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Abstract

Entanglement is a key ingredient in many quantum communication protocols, and robust
quantum channels are needed for its fast and reliable distribution over long distances. As
quantum communication technology matures, it moves towards utilizing actual fibers, which
leads to a growing need for physical models describing decoherence and the other effects that
take place in this kind of media.

In this work, we analyze how two phenomena that are ever-present in fiber-optic based
networks, namely polarization-mode dispersion (PMD) and polarization-dependent loss
(PDL), affect the distribution of polarization-entangled photons. The former represents the
main source of decoherence in a fiber-optic channel, while the latter is an example of modal
filtering.

We start by considering the distribution of polarization-entangled photon pairs through
optical fibers where PMD acts as a decoherence mechanism. We analyze both the case
in which PMD is present in the channel of one photon only, and the case in which the
propagation of both photons is affected by PMD. We quantify the entanglement quality of
the received two-photon states by means of a well known entanglement metric, known as
concurrence, and we analyze how this is impacted by the main system parameters. We also
develop a a treatment of this problem in the framework of quantum information theory,
where the total correlations between different parts of a system are quantified by making use
of the von Neumann entropy and the quantum mutual information. We discuss the concept
of nonlocal PMD compensation and quantify its beneficial effect on entanglement in terms
of concurence and quantum mutual information restoration.

We then move on to analyzing the case in which PMD and PDL are present in the channel of
one photon of a polarization-entangled pair. The primary challenge when dealing with these
combined effects is to concisely account for numerous elements that in general are distributed
along a lengthy optical path. We approach this by starting with an analytical model of a
channel with just two lumped elements, one representing PMD and the other representing
PDL. Interestingly, we find that, while the order and relative orientation of the two elements
produce a wealth of different biphoton states, the amount of entanglement in all those states
is exactly the same, a result that we explained also in simple, intuitive terms. Then, we
conduct experiments that implement this channel and verify our analytical findings. We
turn our attention to the most general fiber polarization channel, comprised of a statistically
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significant number of arbitrarily oriented elements. We show that, over an ample range
of parameters, our two-element analytical model is quite accurate in describing the fiber
channel, which makes it an effective tool for gaining insights into channel decoherence. We
conclude this part by extending the analysis to the case in which PDL affects the propagation
of both photons, in conjunction with PMD in one optical path.

Finally, we show how the presence of PMD and PDL alone can lead to the formation of
peculiar entangled states that can’t be detected by a conceptually simple and experimentally
prevalent class of entanglement witnesses, known as fidelity witnesses. These states, usually
referred to as unfaithful states, are exceedingly common among bipartite states, especially
for higher dimensional systems. In this work, we show that even among two-qubit states,
the simplest of all entangled states, unfaithful states can be created through a suitable
application of PMD and PDL to a Bell state. We also show that the faithfulness is not
monotonic to entanglement, as measured by the concurrence. Finally, we experimentally
verify our predictions and specifically demonstrate a situation where an unfaithful state is
brought to faithfulness at the expense of further reducing the entanglement of the state.
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Introduction

The ability to generate and distribute quantum entanglement among distant locations is of
great relevance in numerous quantum protocols. Entanglement distribution is at the basis
of many applications of quantum information science, ranging from quantum cryptography
to metrology and sensing. Thus, robust quantum channels are needed for fast and reliable
distribution of entanglement over long distances.

In the context of distributing entanglement, polarization-entangled photon pairs are par-
ticularly useful because of the ease with which light polarization can be manipulated using
off-the-shelf equipment, and the numerous sources of polarization-entangled photon pairs
suitable for use with standard single-mode fibers (SLM). However, polarization entanglement
is rather fragile, and can be significantly degraded by the presence of decoherence and
modal filtering mechanisms. In fiber-optic communications, the former manifests itself in the
form of polarization-mode dispersion (PMD), which originates from the presence of random
birefringence in the fiber, and the latter in the form of polarization-dependent loss (PDL).
The joint presence of these two effects in a fiber-optic channel creates complex phenomena,
whose description is rather involved, mostly because PMD and PDL accumulate in a random
fashion along the channel. The study we propose here intends to solve this complexity with
the introduction of a simple, but physically representative model for the description of how
the joint action of PMD and PDL affects the distribution of polarization-entangled photons.
It is important to notice that even if PMD and PDL concern specifically fiber-optic commu-
nications, as mentioned before they are actually representative of more general phenomena
that affect every kind of quantum communications, namely decoherence and modal filtering,
respectively. The results obtained here can thus be adapted rather straightforwardly to other
scenarios.

The thesis is organized as follows. In the first two Chapters, we introduce some concepts
that are useful to understand the main results presented later in detail. Specifically, in
Chapter 1 we provide the reader with some of the basics of quantum mechanics and quantum
information theory. The density matrix formalism is introduced to represent the state of a
system, and the representation for two-qubits states is derived. We describe the concept of
entanglement, and give some insights into how it can be characterized. Then, von Neumann
entropy and quantum mutual information are used to build entropic Venn diagrams, which
allow one to graphically represent how the information is distributed among different parts

8
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of a system. In Chapter 2 we review the fundamentals of PMD and PDL, with a particular
focus on the quantities that are used in the subsequent chapters. We give a qualitative
description of birefringence and mode coupling, and we define the PMD vector, which in
the framework of the so-called first-order picture can be used to characterize completely
the PMD of a fiber. After obtaining the dynamical PMD equation, we move on with the
description of the main PDL parameters, and we briefly explain the complexity in the joint
description of PMD and PDL.

In Chapter 3 the effect of PMD on polarization-entangled photons is thoroughly investigated.
We start with the description of a simple scenario involving a single photon propagating in a
channel affected by the presence of PMD. We then move on to describing how the presence
of PMD impacts the degree of entanglement of a polarization-entangled two-photon state.
We cover both the case in which only one of the two photons experiences PMD (while the
other one is kept in proximity of the source), and the case in which both photons travel
through channels affected by PMD. We show how the use of additional controlled PMD in
one of the two optical paths can restore the original degree of entanglement fully or in part,
depending on the system configuration, in a nonlocal fashion. Using the quantum analog of
the Shannon entropy, the von Neumann entropy, we evaluate the quantum mutual information
of propagated polarization-entangled photon pairs as a function of the fiber-channel PMD,
and quantify the beneficial effect of nonlocal PMD compensation in terms of mutual quantum
information restoration. We use the graphical aid of entropic Venn diagrams introduced
in Chapter 1 to show how the presence of PMD causes flow of information towards the
environment as the polarization of the photons gets coupled with the time-dependent part of
the state.

In Chapter 4 we focus on the joint effect of PMD and PDL in a quantum channel. We start
by introducing a simple but representative two-element model, and use it to describe the
case in which PMD and PDL affect the propagation of one photon in a Bell state, while the
second photon is kept in the proximity of the source. We investigate the role played by the
orientation and the ordering in which the two effects act on the photon, and we compare the
accuracy of our model in describing the way in which the concurrence of the state is affected
with respect to a general polarization channel. Finally, we explore the scenario in which a
PDL element is also present in the path of the second photon, discussing the effectiveness of
nonlocal PDL compensation and its consequences on the design of an optical network.

To conclude this work, in Chapter 5 we focus on a specific class of entanglement witnesses,
which are based on fidelity. We introduce the concept of faithfulness, and show how simple
application of PMD and PDL on a pair of entangled qubits can lead to the formation of
unfaithful entanglement, that is, entangled states that can’t be detected by any fidelity
witness. We reproduce this scenario experimentally, and we show how certain unfaithful
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states can be made detectable at the cost of further reducing their entanglement.



Chapter 1
Basic concepts of quantum mechanics and
quantum information

In this chapter some basic concepts of quantum mechanics and quantum information are
introduced that will be useful in the comprehension of the text. We start by introducing the
density matrix formalism and describing two-level systems, both of paramount importance
in the definition of a qubit. We then briefly explain the concept of entanglement and discuss
the properties that an entanglement measure should satisfy, to introduce the well-known
metric concurrence. We give some hints of quantum information theory, defining the von
Neumann entropy and the quantum mutual information, and introduce the reader to the
entropic Venn diagrams, which provide us with the possibility of visualizing how information
is shared between different parts of a system. Finally, we conclude the Chapter discussing
how the evolution of a state can be represented by quantum channels, and discuss their
properties. All the sections in this chapter represent a review of existing literature.

1.1 The density matrix

Pure states are ensembles of physical systems represented (using the Dirac notation) by the
same ket |ψ〉 that belongs to a Hilbert space H. When dealing with practical situations, it is
pretty rare to encounter pure states, and it is way more likely that one has to work with
mixed ensembles, in which a certain portion of the system is in the state |ψ1〉, another in
the state |ψ2〉, and so on. A useful way to describe mixed states (as well as pure ones) was
introduced by John von Neumann in 1927 [1]: the density operator, representend in some
basis by the density matrix.

Suppose to have N ensembles, ni of which described by the state vector |ψi〉; the expected
value of an observable A evaluated on the mixture will be equal to the sum of the expected
values of A on the states |ψi〉 that make up the mixture, each of which multiplied by the
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corresponding probability pi.
〈A〉 =

∑
i

pi 〈ψi|A|ψi〉 , (1.1)

where
pi =

ni
N

and
∑
i

pi = 1.

Using a generic basis {|φk〉}, the expected vaue of A can be written as:

〈A〉 =
∑
i

∑
k

pi 〈ψi|φk〉 〈φk|A|ψi〉 =
∑
i

∑
k

pi 〈φk|A|ψi〉 〈ψi|φk〉

=
∑
k

〈φk|

[∑
i

pi |ψi〉 〈ψi|

]
A |φk〉 .

(1.2)

This line of reasoning leads to define the density operator as:

ρ ≡
∑
i

pi |ψi〉 〈ψi| , (1.3)

which, in turn, means that the expected value of A on the mixture described by the density
matrix ρ can be expressed as

〈A〉 =
∑
k

〈φk| ρA |φk〉 = Tr(ρA), (1.4)

where Tr(·) denotes the trace operation1.
The density matrix has the following properties [2]:

ρ† = ρ (hermiticity) (1.5a)

Tr(ρ) = 1 (unit trace) (1.5b)

ρ ≥ 0 (positive semidefinite) (1.5c)

According to this definition, the density operator fully describes the physical system under
study, whether this is a mixture of states or a pure state. In the latter scenario, the density
matrix will just be

ρi ≡ |ψi〉 〈ψi| , (1.6)

and it will thus be possible to express the density matrix of a mixture of states as the convex

1A really useful property of the trace operation when working with density matrices is the cyclic invariance,
that is, given three matrices A,B e C one has Tr (ABC) = Tr (CAB) = Tr (BCA). This property also implies
that the trace is invariant under unitary transformations: Tr (U†AU) = Tr (A)
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sum of density matrices of pure states

ρmix =
∑
i

piρi. (1.7)

It is also worth noticing that if the state is pure (and only when it’s pure) the following
relation holds:

Tr(ρ2) = 1. (1.8)

The equation that rules the time evolution of a density matrix can be obtained starting from
the Schrödinger equation; in fact, for a mixture described by the density matrix ρ, one can
write

i~
∂

∂t
ρ = i~

∑
i

pi(|ψ̇i〉 〈ψi|+ |ψi〉 〈ψ̇i|)

=
∑
i

pi(Hρi − ρiH) = [H, ρ],
(1.9)

or
∂

∂t
ρ = − i

~
[H, ρ] (1.10)

which is known as von Neumann equation. The solution to (1.10) can always be expressed as

ρ(t) = Uρ(0)U †, (1.11)

where
U(t, t0) = e−

i
~H(t−t0) (1.12)

is the propagator, meaning that the time evolution of the expected value of an operator can
be evaluated by letting either the operator itself or the density matrix propagate (the former
being equivalent to the Heisenberg picture, while the latter corresponds to the Schrödinger
picture). This can be easily shown by making use of the cyclic invariance of the trace and
the definition of expected value in terms of the density matrix:

〈A(t)〉 = Tr[Aρ(t)]

= Tr[AUρ(0)U †]

= Tr[A(t)ρ(0)].

(1.13)

1.2 Two-level systems

The ket representing a state can always be expressed by a column vector in a certain basis;
the components of this vector are simply the coefficients in the expansion in said basis.
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When the dimensionality of the space is two (as in the case of spin-1
2 particles or photons’

polarization) it will be possible to express a generic state |ψ〉 as a linear combination of
the basis kets |0〉 and |1〉, and thus use a two-dimensional vector. The basis vectors can be
expressed as:

|0〉 ≡

1

0

 and |1〉 ≡

0

1

 (1.14)

The state |ψ〉 will thus be in the form:

|ψ〉 = α |0〉+ β |1〉 ≡

α
β

 (1.15)

with
|α|2 + |β|2 = 1.

One usually refers to column vectors, such as the one in (1.15), as two-components spinors,
which belong to a two-dimensional Hilbert space. The coefficients α e β are generally complex;
it will thus be possible to express them as

α ≡ r0e
iφ0 , β ≡ r1e

iφ1 ,

so that the state |ψ〉 becomes

|ψ〉 = r0e
iφ0 |0〉+ r1e

iφ1 |1〉 ,

where the normalization implies
r2

0 + r2
1 = 1.

By making use of the angle δ one can express the absolute values of α e β as r0 = cos (δ)

and r1 = sin (δ). Equating δ = θ/2 we have:

|ψ〉 = eiγ(cos (θ/2) |0〉+ eiϕsin(θ/2) |1〉), (1.16)

with ϕ = φ1−φ0 and γ = φ0, 0 ≤ φ ≤ 2π. Since the global phase eiγ is physically immaterial,
it can be ignored, leading to:

|ψ〉 = cos (θ/2) |0〉+ eiϕ sin (θ/2) |1〉 . (1.17)
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Figure 1.1: The Bloch sphere.

Since the two-level system in Eq.(1.17) is fully characterized by the angles θ and φ, all the
states can be represented as unit-length vectors on the surface of a sphere, called the Bloch
sphere. 2. In this representation, the angles θ and φ in (1.17) thus coincide with the spherical
coordinates, and a one-to-one relation between the points of the Bloch sphere and the states
described by (1.17) is established: the North pole usually corresponds to |0〉, the South pole
to |1〉, and all the other points are combinations of the two. All the unit-length vectors
represent pure states, while mixed states have a length that is less than unity, and are thus
represented by points within the sphere.

For two-level systems, the density operator introduced in Section 1.1 is a 2 × 2 matrix;
according to the properties (1.5), this matrix is Hermitian and has unit trace, and is thus
fully described by three independent real-valued parameters. If the state is pure, again one
only needs two parameters, as the density matrix corresponding to the state (1.17) becomes

ρ =

 cos2 θ
2 cos θ2 sin θ

2e
−iϕ

eiϕ sin θ
2 cos θ2 sin2 θ

2

 . (1.18)

The density matrices belong to a Hilbert-Schmidt space. For two-dimensional systems, one

2The Bloch sphere is equivalent to the Poincaré sphere, used in classical optics to describe the state of
polarization of light, and to which we will refer in Chapter 2.
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usually picks the basis composed of the three Pauli matrices

σx = σ1 =

0 1

1 0

 , σy = σ2 =

0 −i

i 0

 , σz = σ3 =

1 0

0 −1

 ,

along with the identity matrix I. Every density matrix can thus be expressed as a linear
combination of the matrices of the basis as

ρ =
3∑
i=0

1

2
Tr[ρσi]σi, (1.19)

where σ0 ≡ I. Defining ni ≡ tr[ρσi] leads to

ρ =
I + n̂ · ~σ

2
(1.20)

where

n̂ =


nx

ny

nz

 , ~σ =


σx

σy

σz

 .

The coefficients ni, which fully describe the state, are the coordinates of a point on a Bloch
sphere, and can directly be measured (since the basis made of the Pauli matrices is hermitian)
as ni = 〈σi〉, so that for pure states one can write

n̂ = 〈ψ|~σ|ψ〉 . (1.21)

Multi-qubit states belong to the composite space that is the tensor product of Hilbert spaces
H1 ⊗H2 ⊗ . . .⊗Hn. The notation we have just introduced can be extended to cover the
case of multiple qubits by taking the tensor product of all the combinations of single-qubit
Pauli matrices as

1

2n

3∑
i1,...,in

ai1,...,inσi1 ⊗ . . .⊗ σin , (1.22)

where n is the number of qubits (in most of what follows we will have n = 2) and the
normalization coefficient 1

2n arises from the fact that the only non traceless combination
of Pauli matrices is σ0 ⊗ . . .⊗ σ0, whose trace equals 2n. Again, all the coefficients in the
expansion are real-valued and can be expressed as ai1,...,in = 〈σi1 ⊗ . . .⊗ σin〉.

It might happen that one only has access to a number k < n of parties. This is the case
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when, for example, one is limited to measure in the laboratory at most k different subsystems
at the same time. The state of this subsystem can be obtained by performing a partial
trace on the density matrix describing the complete state. Focusing to the case of bipartite
systems (since it’s most relevant to our work), the partial trace TrB maps the complete
density matrix ρAB on the space HA ⊗HB onto the density matrix ρA on HA. If {|ai〉} and
{|bi〉} are a basis of HA and HB, respectively, any density matrix ρAB can be decomposed as
ρAB =

∑
ijkl cijkl |ai〉 〈aj | ⊗ |bk〉 〈bl|. Using this decomposition, one can see that the partial

trace can be obtained as

TrB(ρAB) =
∑
ijkl

cijkl 〈bl|bk〉 |ai〉 〈aj | . (1.23)

Clearly, one can define the partial trace TrA over subsystem A in a similar way, and the
result will be the density matrix ρB on HB.

1.3 Entanglement

Entanglement has been defined as the "the characteristic trait of quantum mechanics" [3],
and is considered to be the most nonclassical manifestation of the quantum formalism. Its
characterization and quantification have been the subject of deep interest ever since it was
discovered, and its usefulness as a resource for quantum computation and information is no
longer in question [4]. The topic of characterizing and quantifying entanglement is very vast
and complex, and gets even more so as the dimensionality of the system increases. Here
we provide the reader with a brief introduction on how entanglement can be quantified in
two-qubit systems, since in this work we will only consider this kind of states, with the
exception of Chapter 3, where we will briefly discuss three-qubit states.

A bipartite pure quantum state is said to be separable iff it can be written as

|ψ〉 = |φA〉 ⊗ |φB〉 , (1.24)

where |φA,B〉 are single-particle states. The same concept can be extended to non-pure states,
where using the formalism of density matrices a separable state can be written as [5]

ρs =

k∑
i=1

piρ
A
i ⊗ ρBi , (1.25)

for some probabilities pi and corresponding density matrices ρAi , ρ
B
i . States that are not

separable are said to be entangled, and are the ones that cannot be simulated by classical
correlations [6].
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For bipartite two-level systems, one can introduce the four maximally entangled Bell states

|Ψ±〉 =
1√
2

(|01〉 ± |10〉), |Φ±〉 =
1√
2

(|00〉 ± |11〉), (1.26)

which are also often referred to as EPR states and constitute a basis to span the Hilbert
space of two qubits H = H1⊗H2, with dimH1 = dimH2 = 2. Notice that none of these four
states can be decomposed into a separable state of the form (1.24), meaning that they are
entangled. Whenever a measure is performed only at one subsystem, the latter will be found
with equal probabilities in the state |0〉 or |1〉. However, the outcomes of the measurements
on both subsystems are perfectly correlated: we know nothing about the two subsystems
alone, but we can have perfect knowledge of the system as a whole.

In general, telling whether a mixed state is entangled or not can be really complicated, and
it has been shown to be an NP-hard problem [7] to solve. Many entanglement criteria exist,
but they are necessary and sufficient only for some special cases.

A well known necessary criterion is the positive partial transpose (PPT) one, which for
two-qubit mixed states also becomes sufficient. This criterion states that if ρ is separable,
then the new matrix ρΓ with matrix elements defined in some fixed product basis as

〈m| 〈µ| ρΓ |n〉 |ν〉 = 〈m| 〈ν| ρ |n〉 |µ〉

is a density operator (i.e. has non-negative spectrum). If ρ on the other hand is entangled,
ρΓ is not a valid state anymore. Notice that if the two-photon state is represented in a block
form

ρ =

A00 A01

A10 A11

 , (1.27)

then ρΓ can be expressed has

ρΓ =

AT00 AT01

AT10 AT11

 . (1.28)

This criterion allows one to tell if a state is entangled or not, but tells nothing about the
degree of entanglement of said state. Luckily, entanglement measures exist, which assign
a numerical value to a state based on some properties. Many definitions for entanglement
measures are present in the literature. Following [8], we call a map E an entanglement
measure if it fulfills the following properties:

1. If ρ is separable, then E(ρ) = 0.
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2. It should be invariant under local changes of basis.

3. It should not increase under any local operation assisted by classical communication
(LOCC).

4. It should be convex, that is E(
∑

i piρi) ≤
∑

i piE(ρi).

5. It should be extensive, meaning that E(ρ⊗n) = nE(ρ).

6. It should be subadditive, that is E(ρ⊗ σ) ≤ E(ρ) + E(σ).

The maps that only satisfy properties 2 and 3 are referred to as entanglement monotones [9].

A very common entanglement measure for two qubit states, and the one that we will employ
in the rest of this work, is concurrence [10, 11]. For a pure state |ψ〉, concurrence C can be
expressed as [4]

C = 〈ψ|θ|ψ〉 , (1.29)

where θ is the antiunitary transformation θψ = σy ⊗ σyψ∗, with ∗ denoting the complex
conjugation. As it’s common to basically any entanglement measure, its generalization to
mixed states requires a convex roof construction

C(ρ) = min
ρ=

∑
i pi|ψi〉〈ψi|

∑
i

piC(|ψi〉), (1.30)

where the minimization is taken over all pure states decomposition of ρ. Nonetheless, in
the case of two-qubits a closed form also exists for mixed states. Defining ρ̃ = θρθ we can
consider the operator

ω =
√
ρ
√
ρ̃. (1.31)

If we call λ1, . . . , λ4 its singular values in decreasing order, concurrence can explicitly be
expressed as

C(ρ) = max {0, λ1 − λ2 − λ3 − λ4}. (1.32)

The concurrence of a state ranges between 0 for separable states and 1 for fully entangled
ones. Clearly, all four Bell states introduced earlier have C = 1.

1.4 Quantum Information Theory

In recent years, an information theory for quantum physics has been developed that could
reproduce the role played in classical physics by Shannon information theory [12]. The latter
associates the amount of information with the randomness that is shared by two parties.
Clearly, the first problem that one encounters in a transition towards quantum information
theory is that it has to deal with qubits (instead of classical bits) which obey laws that
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are quite different. The main difference lies in the fact that qubits can exist in coherent
superpositions, and quantum information theory thus has to be built on a mathematical
construction that accounts for the relative phases in said superpositions. This is why the
role of classical variables is replaced by the density matrix.

In classical information theory the Shannon entropy of an alphabet xi, where the probability
of each symbol is given by p(xi) = pi, is defined as [12]

H(p) = −
∑
i

pi log2 (pi). (1.33)

From now on we will assume the base of the logarithm to be two and we will omit the
subscript.

In quantum information theory a quantity that is analogous to the Shannon entropy exists,
namely the von Neumann Entropy, defined for a density matrix ρ as [13]

S(ρ) = −Tr [ρ log (ρ)] = −
∑
i

λi log (λi), (1.34)

where λi are the eigenvalues of the density matrix and the second equality holds because ρ and
log (ρ) are diagonal in the same basis. So, basically, the von Neumann entropy corresponds
to the Shannon entropy of the eigenvalues of ρ and is related to the "mixedness" of a state: if
S(ρ) = 0, then the state is pure; if S(ρ) = log (n) then the state is maximally mixed. All the
off-diagonal terms in a density matrix reflect the relative quantum phases in superpositions
(and that’s why they are often referred to as "coherence" terms).

