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RIASSUNTO 

Tra i Paesi dell’Europa-28, l’Italia è il primo produttore di formaggi a Denominazione 

di Origine Protetta (DOP); di conseguenza, l’industria casearia riveste un ruolo centrale nei 

settori agricolo e alimentare italiani. Circa il 70% del latte disponibile in Italia viene utilizzato 

per la produzione di formaggio e il 35% è trasformato in prodotto DOP. 

Negli ultimi anni, vi è stata una crescita dell’interesse per il latte e i suoi derivati, 

specialmente per le loro caratteristiche tecnologiche e nutrizionali. Le proprietà coagulative 

del latte, la sua acidità titolabile e il suo contenuto minerale sono al momento gli argomenti 

maggiormente discussi e studiati a livello d’industria casearia e di ricerca. L’attitudine 

casearia, che comprende il tempo di coagulazione (RCT, min), il tempo di rassodamento (k20, 

min) e la consistenza del coagulo (a30, mm), influenza l’efficienza dell’intero processo 

produttivo. L’acidità titolabile gioca un ruolo fondamentale sulla velocità di aggregazione 

delle micelle para-caseiniche e sineresi e sulla reattività del caglio. Infine, la composizione 

minerale del latte riveste importanza sia a livello tecnologico, influenzando il processo di 

produzione casearia, sia sulla salute umana. 

L’obiettivo generale della presente tesi di dottorato è stato quello di studiare gli aspetti 

fenotipici e genetici delle proprietà coagulative del latte, della sua acidità titolabile e del suo 

contenuto minerale, predicendo questi parametri attraverso la spettroscopia del medio 

infrarosso (MIRS). 

Nel primo capitolo si è analizzata la bibliografia inerente alla tecnologia MIRS applicata 

all’analisi del latte ed è stata riscontrata la capacità del MIRS nel predire, con differenze a 

livello di accuratezza, gli acidi grassi del latte, la sua composizione proteica e minerale, le 

MCP, la sua acidità, i corpi chetonici e lo stato energetico della vacca e le emissioni di 

metano. In generale, gli articoli analizzati hanno evidenziato come la variabilità dei dati, i 

metodi di riferimento e le unità di misura influenzino notevolmente la robustezza dei modelli 

di predizione. Un punto cruciale a favore dell’applicazione del MIRS è il possibile scambio di 

dati tra diversi Paesi al fine di sviluppare equazioni che tengano conto della variabilità 

biologica dei parametri in base alle differenti condizioni. Data la grande variabilità dei metodi 

di analisi di riferimento utilizzati per le calibrazioni MIRS, sembra essenziale una 

standardizzazione di questi tra i diversi Paesi. 

Nel secondo capitolo si è studiata la capacità del MIRS di predire i latti che non 

coagulano e i risultati ottenuti hanno dimostrato che a livello spettrale non vi è una specifica 

informazione che permetta una distinzione a priori tra questo tipo di campioni e quelli che 
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coagulano. Il modello di predizione più accurato si è ottenuto per il tempo di coagulazione del 

latte, seguito da quelli per il tempo di rassodamento e coesistenza del coagulo a 30 minuti. 

Nel terzo capitolo si sono sviluppati i modelli di predizione MIRS per il contenuto di 

calcio (Ca) e fosforo (P) del latte e per la sua acidità titolabile (TA), ottenendo risultati 

soddisfacenti: per tutti e tre i parametri è stato ottenuto un coefficiente di correlazione in 

cross-validazione maggiore di 0.73. Inoltre, sono state rilevate delle correlazioni favorevoli tra 

questi caratteri e le proprietà coagulative del latte. 

Infine, nel quarto e ultimo contributo, è stata dimostrata l’esistenza di una varianza 

genetica additiva per Ca, P e TA predetti col MIRS, per i quali si sono stimate ereditabilità 

pari a 0.10, 0.12 e 0.26, rispettivamente. Inoltre, tra i tre suddetti caratteri sono state stimate 

correlazioni fenotipiche da moderate a forti, mentre da deboli a moderate tra essi e la 

composizione qualitativa e quantità del latte.  

La presente tesi di dottorato ha dimostrato come la tecnologia MIRS possa essere 

un utile strumento per predire le proprietà coagulative, l’acidità titolabile e il contenuto 

minerale del latte. La possibilità di sfruttare il MIRS su vasta scala e l’esistenza di una 

base genetica per i caratteri precedentemente menzionati, rappresentano un punto di 

partenza per definire specifici programmi genetici per il miglioramento delle 

caratteristiche tecnologiche e nutrizionali del latte. 
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ABSTRACT 

Italy is the first producer of Protected Designation of Origin (PDO) cheeses in Europe-28, 

and thus the dairy industry plays a central role in the agriculture and food sectors. About 70% 

of available milk in Italy is used for cheese production and 35% is transformed into PDO 

products. 

In the last few years, the interest for milk and dairy products has grown, especially in 

relation to their technological and healthy features. Coagulation properties, titratable acidity 

(TA) and mineral content of milk are among the main topics discussed at research and dairy 

industry level. Milk coagulation properties (MCP), namely rennet coagulation time (RCT), 

curd firming time (k20) and curd firmness (a30), influence the efficiency of cheese-making 

process. TA plays a fundamental role in the aggregation rate of para-casein micelles, reactivity 

of rennet, and rate of syneresis. Finally, mineral composition of milk has an impact on human 

bone health and on milk technological properties, which affects cheese-making process.  

The overall aim of the present work was to study the phenotypic and genetic aspects of 

coagulation traits, mineral content and acidity of bovine milk predicted by mid-infrared 

spectroscopy (MIRS).  

The analysis of the literature (Chapter 1) demonstrated the feasibility of MIRS to predict 

milk fatty acid, protein and mineral composition, MCP, acidity, ketone bodies, body energy 

status, and methane emissions, with different accuracies and improvement of prediction 

equations. In general, the reviewed papers underlined the influence of data variability, 

reference method, and unit of measurement on the development of robust models. A crucial 

point in favour of the application of MIRS is to stimulate the exchange of data among 

countries to develop equations that take into account the biological variability of the traits 

under different conditions. Due to the large variability of reference methods used for MIRS 

calibration, it is essential to standardize the methods within and between countries. 

Chapter 2 investigated the ability of MIRS to predict not coagulating (NC) from 

coagulating milks. Results showed that there is no specific spectral information that 

distinguishes NC from coagulating samples. The most accurate prediction model was 

developed for RCT followed by k20 and a30.  

Mid-infrared models to predict calcium (Ca), phosphorus (P) and TA were developed in 

Chapter 3 and results were satisfactory: coefficients of correlation of cross-validation for CA, 

P and TA were greater than 0.73. Moreover, favourable relationships of these traits with MCP 

were estimated. 
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Exploitable additive genetic variation for predicted Ca, P, and TA exists (Chapter 4) and 

heritability estimates were 0.10, 0.12, and 0.26 for Ca, P and TA, respectively. Positive 

moderate to strong phenotypic correlations were estimated between Ca, P and TA, while 

phenotypic weak to moderate correlations were assessed between these traits with both milk 

quality and yield. Moderate to strong genetic correlations existed between Ca, P, and TA, and 

between these predicted traits with both milk fat and protein percentage. 

The present thesis demonstrated that MIRS might be used as phenotyping tool to predict 

MCP, mineral content and acidity of milk. The feasibility of using MIRS on a large scale 

coupled with the existence of a genetic basis for the aforementioned predicted features, 

represent the starting point to set up specific genetic programs to improve these nutritional 

and technological characteristics of milk. 
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GENERAL INTRODUCTION 

Milk production is growing worldwide and the most productive countries are the 

European Union (EU-28), United States of America (USA), New Zealand and Australia, 

which have increased their production of about 5% during the last year (Ismea, 2014). Within 

the EU-28, a global trend of increase (2%) was registered between April 2013 and February 

2014, with differences across European countries: the highest increase was shown in Belgium 

and the Netherlands, while Sweden and France exhibited the lowest (Ismea, 2014). Moreover, 

the major producers of European milk remain Germany, France, United Kingdom, Poland, the 

Netherlands and Italy (Eurostat, 2014). 

The EU-28 is the main exporter of cheese worldwide, with about 790 tonnes in 2013 

(Ismea, 2014). Within EU-28, the Italian dairy industry is very important; about 70% of 

available milk is used for cheese production and 35% is transformed into Protected 

Designation of Origin (PDO) products (Pieri, 2011). Italy is the first producer of PDO cheeses 

in EU-28 (Ismea, 2014). Therefore, in the last years, milk and dairy products have been widely 

studied for their technological and healthy features. 

Milk technological traits  

The technological ability of milk for cheese production can be established by milk 

coagulation properties (MCP) measurements. Milk coagulation properties are defined as 

rennet coagulation time (RCT), curd-firming time (k20) and curd firmness (a30) (Summer et 

al., 2002). The RCT measures the time in minutes between the rennet addition to milk and the 

occurrence of the first coagulum, the k20 the time in minutes to achieve 20 millimetres of curd 

and a30 the thickness millimetres of curd obtained 30 minutes after the rennet addition. These 

characteristics are the result of interactions between different milk features as acidity, mineral 

contents, protein polymorphisms and breed, stage of lactation and parity of cows (Summer et 

al., 2002; Malacarne et al., 2013; De Marchi et al., 2007). Moreover, the MCP are also 

influenced by laboratory conditions like instrument setup, type, reproducibility and 

repeatability and pre-treatments of milk samples (Pretto et al. 2011). In several studies a 

heritable additive genetic variance of MCP was reported (Ikonen et al., 1997, 1999; Cassandro 

et al., 2008), therefore an improving of cheese yield seems to be possible through the genetic 

selection of cows which show better MCP (Ikonen et al., 2000). 

As previous explained the cheese-making process is also highly influenced by the 

acidity of milk: pH and titratable acidity (TA) affect the starting enzymatic phases and the 

http://www.epp.eurostat.ec.europa.eu/
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following aggregation rate of para-casein micelles, reactivity of rennet, and rate of syneresis 

(Formaggioni et al., 2001). In literature, different authors investigated the effect of acidity 

changes on milk rheological properties of milk, reporting strong relationships between milk 

acidity and optimal or late-non-coagulating samples of milk. Malacarne and colleagues (2013) 

declared that non-coagulating samples are characterised by high values of pH and low of TA, 

while the opposite behaviour of acidity traits represent good coagulating milks. Moreover, 

Ikonen et al. (2004) and Cassandro et al. (2008) reported positive correlations between pH and 

RCT. In this studies moderate heritability estimates for pH and TA of milk were reported, 

suggesting an achievable genetic improvement of them. 

Another technological aspect of milk is represented by its mineral composition. Fossa et 

al. (1994) reported that the milk ability to coagulate and the final consistency of the coagulum 

are strongly influenced by calcium (Ca) and phosphorus (P) content. In particular, the 

colloidal Ca phosphate affects the paracaseinate particles’ aggregation speed and the casein 

reticulum’s properties (Mariani et al., 1996). Milk minerals play a key role on the human 

health. Calcium provides rigidity to the skeleton by virtue of its phosphate salts and takes part 

in neuromuscular function, enzyme-mediated processes and blood clotting. Moreover, during 

skeletal growth the increase of bone mineral density is affected by an adequate Ca intake, 

while during old age this element prevents bone loss and osteoporotic fractures. The principal 

disease referred to a Ca (and vitamin D) deficiency is osteoporosis (Caroli et al., 2011), which 

has been defined by the Consensus Development Conference (1993) as “a systemic skeletal 

disease characterized by low bone mass and micro-architectural deterioration of bone tissue, 

with a consequent increase in bone fragility and susceptibility to fracture”. Cashman et al. 

(2006) summarized results on the effects of phosphorus on human health: in particular, the Ca 

to P ratio is very important as a high concentration of P combined to a low amount of Ca 

seems to be responsible of a stimulation of parathyroid hormone (PTH) with an eventual 

reduction of bone mass and density, especially in young people. 

Mid-infrared spectroscopy 

Over the years, the need of cheap, fast and high-throughput chemical analysis methods 

widely increased in dairy sector, therefore a powerful technique as mid-infrared spectroscopy 

(MIRS) has become more and more relevant. Several studies were conducted on the 

application of MIRS to milk analyses (De Marchi et al., 2014), investigating this technology 

as alternative method of milk analysis and attaining promising and satisfactory results. Mid-

infrared spectroscopy is an indirect method of analysis given its functioning: it’s based on the 
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study of the interaction between matter and electromagnetic waves in mid-infrared region 

(2500 - 25000 nm), and it includes statistical and mathematical treatments for each specific 

traits calibration and validation procedure. Recently, mid-infrared spectroscopy (MIRS) has 

been proposed as a valid tool for the prediction of innovative milk phenotypes as MCP, TA 

(Dal Zotto et al., 2008; De Marchi et al., 2009) and minerals (Soyeurt et al., 2009). The MIRS 

technology is used in routine milk recording programs of different countries for determining 

traditional milk quality traits such as milk fat, protein, casein and lactose content. Therefore, 

the developments of robust MIRS prediction models for innovative milk phenotypes could 

permit their implementation on MIRS instruments present in milk laboratories, allowing the 

rapid and simultaneous recording of large amount of different data. The use of MIRS to 

predict milk phenotypes has relevant genetic implications. Berry et al. (2012) reported that a 

phenotype should be easily, routinely and cheaply measured, and they endorsed MIRS 

technique given its possible optimal accuracy of prediction, exhibition of genetic variation and 

high genetic correlations with traits of interest. The genetic implications of applying MIRS at 

population level were also inferred by Cecchinato et al. (2009) who concluded that for their 

studied traits (RCT and a30) the selection using MIRS predictions as indicator traits can ensure 

a genetic response equal to or slightly lower than to those achievable through actual analysis 

of the traits. 
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AIMS OF THE THESIS 

The possibility to reduce time and cost of milk analyses is increasingly required by the 

dairy industry and MIRS seems to reply to this need. The general aim of the present thesis 

was to investigate the phenotypic and genetic aspects of coagulation traits, mineral 

content and acidity of bovine milk predicting these features by MIRS. The four chapters 

aimed to: 

1. review papers which have investigated the use of MIRS to predict milk quality, 

nutritional and technological traits, and other features of economic relevance; 

2. investigate the capability of MIRS to predict coagulating and not-coagulating milk in 

dairy cows; 

3. investigate the effectiveness of MIRS in predicting milk Ca, P and TA using different 

statistical approaches and to study variation of Ca, P, and TA in individual milk of 

Italian Holstein-Friesian cows and their relationship with milk quality and 

coagulation properties; 

4. estimate genetic parameters for milk Ca, P and TA predicted by MIRS and genetic 

correlations of these traits with milk production and quality in Italian Holstein-

Friesian cows. 
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ABSTRACT 

Interest in methods that routinely and accurately measure and predict animal 

characteristics is growing in importance, both for quality characterization of livestock 

products and for genetic purposes. Mid-infrared spectroscopy (MIRS) is a rapid and cost-

effective tool for recording phenotypes at the population level. Mid-infrared spectroscopy is 

based on crossing matter by electromagnetic radiation and on the subsequent measure of 

energy absorption, and it is commonly used to determine traditional milk quality traits in 

official milk laboratories. The aim of this review was to focus on the use of MIRS to predict 

new milk phenotypes of economic relevance such as fatty acid and protein composition, 

coagulation properties, acidity, mineral composition, ketone bodies, body energy status, and 

methane emissions. Analysis of the literature demonstrated the feasibility of MIRS to predict 

these traits, with different accuracies and with margins of improvement of prediction 

equations. In general, the reviewed papers underlined the influence of data variability, 

reference method, and unit of measurement on the development of robust models. A crucial 

point in favour of the application of MIRS is to stimulate the exchange of data among 

countries to develop equations that take into account the biological variability of the studied 

traits under different conditions. Due to the large variability of reference methods used for 

MIRS calibration, it is essential to standardize the methods used within and across countries.  

Key words: mid-infrared spectroscopy, phenotyping, quality trait, dairy cattle. 

 

INTRODUCTION 

In the genomic era, phenomics is becoming a compulsory research field. This new 

science is concerned with the acquisition of phenotypic data on a large scale (Houle et al., 

2010) and the phenotype can be described as the outcome of the interacting development 

between the genotype of an individual and its specific environment throughout life (Bowman, 

1974). The interest in methods that routinely and accurately measure and predict animal 

characteristics (i.e., phenotypes) is rapidly growing. Accurate phenotypes and efficient 

phenotyping tools are the key ingredients, especially for genomic selection of livestock 

animals, which is expected to increase the genetic gain of the selected traits (Pryce et al., 

2010; Lillehammer et al., 2011; Mc Hugh et al., 2011). 

Furthermore, in recent years, consumers and the dairy industry have shifted the 

concept of quality in relation to market requirements: for example, milk coagulation traits 

have been studied to improve cheese production and FA composition to enrich the nutritional 
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value of milk for human health. Breeding goals have followed these changes: if phenotypes 

are accurately and cheaply measured at the population level and integrated in the national milk 

recording systems, it may be possible to enhance the traits using genetic or genomic tools. 

