARVC to 

be targeted by endomyocardial biopsy and ablation, by demonstration of low voltage RV 

regions, corresponding to areas of myocardial depletion and correlating with the 

histopathologic finding of myocardial atrophy and fibro-fatty replacement at endomyocardial 

biopsy (Corrado et al., 2005).  

Electrophysiologic testing with programmed electrical stimulation (PES) should be performed 

to define the morphologic characteristic of the arrhythmia, and if possible, a precise region of 

origin in the RV. This can guide drug suppression trials and/or radiofrequency ablation of the 

arrhythmogenic focus.  

 

Differential Diagnosis  

The main differential diagnoses of ARVC are idiopathic RV outflow tract tachycardia, 

sarcoidosis, idiopathic dilated cardiomyopathy, and isolated myocarditis. Although it is not 

difficult to diagnose a manifest case of ARVC, differentiation of ARVC at its early stages from 

idiopathic RV outflow tract tachycardia, a usually benign and nonfamilial arrhythmic condition, 

remains a clinical challenge. If clinical doubts remain after traditional examinations (ECG, 

Holter) and imaging techniques (echocardiogram, MRI), RV voltage mapping seems to be a 

useful emerging tool to differentiate between the two entities. 

Cardiac sarcoidosis, a disorder in which noncaseating granulomas focally replace the 
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myocardium, and ARVC can manifest very similarly. The discrimination between these 

entities is very challenging at times, notably because of common RV and occasionally just 

mild to moderate LV involvement. the revised diagnostic ARVC criteria do not reliably 

differentiate cardiac sarcoidosis from ARVC. Additional testing (endomyocardial biopsy, 

electroanatomical mapping, MRI), to specifically exclude sarcoidosis is of major relevance, as 

treatment differs fundamentally (Corrado et al., 2009; Ladyjanskaia et al., 2010; Dechering et 

al., 2012; Steckman et al., 2012). 

The Brugada syndrome has been considered a subliminal form of ARVC (Martini et al., 2004; 

Corrado, Basso et al., 2010). In some cases of Brugada syndrome, subtle structural interstitial 

changesin the RV, that are undetectable by routine diagnostic procedures, may underlie both 

the ECG changes and the propensity for life-threatening arrhythmias (Coronel et al., 2005).  

Prior to the introduction of the Brugada syndrome, Martini et al. (1989) presented a patient 

with right precordial ST-segment elevation and idiopathic ventricular fibrillation. One patient 

demonstrated what was later to be called the Brugada ECG pattern. Careful clinical re-

evaluation demonstrated enlargement of the right ventricular outflow tract and right ventricular 

wall motion abnormalities. This caused the authors to conclude that a concealed form of 

ARVC was present in this patient. Since, more histological findings consistent with ARVC 

have been demonstrated at autopsy series of patients with the Brugada ECG (Corrado et al., 

1996, 2001; Tada et al., 1998). The largest series was presented by Corrado et al. (2001) and 

consisted of 13 young SCD victims with a Brugada ECG pattern on their last recorded ECG. 

Of these patients, 12 demonstrated structural heart disease consistent with ARVC at autopsy. 

Similar to Brugada syndrome patients (Matsuo et al., 1999), most of these patients died at 

night or at rest (Tada et al., 1998; Corrado et al., 2001). Furthermore, polymorphic VTs as 

observed in the Brugada syndrome were recorded in some these ARVC patients (Corrado et 
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al., 2001). Secondly, sodium channel blockers can induce the Brugada ECG pattern ~1 in 6 

patients previously diagnosed with ARVC (Peters et al., 2004; Peters, 2008). These data 

indicate the Brugada ECG pattern, the associated ventricular arrhythmias are present and 

can be modulated by INa in some ARVC patients (Hoogendijk 2012). 

 

Role of Genetic Analysis  

A key clinical application of genetic analysis includes confirmatory testing of proband cases to 

facilitate interpretation of investigations (Basso et al., 2011). Moreover, genotyping relatives 

with non-overt forms of ARVC and before a malignant clinical phenotype is manifest may be 

crucial in preventing SCD, through serial clinical follow-up (electrocardiogram, 

echocardiogram, 24-hour Holter, early recognition of symptoms), lifestyle modifications 

(restriction from extreme activity), and prophylactic therapy when needed (antiarrhythmic 

drugs, ICDs).  

Despite its reliability, genetic sequencing is an effort- and cost-intensive process, especially in 

the investigation of ARVC, in which potentially large numbers of genes are involved (Sen-

Chowdhry et al., 2007). Recommending genetic testing in patients with ARVC and their first-

degree relatives has to be linked to specific guidelines (e.g., genetic pre-/posttest counseling, 

standardized protocols of laboratory analyses) (Ackerman et al., 2011; Charron et al., 2010; 

Hofman et al., 2010). Genetic testing for ARVC gene variants is supportive, but should not to 

be mistaken for the ultimate diagnostic tool, since genetic heterogeneity, clinical variant 

phenotypic presentation, and variable disease progression still complicate the understanding 

of the disease (Kapplinger et al., 2011). 

The negative genetic examination is not incompatible with the diagnosis of the disease.  
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Treatment  

The main goal of a management strategy is to prevent SCD. Currently, antiarrhythmic drugs, 

catheter ablation, and ICDs are the 3 main therapies available for patients with ARVC 

(Thiene, Rigato et al., 2012; Basso et al., 2012).  

In addition, patients should avoid competitive sports and any activity that causes palpitations, 

presyncopal or syncopal episodes (Corrado et al., 2003).  

Left cardiac sympathetic denervation, which is a safe and effective antifibrillatory therapeutic 

option for channelopathies, has been recently suggested as a potential adjuvant treatment in 

patients with cardiomyopathies and malignant ventricular arrhythmias, which may be 

exacerbated specifically by sympathetic activation (Coleman et al., 2012). 

 

Antiarrhythmic agents  

Antiarrhythmic drug therapy is applied with varying rates of efficacy in the treatment of 

ventricular tachycardia (Basso et al., 2012). Patients with ARVC and no history of syncope or 

cardiac arrest, but with premature ventricular contractions or short ventricular runs do not 

usually have an increased risk of arrhythmias and therefore do not require specific 

antiarrhythmic treatment. In patients with sustained ventricular tachycardia, the aim of 

antiarrhythmic drug therapy is the prevention of SCD. Not much data are available concerning 

the use of pharmacologic agents in the treatment of patients with ARVC for the prevention of 

SCD. To date, prospective, randomized studies on antiarrhythmic drug efficacy in ARVC are 

not available. The largest experience of pharmacologic therapy in ARVC comes from 

Germany, with 191 patients and 608 drug tests (Wichter et al., 1992; Wichter et al., 2005). 

Sotalol was the most effective drug, with an a 68% overall acute efficacy rate. In a small 

subset of patients with non reentrant VT and possible triggered activity or autonomic 
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abnormal automaticity, verapamil and beta-blockers had efficacy rates of 44% and 25%. 

Amiodarone alone or in combination with beta-blockers was also effective, while class I 

antiarrhythmic drugs were only in a minority of patients (18%).  Anyway, in long-term, sotalol 

or non pharmacologic treatments are preferentially used due to the high incidence of serious 

side effects of amiodarone.   

The next largest study comes from the North American Registry, in which 108 patients were 

prospectively collected and put on antiarrhyhmic drug at the discretion of the treating 

physician (Marcus et al., 2009).  Noteworthy, 95 had ICD and the majority (61%) was treated 

with beta-blockers, including atenolol, metoprolol, bisoprolol and carvedilol. The authors did 

not observe a clinical significant benefit to prevent VT or VF with beta-blockers as compared 

with patients not taking antiarrhythmic drugs or beta-blockers, although a trend in reduction 

on ICD shocks was noted. 

 

Catheter ablation  

The role of catheter ablation using three-dimensional electroanatomic mapping systems in 

ARVC remain poorly defined, and is frequently used as a palliative measure for patients with 

with localized forms of the disease and drug-refractory or incessant ventricular 

tachyarrhythmias or frequent ICD discharges. The progressive pathology of ARVC suggests 

that catheter ablation would not be a long-term curative procedure (Dalal et al., 2007). The 

recognition that the epicardial scar is usually much more extensive then the endocardial area 

of involvement has resulted in evolution of ablation strategies to involve both the epicardium 

and the endocardium. Preliminary results are encouraging with success rates of 

85% at 3 years (Bai et al., 2011) and no VT recurrence after 18+/-13 months in 77% of 

treated patients in the Marchlinski series (Marchlinski  et al., 2004). More recently, Philips et 
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al, by reporting the outcome of catheter ablation of VT in 87 ARVC patients, demonstrated 

that, despite the better results with the epicardial approach and the use of 3D electroanatomic 

mapping, recurrence rates remain considerable; a cumulative freedom from VT following 

epicardial ablation of 64% and 45% at 1 and 5 years was found, which was significantly 

longer than with the endocardial approach (p=0.02) (Philips et al., 2012). Epicardial ablation is 

not without hazard because of myocardial perforation, tamponade, etc., and should be done 

in selected centers that have considerable experience with this approach (Sacher et al., 

2010). 

 

Implantable Cardioverter-Defibrillator  

ARVC patients are often considered for ICD implantation after an aborted cardiac arrest or 

after a syncope related to ventricular tachyarrhythmias (Zipes et al., 2006). It is widely 

accepted that ICD therapy improves long-term prognosis and survival in ARVC patients at 

high risk of SCD (Corrado et al., 2003; Wichter et al., 2004; Roguin et al., 2004; Hodgkinson 

et al., 2005; Corrado et al., 2010). In this high risk group of patients, the rate of appropriate 

ICD intervention against life-threatening ventricular tachyarrhythmias is 8-10% per year and 

the estimated mortality reduction at 36 months of follow-up ranges from 24 to 35% (Corrado 

et al., 2010). However, the significant rate of inappropriate interventions and complications, as 

well as the psychological repercussions mostly in the younger age group, strongly suggests 

the need to accurately stratify the individual arrhythmic risk before device implantation (James 

et al., 2012).   

ICD implantation for primary prevention in the general ARVC population seems to be 

unjustified (Corrado et al., 2010). Few data are available to guide the prophylactic indications 

for ICD implantation in ARVC patients (Corrado et al., 2003; Hodgkinson et al., 2005; Berul et 
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al., 2008). In the future, it is likely that genetics will play a more important role in decision-

making. 

 

Cardiac transplantation  

When the disease has progressed to right ventricular or biventricular failure, treatment 

consists of the current therapy for heart failure, including diuretics, beta-blockers, angiotensin-

converting enzyme inhibitors, and anticoagulants.  

In the case of intractable right heart failure, cardiac transplantation may be the only alternative 

(Thiene et al., 1998).  