When ρ describes a pure state, the von Neumann entropy of the reduced density matrices
are related to its entanglement. Entangled states are in fact the only ones for which the
von Neumann entropy of the reduced density matrix can be higher than that of the whole
state, meaning that a single subsystem is more disordered that the complete state (which is
something that can never happen in classical information theory). For example, the four Bell
states all have S(ρ) = 0, since they are pure states; their marginal states of either subsytem
A or B on the other hand are given by ρA = ρB = I/2, meaning that their von Neumann
entropy is maximum.

Closely related to the von Neumann entropy are two other quantities: the conditional
entropy S(A|B) and the quantum mutual information I(A : B). The former is the quantum
equivalent of the conditional entropy in classical information, and for bipartite systems is
defined as

S(A|B) = S(AB)− S(B), (1.35)

where AB stands for the complete system described by the density matrix ρAB, and B is
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Figure 1.2: Entropic Venn diagrams for a quantum bipartite system AB (a) and a tripartite
system ABC (b). All the entries of these diagrams are von Neumann entropies. Intersections
between different sets contain the quantum mutual information shared among those parties.

the subsystem described by ρB obtained after tracing over subsystem A. Notice that from
now on we will use the notation S(AB) = S(ρAB) (and similarly for the reduced partial
matrices). Equation (1.35) implies that the conditional entropy can be negative, which
happens whenever the entropy of the subsystem B is larger than that of the whole system
AB. Again, this can only happen if the initial state is entangled.

The second quantity of interest is the quantum mutual information I(A : B), defined as

I(A : B) = S(A)− S(A|B), (1.36)

which quantifies the total correlations that can be shared between the parties A and B –
both the classical and the quantum ones. It can also be written as

I(A : B) = S(A) + S(B)− S(AB), (1.37)

from which it becomes evident that, in the case of two-qubit systems, I(A : B) can be
greater than unity. This behavior is only possible if the state is entangled, but, in general,
the quantum mutual information does not separate correlation and entanglement (which is
why it can’t be used as an entanglement measure).

A very useful way of visualizing how different parts of a system are correlated among each
other was introduced in [13], and has more recently been used to describe specific phenomena
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such as the quantum erasure process [14]. This method consists in building entropic Venn
diagrams, that is Venn-like diagrams where each set represents a subpart of the whole system
and all the entries are entropies. Two examples of such diagrams are presented in Fig 1.2: in
(a) the complete system is made of two parts, while in (b) a tri-partite system is depicted.

From Fig. 1.2(a) one can clearly recognize the relations in Eqs. (1.35) and (1.36). In
particular, the intersection between two sets gives the quantum mutual information shared
between those parties. If A and B are completely uncorrelated, the corresponding entropies
in the diagram would be (1,0,1), and if they are classically correlated it would become (0,1,0).
If they are perfectly entangled, on the other hand, one would obtain a non-classical diagram
given by (-1,2,-1), which is the case, for example, of the four maximally entangled Bell states.

When a system is comprised of three parts a similar diagram can be built, as shown
in Fig. 1.2(b). The conditional entropies S(A|BC), S(B|AC) and S(C|AB) are simply
generalizations of the conditional entropies in bipartite systems, so that for example one has

S(A|BC) = S(ABC)− S(BC), (1.38)

and analogous relations for the other cases. The other quantities can be evaluated according
to

S(A : B|C) = S(A|C)− S(A|BC) = S(AC) + S(BC)− S(C)− S(ABC), (1.39)

and the ternary mutual information

S(A : B : C) = S(A) + S(B) + S(C)− S(AC)− S(AB)− S(BC) + S(ABC). (1.40)

Using these relations all the entries of a tripartite system’s diagram can be evaluated starting
from the complete density matrix or from the partial ones. In Chapter 3 we will speak in
more detail about these diagram as we study their application in a scenario of practical
interest.

1.5 Quantum channels

Once a state is generated, it usually evolves and undergoes transformations, which are often
represented by linear maps called quantum channels.

A quantum channel M(ρ) maps a density operator into another density operator, and thus
needs to satisfy the following properties [15]:

1. Linearity : M(αρ1 + βρ2) = αM(ρ1) + βM(ρ2).
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2. Preserves Hermiticity : if ρ = ρ† then M(ρ) = M(ρ)†.

3. Preserves positivity : if ρ ≥ 0 then M(ρ) ≥ 0

4. Preserves trace: Tr (M(ρ)) = Tr (ρ).

Quantum channels can be represented in many ways. A very useful representation is the
so-called operator-sum representation. Basically, the initial state ρ is subjected to the linear
map M(ρ) that transforms it according to [15, 16]

M(ρ) =
∑
a

KaρK
†
a, (1.41)

where the operators Ka are called the Kraus operators (or operation elements) and obey the
completeness relation ∑

a

K†aKa = I. (1.42)

Also, the Kraus operators can always be chosen to be orthogonal, that is, Tr (K†iKj) ∝ δij ,
where δij represents the Kronecker delta function.

The word "channel" is clearly taken from the communication jargon: the initial state ρ is
transmitted by the sender through a communication link, and the other party receives the
state that has evolved according to Eq. (1.41).

The importance of quantum channels lies in the fact that they provide a formalism to treat
the decoherence of a state, namely the process according to which a pure state evolves to
become a mixed one. Suppose that an initial system A is in a pure state, and is combined
in a separable state with a second system B. One can always think that the operator-sum
representation in Eq. (1.41) arises from a unitary transformation UAB that, acting on both
systems, entangles A with B, followed by a partial trace performed on B that causes the
state of A to become mixed. A unitary evolution of A is a special case where the operator
sum only has one term. A very important consequence of this latter statement is that only
unitary quantum channels can be inverted, which means that decoherence is irreversible:
when system A becomes entangled with system B, we can’t revert the damage unless we
have access to B. Usually the system B represents the environment, namely everything over
which we don’t have control: decoherence thus causes quantum information to leak to the
environment.



Chapter 2
Polarization-Mode Dispersion and
Polarization-Dependent Loss

In this chapter we introduce the fundamentals of the main polarization effects that are present
in fiber-optic-based communication networks, namely polarization-mode dispersion (PMD)
and polarization-dependent loss (PDL). The physical mechanisms behind these phenomena
are explained, and a thorough description of how they affect the propagation of a pulse
is presented. We introduce the reader to the main parameters that characterize the two
effects, which are of great importance in the comprehension of the results presented in the
subsequent chapters. Notice that, even if the description that we provide here is purely
classical, the formalism that we use (which is the same as the one in [17]) is completely
analogous to the quantum description of states that we gave in Chapter 1. All the sections
in this chapter represent a review of existing literature.

2.1 Polarization-mode dispersion

Polarization-mode dispersion originates from the presence of optical birefringence in fibers [17–
19]. Due to the manifacturing process, in fact, the presence of asymmetries and imperfections
is inevitable: these perturbations usually lead to the rise of linear birefringence [20]. One
has to notice that even the so-called single-mode fibers support two modes of propagation,
which are distinguished by their polarization. When an optical pulse propagates along a
fiber, birefringence causes the two modes to travel with different group velocities, and the
random nature of the change in birefringence results in a random coupling between them.
The most immediate consequences of PMD in an optical channel are pulse distortion and
system impairments, which may limit the transmission rate, in the absence of mitigation
[21].

24
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2.1.1 Birefringence and polarization-mode coupling

In a short section of fiber, one can usually assume the birefringence to be uniform. The
electric field vectors of the slow (s) and fast (f) modes are aligned with with the axes of the
fiber, and the difference between the respective propagation constants can be written as

∆β = βs − βf =
ωns
c
−
ωnf
c

=
ω∆n

c
, (2.1)

where c is the speed of light in the vacuum, ∆n = ns−nf is the differential effective refractive
index between the slow and the fast modes, and ω is is the angular optical frequency.

The differential refractive index allows to define the beat length Lb = λ/∆n, where λ = 2πc/ω

is the wavelength. The beat length represents the distance for which a 2π phase difference
accumulates between the two modes (meaning that the polarization has rotated through a
full cycle).

Since the two modes travel along the fiber with different group velocity, they will be detected
at distinct times; the time difference between the two modes is usually referred to as
differential group delay (DGD), ∆τ , and can be found from the frequency derivative of the
difference in propagation constants according to

∆τ = L
d

dω

(
∆nω

c

)
= L

(
∆n

c
+
ω

c

d∆n

dω

)
, (2.2)

where L represents the length of a short piece of fiber.
Because of the presence of this group delay, the resulting pulse at the output of the birefringent
fiber can be heavily distorted. In this very simple scenario that we just described, the states
of polarization of the birefringence are the fiber eigenstates, as they do not change with the
propagation distance, and are not affected by pulse distortion.

The situation described above, while potentially detrimental for optical communication
systems, could be easily addressed: for example, one could just launch the signal into one
of the eigenmodes, so that it wouldn’t be distorted with propagation. The problem with
real telecommunication fibers is that they can be hundreds or even thousands of kilometers
long, and the issues one has to face are much more complex. In these scenarios in fact, the
presence of local stress, curvature and geometrical imperfections induces continuous changes
in the birefringence, both in terms of eigenpolarizations and difference between effective
indices. Usually, this complex phenomenon is modeled through a concatenation of very short
fibers, each characterized by a constant birefringence, such that the birefringence axes and
the propagation constants change randomly along the whole fiber. As shown in Fig. 2.2, the
output pulse is the result of many splits that happen within each section, and its distortion
can be very complicated. Clearly, from the random nature of the phenomena underlying
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Figure 2.1: Effect of birefringence (or, analogously, of PMD in a short piece of fiber) in the
time domain. The input pulse is split into two pulses that propagate with different group
velocities and accumulate a time difference ∆τ .

Figure 2.2: A long fiber can be modeled as a concatenation of many birefringent elements.
Each element splits the incoming pulse into two replicas, and the parameters characterizing
each element are random, so that the output pulse is distorted in a very complex way.

birefringence, a statistical approach is the best way to characterize how different polarization
modes are coupled in fibers [22, 23].

Luckily, if the signal bandwidth is narrow enough, the distortion that it experiences is
equivalent to the one caused by constant birefringence, and a simpler description exists.
Basically, one replaces the link with a fiber of constant birefringence with some well defined
delay and eigenpolarizations that would distort the signal in an equivalent manner; this
description is usually referred to as first-order PMD approximation [24], and we will assume
that it holds for the rest of this work.

2.1.2 PMD parameters

In this section we will make use of the notation introduced in [17], which has the quality of
being easily translated into the quantum formalism. It is well known that propagation in a
lossless birefringent medium (like a fiber) can be described in the Jones representation as a
2× 2 complex matrix that includes the frequency dependency in it [25]. This matrix relates
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the input state of polarization |s〉 to the output |t〉 according to

|t〉 = T(ω) |s〉 = eiφ0(ω)U(ω) |s〉 , (2.3)

where φ0 is a phase term of the transmission matrix T(ω), and both T(ω) and U(ω) are
unitary matrices to account for the absence of loss, that is

T†(ω)T(ω) = U†(ω)U(ω) = I. (2.4)

The operator U(ω) will then have orthogonal and unit magnitude eigenvalues, meaning that
it can be expanded as

U = e−iϕ/2 |r〉 〈r|+ eiϕ/2 |r−〉 〈r−| , (2.5)

where |r〉 and |r−〉 are its eigenvectors with corresponding eigenvalues e±iϕ. By making use
of Eq. (1.20) with r replacing n, the operator U can be written as

U = I cos (ϕ/2)− i (r̂ · ~σ) sin (ϕ/2), (2.6)

or, in a more concise fashion as
U = e−i(ϕ/2)r̂·~σ. (2.7)

Analogous relations can clearly be found for another well known representation, namely the
Stokes representation. In Stokes space, the polarization state is described as a real-valued
3-D vector (in an analogous manner as is done for qubits in Bloch space), and the output
state of polarization is related to the input one by

t̂ = R(ω)ŝ (2.8)

where R is a 3× 3 unitary matrix, which is isomorphic to the Jones matrix U. In Stokes
space, lossless propagation is thus represented as a rotation on the Poincarè/Bloch sphere.
The relation between R and U is given by

R~σ = U†~σU. (2.9)

From the combination of Eqs. (2.6) and (2.9) one gets an explicit rotational form for R:

R = I + sin (ϕ)r̂ × [1− cos (ϕ)](r̂×)(r̂×), (2.10)
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with the crossproduct operator r̂× being defined as

r̂× =


0 −r3 r2

r3 0 −r1

−r2 r1 0

 . (2.11)

From Eq. (2.10), it is clear that for any Stokes vector ŝ, Rŝ represents a right-handed
rotation of ŝ through an angle ϕ about the direction r̂ [17].

A surprising aspect of PMD is that, as noted by Poole et al. in [26], regardless of how long
a fiber is, one can always find two polarization states (that, in the absence of polarization-
dependent loss are orthogonal) with the peculiar property that a light pulse launched in one
of these two polarization states results in an output pulse whose polarization does not change
to first order in frequency. These are the so-called principal states of polarization (PSP), and
light polarized along these axes has the minimum and maximum group delays – which is why
one usually refers to them as fast and slow PSP, respectively. The difference between these
two delays is called differential group delay (DGD), and its typical mean values can range
from 1 to 50 ps for fibers that are few hundreds of kilometers long. The DGD and the PSP
allow one to define a very important quantity, which in the first order picture completely
characterizes the PMD of a fiber, namely the PMD vector ~τ , whose magnitude is equal to
the DGD τ and whose direction is that of the slow PSP p̂ 1, such that

~τ = τ p̂. (2.12)

The PMD vector can easily be derived starting from Eq. (2.3). If we make the assumption
that the polarization of the input pulse is frequency-independent, that is, |s〉ω = 02 (meaning
that ŝω = 0), from Eq. (2.3) one obtains for the output

|t〉ω = −i(dφ0/dω + iUωU
†) |t〉 . (2.13)

Thus for most input polarizations, the output polarization will change with frequency to
first order, and the frequency derivative of the phase term φ0 allows one to define a group
delay τ0 that is common to all polarizations τ0 = dφ0/dω. Nonetheless, as noted in [26], if
|t〉 is either one of the two eigenstates of the operator iUωU

†, then t̂ω = 0, and |t〉ω can be

1In the original notation of Poole et al. the PMD vector is aligned along the fast axis, instead. We follow
the notation introduced by Gordon in [17], where the PMD vector is defined for a right-circular Stokes space.

2Consistently with the notation used in [17], for the rest of this work we will often denote differentiation
with respect to frequency with a subscript ω - i.e., d |s〉 /dω = |s〉ω
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written in the form
|t〉ω = −i(dφ/dω) |t〉 , (2.14)

where φ identifies with the phase of |t〉, such that the term dφ/dω represents a group delay
τg. Since U is a unitary operator, one can show that the operator iUωU

† is unitary, too,
and it also has zero trace. This means that its eigenvalues are real and add up to zero, and
we will call them τ/2 and −τ/2. Comparing Eqs. (2.13) and (2.14), and using the definitions
of τ0 and τg thus leads to

τg = τ0 ± τ/2. (2.15)

If we designate the eigenstate of iUωU
† corresponding to the largest eigenvalue (that is, the

highest group delay) with |p〉, so that the orthogonal eigenstate having the smaller eigenvalue
becomes |p′〉, we have recovered the slow and fast axes corresponding to the PSP. We remind
the reader that these Jones vectors are associated to Stokes vectors; since they are orthogonal
in Jones space, they will be counter-aligned in Stokes space, such that |p〉 corresponds to p̂
and |p′〉 to −p̂.

The slow PSP |p〉 satisfies the Jones matrix eigenvector equation

1

2
τ |p〉 = iUωU

† |p〉 , (2.16)

and according to Eq. (2.15), the DGD is given by τ . An expression for τ can be obtained as

τ = 2
√

detUω. (2.17)

So, in conclusion, the PMD vector ~τ is the Stokes vector of |p〉 multiplied by the DGD, as
previously stated in Eq. (2.12). A very useful expansion for the operator iUωU

† exixts in
terms of the components of the PMD vector, namely

iUωU
† =

1

2
~τ · ~σ =

1

2
τ τ̂ · ~σ. (2.18)

2.1.3 The dynamical PMD equation

Until now, we’ve studied how the polarization of light evolves along the fiber in the Jones
domain. Clearly, one could do the same in the Stokes space as well, and this leads to an
equation describing the evolution PMD vector along the fiber.

The PMD vector directly affects how the polarization state changes with frequency. This
can be seen by noticing that an analogous equation to Eq. (1.21) exists that relates a Stokes
vector t̂ to its Jones counterpart |t〉, namely
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t̂ = 〈t|~σ|t〉 . (2.19)

Combined with Eq. (2.8), the latter leads to an expression for the frequency derivative of
the polarization state:

∂t̂

∂ω
= 2Re{〈t|~σTωT

†|t〉}. (2.20)

Now, using Eq. (2.18) allows to express TωT
† as

TωT
† = iτ0I + UωU

† = i

(
τ0I−

~τ · ~σ
2

)
, (2.21)

which, combined with the properties of the Pauli matrices [17] ~σ(~a · σ) = ~aI + i~a× ~σ and
〈t|~a× ~σ|t〉 = ~a× t̂, leads to

∂t̂

∂ω
= ~τ × t̂. (2.22)

This equation shows how the variation with frequency of the output polarization state is
governed by the PMD vector, and its geometrical interpretation is shown in Fig. 2.3: when
the PMD vector is frequency-independent (meaning that the first-order approximation is
valid) the output state of polarization rotates around the PMD vector as the frequency
changes, the rotation rate being determined by the magnitude of ~τ , which coincides with
the DGD. This situation is shown in panel (a) of Fig. 2.3. If, on the other hand, the PMD
vector does depend on frequency, then the state of polarization follows a complicated path
on the Poincaré/Bloch sphere as ω varies, since the axis of rotation instantaneously changes.
This behavior is depicted in Fig. 2.3(b).

The same rotation can be expressed in terms of Muller matrices. Differentiating Eq. (2.8)
with respect to angular frequency ω leads in fact to

∂t̂

∂ω
= Rω ŝ = RωR

†t̂, (2.23)

which combined with Eq. (2.22) gives

~τ× = RωR
†, (2.24)

that is the Stokes-space equivalent of Eq. (2.18).

We have discussed how the PMD vector determines the frequency dependence of the po-
larization state at the output of the fiber. We now want to investigate how the state of
polarization evolves along the fiber, at a generic distance z from the transmitting station.
Clearly, the transmission matrix T and the output state of polarization will have to reflect
this dependence on the distance, so that the output state can be expressed as a function of
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Figure 2.3: (a) When the PMD vector is frequency-independent (meaning that the first-
order approximation is valid) the effect of PMD in the frequency domain can be seen as
a frequency-dependent rotation around the PMD vector. (b) If the PMD vector depends
on frequency, then the output polarization state follows a complicated trajectory as the
frequency changes.

the input as
|t(z)〉 = T(z, ω) |s〉 . (2.25)

An expression for the matrix iTzT
† can be found to be

iTzT
† = i

(
β0I−

~β · ~σ
2

)
, (2.26)

where β0 = ∂φ0/∂z and the three-dimensional vector ~β(z) represents the local birefringence
vector.

Similarly to how Eq. (2.22) was obtained, one can derive the equation governing the spatial
evolution of the state of polarization, namely

∂t̂

∂z
= ~β × t̂. (2.27)

From the combination of the two main equations obtained in this Section, namely Eqs. (2.22)
and (2.27), one can obtain the dynamical PMD equation [27]

∂~τ

∂z
=
∂~β

∂ω
+ ~β × ~τ . (2.28)
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The local birefringence vector thus determines the evolution of the PMD vector along the
fiber.

Even though the topic won’t be covered in this work, it is important to stress that the
statistical description of PMD is based on the dynamical PMD equation, and can be developed
once a statistical model for the birefringence vector is assumed [28]. This description allows
one to obtain, for example, one of the best known results about PMD, namely that the
mean DGD increases with the squared root of the fiber length [22], as is characteristic of
a random-walk problem. This is particularly relevant since, as discussed in [29], virtually
every general statistical property of PMD in long fibers is uniquely determined by the mean
DGD. As an example, the autocorrelation bandwidth of the PMD vector is shown in [29] to
be equal to 0.25/

√
〈τ〉, where 〈τ〉 is the mean DGD (the result is expressed in the units of

natural frequency). This quantifies the range over which the PMD vector can be assumed
to be almost constant – or, equivalently, over which the first-order approximation can be
employed.

2.2 Polarization-dependent loss

We’ve discussed how the presence of PMD in fibers affects the state of polarization of the
propagating pulse. A second effect that is ever-present in fiber-optic networks is polarization-
dependent loss (PDL), which mostly arises from the presence of the optical components
(such as polarization controllers, adapters, connectors, etc.) along the route.

Polarization-dependent loss refers to the energy loss that depends on the polarization state
of the pulse [30]. We’ve already shown how, in the Jones picture, a generic polarization
state can be expressed in a certain basis with a two-component vector; the action of PDL
can be visualized as an attenuation that affects one of the two axes more than the other,
and can thus be seen as a partial polarizer (on the contrary, we’ve seen how PMD tends to
de-polarize by creating frequency dispersion of polarization).

Typically, PDL is quantified as [30]

PDLdB = 10 log

(
Tmax

Tmin

)
, (2.29)

where Tmax and Tmin are the maximum and minimum transmission intensities. The maximum
transmission intensity clearly occurs when the polarization state of the light beam is aligned
with the maximum transmission axis of the PDL element, and the minimum for the one that
is orthogonal on the Poincaré sphere.

If we consider a very simple example of a PDL element aligned along the horizontal direction,
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then the corresponding Jones matrix P, such that the output vector |t〉 is related to the
input |s〉 through

|t〉 = P |s〉 , (2.30)

can be written as

P =

1 0

0 e−γ

 , (2.31)

where the loss coefficient γ is related to the PDL in dB as

PDLdB = γ(20 log e), (2.32)

the coefficient 20 arising from the fact that PDL is defined as a ratio between intensities
rather than the fields themselves. This relation is independent of the orientation of the PDL
element; in general, in fact, the latter will not be aligned with the horizontal direction, but
the resulting operator can always be written as P′ = UPV†, where U and V are unitary
operators. Using the exponential form (and dropping the apex), the generic PDL operator
can be written as

P = e−γ/2 exp

(
~γ · ~σ

2

)
, (2.33)

in which the local PDL vector ~γ = γγ̂ was implicitly defined, with γ̂ representing a unit-length
vector in Stokes space aligned with the direction of maximum transmission. The exponential
can be expanded as we did for the PMD operator leading to

P = e−γ/2[I cosh (γ/2) + (γ̂ · ~σ) sinh (γ/2)]. (2.34)

As it’s evident from the definition of the corresponding operator, PDL is not unitary, meaning
that the inner product will not be preserved during propagation. If the input-output relation
is again given by Eq. (2.30) and we assume that the input vector has unit length such that
〈s|s〉 = 1, then one has for the output state

〈t|t〉 = 〈s|P†P|s〉 = e−γ(cosh γ + (γ̂ · ŝ) sinh γ). (2.35)

The quantity 〈t|t〉 is usually referred to as transmission intensity Tp, and clearly depends not
only on the loss coefficient γ but also on the relative orientation of the incoming polarization
state and the PDL vector γ. The maximum and minimum transmission intensities are thus
given by

Tp =

1 γ̂ · ŝ = 1

e−2γ γ̂ · ŝ = −1,
(2.36)
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from which PDL in dB can be calculated, and the result coincides with Eq. (2.32). It should
be clear now, that if in the channel a cascade of two PDL elements is present, such that the
resulting operator is given by Ptot = P2P1, the transmission coefficient in general will not
be just the product of the individual ones, as a result of the relative orientations of the PDL
vectors and the polarization state.