The need for fast, cheap, and high-throughput methods of chemical analysis has also 

led to the application of infrared spectroscopy in both the livestock and food sectors. The 

spectroscopic technique is based on the study of the interaction between matter and 

electromagnetic waves. Electromagnetic radiation comprises different regions according to the 

following wavelengths: the xray region (0.5–10 nm), UV region (10–350 nm), visible region 

(350–800 nm), near-infrared region (800–2,500 nm), mid-infrared region (2,500–25,000 nm), 

microwave region (100 μm–1 cm), and radio frequency region (1 cm–1 m). 

One of the most important historical events for the spectroscopic technique was the 

development of the Fourier transform in the 1700s; in later years, this mathematical transform 

was improved with the use of the interferometer. In 1969, Digilab Inc. (Marlborough, MA) 

put the first Fourier-transform infrared spectro-photometer with a dedicated minicomputer on 

the market, which was later refined in 1983 by the same company (Spectra-Tech Inc., Oak 

Ridge, TN). From the 1980s, Fourier-transform infrared spectrophotometers were combined 

with personal computers and this method of analysis became widely used due to its versatility 

and cost effectiveness. Since then, many studies have investigated the relationships between 

spectra wavelengths and several quality traits through the explanation of chemical bond 

variations. 

Mid-infrared spectroscopy (MIRS) has been evaluated as a potential tool to collect 

data at the population level for phenotypic and genetic purposes, and it is becoming one of the 

major topics in dairy science. In the mid-infrared region, when matter is crossed by 

electromagnetic radiation, the bonds of the molecules make movements (e.g., vibration and 

rotation), which involve a more or less marked absorption of the provided energy. On the 

basis of supplied energy and the amount absorbed by the irradiated sample, and using spectra 

mathematical pretreatments, it is possible to determine the sample’s chemical composition 

and correlated compounds (Figure 1). 

The present review summarizes papers that have investigated the use of MIRS to 

predict milk quality traits. Furthermore, studies that adopted this technique to predict 

nutritional, technological, and other traits of economic relevance are also reviewed. 
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PHENOTYPING OF MILK BY MIRS 

Studies that aimed at investigating the effectiveness of MIRS to predict phenotypes for 

dairy industry applications or for genetic purposes have markedly increased over the years. 

Figure 2 depicts the trend in the number of papers published from 2001 to 2013 on the 

application of MIRS to milk, highlighting a growing interest for the topic, particularly in the 

last 3 yr. This is confirmed also by large international research projects that aimed at 

predicting new traits in the dairy industry (e.g., OptiMIR, 2012; RobustMilk, 2012). In animal 

science, phenomics is mainly related to the study of phenotypes of an individual. A phenotype 

should be routinely, cheaply, and easily measurable, should show good to optimal accuracy of 

prediction, depending on its use, and should exhibit genetic variation or, if it is a predictor of 

the real phenotype of interest, high genetic correlation with the trait of interest (Berry et al., 

2012). 

Currently, MIRS is used to determine quality traits in bulk and individual milk 

samples. In particular, most countries use MIRS in official milk-recording schemes to predict 

protein, casein, fat, lactose, and urea contents. Besides these traditional traits, MIRS has been 

used to predict other milk characteristics: FA composition (Soyeurt et al., 2006, 2008, 2011; 

Rutten et al., 2009; De Marchi et al., 2011; Ferrand et al., 2011; Maurice-Van Eijndhoven et 

al., 2013), milk protein composition (Luginbuhl, 2002; Sorensen et al., 2003; Etzion et al., 

2004; De Marchi et al., 2009a; Bonfatti et al., 2011; Rutten et al., 2011), milk coagulation 

properties (MCP; Dal Zotto et al., 2008; De Marchi et al., 2009b, 2013), milk acidity (De 

Marchi et al., 2009b), mineral composition (Soyeurt et al., 2009), melamine content (Balabin 

and Smirnov, 2011), ketone bodies (Heuer et al., 2001; de Roos et al., 2007; van Knegsel et 

al., 2010; van der Drift et al., 2012), body energy status (McParland et al., 2011), and methane 

emissions (Dehareng et al., 2012). 

In addition, several laboratories involved in routine milk-recording systems have been 

storing spectral data to predict a posteriori several phenotypes; this approach is very 

interesting for genetic purposes. 

 

SPECTRA PRETREATMENTS 

Pretreatments of MIRS spectral data are very common and often of great importance to 

obtain robust prediction models (Rinnan et al., 2009). The main goal of using statistical 

procedures for preprocessing spectral data is to improve the linear relationship between the 

spectra and the gold reference. As reported by Rinnan et al. (2009), several phenomena can 
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cause a deviation from the aforementioned linear relation: scatter from particulates, molecular 

interactions, and changes in sample size. The most common preprocessing techniques for 

MIRS data are those that directly use available reference values, such as scatter correction and 

derivation methods. The scatter correction methods include multiplicative scatter correction, 

standard normal variate, and normalization. Regarding the derivation methods, the most 

commonly used is the Savitzky-Golay derivative. 

Briefly, multiplicative scatter correction aims at removing nonlinearities in the spectral 

data caused by scatter from particulates in the samples (Martens et al., 1983) and this is very 

similar in result to standard normal variate (Rinnan et al., 2009). Figure 1 depicts the variation 

of spectra peaks moving from untreated data to first and second derivatives. The main benefits 

of the use of derivative spectra pretreatments are to improve the resolution of the spectra (first 

derivative) and to give a negative peak for each band and shoulder (second derivative); the 

most common derivatives used for these purposes were developed by Savitzky and Golay 

(1964). Generally, the sharp bands are enhanced at the expense of broad ones (Figure 1) and 

this may allow for the selection of suitable peaks (Stuart, 2004). 

Despite mathematical pretreatments being widely used in the building of MIRS 

prediction models, the authors usually report only the best model with the related 

mathematical method and, hence, the comparison among different mathematical pretreatments 

is not possible. Only Soyeurt et al. (2011) and De Marchi et al. (2011) investigated the 

variation in the accuracy of MIRS prediction models for FA composition using different 

mathematical pretreatments; they found quite similar results, showing better accuracies using 

derivative pretreatment than untreated spectral data. In a similar manner, De Marchi et al. 

(2009b) investigated the effect of different spectra pretreatments for the prediction of MCP 

and they found better accuracies using untreated spectral data; this has been recently 

confirmed by De Marchi et al. (2013). 

 

FITTING STATISTICS OF CHEMOMETRIC ANALYSIS 

Partial least squares (PLS) modelling is a powerful multivariate statistical tool that has 

been widely applied to the quantitative spectral analyses of MIRS and near-infrared data (De 

Marchi et al., 2012; Riovanto et al., 2012). Because several software packages using the PLS 

technique are available, it is important to understand how chemometric results can be 

compared. Several statistic parameters exist that can be used to assess the goodness of PLS 

models both in calibration and validation (Nas et al., 2002). Reference statistics are the 
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validation ones, which are calculated after the development of the calibration equation; they 

are essential in determining the ability of calibration models to predict unknown values. The 

most important parameters are the coefficient of determination and standard error of 

calibration and validation, the relative ability of prediction, ratio to performance deviation 

(RPD), range error ratio (RER), relative prediction error (RPE), and concordance correlation 

coefficient (CCC; Williams and Norris, 2001; Williams, 2003). 

The coefficient of determination in calibration (R
2

C) and validation (1 − VR, where 

VR = variance ratio) are calculated as the square of the correlation coefficient between the 

reference values and their corresponding predicted values obtained using calibration and 

validation sets. The coefficient of determination in validation depends on the validation 

technique: (1) use of an external data respect to calibration set or (2) cross-validation on 

calibration data according to Stone (1974). 

The standard error is essential to determine the ability of the calibration equation to 

predict unknown values as good calibration equations have small standard errors. Three types 

of standard error exist: (1) standard error of calibration, which is obtained by testing the 

calibration equation directly on calibration data and it is usually a highly over-optimistic 

estimate of the prediction ability; (2) standard error of external validation (SEP), which is 

based on splitting the data set into 2 subsets, one for calibration and the other for validation; 

and (3) standard error of cross-validation, based on the previously described cross-validation 

technique (Williams and Norris, 2001; Sivakesava and Irudayaraj, 2002; Williams, 2003). 

During the development of calibration models, the SEP is used for determining the optical 

number of components (#L); usually the SEP is large when #L is low and decreases as #L 

increases. Partial least squares models allow the selection of appropriate #L to model as much 

of the complexity of the system without overfitting the data (Haaland and Thomas, 1988; Nas 

et al., 2002). The relative ability of prediction is defined as a variant of the correlation 

coefficient and it aims at correcting the standard correlation for the variance of error in the 

calibration set (Hildrum et al., 1983). 

The RPD, RER, RPE, and CCC provide information on the practical utility of 

prediction models and allow the comparison of models among different studies. The RER is 

calculated by dividing the range of a given parameter by the standard error in validation; 

models with RER values lower than 3 have little practical utility, values between 3 and 10 

have limited to good practical utility, and values greater than 10 have high utility (Williams, 

1987). The RPD is calculated by dividing the standard deviation and standard error in 
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validation of a given trait; values of RPD greater than 10 are considered equivalent to 

reference methods, whereas values larger than 2 are considered adequate for analytical 

purposes (Karoui et al., 2006). As reported by Fuentes-Pila et al. (1996) and Lopez-Villalobos 

et al. (2009), RPE values lower than 10% indicate satisfactory predictions, from 10 to 20% 

indicate relatively acceptable predictions, and larger than 20% indicate poor predictions. 

Regarding the CCC, values from 0.81 to 1.00 indicate perfect prediction ability, from 0.61 to 

0.80 substantial prediction ability, from 0.41 to 0.60 moderate prediction ability, and from 

0.21 to 0.40 fair prediction ability (Lin, 1989; Lopez-Villalobos et al., 2009). 

 

FA COMPOSITION OF MILK 

Milk fat and FA composition are important quality traits, as they influence the sensory 

attributes, technological properties, and nutritional value of milk, and are related to human 

health. Bovine milk contains 70% SFA, 25% MUFA, and 5% PUFA (Grummer, 1991). The 

daily intake of SFA from dairy products has great relevance for the consumer (Chilliard et al., 

2001) and the effects of variation of SFA, MUFA, and PUFA content in the diet on human 

health have been widely described (Mensink and Katan, 1992; German et al., 2009), along 

with the role of conjugated linoleic acid. Furthermore, FA composition influences the 

technological traits of butter, such as the spreadability (MacGibbon and McLennan, 1987). 

Therefore, feeding and breeding strategies to favourably alter the FA composition of bovine 

milk could be very beneficial. Recently, Lopez-Villalobos (2012) reviewed the genetic basis 

of FA and reported moderate heritability for FA, suggesting that the improvement of these 

traits through selection is feasible. 

In recent years, several authors have attempted to predict FA and groups of FA (GFA) 

using MIRS (Table 1). Studies were conducted using (1) different numbers of samples, (2) 

different spectra pretreatments, (3) different reference methods, and (4) different units of 

measures of FA and GFA. The number of milk samples used to build prediction models for 

FA and GFA ranged from 49 to 3,622 (Table 1) and influenced the PLS analysis, in particular 

the validation procedures (cross-validation vs. independent validation). The cross-validation 

procedure has been used for a limited number of samples, as reported by Soyeurt et al. (2006, 

2008) and De Marchi et al. (2011); however, independent validation is more commonly used 

(Rutten et al., 2009; Ferrand et al., 2011; Soyeurt et al., 2011; Maurice-Van Eijndhoven et al., 

2013). These studies were conducted on individual milk samples, mostly collected on 

different cow breeds; only De Marchi et al. (2011) used milk samples from a single breed and 
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reported difficulties in developing MIRS prediction models for several FA due to the limited 

range of variation of these compounds. 

Concerning the methods of spectra preprocessing, most studies have been conducted 

on untreated spectral data or, to a less extent, using first-derivative spectra pretreatment. 

Soyeurt et al. (2011) and De Marchi et al. (2011) investigated the variation in the accuracy of 

MIRS prediction models using different mathematical pretreatments; they reported quite 

similar results, with better accuracies of prediction models using derivative pretreatment with 

respect to untreated spectral data. 

The reference method for the assessment of FA composition is based on 2 major 

phases: fat extraction and gas chromatography analysis. The extraction procedure has been 

conducted using 3 methods and gas chromatography using very different columns and 

analytical conditions (Table 1). Because calibration models were carried out using different 

spectral data, statistical procedures, and gold standard methods, the effect of reference method 

on the accuracy of MIRS prediction models is not determinable. 

The unit of measure of FA and GFA is another crucial point in the development of 

accurate MIRS prediction models. Most studies expressed FA and GFA as the quantity per 

unit of milk, and only Soyeurt et al. (2006) and Rutten et al. (2009) predicted FA composition 

for FA expressed as quantity of total fat (Tables 2, 3, and 4). Both studies reported that, on 

average, the accuracy of MIRS prediction models were better when FA and GFA were 

expressed as quantity per unit of milk. This was also confirmed by De Marchi et al. (2011), 

who reported that the prediction of FA using MIRS is the combined effect of predicting fat 

content and fat composition. The prediction of FA is performed on milk samples, whereas 

reference methods for FA determination are performed on fat extracted from milk, which 

means that their relationship is affected also by the variation in fat percentage. Therefore, we 

will hereafter focus on prediction models developed on FA and GFA expressed per unit of 

milk. The difficulty of MIRS to predict FA when they are expressed on a fat basis represents a 

limitation in the application of this technique; in fact, this information is essential when the 

interest is to change only the fat composition (e.g., through selection). This situation 

represents a critical point also in the case of protein, as described in the following section and 

as previously reported by Rutten et al. (2011). 

The accuracies of prediction models for SFA from different studies are reported in 

Table 2. Overall, prediction models for C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, and C16:0 

showed high accuracy. Stearic acid (C18:0) had quite good predictability by MIRS, with 1 – 
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VR from 0.09 to 0.88. Only De Marchi et al. (2011) have attempted to predict C20:0, but with 

unsatisfactory results (1 − VR of 0.29). Prediction models achieved better results for SFA than 

unsaturated FA. Mid-infrared spectroscopy showed quite good potential to predict cis-9 C14:1 

(1 − VR from 0.07 to 0.53), cis-9 C16:1 (1 − VR from 0.28 to 0.65), trans-11 C18:1 (1 – VR 

from 0.31 to 0.63), and cis-9,cis-12,cis-15 C18:3 (1 − VR from 0.14 to 0.60; Table 3). Very 

good results were obtained for C18:1 (1 − VR from 0.53 to 0.91) and cis-9 C18:1 (1 − VR 

from 0.53 to 0.95). Only 3 studies have attempted to predict linolenic acid (cis-9,cis- 12,cis-15 

C18:3), obtaining low to medium accuracy of prediction. Mid-infrared spectroscopy showed 

medium potential to predict the 2 isomers of conjugated linoleic acid (cis-9,trans-11 C18:2 

and cis-9,cis-12 C18:2; Table 3), with 1 − VR from 0.07 to 0.71 and a wide variability of 

accuracy of prediction models. 

Regarding the GFA, MIRS prediction models highlighted very good accuracies; SFA 

and MUFA achieved 1 − VR up to 0.85 (Soyeurt et al., 2006, 2011; Ferrand et al., 2011; 

Maurice-Van Eijndhoven et al., 2013), with the exception of De Marchi et al. (2011), who 

reported 1 − VR of 0.52 and 0.55 for SFA and MUFA, respectively. Polyunsaturated FA were 

not very well predicted by MIRS (1 − VR from 0.10 to 0.41); only Soyeurt et al. (2011) found 

high 1 − VR for PUFA (0.81). Regarding the short-chain, medium-chain, and long-chain FA, 

results were often very satisfactory, with 1 − VR up to 0.90 (Table 4). The notably better 

results obtained by Soyeurt et al. (2011) could be related to (1) huge biological variability of 

calibration data (milk samples were collected from different breeds, countries, and production 

systems) and (2) statistical procedures that used several different mathematical pretreatments 

of spectral data. 

The accuracies of MIRS prediction models for major FA were better than for minor 

FA; the relationship between FA content in milk and accuracy of prediction was discussed by 

Soyeurt et al. (2006), Rutten et al. (2009), De Marchi et al. (2011), and Maurice-Van 

Eijndhoven et al. (2013). In particular, Rutten et al. (2009) and De Marchi et al. (2011) 

reported a strong relationship of FA concentration with 1 − VR and the RPD (which is the 

ratio of the standard deviation to standard error of validation of the trait; Williams, 2001). 

The accuracy of prediction models can be affected by the characteristics of the data set; 

in particular, breed of cows, stage of lactation, and season of sampling are the main aspects to 

take into consideration during sample collection (Rutten et al., 2009; Maurice- Van 

Eijndhoven et al., 2013). Moreover, as reported by Soyeurt et al. (2011), the variation of 

MIRS prediction accuracy is not only related to FA concentration but also to spectra 
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variability, the maximization of which is an effective way to improve the accuracy of 

prediction. 

In general, MIRS has widely demonstrated its potential to predict FA and GFA. 

Nevertheless, milk composition of calibration data set plays a fundamental role in building 

good prediction models. The development of MIRS prediction equations using milk selected 

from different breeds, countries, and seasons, and the use of the same reference method seem 

the best way to improve the accuracy and robustness of MIRS calibrations. 