 

Recent Insights  

While RV involvement in “classic” ARVC is the most common and well-described 

manifestation of the disease, recent evidence has shown that both RV and LV are often 

affected in these patients. As such, a descriptive change to Arrhythmogenic Cardiomyopathy 

has been suggested to better reflect the pathology (Basso et al., 2010; Sen-Chowdhry et al., 

2007; Sen-Cowdhry et al., 2010; Jacoby and McKenna, 2012; Rizzo et al., 2012). 

Three distinct patterns of disease expression exist: (1) “classic” ARVC, characterized by RV 

preponderance throughout the disease course; (2) “left dominant arrhythmogenic 

cardiomyopathy (LDAC)” characterized by early and predominant LV involvement (Sen-

Cowdhry et al., 2008); and (3) a biventricular variant, which is characterized by parallel 

involvement of both ventricles.  

ARVC is characterized by electrical instability presenting ventricular arrhythmias of RV origin. 

Therefore, the role of an arrhythmogenic co-factor of LV involvement of the disease remains 

to be established, but may reflect a greater involvement of total myocardial mass by the 
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disease process. The clinical implication being that the morphologic arrhythmogenic site of 

origin will respond to treatment differently in this subset of patients with coexisting LV 

dysfunction. This has led to the impression that for ARVC patients with progressive LV 

involvement and drug-resistant arrythmia, other treatment options such as the ICD or cardiac 

transplantation should be considered.  

 

LV Involvement 

It was originally thought that LV involvement developed only as a feature of advanced disease 

in ARVC. Basso et al. reported evidence of left ventricular involvement in 47% of the cases 

(Basso et al., 1996). Corrado et al. reported in their series of 34 patients that 75% had LV 

involvement (Corrado et al, 1997). 

Recently a new clinical entity Left Dominant Arrhythmogenic Cardiomyopathy (LDAC) was 

defined (Sen-Chowdhry et al., 2008), characterized by: (a) unexplained ventricular arrhythmia 

of right bundle block configuration, (b) unexplained T-wave inversion in inferior or lateral 

leads, (c) mild LV dilation and/or systolic impairment, (d) myocyte loss with fibrofatty or fibrotic 

replacement confirmed by biopsy or late gadolinium enhancement in the LV on MRI. 

Pathologically, the heart in LDAC shows lesions composed of relatively more fibrosis and less 

fat in subepicardial or midmyocardial areas of the postero-inferior LV free wall (Figure 3). MRI 

showing late enhancement following infusion of gadolinium appears to be the best clinical tool 

to document these lesions. The most common mutations linked to LDAC are dominant 

mutations in the gene encoding DSP. Unfortunately, the international task force criteria 

established for the diagnosis of ARVC do not apply to LDAC, which remains an 

underrecognized condition that, apparently, is often mistaken for dilated cardiomyopathy or 

myocarditis.  
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Figure 3. Early stage of ARVC in a 15-year-old asymptomatic boy carrying a desmoplakin 
mutation who died suddenly at rest. a Cross section of the heart showing a whitish midmural–
subepicardial band in the postero-lateral left ventricular wall, in the absence of wall thinning, 
aneurysm and RV abnormalities. b Panoramic histologic view of the posterolateral left 
ventricular wall, showing a subepicardial band of acute–subacute myocyte necrosis with loose 
fibrous tissue and granulation tissue (trichrome Heidenhain ×3). C Myocyte necrosis and 
myocytolysis associated with polymorphous inflammatory infiltrates, together with early 
fibrous and fatty tissue repair (haematoxylin–eosin ×40). (From Rizzo et al., 2012). 
 

    

 

Biventricular Involvement  

This occurs when the same disease process characteristic of ARVC affects the LV causing 

progressive fibrofatty infiltration leading to LV dysfunction. This may lead to an erroneus 

diagnosis of dilated cardiomyopathy, although evidence of fibrous and fatty infiltration in the 

LV should lead to the correct diagnosis. In a study of 200 patients with ARVC, MRI revealed 

evidence of biventricular involvement in 56% of the patients and predominant LV disease in 

5% (Sen-Chowdhry et al., 2007). The occurrence of biventricular disease is also supported by 

animal models and genomics data, which have revealed that only a small number of genes 

are differentially regulated between the RV and LV in ARVC (Gaertner et al., 2012).  

In such instances, histological examination is the only way of conclusively establishing the 
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diagnosis of ARVC. Histologically, ARVC patients with biventricular involvement need to be 

distinguished from myocarditis with fatty infiltration.  

 

Pathophysiological mechanisms 

Though the genes and causative mutations have been identified in ARVC, the pathogenesis 

of the condition is obscure.  

To explain the loss of the ventricular myocardium and the replacement by fibrous and fatty 

tissue, several etiopathogenetic theories have been advanced (Basso et al., 2009; Basso et 

al., 2010).  

In the disontogenetic theory, the absence of myocardium is considered to be the 

consequence of a congenital aplasia or hypoplasia of the RV myocardium, like in Uhl’s 

anomaly (Uhl 1952).  The use of the term “dysplasia” is in agreement with this view. In 

contrast, in ARVC there are always residual myocytes within fat and fibrous tissue between 

the epicardial and endocardial layers. In ARVC, myocardial atrophy is the consequence of cell 

death occurring after birth, progressive with time.  

In the inflammatory theory, the fibrofatty replacement is viewed as a healing process in the 

setting of chronic myocarditis. The loss of the RV myocardium might be the consequence of 

an inflammatory injury followed by fibrofatty repair. Thus, an infectious and/or immune 

myocardial reaction might intervene in the etiology and pathogenesis of the disease (Thiene 

et al., 1991). Cardiotropic viruses have been reported in the myocardium of some patients 

with ARVC, thus supporting an infective pathogenesis (Bowles et al., 2002; Calabrese et al., 

2006). However, the viral agent might be just an innocent bystander or play a secondary but 

still important role. According to the latter hypothesis, the genetically dystrophic myocardium 

could favour viral settlement (superimposed myocarditis), leading to progression or the 
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precipitation of the disease phenotype. Noteworthy, similar pathological features of 

inflammation have been described in spontaneous animal models of ARVC, with a clinical 

picture dominated by right heart failure and ventricular arrhythmias at risk of SCD (Fox et al., 

2000; Basso et al., 2004). Recently, inflammatory infiltrates are considered as the 

consequence of myocyte degeneration and death rather than the result of a superimposed 

viral myocarditis. Pilichou et al., in an experimental animal model, showed that myocyte 

necrosis is the key initiator of myocardial injury in ARVC, triggering progressive myocardial 

damage, with inflammatory response followed by injury repair with fibrous tissue replacement, 

supporting the reactive nature of myocarditis (Pilichou et al., 2009). 

The role of inflammation in ARVC is unresolved, although inflammation may contribute to 

disease progression in ARVC. Campian et al. assessed cardiac inflammation non-invasively 

with the combined analysis of plasma inflammatory cytokine levels and cardiac 67Ga 

scintigraphy, showing that ARVC patients had significantly higher plasma levels than controls 

of the pro-inflammatory cytokines interleukin (IL)-1b, IL-6 and tumor necrosis factor TNF-

alpha as well as a significantly higher 67Ga uptake in the RV wall (Campian et al., 2010). 

Moreover, myocardial expression of IL-17 and TNF-alpha was recently observed in patients 

with ARVC (Asimaki et al., 2011). The clinical implications of these findings remain to be 

clarified. Inflammation probably play a major part in triggering life-threatening arrhythmias and 

can be associated with abrupt acceleration of biventricular cardiac failure that leads to the 

hypothesis that ARVC is a genetic disease in which environmental factors can trigger heart 

failure as well as ventricular arrhythmias. An increase of C-reactive protein has been reported 

in patients who have recent ventricular tachycardia as compared with ARVC patients referred 

without arrhythmias (Bonny et al., 2010). Of interest is the observation by Hoffman et al. that 

inflammation may lead to the production of early after depolarizations which may be a 
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mechanism for ventricular arrhythmias (Hoffman et al, 1997). 

To try to explain the fibro-fatty phenomenon, a transdifferentiation theory has been also 

advanced, according to which cardiomyocytes transform into fibrocytes and/or adipocytes 

(d’Amati et al., 2000). The transdifferentiation theory is based on the hypothesis that 

myocardial cells can change from muscle to fibrous and adipose tissue and the observation 

that in one patient, ‘‘transitional cells’’ at the interface between cardiac muscle and adipose 

tissue expressed both desmin, which is characteristic of muscle tissue, and vimentin, 

expressed only in adipocytes. However, this theory is questionable due to the limited 

dedifferentiation capabilities of adult cardiomyocytes.  

In the degenerative or dystrophic theory (Basso et al., 1996), the loss of the myocardium is 

considered to be a consequence of progressive, genetically determined, myocyte death, 

either by apoptosis or necrosis (Mallat et al., 1996; Valente et al., 1998), and fibrofatty 

replacement, as observed in the skeletal muscle of patients with Duchenne's and Becker's 

diseases. The acquired nature of the disease (postnatal phenotype expression) is 

corroborated by the age range of the affected patients (15 to 65 years), the nearly preserved 

distance of the epicardium from the endocardium without apposition of the two layers, and, 

most important, the observation of patchy myocyte death associated with inflammatory 

infiltrates and fibrofatty repair in various stages of healing. The cell death could enhance the 

electrical vulnerability of the ventricles, thus accounting for the onset of life-threatening 

arrhythmias.  

Nowadays, desmosomal dysfunction is considered the final common pathway of ARVC 

pathogenesis (Basso et al., 2011). Genetic mutations responsible for ARVC result in 

haploinsufficiency and reduced expression of desmosomal proteins, which may predispose 

mechanical cell contacts to rupture, potentially triggered by mechanical stress of the RV (such 
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as that occurring during exercise or sports activity). Degeneration and death of the 

cardiomyocytes is the pathological consequence of these mutations in adhesion proteins, with 

the subsequent progressive replacement by fatty and fibro-fatty tissue. Mechanical overload 

of the cell–cell junction is considered to trigger the pathophysiological myocardial changes in 

ARVC (Delmar et al., 2010). Patients with ARVC are particularly prone to disease 

exacerbations in response to strenuous exercise, emphasizing the importance of 

biomechanical determinants of disease. The observation that the thin walled RV and the 

thinnest segment of the LV (posterior wall) are most often involved may reflect these areas 

being more vulnerable to physical stress or stretch, where, according to Laplace’s law, wall 

tension is particularly high (Thiene et al., 2012). The septum is thicker, and this may explain 

why it is rarely involved.  

Signaling pathways have been implicated in ARVC pathogenesis (Basso et al., 2011).  