If the input state is completely depolarized, the transmission must be averaged over all
polarization states. Unpolarized light can be considered as an equal mixture on any pair
of orthogonal polarization states. In particular, one can pick the ones corresponding to
the maximum and minimum transmission coefficients, and the transmission coefficient fo
unpolarized light Tdepol is simply the average of the two [31]

Tdepol =
Tmax + Tmin

2
=

1 + e−2γ

2
, (2.37)

where Eq. (2.36) was used. In [31] the parameter Γ was introduced to quantify the PDL as

Γ =
Tmax + Tmin

Tmax − Tmin
= tanh γ, (2.38)

which is related to the transmission coefficient for unpolarized light by

Tdepol =
1

1 + Γ
. (2.39)

Recalling that the PDL in dB is given by Eq. (2.29) allows one to formulate a relation
between the two definitions as

PDLdB = 10 log

(
1 + Γ

1− Γ

)
. (2.40)

2.2.1 PDL and PMD

The description of PMD and PDL we’ve just introduced becomes considerably more involved
when they coexist in an optical channel, and their combination creates effects that can’t be
explained by analyzing the two phenomena separately [32, 33]. For example, PDL is usually
a frequency-independent effect, but the joint presence of PMD in the channel can give rise
to frequency-dependent PDL [34]. This is due to the fact that PMD rotates the polarization
state by an amount that depends on the frequency. Different frequency components will then
result in different polarization states, whose relative alignment with the PDL vector will
thus vary, resulting in a different attenuation. Another complication induced by the joint
presence of PDL and PMD is that the overall DGD might be higher than the one induced
by PMD alone [30], and the PSP usually end up not being orthogonal [33].
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It should be clear, then, that in general the presence of PMD and PDL in a channel causes
impairments and distortions whose characterization is more complex than for the ones caused
by the two effects individually. The description of such a channel is also complicated by the
fact that the two effects are usually distributed along the optical link. This is what lead us
to try to develop a simple and intuitive model (that we introduce in Chapter IV) that could
reproduce at least the most relevant features of a channel comprising both PMD and PDL,
without needing to rely on the mathematical complexity of the complete formal description.
Our model also has the advantage of being easy to reproduce in the laboratory with off-the
shelf equipment, and gives a strong intuition to the physics of the two phenomena.



Chapter 3
PMD in a quantum channel

In this chapter we thoroughly investigate the effects of the presence of polarization-mode
dispersion (PMD) in a quantum channel. The penalties introduced by the presence of PMD
in channels used for classical communications are well known, and are mostly related to
pulse distortion and limitations in the transmission rate that can be achieved. In the case of
quantum states propagating in a fiber-based channel, on the other hand, polarization-mode
dispersion represents the main source of decoherence, namely, the process that turns the
initial pure state into a mixed one by entangling the state with the environment.

We will investigate the effect of PMD on polarization-entangled photons, referring to the
scenario that is schematically depicted in Fig. 3.1: the two photons of an initial Bell state
are propagated towards two users (usually called Alice and Bob) in channels affected by the
presence of PMD, which clearly impacts the quality of the polarization entanglement. In light
of what we discussed in Chapter 2, in fact, the main effect of PMD is that of coupling the time
of arrival of a photon with its polarization, which corrupts the polarization entanglement of
a photon pair, by introducing a certain degree of distinguishability – the higher the amount
of PMD in the channel, the easier it will be to tell the photon polarization based on its time
of arrival. We also develop a description of the effect of PMD on polarization-entangled
photons in the framework of quantum information theory. The first section of this chapter
presents a review of pre-existing results, while the following sections contain original work.
Some of the results obtained are presented in paper C8.

3.1 Effect of PMD on a single photon

Suppose that a photon is propagating in a channel characterized by a PMD vector ~τ . The
initial state can be described by

|Ψ〉 = |f(t)〉 ⊗ |ψP 〉 , (3.1)

36
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Figure 3.1: Schematic of the scenario of interest. A pulsed-pump source generates
polarization-entangled photon pairs. The two photons of each pair are filtered apart and
sent to remote users (Alice and Bob) via two fibers impaired by PMD.

where |f(t)〉 =
∫
f(t) |t〉 dt accounts for the time-dependent part of the state and |ψP 〉

accounts for the polarization part of the state, the latter being represented in the standard
basis as

|ψP 〉 = α |h〉+ β |v〉 , (3.2)

with {α, β} ∈ C and |α|2 + |β|2 = 1. Before PMD is applied, the time-dependent and the
polarization parts of the state are clearly separable, as its evident from Eq. (3.1).

To account for the effect of PMD, it is convenient to represent |ψP 〉 in the PSP basis
{|p〉 , |p′〉}, that is

|ψP 〉 = a |p〉+ b |p′〉 , (3.3)

with
a = α 〈p|h〉+ β 〈p|v〉 , b = α 〈p′|h〉+ β 〈p′|v〉 . (3.4)

As it was shown in Chapter 2, in the context of first-order approximation PMD can be fully
described by the PMD vector ~τ ; this means that we can represent its effect as a delay τ = |~τ |
between the two replicas that propagate along the slow and fast axis, respectively. The
output state can thus be written as

|ΨPMD〉 = a |p〉 ⊗ |f(t− τ/2)〉+ b |p′〉 ⊗ |f(t+ τ/2)〉 . (3.5)

The polarization density matrix of the received photon can be obtained by tracing over the
time modes, to account for the fact that the detectors are insensitive of the photon’s time of
arrival; one then has

ρ =

∫
dt 〈t|ΨPMD〉 〈ΨPMD|t〉 =

 |a|2 ab∗R(τ)

a∗bR∗(τ) |b|2

 , (3.6)
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where the function R(τ) is defined in the frequency domain as

R(τ) =

∫
dω

2π
|f̃(ω)|2eiτω, (3.7)

with f̃(ω) representing the Fourier transform of f(t). The function R(τ) is normalized such
that |R(0)|2 = 1, and describes the overlap integral between the original waveform and the
delayed replica. From its definition, it is clear that one has R(τ)∗ = R(−τ). The orientation
of the PMD vector does not affect the value of the function R(τ), which only depends on the
DGD in the channel and on the bandwidth of the photon. Notice that once the time modes
have been traced out of the complete density matrix, all the parameters that affect the
time/frequency-dependent part of the state enter the received density matrix through this
function. The density matrix in Eq. (3.7) is represented in the basis of the PSP; knowing
how these are aligned with respect to the {h, v} basis through the parameters a and b, allows
one to apply the rotation needed to represent it in the standard basis.
Let’s now consider two exemplary scenarios that show how the orientation of the PMD
vector influences the received photon. If the PSP are aligned with the {h, v} basis, then Eq.
(3.7) is already expressed in the standard basis, and the density matrix becomes

ρ =

 |α|2 αβ∗R(τ)

α∗βR∗(τ) |β|2

 = (1− p)ρin + pσ3ρinσ3, (3.8)

where p = (1−R(τ))/2 and ρin = |ψP 〉 〈ψP | is the polarization density matrix of the initial
state. The effect of PMD in this case is that of a phase-flipping channel with probabilistic
action on the qubit; the probability p that the error occurs increases with the amount of
PMD in the channel.
A second interesting scenario is the one in which the PSP and the vectors of the standard
basis are orthogonal on the Bloch sphere. In this case, it is easy to show (assuming, for
example, to start with the |h〉 or |v〉 state), that the final density matrix can be written as

ρ = (1− p)ρin + pσ1ρinσ1, (3.9)

where the qantity p is defines in the same way as before. The effect of orthogonal PMD is
thus that of propagation through a probabilistic bit-flip channel; the rate at which the error
introduced by channel occurs is again regulated by the amount of PMD.
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3.2 Effect of PMD on polarization-entangled photons

Now that the effect of PMD on a single photon has been described, we can move on
to studying the case of a polarization-entangled two-photon state. The reason why the
presence of PMD in the channel of propagating photons can be detrimental to the degree of
polarization entanglement arises from the fact that it couples the time of arrival of a photon
to its polarization. Suppose that PMD is present only in one channel, say, that of Alice.
One can expand the initial state of polarization of the photon in terms of the PSP of her
fiber. After we let the two photons propagate, hers will be detected earlier or later than
Bob’s photon, depending on whether the initial polarization has collapsed on the fast or
slow PSP. In practice, since the time-accuracy of most detectors is larger than the typical
delays introduced by fibers, this information is lost to the environment, which leads to the
decoherence of the state and to a reduction of its entanglement content [35].

We start by briefly describing the generated two-photon state, and we then move to a formal
description of how PMD affects its quantum properties.

3.2.1 Generated two-photon state

A polarization-entangled two-photon state, which can be generated either via a χ2 (such as
parametric down conversion) or a χ3 (such as four-wave mixing) process, can be written as

|Ψ〉 = |f̃(ωA, ωB)〉 ⊗ |hA, hB〉+ eiα |vA, vB〉√
2

, (3.10)

where hi and vi are orthogonal polarization basis states of photons A and B, and α is an
arbitrary fixed phase factor, such that when α = 0 a Φ+ state is generated. The frequency-
dependent part of the state is described by the ket |f̃(ωA, ωB)〉, which can be expressed as
[36]

|f̃(ωA, ωB)〉 =

∫ ∫
dωAdωB f̃(ωA, ωB) |ωA, ωB〉 , (3.11)

where the function f̃(ωA, ωB) accounts for the shape and bandwidth of the pump and filters
used in the generation of the entangled photons. It also depends on the nature of the process
that is employed; in the case of parametric down conversion one has

f̃ (2)(ωA, ωB) = HA(ωA)HB(ωB)Ẽp(ωA + ωB). (3.12)

Here, Ẽp(ω) denotes the Fourier transform of the pump waveform Ep(t), and HA(ωA) and
HB(ωB) denote the transfer functions of the filters applied to the two photons prior to
transmission.
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In the case of four-wave mixing we have

f̃ (3)(ωA, ωB) = HA(ωA)HB(ωB)

∫
dω′Ẽp(ω

′)Ẽp(ωA + ωB − ω′). (3.13)

Notice that in the rest of this work we will assume that the photon pair is generated via
four-wave mixing, so that we are consistent with the apparatus used in the experiments, and
the frequency-dependent part of the initial two-photon state will thus always be described
by Eq. (3.13).

Equation (3.11) can also be expressed in the time domain, which can be useful in certain
circumstances, as

|f(tA, tB)〉 =

∫ ∫
dtAdtBf(tA, tB) |tA, tB〉 . (3.14)

The function f(tA, tB) is the inverse Fourier transform of f̃(ωA, ωB), and its absolute value
|f(tA, tB)|2 is proportional to the probability that the two photons overlap in time; it is
normalized such that

∫
dtAdtB|f(tA, tB)|2 = 1.

3.2.2 Phase-matching function

In the previous section we assumed the phase-matching conditions to be satisfied within
the bandwidth of the two filters (i.e. we assumed phase-matching function to be constant
over the frequency range of interest). This might not always be the case, especially with an
increasing pump bandwidth.
In order to include the effects of a non-uniform phase-matching function, we write down
again the frequency (or time) dependent part of the state in the following way:

f̃(ωA, ωB) = HA(ωA)HB(ωB)

∫
dω′Ẽp(ω

′)Ẽp(ωA + ωB − ω′)Φ(ω′, ωA, ωB), (3.15)

where the new term Φ(ω) is the phase matching function which can be expressed as [36]

Φ(ω′, ωA, ωB) =

∫ L

0
dz exp (−i∆kz) = sinc

(
∆kL

2

)
exp

(
i
∆kL

2

)
, (3.16)

with L being the length of the fiber in which the process takes place.
The term ∆k = kp1 + kp2 − ks − ki is the wave-vector mismatch, which can more explicitly
be written as:

∆k =
ω′

c
n(ω′) +

ωA + ωB − ω′

c
n(ωA + ωB − ω′)−

ωA
c
n(ωA)− ωB

c
n(ωB).
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3.2.3 Effect of PMD

As we discussed earlier in this work, the effect of first-order PMD is easily described in the
basis made of the PSP: when the incoming polarization corresponds to either one of the PSP,
in fact, PMD advances or delays the time of arrival of the photon, depending on whether
the initial state is aligned with the fast or slow PSP, respectively. Therefore, it is convenient
to write the initial state in terms of the PSP basis {|pi〉 , |p′i〉}, as we did for the case of a
single photon, with the difference that we now have two different fibers, each with its own
pair of PSP. In this basis, the initial state becomes

|ψPSP 〉 = |f(tA, tB)〉 ⊗
[
η1√

2
(|pA, pB〉+ eiα1 |p′A, p′B〉) +

η2√
2

(|pA, p′B〉 − eiα1 |p′A, pB〉)
]

(3.17)

where
η1 = 〈pA|hA〉 〈pB|hB〉+ eiα 〈pA|vA〉 〈pB|vB〉

η2 = 〈pA|hA〉 〈p′B|hB〉+ eiα 〈pA|vA〉 〈p′B|vB〉

and αi is defined through the relation ηi = |ηi|ei(α−αi)/2. The coefficients η1,2 account for
the relative orientation between the PSP’s of the two fibers, or, equivalently, between the
PSP of fiber A and the {|h〉 , |v〉} basis. Their absolute values are related by |η1|2 = 1− |η2|2;
when |η1| = 1 (so that |η2| = 0) the PMD vectors of the two fibers are aligned, and the initial
state can still be expressed as a Φ+ state when expanded in the basis of the PMD. As |η2|
increases, on the other hand, the state becomes a coherent superposition of a Φ+ and a Ψ−

state, as it’s evident from Eq. (3.17).

In this convenient basis, time delays resulting from PMD in the fibers can now be easily
accounted for, and the state after PMD can be written as

|ψPMD〉 =
η1√

2
|f(tA −

τA
2
, tB −

τB
2

)〉 ⊗ |pA, pB〉

+
η2√

2
|f(tA −

τA
2
, tB +

τB
2

)〉 ⊗ |pA, p′B〉

− η2e
iα2

√
2
|f(tA +

τA
2
, tB −

τB
2

)〉 ⊗ |p′A, pB〉

+
η1e

iα1

√
2
|f(tA +

τA
2
, tB +

τB
2

)〉 ⊗ |p′A, p′B〉

(3.18)

To account for the integration time of the photon detectors, the time modes need to be
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traced out of the full density matrix |ψPMD〉 〈ψPMD|, that is

ρ =

∫ ∫
dt′Adt

′
B 〈t′A, t′B|ψPMD〉 〈ψPMD|t′A, t′B〉

=

∫ ∫
dω′Adω

′
B 〈ω′A, ω′B|ψPMD〉 〈ψPMD|ω′A, ω′B〉 .

This calculation leads to the following density matrix:

ρ =
1

2



|η1|2 η1η
†
2R
†(0, τB) −η1η2e−iαR†(τA, 0) η21e

−iαR†(τA, τB)

η†1η2R(0, τB) |η2|2 −(η2)2e−iαR†(τA,−τB) η1η2e
−iαR†(τA, 0)

−η†1η
†
2e
iαR(τA, 0) −(η†2)2eiαR(τA,−τB) |η2|2 −η1η†2R†(0, τB)

(η†1)2eiαR(τA, τB) η†1η
†
2e
iαR(τA, 0) −η†1η2R(0, τB) |η1|2


(3.19)

where the quantity R(τA, τB) is again an overlap integral, and is defined similarly to how we
did in the case of a single photon going through a PMD element. In the frequency domain
we have

R(τA, τB) =

∫ ∫
dωAdωBf

†(ωA, ωB)f(ωA, ωB)eiτAωAeiτBωB , (3.20)

and in the case of a χ(3) process f(ωA, ωB) is given by Eq. (3.13). Again, we assume the
state is normalized such that R(0, 0) = 1.

The full knowledge of the density matrix in Eq. (3.19) allows one to obtain quantities of
interest about the received two-photon state. In Chapter 1 we have introduced concurrence,
and we use it here as the entanglement monotone of choice. Finding an analytical expression
for concurrence is not an easy task for a generic orientation of the PMD vectors. In order
to address this issue, in the next section we introduce a convenient representation for the
density matrix, namely the Fano representation.

3.2.4 Fano representation

A generic two-qubit state ρ can be expressed as [37]

ρ =
1

4

σ0 ⊗ σ0 + ~r · ~σ ⊗ σ0 + σ0 ⊗ ~s · ~σ +
3∑

m,n=1

tmnσm ⊗ σn

 , (3.21)

where ~r and ~s are are local parameters, since they determine the marginals of ρ according to

ρA = TrB ρ =
1

2
(σ0 + ~r · ~σ),

ρB = TrA ρ =
1

2
(σ0 + ~σ · ~s),

(3.22)
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and the real elements tm,n = Tr (ρσm ⊗ σn) form a 3× 3 matrix that is usually referred to
as T . When both photons experience PMD, so that the received state is represented by
the density matrix in Eq. (3.19), one can easily see that the reduced density matrices are
maximally mixed, namely

ρA = ρB =
1

2

1 0

0 1

 , (3.23)

meaning that ~r and ~s are null and the state belongs to the class of Bell-diagonal states,
represented by

ρ =
1

4

σ0 ⊗ σ0 +

3∑
m,n=1

tmnσm ⊗ σn

 . (3.24)

For the density matrix (3.19), one can analytically evaluate T and express it in terms of
the system parameters. If we make the realistic assumption on the symmetry of the two
filters |HA(ωA)HB(−ωB)| = |HA(−ωA)HB(ωB)|, then the function R(τA, τB) is real-valued.
Additionally, we can always choose an appropriate basis in which the parameters η1 and η2

are real; this makes the matrix in (3.19) real-valued, and finding T becomes a simpler task.
Straightforward algebra leads in fact to

T =


R(τA, τB)η21 −R(τA,−τB)η22 0 −2R(τA, 0)η1η2

0 −R(τA, τB)η21 −R(τA,−τB)η22 0

2R(0, τB)η1η2 0 1− 2η22

 . (3.25)

Equation (3.24) can be further simplified by noting that a product transformation U1 ⊗ U2

can always be found that transforms ρ into a form with a diagonal T [37]. In fact, for every
2× 2 unitary transformation U , there exists a 3× 3 rotation matrix O, such that

Un̂ · ~σU † = (On̂) · ~σ. (3.26)

When a product transformation U1⊗U2 is applied to a state ρ, the corresponding parameters
are transformed to

~r′ =O1~r

~s′ =O2~s

T ′ =O1TO
†
2,

(3.27)

where the connection between Oi and Ui is given by Eq.(3.26).
Finding the rotations O1 and O2 is not an easy task; it is usually a lot easier to solve
the equivalent problem of diagonalizing the operator TT † = O†1T

′O2O
†
2T
′†O1 = O†1T

′T ′†O1.



Chapter 3. PMD in a quantum channel 44

Writing down the operator as

TT † =


m11 0 m13

0 m22 0

m13 0 m33

 , (3.28)

with

m11 = [R(τA, τB)η2
1 −R(τA,−τB)η2

2]2 + 4R(τA, 0)

m13 = 2R(0, τB)η1η2[R(τA, τB)η2
1 −R(τA,−τB)η2

2]− 2R(τA, 0)(1− 2η2
2)

m22 = [R(τA, τB)η2
1 +R(τA,−τB)η2

2]2

m33 = 4R2(0, τB)η2
1η

2
2 + (1− 2η2

2)2,

(3.29)

we can compute the eigenvalues of TT †:

λ1 = m22

λ2 =
m11 +m33 −

√
4m2

13 + (m11 −m33)2

2

λ3 =
m11 +m33 +

√
4m2

13 + (m11 −m33)2

2
.

(3.30)

The coefficients t′i that constitute the diagonal matrix T ′, can now be evaluated from the
eigenvalues λi by simply taking either one of the corresponding squared roots; since not all
combinations lead to valid density matrices, we will pick them according to

t′1 =
√
λ1

t′2 = −
√
λ2

t′3 =
√
λ3.

(3.31)

After dropping the apex of the coefficients, the state ρ becomes

ρ =
1

4

(
σ0 ⊗ σ0 +

3∑
i=1

tiσi ⊗ σi

)
, (3.32)

and we are now in a position to express the concurrence of the two-photon state in terms of
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Figure 3.2: Schematic of an entanglement distribution system in which only one of the two
photons (photon A) experiences PMD during its propagation. Bob has a PMD compensator
that can be adjusted both in magnitude and orientation (via the polarization controller PC)
to compensate for the PMD on his side.

the system parameters. Equation (3.32) can in fact be written as

ρ =
1

4



1 + t3 0 0 t1 − t2

0 1− t3 t1 + t2 0

0 t1 + t2 1− t3 0

t1 − t2 0 0 1 + t3


, (3.33)

that is, Bell diagonal states are a particular realization of the so-called X-states, for which
concurrence can be analytically evaluated to be [38]

C =2 max {0, |ρ23| −
√
ρ11ρ44, |ρ14| −

√
ρ22ρ33}

=
1

2
max {0, |t1 + t2| − 1− t3, |t1 − t2| − 1 + t3},

(3.34)

where we can remove the absolute value arising from taking the squared root of (1± t3)2

because |t3| ≤ 1. Using Eq.(3.31), we can finally write the concurrence as

C =
1

2
max {0,

√
λ1 +

√
λ2 +

√
λ3 − 1}. (3.35)

3.3 PMD in one arm

The density matrix in Eq. (3.19) describes the received two-photon state in the general case
in which both photons propagate in channels affected by the presence of PMD. Both the
magnitude and the orientation of the two PMD vectors can be changed to obtain specific
configurations. In this section we consider the scenario where the presence of PMD only
affects the channel of the photon propagating towards Alice, that is, τB = 0. This may be



Chapter 3. PMD in a quantum channel 46

the case in a series of scenarios: the second photon could be kept in the proximity of the
source (as several protocols require), or simply Bob could have a tunable PMD element that
could use to compensate for the PMD on his side, as schematically depicted in Fig. 3.2.

When τB = 0, the initial state can always be expressed as a Φ+ state in terms of the PSP of
the fiber in channel A, regardless of their relative alignment with the {h, v} basis [39]. The
consequence is that we can always assume that in this specific scenario |η1| = 1 and |η2| = 0,
so that the density matrix of the received state becomes

ρ =
1

2



1 0 0 R†(τA, 0)

0 0 0 0

0 0 0 0

R(τA, 0) 0 0 1


. (3.36)

The concurrence of this state is given by

C = |R(τA, 0)|, (3.37)

which is clearly orientation-independent, and only depends on the amount of PMD in the
channel. The behavior of concurrence as a function of the DGD in channel A is shown as
a dashed line in Fig. 3.3(a); one can see how the degree of entanglement asymptotically
approaches zero as the DGD in the channel increases.

From the density matrix in Eq. (3.36) it is also easy to find an analytical expression for the
mutual information, that is

I(ρ) = 1 +
|R(τA, 0)|

2
log2

(
1 + |R(τA), 0|
1− |R(τA, 0)|

)
+

1

2
log2 (1− |R(τA, 0)|2). (3.38)

This quantity is again orientation-independent, and its behavior as a function of the amount
of PMD in channel A is presented in Fig. 3.3(b) as a dashed line. As the DGD in the channel
is increased, the mutual information of the two-photon state asymptotically approaches one
from above. Notice that since the concurrence is given by C = |R(τA, 0)|, in this scenario
the mutual information and concurrence are in a one-to-one correspondence, which is usually
not the case. The fact that the mutual information is bounded to be above one implies the
presence of correlations that are stronger than the classical ones, and that can thus only
exist when the state is entangled (i.e., C > 0).
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Figure 3.3: Concurrence (a) and quantum mutual information (b) as functions of the
amount of PMD in channel A. The dashed lines refer to the case in which PMD is only
present in channel A: both concurrence and mutual information are independent of the
orientation of ~τA (see also [39]). Solid lines show the nonlocal compensation of PMD: Bob
introduces a second controlled PMD element of the same magnitude and orientation of ~τA
to recover concurrence and mutual information.

3.4 Nonlocal compensation of PMD

If Bob has an additional tunable PMD element, he can employ the nonlocal nature of
entanglement to perform nonlocal compensation of PMD. This situation is schematically
presented in Fig. 3.4: Bob uses the first PMD element PMDB1 to compensate for the PMD
on his side, and then tunes the second PMD element PMDB2 to compensate for the PMD
on Alice’s side. The resulting scenario is equivalent to the one depicted in Fig. 3.1, with the
difference lying in the fact that this time the PMD element on Bob’s side is a controlled
one; the state will thus again be described by the density matrix in Eq. (3.19), in which τA
represents the (potentially unknown) DGD of the fiber in channel A, while τB represents the
DGD introduced by Bob’s second PMD element, as schematically depicted in Fig. 3.3.