 

MILK COAGULATION PROPERTIES AND ACIDITY 

The volume of milk destined for cheese manufacturing is growing worldwide and, 

thus, the characteristics of milk related to cheese making, and cheese yield and quality are 

relevant for the dairy industry. Milk coagulation properties, acidity, and protein composition 

are important actors in cheese production (Aleandri et al., 1989; Wedholm et al., 2006; De 

Marchi et al., 2009a; Pretto et al., 2013). 

Milk clotting characteristics affect the efficiency of the cheese-making process. Milk 

with good aptitude to coagulate after rennet addition and to form a firm curd has been 

associated with increased cheese yield compared with milk that poorly reacts to the presence 

of the enzyme (Bynum and Olson, 1982; Riddell-Lawrence and Hicks, 1989). Common 

measures of MCP are rennet coagulation time (RCT; min), curd-firming time (k20; min), and 

curd firmness (a30; mm). Several studies reported across-breed (Auldist et al., 2002, 2004; De 

Marchi et al., 2007, 2008) and genetic variation of MCP, measured by reference mechanical 

methods (Ikonen et al., 2004; Tyrisevä et al., 2004; Cassandro et al., 2008) and predicted by 

MIRS (Cecchinato et al., 2009). 

Prediction of MCP by MIRS has been investigated by Dal Zotto et al. (2008) and De 

Marchi et al. (2009b, 2013; Table 5). Dal Zotto et al. (2008) and De Marchi et al. (2009b) 

analysed individual cow milk samples using the computerized renneting meter (Polo Trade, 

Monselice, Italy) as reference method, and they developed MIRS prediction models for RCT 

and a30, and De Marchi et al. (2013) developed MIRS prediction models for MCP (including 

k20) of samples that coagulated beyond 30 min from rennet addition, using the Formagraph 

(Foss Electric A/S, Hillerod, Denmark) as a reference instrument. The best calibration models 

were developed by De Marchi et al. (2013); according to Table 5, 1 − VR were 0.76, 0.72, and 

0.76; the root mean square error of cross-validation (RMSEcv) were 7.05 min, 3.54 min, and 

7.68 mm; and the RPD were 2.03, 1.86, and 1.80 for RCT, k20, and a30, respectively. 
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Results of De Marchi et al. (2013) on an extended testing time of analysis (60 min 

instead of the typical 30 min) showed notably better prediction models for RCT and a30 than 

those reported by Dal Zotto et al. (2008) and De Marchi et al. (2009b; Table 5). Moreover, De 

Marchi et al. (2013) highlighted the potential of MIRS to predict k20, which is considered a 

trait of great practical importance in the dairy industry, as it suggests the optimal time at 

which curd-cutting should commence and, thus, it is related to product yield and quality 

(Bynum and Olson, 1982). Nevertheless, the comparison of papers in the literature is difficult 

because of different reference methods and the different types and concentrations of rennet 

used. The role of different methodologies in the assessment of MCP was investigated by 

Pretto et al. (2011), who proposed a method for the transformation of MCP obtained from 

various methodologies, and by Cipolat-Gotet et al. (2012), who compared MCP determined 

by Formagraph and by an optical instrument. 

The prediction model for curd firmness 60 min after rennet addition was not 

completely satisfactory, as 1 −VR, RMSEcv, and RPD for this trait were 0.40, 7.26 mm, and 

1.26, respectively (De Marchi et al., 2013). The low accuracy of prediction might be related to 

low accuracy of reference analysis for late-coagulating milk samples. This was previously 

reported by Cipolat-Gotet et al. (2012), who found large variability for curd firmness 

measured 45 min after rennet addition. 

Finally, in most studies MIRS prediction models were developed using untreated 

spectral data. This consisted with the results reported by De Marchi et al. (2009b) who 

investigated the effect of different spectra pretreatments for the prediction of MCP, showing 

better accuracies using untreated spectral data with respect to first- or second-derivative 

pretreatments. 

Concerning milk acidity, 2 main measures could be identified: pH and titratable acidity 

(TA). Both traits are very important in cheese production. Titratable acidity is related to the 

aggregation rate of paracaseinate micelles, the reactivity of rennet, and the rate of syneresis; 

usually, milk with low values of TA (hypoacid milk) is considered unsuitable for cheese 

making (Formaggioni et al., 2001). The pH of milk affects enzymatic and aggregation 

reactions. De Marchi et al. (2009b) evaluated the potential of MIRS to predict TA and pH 

(Table 5); results were quite satisfactory, as 1 − VR were 0.59 and 0.66, and RMSEcv were 

0.07 and 0.25 Soxhlet-Henkel degrees (°SH)/50 mL for pH and TA, respectively. Quite 

similar results were found by Colinet et al. (2010), who predicted TA with 1 – VR greater 

than 0.90 and RPD of 3.13. 
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Overall, MIRS is a valid tool for predicting MCP and milk acidity of bovine milk and, 

thus, it might be adopted in payment systems to reward or penalize producers of milk, 

according to its clotting characteristics, as well as for breeding purposes (Tiezzi et al., 2013; 

Penasa et al., 2014). 

 

MILK PROTEIN COMPOSITION 

Milk proteins have gained interest in dairy organizations worldwide mainly for their 

role in cheese production. Several studies have dealt with the effects of milk protein 

polymorphisms, in particular those of casein, on MCP (Comin et al., 2008; Heck et al., 2009; 

Penasa et al., 2010) and cheese yield (Wedholm et al., 2006; Bonfatti et al., 2011). 

Furthermore, milk proteins are relevant for some aspects related to human nutrition, such as 

the release of peptides with biological function (Caroli et al., 2009). Lactoferrin is one of these 

proteins and it can be found in most biological fluids (e.g., colostrum, milk, and blood). 

Lactoferrin is important for immune system maintenance, as it has antibacterial, antifungal, 

and antiviral properties (Farnaud and Evans, 2003; Baker and Baker, 2005). 

Heritability estimates of individual milk proteins are moderate to high, suggesting 

wide opportunity to alter the composition in cow milk using breeding if individual 

measurements of milk protein fractions are available on a large scale (Lopez-Villalobos, 

2012). 

Mid-infrared prediction models for protein, casein, and casein fractions are shown in 

Table 6. Only De Marchi et al. (2009a), Bonfatti et al. (2011), and Rutten et al. (2011) 

developed prediction models for casein fractions, whereas Luginbuhl (2002), Sorensen et al. 

(2003), and Etzion et al. (2004) reported predictions only for casein and protein contents. As 

in the case of FA composition, reference methods play a basic role in the development of 

prediction models for milk protein composition. Studies that dealt with the use of MIRS to 

predict protein and casein contents referred to the Kjeldahl analytical method (Sorensen et al., 

2003), and they reported excellent 1 − VR and RMSEcv of 0.94 to 0.97, and 0.08 to 0.05 

g/100 g of milk, respectively (Table 6). On the other hand, MIRS models for casein and whey 

fractions measured using capillary zone electrophoresis or reversed-phase HPLC as reference 

methods showed moderate predictive ability (De Marchi et al., 2009a; Bonfatti et al., 2011; 

Rutten et al., 2011). On average, casein fractions were better predicted when the reference 

method was HPLC than capillary zone electrophoresis. We can hypothesize that the 

accuracies of gold standard methods play a key role in the development of infrared prediction 
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models. Moreover, in this specific case and as reviewed by Recio et al. (1997), HPLC 

methods showed better accuracies with respect to capillary zone electrophoresis in the 

determination of protein composition. 

The best prediction models were described by Bonfatti et al. (2011), with 1 − VR of 

0.66, 0.49, 0.53, 0.63, and 0.40 for αS1-CN, αS2-CN, β-CN, κ-CN, and γ-CN, respectively, 

whereas no satisfactory results were obtained by Rutten et al. (2011), who reported 1 – VR of 

0.18 and 0.28 for αS1-CN and κ-CN, respectively. De Marchi et al. (2009a) showed slightly 

lower accuracies compared with Bonfatti et al. (2011), analysing similar data and using the 

same reference methods. Bonfatti et al. (2011) tried to predict casein fractions changing the 

unit of measurement of the traits (percentage of protein or casein); results were not 

satisfactory compared with those obtained from traits expressed per unit of milk and this 

confirms previous findings for FA. 

Regarding the total whey protein and whey protein fractions, very similar results were 

obtained by De Marchi et al. (2009a), Bonfatti et al. (2011), and Rutten et al. (2011), with 1 − 

VR, on average, of 0.55, 0.35, and 0.55 for total whey protein, α-LA, and β-LG, respectively 

(Table 7). As with casein fractions, MIRS predictions of whey fractions were better when 

traits were expressed per unit of milk. Concerning the spectra pretreatments, the scientific 

literature reported contradictory results; in fact, De Marchi et al. (2009a) and Rutten et al. 

(2011) used untreated spectral data, whereas Bonfatti et al. (2011) used several preprocessed 

spectra methods. 

According to Table 7, 1 − VR values for predicted lactoferrin would be 0.66, 0.73, and 

0.75 in Lopez-Villalobos et al. (2009), Soyeurt et al. (2012), and Soyeurt et al. (2007), 

respectively. The prediction models were developed using 2 gold standard methods: (1) a 

commercial ELISA kit in the case of Soyeurt et al. (2007, 2012) and (2) HPLC in the case of 

Lopez-Villalobos et al. (2009). The large number (n = 2,499) and the origin (3 countries) of 

milk samples, combined with first derivative pretreatments, were probably responsible for the 

better prediction of lactoferrin from Soyeurt et al. (2012) compared with the other studies. 

In general, results of the reviewed studies indicate that MIRS cannot predict milk 

protein composition with high accuracy and, hence, the prediction models are not currently 

suitable for the dairy industry (e.g., milk payment system). 
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COW HEALTH AND ENERGY STATUS 

Mid-infrared spectroscopy has been studied as potential tool to predict several milk 

traits related to cow health and robustness, which are closely related to cow fertility and 

production. This is the case for ketosis, a metabolic disorder that affects high-producing cows 

and causes a loss of production and infertility. Ketosis is related to the abnormal increase of 

acetone and BHBA in blood and milk, and the potential to predict the ketone bodies using 

MIRS has been tested by several authors. Hansen (1999) obtained 1 – VR and RMSEcv of 

0.81 and 0.27 mM, respectively, for acetone content of bovine milk; these results were useful 

for screening purposes (healthy vs. potential ketotic cows). Heuer et al. (2001) studied the 

ability of MIRS to predict acetone content and found greater 1 – VR compared with Hansen 

(1999), a specific relationship between 1,370 and 1,239 cm−1 wavelengths and acetone 

prediction, and an advantage in the accuracy of prediction related to second-derivative spectra 

pretreatment. The results reported by Hansen (1999) and Heuer et al. (2001), which allowed 

the screening of cows with subclinical ketosis, were confirmed by the calibration models 

developed by de Roos et al. (2007). de Roos et al. (2007) investigated the potential of MIRS 

to predict acetone and BHBA concentrations on 1,080 bovine samples and reported RMSEcv 

of 0.184 and 0.064 mM for acetone and BHBA, respectively. The ability of MIRS to predict 

acetone and BHBA concentrations was also demonstrated by van Knegsel et al. (2010), who 

reported that cow hyperketonemia could be better predicted using models developed for 

acetone and BHBA contents than using fat-to-protein ratio. 

The negative energy balance, typical of dairy cows, especially in early lactation (Berry 

et al., 2006, 2009), is known to be related to animal health and fertility (Beam and Butler, 

1999). Several studies estimated genetic association between negative energy balance and 

animal health (Collard et al., 2000; Veerkamp et al., 2000), and proposed energy balance 

predictors such as change in BCS, milk fat-to-protein ratio, and FA composition of milk (de 

Roos et al., 2007; Roche et al., 2009; Stoop et al., 2009). 

McParland et al. (2011) investigated the feasibility of using the MIRS spectrum as an 

indicator of body energy status in Holstein cows; the authors found quite satisfactory 

accuracies for direct energy balance, with 1 − VR from 0.50 to 0.56. However, the prediction 

models were developed using data from a single herd and 2 diets that differed only for the 

level of concentrates offered, and this might have affected the variability of data. McParland 

et al. (2012) went on to evaluate the ability of MIRS to predict body energy status across the 

United Kingdom and Ireland in both confinement and grazing systems. The accuracies of 
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prediction models were quite satisfactory, with square root of the coefficients of multiple 

determination from 0.47 to 0.69, 0.51 to 0.56, and 0.76 to 0.80 for direct energy balance, body 

energy content, and energy intake, respectively. Moreover, in the same study, McParland et al. 

(2012) highlighted the importance of limiting the error on the reference measurements to 

obtain a satisfactory equation. In conclusion, MIRS prediction models developed by 

McParland et al. (2011, 2012) provided useful information on the energy status of cows to 

dairy farmers; in fact, through routine recording of these traits, changes in the energy status of 

cows could be related to herd management practices or cow individual characteristics (e.g., 

genetic merit). 

 

MINERAL COMPOSITION OF MILK AND OTHER TRAITS 

Minerals in milk play a key role for human health and for some technological aspects 

(e.g., coagulation process). Recently, Caroli et al. (2011) reviewed the relationships between 

the intake of several milk and dairy products and bone health (e.g., osteoporosis), with 

particular emphasis to calcium and other macro- and micronutrients. Calcium associated with 

phosphorus influenced the ability of milk to coagulate and affected the final consistency of 

coagulum (Fossa et al., 1994; Mariani et al., 1996). 

As for the previously reviewed traits, the opportunity to predict mineral composition 

using MIRS is desirable, as it allows rapid and large-scale data recording. Only Soyeurt et al. 

(2009) investigated the potential of MIRS to predict the calcium, phosphorus, magnesium, 

sodium, and potassium content of cow milk based on the inductively coupled plasma atomic 

emission spectrometry gold method. Results showed the ability of MIRS to predict calcium 

and phosphorus (1 − VR of 0.87 and 0.85, respectively), reasonable accuracies for magnesium 

and sodium (coefficient of determination in cross-validation of 0.65), and unsatisfactory 

results for potassium. Moreover, Soyeurt et al. (2009) reported that inductively coupled 

plasma atomic emission spectrometry without mineralization was an inappropriate method to 

determine the sodium concentration in milk. 

Recently, Toffanin and De Marchi (2013) investigated the effectiveness of MIRS to 

predict calcium and phosphorus, and the relations of these traits with MCP. Milk samples of 

about 200 Holstein-Friesian cows were collected and MIRS spectra and reference values 

obtained by the inductively coupled plasma atomic emission spectroscopy method were 

recorded. Statistical analysis using external and cross-validation procedures showed quite 
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satisfactory results, with 1 − VR ranging from 0.50 to 0.60 and from 0.67 to 0.80 for calcium 

and phosphorus, respectively. 

Mid-infrared spectroscopy has also been used to predict hydrochloride tetracycline 

concentration in milk (Sivakesava and Irudayaraj, 2002); those authors reported very high 

accuracy of prediction using a limited range of tetracycline concentration (4 to 2,000, 520 to 

2,000, and 4 to 520 ppb) and first-derivative spectra pretreatment. More recently, MIRS has 

been used to predict methane emission of dairy cows (Dehareng et al., 2012) on a limited 

number of animals fed 2 diets to induce large variation in methane emissions, measured using 

the sulphur hexafluoride method. Prediction models were developed using the average daily 

milk spectrum that was collected at 5 different times over 5 d from each diet to find the best 

relationship between methane emissions and spectra information. The best results were 

obtained for spectra collected for 1.5 d after methane determination, with 1 − VR of 0.79. 

Moreover, an interesting relationship between FA and methane emissions was confirmed. 

Dehareng et al. (2012) suggested the use of MIRS models for screening purposes; however, 

the application of MIRS to predict methane emission needs to be further studied. 

 

CONCLUSIONS AND PERSPECTIVES 

Mid-infrared spectroscopy is a fast, large-scale, and low-cost methodology for 

collecting phenotypes. Its potential to predict milk quality traits (e.g., FA composition, MCP, 

and mineral content) and other milk characteristics related to cow health and energy status has 

been demonstrated. In the near future, MIRS could be used for the prediction of other milk 

traits: (1) potassium, magnesium, and zinc content, which are important for transmitting nerve 

impulses, for mineral structure of bones, for wound healing, and healthy immune systems; (2) 

phospholipids and acidic glycolipids, which are important for infant development; (3) 

vitamins A and B, which are important for healthy eyes and skin; (4) sensory features, which 

are important for the characterization of milk taste, beyond its nutritional value; (5) cheese 

yield; and (6) whey components, such as glutathione, α-tocopherol, and vitamin C. 

Several studies on the effect of spectra pretreatment and type of software are needed. 

From this point of view, the effect of the use of mathematical pretreatments is not completely 

known, especially when prediction models are developed for a new trait for which the success 

of calibration models is related to several spectra peaks. Moreover, the potential of different 

statistical software packages should be investigated; in fact, no studies have been conducted to 

compare the performance of chemometric with general statistics software. 
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Efforts should be made to transfer prediction models for new phenotypes to MIRS 

instruments available in milk laboratories to allow routine data recording at the population 

level. To facilitate the implementation of MIRS models in field conditions, close collaboration 

with companies producing MIRS instruments is recommended. 

Another crucial point for improving the use of MIRS is to favor the exchange of 

spectra databases among countries to develop across-country MIRS prediction models that 

take into account the biological variability of the studied traits in different environmental 

conditions. To do this, standardized reference methods within and across country are needed. 