Although desmosomes are traditionally considered specialized structures which provide 

mechanical attachment between cells, they are emerging as mediators of intra- and 

intercellular signal transduction pathways (Huber et al., 2003; Desai et al., 2009; Green et al., 

2010). It is suggested that PG is involved in a final common pathway of defects in the 

desmosomal mechanical junction via its signalling role. Immunohistochemical and molecular 

studies of intercellular junction proteins demonstrated PG redistribution from intercellular 

junctions to other locations within the cell in nearly every case of ARVC (Kaplan et al., 2004; 

Asimaki et al., 2009). When PG translocates to the nucleus, it competes and opposes the 

action of -catenin and downregulates the canonical Wnt/b-catenin signaling pathway 

(Garcia-Gras et al., 2006), driving adipogenesis and fibrogenesis in cardiac tissue.  

Moreover, redistribution of PG from junctions to intracellular pools with impaired mechanical 

coupling might account for abnormal electrical coupling by gap junction remodeling, providing 
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evidence that a mutation in a single desmosomal protein may perturb the subcellular 

distribution of another intercellular junction protein which is not genetically altered.  

 

Models of ARVC 

Because it is difficult to obtain cardiac tissue from mutation-positive patients, the effects of 

desmosomal gene mutations have mostly been studied in artificial expression systems by use 

of transfected cell cultures and animal models of the disease.  

Overexpression of mutant desmosomal genes or introduction of mutant desmosomal genes in 

mice and other animal model systems (zebrafish) have contributed to understand the 

pathophysiological processes leading to both cardiomyopathy and an increased susceptibility 

to cardiac arrhythmias (Macrae, 2010; Pilichou et al., 2009; Lodder and Rizzo, 2012).  

Since keratinocytes express all cardiac-specific isoforms of desmosomal proteins, it is likely 

that changes in myocardial expression of desmosomal proteins, as a result of mutations, are 

mirrored by similar changes in the epidermis (Desai et al., 2009). 

ARVC appears to occur spontaneously in Boxer dogs and is associated with a high incidence 

of ventricular arrhythmias and SCD, although the genetic basis of the disease in these 

animals is unknown. Afflicted Boxers show loss of gap junctions, suggesting that, as in human 

ARVC, the disease in Boxers is associated with a significant remodeling of the structures 

involved in cell-cell communication and supporting the notion that loss of gap junctions may 

represent a substrate in the development of ARVC-related ventricular arrhythmias (Oxford et 

al., 2007).  

A variety of animals have been used to examine the pathological effects of mutations at both 

the whole organism/organ level and the cellular and molecular level. 

With the advent of genetically modified mouse models, inherited mutations identified in 
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humans with cardiomyopathy are now modeled in transgenic or knock-in mice that may 

recapitulate the clinical features of the disease (Berul, 2003). It is important to note that 

transgenic mouse models may have limitations from alterations in gene expression besides 

the targeted gene. Likewise, single gene knockout models may introduce compensatory 

changes in other related structural genes, which may confound phenotypic results. However, 

animal models of ARVC continue to provide valuable insights into our understanding of the 

disease.  

Mutations in the gene encoding DSP are a classic example of desmosomal dysfunction 

leading to ARVC phenotype.  

Using the human squamous carcinoma line SCC9 as a cellular model of desmosome 

formation, it was demonstrated that the N-terminal mutants V30M and Q90R failed to localize 

to the plasma membrane, whereas the C-terminal R2834H mutation did not affect the function 

of the N-terminus (Yang et al, 2006).  

DSP targeted deletion mice (DSP −/−) die at embryonic day 6.5 of malformations in the extra-

embryonic tissue before assessment of a cardiac phenotype is possible (Gallicano et al., 

1998). To overcome this problem the extra-embryonic phenotype was rescued by tetraploid 

aggregation. The resulting embryos die around embryonic day E11. At E10 they show severe 

cardiac malformation although desmosomal-like structures appear to be present by 

transmission electron microscopy (Gallicano et al., 2001). 

The embryonic lethality of the DSP−/− mice is partially circumvented in the cardiac specific, 

αMHCcre induced, targeted deletion of DSP (Garcia-Gras et al., 2006). Cardiac-restricted 

deletion of DSP impaired cardiac morphogenesis and caused embryonic lethality in 

homozygous knockout mice (DSP-/-). Histopathologic evaluation revealed poorly formed 

hearts with no chamber specification and poorly organized myocytes with large areas of 
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patchy fibrosis. Furthermore, an excess number of cells resembling adipocytes, dispersed 

between myocytes, were also detected. Heterozygous DSP-deficient mice exhibited excess 

adipocytes and fibrosis, increased apoptosis, defective cardiac contractility and ventricular 

arrhythmias, recapitulating the human ARVC phenotype. In addition to these pathologic 

abnormalities, the authors showed that PG interacts and competes with β-catenin, the effector 

of the canonical Wnt signalling, having a negative effect on this pathway. They were able to 

show that PG was translocated to the nucleus in DSP-deficient mice and that expression 

levels of gene targets of the canonical Wnt/β-catenin pathway were reduced. 

Another animal model of mutant DSP was recently described (Yang et al., 2006). This 

model, a transgenic mouse with cardiac-restricted overexpression of a C-terminal DSP 

mutant (R2834H), resulted in viable mice that developed ventricular dilatation and 

biventricular cardiomyopathy, with histological evidence of cardiomyocyte apoptosis, cardiac 

fibrosis and lipid accumulation. The mutant mice also displayed ultrastructural abnormalities 

of the intercalated discs.  

PKP2 is the only member of the plakophilin family to be expressed in the heart, and serves to 

tether desmosomal proteins (Hatzfeld et al, 2007; Rohr et al, 2007). Grossmann et al. 

generated a mouse model with targeted deletion of PKP2. The heterozygous mice carrying 

one wild type copy of PKP2 were completely viable without any cardiac phenotype. Mouse 

homozygous for the deletion (PKP2−/−) die during embryonic development, showing 

abnormal heart morphogenesis, with myocardial wall thinning and aneurysm formation 

followed by blood leakage, cardiac rupture and death on around embryonic day E11.5 

(Grossmann et al., 2004).  

PG is another essential desmosomal protein which, when absent, causes an ARVC 

phenotype in mice. The first mouse model involving a desmosomal protein  
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described the targeted deletion of Pg by two independent groups in 1996 (Bierkamp et al., 

1996; Ruiz et al., 1996). Homozygous targeted deletion of PG leads to embryonic lethality 

between embryonic day 9.5 and 16 due to cardiac malformations: thin cardiac walls and less 

trabeculation; in addition mice showed a blistering skin phenotype. Heterozygous animals 

appeared healthy and fertile. However, closer inspection of these mice showed that PG+/- 

mice at 10 months after birth had enlarged RV, increased spontaneous ventricular 

arrhythmias and right ventricular conduction slowing. No replacement fibrosis and remodeling 

of the junctions was observed, Cx43 localization and distribution were normal on 

immunofluorescence microscopy. All observed changes were exacerbated when mice were 

subjected to exercise training (Kirchhof et al., 2006). Load reducing therapy is able to prevent 

these symptoms of ARVC in PG+/- mice (Fabritz et al., 2011). 

To circumvent the problem of neonatal lethality, a cardiac specific targeted deletion of PG 

was developed under the control of αMHCcre. PGf/f αMHCcre mice have about 30% of the  

WT protein as measured by Western blot, no PG was detectable by immunofluorescence on 

cardiac sections. Phenotypically these mice largely recapitulate the human ARVC phenotype: 

SCD, progressive dilation, and fibrosis in the cardiac walls (both in the LV and the RV). No 

cardiac fat deposition was observed. With transmission electron microscopy the structure of 

the desmosomes seemed to be disrupted: other desmosomal proteins appeared to be absent 

from the intercalated disc (Li et al., 2011). Cell death in the PGf/f αMHCcre mice was at least 

partially through myocyte apoptosis in addition to myocyte necrosis. 

Interestingly, increased β-catenin staining was observed at the intercalated disc suggesting 

partial rescue by this close relative of PG. To test whether the lack of fast spontaneous death 

in these mice was due to a partial rescue by β-catenin, double-targeted mice were created, 

carrying both a floxed PG gene and a floxed β-catenin locus (PGf/f ; β-cateninf/f ). Crossing 
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with αMHC/MerCreMer mice and subsequent tamoxifen injections effected specific targeted 

deletion. Double-targeted mice showed a strong arrhythmogenic phenotype, with 100% of the 

double-targeted animals dying of SCD between 3 and 5 months after tamoxifen injections. In 

contrast to either single targeted deletion and wild type littermates of which 4–9% died within 

6 months of tamoxifen injection (Swope et al., 2012).  

Two lines overexpressing wild type and mutant PG were generated (Lombardi et al., 2011); 

both showed similar levels of increased incidence of SCD, an indication that even moderate 

levels of overexpression of PG disturb the balance of the mechanical interaction and signaling 

functions of PG independent of the introduced truncating mutation.  

Mutations in DSG2 have been associated with ARVC. Most of the mutations are located in 

the extracellular portion of the protein, but no clear correlation has been observed between 

specific mutations and clinical features. A few functional studies on the molecular pathology of 

DSG2 mutations in ARVC have been reported.  

Transgenic mice with cardiac overexpression of flag tagged Dsg2 both wild type (Tg-WT) and 

N271S-Dsg2 mutant (Tg-NS) were generated; the murine N271S mutation is the mouse 

homolog of the human ARVC mutation DSG2–N266S.  

While mice overexpressing of wild type Dsg2 were indistinguishable from their wild type 

littermates at 2 months of age, Tg-Ns mice developed spontaneous ventricular arrhythmias, 

conduction slowing, ventricular dilatation and aneurysms, and replacement fibrosis, leading to 

SCD from a less than 2 weeks of age. The disease process was triggered by myocyte 

necrosis followed by calcification and fibrous tissue replacement (Pilichou et al., 2009).  

Immunohistochemical staining for PG, PKP2, DSP, and Cx43 at the intercalated discs 

appeared to be normal in this animal model. 

The phenotype was dependent on the level of expression of the transgene, with those 
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animals expressing high levels of the N271S mutation being at a significantly higher risk of 

sudden death at a young age (30% death rate by 3.6 weeks of age). 

These findings are consistent with the results obtained in mice carrying a targeted deletion in 

the extracellular adhesion domain of Dsg2. Approximately 30% of the mice homozygous for 

the mutation survived embryonic development. These mice develop left and right ventricular 

dilatation, fibrosis, calcification, and spontaneous death similar to the Tg-NS  

mice (Krusche et al., 2011). Detailed investigation of this model by transmission electron 

microscopy revealed a widening of the intercellular space at the intercalated disc and loss of 

desmosomal structure close to macroscopically visible lesions of the heart (Kant et al., 2012). 

Cadherin domains are important for calcium-dependent rod-like structures. Aminoacid 

changes may thus destabilize the rod structure and influence inter-cellular binding (Syrris et 

al., 2007). 

At present, there is no mouse model of DSC2 mutations. 