Clearly, a careful choice of both the orientation and magnitude of the PMD element PMDB2
that he controls is essential for this compensation scheme to work effectively. First, Bob
needs to make sure that his PMD element is aligned with the PMD vector that characterizes
the fiber on Alice’s side. This situation is equivalent to setting |η1| = 1 in the density matrix
in Eq. (3.19) so that it is reduced to a form whose only nonzero elements are the four corners,
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namely

ρ =
1

2



1 0 0 R†(τA, τB)

0 0 0 0

0 0 0 0

R(τA, τB) 0 0 1


. (3.39)

Note that this is equivalent to the one in Eq. (3.36) (which described the case of PMD
affecting only one photon) where R(τA, 0) is to be replaced by R(τA, τB). The concurrence
of this state is then given by C = |R(τB, τB)|, and to obtain its maximum value we need to
choose a specific value of τB that, in general, will be a function of both τA and the bandwidth
of the pump and filters used in the channels.

Maximizing the concurrence function is not a task that can be performed analytically when
the spectra of pump and filters have a generic shape. In [35] it was shown that for gaussian
pump and filters Bob would need to set his DGD to τopt

B = τA/(1 +B2
P /B

2
A) as the optimum

compensation value, where BP and BA are the bandwidths of the pump and filter in Alice’s
channel, respectively. We note that the maximum concurrence usually occurs for a similar
value also in the case in which the pump and bandwidths have the shape of a third-order
supergaussian.

In Fig. 3.3 we show the compensated case for concurrence (a) and mutual information (b)
as solid lines, in comparison to the uncompensated case (dashed lines). To obtain this
figures, we assume that Bob has made sure that his PMD element is aligned with ~τA (so
that |η1| = 1) and has fixed its magnitude to match that of Alice’s fiber, i.e. τB = τA. In
this way, he can recover both concurrence and mutual information, at least partially. It is in
fact worth noticing that, as evident from inspection of Fig. 3.3, compensation is not perfect,
and the restoration of concurrence and mutual information becomes less and less effective
as the amount of PMD in channel A increases. This is a consequence of the fact that a
pulsed pump is assumed to generate the entangled photons. Full compensation, on the other
hand, is achievable only if a CW pump is used, and both concurrence and quantum mutual
information can be restored to their initial values. As noted in [35] in fact, a pump with a
finite bandwidth creates an absolute time reference, which in principle would allow one to
tell if the photons’ polarization was aligned with the slow or fast axis based on their time
of arrival relative to the pump’s time reference, even when the two photons are detected
at the same time (that is, after compensation). This would clearly not be the case when a
CW pump is employed in the generation of the photon pair; in this scenario, no absolute
time reference would be introduced by the pump, and it would be impossible to guess the
received photons’ polarization simply based on their time of arrival.
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Figure 3.4: Schematic representation of the nonlocal PMD compensation scheme. Bob
can operate two tunable (in magnitude and orientation) PMD elements. He uses the first
one (PMDB1) to compensate for the PMD in his fiber, and the second one (PMDB2, with
a DGD given by τB) to try to achieve nonlocal compensation of the PMD in Alice’s fiber,
which is characterized by a DGD τA.

3.5 A Quantum Information Theory perspective

In Chapter 1 we introduced a simple visual aid to represent how the information content of a
state is shared among different parts of the state itself, namely the entropic Venn diagrams.
The aim of this section is to build these kinds of diagrams for the case that we have been
describing up until now. We have shown in fact how the presence of PMD in the channel of
one or both photons causes a coupling between their polarization and their times of arrival.
This can be seen as a coupling with the environment, which causes a leakage of information
from the polarization degree of freedom towards the time-dependent part of the state, which
we will generally refer to as the "environment" in what follows. The Venn diagrams will then
clarify how a part of information is lost when our two-particle system becomes entangled
with the environment.

We know that the received two-photon state |Ψ〉 when PMD is present in the path of both
photons can be described by Eq. (3.18). In order to build a Venn diagram that has von
Neumann entropies as its entries, it is necesary to know the density matrix of the complete
state (as well as several reduced density matrices of the subsystems). The issue with this
state is that, in general, the time-dependent kets do not form an orthogonal basis, and thus
a density matrix with a finite number of entries cannot be obtained from a state in the
form of Eq. (3.18). We thus start by describing the special case in which the time kets form
an orthonormal basis. From now on we will use a slightly different notation to label the
time-dependent kets, namely

|f(tA ±
τA
2
, tB ±

τB
2

)〉 = |f±±〉 , (3.40)

so that the complete state can be written in a slightly less cumbersome fashion.
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3.5.1 Time kets form an orthonormal basis

It is instructive to start with an simpler scenario, in which the time-dependent kets form an
orthonormal basis; this happens if we deal with large enough DGD’s, so that the anticipated
and delayed replicas don’t overlap with the original pulse. In this case the density operator
|Ψ〉 〈Ψ| is a 16 × 16 matrix, from which all of the reduced density matrices can be easily
evaluated; for example, for the polarization dependent part of the state, obtained after
tracing over the time modes, one has:

ρAB =
1

2



|η1|2 0 0 0

0 |η2|2 0 0

0 0 |η2|2 0

0 0 0 |η1|2


, (3.41)

which is consistent with the density matrix in Eq. (3.19), where the R(τA, τB) functions
vanish because of the very large DGD’s in the channels. The von Neumann entropy of this
matrix reads:

S(ρAB) = 1− log2 (1− |η1|2) + |η1|2 log2

(
1− |η1|2

|η1|2

)
= S,

and it is a function of |η1|2 only; we will refer to this quantity as S. The concurrence of
this state, on the other hand, is clearly always zero, meaning that for very high DGD’s the
received two-photon state is separable.

In a similar fashion, one can evaluate the other reduced density matrices needed to build the
Venn diagrams, and obtains the following relations for the von Neumann entropies:

S(ρE) = S,

S(ρA) = S(ρB) = 1,

S(ρAE) = S(ρBE) = 1,

S(ρABE) = 0.

We can now represent the entropies in the form of a Venn diagram; all of the entries of
this diagram can be evaluated using the relations (1.38 – 1.40), that we report here for
convenience:

S(A : B : E) = S(A) + S(B) + S(E)− S(AE)− S(AB)− S(BE) + S(ABE),
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S(A|BE) = S(ABE)− S(BE), (3.42)

S(A : B|E) = S(AE) + S(BE)− S(E)− S(ABE).

The Venn diagram is shown in Fig. 3.5. Clearly, all the quantities can be expressed as a
function of S = S(ρAB) = S(AB), the von Neumann entropy of the polarization part of the
state. This has the practical advantage that this quantity can be easily extracted from the
density matrix of the polarization part of the state, which can be experimentally obtained
by means of regular tomography.

The quantity S ranges between 1 and 2. For |η1|2 = 0, 1, one has S = 1 and the Venn
diagram becomes that of a GHZ state

|ΨGHZ〉 =
1√
2

(|000〉+ 111), (3.43)

which shows perfect entanglement between the three parts of the state, as expected: the
photons are now fully distinguishable based on their time of arrival. When |η1|2 = 1/2,
S = 2, and this case is not as intuitive as the former, due to the fact that one of the three
sets (the "environment" one) has dimensionality four, and thus the entropies take on values
that are not usual. The quantum mutual information shared between the polarization of
photon A and B is represented by the quantity inside the intersection between the sets A
and B. As expected, since the reduced density matrices ρA and ρB are proportional to the
identity matrix, one simply has I(ρAB) = 2− S.

In Fig. 3.5(b) we also show a two-party Venn Diagram, in which the polarization parts are
taken as a whole, and the second set is again represented by the environment part. This kind
of diagram shows more clearly how as the two-photon state gets decohered by PMD, the
mutual information with the environment increases, the quantity in the intersection between
the two sets being equal to 2S.

3.5.2 General case

The general case in which the time kets are not orthonormal can be treated formally by the
creation of a new orthonormal basis. This can be achieved via a Gram-Schmidt procedure,
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Figure 3.5: Venn diagram of the state undergoing PMD; on the left, we show the three
degrees of freedom, on the right the polarizations are grouped into one set.

defining the vectors of the new basis as follows:

|f1〉 = |f−−〉 ,

|f2〉 =
|f ′2〉
N2

=
|f++〉 − 〈f−−|f++〉 |f−−〉

N2
,

|f3〉 =
|f ′3〉
N3

=
1

N3
|f+−〉 −

1

N3
〈f−−|f+−〉 |f−−〉+

− 1

N3

(
〈f++| − 〈f++|f−−〉 〈f−−|

N2
|f+−〉

|f++〉 − 〈f−−|f++〉 |f−−〉
N2

)
,

|f4〉 =
|f ′4〉
N4

=
|f−+〉 − 〈f1|f−+〉 |f1〉 − 〈f2|f−+〉 |f2〉 − 〈f3|f−+〉 |f3〉

N4
,

where N2, N3, N4 are the normalization coefficient defined as

Ni =
√
〈f ′i |f ′i〉,

with i = {2, 3, 4}.

After noticing that the inner products can be related to the overlapping function R(τA, τB)
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introduced earlier according to

〈fjk|fj′k′〉 = R
(
−j τA

2
+ j′

τA
2
,−kτB

2
+ k′

τB
2

)
,

with {j, j′, k, k′} that can take on the values {+,−} (so that, for example, 〈f−−|f++〉 =

R(τA, τB)). We remind the reader that the R functions are normalized such that R(0, 0) = 1.

Expressing the vectors of the new basis as a combination of the vectors of the old basis
results in 

|f1〉

|f2〉

|f3〉

|f4〉


=



1 0 0 0

a21
N2

1
N2

0 0

a31
N3

a32
N3

1
N3

0

a41
N4

a42
N4

a43
N4

1
N4





|f−−〉

|f++〉

|f+−〉

|f−+〉


, (3.44)

where the entries of the matrix are obtained as follows:

a21 =−R(τA, τB),

a31 =
R(τA, 0)−R(τA, τB)R(0, τB)

N2
2

,

a32 =
R†(0, τB)−R†(τA, τB)R(τA, 0)

N2
2

,

a41 =−R(0, τB) +
R†(τA, 0)−R(τA, τB)R(0, τB)

N2
2

R(τA, τB)+

− a31
R†(τA,−τB) + a31R(0, τB)− a32R

†(τA, 0)

N2
3

,

a42 =− R†(τA, 0)−R(τA, τB)R(0, τB)

N2
2

+ a32
R†(τA,−τB) + a31R(0, τB)− a32R

†(τA, 0)

N2
3

,

a43 =− R†(τA,−τB) + a31R(0, τB)− a32R
†(τA, 0)

N2
3

,

and the normalization coefficients introduced above can now be explicitly written as

N2 =
√

1− |R(τA, τB)|2,

N3 =

√
1 + |a31|2 + |a32|2 + 2Re{a31R†(τa, 0) + a32R(0, τB) + a†31a32R(τA, τB)},

N4 =

√
1 + |a41|2 + |a42|2 + |a43|2 + 2Re{a†41a42R†(τa, τB) + a†41a43R(τA, 0)

+ a†41R(0, τB) + a42a
†
43R(0, τB) + a42R(τA, 0)a43R(τA,−τB)}.

In order to express the state in Eq. (3.18) in terms of the new basis, we need to invert the
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transformation matrix. Since the latter is a triangular matrix, its inverse is also triangular,
with the diagonal terms that are the inverse of the diagonal entries of the first matrix; it
thus takes the form: 

|f−−〉

|f++〉

|f+−〉

|f−+〉


=



1 0 0 0

m21 N2 0 0

m31 m32 N3 0

m41 m42 m43 N4





|f1〉

|f2〉

|f3〉

|f4〉


, (3.45)

or, expressing every entry in terms of the elements of the change of basis matrix:

|f−−〉

|f++〉

|f+−〉

|f−+〉


=



1 0 0 0

−a21 N2 0 0

a21a32 − a31 −N2a32 N3 0

a21(a42 − a32a43)− a41 + a31a43 −N2(a42 − a32a43) −N3a43 N4





|f1〉

|f2〉

|f3〉

|f4〉


. (3.46)

After some algebra, the latter becomes:

|f−−〉

|f++〉

|f+−〉

|f−+〉


=



1 0 0 0

R(τA, τB) N2 0 0

R(τA, 0) R†(0,τB)−R(τA,0)R
†(τA,τB)√

1−|R(τA,τB)|2
N3 0

R(0, τB) R†(τA,0)−R(0,τB)R(τA,τB)√
1−|R(τA,τB)|2

R(τA,−τB)+a31R(0,τB)−a32R†(τA,0)
N3

N4





|f1〉

|f2〉

|f3〉

|f4〉


(3.47)

We are now in the position to express the state in Eq. (3.18) in terms of the new orthonormal
basis:

|Ψ〉 =
1√
2
η1[|f1〉 |pA〉 |pB〉+m21 |f1〉 |p′A〉 |p′B〉+m22 |f2〉 |p′A〉 |p′B〉]+

− 1√
2
η2[m31 |f1〉+m32 |f2〉+m33 |f3〉] |p′A〉 |pB〉+

+
1√
2
η2[m41 |f1〉+m42 |f2〉+m43 |f3〉+m44 |f4〉] |pA〉 |p′B〉

(3.48)

Once we have the state in this form, evaluating the 16× 16 complete density matrix, as well
as the reduced density matrices, is straightforward. Note that the reduced density matrix
ρAB that we obtain in this fashion is exactly the same as that of Eq. (3.19).

Consistently with our previous notation, we can denote by S the entropy of the reduced
density matrix that accounts for the polarization of the photons ρAB, and express all the
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Figure 3.6: Venn diagram of the state undergoing PMD in the case of perfect alignment,
in the two limit cases: on the left, S = 0, the two pulses perfectly overlap, and there is no
coupling with the environment; on the right, S = 1, the two pulses can be distinguished as
they don’t overlap, and the total system becomes a GHZ state, showing maximal entanglement
between the photons’ polarizations and the environment.

other entropies in terms of this quantity. Again, algebra leads to the relations:

S(ρAB) = S,

S(ρE) = S,

S(ρA) = S(ρB) = 1,

S(ρAE) = S(ρBE) = 1,

S(ρABE) = 0,

which allow us to obtain a Venn diagram that is exactly the same as the one in Fig. 3.5. The
only difference is that S, which still represents the von Neumann entropy of ρAB, now has a
different value, since it will not be a function of |η1|2 only, and in general will not have a
simple analytical expression.

It is of interest to consider the case of perfect alignment, i.e. η1 = 1; in this case ρAB becomes
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the one described by Eq. (3.39) and its von Neumann entropy can be easily expressed as:

S(ρAB) = S = 1− |R(τA, τB)|
2

log2

(
1 + |R(τA, τB)|
1− |R(τA, τB)|

)
− 1

2
log2 (1− |R(τA, τB)|2). (3.49)

In this case, S is a function of |R(τA, τB)| only, and it ranges from 0 to 1, the limiting
cases occurring for |R(τA, τB)| = 1 and |R(τA, τB)| = 0, respectively (that is, the two pulses
overlap perfectly or do not overlap at all).

The Venn diagram is again the one shown in Fig. 3.5, with the difference that S is now
given by Eq. (3.49) and varies from 0 to 1. The two limiting cases are presented in Fig. 3.6:
on the left, the case corresponding to S = 0 (|R(τA, τB)| = 1), and on the right the one
corresponding to S = 1 (|R(τA, τB)| = 0). In the former, the fact that the two pulses are
perfectly overlapping ensures that no coupling with the environment takes place (there’s no
way of discriminating one polarization from the other based on the times of the arrival of
the photons); in the latter, the two pulses do not overlap at all, meaning that one can tell
them apart by simply looking at the times of arrival: polarization entanglement is lost to
the environment, and a GHZ state is obtained.

3.5.3 Conditional Entropy S(A|B)

A quantity that might be of interest is the entropy of photon A conditional to the knowledge
of the polarization of photon B, i.e. S(A|B) = S(AB) − S(B). In order to evaluate this
quantity, we first need to trace out the time-dependent part of the state, thus obtaining a
4 × 4 reduced density matrix ρAB. Once we do this, it is really easy to see directly from
the Venn diagram that this reduced entropy equals S − 1 (by definition, it is the quantity
that is in the set A and outside of the intersection with the set B). If we now fix the main
parameters of the system, we can observe how S(A|B) varies with the relative orientation
of the PMD axes. In Fig. 3.7, one can see the behavior of S(A|B) as a function of |η1|2,
along with the concurrence C of the two photon state, for three different values of pump
bandwidth (while the DGD are fixed, τA = τB = 6.6 ps). Notice that the conditional entropy
can become negative, which indicates the presence of nonclassical correlations that cause
the marginal states to have a higher entropy than the complete state. Negative conditional
entropy clearly only occurs for nonzero concurrence, but it is not a necessary condition for the
state to be entangled (one can easily see large portions of the curves that have non-vanishing
concurrence – i.e., the state is entangled – but positive S(A|B)).

3.5.4 Concurrence and mutual information

We conclude this section by briefly discussing the relation between the concurrence and the
quantum mutual information in the scenario that we’re studying. It is well known that while
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Figure 3.7: Conditional entropy S(A|B) and concurrence C as function of the parameter
|η1|2 that quantifies the relative orientation of the PMD vectors, for three pump bandwidths
BP . The pump is assumed to be a third order supergaussian, and the DGD’s are set to
τA = τB = 6.6 ps.

Figure 3.8: Mutual Information I(A : B) versus Concurrence C for about 200,000 generated
density matrices in the form of Eq. (3.19), when both photons of the input Bell state go
through channels with PMD; the points are obtained by varying the system parameters
(pump and filters bandwidth, DGDs, relative orientation of PMD vectors). The black and
orange borders correspond to received Werner states and rank-2 Bell states, respectively.
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concurrence is an entanglement monotone, and is thus a proper quantity to determine the
degree of entanglement of a state, mutual information is not, and no one-to-one relation is
expected to exist between the two. Nonetheless, in the previous sections we have shown
that under specific circumstances (for example, PMD affecting the propagation of only one
photon) an explicit relation between the two can exist (like the one in Eq. (3.38)).

The general case for the scenario in which PMD affects the propagation of both photons
is presented in Fig. 3.8. In a plane where on the x-axis we have concurrence, and on the
y-axis we have mutual information, we represent all their possible combinations in the case
in which the received two-photon state is described by the density matrix in Eq. (3.19). The
matrices have been numerically generated by varying the main system parameters (pump
and filters bandwidth, DGD’s, relative orientation of the PMD vectors), and for each matrix
concurrence and mutual information have been extracted, and used as the coordinates for
the blue points in the figure. Two features are apparent: the first is that mutual information
can be nonzero even for vanishing concurrence; the second is that, even if in the general case
no one-to-one relation between concurrence and mutual information exists, all data points
fall in a region bounded by two curves corresponding to well-defined classes of received states.
The upper bound is obtained for aligned PSP (|η1| = 1), in which case the density matrix is
described by Eq. (3.39). With no loss of generality we can assume that R is real-valued, in
which case the matrix in Eq. (3.39) is in the form of a rank-2 Bell diagonal state and can be
expressed as

ρUB =
1 + C

2
|φ+〉 〈φ+|+ 1− C

2
|φ−〉 〈φ−| . (3.50)

On the other hand, we show numerically how the points of the lower bound correspond to
Werner states, which are known to be defined as a mixture of a maximally entangled pure
state and a fully mixed state (that is, a pure entangled state decohered by white noise). The
corresponding density matrix reads

ρW = p |φ+〉 〈φ+|+ (1− p)
4

I, (3.51)

with 0 ≤ p ≤ 1. They are entangled for p > 1/3.

In Fig. 3.9 we present a study of the dependence of C and I(A : B) on the main system pa-
rameters. In Fig. 3.9(a) and 3.9(b) we plot concurrence and mutual information, respectively,
as a function of the relative orientation between the two PMD vectors |η1|2 and the product
of τA and pump bandwidth Bp, for τB = τA, while keeping the filter bandwidth constant.
The dark green area in Fig. 3.9(a) shows combinations of |η1|2 and τA for which concurrence
drops to zero, and therefore the state is separable. The same points correspond to the dark
red area in 3.9(b): for these points, only classical correlations are possible, since C = 0. The
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Figure 3.9: Theoretical plots of C (a) and I(A : B) (b) as functions of the relative
orientation between the PMD vectors |η1|2 and the product of the DGD in arm A τA and the
pump bandwidth Bp. The DGDs in the two arms are identical (τA = τB) and vary between
0 and 12 ps, while the bandwidth of the pump is kept fixed at 38GHz. The dark green area
in (a) shows all those combinations of |η1|2 and τA for which the concurrence drops to zero.
The same points are presented in (b) in the darker shade of red. The bright red area in (b)
represents all the points for which I(A : B) > 1.

bright red area in 3.9(b) represents all the points for which I(A : B) > 1, for which the
presence of quantum correlations is also guaranteed by C > 0. In the intermediate region
the non-vanishing concurrence implies that the state is entangled, but I(A : B) < 1 does not
allow one to draw a definite conclusion about the presence of quantum correlations. It is
worth to notice that, as expected, the maximum for both C and I(A : B) occurs for |η1|2 = 1,
that is, perfect alignment between the two PMD vectors is required to achieve optimal
compensation. Figure 3.9 shows also that PMD compensation can only be perfect in the
case of continuous-wave pump (or equivalently for τA = 0), consistent with previous findings
[35, 40], whereas as the product of Bp and τA increases, the quality of the compensation
deteriorates, even in the case of perfect alignment (|η1|2 = 1). It is worth pointing out that
typical PMD values in deployed fiber plants [41] are such that almost complete recovery of
concurrence and quantum mutual information can be achieved in practice.



Chapter 4
Joint effect of PMD and PDL on
polarization-entangled photons

In this chapter we present a study of the effect of the joint presence of PMD and PDL in
quantum channel, which represent the main sources of decoherence and modal filtering in
fiber-based quantum communications, respectively. As we explained in Chapter 2, the joint
presence of PMD and PDL in a channel – whether it’s classical or quantum – makes the
description very complex. This is why we develop a simple but representative two-element
model, and use it to describe the case in which PMD and PDL affect the propagation of
one photon in a Bell state, while the second photon is kept in the proximity of the source.
We also explore the possibility of performing nonlocal PDL compensation by inserting a
controlled PDL element in the path of the second photon, and discuss how the ordering of
PMD and PDL in the channel of the first photon yields asymmetrical benefits.

All the sections in this chapter, with the exception of few small parts in Section 4.1, present
original work, whose main results are the subject of papers 2 and 3.

4.1 PMD and PDL in the path of photon A

We start by considering the simple case of two lumped elements affecting the propagation
of photon A. Even though PMD and PDL are usually distributed along the optical link,
in fact, this simple two-element model can be easily reproduced in the channel, and allows
one to study the main features of a channel comprising both PMD and PDL in a controlled
fashion. Moreover, we will discuss later in the chapter how the model relates to a general
polarization quantum channel in which the two effects are distributed.