As reviewed in this paper, large variability of reference methods used for MIRS calibration 

exists, and this does not facilitate the exchange and comparison of predicted phenotypes from 

different countries. 

Finally, MIRS allows the recording of many new phenotypes that can be used for 

breeding purposes. The application of MIRS predictions in breeding programs depends upon 

the genetic correlation between the predicted and measured values. If the correlation and the 

genetic variance of MIRS phenotypes are sizable with reasonable accuracies, practical utility 

exists in the MIRS models. 
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Figure 1. Example of untreated, first derivative, and second derivate spectra. 
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Figure 2. Published papers (retrieved from ISI Web Of Science; http://thomsonreuters.com/web-

of-science/) on mid-infrared spectroscopy (MIRS) and milk. For 2013, papers published up to 

October are reported. 
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Table 1. Number of calibration samples, number of breeds, reference method, and validation procedures used in the studies aimed at developing mid-infrared spectroscopy (MIRS) 

prediction models for milk FA 

Reference n
1
 Dairy breed Reference method 

Spectra 

pre-treatments
2
 

Validation 

procedure 

Soyeurt et al. (2006) 49 Multibreed 

ISO standard 14156:2001. 

Column: length of 50 m, internal diameter of 0.25 mm, film 

thickness of 0.20 µm. Average velocity of 35cm/s, flame-

ionization detector at 265°C, temperature program from 40 to 

250°C. 

Untreated 
Cross-

validation 

Soyeurt et al. (2008) 78 Multibreed 

ISO standard 14156:2001. 

Column: length of 100 m, internal diameter of 0.25 mm, film 

thickness of 0.20 µm. Average velocity of 19 cm/s, flame-

ionization detector at 255°C, temperature program from 60 to 

225°C. 

Untreated 
Cross-

validation 

Rutten et al. (2009) 3,622 - 

ISO standard 15884. 

Column: length of 100 m, internal diameter of 0.25 mm. 

Temperature held at 225°C for 5 min. 
VSS of Hoskuldsson External 

De Marchi et al. (2011) 267 Single breed 

Mele et al. (2009). 

Column: length of 100 m, internal diameter of 0.25 mm, film 

thickness of 0.20 µm, injector temperature set at 270°C, 

detector temperature set at 300°C, temperature program from 

60 to 230°C. 

1D, MSC+1D 
Cross-

validation 

Ferrand et al. (2011) 250 Multibreed 

ISO standard 14156, IDF172. 

Column: length of 100 m. Splitless injector at 250°C, flame 

detector at 250°C, temperature program from 70 to 215 °C. 

Untreated External 

Soyeurt et al. (2011) 517 Multibreed 

ISO standard 14156:2001. 

Column: length of 50 m, internal diameter of 0.25 mm, film 

thickness of 0.20 µm, average velocity of 19 cm/s, cold on-

column injector, flame-ionization detector at 255°C, 

temperature program from 60 to 225°C. 

1D, 2D External 

Maurice-Van Eijndhoven et al. (2013) 1,236 Multibreed 
ISO standard 15884. 

Column: length of 100 m, internal diameter of 0.25 mm. 
1D External 

1
Number of samples used for calibration models. 

2 
VSS = variable selection strategy; 1D = first derivative; 2D = second derivative; MSC = multiplicative scatter correction. 
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Table 2. Unit of measurement, coefficient of determination, and prediction error (in parentheses) of validation procedures for mid-infrared spectroscopy (MIRS) prediction 

models of selected SFA 

Reference Unit 
SFA 

C4:0 C6:0 C8:0 C10:0 C12:0 C14:0 C16:0 C18:0 C20:0 

Soyeurt et al. (2006) 

g/dL of milk 
0.51 

(0.08) 

0.52 

(0.04) 

0.59 

(0.02) 

0.64 

(0.04) 

0.74 

(0.02) 

0.82 

(0.05) 

0.82 

(0.17) 

0.69 

(0.13) 
- 

g/100g of fat 
0.39 

(1.60) 

0.41 

(0.98) 

0.46 

(0.50) 

0.53 

(0.90) 

0.64 

(0.53) 

0.67 

(1.14) 

0.50 

(3.50) 

0.09 

(2.77) 
- 

Soyeurt et al. (2008) g/dL of milk - - - - - 
0.90 

(0.05) 

0.84 

(0.17) 

0.85 

(0.10) 
- 

Rutten et al. (2009)
1
 

g/dL of milk 
0.91 

(0.1) 

0.96 

(0.2) 

0.94 

(0.5) 

0.92 

(0.1) 

0.85 

(0.3) 

0.94 

(0.03) 

0.94 

(0.1) 

0.82 

(0.7) 
- 

g/100g of fat 
0.55 

(0.0) 

0.73 

(0.3) 

0.73 

(0.6) 

0.75 

(0.2) 

0.68 

(0.3) 

0.73 

(0.3) 

0.71 

(0.0) 

0.51 

(1.2) 
- 

De Marchi et al. (2011) g/kg of milk - - 
0.55 

(0.07) 

0.53 

(0.19) 

0.56 

(0.25) 

0.59 

(0.60) 

0.49 

(1.59) 

0.42 

(0.75) 

0.29 

(0.01) 

Ferrand et al. (2011) g/100mL 
0.90 

(0.005) 

0.96 

(0.002) 

0.96 

(0.002) 

0.91 

(0.006) 

0.91 

(0.007) 

0.93 

(0.015) 

0.90 

(0.058) 

0.77 

(0.033) 
- 

Soyeurt et al. (2011) g/dL of milk 
0.89 

(0.01) 

0.95 

(0.01) 

0.93 

(0.00) 

0.92 

(0.01) 

0.92 

(0.01) 

0.95 

(0.03) 

0.93 

(0.08) 

0.88 

(0.06) 
- 

Maurice-Van Eijndhoven et al. (2013) g/dL of milk 
0.92 

(0.012) 

0.93 

(0.006) 

0.92 

(0.005) 

0.93 

(0.019) 

0.85 

(0.036) 

0.95 

(0.039) 

0.93 

(0.192) 

0.72 

(0.132) 
- 

1
Prediction bias within parentheses. 
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Table 3. Unit of measurement, coefficient of determination, and prediction error (in parentheses) of validation procedures for mid-infrared spectroscopy (MIRS) prediction 

models of selected unsaturated FA 

Reference Unit 

Unsaturated FA 

cis-9 

C14:1 

cis-9 

C16:1 
C18:1 cis-9 

C18:1 

trans-11 

C18:1 
cis-9 trans-11 

C18:2 

cis-9,12 

C18:2 

cis-9,12,15 

C18:3 

Soyeurt et al. (2006) 

g/dL of milk 
0.07 

(0.01) 

0.65 

(0.02) 

0.88 

(0.18) 
- - 

0.07 

(0.02) 

0.62 

(0.02) 

0.14 

(0.01) 

g/100g of fat 
0.23 

(0.28) 

0.37 

(0.37) 

0.53 

(3.99) 
- - 

0.34 

(0.37) 

0.44 

(0.11) 

0.20 

(0.20) 

Soyeurt et al. (2008) g/dL of milk 
0.53 

(0.01) 

0.28 

(0.03) 
- - - - - - 

Rutten et al. (2009)
1
 

g/dL of milk - - - 
0.92 

(0.3) 
0.63 (0.4) 

0.58 

(1.0) 

0.36 

(0.9) 

0.45 

(3.3) 

g/100g of fat - - - 
0.84 

(0.5) 
0.57 (0.6) 

0.56 

(1.1) 

0.28 

(0.6) 

0.38 

(2.8) 

De Marchi et al. (2011) g/kg of milk 
0.46 

(0.08) 

0.36 

(0.11) 
- 

0.53 

(1.13) 
0.31 (0.09) 

0.34 

(0.04) 
- - 

Ferrand et al. (2011) g/100mL of milk - - 
0.91 

(0.037) 

0.91 

(0.036) 
- - 

0.65 

(0.004) 
- 

Soyeurt et al. (2011) g/dL of milk - - - 
0.95 

(0.06) 
- 

0.63 

(0.01) 

0.71 

(0.01) 

0.60 

(0.01) 

Maurice-Van Eijndhoven et al. (2013) g/dL of milk - - - - - - - - 
1
Prediction bias within parentheses.  
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Table 4. Unit of measurement, coefficient of determination, and prediction error (in  parentheses) of validation procedures for  mid-infrared spectroscopy (MIRS) 

prediction models of selected groups of FA 

Reference Unit 
FA category

1
 

SFA UFA MUFA PUFA SC MC LC 

Soyeurt et al. (2006) 
g/dL of milk 

0.94 

(0.20) 

0.66 

(0.34) 

0.85  

(0.22) 

0.39  

(0.04) 
- - - 

g/100g of fat 
0.63 

(3.75) 

0.63 

(3.75) 

0.52  

(4.10) 

0.10  

(0.74) 
- - - 

Rutten et al. (2009)
2
 

g/dL of milk - - - - 0.95
1
 (0.0) 0.97

2
 (0.0) - 

g/100g of fat - - - - 0.82 (0.3) 
0.77  

(0.1) 
- 

De Marchi et al. (2011) g/kg of milk 
0.52 

(2.97) 

0.50 

(1.57) 

0.55  

(1.39) 

0.41  

(0.22) 
- 0.53 (2.66) 

0.58 

(1.94) 

Ferrand et al. (2011) g/100mL of milk  
0.98 

(0.038) 

0.91 

(0.043) 
0.92 (0.040) 0.38 (0.008) 

0.97
3
 

(0.008) 
- - 

Soyeurt et al. (2011) g/dL of milk 
0.99 

(0.08) 

0.97 

(0.07) 

0.97  

(0.06) 

0.81  

(0.02) 
0.95 (0.02) 0.96 (0.12) 

0.96 

(0.12) 

Maurice-Van Eijndhoven et al. (2013) g/dL of milk 
0.99 

(0.078) 
- - - 

0.95 

(0.028) 
0.96 (0.190) - 

1
UFA = unsaturated FA; SC = short-chain FA; MC = medium-chain FA; LC = long-chain FA. 

2
Prediction bias within  parentheses. 
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Table 5. Number of calibration samples, dairy breed, reference method, range, spectra pre-treatments, coefficient of determination (1-VR, where VR = variance ratio), and SE of 

cross-validation (SECCV) of validation procedures for mid-infrared prediction models of milk coagulation properties and milk acidity 

Reference Trait
1
 n Dairy breed Reference method

2
 Range 

Spectra pre-

treatments
3
 

1-VR SECCV 

Dal Zotto et al. (2008) 
RCT, min 

158 Holstein-Friesian CRM 
9.20-25.8 1D 0.73 1.80 

a30, mm 11.00-55.00 1D 0.45 5.49 

De Marchi et al. (2009b) 

RCT, min 

1,064 Brown Swiss 

CRM 
4.40-29.30 Untreated 0.62 2.36 

a30, mm 6.00-64.00 Untreated 0.37 6.86 

pH  5.88-7.03 1D, 1D+N 0.59 0.07 

TA, °SH/50mL  1.19-4.77 1D 0.66 0.25 

De Marchi et al. (2013) 

RCT, min 

350 Holstein-Friesian FOR 

7.75-59.00 Untreated 0.76 7.05 

k20, min 2.00-28.45 Untreated 0.72 3.54 

a30, mm 0.36-51.30 Untreated 0.70 7.68 

a60, mm 0.76-40.96 Untreated 0.40 7.26 

1
RCT = rennet coagulation time; a30 = curd firmness 30 min after rennet addition; TA = titratable acidity; °SH = Soxhlet-Henkel degree; k20 = curd-firming time; a60 = curd 

firmness 60 min after rennet addition; 

2
CRM = computerized renneting meter (Polo Trade, Monselice, Italy); FOR = Formagraph (Foss Electric A/S, Hillerød, Denmark). 

3
1D = first-derivative; 1D+N = first derivative and normalization. 
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Table 6. Unit of measurement, coefficient of determination, and prediction error (in parentheses) of validation procedures for mid-infrared spectroscopy (MIRS) prediction models of 

total protein, total casein, and protein fractions 

Reference 
Spectra pre-

treatments
1
 

Unit 

Protein 

Protein Casein αS1-CN αS2-CN β-CN κ-CN γ-CN 

Luginbühl et al. (2002) - g/100g of milk - 0.997 (0.047) - - - - - 

Sørensen et al. (2003) - % - 0.97 (0.035) - - - - - 

Etzion et al. (2004) - % 0.94 (0.08) - - - - - - 

De Marchi et al. (2009a) Untreated g/L of milk 0.58 (3.11) 0.58 (2.76) 0.50 (1.07) 0.35 (0.58) 0.33 (1.77) 0.44 (0.68) - 

Bonfatti et al. (2011) 

 

SNV, De, MSC, 

1D, 2D 

g/L of milk  0.78 (2.13) 0.77 (1.91) 0.66 (0.89) 0.49 (0.48) 0.53 (1.37) 0.63 (0.55) 0.40 (0.10) 

% protein - - 0.23 (1.95) 0.17 (1.08) 0.13 (2.42) 0.36 (1.44) 0.08 (1.00) 

% casein - - 0.20 (2.34) 0.19 (1.25) 0.16 (2.63) 0.36 (1.62) 0.09 (1.14) 

Rutten et al. (2011) Untreated g/100g of milk  - 0.25 (1.50) 0.18 (1.52) 0.26 (1.20) 0.19 (1.42) 0.28 (0.49) - 

1
SNV = standard normal variate; De = detrend; MSC = multiplicative scatter correction; 1D = first derivative; 2D = second derivative. 
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Table 7. Unit of measurement, coefficient of determination, and prediction error (in parentheses) of validation procedures for mid-infrared spectroscopy (MIRS) 

prediction models of whey protein and selected whey protein fractions 

Reference 

Spectra pre- 

treatments
1
 Unit 

Protein 

Whey protein α-LA β-LG Lactoferrin 

Soyeurt et al. (2007) Untreated mg/L of milk - - - 0.75 (103.93) 

De Marchi et al. (2009a) Untreated g/L of milk 0.53 (0.51) 0.29 (0.19) 0.55 (0.43) - 

Lopez-Villalobos et al. (2009) Untreated mg/L of milk - - - 0.81
2
 

Bonfatti et al. (2011) 

 

SNV, De, MSC,  

1D, 2D 

g/L of milk 0.61 (0.45) 0.31 (0.18) 0.64 (0.37) - 

% protein - 0.31 (0.42) 0.42 (0.74) - 

% whey protein - - 0.36 (3.02) - 

Rutten et al. (2011) Untreated g/100g of milk 0.53 (0.84) 0.20 (0.29) 0.56 (0.79) - 

Soyeurt et al. (2012) 
Untreated, rep, 1D, 1D+rep,  

2D, 2D+rep 
mg/L of milk - - - 0.73 (50.55) 

1
SNV = standard normal variate; De = detrend; MSC = multiplicative scatter correction; 1D = first derivative; 2D = second derivative; rep = 

repeatability file. 

2
Concordance correlation coefficient calculated according to Lin (1989). 
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ABSTRACT 

Over the last years, a general deterioration of milk coagulation properties (MCP) has 

been observed in Italy, and thus the prediction of noncoagulating (NC) milk, defined as milk 

not forming a curd within 30 min from rennet addition, is of immediate interest in the Italian 

cheese industry. The present study investigated the ability of mid-infrared (MIR) spectroscopy 

to predict NC milk using individual and bulk samples from Holstein cows. Samples were 

selected according to MIR analysis to cover the range of coagulation time between 5 and 60 

min. Milks were then analysed for MCP through the reference instrument (Formagraph) over 

an extended testing-period of 60 min to identify coagulating and NC samples. Measured traits 

were rennet coagulation time, curd-firming time, and curd firmness 30 and 60 min after rennet 

addition. Results showed that there is no specific spectral information that distinguishes NC 

from coagulating samples. The most accurate prediction model was developed for rennet 

coagulation time followed by curd-firming time and curd firmness 30 min after rennet 

addition, whereas curd firmness 60 min after enzyme addition could not be accurately 

predicted. Based on these findings, MIR spectroscopy might be proposed in payment systems 

to reward or penalize milk according to MCP. Moreover, the ability of MIR spectroscopy to 

predict MCP of samples that form a curd beyond 30 min from enzyme addition may be of 

interest for genetic improvement of coagulation traits in dairy breeds, because until now most 

studies have excluded NC information from genetic analysis, leading to possible biases in the 

estimation of genetic parameters and in the prediction of sire’s merit for MCP. 

Key words: mid-infrared spectroscopy, milk coagulation property, Holstein Friesian, 

phenotyping 

 

INTRODUCTION 

The Italian dairy industry relies heavily on milk coagulation properties (MCP) as they 

influence the efficiency of cheese-making process (Pretto et al., 2013). Milk with good 

aptitude to coagulate after rennet addition and to form a firm curd has been associated with 

increased cheese yield compared with milk that poorly react to the presence of the enzyme 

(Bynum and Olson, 1982; Riddell-Lawrence and Hicks, 1989; De Marchi et al., 2008). During 

the last decades, MCP have been deteriorating in Italy (Sandri et al., 2001), with an elongation 

of the rennet coagulation time (RCT, min) and an increase of the percentage of 

noncoagulating (NC) milk, which has been conventionally defined as milk not forming a curd 

within the testing time of 30 min (e.g., Ikonen et al., 1999; Tyrisevä et al., 2003) or 31 min 
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(e.g., Ikonen et al., 2004; Cassandro et al., 2008; Penasa et al., 2010) from rennet addition. As 

the proportion of cows producing NC milk is increasing, a negative impact on profitability 

and efficiency of the dairy sector is expected. Noncoagulating milk is detrimental for the 

cheese industry and thus it is economically penalized in certain dairy chains, such as in 

Parmigiano-Reggiano and Trentingrana cheese production, where coagulation traits are 

determined by the Formagraph and are considered in milk quality payment system. Also, 

blending well-coagulating with NC (Frederiksen et al., 2011) or poorly coagulating (Okigbo et 

al., 1985b) milk compromises MCP of the resulting mix. 