In addition to mouse models, embryonic morpholino knockdown has been used in zebrafish to 

evaluate the effects of gene inhibition on embryogenesis. A morpholino is a synthetic 

antisense oligonucleotide with a high affinity for RNA, which acts as a blocker of translation 

and/or mRNA splicing (Chen et al., 2004). Morpholino-induced knockdown of PG or DSC2 

expression in zebrafish resulted in significant effects on cardiogenesis (Heuser et al., 2006; 

Martin et al., 2009). Zebrafish with reduced PG expression (morphants) developed small 

hearts, cardiac edema and valvular dysfunction (Martin et al., 2009). Morphants exhibited a 

reduced number of desmosome and adherens junctions in the intercalated discs. Heuser et 

al. performed morpholino knockdown of DSC2 in zebrafish. Morphants exhibited hearts with 

edema, bradycardia, reduced desmosomal areas, loss of desmosomal midlines and reduced 

contractility. Rescue of the morphant phenotype by co-injection of wild-type human DSC2 
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mRNA implicated DSC2 as a protein that is crucial for desmosomal function (Heuser et al., 

2006).  

Whereas zebrafish morpholino models may offer insights into cardiac development and 

desmosomal organization in the absence of specific ARVC-associated genes, they have  

limitations because the morphology of the fish heart is very different from the human heart. 

Moreover, morpholino studies are limited typically to the embryonic stage and to knockdown 

models, whereas the knock-in animal models offer a more accurate representation of the 

pathophysiology of human disease.  

Cellular models provide an important tool for understanding the molecular/cellular phenotype 

associated with ARVC. In studies where parallel investigations have been conducted in 

expression systems and in transgenic mice, the results between the 2 experimental  

models have been remarkably consistent (Garcia-Gras et al., 2006; Yang et al., 2006) 

Cellular models have confirmed that disruption of the desmosome alters the integrity of the 

gap junction plaque, as originally shown in human hearts with Naxos disease and with 

Carvajal syndrome and then in samples obtained from patients carrying mutations in other 

desmosomal genes. 

Loss of PKP2 expression in cultured cardiac myocytes associates with loss of 

immunoreactive Cx43 from the site of cell– cell apposition, a decrease in Cx43 abundance, 

and an increased presence of Cx43 in the intracellular space (Oxford et al., 2007).  

Biochemical analysis has demonstrated that PKP2 coimmunoprecipitates not only with Cx43 

but also with the major subunit of the cardiac sodium channel, Nav1.5 (Sato et al., 2009). 

Voltage clamp experiments revealed that loss of PKP2 expression also leads to a  

decrease in amplitude of the sodium current in adult cardiac myocytes. Optical mapping 

studies showed that PKP2 knockdown associates with a significant decrease in conduction 
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velocity in cardiac cell monolayers and an increased propensity to reentrant arrhythmias, 

likely resulting from the combination of decreased electric coupling and impaired sodium 

current density.  

Although animal models have provided some useful insights into the pathogenesis of ARVC, 

significant differences between the electrophysiological properties of animal and human 

hearts limits the interpretation of such data. In addition, the lack of good in vitro sources of 

living human cardiomyocytes hinders the study of this disease. In recent years, several 

groups have successfully modelled a number of inherited cardiac ion channel diseases, 

mostly different subtypes of long-QT syndrome, through the generation of patient-specific 

induced pluripotent stem cell (iPSC)-derived cardiomyocytes (Moretti et al., 2010). There is 

the exciting possibility of using iPSC-derived cardiomyocytes from patients with ARVC as a 

cellular model to study the disease. iPSC-derived cardiomyocytes from ARVC patients would 

exhibit altered desmosomal protein localization at the intercalated disc. Successful generation 

of such a model would offer the possibility to further understand the pathogenesis of the 

disease as well as to evaluate future novel clinical applications in diagnosis and management 

(Ma et al. 2012; Hoekstra et al., 2012).  
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Current insights into mechanisms of arrhythmogenesis 

The normal cardiac electrical cycle begins with diastolic depolarization of the cells within the 

sinoatrial node which generates an action potential (AP) and spreads to depolarize the 

surrounding atrial myocardium. The electrical impulse is then conducted through the 

atrioventricular node, down the His bundle to the bundle branches and distributed to the 

working myocardium of the ventricles through the Purkinje fiber network. The efficient cardiac 

contractile function is highly dependent upon the coordinated excitation-contraction coupling 

of the myocardial tissue. This is achieved by the different junctional complexes within the 

intercalated discs. Aberrant cell-cell coupling is associated with an increased risk of 

arrhythmias and SCD.  

The mechanisms underlying arrhythmogenesis in ARVC have been partially elucidated 

(Figure 4) thanks also to current animal models (Wolf et al., 2008).  

Figure 4 Substrates and pathophysiologic mechanisms of ventricular arrhythmias in the 
different phases of ARVC. 
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In ARVC, the electric isolation of cardiomyocytes by surrounding scar tissue may provide the 

substrate for slow conduction and promote reentrant arrhythmias. In the clinical setting, late 

potentials, detected with signal-averaged ECG, are considered a noninvasive marker of slow 

conduction areas in ARVC due to fibrofatty replacement and thus can be used to identify the 

patients at risk (Turrini et al., 1994).Less clear is the nature of the arrhythmogenic substrate 

during the concealed phase of the disease (in the absence of overt structural damage), during 

which ARVC is more reminiscent of the ion channelopathies (Saffitz 2011). Arrhythmias may 

occur early in the natural history of ARVC, often preceding structural remodeling of the 

myocardium (Bauce et al., 2005; 

Sen-Chowdhry et al., 2010). An increased susceptibility to arrhythmia has also been noted in 

mice with ARVC-linked mutations in which structural remodeling is absent (Muthappan et al., 

2008).  

Gap junction remodelling may be considered as an alternative pathway to intraventricular 

slow conduction enhancing the risk of ventricular arrhythmias.  

Impaired desmosomal structure and function may affect other cell-to-cell contact structures in 

the myocardium. There is increasing evidence that components of the desmosome are 

essential for the proper function and distribution of the Cx43, supporting the notion of a 

molecular crosstalk between desmosomal and gap junction proteins (Kaplan et al., 2004; 

Sato et al., 2009; Delmar et al., 2010). A common observation in ARVC is remodeling of 

cardiac gap junctions early in the disease, with a diminished expression of the major gap 

junction protein Cx43 at the intercalated discs, which establish the mechanical and electrical 

coupling between adjacent cells (Saffitz 2009). 

The described case of a child with Naxos disease presenting ventricular arrhythmias before 
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the development of pathologic changes of myocardium provided evidence to support this 

hypothesis. Immunohistochemical and electron microscopy studies in Naxos disease 

revealed reduced localisation of mutant PG to cell–cell junctions, diminished expression of the 

Cx43, and a decreased number and size of gap junctions (Kaplan et al., 2004). More recently, 

similar changes in the various junctional proteins were observed in the classic form of ARVC 

without cardiocutaneous manifestations (Fidler et al., 2009). These studies showed a link 

between desmosomal and gap junction integrity and were the first to postulate failure of this 

interaction as a potential pathophysiologic mechanism in ARVC.  

Decreased gap junction-mediated electrical coupling could be an adjuvant to 

arrhythmogenesis, though it is unlikely to be the only cause. Simulation experiments (Wilders 

2012) demonstrated that a 50% reduction in gap junctional conductance gives rise to 

relatively small changes in conduction velocity.  

The gap junction remodeling observed in the endomyocardial biopsy samples (indicated by 

reduced immunoreactive signal for Cx43) may act synergistically with the histologic 

abnormalities characteristic of ARVC to enhance conduction heterogeneity and increase the 

risk of arrhythmia (Basso et al, 2006; Kaplan et al, 2004; Boukens et al., 2009).  

Given the relatively small effects of gap junctional remodeling on conduction velocity, other 

factors, like changes in electrical properties  (sodium current) of the cardiac myocytes, 

may contribute to arrhythmogenesis (Sato et al., 2009, 2011).  

The proposal of electrical disturbances at the early stage of the disease is an attractive one in 

the light of the recent data showing cross talk between the mechanical junctions, the gap 

junctions and the Na+ channel complex (Sato et al., 2009, 2011; Basso et al., 2011) (Figure 

5).  

There is new evidence in support of the hypothesis that Na current is affected by desmosomal 
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mutations. Nav1.5, the major α subunit of the cardiac sodium channel (Roden et al., 2002), 

fundamental to the electrical behavior of the single myocyte, functionally and physically 

interacts with other intercalated disc proteins. As such, loss of PKP2 affects gap junction-

mediated coupling (Oxford et al., 2007) as well as sodium channel function (Sato et al., 2009); 

loss of N-cadherin expression affects gap junctions (Li et al., 2005) and also the function of 

Kv1.5 channels (Cheng et al., 2011); loss of intercellular contact leads to a decrease in 

sodium current (Lin et al, 2011); expression of AnkG, a protein associated with the sodium 

channel complex, is necessary for proper intercellular adhesion strength and for proper 

electrical coupling (Lowe et al., 2008); finally, expression of Cx43, a protein previously 

associated only with gap junctions, is required for the normal function of sodium and 

potassium currents (Danik et al., 2008; Jansen et al., 2011). These observations suggest that 

mutations in any individual component of the complex is sufficient to compromise junctional 

structures, resulting in defects in tissue integrity, development, and differentiation (Delmar 

and McKenna, 2010).  

Further evidence for the involvement of sodium current in ARVC comes from a recent study 

by Gomes et al., who studied RV biopsies from three ARVC patients and observed NaV1.5 

mislocalization in biopsies from two early-stage patients. On the other hand, in the same 

study no difference was observed in sodium current properties. Moreover, no indications of 

altered Na current characteristics could be found recently in a murine model of heterozygous 

desmoplakin knockout (Gomes et al.,2012).  
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Figure 5.  Hypothesized intracellular desmosome crosstalk. Possible targets 
include intercalated-disc proteins (ion channels or gap-junctional proteins) and 
nuclear-signaling proteins (From Basso et al., 2011). 
 

 

 



 51 

ORIGINAL CONTRIBUTION 

 
Mutations in genes encoding desmosomal proteins have been implicated in the pathogenesis 

of arrhythmogenic right ventricular cardiomyopathy (ARVC). However, the consequences of 

these mutations in early disease stages are unknown. 

 We investigated whether mutation-induced intercalated disc remodelling impacts on 

electrophysiological properties before the onset of cell death and replacement fibrosis. 