The generated two-photon state can again be expressed as Eq. (3.10), which we write here
again for the case of α = 0:

|Ψ〉 = |f̃(ωA, ωB)〉 ⊗ |hA, hB〉+ |vA, vB〉√
2

, (4.1)

60
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According to the notation introduced in Chapter 2, we denote by ~γ the Stokes vector
associated with the mode-filtering element, whose effect is described by the operator T0 =

exp(~γ · ~σ/2), where ~σ is again a vector whose elements are the three Pauli matrices, so that
~γ · ~σ = γ1σ1 + γ2σ2 + γ3σ3. With no loss of generality, we assume that the z axis in Stokes
space corresponds to the polarization state |hA〉 and that ~γ is aligned with it, in which case
the mode-filtering operator simplifies to the following diagonal form:

T0 =

eγ/2 0

0 e−γ/2

 (4.2)

in the (|hA〉 , |h′A〉) basis, where γ = |~γ|. On the other hand, the effect of the PMD element
characterized by the Stokes vector ~τ is described by the operator U(ω) = exp(−iω~τ · ~σ/2)

[17], where |sA〉 and |s′A〉 denote its orthogonal eigenstates, and ω is the offset from the
carrier frequency. Note that while the unit of vector ~τ is that of time, vector ~γ is unitless. As
we did in Chapter 3, it is useful to express the state in a different basis to make the physical
meaning of the problem more apparent and the calculation more straightforward. Again, we
pick the polarization basis (|pA〉 , |p′A〉), which can be used to re-express the input state as

|ψin〉 = |f(tA, tB)〉 ⊗
|pApB〉+ |p′Ap′B〉√

2
, (4.3)

where by (|pB〉 , |p′B〉) we denote an auxiliary orthogonal basis for the polarization of photon
B given by |pB〉 = 〈sA|hA〉 |hB〉+ 〈pA|h′A〉 |h′B〉 and |p′B〉 = 〈p′A|hA〉 |hB〉+ 〈p′A|h′A〉 |h′B〉 [39].
We remind the reader that the convenience of this choice arises from the fact that in the
basis (|pA〉 , |p′A〉), the effect of decoherence simplifies to a relative delay τ = |~τ | between the
polarization states |pA〉 and |p′A〉.

The first channel configuration that we consider is the one in which the PDL element precedes
the PMD element (in what follows we refer to this configuration as PDL-first). In this case,
the output state is obtained by first applying the filtering operator to Eq. (4.1) and then
expressing the resulting state in the (|pA〉 , |p′A〉) basis prior to applying the PMD operator.
This results in the output state

|ψout〉 =
η√
2
|f(tA − τ/2, tB)〉 ⊗ (e

γ
2 〈pA|hA〉|pAhB〉+ e−

γ
2 〈pA|h′A〉|pAh′B〉)

+
η√
2
|f(tA + τ/2, tB)〉 ⊗ (e

γ
2 〈p′A|hA〉|p′AhB〉+ e−

γ
2 〈p′A|h′A〉|p′Ah′B〉),

where the normalization coefficient η accounts for the fact that the state is post-selected by
coincidence measurement.
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In the second channel configuration that we consider, decoherence precedes mode-filtering
(in what follows we refer to this configuration as PMD-first). In this case, the output state
is obtained by first applying the decohering operator to Eq. (4.3) and then expressing the
resulting state in the (|hA〉 , |h′A〉) basis prior to applying the filtering operator. This results
in the state

|ψout〉 =
η√
2
|f(tA − τ/2, tB)〉 ⊗ (e

γ
2 〈hA|pA〉|hApB〉+ e−

γ
2 〈h′A|pA〉|h′ApB〉)

+
η√
2
|f(tA + τ/2, tB)〉 ⊗ (e

γ
2 〈hA|p′A〉|hAp′B〉+ e−

γ
2 〈h′A|p′A〉|h′Ap′B〉).

The density matrix ρ characterizing the polarization properties of the received state is then
obtained in both cases by tracing the full density matrix |ψout〉〈ψout| over the time modes.
To this end, it is convenient to introduce once again the function R(τ), whose physical
meaning was explained in Chapter 3 and whose definition we report here for convenience:

R(τ) =

∫ ∫
dωAdωB|f̃(ωA, ωB)|2eiωAτ . (4.4)

Assuming that f̃ is normalized so that R(0) = 1, the elements of the resulting density matrix
for the PDL-first case are

ρ11 = eγ |〈pA|hA〉|2η2/2, ρ22 = e−γ |〈pA|h′A〉|2η2/2

ρ33 = eγ |〈p′A|hA〉|2η2/2, ρ44 = e−γ |〈p′A|h′A〉|2η2/2

ρ12 = 〈pA|hA〉〈pA|h′A〉∗η2/2

ρ13 = eγR∗(τ)〈pA|hA〉〈p′A|hA〉∗η2/2

ρ14 = R∗(τ)〈pA|hA〉〈p′A|h′A〉∗η2/2

ρ23 = R∗(τ)〈pA|h′A〉〈p′A|hA〉∗η2/2

ρ24 = e−γR∗(τ)〈pA|h′A〉〈p′A|h′A〉∗η2/2

ρ34 = 〈p′A|hA〉〈p′A|h′A〉∗η2/2. (4.5)
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Similarly, for the PMD-first case one can show that they become

ρ11 = eγ |〈hA|pA〉|2η2/2, ρ22 = eγ |〈hA|p′A〉|2η2/2

ρ33 = e−γ |〈h′A|pA〉|2η2/2, ρ44 = e−γ |〈h′A|p′A〉|2η2/2

ρ12 = eγR∗(τ)〈hA|pA〉〈hA|p′A〉∗η2/2

ρ13 = 〈hA|pA〉〈h′A|pA〉∗η2/2

ρ14 = R∗(τ)〈hA|pA〉〈h′A|p′A〉∗η2/2

ρ23 = R(τ)〈hA|p′A〉〈h′A|pA〉∗η2/2

ρ24 = 〈hA|p′A〉〈h′A|p′A〉∗η2/2

ρ34 = e−γR∗(τ)〈h′A|pA〉〈h′A|p′A〉∗η2/2. (4.6)

Note that in the first case, the density matrix is represented in the basis |pAhB〉, |pAh′B〉,
|p′AhB〉, |p′Ah′B〉, while in the second case it is expressed in the basis |hApB〉, |hAp′B〉, |h′ApB〉,
|h′Ap′B〉. Imposing Tr(ρ) = 1 yields in both cases η2 = 1/ cosh(γ). As is evident from Eqs.
(4.5) and (4.6), the final state exhibits strong dependence on the order of the two elements
and orientation of the corresponding eigenstates. Clearly, the only scenario in which the
order has no influence on the final state is when the PDL and PMD vectors are aligned. In
this specific case, as expected, the received density matrix is the same for both the PDL-first
and the PMD-first configuration, and is given by

ρ =
1

2 cosh (γ)



eγ 0 0 R†(τ)

0 0 0 0

0 0 0 0

R(τ) 0 0 e−γ .


(4.7)

To quantify the degree of entanglement of the received state, we use again concurrence,
which can be extracted from the corresponding density matrices in the PDL-first and PMD-
first configurations. For the aligned case, described by the density matrix in Eq. (4.7), an
analytical expression for concurrence can be obtained pretty easily, and one has

C =
|R(τ)|

cosh(γ)
. (4.8)

For the general case, described by Eqs. (4.5) – (4.6), some cumbersome algebra shows that
the concurrence of the received state is again given by the expression in Eq. (4.8). This,
quite remarkably, implies that unlike the shape of the state itself, the residual concurrence
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is not affected by any channel detail such as the relative orientation of the eigenstates of
the two operators, or the order in which the two elements are concatenated. Instead it only
depends on the channel’s amount of filtering and magnitude of the birefringence vector. Our
general result encompasses several previous findings. When decoherence acts alone (γ = 0),
concurrence reduces to C = |R(τ)|, which is the expression demonstrated in [39] and derived
again in Chapter III o this work. On the other hand, when decoherence is absent (τ = 0),
concurrence is given by C = 1/ cosh(γ), as found in [42]. Finally, our result is consistent
with the expression for concurrence found in [43], where the effect of mode-filtering on a
Bell-diagonal state was studied. In what follows, we will provide a physical interpretation
for the independence of concurrence on the order and relative orientation of the decoherence
and filtering elements.

PDL preceding PMD. The way in which PDL in the A-optical path affects entanglement
is through the probabilities of detecting specific two-photon polarization states (in the
post-selected ensemble). If, prior to detection, the analyzer for photon A splits |hA〉 and |h′A〉,
simultaneous clicks will be produced by the two states |hAhB〉 and |h′Ah′B〉 only. However, if
the analyzer splits a different pair of polarization states, say |pA〉 and |p′A〉, simultaneous
clicks will be produced by the four states, |pAhB〉, |p′AhB〉, |pAh′B〉, and |p′Ah′B〉, which emerge
when expressing photon A in the basis (|pA〉 , |p′A〉). If |pA〉 and |p′A〉 happen to be aligned
with the vector τ defining a PMD element concatenated to the mode-filtering element, then
the temporal waveform associated with each of these four states does not suffer any distortion
from decoherence (which simply introduces some delay in each of them); therefore, the
corresponding probabilities of simultaneous clicks are not affected. This simple argument
shows that the orientation of ~τ does not interfere with the mechanism through which the
preceding PDL element affects the two-photon polarization entanglement.

PMD preceding PDL. As thoroughly discussed in Chapter III, the way in which PMD
in the A-optical path reduces entanglement is by correlating photon’s A time of arrival
with its polarization, so that in principle, one would be able to trace back the two photons’
polarization based on their relative times of arrival. This ability is not affected by the presence
of a PDL element after PMD in the path of photon A, as filtering does not distort the
delayed replicas of the two-photon state waveform, but only the corresponding polarization
contents, therefore leaving the arrival times of the two photons unchanged. This clarifies
why the orientation of a decoherence element ~τ preceding a PDL element has no impact on
concurrence.

The two arguments illustrated above also imply that the order in which the PMD and PDL
elements are concatenated cannot affect the two-photon polarization entanglement. In fact,
as all possible relative orientations yield the same concurrence, all cases are equivalent to
the one in which the vectors ~τ and ~γ are aligned, and in this special case, the two effects
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Figure 4.1: Schematic of the experimental apparatus. ~τ : PMD element. ~γ: PDL element.
~γC : compensating filtering element. EPS: entangled photon source. DSF: dispersion-shifted
fiber. PDL: PDL emulator. PMD: PMD emulator which applies a differential group delay
τ = 6.6 ps. PC: polarization controller. DS: detector station. PA: polarization analyzer
consisting of several waveplates (red) and a polarizer (blue). SPD: single photon detector.
The order of the decohering and filtering elements in channel A can be changed to investigate
the PMD-first and PDL-first cases.

commute with each other. Note that while concurrence is insensitive to the details of the
two-element channel, the density matrices of the propagated state are not. The consequences
of this on the design of a quantum network, such as choosing a direction in which the channel
is to be used, will be discussed later in this Chapter.

4.1.1 Experiment

In order to provide experimental evidence of the findings discussed in the previous section,
we consider two different settings for both the PDL-first and PMD-first configurations; one in
which ~τ and ~γ are aligned, and another in which they are orthogonal to each other in Stokes
space (or equivalently they form an angle of 45 degrees in Jones space). Our experimental
setup consists of an entangled–photon source (EPS), telecom optical fibers, and two separate
detector stations [44] that include polarization analyzers (PA) and InGaAs single photon
detectors, which are used to perform state tomography [45]. In order to introduce controllable
PMD and PDL in the channel, we use PMD and PDL emulators, respectively. Both devices
are produced by OZ Optics (refer to [46] for the complete data sheet of the product). The
PDL emulators, which are fully configurable both in magnitude (within the 0 dB - 7 dB
range) and orientation, can be inserted in the paths of the two photons. All of the PDL
emulators are PMD-free, except for one that has a fixed differential group delay; we use the
latter to reproduce the effect of lumped PMD.

The entangled photons are generated inside the EPS by pumping a dispersion-shifted fiber
(DSF) with a 50 MHz pulsed fiber laser that operates at 193.1 THz and creates signal and
idler photons via four-wave mixing [47]. The average number of generated photon pairs per
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pulse can be tuned in the 0.001 – 0.1 range [48, 49]. The generated photons are spectrally
separated and routed to channels on the 100 GHz-spaced ITU grid [50]. For this specific
experiment, we use channels 28 (192.8 THz) and 34 (193.4 THz). The resulting photon
temporal wavefunctions are of a sinc-like shape with temporal FWHM of about 15 ps.

The detector stations (DS) each include one gated single photon detector (SPD) with a
detection efficiency of η ∼ 20% and a dark count probability of ∼ 4×10−5 per gate, as well as
a polarization analyzer (PA) which allows for measurements at any angle on the Bloch sphere.
FPGA-based controller software automatically controls the detectors and analyzers in order
to perform full polarization state tomography by performing 36 different measurements
1. Each of the 36 measurements is performed over 50 million detector gates, resulting in
several thousands of detected coincidences per measurement depending on the experimental
parameters. The density matrix is then reconstructed using a maximum likelihood estimation
algorithm [45].

A relevant value of the fixed DGD of 6.6 ps was chosen to introduce a non-negligible
entanglement reduction, corresponding to a concurrence of C = 0.66 in the absence of PDL.
A schematic of the experimental setup is shown in Fig. 4.1. The order of decoherence and
modal filtering, as well as the relative orientation of ~τ and ~γ, can be varied to cover all of
the possible configurations by adjusting the PMD and PDL emulators.

First, we experimentally confirm Eqs. (4.5, 4.6) in four specific cases. We introduce both a
PDL and a PMD emulator in the channel of photon A and vary the emulators’ order and
orientation. That is, by using polarization controllers, we can either align vectors ~τ and ~γ or
make them orthogonal. The left column of Fig. 4.2 shows the matrices expressed by Eqs. (4.5,
4.6). The right column presents experimentally measured matrices in the same four scenarios.
The two columns show striking similarities, thus verifying our theoretical calculations. Minor
variations due to experimental noise are slightly noticeable in the zero-valued elements of
the experimental matrices. The matrices in the top two rows, expressed in the basis |pAhB〉,
|pAh′B〉, |p′AhB〉, |p′Ah′B〉, correspond to the filtering-first scenario. Similarly, the bottom
two rows of matrices refer to the decoherence-first configuration and are expressed in the
basis |hApB〉, |hAp′B〉, |h′ApB〉, |h′Ap′B〉. The vectors τ and γ are aligned for (a,c,e,g) and
are orthogonal for (b,d,f,h). The four specific cases are color-coded in Fig. 2, and the same
color coding is adopted throughout the rest of the Section. The figure clearly shows that the
orientation and ordering of the decohering and filtering elements affect the final quantum
state as seen in the different density matrices.

1Full state tomography of two qubits is achievable from the statistics of only 9 measurement settings if two
detectors are used per photon [45]. However, for convenience we use a single detector per photon and take 36
total measurements, corresponding to all pairwise combinations of both eigenstates of each Pauli operator.
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Figure 4.2: Theoretical (left) and experimental (right) representation of Eqs.(4.5)-(4.6),
for the case where the eigenvectors of the PDL and PMD elements are aligned ((a)-(e) and
(c)-(g)) and orthogonal ((b)-(f) and (d)-(h)) in Stokes space. The matrices in the top two
rows ((a)-(b)-(e)-(f)) refer to the PDL-first scenario and are expressed in the basis |pAhB〉,
|pAh′B〉, |p′AhB〉, |p′Ah′B〉. The matrices in the bottom two rows ((c)-(g)-(d)-(h)) refer to the
PMD-first scenario and are expressed in the basis |hApB〉, |hAp′B〉, |h′ApB〉, |h′Ap′B〉. The
magnitude fo the PDL vector is γ = 0.46 for all matrices.

Next, we validate the theoretical expression Eq. (4.8), that is plotted in Fig. 4.3 with a
dashed line. The symbols show the experimental concurrence as a function of the amount
of PDL γ in the channel. The squares refer to the PDL-first configuration, and the circles
refer to the PMD-first scenario; empty and filled markers are used for the aligned and
orthogonal configuration, respectively. All the data points are in excellent agreement with
the theoretical curve. The plot confirms that the amount of entanglement is determined only
by the magnitude of PMD and PDL and, contrary to the states themselves, is independent
of either order or relative orientation.

Now we turn our attention to the ordering of the decohering and filtering elements, which
is important in fiber channels for various reasons. A particularly illustrative case is the
one with the decohering and filtering elements ~τ and ~γ being orthogonal in Stokes space.
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Figure 4.3: Concurrence as a function of the amount of PDL γ in the channel. The dashed
line represents the theoretical result Eq. (4.8). All of the markers are experimental points:
squares refer to the PDL-first scenario, while circles refer to the PMD-first scenario. In both
cases, the empty markers correspond to the case in which the ~γ is aligned with ~τ , and the
filled ones to the case in which they are orthogonal.

Indeed in this case, if photon A is expressed in the basis (hA, h
′
A), and photon B in the basis

(hB, h
′
B), the density matrix simplifies to

ρi =
1

4 cosh (γ)



eγ(1 +R(τ)) 0 0 1 +R(τ)

0 eξiγ(1−R(τ)) 1−R(τ) 0

0 1−R∗(τ) e−ξiγ (1−R(τ)) 0

1 +R∗(τ) 0 0 e−γ(1 +R(τ))


, (4.9)

where i = 1 and i = 2 correspond to the PMD-first and PDL-first scenarios, respectively,
and ξ1 = −ξ2 = 1. In this particularly illustrative situation, the two expressions can be
obtained from each other by simply permutating the elements ρ22 and ρ33. An experimental
verification of this formula is presented in Fig. 4.4. The left panel shows experimental density
matrices related to the two scenarios for γ = 0.41, 0.66, 0.77; the right panel shows a plot of
the experimentally obtained coincidence probabilities given by the diagonal elements of ρi
versus γ, with the four curves showing the corresponding theoretical expressions from Eq.
(4.9). Consistent with the theory, one can see that as PDL in the channel is increased, ρi,11
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Figure 4.4: Experimental results of the setup reproducing Eq. (4.9) for the PMD-first
(green) and PDL-first (cyan) cases when τ and γ are orthogonal in Stokes space. Left panel:
experimental density matrices expressed in the basis |hAhB〉, |hAh′B〉, |h′AhB〉, |h′Ah′B〉, for
γ = 0.41 (a, d), 0.66 (b, e), and 0.77 (c, f). Right panel: coincidence probabilities, measured
via the diagonal elements of the density matrix, as a function of γ. Comparison of ρi,11, ρi,22,
ρi,33, and ρi,44, where i = 1, 2 for the filtering-first and decoherence-first cases, respectively.
ρi,11 and ρi,44 are independent of the ordering of the two effects; however, ρ1,22 is equivalent
to ρ2,33, and vice-versa.

increases and ρi,44 decreases, both in the PDL-first case (cyan markers), and in the PMD-first
scenario (green markers). On the other hand, in the PDL-first case, ρi,22 decreases with
γ, and ρi,33 increases with it, whereas the opposite behaviour is observed in the PMD-first
scenario.

Our analysis shows that this simple difference between the two cases provides a powerful tool
to gain information about the channel in which the photon is propagating when vector ~τ
and ~γ are orthogonal in Stokes space. By simply measuring ρ22 and ρ33, that is by recording
only coincidence counts along (hA, h

′
B) and (h′A, hB) instead of reconstructing the whole

density matrix, one can in fact tell whether modal loss or decoherence comes first. Note that
ρ22 and ρ33 are indicative of the quantum bit error ratio (QBER), and nearly all quantum
protocols monitor QBER on a regular basis.



Chapter 4. Joint effect of PMD and PDL on polarization-entangled
photons 70

4.2 Relation to a general fiber-optic channel

In this section, we expand our treatment of a bi-photon quantum state, one photon of
which is distributed over an optical fiber, to include a more general channel model. In the
previous Section, the channel was represented by two lumped elements, the order and relative
orientation of which we have carefully examined. As thoroughly discussed in Chapter 2,
installed fibers are naturally more complex because the optical path is long and perturbations
that cause decoherence and mode filtering in the form of PMD and PDL, respectively, are
local in nature, numerous, and occur throughout the length of the route (see also [51–56]).

Since PMD and PDL originate from spatially distributed sources, their effect is not simply
that of two lumped sources; instead, they add in a rather complex fashion. However,
their joint effect on a sufficiently narrow-band signal can be described by the following
frequency-dependent transfer matrix [34]:

T(ω) = exp

(
− i

2
ωτ̃ · ~σ

)
T0, (4.10)

where T0 is the transfer matrix at ω = 0 and can be assumed to be in the diagonal form
of Eq. (4.2) with no loss of generality. The symbol τ̃ denotes a three-dimensional vector.
When τ̃ is real-valued, the operator T(ω) is simply the product of a PMD operator and a
PDL operator, whose effect on the photon pair we studied in depth. On the other hand,
by letting the components of τ̃ be complex-valued, Eq. (4.10) describes the most general
polarization channel instantiation. In this case, the imaginary component of τ̃ is responsible
for the presence of frequency-dependent PDL, which has non-trivial implications in terms of
waveform distortion [34].

If photon A of the polarization-entangled state in Eq. (4.1) propagates in a fiber link
described by Eq. (4.10), and photon B does not suffer any propagation effects, the received
two-photon state can be expressed as

|ψout〉 = η

∫ ∫
dωAdωB f̃(ωA, ωB)|ωA, ωB〉 ⊗

|T(ωA)hA, hB〉+ |T(ωA)h′A, h
′
B〉√

2
,

where the coefficient η ensures that the output state is correctly normalized after post-
selection. The density matrix ρ characterizing the polarization properties of the received
state is then obtained by tracing the full density matrix |ψout〉〈ψout| over the frequency
modes:

ρij =
η2

2

∫ ∫
dωAdωB|f(ωA, ωB)|2Tni,mi(ωA)T ∗nj ,mj (ωA), (4.11)

where Tni,mj denotes the element (ni,mj) of T, with n1 = n2 = 1, n3 = n4 = 2,m1 = m3 = 1,
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and m2 = m4 = 2, whose computation is more convenient using the following expansion:

exp

(
i

2
ωτ̃ · ~σ

)
= cos

(
ω
√
τ̃ · τ̃
2

)
I− i τ̃ · ~σ

τ̃
sin

(
ω
√
τ̃ · τ̃
2

)
. (4.12)

Since the simple analytical two-element model of Eqs. (4.5, 4.6) must be a particular case
of the general channel description of Eq. (4.11), we begin by finding the constraints that
reduce the latter to the former. Clearly, a real-valued vector τ̃ , such that τ̃ = τ , reduces the
general channel to the PDL-first configuration. On the other hand, the constraints for the
PMD-first configuration are a bit more involved. This configuration is characterized by the
transfer matrix

T(ω) = T0 exp

(
− i

2
ω~τ · ~σ

)
= exp

(
− i

2
ωτ̃ · ~σ

)
T0,

2 (4.13)

where the second equality implies the identity τ̃ · ~σ = T0~τ · ~σT−1
0 , which yields

τ̃1 = τ1 (4.14)

τ̃2 = cosh(γ)τ2 − i sinh(γ)τ3 (4.15)

τ̃3 = cosh(γ)τ3 + i sinh(γ)τ2. (4.16)

Inspection of Eqs. (4.14–4.16) shows that the real and imaginary components of the complex
vector τ̃ , which we denote by τ̃R and τ̃I , respectively (so that τ̃ = τ̃R + iτ̃I), are orthogonal
to each other. This constitutes the most relevant feature of the manifold of complex vectors
τ̃ spanned by the PMD-first configuration.

Another, less restrictive, implication of Eqs. (4.14–4.16) is that the square length of the real
component of τ̃ exceeds that of its imaginary component by the square length of ~τ , namely
by the square differential group delay of the corresponding PDL-free link (|τ̃R|2− |τ̃I |2 = τ2).
Both of these relations emerge on average in all fiber-optic links [34], including space-division
multiplexed transmission links based on multi-core and multi-mode fibers [57], where the
complex vector τ̃ is a random quantity. In particular, denoting by E ensemble averaging,
the analogue of the first relation is E[τ̃R · τ̃I ] = 0, while the analogue of the second is
E[|τ̃R|2]− E[|τ̃I |2] = E[τ2], where E[τ2] is intended to be the mean-square DGD that would
accumulate in the link if PDL were absent. The latter relation does not ensure that the
inequality |τ̃R| ≥ |τ̃I | is always fulfilled, but it does imply that its violation occurs with low

2Notice that the T0 operator in the central and right-most hand side of the equation have to be the same
to ensure that the the equation is still valid for ω = 0.
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Figure 4.5: Concurrence as a function of the angle formed by the real and imaginary parts
of the complex-valued vector τ̃ = τ̃R + iτ̃I . The larger black dots refer to the PMD-first
configuration, where the vector τ̃ is given by Eqs. (4.14–4.16), while the smaller dots were
obtained by randomly varying the orientation of the real and imaginary parts of the same
vector.

probability. This primarily occurs for unrealistically large PDL values [34], which makes it
of little relevance. Finally, it is worth noting that even if |τ̃R| ≥ |τI |, Eqs. (4.14–4.16) do not
ensure that any arbitrary value of |τ̃R| and |τ̃I | can be matched. Indeed, for a given instance
of |τ̃R| and |τ̃I |, the values of τ1, τ2, and τ3 must satisfy the relation

τ2
2 + τ2

3

τ2
1 + τ2

2 + τ2
3

=
1

(|τ̃R|2/|τ̃I |2 − 1) sinh2(γ)
≤ 1, (4.17)

where τ2
1 + τ2

2 + τ2
3 = τ2 = |τ̃R|2 − |τ̃I |2, and where γ is dictated by T0. Clearly, specific

combinations of values of |τ̃R|, |τ̃I |, and γ can violate the inequality in Eq. (4.17).