Several studies on MCP faced the problem of NC samples and investigated causes 

underlying their occurrence. Although neither environmental nor genetic factors can 

thoroughly explain the phenomenon, associations of NC milk with pH (Okigbo et al., 1985c; 

Tyrisevä et al., 2003), SCC and mastitis (Okigbo et al., 1985a), k-CN concentration and 

genotypes (Wedholm et al., 2006; Hallén et al., 2010; Frederiksen et al., 2011), and stage of 

lactation (Okigbo et al., 1985c; Tyrisevä et al., 2003; Ikonen et al., 2004) have been reported. 

Moreover, Harzia et al. (2012) found that the metabolic profile of NC milk was significantly 

different from that of well-coagulating milk, and thus a relationship between metabolic profile 

and MCP exists. The same authors compared NC and well-coagulating milk, and highlighted 

significant differences in terms of pH, SCS, and fat, protein, and urea contents.  

Besides environmental factors, also breed and additive genetic effects seem to influence 

the occurrence of NC milk. There are marked differences in the proportion of NC samples 

among cattle breeds: for example, it was 8 to 13.2% in Finnish Ayrshire (Ikonen et al., 1999 

and 2004; Tyrisevä et al., 2003 and 2004), 1.3 to 9.7% in Holstein-Friesian (Tyrisevä et al., 

2004; Cassandro et al., 2008), and 0.3% in Estonian Holstein (Vallas et al., 2010). However, 

the comparison of the occurrence of NC samples from different breeds should be made with 

caution as the experimental conditions often differ among studies, particularly in terms of 

sampling procedures and analytical conditions, such as the use or not of preservative in the 

milk, the age of sample, the type of instrument (e.g., mechanical vs. optical), the type and 

activity of the coagulant, and the temperature of analysis (Pretto et al., 2011; Cipolat-Gotet et 

al., 2012). Evidence exist that additive genetic effects (Ikonen et al., 1999 and 2004; Tyrisevä 

et al., 2003 and 2004) and two potential candidate genes (Tyrisevä et al., 2008) are associated 

with the noncoagulation of milk and that there are large differences in the proportion of 

daughters with NC milk among sires. Although several studies discarded NC samples from 

the genetic analysis, the inclusion or not of NC milk information in statistical models aiming 
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at estimating covariance components for MCP has an influence on the assessment of genetic 

parameters for coagulation traits (Ikonen et al., 2004; Cecchinato et al., 2011). 

Few studies have dealt with measures of MCP beyond the conventional time of 30-31 

min from coagulant addition (Mariani et al., 1997; Auldist et al., 2002 and 2004; O’Brien et 

al., 2002; Frederiksen et al., 2011; Cipolat-Gotet et al., 2012). Extending the coagulation 

analysis beyond this threshold may notably reduce the proportion of NC milks as longer time 

is allowed for the sample to coagulate (Cipolat-Gotet et al., 2012). However, the use of 

traditional instruments (e.g., the Formagraph) to determine MCP is applicable only to small-

scale experiments and not at population level. 

Mid-infrared (MIR) spectroscopy has been recently evaluated as potential tool to collect 

MCP data at population level for phenotypic and genetic purposes (Dal Zotto et al., 2008; 

Cecchinato et al., 2009; De Marchi et al., 2009). De Marchi et al. (2009) discussed the 

prediction of RCT and curd firmness 30 min after rennet addition (a30, mm) through MIR 

spectroscopy using coagulated samples of Brown Swiss cows, and found that models were 

most applicable for RCT. However, MIR spectroscopy predictions of individual samples may 

play an important role as indicator traits in selective breeding to enhance MCP. No studies are 

currently available in the literature that attempted to predict NC samples. Therefore, the aim 

of this work is to investigate the capability of MIR spectroscopy to predict coagulating and 

NC milk in dairy cows. 

 

MATERIALS AND METHODS 

Milk Samples Collection and Reference Analysis 

In September 2011, prediction models for MCP were installed on Milko-Scan FT6000 

(Foss Electric A/S, Hillerød, Denmark) in the laboratory of the Breeders Association of 

Veneto region (ARAV, Padova, Italy) and were used for routine analysis of MCP on samples 

collected during monthly test-day milk recording. Mid-infrared spectroscopy calibration 

models were developed by De Marchi et al. (2009, 2012) and exhibited coefficients of 

determination in cross-validation of 0.76 and 0.70 for RCT and a30, respectively (De Marchi et 

al., 2012). The use of MIR spectroscopy models allowed the prediction of MCP only for 

samples that coagulated within 30 min from rennet addition.  

To assess the capability of MIR technology to predict also NC samples, individual and 

bulk milks from Holstein Friesian cows were collected in the Veneto region from November 

2011 to February 2012. Immediately after sampling, milks were treated with preservative 



 

 58 

(Bronopol, Knoll Pharmaceuticals, Nottingham, UK), transferred to the Regional Laboratory 

of Breeder Association (ARAV, Padova, Italy), and selected according to MIR spectroscopy 

analysis. The aim of the selection process was to store samples (one time per week) that 

covered a wide range of RCT, from very early coagulation (i.e., within 10 min from enzyme 

addition) to very late coagulation (i.e., beyond 30 min from enzyme addition). As a result, 

spectral information from 200 individual milks from 5 dairy herds and 135 bulk milks were 

extracted from the MIR database and analysed for MCP within 2 to 5 d from collection 

through the reference method (Formagraph; Foss Electric, Hillerød, Denmark) over an 

extended testing-time of 60 min to allow the determination of coagulation characteristics of 

NC milks (Ikonen et al., 1999; Cassandro et al., 2008; De Marchi et al., 2009). Samples (10 

mL) were heated to 35°C and 200 μL of a rennet solution (Hansen Standard 160; Pacovis 

Amrein AG, Bern, Switzerland) diluted to 1.6% (w/v) in distilled water was added at the start 

of analysis. Besides RCT and a30, measured traits were curd-firming time (k20, min; the time 

interval from the addition of rennet to the time at which the width of the graph attains 20 mm) 

and curd firmness 60 min after rennet addition (a60, mm). All samples coagulated within 60 

min from enzyme addition. 

MIR Spectra Acquisition and Multivariate Data Analysis 

Mid-infrared spectra were selected from stored data and were initially collected from 

0.25 mL of sample over the spectral range of 4,000 to 900 cm
-1

 using a Milko-Scan FT6000 

(Fourier transform infrared interferometer; Foss Electric A/S, Hillerød, Denmark) within 4 h 

from reference analysis.  

Prediction models were obtained from The Unscrambler software (version 9.6; Camo 

A/S, Oslo, Norway). To optimize the accuracy of the calibration, the data underwent (1) 

detection of anomalous spectra in the calibration dataset, accomplished using the Mahalanobis 

distance (Global H statistics, GH) to the centre of the population (Williams and Norris, 2001); 

samples with GH > 3 were considered outliers and were then removed from the calibration 

dataset, so that the final data available for investigation accounted for 319, 147, 224, and 178 

samples for RCT, k20, a30, and a60, respectively. (2) Different combination of scattering 

corrections and derivative mathematical treatments; normalized and multiplicative scatter 

corrected, first derivative (Savitzky-Golay, 3 data points each side), and normalized plus first 

derivative according to Williams (2001) and De Marchi et al. (2009). However, no significant 

improvement was found compared with the use of untreated spectra, as reported by De Marchi 

et al. (2009). 
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Statistical analysis was carried out using principal component analysis (PCA) and 

partial least squares (PLS) regression analysis. Spectral data subjected to PCA and PLS 

produces a new and smaller set of variables called principal components (PC) and loadings 

(#L), respectively. Principal component analysis provides graphical representations of 

similarities and differences
 

across spectra, and was employed to investigate sample 

distribution (Martens and Naes, 1989), and to discriminate NC milks from samples that 

coagulated within 30 min from enzyme addition. 

The optimal number of #L was calculated as the number of #L after which the standard 

error of cross-validation (SECCV) no longer decreased substantially. Prediction models were 

confirmed using cross-validation method by dividing the calibration dataset in 10 subgroups: 

9 of them were used to construct the calibration model and 1 to check the results. This 

operation was repeated until all groups were treated both as calibration and prediction set. The 

effectiveness of calibration and validation models was assessed using the standard error of 

calibration, R
2
, SECCV, and the coefficient of determination of cross-validation (1-VR). 

According to Williams (2003) values of 1-VR between 0.50 and 0.65 indicate poor 

predictions; values between 0.66 and 0.81 indicate fairly accurate predictions; and values 

greater than 0.82 reveal good predictions. 

The ratio performance deviation (RPD) and the range error ratio (RER) were calculated 

to provide indications on the practical utility of predictive models. The RPD is the ratio of the 

SD to SECCV of a given trait and RER is the ratio of the SECCV of the trait relative to the 

range of the reference data (Edney et al., 1994; Williams, 2001). High values of RPD are 

desirable; in particular RPD greater than 2 enables good predictions (Sinnaeve et al., 1994; De 

Marchi et al., 2011). The RER is a method for standardizing the SECCV by relating it to the 

range of the reference data. For example, RER values lower than 6 indicate very poor 

classification and are not recommended for any application; RER values between 7 and 20 

classify the model as poor to fair and indicate that the model could be used for screening 

purposes; and RER values between 21 and 30 indicate a good classification suggesting that 

the model would be suitable for a role in a quality control application (Williams, 2001). 

 

RESULTS AND DISCUSSION 

MCP 

Descriptive statistics of MCP are summarized in Table 1. Rennet coagulation time, k20, 

a30, and a60 averaged 30.55 min, 9.61 min, 26.97 mm, and 14.76 mm, respectively. The CV 
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ranged from 47 (RCT) to 68% (k20), suggesting a wide degree of variability, which should 

facilitate the development of robust prediction models. The comparison with other studies is 

difficult because our results originated from selected NC samples. If milks with RCT longer 

than 30 min are removed from the dataset (data not shown), RCT and a30 averaged 16.51 min 

and 29.36 mm, respectively, which are similar to findings reported by Cassandro et al. (2008) 

in Italian Holstein cows. However, RCT of samples that coagulated within 30 min is longer 

than results from De Marchi et al. (2009) in Brown Swiss cows and Ikonen et al. (2004) in 

Finnish Ayrshire breed. 

MIR Spectra and PCA Analysis of NC Milk Samples 

Prediction models were obtained using modified spectra according to several authors 

(Pillonel et al., 2003; Dal Zotto et al., 2008; De Marchi et al., 2009 and 2011) who suggested 

omitting the spectral regions related to low signal-to-noise ratio. In the present study, the 

spectral regions 3,040 to 3,470 cm
−1

 and 1,600 to 1,700 cm
−1

 were found to have high noise 

levels and thus they were discarded prior to the analysis; these regions were related to the 

absorption of water as reported by Hewavitharana and Brakel (1997) and Jørgensen and Næs 

(2004). The analysed spectra showed specific peaks previously reported by De Marchi et al. 

(2009 and 2011): 1,550 to 1,570 cm
−1

 related to protein absorption (Curley et al., 1998; Etzion 

et al., 2004), 2,800 to 3,000 cm
−1

, 2,855 to 2,928 cm
−1

, and 1,805 to 1,736 cm
–1

 related to 

lipid absorption (Coates, 2000; Lefèvre and Subirade, 2000), and 900 to 1,500 cm
−1

 related to 

C-H bending (1,493 cm
−1

) and C-O stretching (1,080 and 1,157 cm
−1

). 

Principal component analysis of the untreated spectra allowed the investigation of the 

influence plot and the identification of outliers. Milk samples did not show extreme values of 

leverage and residual variance, and thus none of them was classified as outlier. The score plot 

of first and second PC provided information on samples distribution; in particular, samples 

were classified in 2 categories, namely those with RCT longer than 30 min and those with 

RCT shorter than 30 min, with the purpose of investigating spectral information from well-

coagulating and NC milks.  

Principal components 1 and 2 explained 86 and 8% of the observed variation in the 

spectra, respectively (Figure 1). The plot clearly depicts the mixing of all samples, indicating 

that there is no specific spectral information related to well-coagulating and NC milks. This 

outcome was somewhat expected as the potential of MIR spectroscopy to predict MCP is 

related to specific protein and lipid peaks (De Marchi et al., 2009), and NC samples did not 

differ in chemical composition from well-coagulating milks. According to results from PCA, 
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a discriminant analysis (presence or absence of NC samples) is not feasible; the only way to 

rapidly predict NC samples is to develop MIR prediction models using milk with a wide range 

of RCT (from 30 to 60 min). 

Prediction of Rennet Coagulation Time, Curd-firming Time, and Curd Firmness 

Fitting statistics of prediction models for MCP using untreated spectra are in Table 2. 

Prediction models were developed using three MIR spectral regions: 900 to 1,600 cm
−1

, 1,700 

to 3,040 cm
−1

, and 3,470 to 4,000 cm
−1

. The number of modified PLS factors used in the 

calibration ranged from 12 (k20) to 17 (a30), which is slightly lower than that reported by De 

Marchi et al. (2009). The most accurate prediction model was developed for RCT (1-VR and 

SECCV of 0.76 and 7.05 min, respectively), followed by k20 (1-VR and SECCV of 0.72 and 

3.54 min, respectively), and a30 (1-VR and SECCV of 0.70 and 7.68 mm, respectively). Models 

for the prediction of a60 were not satisfactory (1-VR of 0.40 and SECCV of 7.26 mm). 

Regarding the practical utility of the prediction models, RPD and RER ranged from 1.26 (a60) 

to 2.03 (RCT) and from 5.53 (a60) to 7.47 (k20), respectively. 

Only Dal Zotto et al. (2008) and De Marchi et al. (2009) assessed the ability of MIR 

spectroscopy to predict RCT and a30, whereas no studies investigated the potential of MIR 

spectroscopy to predict MCP of samples that coagulate beyond 30 min from rennet addition. 

Prediction models for RCT and a30 were notably better than those reported by Dal Zotto et al. 

(2008) and De Marchi et al. (2009) in milk with preservative; the authors reported 1-VR for 

a30 that ranged from 0.55 to 0.73, and from 0.35 to 0.45, respectively. Nevertheless the 

reference method (Computerized Renneting Meter) used in these studies was different than 

that adopted in the present research (Formagraph). The reference method plays a key role in 

determining the accuracy of prediction models as reported by Rutten et al. (2009) and De 

Marchi et al. (2011) for milk fatty acids. Also, the rennet used by Dal Zotto et al. (2008) and 

De Marchi et al. (2009) was different than that adopted in the present work. The 

implementation of different methodologies to assess MCP was investigated by Pretto et al. 

(2011), who proposed a method for the transformation of values of MCP obtained from 

different methodologies, and by Cipolat-Gotet et al. (2012), who compared MCP determined 

with an optical instrument, the Optigraph, with MCP obtained from the Formagraph. 

Results of the present study highlighted the potential of MIR spectroscopy to predict 

k20. Curd-firming time is considered a trait of great practical importance in the dairy industry 

as it suggests the optimal time at which curd-cutting should commence, and thus it is related 

to product yield and quality (Bynum and Olson, 1982). However, k20 has not been much 
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studied in the past as it is available only for samples attaining 20 mm of curd firmness and 

thus not for NC milks. To our knowledge, this is the first study attempting to predict k20 for 

samples that coagulated beyond 30 min from enzyme addition using MIR spectroscopy. The 

worst prediction model developed in the present research was for a60. The low accuracy of 

prediction might be related to low accuracy of reference analysis for NC samples This was 

reported by Cipolat-Gotet et al. (2012) who found large variability for curd firmness measured 

45 min after rennet addition. 

The scatter plots of predicted vs. measured MCP are shown in Figure 2. A quite high 

degree of scatter was observed for a60 indicating that the current model is not enough accurate 

to be used in the dairy industry but demonstrates the potential of MIR spectroscopy to predict 

a60.  

To investigate the molecular basis of MCP, the loadings weight of the first, second, and 

third PLS components of prediction models were examined (Figure 3). There was 

considerable structure in the loading plots of all studied traits. In general, the pattern of 

loadings weight of RCT and k20 was specular to that of a30 and a60. A number of peaks were 

observed in the fingerprint region from 900 to 1,500 cm
-1

 (e.g., 992, 1,138, and 1,184 cm
-1

) of 

the spectra and this might be attributable to C-O or C-C stretchings. Characteristic peaks were 

also observed from 1,543 to 1,593 cm
-1

, which can be attributable to amide II. Peaks 

associated with lipids (from 2,828 to 2,970, and from 1,751 to 1,763 cm
-1

) were also apparent 

in loadings 1, 2, and 3, as well as peaks from 1,238 and 1,265 cm
-1

 and from 1,455 to 1,462 

cm
-1

, which may be attributable to O-C-H, C-C-H, or C-O-H bendings. The peaks associated 

with protein were found to be very dominant for RCT and k20, whereas those associated with 

lipids seem to be more dominant for curd firmness traits. These results highlighted the role of 

protein and lipid regions of the MIR spectra to predict MCP, and coincided with findings of 

De Marchi et al. (2009) and of several authors who reported the effect of protein and fat 

content on milk coagulation (Bastian et al., 1991; Castillo et al., 2003).  