We here dissect the early stages of disease development in mice overexpressing a Dsg2 

mutation associated with ARVC in humans to: 

- assess whether intercalated disc remodelling is observed, and time of onset of 

intercalated disc remodelling remodeling, if present; 

- characterize arrhythmia susceptibility consequent to overexpression of mutant Dsg2 

- explore the relative contribution of cell uncoupling in alterations of sodium current 

(action potential upstroke velocity changes; Na+ channel performance)  

- evaluate whether this interaction account for slow conduction and increased arrhythmia 

susceptibility at disease stages preceding the onset of replacement fibrosis. 
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MATERIAL AND METHODS 

Animal Husbandry and Mouse Lines Used  

We studied the effects of heart specific overexpression of mutant Dsg2 in young mice  

before the development of gross and histological abnormalities. The transgenic mouse 

models with heart-specific overexpression of either mutant (Dsg2-N271S) or wild-type (Tg-

WT) Dsg2 were generated previously (Pilichou et al, 2009). Of the two Dsg2-N271S lines we 

generated, which respectively had high (Tg-NS/H) and low (Tg-NS/L) overexpression of the 

transgene, the Tg-NS/L line was used in this study. Although both lines i.e. Tg-NS/H and Tg-

NS/L, develop an ARVC phenotype, the latter line was selected as it develops the phenotype 

at a slower pace which makes it more amenable for the dissection of the early, pre-

cardiomyopathic, phenotype of the model. Tg-WT and wild-type (WT) mice were used as 

controls in all experiments throughout the study. The mice were studied at three different 

ages: <2 weeks, 3- 4 weeks and 6-9 weeks. At least 4 mice of each group were studied 

except where specifically indicated otherwise. Mice were sacrificed by cervical dislocation 

after sedation with O2/CO2 for 1 min. All experiments were approved by the local animal 

welfare committee and followed Dutch law concerning experimental animal welfare and 

conformed with the Guide or the Care and Use of Laboratory Animals published by the US 

National Institutes of Health (NIH Publication No. 85-23, revised 1996) (PHS assurance 

number A5549-01).  

 

Morphological Analysis  

For pathological studies hearts were isolated and snap-frozen immediately after  

excision in liquid nitrogen and stored at -80°C. In parallel, tissue samples were fixed in 4%  

paraformaldehyde (in PBS) for light microscopy or in glutaraldehyde for electron microscopy  
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(see below). 7-µm-thick paraffin embedded sections were cut and routinely stained with  

hematoxylin and eosin (HE) and Heidenhain’s trichrome to examine the myocardium and to  

detect the presence and amount of necrosis, inflammation and fibrosis.   

 

Transmission Electron Microscopy  

Transmission Electron Microscopy  was used to characterize the desmosomes and the  

other intercellular junctions in situ as described before (Franke et al, 2006). In short: small 

pieces of LV tissue were fixed in 2.5% glutaraldehyde for 20 min, post-fixation was performed 

with 2% OsO4 in cacodylate buffer for 2 hr on ice, followed by washes at 4°C in distilled water 

and overnight heavy metal staining (0.5% uranyl acetate in distilled water). After 3 washes in 

distilled water, samples were dehydrated in an ethanol series and propylenoxide before being 

embedded in Epon. Ultrathin sections for TEM were made with a Reichert-Jung microtome 

(Ultracut, Leica, Bensheim, Germany). For contrast enhancement, the sections were stained 

with 2% uranyl acetate in methanol for 15 min and with lead citrate for 5 min. Electron 

micrographs were taken using a Philips CM10 transmission electron microscope by a 

systematic random sampling and analyzed by two independent expert pathologists (S.R & 

C.B.) blinded to the genotype of the mouse. For evaluation ~100 intercalated discs were 

analyzed per mouse. Morphometric analysis of intercalated discs was performed according to 

a previously described method (Basso et al, 2006). The percentage of intercellular widened 

junctions (space>30 nm; Fawcett et al.,1969) of the total number of examined intercalated 

discs was calculated; the interobserver correlation coefficient between S.R. and C.B. was 

0.945 (95% C.I. 0.936-0.958).  
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Electrical analysis  

The electrical properties of the heart were studied in vivo by surface electrocardiograms  

(ECG), ex vivo in Langendorff-perfused hearts by epicardial mapping and in isolated  

cardiomyocytes by patch-clamp analysis.  

 

Surface ECGs  

Mice were anesthetized using isoflurane inhalation (0.8–1.0% volume in oxygen), efficacy of  

the anaesthesia was monitored by watching breathing speed and tail suspension. Four-lead  

surface ECGs were recorded from subcutaneous 23-gauge needle electrodes attached to 

each limb using the Powerlab acquisition system (ADInstruments). Lead II was analyzed for 

heart rate (RR interval) and PR, QRS, and QT duration using Chart5 Pro analysis software  

(ADInstruments). QT intervals in mice were corrected for heart rate using the following  

formula: QTc = QT/(RR/100)1/2 (RR in ms).  

 

Epicardial mapping experiments 

Mice were anesthetized by an intraperitoneal injection of pentobarbital, after which the heart 

was excised, cannulated, mounted on a Langendorff perfusion set-up, and perfused at 37°C 

with a solution containing (in mMol) 128 NaCl, 4.7 KCl, 1.45 CaCl2, 0.6 MgCl2, 27 NaHCO3, 

0.4 NaH2PO4, and 11 glucose (pH maintained at 7.4 by equilibration with a mixture of 95% O2 

and 5% CO2). Ventricular extracellular epicardial electrograms were recorded from the RV 

and LV using a 247-point multi-electrode (unipolar 19×13 electrode grid, inter-electrode 

spacing 300 μm) during sinus rhythm and ventricular pacing from the centre of the electrode 

(basic cycle length of 120 ms; twice the diastolic stimulus current threshold). The effective 

refractory period (ERP) was determined by reducing the coupling interval of a premature 
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stimulus (after 16 stimuli at basic cycle length 120 ms) in steps of 5 ms until activation of the 

ventricle failed. Electrograms were acquired using a custom-built 256-channel data 

acquisition system. Activation maps were constructed from local activation times determined 

by the time between the stimulus artefact and the maximal negative dV/dt as measured from 

the unipolar electrograms using custom software. Ventricular activation time was determined 

as the difference between the first and last moment of activation measured under the 

recording electrode grid. Maximal conduction velocities in both longitudinal and transverse 

directions were measured from RV and LV activation maps. Inducibility of ventricular 

arrhythmias was assessed using a stimulation protocol with up to three extrastimuli, followed 

by burst pacing at the shortest possible coupling intervals.  

 

Cellular electrophysiology  

Cell preparation. Mouse ventricular myocytes were isolated by enzymatic dissociation as 

described previously in detail (Berecki et al, 2010).  In short, excised hearts were perfused in 

a Langendorff system (37°C) for 5 minutes with normal Tyrode’s solution containing (in 

mMol): 140 NaCl, 5.4 KCl, 1.8 CaCl2, 1 MgCl2, 5.5 glucose, 5 HEPES; pH 7.4 (NaOH). 

Subsequently, the heart was perfused for 8 minutes with a nominally Ca2+-free Tyrode’s 

solution, i.e. normal Tyrodes’s solution with 1 µmol/L CaCl2, after which the enzyme Liberase 

TM (Roche; 0.02 mg/mL) and elastase were added for 10 minutes. After the digestion period, 

LV tissue was gently triturated in the nominally Ca2+-free enzyme solution to obtain single 

cardiomyocytes. Then, the nominally Ca2+-free Tyrode’s solution was refreshed two times (at 

20°C) with nominally Ca2+-free Tyrode solution to which bovine serum albumin (BSA, 50 

mg/mL) was added. Finally, Ca2+ concentration was increased by replacing the nominally 

Ca2+-free Tyrode’s with normal Tyrode’s solution. Single cells were stored at RT for at least 
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45 min before they were put into a recording chamber on the stage of an inverted microscope. 

Cells were allowed to adhere for 5 min after which superfusion was started. Quiescent, rod-

shaped cells with clear cross-striations and smooth surface were selected for measurements. 

Data acquisition and analysis. Action potentials (APs) and Na+ current (INa) were recorded 

with the amphotericin-B-perforated patch-clamp and ruptured patch-clamp technique, 

respectively, using an Axopatch 200B Clamp amplifier (Molecular Devices Corporation, 

Sunnyvale, CA, USA). Voltage control, data acquisition, and analysis were performed using 

custom software. Potentials were corrected for the estimated change in liquid junction 

potential. Adequate voltage control was achieved with low-resistance pipettes (1.5-2.5 MΩ), 

and series resistance was compensated by ≥80%. Signals were filtered (low-pass, 5 kHz) and 

digitized at 40 and 20 kHz for AP and INa measurement, respectively. Cell membrane 

capacitance (Cm) was determined as described previously (Verkerk et al., 2004).  

Current-clamp experiments. APs were measured at 36°C using normal Tyrode’s solution; 

pipette solution contained (in mMol): 125 K-gluconate, 20 KCl, 10 NaCl, 0.22 amphotericin-B, 

10 HEPES; pH 7.2 (KOH). APs were elicited at 4 Hz by 3 ms, 1.2 threshold current pulses 

through the patch pipette. We analyzed resting membrane potential (RMP), maximal AP 

upstroke velocity (Vmax), AP amplitude (APA), and AP duration at 20, 50 and 90% 

repolarization (APD20, APD50, and APD90, respectively). Data from 10 consecutive APs were 

averaged.  

Voltage-clamp experiments. INa was measured at RT with a bath solution containing (in 

mMol): 7.0 NaCl, 133 CsCl, 1.8 CaCl2, 1.2 MgCl2, 11.0 glucose, 5.0 HEPES; pH 7.4 (CsOH). 

Nifedipine (5 µM) was added to block the L-type Ca2+ current. Pipettes were filled with (in 

mMol): 3.0 NaCl, 133 CsCl, 2.0 MgCl2, 2.0 Na2ATP, 2.0 TEACl, 10 EGTA, 5.0 HEPES; pH 7.3 

(CsOH). INa was measured using a two-step protocol, with a holding potential of -120 mV and 
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a cycle time of 5 seconds (see Figure 6D). During the first depolarizing pulse (P1) of the 

voltage clamp protocol, INa activates; the second pulse (P2) is used for measuring voltage 

dependency of inactivation. Current densities were calculated by dividing current amplitudes 

by Cm. Voltage-dependence of (in)activation was determined by fitting a Boltzmann function 

(y= [1+exp{ (V-V1/2)/k} ]) to the individual curves, yielding half-maximal voltage V1/2 and slope 

factor k. 

 

Antibodies 

For immunofluorescence microscopy and Western blotting, the following primary antibodies 

against desmosomal and other junctional and cytoskeletal proteins were used: murine 

monoclonal and rabbit polyclonal antibodies specific to N-cadherin, pan-cadherin, γ-catenin, 

connexin-43 and Flag M5 (all purchased from Sigma), NaV1.5 (Alomone, rabbit),desmocollin-

2, desmoglein-2 (clone DG310), plakoglobin (clone PG 5.1), desmoplakins, plakophilin-2, α- 

and β-catenin (all purchased by Progen Biotechnik, Heidelberg); Calnexin (1:500; Santa Cruz 

Biotechnology, Inc.); M2 anti-Flag (Stratagene). For immunofluorescence primary antibody 

complexes were visualized with secondary antibodies coupled to Donkey-anti-mouse or 

Donkey-anti-rabbit Alexa488, and Alexa568 (Molecular Probes). 4’,6-Diamidino-2-phenylindol 

(DAPI; Sigma) or Sytox Orange nucleic acid stain (S11368, Invitrogen) was used to label 

nuclei. For Western blot analysis, horseradish peroxidase-conjugated secondary antibodies 

against mouse and rabbit (NA9310 & NA9340 GE-health sciences) were used. 