As an aside, this limitation disappears in a lumped element channel with an additional PDL
element, so that the three-element channel is T1 exp(iω~τ · ~σ/2)T2 = exp(iωτ̃ · ~σ/2)T1T2,
with T1T2 = T0. Here, the coefficient γ1 of T1 provides an additional degree of freedom in
Eq. (4.17), which decouples the problem of matching |τ̃R| and |τ̃I | from that of matching T0.

In what follows, we compare the simple two-element channel model we proposed in Sec.
4.1 to the most general polarization channel. We argue that while the latter precisely
reproduces the real channel, the former captures its main characteristics and accurately



Chapter 4. Joint effect of PMD and PDL on polarization-entangled
photons 73

describes the way in which a general polarization channel affects the degree of entanglement
of a photon-pair over a pertinent range of the channel parameters. To this end, we investigate
the effect of the relative orientation of τ̃R and τ̃I on the degree of entanglement of the
received two-photon state. For a meaningful comparison, we start from the decoherence-first
configuration of Eq. (4.13), with some fixed value of γ and τ (as discussed in Sect. 4.1, the
orientation of the PMD vector ~τ is immaterial in this context, since it doesn’t affect the
residual concurrence of the received two-photon state). We then evaluate the corresponding
complex vector τ̃ according to Eqs. (4.14–4.16) and randomly vary the orientation of its real
and imaginary components while keeping their lengths fixed. For each combination of τ̃R
and τ̃I we evaluate the reduced density matrix ρ of the propagated two-photon state and
extract the corresponding concurrence C.

The results are shown in Fig. 4.5, where concurrence is plotted as a function of the angle
formed by the real and imaginary components of τ̃ . The data points in the left panel were
obtained for the displayed values of the DGD τ and for γ = 0.23, which corresponds to a
PDL value in decibel 3 of PDLdB = 2 dB. The data points in the right panel were obtained
for values of γ corresponding to the displayed values of PDLdB and for a DGD of 3 ps. In
this example, we assume a super-Gaussian profile of third order for both the pump power
spectrum |Ẽp(ω)|2 and the filters’ transmittivities |HA,B(ω)|2. For the former, we use a 3-dB
bandwidth of 50 GHz, while for the latter, we use a 3-dB bandwidth of 100 GHz. The figure
shows that varying the orientation of τ̃R and τ̃I produces some scattering of the measured
concurrence below the PMD-first configuration value, which is shown with the bigger dot.
Extensive simulations show that this scattering is mostly affected by the magnitude of PDL,
but it remains almost negligible for PDL and DGD values of practical relevance. Therefore,
the PMD-first case serves as a reliable tool for assessing entanglement degradation over a
general channel.

As a final remark, we note the symmetry between the PMD-first and PDL-first scenarios.
Indeed, Eq. (4.10) could be easily rearranged in the following form:

T(ω) = exp

(
− i

2
ωτ̃ · ~σ

)
T0 = T0 exp

(
− i

2
ωτ̃ ′ · ~σ

)
, (4.18)

where the complex-valued vector τ̃ ′ is defined through the relation τ̃ ′ ·~σ = T−1
0 (τ̃ ′ ·~σ)T 0. For

the general channel, the constraints on the complex-valued vector τ̃ will reverse between the
PDL-first and PMD-first configurations. Correspondingly, our modelling results then reflect
the PDL-first scenario. Hence, the two configurations are equally capable of emulating a

3We remind the reader that, as discussed in Chapter II, the quantity PDLdB is defined as the power ratio,
in decibel, between the least and most attenuated polarization states, which yields PDLdB = 20 log10(e) γ.
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general fiber-optic channel.

4.3 Infer the relative orientation of PMD and PDL

In this section we describe a procedure that can be of great relevance in an experimental
setup to study the effect of PMD and PDL on entangled photons. We have shown in the last
few sections how an important parameter in certain configurations is the relative orientation
of the PMD and PDL vectors. Here we suggest a way to keep track of this figure from
quantities that are basis-independent and that can be easily extracted from the polarization
density matrix of the received two-photon state.

Consider once again one photon of a polarization-entagled pair propagating through a channel
with PMD and PDL. We focus on the PDL-first case for the moment. Keeping in mind that
the mutual information S(A : B) is related to the von Neumann entropies of the complete
and reduced density matrices as follows

S(A : B) = S(A) + S(B)− S(AB), (4.19)

we start off by obtaining some analytical expressions for the extreme cases – i.e. PDL ad
PMD vectors aligned and orthogonal on the Bloch sphere – that are useful in what follows.

4.3.1 PDL and PMD are aligned

If the two elements are aligned, the output state is described by the density matrix in
Eq. (4.46), whose eigenvalues are equal to

λ1,2 =
1±

√
1− 1−R2(τ)

cosh2 (γ)

2
. (4.20)

The reduced density matrices for photon A and B are both equal to

ρA = ρB =
1

2 cosh (γ)

eγ 0

0 e−γ

 , (4.21)

which doesn’t depend on the amount of PMD in the channel. The quantum mutual
information in Eq. (4.19) can then be analytically expressed as

S(A : B) = 2 + 2 log2 [cosh (γ)]− 2γ log2 (e) tanh (γ)−
2∑
i=1

λi log2 (λi). (4.22)
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4.3.2 PDL and PMD are orthogonal

If the two elements are orthogonal on the Bloch sphere, then the output state is described
by the density matrix in Eq. (4.9), with i = 1. The eigenvalues are given by

κ1,2 =
1± |R(τ)|

2
,

which do not depend on the amount of PDL in the channel and are the same as in the case
of PMD only. The reduced density matrices become

ρA =
1

2

1 +R(τ) tanh (γ) 0

0 1−R(τ) tanh (γ)


and

ρB =
1

2 cosh (γ)

eγ 0

0 e−γ

 , (4.23)

respectively. The partial density matrix ρB is thus the same as in the case in which PMD
and PDL are aligned; this result is actually more general, and does not apply to these two
cases only: regardless of the relative alignment of the PMD and PDL vectors, ρB will always
be given by Eq. (4.23). The reduced density matrix corresponding to subsystem A, on the
other hand, is orientation-dependent.

The von Neumann entropy of the reduced density matrices can thus be written as

S(ρA) = 1+
1

2
R(τ) tanh (γ) log2

(
1−R(τ) tanh (γ)

1 +R(τ) tanh (γ)

)
− 1

2
log2 (1−R2(τ) tanh2 (γ)), (4.24)

and
S(ρB) = 1 + log2 [cosh (γ)]− γ log2 (e) tanh (γ). (4.25)

The von Neumann entropy of the two-photon state is given by

S(ρ) = −κB log2 (κB)− κB log2 (κB) (4.26)

which does not depend on PDL.

4.3.3 General case

The relations obtained in the previous sections allow one to gain resourceful information
about the relative orientation of the PDL and PMD vectors, based on quantities that can
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Figure 4.6: Theoretical plots for the von Neumann entropy of the complete density matrix
ρAB and the reduced density matrices ρA and ρB as functions of the amount of PDL in the
channel γ. In (a) we show the case in which the PMD and PDL vectors are aligned on the
Bloch sphere, while in (b) the case in which they are orthogonal is presented.

be evaluated starting from the density matrix describing the polarization of the photons.
The idea is to make use of quantities that depend on the relative orientation of the PMD
and PDL vectors - and, ideally, on nothing else. Concurrence is not a good candidate, since
it only depends on the amount of PMD and PDL in the channel, and not on their relative
orientation. The von Neumann entropies of the reduced density matrices ρA and ρB, on the
other hand, seem to serve well our purpose. By inspecting Fig. 4.6 in which the extreme
cases of PMD and PDL vectors being aligned (a) and orthogonal (b) are presented, one
can notice how in the case of perfect alignment they have the same value, regardless of the
amount of PDL in the channel. The difference between the two quantities, on the other
hand, increases with γ when the PDL and PMD vectors are orthogonal on the Bloch sphere,
as evident from Fig. 4.6(b). In all the other situations, the difference between S(ρA) and
S(ρB) will fall between the two cases we have just shown, and the quantity S(ρA)− S(ρB)

can thus be used to infer the relative angle between the PDL and PMD vectors, as we show
later in this section. Also notice that the von Neumann entropy of ρB does not depend on
the PMD in the channel, while that of ρA does. Since the divergence of the latter curve from
the former obviously arises from the presence of PMD in the channel, the bigger the DGD,



Chapter 4. Joint effect of PMD and PDL on polarization-entangled
photons 77

the easier the discrimination between the curves.

A great advantage of this approach arises from the fact that all the quantities that one needs
to measure do not depend on the basis in which the measurement takes place (von Neumann
entropy doesn’t vary under local rotations). Another intriguing feature of this technique is
that if we are only interested in checking whether the PDL and PMD vectors are aligned or
not, it will suffice to measure the von Neumann entropies of the reduced density matrices
ρA and ρB and make sure that these two quantities are equal, since this only occurs in the
case of perfect alignment. This can be done even if one does not know the exact amount of
PDL in the channel, which makes it particularly useful in practical situations. Moreover,
if the user does not know the amount of PDL in the channel, he can actually obtain it by
measuring the von Neumann entropy of ρB and using Eq.(4.25), by exploiting the fact that
S(ρB) only depends on the PDL in the channel, and not on its relative orientation with the
PMD vector. Actually, one only needs to evaluate either one of the two eigenvalues of ρB,
since from (4.23) it follows

γ = ±1

2
ln

(
1

µi
− 1

)
, (4.27)

where µ1,2 are the eignevalues of ρB sorted in ascending order.

If one is interested in learning the angle between the PDL and PMD vectors, they can act as
follows. Starting from the complete density matrix of the PDL-firt scenario (Eq. (4.5)) and
tracing out the polarization of photon B we get:

ρA =
1

2 cosh (γ)

eγ |α|2 + e−γ |β|2 −2R∗(τ)α∗β∗

−2R(τ)αβ eγ |β|2 + e−γ |α|2

 (4.28)

where |hA〉 = (1 0)T , |h′A〉 = (0 1)T , |pA〉 = (α β)T , |p′A〉 = (−β∗ α∗)T , so that
〈pA|hA〉 = α∗, 〈pA|h′A〉 = β∗, 〈p′A|hA〉 = −β, 〈p′A|h′A〉 = α. The absolute values of α and β
are obviously related through |α|2 + |β|2 = 1. The eigenvalues of ρA read

µ1,2 =
1

2
± 1

2

√
1− 1

cosh2 γ
− (1− |R(τ)|2)|α|2(1− |α|2) tanh2 γ, (4.29)

or

µ1,2 =
1

2
± 1

2

√
1− 1

cosh2 γ
− (1− |R(τ)|2) sin2 (2θ) tanh2 γ, (4.30)

where we have introduced the angle θ between the PMD and PDL vectors such that
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| 〈hA|pA〉 |2 = |α|2 = cos2(θ). This leads to an expression for the relative angle in terms of
either one of the eigenvalues of ρA:

θ =
1

2
arcsin


√√√√1− 1

cosh2 γ
− 4

(
µ− 1

2

)2
(1− |R(τ)|2) tanh2 γ

. (4.31)

To summarize our results, we suggest the following algorithm to evaluate the relative angle
between the PDL and PMD vectors starting from the density matrix of the two-photon state:

1. Measure the density matrix of the two-photon state;

2. Trace over photon A to evaluate ρB and its eigenvalues/von Neumann entropy;

3. Evaluate γ using Eq.(4.27);

4. Trace over photon B to evaluate ρA and its eigenvalues/von Neumann entropy;

5. If one is only interested in knowing if the PMD and PDL vectors are aligned, they just
need to check if S(ρA) = S(ρB), and if this is not the case, adjust the polarization
controller accordingly;

6. If one is interested in evaluating the exact angle between the PDL and PMD vectors,
they can use Eq.(4.31).

4.4 PDL in both arms

We now expand our our model to include a second PDL element, which affects the propagation
of photon B. In this scenario, the mathematical description becomes quite more involved, and
leads to some interesting features. In particular, the order of the PMD and PDL elements in
the path of photon A becomes crucial, since it has tangible consequences that are discussed
in the following.

4.4.1 PDL-first in the path of photon A

We start by describing the case in which the PDL element precedes the PMD element in
the path of photon A. Since we now have a second PDL element (which this time affects
the propagation of photon B) we need to slightly change the notation for the PDL vectors,
which are now denoted as ~γA and ~γB.

In this scenario, it is useful to express the state in Eq. (3.10) in the basis of the PDL
eigenstates {|ui〉 , |u′i〉}, where i = A,B, similarly to what we did in Chapter III expanding
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the state in terms of the PSP’s to describe the effect of PMD in the channel. This leads to

|ψ〉 = |f̃(ωA, ωB)〉 ⊗
[
η1√

2
(|uA, uB〉+ eiα1 |u′A, u′B〉) +

η2√
2

(|uA, u′B〉 − eiα2 |u′A, uB〉)
]
,

(4.32)
where

η1 = 〈uA|hA〉 〈uB|hB〉+ eiα 〈uA|vA〉 〈uB|vB〉

η2 = 〈uA|hA〉 〈u′B|hB〉+ eiα 〈uA|vA〉 〈u′B|vB〉

and αi is again defined through the relation ηi = |ηi|ei(α−αi)/2.

In this basis, the effect of PDL is that of pure gain (or attenuation, depending on the
polarization state), so that after experiencing PDL in both arms, the polarization-dependent
part of the state can be written as:

|ψPDL〉 =
η1√

2
e
γA+γB

2 |uA, uB〉+
η2√

2
e
γA−γB

2 |uA, u′B〉+

− η2e
iα2

√
2
e−

γA−γB
2 |u′A, uB〉+

η1e
iα1

√
2
e−

γA+γB
2 |u′A, u′B〉 .

(4.33)

We now need to account for the effect of PMD in arm A. To this end, it is useful to express
the polarization of photon A in the PSP basis {|sA〉 , |s′B〉}. For ease of notation we introduce
the parameters ξ1 = 〈sA|uA〉 and ξ2 = 〈s′A|uA〉 so that the state becomes:

|ψPDL〉 =
e
γA+γB

2

√
2

ei
α
2

(
|η1|ξ1e

−iα1
2 + |η2|ξ∗2e−γAei

α2
2

)
|sA, uB〉+

+
e
γA−γB

2

√
2

ei
α
2

(
|η2|ξ1e

−iα2
2 − |η1|ξ∗2e−γAei

α1
2

)
|sA, u′B〉+

+
e−

γA−γB
2

√
2

ei
α
2

(
|η1|ξ2e

γAe−i
α1
2 − |η2|ξ∗1ei

α2
2

)
|s′A, uB〉+

+
e−

γA+γB
2

√
2

ei
α
2

(
|η2|ξ2e

γAe−i
α2
2 + |η1|ξ∗1ei

α1
2

)
|s′A, u′B〉 .

(4.34)

Notice that ξ∗1 = 〈s′A|u′A〉 and ξ∗2 = −〈sA|u′A〉, and that |ξ1|2 + |ξ2|2 = 1. To further simplify
the notation, we just express the state as

|ψPDL〉 = c1 |sA, uB〉+ c2 |sA, u′B〉+ c3 |s′A, uB〉+ c4 |s′A, u′B〉 , (4.35)

with

c1 =
e
γA+γB

2

√
2

ei
α
2

(
|η1|ξ1e

−iα1
2 + |η2|ξ∗2e−γAei

α2
2

)
,
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c2 =
e
γA−γB

2

√
2

ei
α
2

(
|η2|ξ1e

−iα2
2 − |η1|ξ∗2e−γAei

α1
2

)
,

c3 =
e−

γA−γB
2

√
2

ei
α
2

(
|η1|ξ2e

γAe−i
α1
2 − |η2|ξ∗1ei

α2
2

)
,

c4 =
e−

γA+γB
2

√
2

ei
α
2

(
|η2|ξ2e

γAe−i
α2
2 + |η1|ξ∗1ei

α1
2

)
.

In this basis, the effect of PMD in arm A can be easily included, which yields the output
state:

|ψOUT〉 =c1 |f(tA −
τA
2
, tB)〉 ⊗ |sA, uB〉+ c2 |f(tA −

τA
2
, tB)〉 ⊗ |sA, u′B〉+

+ c3 |f(tA +
τA
2
, tB)〉 ⊗ |s′A, uB〉+ c4 |f(tA +

τA
2
, tB)〉 ⊗ |s′A, u′B〉 .

(4.36)

To account for the integration time of the photon detectors, the time modes need to be
traced out of the full density matrix |ψOUT 〉 〈ψOUT |, that is

ρ =

∫ ∫
dt′Adt

′
B 〈t′A, t′B|ψOUT 〉 〈ψOUT |t′A, t′B〉

=

∫ ∫
dω′Adω

′
B 〈ω′A, ω′B|ψOUT 〉 〈ψOUT |ω′A, ω′B〉 .

This calculation leads to the following density matrix (after normalization):

ρ =
ρ′

Tr(ρ′)
=

1

Tr(ρ′)



|c1|2 c1c
∗
2 c1c

∗
3R
†(τ) c1c

∗
4R
†(τ)

c∗1c2 |c2|2 c2c
∗
3R
†(τ) c2c

∗
4R
†(τ)

c∗1c3R(τ) c∗2c3R(τ) |c3|2 c3c
∗
4

c∗1c4R(τ) c∗2c4R(τ) c∗3c4 |c4|2


(4.37)

where

Tr(ρ′) = |c1|2 + |c2|2 + |c3|2 + |c4|2 = |η1|2 cosh (γA + γB) + |η2|2 cosh (γA − γB), (4.38)

and the overlap integral R(τ) was defined in Eq. (4.4).

Setting the parameters in the density matrix in Eq. (4.37) to certain values allows one to
analyze specific configurations. First, we notice that when there is no PDL in the path of
photon B and in channel A the PMD vector is aligned with the PDL vector (namely |η2| =
0, |ξ2| = 0 and γB = 0, so that c1 = exp (γA/2)/

√
2, c2 = c3 = 0, c4 = exp (−γA/2)/

√
2), as

expected we obtain the same density matrix as the one in Eq. (4.7).
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4.4.2 PMD-first in the path of photon A

In this second configuration, the PMD element precedes the PDL element in the channel of
photon A. We start by expressing both photons of the input state in the basis of the PSP’s
{sA, s′A}, so that it becomes:

|ψ〉 = |f̃(ωA, ωB)〉 ⊗
[
η1√

2
(|sA, sA〉+ eiα1 |s′A, s′A〉) +

η2√
2

(|sA, s′A〉 − eiα2 |s′A, sA〉)
]
, (4.39)

with η1,2 defined in an analogous way as the PDL-first scenario. After photon A experiences
PMD, the state becomes:

|ψPMD〉 =
η1√

2
|f(tA −

τA
2
, tB)〉 ⊗ |sA, sA〉+

η2√
2
|f(tA −

τA
2
, tB)〉 ⊗ |sA, s′A〉+

− η2e
iα2

√
2
|f(tA +

τA
2
, tB)〉 ⊗ |s′A, sA〉+

η1e
iα1

√
2
|f(tA +

τA
2
, tB)〉 ⊗ |s′A, s′A〉 .

(4.40)

To account for the effect of the two PDL elements (one per photon), it is useful to express
the state in the PDL eigenstates basis {uA, u′A}, {uB, u′B}, which leads to

|ψPMD〉 =

=

[
ε1√

2
(η1µ1 − η2µ∗2) |f(tA −

τA
2
, tB)〉+

ε∗2√
2
eiα (η∗2µ1 + η∗1µ

∗
2) |f(tA +

τA
2
, tB)〉

]
⊗ |uA, uB〉

+

[
ε1√

2
(η1µ2 + η2µ

∗
1) |f(tA −

τA
2
, tB)〉+

ε∗2√
2
eiα (η∗2µ2 − η∗1µ∗1) |f(tA +

τA
2
, tB)〉

]
⊗ |uA, u′B〉

+

[
ε2√

2
(η1µ1 − η2µ∗2) |f(tA −

τA
2
, tB)〉 − ε∗1√

2
eiα (η∗2µ1 + η∗1µ

∗
2) |f(tA +

τA
2
, tB)〉

]
⊗ |u′A, uB〉

+

[
ε2√

2
(η1µ2 + η2µ

∗
1) |f(tA −

τA
2
, tB)〉 − ε∗1√

2
eiα (η∗2µ2 − η∗1µ∗1) |f(tA +

τA
2
, tB)〉

]
⊗ |u′A, u′B〉 ,

(4.41)

where, in order to keep track of the relative orientations of the PDL and PMD vectors, we
have introduced the parameters ε1,2 and µ1,2, defined as follows:

ε1 = 〈uA|sA〉 , ε2 = 〈u′A|sA〉

µ1 = 〈uB|sA〉 , µ2 = 〈u′B|sA〉 . (4.42)

To write down the latter expression in a more concise fashion, we can introduce the quantities
k1 = (η1µ1 − η2µ

∗
2) and k2 = (η∗2µ1 + η∗1µ

∗
2), so that after passing through the PDL elements,
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the state becomes:

|ψOUT〉 =

= e
γA+γB

2

[
ε1√

2
k1 |f(tA −

τA
2
, tB)〉+

ε∗2√
2
eiαk2 |f(tA +

τA
2
, tB)〉

]
⊗ |uA, uB〉

+ e
γA−γB

2

[
ε1√

2
k∗2 |f(tA −

τA
2
, tB)〉 − ε∗2√

2
eiαk∗1 |f(tA +

τA
2
, tB)〉

]
⊗ |uA, u′B〉

+ e−
γA−γB

2

[
ε2√

2
k1 |f(tA −

τA
2
, tB)〉 − ε∗1√

2
eiαk2 |f(tA +

τA
2
, tB)〉

]
⊗ |u′A, uB〉

+ e−
γA+γB

2

[
ε2√

2
k∗2 |f(tA −

τA
2
, tB)〉+

ε∗1√
2
eiαk∗1 |f(tA +

τA
2
, tB)〉

]
⊗ |u′A, u′B〉 .