 

CONCLUSIONS 

Mid-infrared spectroscopy combined with PLS regressions has been proposed as 

potential tool to predict RCT, k20, a30, and a60 in bovine milk samples. Results indicated that 

the prediction performance of MIR technique was satisfactory for RCT measured up to 60 min 

from rennet addition, and for k20 and a30, and thus it might be used in payment systems to 

reward or penalize milk according to MCP. The prediction of MCP in milk samples that 
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coagulate beyond 30 min from rennet addition (NC samples) may have a great importance in 

genetic evaluation of animals for MCP. In fact, until now MCP information from NC samples 

has been often discarded from genetic analysis, leading to possible biases in the prediction of 

sires merit for coagulation traits.  
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Table 1. Descriptive statistics of milk coagulation properties 

Trait
1
 n

2
 Mean SD CV Minimum Maximum 

RCT, min 319 30.55 14.30 0.47 7.75 59.00 

k20, min 147 9.61 6.58 0.68 2.00 28.45 

a30, mm 224 26.97 13.88 0.51 0.36 51.30 

a60, mm 178 14.76 9.18 0.62 0.76 40.96 

1
RCT = rennet coagulation time of samples that coagulated within 60 min from enzyme 

addition; k20 = curd-firming time of samples attaining 20 mm of firmness within 60 min from 

enzyme addition; a30 = curd firmness 30 min after enzyme addition; a60 = curd firmness 60 min 

after enzyme addition. 

2
n = number of samples used in the calibration after removing outliers. 
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Table 2. Fitting statistics
1
 of prediction models for milk coagulation properties 

Trait
2
 #L SEC R

2
 SECCV 1-VR RPD RER 

RCT, min 15 6.14 0.82 7.05 0.76 2.03 7.28 

k20, min 12 2.94 0.80 3.54 0.72 1.86 7.47 

a30, mm 17 5.06 0.87 7.68 0.70 1.80 6.63 

a60, mm 12 6.20 0.56 7.26 0.40 1.26 5.53 

1
#L = number of modified partial least squares factors used in the calibration; SEC = standard 

error of calibration; R
2
 = coefficient of determination of calibration; SECCV = standard error 

of cross-validation; 1-VR = coefficient of determination of cross-validation; RPD = ratio 

performance deviation; RER = range error ratio. 

2
RCT = rennet coagulation time of samples that coagulated within 60 min from enzyme 

addition; k20 = curd-firming time of samples attaining 20 mm of firmness within 60 min from 

enzyme addition; a30 = curd firmness 30 min after enzyme addition; a60 = curd firmness 60 

min after enzyme addition. 
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Figure 1. Plot of first (PC-1) and second (PC-2) components from principal component 

analysis of spectral data. Triangles = samples with rennet coagulation time equal or longer 

than 30 min; Circles = samples with rennet coagulation time shorter than 30 min. 
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6
7

 

Figure 2. Scatter plots of predicted (y-axis) versus measured (x-axis) milk coagulation properties. (A) Rennet coagulation time of samples that 

coagulated within 60 min from enzyme addition (RCT); (B) curd-firming time of samples attaining 20 mm of firmness within 60 min from 

enzyme addition (k20); (C) curd firmness 30 min after enzyme addition (a30); and (D) curd firmness 60 min after enzyme addition (a60). 
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Figure 3. Loadings weight of the first (#L1), second (#L2), and third (#L3) partial least 

squares regression component for (A) rennet coagulation time of samples that coagulated 

within 60 min from enzyme addition; (B) curd-firming time of samples attaining 20 mm 

of firmness within 60 min from enzyme addition; (C) curd firmness 30 min after enzyme 

addition; and (D) curd firmness 60 min after enzyme addition. 
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ABSTRACT 

Individual milk samples from Holstein Friesian cows were collected and analysed by 

inductively coupled plasma optical emission spectrometry (ICP-OES) and titration for the 

determination of Ca and P, and TA contents, respectively. Prediction models were obtained 

using partial least squares (PLS) regression analyses using two statistical packages. The 

average Ca, P and TA were 1156 mg kg
-1

, 934 mg kg
-1

 and 3.42 SH° 50 mL
-1

, respectively. 

Pearson’s correlations between Ca and P and other milk traits were significant (P<0.05) and 

ranged from 0.16 to 0.53 for chemical composition traits and from 0.17 to -0.35 for milk 

coagulation properties (MCP). Results from the two statistical packages were comparable. 

Prediction models using MIR spectroscopy were satisfactory for Ca, P and TA, with 

coefficients of correlation of cross-validation greater than 0.73. Moreover, the study 

highlighted favourable relationships of these traits with milk coagulation properties.  

 

INTRODUCTION 

Minerals from milk, and in particular calcium (Ca) and phosphorus (P), play a key role 

on human health. As reported by the FAO (2001), milk Ca provides rigidity to the skeleton by 

virtue of its phosphate salts and takes part in neuromuscular function, enzyme-mediated 

processes, and blood clotting. During skeletal growth, the increase in bone mineral density is 

affected by Ca intake, while during old age this element prevents bone loss and osteoporotic 

fractures (Caroli et al., 2011). The effect of P on human health is not completely understood 

(Cashman et al., 2006); the Ca to P ratio in milk has been studied intensively, and a high 

content of P combined with a low level of Ca seems to be responsible for the stimulation of a 

parathyroid hormone, with a reduction of bone mass and density, especially in young people.  

Moreover, Ca and P are important in cheese-making process because they have a 

strong influence on the ability of milk to coagulate and on the final consistency of the 

coagulum (Fossa et al., 1994). In fact, colloidal calcium phosphate (CCP) plays a fundamental 

role in all stages of cheese-making, affecting the aggregation speed of paracaseinate particles 

and the properties of the casein curd (Mariani et al., 1996). Several other factors are related to 

milk coagulation (e.g., type and concentration of the coagulation enzyme, temperature, acidity, 

and protein content; O’Callaghan et al., 2002). Milk acidity, and in particular titratable acidity 

(TA), affects the aggregation rate of paracaseinate micelles, the reactivity of rennet, and the 

rate of syneresis (De Marchi et al., 2009); as reported by Formaggioni et al. (2001), milk with 

low acidity is generally considered unsuitable for cheese-making, because of negative effects 
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on the rheology of the rennet curd and on the textural properties of the cheese paste. 

Moreover, several studies have investigated the favourable relationships between TA and milk 

coagulation properties (MCP; Cassandro et al., 2008; De Marchi et al., 2007; De Marchi et al., 

2009; Penasa et al., 2010; Harzia et al., 2012; Toffanin et al., 2012) and cheese yield (De 

Marchi et al., 2013).  

The determination of milk minerals as well as TA is time-consuming and has high costs 

(Soyeurt et al., 2009; De Marchi et al., 2009); these disadvantages could be overcome by mid-

infrared (MIR) spectroscopy, an innovative technique widely used in milk laboratories for the 

routine prediction of traditional milk components (De Marchi et al., 2014). The possibility of 

recording cow phenotypic information on a large scale would enable genetic selection since a 

genetic basis, as has been shown for Ca and P content (Davis et al., 2001, Soyeurt et al., 2009, 

Van Hulzen et al., 2009) and TA (Colinet et al., 2012). 

Recently, De Marchi et al. (2014) reviewed the application of MIR spectroscopy as a 

phenotyping tool in the dairy industry, showing the potential of this technique for the 

prediction of several non-traditional milk quality traits, such as fatty acid composition (Coppa 

et al., 2010; De Marchi et al., 2011; Soyeurt et al., 2011), protein composition (De Marchi et 

al., 2009a; Rutten et al., 2011) and MCP (De Marchi et al., 2013). Soyeurt et al. (2009) 

investigated the effectiveness of MIR spectroscopy in predicting milk minerals, showing 

promising results for Ca, P, and Mg, and suggesting an improvement in the accuracy of the 

reference method by using a mineralization process before ICP-OES analysis. Therefore, the 

aims of this study were (i) to study variation in levels of Ca, P, and TA in bovine milk and 

their relationship with milk quality and coagulation properties and (ii) to investigate the 

effectiveness of MIR spectroscopy in predicting milk Ca, P and TA levels using different 

statistical approaches. 

 

MATERIAL AND METHODS 

Milk samples collection, reference analyses, and spectra collection 

A total of 208 individual milk samples of Holstein-Friesian cows from parity 1 to 10 

and between 10 and 620 days in milk were collected between January and March 2011 from 

13 dairy herds in the North of Italy. Immediately after sampling, milk samples (100 mL) with 

preservative (Bronopol, Knoll Pharmaceuticals, Nottingham, UK) were transferred to the 

laboratory of the Breeders Association of the Veneto region (Padova, Italy) for milk analyses. 

Milk fat, protein and casein contents and pH were determined by Milko-Scan FT6000 (Foss 
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Electric A/S, Hillerød, Denmark), and somatic cell count (SCC) by Cell Fossomatic 250 (Foss 

Electric A/S).  

Milk coagulation properties (MCP) were determined using a Formagraph (Foss 

Electric) as described by Pretto et al. (2011) and De Marchi et al. (2013). Briefly, samples (10 

mL) were heated to 35°C and 200 μL of a rennet solution (Hansen Standard 160; Pacovis 

Amrein AG, Bern, Switzerland) diluted to 1.6% (w/v) in distilled water was added at the start 

of analysis. Rennet coagulation time (RCT, min), which corresponds to the time between the 

addition of the clotting enzyme to the milk and the beginning of coagulation, the curd-firming 

time (k20, min), the time required to achieve 20 mm of firmness, and the curd firmness (a30, 

mm), which is defined as the width, in millimetres, of the diagram 30 min after the addition of 

the rennet addition, were determined.  

Calcium and P contents in milk were determined after mineralization with nitric acid 

in closed vessels by a microwave system using inductively coupled plasma optical emission 

spectrometry (ICP-OES), Ciros Vision EOP (SPECTRO Analytical Instruments GmbH, 

Kleve, Germany). ICP-OES was employed to determine Ca at 315.887 nm, and P at 178.287 

nm. Instrument operating parameters were optimized for acid solution and calibration 

standards were matched with nitric acid 5% “suprapure” grade. The elements to be determined 

were added from single element solutions (Inorganic Ventures, Christiansburg, VA, USA). 

The concentration range of the calibration solutions was between 0 and 100 mg L
-1

 for both 

elements. The accuracy and precision of this method were investigated analysing the certified 

reference material BCR® – 063R “Skim milk powder” (Institute for Reference Materials and 

Measurements (IRMM), Geel, Belgium) prepared as described above. The measured values 

and the certified values were in excellent agreement for all the elements. 

Titratable acidity and pH were determined using the Crison Compact D (Crison 

Instruments SA, Alella, Spain). Titratable acidity was expressed in Soxhlet-Henkel degrees 

(°SH 50 mL
-1

) as described by Anonymous (1963).  

The MIR spectra were collected on milk samples over the spectral range of 4000-900 

cm
−1

 using a Milko-Scan FT6000 (Foss Electric A/S). 

Statistical analysis 

Prediction equations were obtained using partial least squares (PLS) regression 

analyses using two statistical software, The Unscrambler version 10.1 (PLS1; Camo A/S, 

Oslo, Norway) and the PLS procedure of SAS version 9.3 (PLS2; SAS Institute Inc., Cary, 

NC). Before PLS analyses, two spectra regions (3040 to 3470 cm
−1

 and 1,600 to 1,700 cm
−1

) 
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characterized by high noise levels were removed according to Hewavitharana and Brakel 

(1997), Jørgensen and Næs (2004), and De Marchi et al. (2013), and anomalous spectra and 

reference values were discarded according to the procedures reported by De Marchi et al. 

(2013). Models were developed using raw spectra data. The final data accounted for 203, 207, 

and 207 records for Ca, P, and TA, respectively. 

To compare statistical software both prediction models (PLS1 and PLS2) were 

developed using a full cross-validation; this was achieved with a one-at-a-time cross-

validation method in which Unscrambler and SAS used all observations but one for the 

calibrated model, which then was used to predict the left-out observation; this process was 

repeated for every observation to find the best prediction equation. The prediction equations 

chosen were those that minimized the predicted residual sum of squares with the minimum 

number of PLS factors.  

Several criteria were used to determine the proficiency of predictive models based on 

MIR spectroscopy: the coefficient of correlation of cross-validation (rcv), the root mean square 

error of cross-validation (RMSEcv), optimum number of PLS factors (#L), and ratio 

performance deviation (RPD). The latter statistic is calculated as the ratio of the SD to 

RMSEcv for a given trait (Edney, Morgan, Williams, & Campbell, 1994; Williams, 2001). 

High values of RPD are desirable; in particular, RPD values greater than 2 enable good 

predictions (Sinnaeve et al., 1994; De Marchi et al., 2011).  

Finally, the relationships between protein, fat and casein contents, somatic cell count 

(SCC) and somatic cell score (SCS, calculated as the logarithm of SCC), RCT, k20 and a30, 

measured Ca, P and TA and predicted Ca (pCa), P (pP) and TA (pTA) were investigated 

through SAS procedures (SAS, 2008). Milk samples that did not coagulate within 30 min 

(about 13% of total records) were considered missing values with no MCP information. 

 

RESULTS AND DISCUSSION 

Descriptive statistics and Pearson correlations 

Calcium and P levels were on average 1156.33 and 933.98 mg kg
-1

, respectively 

(Table 1). These values are very similar to those reported by Soyeurt et al. (2009) and van 

Hulzen et al. (2009) for bovine milk with Ca and P values that ranged from 1051 to 1447 mg 

kg
-1 

and from 919 to 1221 mg kg
-1

, respectively. Moreover, values of the present study were 

consistent with findings of Cashman (2011) who reported average values of 1120 mg kg
-1

 and 

890 mg kg
-1

 for measured Ca and P in bovine milk, respectively. The mean values of TA and 
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pH were 3.42 °SH 50 mL
-1

 and 6.68, respectively (Table 1), which are very similar to those 

reported by De Marchi et al. (2008) and Cassandro et al. (2008) for Holstein Friesian bovine 

milk. Calcium, P and TA were normally distributed, allowing the development of robust 

prediction models. Milk chemical composition and SCS are typical of Italian Holstein Friesian 

cow milk and consistent with values reported by the National Herdbook of Italian Holstein 

Friesian (ANAFI, 2011) and by Penasa et al. (2014).  

Rennet coagulation time, k20, and a30 averaged 18.23 min, 5.70 min, and 24.58 mm, 

respectively (Table 1); the CV ranged from 25 (RCT) to 51% (a30). Twenty-seven samples 

(12.9% of the total data) did not form a curd within 30 min from the rennet addition. This 

percentage of so-called non-coagulating (NC) milk samples is similar to that reported by 

Ikonen et al. (2004), Tyrisevä et al. (2004), and Cassandro et al. (2008), who reported 

percentages of NC samples between 7.5 and 13.2% for Finnish Ayrshire and Holstein Friesian 

cows. Milk coagulation properties of the present study indicated a type of milk not very 

suitable for cheese-making and a worsening of these traits across years (Zannoni and 

Annibaldi, 1981). Nevertheless, values of MCP are similar to those reported by Penasa et al. 

(2014); they reported RCT and a30 values of 21 min and 20.8 mm, respectively, for milk from 

multi-breed dairy herds.  

Overall, phenotypic correlations between measured Ca, P and TA and milk quality 

traits (Table 2) were very similar to those between pCa, pP and pTA and quality traits (Table 

3). This was expected because of the high accuracy of MIR spectroscopy prediction models. 

Calcium and P were positively correlated with milk chemical composition and varied from 

0.27 (Ca and fat content, and P and Fat content) to 0.53 (Ca and protein content, and P and 

protein content). Calcium and P were positively correlated with TA, which is consistent with 

results reported by Mariani (1982), Mariani and Artoni (1983), Mariani et al. (1989), and 

Formaggioni et al. (2001). Those authors found values of correlation close to 0.72 between P 

and TA using both individual (Mariani et al., 1983) and bulk (Formaggioni et al., 2001) milk 

samples. Moreover, Ca showed a weak positive correlation with pH. As expected, a high 

correlation (0.68; P<0.001) was calculated between Ca and P, highlighting their relationship 

and reflecting the importance of the Ca/P ratio in milk (Cashman et al., 2006); similar results 

were reported by Soyeurt et al. (2009), with a correlation of 0.73. A weak negative correlation 

(-0.16; P<0.05) was found between P and SCS; this result was consistent with those reported 

by Summer et al. (2010), who studied milk salt equilibria and reported a decrease in total P 

with increasing SCC, and so confirmed the opposite relationship between the two traits. 



 

 82 

Moreover, Summer et al. (2010) found no significant relationship between Ca and SCC, 

consistent with the results of the present study. 