 

Immunofluorescence microscopy  

Cryosections of 5-µm were fixed in methanol (5 min) followed by acetone (20 sec), at −20°C,  

air-dried and rehydrated in PBS. Permeabilization was done in 0.2% Triton X-100 for 5 min.  
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Primary antibodies were applied for 1 hr at RT, followed by 3 washes in PBS (5 min each),  

incubation with the secondary antibodies (30 min, RT) and 3 × 5 min washes with PBS.  

Sections were mounted with 50% glycerol in PBS. Images were recorded with a confocal  

laser scanning microscopy (Leica CTR 5500).  

 

Protein Isolation and Western blot analysis  

LV tissue from a snap frozen mouse heart was homogenized in ice-cold RIPA buffer (50 mM 

Tris HCl pH 7.6, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) 

supplemented with protease inhibitors (Complete Mini; Roche) and Sodium Orthovanadate 

(final concentration 0.5 mM) using magnalyser ceramic beads (Roche scientific, 

03358941001) for 30”. The unsoluable parts were spun down (30 sec at 4°C, 13000 rpm), the 

supernatant was transferred to a fresh tube and protein concentrations were determined 

using a BCA protein assay kit (Thermo Fisher Scientific).  

For Western blot analysis, LV protein (60 ug) was run on denaturing SDS-page gels. The gels 

were blotted on a pre-equilibrated PVDF Immobilon-P membrane (Millipore) by means of a 

semidry system. Blots were cut at appropriate heights and probed with primary antibodies. 

HRP conjugated secondary antibodies were detected with ECL-Plus (Amersham). 

Chemiluminescent signals were visualized using a digital image analyzer (LAS-4000 Lite; 

Fujifilm) and quantified using the Aida software package (Aida Image Analyzer v.4.26).  

 

Co-immunoprecipitation  

Aliquots of 100 µg LV whole cell lysate protein of 3-4 week old mice were incubated  

rotating overnight at 4°C with washed agarose beads with either conjugated M2 Flag  

antibody or protein A (both Sigma) and 1 µl of normal mouse IgG (Santa Cruz) in 1ml of  
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PBS supplemented with protease inhibitors (Complete Mini; Roche) and 0.5 mM Sodium  

Orthovanadate (PBS++). Beads were washed 3 times with 1 ml of PBS++, and the bound  

proteins were eluted with Flag peptide (Sigma). Untreated protein and elutes from both  

precipitations were treated with Laemli buffer and analysed by Western blot as described  

above.  

 

Statistical analysis  

Data are expressed as mean ± SEM. Values are considered significantly different if P<0.05 in  

an unpaired two sided t-test or in Two-Way Repeated Measures of Analysis of Variance  

(Two-Way Repeated Measures ANOVA) followed by pairwise two sided comparison using  

the Student-Newman-Keuls test, after testing for normal distribution of the data. Minimal  

sample sizes were calculated prior to the experiments based upon a power calculation with a  

(1-β) = 80%, α=5%, mean control = 7.0, mean observed = 9.5 and SD = 1.0 (effect size of  

2.5, which represents the expected effect sizes for the electrical mapping) which gives n = 4  

animals per test group. The intraclass correlation coefficient was used to test the 

interobserver variability in the morphometric measurements. Statistical tests were performed 

using the PASW statistics software, version 18.0.2 (IBM, New York, USA) and SigmaStat, 

version 3.1 (Aspire Software International, Ashburn, VA, USA).  
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RESULTS  

Absence of cardiomyopathic changes in Tg-NS/L mice younger than 6 weeks of age  

The early phase of the disease was studied by investigating mice at three different age  

groups: (i) < 2 weeks of age, (ii) 3-4 weeks of age, and (iii) 6-9 weeks. On gross examination  

and histologically, hearts from Tg-NS/L mice at all three age groups appeared normal, with  

no evidence of replacement-type fibrosis (Figure 6). Other cardiomyopathic  

changes, consistent with those we previously reported for Tg-NS/H mice (Pilichou et al, 2009) 

and which included necrosis, focal myofibrillar lysis, dilated sarcoplasmatic reticulum and T-

tubules, and mitochondrial clustering, were observed exclusively in Tg-NS/L mice ≥ 6 weeks 

of age. These analyses established that Tg-NS/L mice <6 weeks of age were devoid of 

cardiomyopathic changes allowing for the examination of the early electrophysiological 

phenotype prior to and in the absence of cardiac remodeling.   

 
Figure 6. Hematoxylin and eosin (HE) and Heidenhain’s trichrome staining of transverse 
section of the heart of Tg-NS/L mouse aged 3 weeks: note the absence of myocyte death, 
inflammation, and fibrosis.  
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Widening of intercellular space at the desmosome/adherens junctions  

We next examined intercalated disc structures in detail by TEM. No consistent  

differences were observed in the general organization of the cell-cell junctions between Tg-  

NS/L and control mice. Gap junctions appeared structurally normal in all groups (Figure 7).  

In addition to desmosomes, gap junctions and adherens junctions, intermediate structures  

were observed that displayed features of both desmosomal and adherens junctions 

concurring with recent reports describing this “area composita” (Franke et al., 2006; Li et al., 

2010).  

Separation of the opposed membranes, resulting in larger intercellular spaces, was  

observed at the level of desmosomes/adherens junctions. These changes were seen in  

otherwise morphologically normal cardiomyocytes in all Tg-NS/L mice ≥3 weeks of age and  

in 1 out of 4 Tg-NS/L mice <2 weeks old (Figure 7). None of the control mice (Tg-WT, WT)  

displayed any intercellular space widening. Morphometric analysis showed that the average 

intercellular space was significantly widened in Tg-NS/L mice at 3-4 weeks compared to  

controls (Figure 8A). The percentage of widened cellular junctions increased  with age (Figure 

8B).  

In some Tg-NS/L cardiomyocytes with intercellular space widening, myofibrils appeared to 

have undergone focal lysis at their points of attachment to desmosomes/adherens junctions 

(Figure 7E).   

 

 
 
Figure 7 (next page) At ultrastructural level, widening of the intercellular space at the level of 
the desmosomes/adherens junctions compared with WT mice (A) and Tg-WT (B) is visible in  
Tg-NS/L mice both at 3-4 weeks (D, E) and at 6-9 weeks (F). This feature is observed also in  
a Tg-NS/L mouse aged <2 weeks (C). The structure of the gap-junctions is preserved in both  
Tg-NS/L and Tg-WT mice at all ages (B-F). Scale bars 500 nm 
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Figure 8. Quantification of intercellular widening in nm in WT, Tg-WT & Tg-NS/L (A) and 
percentage of widened intercellular junctions in Tg-NS/L mice <2 weeks, 3-4 weeks, and >6 
weeks (B) * denotes p<0.05 of Tg-NS/L vs WT and Tg-WT; * denotes p<0.05 vs <2 weeks, # 
denotes p<0.05 vs 3 weeks 
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Conduction slowing in Tg-NS/L hearts from 3-4 weeks of age  

To investigate the occurrence of electrophysiological abnormalities prior to the  

development of cardiomyopathic changes, we first performed surface ECG measurements in  

anaesthetized mice. In mice aged 3-4 weeks, no statistically significant differences in heart  

rate (RR interval), QRS-duration, PR-interval, and QTc-interval were observed between Tg-  

NS/L and controls (Figure 9 A-B and Table 1). However, fractionation of the QRS complex 

was observed in some Tg-NS/L mice aged 3-4 weeks, indicating the presence of discrete 

ventricular conduction slowing (Figure 9A). In the 6-9 weeks age group, Tg-NS/L  

mice developed significant QRS prolongation and abnormal QRS morphology (including  

marked fractionation), in addition to spontaneous ventricular rhythm disturbances consisting  

of single or multiple ventricular extra systoles and short runs of non-sustained ventricular  

tachycardia (Figure 9A,B,D). No spontaneous arrhythmias were observed in Tg-NS/L mice  

aged 3-4 weeks.  

We next performed epicardial mapping in isolated Langendorff-perfused hearts from  

WT, Tg-WT and Tg-NS/L mice of the three age groups to further assess cardiac conduction  

in detail. In mice aged <2 weeks, no significant differences were found between the groups  

for left (LV) or right (RV) ventricular activation time or effective refractory periods, but a  

tendency towards lower longitudinal and transversal conduction velocities was observed in  

Tg-NS/L mice compared to controls (Figure 10A-D, Table 2). In contrast, a  

significantly prolonged epicardial LV activation time in addition to decreased LV conduction  

velocity was observed in Tg-NS/L mice from the age of 3-4 weeks onwards compared to  

controls. Both longitudinal and transversal conduction velocities were equally affected, as  

indicated by the unaltered L/T ratio (Table 2). In the RV, activation time and  

conduction velocity was only significantly prolonged at the age of >6 weeks. Arrhythmia  
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inducibility was tested using up to 3 extra stimuli and burst pacing. No arrhythmias could be  

induced in WT, Tg-WT or Tg-NS/L mice younger than 2 weeks. In contrast, ventricular  

arrhythmias were inducible in almost half of all Tg-NS/L mice aged 3-4 weeks and >6 weeks,  

but only sporadically in control mice of the same age groups (Table 2).  