(4.43)

Tracing out the time/frequency dependent part of the state, we obtain the reduced density
matrix:

ρ1,1 =
eγA+γB

2Tr(ρ)
{|ε1|2|k1|2 + |ε2|2|k2|2 + 2Re[ε1k1ε2k

∗
2e
−iαR†(τA)]},

ρ2,2 =
e(γA−γB)

2Tr(ρ)
(|ε1|2|k2|2 + |ε2|2|k1|2 − 2Re[ε1k1ε2k

∗
2e
−iαR†(τA)]),

ρ3,3 =
e−(γA−γB)

2Tr(ρ)
(|ε2|2|k1|2 + |ε1|2|k2|2 − 2Re[ε1k1ε2k

∗
2e
−iαR†(τA)])

ρ4,4 =
e−(γA+γB)

2Tr(ρ)
(|ε2|2|k2|2 + |ε1|2|k1|2 + 2Re[ε1k1ε2k

∗
2e
−iαR†(τA)]),

ρ1,2 = ρ†2,1 =
eγA

2Tr(ρ)
(|ε1|2k1k2 + ε∗1ε

∗
2k

2
2e
iαR(τA)− ε1ε2k

2
1e
−iαR†(τA)− |ε2|2k1k2),

ρ1,3 = ρ†3,1 =
eγB

2Tr(ρ)
(ε1ε

∗
2|k1|2 + (ε∗2)2k∗1k2e

iαR(τA)− ε2
1k1k

∗
2e
−iαR†(τA)− ε1ε

∗
2|k2|2),

ρ1,4 = ρ†4,1 =
1

2Tr(ρ)
(2ε1ε

∗
2k1k2 + (ε∗2)2k2

2e
iαR(τA) + ε2

1k
2
1e
−iαR†(τA)),

ρ3,2 = ρ†2,3 =
1

2Tr(ρ)
(2ε∗1ε2k1k2 − (ε∗1)2k2

2e
iαR(τA)− ε2

2k
2
1e
−iαR†(τA)),

ρ2,4 = ρ†4,2 =
e−γB

2Tr(ρ)
(ε1ε

∗
2|k2|2 − (ε∗2)2k∗1k2e

iαR(τA) + ε2
1k1k

∗
2e
−iαR†(τA)− ε1ε

∗
2|k1|2),

ρ3,4 = ρ†4,3 =
e−γA

2Tr(ρ)
(|ε2|2k1k2 − ε∗1ε∗2k2

2e
iαR(τA) + ε1ε2k

2
1e
−iαR†(τA)− |ε1|2k1k2),

(4.44)

with

Tr(ρ) =
[
|ε1|2|k1|2 + |ε2|2|k2|2 + 2Re(ε1ε2k1k

∗
2e
−iαR†(τA))

]
cosh (γA + γB)

+
[
|ε1|2|k2|2 + |ε2|2|k1|2 − 2Re(ε1ε2k1k

∗
2e
−iαR†(τA))

]
cosh (γA − γB).

(4.45)
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Again, setting γB = 0 allows one to recover Eq. (4.7).

4.5 Nonlocal compensation and channel asymmetry

Equations (4.37) and (4.44) describe the received two-photon state in the PDL-first and
PMD-first scenarios, for arbitrary amounts of PMD and PDL, and for every possible relative
orientation between the vectors characterizing the two effects. Setting the parameters to
specific values allows one to recover particular configurations that might be more insightful
than the one described by the general density matrices.

An interesting feature is the possibility of performing nonlocal PDL compensation. First,
suppose that Alice’s PDL and PMD vectors are aligned, which implies |η2| = 0 in Eq. (4.37)
and |ε2| = 0 in Eq. (4.44). If Bob is able to control the PDL element on his side, such that
he can make sure that the corresponding PDL vector is opposite with Alice’s and is equal in
magnitude, such that γB = −γA (and also, |ξ2| = 0, so that c1 = c4 = 1/

√
2, c2 = c3 = 0 in

Eq. (4.37), and |µ2| = 0 in Eq. (4.44)) the density matrices in Eq. (4.37) and (4.44) both
reduce to

ρ =



1
2 0 0 R†(τ)

2

0 0 0 0

0 0 0 0

R(τ)
2 0 0 1

2


. (4.46)

This is the density matrix describing the received state in the case in which only PMD is
present in the path of photon A (as was shown in Eq. (3.36)), meaning that the PDL on
Bob’s side has perfectly compensated for the PDL on Alice’s side, and the overall effect
reduces to that of only PMD being in the channel.

When the PDL and PMD vectors on Alice’s side are not aligned, the effectiveness of this
nonlocal compensation scheme is different for the PDL-first and PMD-first configurations.
Starting from the former case the received two-photon state is described by the density
matrix

ρ =



|ξ1|2
2 − ξ1ξ2

2
ξ1ξ2

2 R†(τ)
ξ21
2 R
†(τ)

− ξ1ξ2
2

|ξ2|2
2 − ξ22

2 R
†(τ) − ξ1ξ2

2 R†(τ)

ξ1ξ2
2 R(τ) − ξ22

2 R(τ) |ξ2|2
2

ξ1ξ2
2

ξ21
2 R(τ) − ξ1ξ2

2 R(τ) ξ1ξ2
2

|ξ1|2
2


. (4.47)

We remind the reader that |ξ1| quantifies the relative alignment between the PDL and PMD
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vectors on Alice’s side. The density matrix was obtained assuming that Bob could perform
the nonlocal compesation scheme by controlling the PDL element on his side; specifically,
once again he needs to make sure that his element is counter-aligned with respect to Alice’s
PDL element and has the same magnitude, which is equivalent to setting γB = −γA and
|η1| = 1 in Eq. (4.37).

The density matrix in this form is not particularly meaningful, but if we now apply a suitable
rotation to photon B in the form

V =
1√
2

1 0

0 1

⊗
ξ1 −ξ2

ξ2 ξ1

 =
1√
2



ξ1 −ξ2 0 0

ξ2 ξ1 0 0

0 0 ξ1 −ξ2

0 0 ξ2 ξ1


, (4.48)

it is very easy to see that the the new density matrix

ρnew = V †ρV (4.49)

coincides with the one in Eq. (4.46), meaning that regardless of the orientation of the PMD
and PDL elements on arm A, perfect nonlocal compensation of PDL is always achievable.

To experimentally test this result, we reproduced in the laboratory two configurations: in
the first one the PMD and PDL vectors in channel A are aligned, while in the second one
they are orthogonal on the Block sphere. In both cases, Bob is able to apply an amount
of PDL on photon B equal to the one on Alice’s side. The experimental results, obtained
using the setup schematically depicted in Fig. 4.1, are presented in Fig. 4.7. A fixed PMD
element follows the PDL one in channel A and is responsible for the decreased concurrence
of C = 0.66 for γA = 0. Color-coded filled and empty symbols correspond to aligned and
orthogonal ~τ and ~γA, respectively. The dashed curve is a plot of Eq. (4.8). The upper set of
data points demonstrates entanglement restoration when an extra filter is added to channel
B. The solid curve shows the restored concurrence value, also given by the same equation
with γA = 0, that is, the value that would be observed if only the decohering element were
present in the optical path of photon A [39]. The data points show that full compensation
can be achieved for all filtering levels regardless of the relative orientation of τ and γA.

The situation changes drastically when the in the PMD-first configuration in channel A.
Clearly, when τ and γA are aligned, full compensation is always possible, as shown in Fig. 4.8.a:
both the theoretical curve and the experimental markers show that the concurrence of the
state can be restored to the level that it has when only PMD is present in channel A.
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Figure 4.7: Concurrence versus the filtering magnitude γA in the PDL-first scenario. Empty
and filled markers correspond to the cases in which the vectors ~γA and ~τ are aligned and
orthogonal, respectively. The upper set of data points refer to the case in which nonlocal
compensation of modal filtering is implemented by passing photon B through and additional
filtering element. The dashed curve is the analytical result Eq. (4.8) and the solid curve
shows the restored concurrence level, also given by the same equation with γ = 0.

When ~τ and ~γA are not aligned, on the other hand, full compensation is never achievable,
because it’s impossible to recover the density matrix in Eq. (4.46). For example, if we consider
the scenario in which ~τ and ~γA are orthogonal on the Bloch sphere (which represents the
worst-case scenario) the density matrix of the received state when nonlocal PDL compensation
is performed with |~γB| = |~γA| is given by

ρ =
1

2Tr(ρ′)



(1 +R(τ)) 0 0 (1 +R(τ))

0 e2γA (1−R(τ)) (1−R(τ)) 0

0 (1−R(τA)) e−2γA (1−R(τ)) 0

(1 +R(τ)) 0 0 (1 +R(τ))


, (4.50)

with
Tr(ρ′) = 1 +R(τA) + (1−R(τA)) cosh (2γA).

The concurrence of this state is lower than the one that one would have with only PMD in
the channel.

As discussed in [58], it turns out that setting |~γB| = |~γA| is not the best one can do to
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Figure 4.8: Concurrence versus the filtering magnitude γ in the PMD-first scenario. Panel
(a) corresponds to the case in which the vectors ~γA and ~τ are aligned, while (b) refers to
the orthogonal case. The upper sets of data points refer to the case in which nonlocal
compensation of modal filtering is implemented by passing photon B through and additional
filtering element. The dashed curve is the analytical result Eq. (4.8); the solid curve in (a)
shows the fully restored concurrence level, while in (b) the symbols denote the values of γB
used to compensate: dark green . refers to |γB| = |γA|, bright green / refers to γB = γopt

B .

optimize the recovery of concurrence. In fact an optimum compensation value γopt
B exists,

which allows one to obtain a higher final concurrence. This optimum value depends on the
PMD in the channel and on γA, and is given by [58]

γopt
B = tanh−1 (|R(τ)| tanh (γA)). (4.51)

Nonlocal compensation in the PMD-first orthogonal case is presented in Fig. 3.3, for the case
in which compensation is performed by introducing an amount of PDL |~γB| = |~γA| (dark
green . markers) and for the case in which γB = γopt

B (bright green / markers).

The knowledge of whether filtering is concentrated toward the beginning or the end of
a long optical route is thus very important for what is called Procrustean entanglement
distillation [59–61], as we have just illustrated above with our two-element model. The greater
effectiveness of nonlocal compensation in the PDL-first configuration relative to the PMD-
first configuration demonstrated above introduces an asymmetry in the quantum channel and
has important implications in the design of optical networks for polarization-entanglement
distribution. Indeed, the same channel could in general be used for photon distribution in
two opposite directions, as could be the case for a specific graph edge of a quantum network,
or when two parties take turns in exchanging messages using a point-to-point connection.
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Either way, the resulting channel will cause different impairments depending on the photon’s
propagation direction [62].

As a final remark, it is worth stressing out that in both the PMD-first case and the PDL-first
case the restoration of concurrence by means of nonlocal PDL compesation comes at a cost.
As discussed in [42] in fact, introducing a PDL element in the path of photon B has the
effect of increasing the losses, so that the overall transmission rate will be lower.



Chapter 5
Unfaithful Entanglement

Determining if a state is entangled or not can be very demanding in terms of computational
times. In fact, even with knowledge of the full density matrix (obtained via a process like
quantum state tomography), determining whether a given state is separable is NP-hard [63].
One prominent approach to verifying entanglement without full state characterization is to
use an entanglement witness. An entanglement witness is a Hermitian operator W that has
a positive expectation value for any separable state, but a negative expectation value for an
entangled state of interest [4, 64]. Therefore, given a target output state for a system, it is
possible to construct an entanglement witness that will verify the entanglement of that state
by measuring only a single expectation value.

In this last chapter we focus on a specific class of entanglement witnesses, namely fidelity-
based ones. We introduce the concept of faithfulness, and show how simple application of
decoherence and modal filtering (which, as should be clear to the reader by now, in fiber-optic
communications are represented by PMD and PDL, respectively) on a pair of entangled
qubits can lead to the development of unfaithful entanglement. We reproduce this scenario
experimentally, and we show how certain unfaithful states can be made detectable at the
cost of further reducing their entanglement.

All the sections that compose this chapter present original work, with the exception of
Section 5.1 where an introduction to the concept of unfaithful entanglement is provided. The
scenario we describe in this chapter is also the central subject of paper 1.

5.1 Fidelity-based entanglement witnesses

An entanglement witness is a Hermitian operator W constructed such that

Tr (Wρs) ≥ 0, Tr (Wρe) < 0 (5.1)

where ρs is any separable state and ρe is at least one entangled state [5, 65, 66].

88
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It has been proven that for every entangled state ρe, it is possible to construct an entanglement
witness [66]. Despite the guaranteed existence of an entanglement witness and the myriad
of construction methods, it is often challenging to realize a witness experimentally. Due to
their relative simplicity, witnesses based on the fidelity of a state to a pure entangled state
|ψ〉 [67] are often the approach of choice in experimental scenarios.

Fidelity Fψ(ρ) = 〈ψ|ρ|ψ〉 is usually employed to measure the distance of a general state ρ
from the state |ψ〉. Starting from this, one can then build the related entanglement witness
as [68]

Wψ = αI− |ψ〉 〈ψ| , (5.2)

where α is a suitably chosen real number. Measuring the observable W leads to the quantity
Tr (ρW ) = α− Fψ(ρ); if Fψ is above the threshold α, the witness operator has detected the
presence of entanglement. Clearly, one wants α to be as small as possible, so the witness can
detect a larger amount of entangled states. Still, this method for entanglement detection is
limited by the minimum value that α can have, and will thus have the drawback (common
to every entanglement witness approach) of not being able to detect all entangled states.
The term unfaithful has been applied to the set of states that cannot be detected by any
construction of a fidelity witness [67, 69, 70].

From a geometrical point of view, an entanglement witness is a hyperplane that is guaranteed
to have all separable states on one side and at least one entangled state on the other [5].
With this picture in mind, we can see that a given entanglement witness will generally
detect only a small subset of entangled states, namely those that fall on the same side of the
hyperplane as the entangled state targeted in the construction of the witness. Fidelity-based
witnesses Wψ also have a clear geometrical interpretation, as shown in Fig. 5.1. From this, it
is also not surprising that not all entangled states can be detected by this specific class of
witnesses.

5.1.1 Faithfulness of two-qubit states

Recently, an analytical method for determining the faithfulness of any two-qubit state was
provided [69]. In order to be more explicit, we first express an arbitrary two qubit state ρAB
as

ρAB =
1

4

(
σ0 ⊗ σ0 + ~r · ~σ ⊗ σ0 + σ0 ⊗ ~s · ~σ +

3∑
m,n=1

tnmσn ⊗ σm
)
, (5.3)

with the σi representing the Pauli operators along with σ0 = I. The coefficients of tmn =

Tr (ρσn ⊗ σm) define a real 3× 3 matrix defined as T and contain all of the joint correlations
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Figure 5.1: Schematic explanation of faithful and unfaithful entanglement. The set of all
states is a convex set with the separable states as a convex subset; the extreme points of both
sets correspond to pure states. For constructing a fidelity-based witness, one starts with an
entangled pure state |ψ〉 and computes the closest separable state |ϕ〉, where the distance
is measured by the squared overlap. Then, the fidelity-based witness Wψ is constructed by
the condition that it should detect all states which have a smaller distance to |ψ〉 than the
state |ϕ〉 has. The witness is depicted by the line in state space where Tr (ρWψ) = 0, and
the states above this line are detected as entangled. The figure shows this procedure for four
exemplary pure states. States that can be detected by a fidelity-based witness are called
faithful, but some entangled states (depicted in green) do not fall in this category and are
hence unfaithful.
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of ρ. The local density matrices are defined as

ρA = TrB[ρAB] =
1

2
(σ0 + ~r · ~σ) , ρB = TrA[ρAB] =

1

2
(σ0 + ~s · ~σ) , (5.4)

The condition ~r = ~s = 0 (which defines Bell-diagonal states) physically corresponds to
ρA = ρB = σ0/2, meaning the state has totally mixed marginals. Note that the correlation
matrix T can always be diagonalized through local rotations [37], and hence any state with
totally mixed marginals is Bell diagonal in some basis.

The faithfulness of ρAB can then be determined using the operator

X2(ρAB) = ρAB −
1

2
(ρA ⊗ σ0 + σ0 ⊗ ρB) +

1

2
σ0 ⊗ σ0, (5.5)

where ρA,B are the local density matrices. Notice that this operator removes the local
correlations of a given density matrix while preserving the joint correlations in the T matrix.
A two-qubit state ρAB is faithful if and only if the largest eigenvalue of X2(ρAB) is greater
than 1/2 [69]. States with completely mixed marginals, meaning they are Bell-diagonal
in some basis, are only entangled when the largest eigenvalue of the state is greater than
1/2 [71]. Hence, for Bell-diagonal states in any basis, faithfulness and entanglement are in
a one-to-one relation, implying that only states wit local correlations can potentially be
entangled but unfaithful.

Our aim is to find states, accessible via conventional noise mechanisms, for which the largest
eigenvalue of X2(ρ) is 1/2 or less but has a concurrence greater than 0, which gives rise to
the presence of unfaithful entanglement.

5.1.2 Fully entangled fraction and faithfulness

Beyond separability, the quality and type of entanglement present in a state determines
how useful it is for various applications. To this end, we introduce another useful quantity,
namely the fully entangled fraction (FEF), sometimes also referred to as the maximal singlet
fraction. The FEF is given by

F (ρ) = max
|ψ〉∈ME

〈ψ|ρ|ψ〉, (5.6)

where the maximization is over all maximally entangled (ME) states. The FEF is directly
related to how useful a state is for teleportation. In the two-qubit case, only states having
F (ρ) > 1

2 can teleport a state with a higher fidelity than a classical channel [72, 73]. Despite
the clear physical meaning of FEF, it is not an entanglement monotone and can show
surprising behavior when compared with the concurrence [74], a concept we will demonstrate
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experimentally later in this chapter. Further, the FEF establishes upper and lower bounds
on the concurrence and negativity [75, 76]. We note that while FEF is in general difficult to
evaluate as it requires a maximization, analytical results do exist for two qubits [37, 75, 77],
and estimates exist for higher-dimensional systems [69, 78, 79].

The fully entangled fraction and the faithfulness of a state are related; one can in fact show
that the maximum eigenvalue of the X2(ρ) operator from Eq. (5.5) coincides with the FEF.
This result is central to our further discussion and, therefore, is worth stressing:

Observation. For two-qubit states, the maximum eigenvalue of the X2(ρAB) operator
coincides with the FEF of the state. This implies that an entangled state is unfaithful when
F (ρAB) ≤ 1/2.

The formal proof for this observation can be found in Refs. [37, 69], and for completeness,
we also present it here. We start with the generic two-qubit state of Eq. (5.3), where the
correlation matrix, defined as the matrix made up of the coefficients ti,j = Tr (ρABσi ⊗ σj)
for nonzero i, j, can always be diagonalized via local rotations, resulting in

ρ′AB =
1

4

(
σ0 ⊗ σ0 + ~r′ · ~σ ⊗ σ0 + σ0 ⊗ ~s′ · ~σ +

3∑
m=1

t′mσm ⊗ σm
)
. (5.7)

Using this form, the FEF, as in Eq. (5.6), can be evaluated as [37]

F (ρAB) =


1
4(1 +

∑
i |t′i|) if det (T ′) ≤ 0

1
4 [1 + max

i 6=j 6=k
(|t′i|+ |t′j | − |t′k|)] if det (T ′) > 0

(5.8)

where T ′ is a diagonal matrix with entries t′i. The operator X2(ρAB), on the other hand,
can be expressed as

X2(ρAB) =
1

4

σ0 ⊗ σ0 +

3∑
m,n=1

tnmσn ⊗ σm

 , (5.9)

whose correlation matrix can again be diagonalized in the same way. One can thus explicitly
determine the relationship between the eigenvalues of X2(ρAB) and the parameters t′i
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according to [71]

λ1 =
1

4

(
1 + t′1 − t′2 + t′3

)
,

λ2 =
1

4

(
1 + t′1 + t′2 − t′3

)
,

λ3 =
1

4

(
1− t′1 + t′2 + t′3

)
,

λ4 =
1

4

(
1− t′1 − t′2 − t′3

)
.

(5.10)

Now, if det (T ′) ≤ 0, then one or three of the t′i coefficients are less than zero, or some
of them are zero. In all cases, the maximum eigenvalue of X2(ρAB) can be written as
λmax = 1

4(1 +
∑

i |t′i|). When det (T ′) > 0, two out of the three coefficients will be negative
(or all of them will be positive) making the maximum eigenvalue the one that maximizes the
combination |t′i|+ |t′j | − |t′k|, thus concluding the demonstration.

This simple relation we just proved is actually very powerful. On the one hand, it allows one
to analytically evaluate the maximum eigenvalue of X2(ρAB) in situations in which this might
be a difficult task. On the other hand, it allows for a physical interpretation of unfaithful
two-qubit states as exactly those entangled states that are not useful for teleportation.

5.2 Correlated faithfulness and concurrence

In this section, we show how two-qubit unfaithful states can result from relatively simple
applications of decoherence and filtering to Bell states. To begin, we consider a Bell state that
has undergone a decoherence process that reduces the off-diagonal terms in the computational
basis. This simple scenario is of practical interest since it can often be encountered in real-life
situations. For example, it describes the case in which the initial Bell state is represented by
a pair of polarization-entangled photons, and one or both photons propagate in a channel
with first-order polarization-mode dispersion (PMD), as we have shown earlier in this work.
The resulting state can then be represented as a Bell-diagonal state, which, up to local
rotations, can be expressed in terms of the Pauli matrices as

ρ0 =
1

4

σ0 ⊗ σ0 +
3∑
j=1

tj(σj ⊗ σj)

 . (5.11)

The values of the tj coefficients are constrained by the positivity conditions on the eigenvalues
of ρ0. Moreover, the Bell-diagonal state is separable if it obeys the stronger condition∑

j |tj | ≤ 1.

We now consider the application of a filter to this state. Such local filters can be written in
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terms of Pauli matrices as
f = µ (σ0 + νn̂ · ~σ) , (5.12)

where µ and ν are real numbers and n̂ is a unit vector that defines the direction of the
filter in Stokes space. Note that the filter f is Hermitian, but this is no restriction since
non-Hermitian filters can be represented by Hermitian filters followed by a local unitary
transformation.

We refer to the local filter operator acting on qubit A,B of the pair as fA, fB. Application
of this operator to qubit A results in the unnormalized density matrix

ρ′ = (fA ⊗ σ0)ρ0(fA ⊗ σ0)† = f2
A ⊗ σ0 +

3∑
j=1

tj(fAσjfA ⊗ σj), (5.13)

where we have used the fact that f is Hermitian and that the adjoint is distributive over the
Kronecker product.

Cumbersome algebra and the use of the relations

(~a · ~σ)(~b · ~σ) =(~a ·~b)σ0 + i(~a×~b) · ~σ

(ĵ · ~σ)(~b · ~σ) =σj(~b · ~σ) = (ĵ ·~b)σ0 + i(ĵ ×~b) · ~σ

(~a · ~σ)(ĵ · ~σ) =(~a · ~σ)σj = (~a · ĵ)σ0 + i(~a× ĵ) · ~σ

(5.14)

can be employed to evaluate the main terms:

f2
A =µ2

(
(1 + ν2)σ0 + 2νn̂ · ~σ

)
f2
A ⊗ σ0 =µ2(1 + ν2)σ0 ⊗ σ0 + 2νµ2 [(n̂ · ~σ)⊗ σ0]

fAσjfA =µ2
(

(1− ν2)σj + 2ν(ĵ · n̂)σ0 + 2ν2(ĵ · n̂)(n̂ · ~σ)
)
.

(5.15)

After algebra and normalization, the state becomes

ρF = ρ′/Tr(ρ′) =
1

4
(σ0 ⊗ σ0) +

ν

2(1 + ν2)
[(n̂ · ~σ)⊗ σ0] +

ν

2(1 + ν2)
[σ0 ⊗ ((T n̂) · ~σ)]

+
1

4(1 + ν2)

3∑
j=1

tj
(
(1− ν2)σj + 2ν2nj(n̂ · ~σ)

)
⊗ σj ,

(5.16)

Notice that the normalization coefficient was calculated using the following trace identities

Tr (A⊗B) =Tr(A)Tr(B)

Tr(A+B) =Tr(A) + Tr(B)

Tr(cA) =cTr(A)

(5.17)
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along with the fact that all of the Pauli matrices are traceless with the exception of Tr(σ0) = 2.
We then find

Tr(ρ′) =µ2(1 + ν2)Tr(σ0)Tr(σ0) + 2νµ2 [Tr((n̂ · ~σ))Tr(σ0)]

+
3∑
j=1

tjµ
2
(

(1− ν2)Tr(σj)Tr(σj) + 2(ĵ · n̂)
[
νTr(σ0)Tr(σj) + ν2(Tr(n̂ · ~σ))Tr(σj)

])
=4µ2(1 + ν2)

(5.18)

As we showed earlier in this work, the concurrence of ρF is independent of n̂ and depends
only on the magnitude of ν, according to:

C(ρF ) = C(ρ0)
|det(f)|

Tr [(f †f ⊗ σ0)ρ]
. (5.19)

To determine when this state becomes unfaithful we need to find the eigenvalues of X2(ρ2),
which is given by

X2(ρ2) =
1

4
(σ0 ⊗ σ0) +

1

4(1 + ν2)

3∑
j=1

tj

(
(1− ν2)σj ⊗ σj + 2ν2(ĵ · n̂) [(n̂ · ~σ)⊗ σj ]

)
(5.20)

and can always be diagonalized via local rotations to be expressed as

X2(ρF ) =
1

4
(σ0 ⊗ σ0) +

3∑
i=1

t′i(σi ⊗ σi). (5.21)

The eigenvalues λi are functions of the coefficients of its correlation matrix T ′, according to
Eq. (5.10). If the maximum eigenvalue of X2(ρF ) is no greater than 1/2, then the state is
unfaithful. Equivalently, earlier in this chapter we explained that we can consider the FEF
since it coincides with the maximum eigenvalue of X2(ρF ). To study how the faithfulness of
a Bell-diagonal state is affected by modal filtering, we consider several orientations of the
filter in the following sections.