A favourable relationship was estimated between milk minerals and MCP; an increase 

in Ca and P is correlated with an increase of a30, while an increase in Ca reduces RCT. These 

relations were found also by Malacarne et al. (2013), who found optimal milk for cheese-

making when these minerals were present at high concentrations. 

Milk chemical composition was positively related with TA, with values ranging from 

0.22 (P<0.05, TA and fat content) to 0.57 (P<0.001, TA and casein content); these estimates 

are comparable to those between pTA and fat content (0.23), and pTA and casein content 

(0.64). Cassandro et al. (2008) and Colinet et al. (2010) reported similar correlations in their 

studies. 

As expected, TA was negatively correlated with RCT and k20 and positively with a30; 

this agrees with results of Cassandro at al. (2008) and Toffanin et al. (2012) for Italian 

Holstein Friesians, and of De Marchi et al. (2007) in mixed Brown Swiss and Holstein 

Friesian herds. Moreover, considering the strong and negative correlation between TA and pH 

-0.53 (P<0.001), the correlations between pH and RCT and a30 were 0.42 (P<0.001) and -0.47 

(P<0.001), respectively. 

 MIRS prediction models and PLS methods 

Fitting statistics of PLS analysis are shown in Table 4. On average, the accuracy of the 

prediction models developed by cross-validation and through different statistical packages 

was very similar within each trait; moreover, the satisfactory results of the prediction models 

suggested that there is a relation between MIR spectra and the traits studied.  

Generally, a robust prediction model should have high rCV, low RMSECV and and RPD 

value greater than 2.  Results of prediction models for Ca and P were satisfactory, with rCV of 

about 0.75 and 0.85, respectively, and this confirmed the effectiveness of MIR spectroscopy in 

predicting Ca and P contents of milk. The RPD and #L were 1.47 and 4, and 1.84 and 6 for Ca 

and P, respectively.  

Very limited information has been reported in the literature about the application of 

MIR spectroscopy for the prediction of mineral composition of milk. Results of the present 

study are quite similar than those reported by Soyeurt et al. (2009); they found values of 95 

mg kg
-1

 (SECV), 0.93 (rCV), and 2.74 (RPD) for Ca, and 50 mg kg
-1

 (SECV), 0.92 (rCV), and 

2.54 (RPD) for P.  
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However, the present study used a different reference method respect to Soyeurt et al. 

(2009); in the present study, the mineral contents were assessed by ICP-OES after 

mineralization, while Soyeurt et al. (2009) used ICP-AES without mineralization. Moreover, 

in the study of Soyeurt et al. (2009), 6 different cow breeds were included which provided 

great biological variability, as confirmed by the coefficients of variation of the studied traits. 

Recently, Wu et al. (2012) investigated the potential of near-infrared and MIR spectroscopy 

techniques for predicting the calcium content of powdered milk. The predicted results of PLS 

models gave very good results, with a coefficient of determination of 0.93 and 5.22% for 

relative error of prediction.  

The prediction models for TA gave satisfactory results, with correlation coefficients of 

cross-validation of 0.86 (Table 4). The RPD values were close to 2, suggesting good 

predictive models (Sinnaeve et al., 1994) and #L in cross-validation procedure was 6. These 

results were slightly better than those reported by De Marchi et al. (2009), with RMSECV of 

0.26 °SH 50 mL
-1

  and rCV of 0.80, and slightly worse than those reported by Colinet et al. 

(2010), with SECV of 0.64°D (Dornic Degree) and rCV of 0.95. Nevertheless, Colinet et al. 

(2010) used a different reference method and unit of measurement for TA. Compared to 

statistical procedures used in the present study, predictive models proposed by De Marchi et 

al. (2009) were developed using untreated spectra data and the Unscrambler software, while 

prediction models developed by Colinet et al. (2010) used first derivative spectra pre-

treatment and WinIsi software. 

For each trait, the best regression models are represented in Figure 1; the plot of 

measured against predicted values showed a moderate degree of scatter in all cases. Moreover, 

the coefficients of determination of cross-validation (R
2

CV) were 0.56, 0.72, and 0.74 for Ca, P 

and TA, respectively. Considering these values, predictions of TA and P were found to be 

approximate, and the model for Ca could only discriminate between low and high values 

(Williams, 2003).  

This is the first study that compares the performance of chemometric with two 

statistical packages using the same data and validation procedures. As expected, the results 

were very similar for both statistical packages. From a practical point of view, chemometric 

analysis by the Unscrambler is more complex and requires more time and steps; in contrast, 

SAS seems to be less suitable for spectra visualization and outlier identification. Moreover, 

the PLS procedure of SAS allows large data analysis (more than 50,000 samples). This 

considerations should be taken into account, because in the future the use of large MIR 
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spectroscopy data to predict new milk phenotypes will be an important tool for dairy industry 

(De Marchi et al., 2014).  

 

CONCLUSIONS 

Mid-infrared spectroscopy combined with different PLS regressions has been proposed for 

prediction of contents of Ca and P, and TA in bovine milk. Prediction equations were 

effective in predicting P and TA, and were effective in discriminating between low and high 

contents of Ca. Moreover, favourable relationships were found between these traits and MCP, 

which might be interesting in improving the suitability of milk for producing cheese. Results 

suggest the possibility of using MIR spectroscopy prediction models in large scale research 

programs aiming at improving the nutritional aspects of milk by genetic selection of dairy 

cattle.  
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Table 1. Descriptive statistics of mineral content, acidity, chemical 

composition, and coagulation properties of milk.
 a
 

Trait n Mean SD Skewness Kurtosis 

Ca, (mg kg
-1

) 208 1,156.33 130.46 0.31 -0.27 

P, (mg kg
-1

) 208 933.98 109.71 0.18 -0.20 

TA, (°SH 50 mL
-1

) 208 3.42 0.36 0.37 0.44 

Fat, (%) 181 3.75 0.85 0.22 1.91 

Protein, (%) 181 3.35 0.39 0.49 -0.25 

Casein, (%) 154 2.55 0.33 0.79 0.38 

SCS, (score) 181 4.40 1.26 0.46 -0.22 

pH 202 6.68 0.07 -0.05 -0.10 

RCT, (min) 181 18.23 4.56 0.15 -0.09 

k20, (min) 120 5.70 2.04 0.48 -0.13 

a30, (mm) 189 24.58 12.56 0.01 -0.44 

a
 Abbreviation are: Ca = calcium content; P = phosphorus content; TA = 

titratable acidity; SCS = somatic cell score; RCT = rennet coagulation 

time; k20 = curd-firming time; a30 = curd firmness. 
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8
6

 

Table 2. Phenotypic correlations between measured mineral levels, acidity, chemical composition, and coagulation properties of milk.
 a
 

Trait 
Ca, 

(mg kg
-1

) 

P, 

(mg kg
-1

) 

TA, 

(°SH 50 mL
-1

) 

Fat, 

(%) 

Protein, 

(%) 

Casein, 

(%) 

SCS, 

(score) 
pH 

RCT, 

(min) 

k20, 

(min) 

a30, 

(mm) 

Ca, mg kg
-1

  0.68
***

 0.21
**

 0.27
***

 0.53
***

 0.47
***

 -0.07
ns

 0.13
†
 -0.11

ns
 -0.35

***
 0.29

***
 

P, mg kg
-1

   0.54
***

 0.27
***

 0.53
***

 0.47
***

 -0.16
*
 0.06

ns
 -0.01

ns
 -0.23

*
 0.17

*
 

TA, °SH 50mL
-1

    0.22
*
 0.48

***
 0.57

***
 -0.11

ns
 -0.53

***
 -0.25

**
 -0.22

*
 0.44

***
 

Fat, %     0.30
***

 0.27
†
 -0.01

ns
 0.07

ns
 -0.08

ns
 -0.22

*
 0.18

*
 

Protein, %      0.99
***

 0.11
ns

 -0.08
ns

 0.04
ns

 -0.44
***

 0.27
***

 

Casein, %       0.12
ns

 -0.31
*
 -0.10

ns
 -0.49

*
 0.43

**
 

SCS, score        0.03
ns

 0.08
ns

 -0.09
ns

 -0.07
ns

 

pH         0.42
***

 0.13
ns

 -0.47
***

 

RCT, min          0.39
***

 -0.79
***

 

k20, min           -0.86
***

 

a
 Abbreviation are: Ca = calcium content; P = phosphorus content; TA = titratable acidity; SCS = somatic cell score; RCT = rennet 

coagulation time; k20 = curd-firming time; a30 = curd firmness. 
†
 P<0.10; 

*
 P<0.05; 

**
 P<0.01; 

***
 P<0.001. 
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7

 

Table 3. Phenotypic correlations of predicted mineral levels and titratable acidity with chemical composition and coagulation properties of milk.
 a
 

Trait 
pCa, 

(mg kg
-1

) 

pP, 

(mg kg
-1

) 

pTA, 

(°SH 50 mL
-1

) 

Fat, 

(%) 

Protein, 

(%) 

Casein, 

(%) 

SCS, 

(score) 
pH 

RCT, 

(min) 

k20, 

(min) 

a30, 

(mm) 

pCa, mg kg
-1

  0.60
***

 0.40
***

 0.35
***

 0.70
***

 0.77
***

 0.01
ns

 0.08
ns

 0.04
ns

 -0.40
***

 0.23
**

 

pP, mg kg
-1

  
 

0.69
***

 0.26
**

 0.58
***

 0.55
***

 -0.12
ns

 -0.07
ns

 -0.08
ns

 -0.23
*
 0.26

***
 

pTA, °SH 50 mL
-1

  
  

0.23
**

 0.55
***

 0.64
***

 -0.06
ns

 -0.42
***

 -0.15
*
 -0.28

**
 0.35

***
 

a
 Abbreviations are: pCa = predicted calcium content; pP = predicted phosphorus content; pTA = predicted titratable acidity; SCS = somatic cell 

score; RCT = rennet coagulation time; k20 = curd-firming time; a30 = curd firmness. 

†
 P<0.10; 

*
 P<0.05; 

**
 P<0.01; 

***
 P<0.001. 
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Table 4. Fitting statistics of prediction models for calcium, phosphorus 

and titratable acidity. 

Trait
a
 Calcium, 

(mg kg
-1

) 

Phosphorus, 

(mg kg
-1

) 

Titratable acidity, 

(°SH 50 mL
-1

) 

 PLS1
b
 PLS2

c
 PLS1

b
 PLS2

c
 PLS1

b
 PLS2

c
 

n 203 207 207 

Mean 1,155.56 933.04 3.42 

SD 125.04 103.78 0.34 

RMSECV 85.70 85.25 54.67 56.38 0.17 0.17 

rCV 0.75 0.73 0.85 0.84 0.86 0.86 

RPD 1.46 1.47 1.89 1.84 1.98 2.01 

#L 5 4 6 6 6 6 

a
 Abbreviations are: n = number of samples used in the calibration after 

removing outliers; SD = standard deviation; RMSECV = root mean square 

error of cross-validation; rCV = coefficient of correlation of cross-

validation; RPD = ratio performance deviation; #L = number of modified 

partial least squares factors used in the prediction models.  

b 
Developed using the Unscrambler software. 

c 
Developed using SAS software.
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Figure 1. Scatter plots of predicted versus measured calcium 

(panel A), phosphorus (panel B), and titratable acidity (panel C) 

using PLS. 
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ABSTRACT 

The aim of the present study was to estimate genetic parameters for calcium (Ca), 

phosphorus (P) and titratable acidity (TA) in bovine milk predicted by mid-infrared 

spectroscopy (MIRS). Data consisted of 2458 Italian Holstein-Friesian cows sampled once in 

220 farms. Information per sample on protein and fat percentage, pH, and somatic cell count, 

as well as test-day milk yield, was also available. (Co)variance components were estimated 

using univariate and bivariate animal linear mixed models. Fixed effects considered in the 

analyses were herd of sampling, parity, lactation stage, and a two-way interaction between 

parity and lactation stage; an additive genetic and residual term were included in the models as 

random effects. Estimates of heritability for Ca, P, and TA were 0.10, 0.12, and 0.26, 

respectively. Positive moderate to strong phenotypic correlations (0.33 to 0.82) existed 

between Ca, P and TA, while phenotypic weak to moderate correlations (0.00 to 0.45) existed 

between these traits with both milk quality and yield. Moderate to strong genetic correlations 

(0.28 to 0.92) existed between Ca, P, and TA, and between these predicted traits with both fat 

and protein percentage (0.35 to 0.91). The existence of heritable genetic variation for Ca, P, 

and TA, coupled with the potential to predict these components for routine cow milk testing, 

imply that genetic gain in these traits is indeed possible. 

Keywords: milk mineral, milk acidity, mid-infrared spectroscopy, Holstein-Friesian cow, 

genetic parameter 

 

IMPLICATIONS 

The present study quantified the phenotypic and genetic characteristics of cow milk 

calcium, phosphorus and acidity predicted by mid-infrared spectroscopy. These milk features 

are very important for both human health and the technological properties of milk. The 

existence of heritable genetic variation coupled with the potential to predict these components 

for routine cow milk testing, imply that genetic gain in these traits is indeed possible. 

 

INTRODUCTION 

Global demand for dairy products is increasing, especially milk powder and butter, and 

further expansion of trade in dairy products is expected. Moreover, in recent years, there is a 

growing interest in milk components with potential benefits for human health. Milk mineral 

profile, in particular calcium (Ca) and phosphorus (P) content, play a key role in human health 

(Caroli et al., 2011), especially for osteoporosis which is a progressive bone disease related to 
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deficiencies in Ca and vitamin D. Both Ca and P are also important in cheese-making as they 

influence the coagulation process and the final consistency of the curd (Fossa et al., 1994). 

Another characteristic which affects the technological properties of milk is titratable 

acidity (TA) which has a key role in the aggregation rate of para-casein micelles, in the 

reactivity of rennet (De Marchi et al., 2009) and also on milk coagulation properties (De 

Marchi et al., 2007). 

There is a paucity of studies which have estimated genetic variation for milk mineral 

content and acidity. Van Hulzen et al. (2009) reported heritability estimates of 0.57 and 0.62 

for milk Ca and P content, respectively, in 1860 Dutch Friesian cows. Reported heritability 

estimates for milk TA range from 0.17 to 0.23 in Italian Holstein cows (Cassandro et al., 

2008; Cecchinato et al., 2011). To our knowledge, only Soyeurt et al. (2008a) used 5502 

multi-breed cows to estimate genetic parameters for mineral content of milk predicted by mid-

infrared spectroscopy (MIRS) and they reported heritabilities of 0.42 and 0.47 for Ca and P, 

respectively. 

The limited number of studies on the genetics of milk mineral composition and acidity is 

likely related to the high analytical costs associated with measuring these traits, thereby 

hindering the generation of large data sets (De Marchi et al., 2014). Mid-infrared spectroscopy 

has already been proposed to predict milk Ca and P (Soyeurt et al., 2008a; Toffanin et al., 

2015), thereby providing a low-cost approach to generate large datasets useful for genetic 

evaluations. The objective therefore of the present study was to estimate genetic parameters 

for milk Ca, P and TA predicted by MIRS as well as the genetic correlations between these 

traits with milk production and quality in Italian Holstein-Friesian cows. 

 

MATERIALS AND METHODS 

Data and MIRS prediction models 

A total of 2458 Holstein-Friesian cows representing the offspring of 210 AI sires were 

sampled once in 220 Italian dairy herds between May 2010 and March 2011. Cows were from 

parity 1 to 10, and between 5 and 600 days in milk (DIM). Information on parity, DIM, and 

milk yield (MY, kg/day) at the time of milk sampling was provided by the Breeders 

Association of the Veneto region (Padova, Italy). Samples were preserved with Bronopol 

(Knoll Pharmaceuticals, Nottingham, UK), transported to the laboratory of the Breeders 

Association of the Veneto region (Padova, Italy), and analysed within 12 hours of collection. 

The routine prediction of milk fat and protein percentage as well as pH were conducted with a 
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Milko-Scan FT6000 (Foss Electric A/S, Hillerød, Denmark) and somatic cell count (SCC) 

was determined using a Cell Fossomatic 250 (Foss Electric A/S, Hillerød, Denmark). Somatic 

cell count was transformed to somatic cell score (SCS) by taking the natural logarithm of 

SCC. Spectral information was stored for all milk samples. 

Predicted Ca and P content, and TA were obtained using MIRS models developed by 

Toffanin et al. (2015). Briefly, calibration models were built using 208 cow milk samples 

collected from 13 herds chosen from those analysed in the present study. The gold standard 

method for the quantification of Ca and P was based on inductively coupled plasma optical 

emission spectrometry (ICP-OES) with previous milk mineralization; for TA the gold 

standard was milk titration. Prediction models were developed through partial least squares 

regression analysis using the PLS procedure of SAS (SAS Institute Inc., Cary, NC). 

Coefficients of correlation of the models were 0.73, 0.84 and 0.86 for Ca, P and TA, 

respectively, and the ratio performance deviation was 1.47 for Ca, 1.84 for P and 2.01 for TA 

(Toffanin et al., 2015). 