 
 
 
 
Table 1. Surface ECG results  
 

 WT Tg-WT Tg-NS/L p ANOVA 

ANOVA 
     

Age 3-4 weeks:     

Number of mice (n) 7 7 12  

Age (weeks) 3.8 ± 0.3 3.7 ± 0.2 3.8 ± 0.1 0.934 

 
Heart rate 

(beats/min) 

364.3 ± 18.8 331.0 ± 26.6 352.7 ± 15.3 0.549 

PR-interval (ms) 32.8 ± 0.6 34.8 ± 1.6 33.1 ± 1.4 0.634 

QRS-duration (ms) 9.0 ± 0.3 9.0 ± 0.3 9.3 ± 0.3 0.658 

QTc-interval (m/s) 40.6 ± 1.5 45.1 ± 1.8 43.9 ± 1.2 0.158 

Arrhythmias 0/7 0/7 0/12  

     
Age 6-9 weeks:     

Number of mice (n) 10 9 12  

Age (weeks) 7.4 ± 0.5 7.9 ± 0.5 7.2 ± 0.2 0.502 

Heart rate 

(beats/min) 

390.6 ± 16.1 385.5 ± 16.6 394.5 ± 10.0 0.905 

PR-interval (ms) 35.5 ± 1.3 33.8 ± 2.2 32.3 ± 0.7 0.176 

QRS-duration (ms) 10.3 ± 0.4 10.6 ± 0.3 11.7 ± 0.4#$ 0.033 

QTc-interval (m/s) 42.5 ± 1.0 44.7 ± 3.4 46.3 ± 2.2 0.321 

Arrhythmias 0/10 1/9 9/12  

     
 

Data are presented as mean ± SEM 
#p<0.05 vs WT; $p<0.05 vs Tg-WT 
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Figure 9 A. Surface ECG examples of WT, Tg-WT, and Tg-NS/L mice (scale bar: 20 ms). In  
a subset of Tg-NS/L mice aged 3-4 weeks, discrete fractionation of the QRS complex was  
observed (top right example). In the 6-9 weeks age group, Tg-NS/L mice developed  
significant QRS prolongation and abnormal QRS morphology (including substantial  
fractionation of the QRS complex). B. Average values (mean±SEM) for QRS-duration in WT,  
Tg-WT, and Tg-NS/L mice in age groups 3-4 weeks (n=7, 7, 12 resp.) and 6-9 weeks (n=10, 
9, 12 resp.) (# denotes p<0.05 vs. WT; $ denotes p<0.05 vs. Tg-WT). C. Examples of 
spontaneous ventricular rhythm disturbances observed in Tg-NS/L mice aged 6-9 weeks, 
including single or multiple ventricular extra systoles and short runs of non-sustained 
ventricular tachycardia (scale bar: 100 ms). 
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Table 2. Epicardial mapping result. 
 

. 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 WT Tg-WT Tg-NS/L p ANOVA 

     Age <2 weeks:     
Number of mice (n) 6 4 5  
LV ERP (ms) 42.7±3.0 42.5±7.2 48.6±5.2 0.616 
RV ERP (ms) 46.7±6.0 45.0±6.4 40.4±1.9 0.677 
LV activation time (ms) 6.7±0.6 6.5±0.9 7.3±0.4 0.629 
RV activation time 
(ms) 

7.2±0.8 7.1±1.1 6.9±0.4 0.966 
LV long CV (cm/s) 73.4±3.2 74.1±5.8 69.0±3.5 0.606 
LV trans CV (cm/s) 39.7±1.5 39.8±3.5 35.7±3.1 0.503 
LV l/t ratio 1.9±0.1 2.0±0.1 2.0±0.1 0.358 
RV long CV (cm/s) 64.9±3.1 64.2±4.5 60.0±4.4 0.644 
RV trans CV (cm/s) 37.7±2.0 39.2±5.7 37.0±2.0 0.899 

RV l/t ratio 1.7±0.1 1.7±0.2 1.6±0.1 0.748 
Inducible arrhythmias  0/6 0/4 0/5  
     

Age 3-4 weeks:     
Number of mice (n) 5 6 6  

LV ERP (ms) 42.8±3.6 42.5±2.9 48.8±3.8 0.360 
RV ERP (ms) 44.2±5.4 41.2±2.4 48.0±4.5 0.504 
LV activation time (ms) 7.1±0.3 7.4±0.6 12.1±1.8#$

 0.014 
RV activation time 
(ms) 

6.8±0.5 7.1±0.4 7.7±0.5 0.418 
LV long CV (cm/s) 82.2±1.5 78.3±5.7 60.6±3.7#$ 0.006 
LV trans CV (cm/s) 39.5±1.0 37.2±1.8 28.4±2.8#$ 0.005 
LV l/t ratio 2.1±0.0 2.1±0.1 2.2±0.2 0.766 
RV long CV (cm/s) 63.9±1.8 60.8±1.1 57.8±2.7 0.129 
RV trans CV (cm/s) 39.5±0.7 37.3±1.4 36.5±2.3 0.450 
RV l/t ratio 1.6±0.0 1.6±1.1 1.6±1.1 0.934 
Inducible arrhythmias 0/5 1/6 3/6  
     

Age >6 weeks:     
Number of mice (n) 6 5 6  
LV ERP (ms) 53.6±4.1 52.0±2.6 49.3±4.8 0.729 
RV ERP (ms) 43.0±2.5 48.6±4.3 45.3±4.4 0.580 
LV activation time (ms) 8.5±0.6 8.1±0.6 10.9±0.9#$ 0.032 
RV activation time 
(ms) 

8.6±0.3 8.3±0.4 10.6±0.8#$ 0.008 
LV long CV (cm/s) 75.2±4.3 75.3±3.0 60.9±2.8#$ 0.020 
LV trans CV (cm/s) 35.6±2.0 37.3±1.5 27.7±1.9#$ 0.006 
LV l/t ratio 2.1±0.1 2.0±0.1 2.2±0.1 0.224 
RV long CV (cm/s) 59.4±1.0 59.4±1.3 53.2±2.8 0.050 
RV trans CV (cm/s) 37.0±1.3 35.5±1.5 30.8±1.7# 0.024 
RV l/t ratio 1.6±0.0 1.7±0.1 1.7±0.1 0.344 
Inducible arrhythmias 1/6 1/5 2/6   
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Figure 10 (next page) A. Typical examples of LV activation maps of isolated Langendorff-
perfused hearts from WT, Tg-WT, and Tg-NS/L mice aged 3-4 weeks. Arrows indicate 
directions and distances used for measurements of longitudinal (CV-L) and transversal (CV-
T) conduction velocities. Crowding of isochrones (1 ms) in the Tg-NS/L heart indicates areas 
of conduction slowing. B. Average values (mean±SEM) for LV and RV total activation time C. 
and D. Average values (mean±SEM) for LV and RV longitudinal and transversal conduction  
velocities B-D. in hearts from WT, Tg-WT, and Tg-NS/L mice aged <2 weeks (n=6, 4, 5)  
resp.), 3-4 weeks (n=5, 6, 6 resp.), and >6 weeks (n=6, 5, 6 resp.) (* denotes p<0.05 vs. WT; 
$ denotes p<0.05 vs. Tg-WT). E. Examples of ventricular arrhythmias induced in  
isolated Langendorff-perfused hearts of Tg-NS/L mice aged 3-4 weeks (scale bar: 100 ms).  
Top panels show induction of non-sustained polymorphic ventricular tachycardia induced by  
either 3 extrasimuli (top left panel) or burst pacing (top right panel). The lower panel depicts  
an example of a sustained monomorphic ventricular tachycardia induced through burst  
pacing.   
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Localization and levels of the intercalated disc proteins  

We hypothesized that the conduction slowing observed in hearts at 3-4 weeks of age, i.e.  

prior to the onset of cardiomyopathic changes, could be related to altered localization or  

reduced levels of components of the intercalated disc. We used immunofluorescence to  

characterize the distribution of intercalated disc proteins in Tg-NS/L mice and control mice.  

A normal immunoreactive signal was detected for Flag-tagged Desmoglein-2, Desmocollin-2,  

Plakophilin-2 (Pkp2), Plakoglobin (PG), Desmoplakin and NaV1.5 as well as for the classical  

adherens junction proteins N- and pan-Cadherin and α- and β-Catenin and the gap junctional  

Connexin43 (Cx43) (Figure 11 and 12). Note the normal co-localization of Cx43 with pan-

Cadherin in all three genotype groups; no clear lateralization of Cx43 was observed (Figure 

11A).   

On Western blot analysis in 3-4 week old hearts, no differences were observed in the  

levels of PG, Pkp2, NaV1.5, Pan-Cadherin and Cx45 between the three genotype groups  

(Figure 11B and 13). However we observed a significantly reduced level of Cx43 in Tg-WT 

compared to WT hearts (Figure 11B,C). Additionally we observed a shift  in the height of the 

Cx43 bands from predominantly phosphorylation state P2 in WT to P1 and P0 in both Tg-WT 

and Tg-NS/L lines (Figure 11B).  

 
 
 
 
 
 
 
 
Figure 11(next page)  A. Immunohistochemistry of Cx43 (green) and pan-Cadherin (Cdh, 
red) on LV tissue of WT, Tg-WT and Tg-NS/L mice at 3-4 weeks B. Western blot analysis of 
whole cell lysate of hearts of WT, Tg-WT, and Tg-NS/L mice aged 3-4 weeks for Calnexin, 
NaV1.5 and Cx43 C. Quantification of the NaV1.5 and Cx43 Western Blot signals (n=3) 
relative to Calnexin normalized for WT, error bars denote standard errors, * denotes p<0.05 
vs. WT.  
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Figure 12. Immunohistochemistry of N-Cadherin, Plakophilin-2, Desmoplakin, Plakoglobin 
Desmoglein and Nav1.5 on LV tissue of WT, Tg-WT and Tg-NS/L mice at 3-4 weeks. 
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Figure 13. Western blot analysis of whole cell lysate of hearts of WT, Tg-WT, and Tg-NS/L 
mice aged 3-4 weeks for Dsg2, Plakoglobin (PG), Calnexin and Cx45. 
 
 

   

 

Reduced action potential upstroke velocity in isolated cardiomyocytes  

In parallel, we investigated the possible cellular electrophysiological changes  

underlying the ventricular conduction slowing in the 3-4 week old Tg-NS/L. AP and INa  

characteristics of LV cardiomyocytes isolated from 3-4 week old mice were measured using  

patch clamp methodology. Figure 14A shows typical APs of Tg-WT and Tg-NS/L myocytes;  

Figure 14B summarizes the average AP characteristics of WT, Tg-WT and Tg-NS/L  

myocytes. No differences were noticed between Tg-NS/L, Tg-WT and WT in resting  

membrane potential (RMP), AP amplitude (APA) and AP duration (APD) at 20, 50 and 90%  

repolarization (APD20, APD50, and APD90, respectively). However, cardiomyocytes from Tg-  

NS/L mice showed a significantly lower AP upstroke velocity (Vmax) compared with age-  

matched WT and Tg-WT mice (Figure 14B). On average, Vmax in Tg-NS/L myocyte was  

reduced with ≈17±4% . The AP upstroke is predominantly determined by Na+ influx through  

voltage gated Na+ channels. The observed lower Vmax thus indicates that cardiomyocytes of  

Tg-NS/L mice have a reduced functional Na+ channel availability (Berecki et al, 2010).  

The reduced functional Na+ channel availability during the AP upstroke may be due to a  
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decrease of INa density and/or changes in voltage-dependency of (in)activation. Voltage-  

clamp experiments performed at RT using a double pulse protocol (Figure 15D) demonstrated  

no differences in the voltage dependencies of the activation (Figure15A) and inactivation  

(Figure 15B) of INa. Figure 15 C shows the current-voltage relationships of INa in WT, Tg-WT  

and Tg-NS/L myocytes. Maximal peak currents were smaller in Tg-NS/L myocytes  

compared to WT and Tg-WT myocytes (Figure 15E). On average, the maximal peak current  

was ≈19±6% lower; thus the reduction in INa density was in the same order as the Vmax  

reduction.   