5.2.1 Creating unfaithful entanglement with a single local filter

First, we focus on a simple but representative case, that is, the filter being aligned along the
x-axis, such that n̂ = {1, 0, 0}. In this situation, the expressions for the two-photon state ρF
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and the X2(ρF ) operator become, respectively,

ρF =
1

4
(σ0 ⊗ σ0) +

ν

2(1 + ν2)
[σ1 ⊗ σ0] +

t1ν

2(1 + ν2)
[σ0 ⊗ σ1]

+
t1ν

2

2(1 + ν2)
(σ1 ⊗ σ1) +

(1− ν2)

4(1 + ν2)

3∑
j=1

tj (σj ⊗ σj) ,
(5.22)

and

X2(ρx2) =
1

4

(σ0 ⊗ σ0) +
2t1ν

2

(1 + ν2)
(σ1 ⊗ σ1) +

(1− ν2)

(1 + ν2)

3∑
j=1

tj (σj ⊗ σj)


=

1

4

(σ0 ⊗ σ0) +
3∑
j=1

t′j (σj ⊗ σj)

 .

(5.23)

The coefficients t′i of the diagonal correlation matrix T ′ are thus given by

t′1 =
2t1ν

2 + t1(1− ν2)

1 + ν2
= t1,

t′2 =
t2(1− ν2)

1 + ν2
,

t′3 =
t3(1− ν2)

1 + ν2
.

(5.24)

To determine the faithfulness we must find the eigenvalues of X2(ρF ). Since this happens to
have a diagonal correlation matrix the eigenvalues can be found directly from Eq. (5.10):

λ1 =
1

4

(
1 + t1 + (t3 − t2)

(
1− ν2

1 + ν2

))
λ2 =

1

4

(
1 + t1 + (t2 − t3)

(
1− ν2

1 + ν2

))
λ3 =

1

4

(
1− t1 + (t2 + t3)

(
1− ν2

1 + ν2

))
λ4 =

1

4

(
1− t1 − (t2 + t3)

(
1− ν2

1 + ν2

))
(5.25)

which sum to unity.

If we then simplify the description by assuming that the initial Bell Diagonal state is rank
two, so that it can be described by the one-parameter state

ρ0 = sin2(θ)|φ+〉〈φ+|+ cos2(θ)|φ−〉〈φ−| (5.26)
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whose coefficients in the correlation matrix are t1 = − cos(2θ), t2 = cos(2θ), and t3 = 1. The
concurrence of a rank-2 Bell diagonal state is given by C0 = C(ρ0) = | cos(2θ)| when we
limit 0 ≤ θ ≤ π/4. For the rest of this chapter, and with no loss of generality, we will limit
ourselves to the case in which θ is in the interval 0 ≤ θ < π/2.

Using Eq. (5.19), we see that the concurrence of this state after a local filter fA = µ(σ0 +νσ1)

is applied is given by

C = C(ρ1) = C(ρ)
|det(f)|

Tr [(f †f ⊗ σ0)ρ]
= | cos(2θ)|1− ν

2

1 + ν2
(5.27)

and the eigenvalues become

λ1 =
1

4

(
1− cos(2θ) + (1− cos(2θ))

(
1− ν2

1 + ν2

))
=

sin2 θ

1 + ν2

λ2 =
1

4

(
1− cos(2θ) + (cos(2θ)− 1)

(
1− ν2

1 + ν2

))
=
ν2 sin2 θ

1 + ν2

λ3 =
1

4

(
1 + cos(2θ) + (cos(2θ) + 1)

(
1− ν2

1 + ν2

))
=

cos2 θ

1 + ν2

λ4 =
1

4

(
1 + cos(2θ)− (cos(2θ) + 1)

(
1− ν2

1 + ν2

))
=
ν2 cos2 θ

1 + ν2

(5.28)

We can eliminate common variables with the relation

C

C0
=

1− ν2

1 + ν2
(5.29)

making the eigenvalues

λ1 =
1

4

[
1− C0 − (C0 − 1)

C

C0

]
λ2 =

1

4

[
1− C0 + (C0 − 1)

C

C0

]
λ3 =

1

4

[
1 + C0 + (C0 + 1)

C

C0

]
λ4 =

1

4

[
1 + C0 − (C0 + 1)

C

C0

]
(5.30)

By inspection the largest eigenvalue is λ3, and we have F (ρF ) ≡ λ3. Hence it is clear that
the FEF is a monotonic function of the concurrence C in this scenario.

We now want to investigate if this simple configuration can lead to the presence of unfaithful
entanglement. As mentioned earlier, the condition for an entangled but unfaithful state is
C > 0 and F (ρF ) ≤ 1/2. Notice that if we start with a Bell state, meaning C = 1, then
F (ρF ) = (1 +C)/2, and as expected there are no situations where the state is unfaithful but
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Figure 5.2: (a) Graphical representation of the inequality in Eq. (5.32), where C0 is the
initial concurrence and C is the concurrence obtained after application of a local filter on
one of the two qubits. All combinations of C0 and C that lead to unfaithful entanglement
are represented in the shaded area. Straight lines represent the linear relation between
concurrence of the initial rank-2 Bell diagonal state and the concurrence of the final state
after local filtering has been performed in Eq. (5.29). (b) The same equality is expressed in
terms of the amount of filtering ν needed for a state to become unfaithful when the initial
Bell diagonal state is characterized by the coefficient θ.

also entangled. The region where unfaithful entanglement occurs fulfills the condition

C0 + C +
C

C0
≤ 1, (5.31)

which can be expressed as

C ≤ C0(1− C0)

1 + C0
. (5.32)

This region is represented in Fig. 5.2(a) as the light blue area in the C vs C0 plane. Straight
lines represent the linear relation between the concurrence of the initial rank-2 Bell diagonal
state and the concurrence of the final state (after local filtering has been performed) in Eq.
(5.29). The figure shows that the highest concurrence for an unfaithful state that we can
obtain by application of local filtering on a rank-2 Bell diagonal state is C = 3− 2

√
2, which

can only be obtained by applying a local filter of magnitude ν =
√√

2− 1 to an initial state
with concurrence C0 =

√
2 − 1. Equation (5.32) can also be rewritten to find an explicit

relation between the amount of filtering required for the state to become unfaithful and the
parameter θ characterizing the initial rank-2 Bell diagonal state to give

1− ν2

1 + ν2
≤ 1− cos (θ)

1 + cos (θ)
, (5.33)
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which is represented in Fig. 5.2(b) (for θ in the range 0 ≤ θ < π/4) by the shaded region.
From this figure, it is clear that the larger the value of θ - i.e., the lower the initial concurrence
of the rank-2 Bell diagonal state - the lower the amount of filtering needed to reach the
region of unfaithful entanglement.

5.2.2 Not all local filter orientations result in unfaithful entanglement

Let’s now consider a different filter orientation, which leads to very different results. If the
filter is aligned such that n̂ = {0, 0, 1}, then the expression for ρF and X2(ρF ) become

ρF =
1

4
(σ0 ⊗ σ0) +

ν

2(1 + ν2)
[σ3 ⊗ σ0] +

t3ν

2(1 + ν2)
[σ0 ⊗ σ3]

+
t3ν

2

2(1 + ν2)
(σ3 ⊗ σ3) +

(1− ν2)

4(1 + ν2)

3∑
j=1

tj (σj ⊗ σj) ,
(5.34)

and

X2(ρF ) =
1

4

(σ0 ⊗ σ0) +
2t3ν

2

(1 + ν2)
(σ3 ⊗ σ3) +

(1− ν2)

(1 + ν2)

3∑
j=1

tj (σj ⊗ σj)

 ,

=
1

4

(σ0 ⊗ σ0) +
3∑
j=1

t′j (σj ⊗ σj)

 ,

(5.35)

where (assuming again that we start with a rank-2 Bell diagonal state)

t′1 =
t1(1− ν2)

1 + ν2
= −cos (2θ)(1− ν2)

1 + ν2

t′2 =
t2(1− ν2)

1 + ν2
=

cos (2θ)(1− ν2)

1 + ν2
= −tz1

t′3 =
2t3ν

2 + t3(1− ν2)

1 + ν2
= t3 = 1.

(5.36)

The eigenvalues of X2(ρz2) thus become:

λ1 =
1

4

(
2− cos (2θ)

1− ν2

1 + ν2

)
,

λ2 =0,

λ3 =
1

4

(
2 + cos (2θ)

1− ν2

1 + ν2

)
,

λ4 =0.

(5.37)

Since there are only two non-zero eigenvalues, and they sum to unity, they will never be
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Figure 5.3: Theoretical curves for concurrence (dashed lines) and FEF (solid lines) as
functions of the amount of filtering νB in channel B for three combinations of νA and θ.
A FEF above 0.5 (shown as a solid black line) means that the state is faithful. Filters in
both channels are aligned along the x -axis, which leads to the presence of regions where
concurrence and FEF are anti-correlated.

simultaneously less than 1/2, and the state will never become unfaithful. In fact the fully
entangled fraction F (ρAB) in this case becomes

F (ρAB) =
1

2

(
1 +

C

2

)
. (5.38)

Since this quantity is always greater than 1/2, the state never becomes unfaithful.

This result shows how the faithfulness of a rank-2 Bell diagonal state on which a filter is
applied is sensitive to the orientation of the filter itself. If the filter is aligned with the z-axis,
one can never obtain an unfaithful state. This is in sharp contrast with the behavior of
concurrence, which is orientation-independent.

5.3 Anti-correlated faithfulness and concurrence

We now move to the description of a different scenario. Let’s start again from the rank-2
Bell-diagonal state in Eq. (5.26). If we now apply a filter aligned in the x-direction to each
qubit, so that the resulting operators are

fA = (σ0 + νAσ1) , fB = (σ0 + νBσ1) , (5.39)
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the final state ρ has a concurrence given by

C(ρF ) =
|(ν2

A − 1)(ν2
B − 1) cos(2θ)|(

ν2
A + 1

) (
ν2
B + 1

)
− 4νAνB cos(2θ)

, (5.40)

while, again limiting ourselves to the range 0 ≤ θ < π/2, the FEF becomes

F (ρF ) =
max

[
sin2(θ)(νAνB + 1)2, cos2(θ)(νAνB − 1)2

](
ν2
A + 1

) (
ν2
B + 1

)
− 4νAνB cos(2θ)

. (5.41)

If we assume that the amount of filtering νA in channel A and θ are fixed, we can obtain by
means of a simple derivative the value of νmax

B for which the maximum FEF occurs. In fact,
by setting dF (ρF )

dνB
= 0 and solving for νB, one has

Fmax(ρF ) = max
[(1 + ν2

A)2 + 4ν2
A cos(2θ)

1 + ν4
A − 2νA cos (4θ)

sin2 θ,

(1 + ν2
A)2 − 4ν2

A cos(2θ)

1 + ν4
A − 2νA cos (4θ)

cos2 θ
]
.

(5.42)

When a filter is applied to channel B, the behavior of both concurrence and FEF strongly
depends on the combination of the three parameters θ, νA and νB. In Fig. 5.3, we show
theoretical plots for concurrence and FEF as functions of νB for the three different combi-
nations of νA and θ specified in the legend. From the figure, one can clearly see that there
are regions where concurrence and FEF behave oppositely. In particular, as the amount of
filtering is increased in channel B, concurrence can decrease while, for a certain range of νB,
the FEF increases, even turning an unfaithful state into a faithful one. This counter-intuitive
behavior gives rise to a trade-off between concurrence and faithfulness and is experimentally
verified in the next section.

5.4 Relation between γ and ν

In this chapter we make use of a definition of filters that is slightly different from the one we
employed in the definition of PDL. The reason for this choice is that we want to stress how
the behavior described in this Chapter is valid for any kind of modal filtering, of which PDL
is a particular example. Here we relate the parameters that characterize the two definitions
so that one can easily go from one to the other.
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By comparing Eq. (5.12) with the PDL operator [30]

P = exp (−γ/2) [σ0 cosh (γ/2) + (n̂ · ~σ) sinh (γ/2)]

= exp (−γ/2) cosh (γ/2)

[
σ0 + (n̂ · ~σ)

sinh (γ/2)

cosh (γ/2)

]
,

(5.43)

one can see that
ν =

sinh (γ/2)

cosh (γ/2)
, µ = exp (−γ/2) cosh (γ/2). (5.44)

The former can be inverted to give

γ = ln

(
1 + ν

1− ν

)
. (5.45)

By confronting Eq.(5.27) with the well known case of a Rank-2 Bell diagonal state undergoing
PDL, for which we have C = cos (2θ)/ cosh γ, we have

cosh γ =
1 + ν2

1− ν2
, (5.46)

which leads to the same result; in fact plugging

eγ =
1 + ν

1− ν

into the left-hand side of Eq. (5.46), we have

cosh (γ) =
1

2

(
eγ + e−γ

)
=

1

2

(
1 + ν

1− ν
+

1− ν
1 + ν

)
=

1 + ν2

1− ν2
.

Earlier in the text we noticed that the density matrix needed to be normalized, and we
evaluated Trρ1 = 4µ2(1 + ν2). Using the PDL-operator notation we have

4µ2(1 + ν2) = e−γ cosh2
(γ

2

)[
1 +

sinh2 (γ/2)

cosh2 (γ/2)

]
= e−γ cosh (γ), (5.47)

which is consistent with the other definition of this operator.

5.5 Experiment

A schematic diagram of our experiment is shown in Fig. 5.4. Signal and idler photon
pairs are generated via four-wave mixing [47] by pumping a dispersion shifted fiber (DSF)
with a 50 MHz pulsed fiber laser which is filtered by a 100 GHz telecom add/drop filter
centered at 1552.52 nm (ITU channel 31). The pump laser is tunable, resulting in an
average number of pairs per pump pulse in the range of 0.001− 0.1. The signal and idler



Chapter 5. Unfaithful Entanglement 103

Figure 5.4: Schematic of the experimental apparatus. ~βA: birefringent element for the
creation of a mixed Bell-diagonal state. ~nA: filtering element. ~nB : a second filtering element
that can be introduced in the path of photon B. EPS: entangled photon source. DSF:
dispersion-shifted fiber. PDL: PDL emulator. PMD: PMD emulator. PC: polarization
controller. DS: detector station. PA: polarization analyzer consisting of several waveplates
(red) and a polarizer (blue). SPD: single photon detector.

photons are entangled in polarization, creating a |φ+〉 Bell state, by arranging the DSF in a
Sagnac loop with a polarizing beam splitter (PBS) [50]. The photons are then spectrally
demultiplexed into 100 GHz-spaced ITU outputs after the Sagnac loop, and ITU channel
28 (1554.94nm) is sent to channel A, while ITU channel 34 (1550.12nm) is sent to channel
B. These filters result in photons with a temporal duration of about 15 ps. The detector
stations (DS) each include one gated single photon detector (SPD) with a detection efficiency
of η ∼ 20% and a dark count probability of ∼ 4× 10−5 per gate, as well as a polarization
analyzer (PA) which allows for measurements at any angle on the Bloch sphere. FPGA-based
controller software automatically controls the detectors and analyzers in order to perform
full polarization state tomography by performing 36 different measurements 1. Each of the
36 measurements is performed over 50 million detector gates, resulting in several thousands
of detected coincidences per measurement depending on the experimental parameters. The
density matrix is then reconstructed using a maximum likelihood estimation algorithm [45],
and the FEF and concurrence are calculated. Due to the large amount of detected pairs per
measurement, the resulting standard deviation of the FEF and concurrence (shown with the
error bars in Figs. 5.5 and 5.6) is rather small.

In order to demonstrate the case of correlated faithfulness and entanglement described in
Sec. 5.2, a decohering birefringent element ~βA and a mode filter ~nA are added to channel
A. For polarization-entangled photons in optical fiber, polarization mode dispersion (PMD)

1Full state tomography of two qubits is achievable from the statistics of only 9 measurement settings if two
detectors are used per photon [45]. However, for convenience we use a single detector per photon and take 36
total measurements, corresponding to all pairwise combinations of both eigenstates of each Pauli operator.
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Figure 5.5: (a) Experimental data (markers) and theoretical curves for concurrence and
FEF as the amount of filtering in channel A is increased with no filter present in channel
B. The filter ~nA is aligned along the direction n̂ = {1, 0, 0} and is applied to photon A of a
rank-2 Bell diagonal state. For νA ≥ 0.426, the state becomes unfaithful, but the nonzero
concurrence shows that it is still entangled. Experimental density matrices corresponding
to the orange and yellow markers at νA = 0.081 and νA = 0.479 are shown in (b) and (c),
respectively.

acts as a form of decoherence, and polarization dependent loss (PDL) acts as a local filter
[35, 39, 40, 42]. As such, two PMD emulators with fixed differential group delay (DGD)
and variable direction on the Bloch sphere are used to implement the decohering element
~βA which transforms the nearly-perfect |φ+〉 state created by the EPS into a rank-2 Bell
diagonal state [43, 58, 80]. The relative angle of the birefringence vectors applied by the
two PMD emulators is adjusted using the polarization controller PCβ to maximize the total
DGD of the two elements, thus maximizing the decoherence of ~βA. This results in an initial
state (before filtering) with concurrence C0 = 0.181 which can reach the unfaithful regime
with the application of an appropriate filter ~nA since the initial concurrence is less than
C0 =

√
2− 1 as described following Eq. (14). A PDL emulator is then used to implement

the mode filter ~nA, whose magnitude and direction on the Bloch sphere are variable.

To achieve unfaithful entanglement, the filter ~nA is aligned orthogonal to the decoherence
vector ~βA using the polarization controller PCA2 [81], that is, the filter is aligned along
the x-axis, such that n̂ = {1, 0, 0} as in Sec. 5.2A. The magnitude of the filter is increased
from νA = 0.054 − 0.479, and QST is performed for each value of νA. The FEF and
concurrence of the resulting density matrices are plotted in Fig. 5.5(a), and the density
matrices corresponding to the orange and yellow markers at νA = 0.081 and νA = 0.479 are
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Figure 5.6: (a) - (b): Concurrence and FEF as functions of the amount (νB) of filtering in
channel B, while νA is kept fixed. The markers represent experimental results, while the
curves are the theoretical predictions. In (a), both filters are aligned along the direction
n̂ = {1, 0, 0} and νA = 0.465 to demonstrate the anti-correlated behavior of concurrence
and FEF. In (b), both filters are aligned along the direction n̂ = {0, 0, 1} and νA = 0.469 to
show a configuration where the state never becomes unfaithful. The experimental density
matrices in (c)-(f) refer to the markers identified by the same color.

shown in Fig. 5.5(b) and 5.5(c), respectively 2. The behavior of the FEF and concurrence are
clearly correlated as a function of νA, and the state becomes unfaithful, while still entangled,
for νA ≥ 0.426.

Next, additional measurements are performed to demonstrate the case where faithfulness
and entanglement are anti-correlated, as described in Sec. 5.3. The magnitude of the filter
in channel A is fixed at νA = 0.465, and an additional filter ~nB is applied to channel B. The
filter in channel B is aligned in the same direction (along the x-axis) in Stokes space as
the filter in channel A using PCB, and its magnitude is increased from νB = 0.036− 0.455.
Tomography is performed for each value of νB , and the FEF and concurrence of the resulting
density matrices are plotted in Fig. 5.6(a). The density matrices corresponding to the green
and purple markers at νA = 0.036 and νA = 0.174 are shown in Fig. 5.6(c) and 5.6(d),
respectively. The results clearly show that although entanglement always decreases as νB

2The matrices in Figs. 5.5-5.6 are expressed in the basis of the filter ~nA, and the x-axis in Stokes space
is defined as |H〉. This basis allows for an intuitive understanding of how the filters ~nA and ~nB alter the
density matrix; however, we note that the HV basis is rotated by π/2 (for both qubits) relative to the basis
of the density matrix described by Eq. (5.26).
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increases, the FEF increases over the range of 0 ≤ νB ≤ 0.375, and the state transitions
from unfaithful to faithful at νB = 0.106. However, the state is always faithful, i.e. the FEF
asymptotically approaches 0.5 from above, when the filter in channel A is rotated such that
it is collinear to the decoherence vector ~βA (along the z-axis), and ~nB is also rotated such
that it remains in the same direction in Stokes space as ~nA. For this scenario, the magnitude
of the filter in channel A is fixed at νA = 0.469, and the magnitude of the filter in channel B
is increased from νB = 0.020− 0.392. Tomography is once again performed for each value of
νB, and the results are shown in Figs. 5.6(b),(e), and (f). The density matrices shown in
Figs. 5.6(e) and 5.6(f) correspond to the markers of the same color at νB = 0.020 and 0.392,
respectively, in Fig. 5.6(b).



Chapter 6
Conclusion

In this work we have analyzed how the presence of two very common effects in fiber-optic
channels, namely polarization-mode dispersion (PMD) and polarization-dependent loss
(PDL), affects the distribution of polarization entanglement. We have characterized the
effect of PMD as a decoherence mechanism, that turns a transmitted maximally entangled
Bell state into a mixed state, and degrades the quality of its entanglement by coupling the
polarization part and the time-dependent part of the two-photon state. Different scenarios
were investigated, with the PMD affecting either one or both photons. We quantified the
entanglement left in the photon pair by using concurrence as a metric, and we also evaluated
the von Neumann entropy and the quantum mutual information which allowed us to build
entropic Venn diagrams to graphically show how the presence of PMD causes a leak of
information towards the environment. We discussed the effectiveness of nonlocal PMD
compensation both in terms of concurrence and quantum mutual information restoration.

We then moved on to investigating the joint effect of PMD and PDL on polarization-entangled
photons. To overcome the complexity introduced by a rigorous treatment of the joint presence
of the two effects distributed along the photons’ optical paths, we introduced a simple –
yet instructive – two-element model that allowed us to extract the main characteristics of
the resulting channels. For example, we discussed how the order in which PMD and PDL
act on the propagating photon causes an asymmetry in the channel when a PDL element
is introduced in the path of the second photon to perform nonlocal compensation, with
nontrivial implications in quantum networks design. The model also has the quality of
being easy to reproduce in the lab with off-the-shelf optical equipment, which allowed us to
experimentally verify our findings. We have shown that, over an ample range of parameters,
our two-element analytical model is quite accurate in describing the fiber channel, which
makes it an effective tool for gaining insights into channel decoherence.

We concluded this work by showing how a surprisingly complicated relationship between
entanglement and faithfulness emerges even for the common scenario represented by two
photons in a Bell state undergoing PMD and PDL. We also showed that entanglement and

107



Chapter 6. Conclusion 108

faithfulness could be traded, in some situations, with the addition of a single PDL element.
The implications of these results – which have been experimentally confirmed – go beyond
fiber-optic networks if one considers that PMD and PDL are just an example of decoherence
and modal filtering, respectively, which are common effects in quantum communication
systems.
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