 

Figure 14 A. Representative action potentials (APs) of LV cardiomyocytes isolated from a Tg-  
NS/L (light grey) and Tg-WT (black) mouse heart of 3-4 weeks. Inset: First derivatives of the  
AP upstrokes. B. Average AP characteristics of Tg-NS/L (n=3, n=11), Tg-WT (n=3, n=13),  
and WT (n=3, n=11) cardiomyocytes age 3-4 weeks. RMP=resting membrane potential;  
APA=maximal AP amplitude; Vmax=maximal upstroke velocity; APD20, APD50 and,  
APD90=AP duration at 20, 50, and 90% repolarization, respectively.   
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Figure 15. Na+ current (INa) characteristics in in WT, Tg-WT, and Tg-NS/L myocytes. A.  
Voltage dependency of activation. B. Voltage dependency of inactivation C Current-voltage  
relationships of INa. D. Voltage clamp protocol. E. Average maximal peak currents, * denotes  
p<0.05 vs. WT.  
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Physical interaction between Dsg2 and NaV1.5   

Since our electrophysiological studies showed a reduced INa density in Tg-NS/L mice,  

and, considering the fact that recent studies in rat neonatal cardiomyocytes have  

demonstrated that desmosomal proteins interact with the Na+ channel complex (Sato et al, 

2011; Sato et al, 2009; Delmar et al, 2011), we next sought to investigate the possible in vivo 

interaction between Dsg2 and NaV1.5 by co-immunoprecipitation. We made use of the Flag-

tag epitope present on the Dsg2 protein overexpressed in Tg-WT and Tg-NS/L mice to 

efficiently and specifically pull down Dsg2 from whole cell protein extracts of the LV of 

transgenic mice. This demonstrated an interaction between Flag-tagged Dsg2 and NaV1.5 in 

both Tg-WT and Tg-NS/L hearts (Figure 16).   

 

Figure 16. Co-immunoprecipitation of NaV1.5 with Flag-Dsg2 in Tg-WT mice of 3-4 weeks: 
Western blot for NaV1.5 and Flag tagged on whole cell lysate (In), whole cell lysate 
precipitated with normal mouse IgG (IgG, negative control) and whole cell lysate precipitated 
with M2 α-flag (Flag). 
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DISCUSSION  

We demonstrated for the first time that a mutation in a structural component of  

cardiac desmosomes impacts on ventricular conduction and arrhythmia susceptibility even  

before the onset of necrosis and replacement fibrosis. These effects occur through a 

reduction in AP upstroke velocity due to a reduced INa density. Furthermore, we show for the 

first time that the cardiac Na+ channel in an in vivo murine model forms part of a 

macromolecular complex that includes Dsg2. This structural link between the desmosomal 

protein complex and the NaV1.5 channel may explain the conduction disturbances and 

arrhythmias seen early in the ARVC disease process. These data have been recently 

published (Rizzo, Lodder et al., 2012) 

Our findings provide support to the recent proposition that at the intercalated disc, cross-talk 

exists between structures previously perceived as being independent (Delmar et al., 2004). In 

a series of recent studies, the Delmar group demonstrated interactions between Pkp2, Cx43, 

NaV1.5 and AnkG, thus connecting the desmosomes to the gap junctions and the Na+ 

channel complex (Sato et al., 2009; Sato et al., 2011). In these previous studies disruption of 

these protein complexes by downregulation of Pkp2 and/or AnkG in cultured neonatal rat 

cardiomyocytes led to reduced Na+ channel availability. The data presented in the current 

study now shows that Dsg2 interacts with NaV1.5 in the mouse heart in vivo. This 

observation, coupled to the reduced action potential upstroke velocity due to reduced INa 

density point to this functional link as the basis for the observed reduction in conduction 

velocity. It will be interesting to study the temporal and spatial changes in these interactions, 

as well as the interaction with the other molecules in this protein complex, these studies are 

unfortunately impossible with co-immunoprecipitation, but will need real time in vivo imaging 

of the components of intercalated disc.  
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Unexpectedly, Cx43 protein levels were found to be significantly reduced in Tg-WT,  

furthermore a shift towards less-phosphorylated (P0, P1) forms of Cx43 was observed.  

Nevertheless Cx43 sub-cellular localization and distribution within the myocardium did not 

appear to be altered compared to WT mice, in particular no clear lateralization, which has  

been reported to correlate to the phoshporylation state of Cx43 (Marquez-Rosado et al., 

2011), was observed. Previously, homogeneous reduction of Cx43 has been shown to be well 

tolerated. For instance, no differences in cardiac conduction were observed in mice carrying a 

heterozygous deletion of Cx43 (Jansen et al., 2011; Stein et al., 2011). The observed 

reduction of ~25% of Cx43 in both Tg-NS/L and Tg-WT mice is therefore not expected to 

influence conduction parameters. Corroborating this, no differences on surface ECG and in 

epicardial mapping were observed between Tg-WT and WT animals.  

However, we cannot exclude the possibility that the observed reduction in Cx43 levels  

sensitizes the hearts of the Tg-NS/L mice to the consequences of the Dsg2 mutation. The fact  

that no other changes in level and localization of intercalated disc proteins were seen in Tg-

NS/L mice at 3-4 weeks indicates that the observed changes in conduction are due to subtle 

changes of protein-protein interactions of the intercalated disc proteins rather than gross 

changes in their level and localization.   

 One of the earliest signs of disease observed in the Tg-NS/L mice was a widening of the 

intercalated disc space at the level of the desmosome/adherens junction with focal lysis of the  

myofilaments, as previously described in humans (Basso et al., 2006). In our previous studies 

on Tg-NS/H mice (Pilikhou et al, 2009), which have a faster disease development, the 

widening of the intercellular space was  detected only in the setting of concomitant necrosis 

and inflammation and as such was interpreted as a secondary phenomenon. In the current 

study, the use of the Tg-NS/L line, which is characterized by a later disease onset, allowed us 
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to show that intercalated disc space widening is an early feature of the disease and precedes 

cell injury and inflammation. Such intercalated disc widening could be explained by the fact 

that the N271 residue, located between the second and third extracellular cadherin domains 

of Dsg2, has been shown to be critical for co-ordination of Ca2+ binding, a phenomenon 

essential to the adhesive intercellular interactions of junctional cadherins (Nagar et al., 1996). 

Similar observations were also made by Kant et al. who studied mice carrying a deletion of 

the adhesive extracellular domain of Dsg2 (Kant et al., 2012). They suggested that mutant 

Dsg2 results in compromised adhesion at intercalated disc and mechanical cell stress during 

postnatal heart development, eventually inducing cardiomyocyte death, inflammation and 

fibrotic replacement. These features are similar to those observed in our Tg-NS/L mouse 

model, showing an age-related development of structural lesions, although in the current 

investigation we focused on the early stages when the heart is still grossly and histologically 

normal.   

In 3-4 week-old mice, intercellular space widening coincided with the onset of  

conduction slowing. Here, two scenarios are possible. In one, desmosomal interactions 

(Nagar et al., 1996) are weakened by the N271S mutation leading to intercellular space 

widening, consequently disrupting the multiprotein Na+ channel complex. In a second 

scenario, the Dsg2 mutation leads to a conformational change affecting the functional 

interaction between the desmosomal complex and the Na+ channel complex independent of 

the intercellular space widening.   

The conduction slowing and increased arrhythmia inducibility in the 3-4 week old Tg-NS/L 

mice point to electrical instability prior to overt structural changes. However no spontaneous 

arrhythmias were observed at this age on surface ECG, although we cannot exclude their 

occurrence since long-term telemetric ECG recordings are not feasible at this young age. 
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Clearly the observed conduction slowing likely sensitizes the Tg-NS/L mice for development 

of spontaneous arrhythmias at more advanced disease stages. Our experimental findings of 

altered ventricular conduction and increased arrhythmia susceptibility even before  

the onset of necrosis and replacement fibrosis support the hypothesis that conduction  

disturbances and electrical instability could develop in human carriers of ARVC gene  

mutations without structural changes (pre-clinical phase of ARVC).  This finding underlines  

the need of a diagnostic tool targeting conduction changes, especially in the cardiological  

screening of first-degree relatives of ARVC probands carrying gene mutations.   

Epicardial mapping in Tg-NS/L mice indicates that the LV is more affected than the RV.  

This is in line with the increasing recognition of biventricular involvement in ARVC (Basso et 

al., 2009; Pilichou et al., 2006; Bauce et al., 2005; Sen-Chowdhry et al., 2007; Sen-Chowdhry 

et al., 2008).  

The relative rarity of the left-dominant involvement in published ARVC populations is likely  

a consequence of restrictive inclusion criteria and low sensitivity of diagnostic tools (Marcus et 

al., 2010). In the setting of family history of ARVC, even signs of isolated LV involvement 

should be carefully investigated, as they could be the only marker of the underlying 

genetically determined cardiomyopathy (Bauce et al., 2005; Sen-Chowdhry et al., 2007). 

Noteworthy, all the reported experimental animal models irrespective of the affected gene 

show both LV and RV involvement (Pilichou et al., 2011).    

In summary, we here dissect the early stages of disease development in mice  

overexpressing a Dsg2 mutation associated with ARVC in humans. Intercellular space  

widening at the level of the intercalated discs (desmosomes/adherens junctions) and a 

concomitant reduction in action potential upstroke velocity as a consequence of reduced 

functional Na+ channel availability leads to slowed conduction and increased arrhythmia 
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susceptibility at disease stages preceding the onset of replacement fibrosis.  

The demonstration of an in vivo interaction between Dsg2 and NaV1.5 provides a molecular 

pathway for the observed electrical disturbances during the early ARVC disease process. 

Recently, similar results of Na-current deficit have been reported by Cerrone et al. (2012) in a 

murine model of plakophilin-2 haploinsufficiency, suggesting that Na-current dysfunction may 

contribute to generation and/or maintenance of arrhythmias in PKP2-deficient hearts. 

Although ARVC is associated with a clear reduction in intercellular coupling and probably also 

in membrane excitability, which is largely determined by the fast sodium current, it remains 

questionable whether the observed changes, either alone or in combination, can explain the 

arrhythmogenic nature of early-stage ARVC. The recent study by Noorman and colleagues 

(2012) on heart samples of patients with ARVC revealed by immunocytochemistry a reduction 

of NaV1.5 and Cx43, suggesting a powerful and dangerous arrhythmogenic combination, 

although validation is necessary. 

Knowledge of the early disease stages would help in risk assessment and designing more 

effective treatments. 

Whether sodium channel blockers (including flecainide) would aid in the evaluation of 

arrhythmia risk in patients suspect of ARVC, is an interesting area that deserves further 

investigation.  
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