Statistical analyses 

Factors associated with the traits of interest were determined using the following linear 

model in PROC GLM (SAS Institute Inc., Cary, NC, USA): 

Yijkl = µ + Herdi + parityj  + stagek + (parity x stage)jk + eijkl, 

where Yijkl is the dependent variable (Ca, P, TA, pH, fat percentage, protein percentage, SCS 

or MY); µ is the overall mean; Herdi is the fixed effect of the i
th

 herd of sampling (i = 1 to 

220); parityj is the fixed effect of the j
th

 parity of the cow (j = 1, 2, 3, ≥4); stagek is the fixed 

effect of the k
th

 class of DIM (k = 5-35, 36-65, 66-95, …, 306-350, 351-450, >450 days); 

(parity x stage)jk is the fixed interaction effect between parity and stage of lactation; and eijkl is 

the random residual ~N(0, σ
2

e). In the model, the herd and test-day effects were confounded 

because cows in each herd were sampled only once, all on the same test-day. 

Variance and covariance components for the studied traits were estimated using 

univariate and bivariate animal models in ASREML (Gilmour et al., 2009). Fixed effects 

considered in the analyses were the same as described previously, and the random effects were 

the additive genetic effect and the residual term. The number of animals in the additive 

relationship matrix was 33 197 and included individuals with phenotypic records and their 

ancestors up to 23 generations back. Pedigree information was provided by the Italian 

Holstein Friesian Cattle Breeders Association (Cremona, Italy).  
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RESULTS 

Descriptive statistics  

Predicted Ca, P, TA, and pH averaged 1171 mg/kg, 935 mg/kg, 3.41 °SH/50mL and 6.63, 

respectively (Table 1). The coefficient of variation was 0.13 for both Ca and P, 0.08 for TA, 

and 0.01 for pH. 

The effect of lactation stage on Ca and P content was similar (Figure 1); both components 

decreased rapidly within the first 2 months of lactation and increased thereafter. The trend for 

TA and pH in early to mid-lactation was opposite to each other (Figure 2); milk TA decreased 

markedly in the 1
st
 month after calving, reached a plateau during the 2

nd
 month, and increased 

thereafter, whereas milk pH increased until the 5
th

 month after calving and decreased slightly 

thereafter (Figure 2). 

Least squares means for the milk characteristics in each parity are in Table 2. Predicted 

mineral content and TA were inversely related to parity (P < 0.05); pH did not change among 

parities with the exception of parity one which exhibited the lowest pH value (P < 0.05). 

Significant parity effects were detected for MY, protein percentage and SCS, while no effects 

were detected for fat percentage. 

Heritability 

Estimates of heritability for predicted Ca, P, and TA were 0.10, 0.12, and 0.26, 

respectively (Table 1), and they ranged from 0.09 (SCS) to 0.25 (fat percentage) for milk 

quality and yield. The coefficients of genetic variation for the minerals and TA were lower 

than those of fat percentage, SCS and MY, but comparable to that of protein percentage. 

Practically no genetic variation in milk pH existed with a detected coefficient of genetic 

variation of only 0.004.  

Phenotypic and genetic correlations 

Predicted Ca was moderately phenotypically correlated with both P (0.33) and TA (0.40), 

while P was strongly correlated (0.82) with TA (Table 3). A moderate negative phenotypic 

correlation (-0.38) existed between TA and pH. Phenotypic correlations of the milk minerals 

and TA with milk chemical composition varied from 0.00 (TA and SCS) to 0.45 (TA and 

protein percentage). Milk yield was negatively phenotypically correlated with Ca, P and TA, 

albeit all correlations were weak (-0.23 to -0.11; Table 3). 

Strong and significant (P < 0.05) genetic correlations existed between TA and P (0.92) 

and between Ca and P (0.67). Genetic correlations of Ca, P and TA with fat and protein 
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percentages ranged from 0.35 (TA and fat percentage; P < 0.05) to 0.91 (P and protein 

percentage; P < 0.05), and with SCS and MY the correlations were weak to moderate and not 

significantly different from zero (P > 0.05; Table 3). 

 

DISCUSSION 

Descriptive statistics  

Mean milk Ca and P in the present study are within the ranges of values documented by 

van Hulzen et al. (2009), Cashman (2011) and Toffanin et al. (2015), who reported average 

values from 1120 to 1235 mg/kg and from 890 to 1027 mg/kg for measured Ca and P in 

bovine milk, respectively. Moreover, van Hulzen et al. (2009) and Toffanin et al. (2015) 

documented a phenotypic coefficient of variation between 9% and 12% for measured Ca and 

P in milk of Holstein-Friesian cows. Soyeurt et al. (2009) investigated the feasibility of MIRS 

to predict the content of milk minerals using the ICP-AES without previous mineralization as 

the reference method. Despite differences in pre-treatment for ICP-AES as well as the data 

originating from two separate populations of cows, similar means and coefficients of variation 

were observed between the present study and the aforementioned study of Soyeurt et al. 

(2009).  

Parity least squares means for Ca and P (Table 2) followed a similar trend to that 

described by Kume et al. (1998) in Japanese Holstein cows, who reported a slight decrease in 

milk mineral concentration after first parity, even if not statistically significant. The decrease 

in milk Ca and P content within increasing parity is probably due to the reduced utilization of 

these minerals in the mammary gland (Kume and Tanabe, 1993). Indeed, serum Ca and P 

concentration is also inversely related to parity number (Shappell et al., 1987; Romo et al., 

1991) justifying the hypothesis of a lower utilization in older cows. Van de Braak and Van’t 

Klooster (1987) argued that osteoplastic activities are less intense in older than in younger 

cows, which could explain a decreased responsiveness for PTH-mediated Ca resorption and 

intestinal absorption in older parity cows (Romo et al., 1991). Moreover, the greater amount 

of milk produced by older cows during lactation could explain the lower mineral content 

because of the dilution. 

The association between lactation stage and Ca in the present study (Figure 1) 

corroborates the observed increase in milk Ca content across lactation documented by van 

Hulzen et al. (2009) in 1860 Dutch Holstein-Friesian cows. Similar effects have been 

documented in other dairy species such as goat and sheep (Sahan et al., 2005; Kondyli et al., 
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2007). Trends of minerals across DIM might be due to changes in feeding composition across 

lactation (Cashman and Flynn, 2003) or to a dilution effect during lactation; negative 

phenotypic correlations between MY with both Ca (-0.23) and P (-0.14) were observed in the 

present study after adjustment for terms in the statistical model (Table 3).  

Mean milk TA across all samples in the present study is similar to documented values of 

TA in the milk of Holstein-Friesian (Cassandro et al., 2008) and Brown Swiss cows (De 

Marchi et al., 2007, 2008; Cecchinato et al., 2011; Penasa et al., 2014) and in herd bulk milk 

samples destined for Grana Padano cheese production (Pretto et al., 2013). Moreover, mean 

TA in the present study is similar to reported values of MIRS-predicted TA by De Marchi et 

al. (2009), Colinet et al. (2010) and Toffanin et al. (2015). The lower pH in first compared to 

later parity cows corroborates results of Ikonen et al. (2004) and could be the consequence, at 

least partly, of the higher values of P and TA in first lactation cows (Table 2), and the inverse 

relationships between these minerals and pH (Table 3). The interrelationships between milk 

acidity and mineral content have been previously investigated (Mariani et al., 1989). The 

similar patterns of TA and minerals across stages of lactation (Figures 1 and 2) could be 

explained by the nature of these traits; TA is moderately phenotypically correlated with both 

protein percentage and Ca, as well as being strongly correlated with P (Table 3). As a 

consequence, it is expected that TA follows the trend of minerals across lactation, which 

decreases markedly in early lactation, increasing thereafter. 

Descriptive statistics of milk chemical composition and MY are in agreement with those 

documented in several studies on Italian Holstein-Friesian cows (Cassandro et al., 2008; 

Pretto et al., 2011; Tiezzi et al., 2013), with the exception of SCS, which exhibited a smaller 

phenotypic coefficient of variation in the present study. Parity mean milk composition and 

yield (Table 2) were generally in agreement with other studied international populations of 

dairy cows (Ikonen et al., 2004; Hansen et al., 2006; Bastin et al., 2013). 

Heritabilities 

Heritability estimates of Ca and P were markedly lower than those reported by Soyeurt et 

al. (2008b) who predicted Ca and P using MIRS with similar accuracy to the equations used in 

the present study. Differences in number and variability of data could explain different 

estimates between the present study and that of Soyeurt et al. (2008b). Using data on 

measured Ca and P, Van Hulzen et al. (2009) reported similar heritability estimates for Ca and 

P to those documented by Soyeurt et al. (2008b). The lower heritability estimates obtained in 

the present study could be also related to the MIRS prediction models performance: the less 
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than perfect predictions will likely increase the residual variance and thus reduce the 

heritability. Nevertheless, the presence of genetic variation in these traits, albeit with 

coefficients of genetic variation generally less than observed for other performance traits like 

milk production, suggests that genetic improvement is still nonetheless possible. This is 

especially true because milk MIRS information is routinely available on all milk samples 

taken during milk testing. Moreover, it has been reported that also in the case of quite low 

accuracy of prediction, the genetic correlations between predicted and true values are strong. 

This was demonstrated by Cecchinato et al. (2009) who compared genetic parameters from 

predicted (with accuracies similar to those obtained in the present study) and measured values 

of milk coagulation properties: those authors concluded that the genetic response in milk 

coagulation properties from selection using MIRS predictions as indicator traits is expected to 

be equal to or slightly lower than the response achievable through direct measurement of the 

traits (Cecchinato et al., 2009). 

The accuracy of selection for both milk Ca and P based on information on 100 half-sib 

daughters (ignoring parental contribution) in a univariate genetic evaluation is 0.86. Assuming 

a genetic gain of 0.22 standard deviations annually, this equates to a potential genetic gain of 

7.3 mg/kg and 6.9 mg/kg for Ca and P, respectively. The actual gain achievable however will 

be dependent on the traits in the breeding goal, their covariances with Ca and P and their 

relative weighting within the breeding goal, as well as other factors like intensity of selection, 

accuracy of selection and generation interval (Rendel and Robertson, 1950). 

To our knowledge, this is the first study to estimate genetic parameters for TA predicted 

by MIRS. Heritability estimates for actual TA, determined using Soxhlet-Henkel degrees, has 

been reported to range between 0.17 to 0.23 in Holstein-Friesian (Cassandro et al., 2008) and 

Brown Swiss cows (Cecchinato et al., 2011). The heritability of pH in the present study (0.16) 

is within the range of 0.06 (Cecchinato et al., 2011) to 0.38 (Ikonen et al., 2004) reported in 

other populations. The lack of genetic variation in pH observed in the present study suggests 

limited potential for change through breeding; the small phenotypic coefficient of variation for 

pH, also suggests limited potential for alteration of milk pH in the dairy cow through non-

breeding means. 

Phenotypic and genetic correlations 

Both the phenotypic and genetic correlations between Ca and P observed in the present 

study were consistent with correlations reported by Soyeurt et al. (2008b) from a large multi-

breed population of dairy cows. The phenotypic correlation between measures of P and TA 
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has been reported to range from 0.54 to 0.81 (Mariani et al., 1989; Toffanin et al., 2015), 

depending on whether individual or bulk milk samples or whether single or multi-breed 

populations were considered. As expected, the phenotypic correlation between P and pH in 

the present study was negative, although weak, reflecting the link between P and TA (positive 

and strong) and between TA and pH (negative and moderate). The phenotypic correlation 

between TA and P was also confirmed by the effect of lactation stage on each trait being a 

mirror of the other (Figure 2). Similar correlations were reported by Mariani et al. (1989) who 

assessed a phenotypic correlation of -0.61 between pH and soluble P.  

No study has previously estimated the genetic correlations between milk mineral content 

and other milk components. Predicted Ca and P were positively and moderately (phenotypic) 

to strongly (genetic) correlated with milk protein and fat percentage. After all, as reported by 

Malacarne et al. (2013), micellar P can be present as part of colloidal calcium phosphate or 

covalently bound to caseins as phosphate groups, given that Ca and P are basic components of 

the milk micelles. Milk yield was moderately and not significantly (P > 0.05) related to Ca, P 

and TA, suggesting independence of production from mineral content and acidity of milk. 

However, it is likely that the lack of significance in the present study was the consequence of 

the relatively small sample size which led to quite high standard errors for some estimates of 

genetic correlations. The use of MIRS models to predict milk mineral content and TA at 

population level will reduce the sampling variance. 

 

CONCLUSIONS 

Improvement in milk mineral and acidity profiles could be of benefit for the human 

nutritional and technological characteristics of milk. The existence of heritable genetic 

variation coupled with the ability to predict these milk characteristics through routinely 

available MIRS suggests that genetic selection for these components in milk is indeed 

possible. Moreover, because Ca, P, and TA are genetically correlated with milk protein and fat 

percentage, breeding goals that select for improved milk fat and protein concentration are 

likely to be indirectly selecting also for improved milk Ca, P and TA. 
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Table 1. Mean, coefficient of genetic variation (CVg), estimated heritability (h
2
; 

standard errors in parentheses) of milk mineral components, acidity, chemical 

composition and yield  

Trait
1
 N Mean CVg

 
h

2 
(s.e.)

2
 

Mineral component 

   Ca (mg/kg) 2428 1171 0.03 0.10 (0.04) 

   P (mg/kg) 2353 935 0.04 0.12 (0.05) 

Acidity 

   TA (°SH/50mL) 2019 3.41 0.03 0.26 (0.07) 

   pH 2440 6.63 0.004 0.16 (0.05) 

Quality traits 

   Fat (%) 2456 3.69 0.09 0.25 (0.06) 

   Protein (%) 2458 3.37 0.04 0.20 (0.05) 

   SCS (units) 2451 4.62 0.08 0.09 (0.04) 

Milk yield (kg/day) 2285 30.19 0.07 0.12 (0.05) 

1
Ca = calcium; P = phosphorus; TA = titratable acidity; SCS = somatic cell score 

[SCS = ln(SCC)], where SCC is somatic cell count. 

2
All estimates of heritability are significantly different from zero (P < 0.05). 
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Table 2. Least squares means and pooled standard errors (s.e.) for milk mineral components, 

acidity, chemical composition and yield across parities 

Trait
1
 

Parity  

1 2 3 4 and later s.e. 

Mineral component      

   Ca (mg/kg) 1185
a
 1185

a
 1162

b
 1152

b
 6 

   P (mg/kg) 965
a
 942

b
 929

b
 931

b
 5 

Acidity      

   TA (°SH/50mL) 3.49
a
 3.36

b
 3.30

c
 3.27

c
 0.01 

   pH 6.62
a
 6.64

b
 6.63

b
 6.64

b
 0.00 

Quality traits      

   Fat (%) 3.80
a
 3.80

a
 3.76

a
 3.77

a
 0.03 

   Protein (%) 3.44
a
 3.48

b
 3.43

a
 3.40

a
 0.01 

   SCS (units) 4.55
a
 4.82

b
 4.94

bc
 5.14

c
 0.06 

Milk yield (kg/day) 26.8
a
 28.6

b
 30.5

c
 29.7

bc
 0.3 

1
Ca = calcium; P = phosphorus; TA = titratable acidity; SCS = somatic cell score [SCS = 

ln(SCC)], where SCC is somatic cell count. 

a-c
means with different superscripts within a row are significantly different (P < 0.05). 



 

 108 

1
0

8
 

Table 3. Phenotypic (above diagonal, with standard errors in parentheses) and genetic (below diagonal, with standard errors in 

parentheses) correlations between milk mineral components, acidity, chemical composition and yield 

Trait
1
 Ca P TA pH Fat Protein SCS MY 

Ca  0.33(0.02) 0.40(0.02) 0.01(0.02) 0.32(0.02) 0.44(0.02) 0.06(0.02) -0.23(0.02) 

P 0.67(0.24)*  0.82(0.01) -0.10(0.02) 0.25(0.02) 0.39(0.02) 0.03(0.02) -0.14(0.02) 

TA 0.28(0.25) 0.92(0.05)*  -0.38(0.02) 0.24(0.02) 0.45(0.02) 0.00(0.02) -0.11(0.03) 

pH 0.19(0.29) -0.06(0.25) -0.30(0.19)  -0.16(0.02) -0.09(0.02) 0.13(0.02) 0.01(0.02) 

Fat 0.76(0.15)* 0.83(0.14)* 0.35(0.17)* -0.29(0.19)  0.37(0.02) 0.08(0.02) -0.27(0.02) 

Protein 0.84(0.14)* 0.91(0.10)* 0.69(0.12)* -0.02(0.22) 0.75(0.11)*  0.16(0.02) -0.35(0.02) 

SCS -0.02(0.33) 0.20(0.30) 0.38(0.25) -0.14(0.29) 0.38(0.24) 0.40(0.24)  -0.18(0.02) 

MY -0.26(0.30) -0.31(0.28) -0.46(0.24) 0.28(0.25) -0.19(0.23) -0.44(0.21) -0.08(0.31)  

1
Ca = calcium; P = phosphorus; TA = titratable acidity; SCS = somatic cell score [SCS = ln(SCC)], where SCC is somatic cell count. 

*Genetic correlations are significantly different from zero at P < 0.05. 
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Figure 1. Least squares means (with standard errors) of predicted calcium (Ca - continuous 

line) and phosphorus (P - dashed line) across days in milk. 
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Figure 2. Least squares means (with standard errors) of predicted titratable acidity (TA - 

black line) and pH (grey line) across days in milk. 
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GENERAL CONCLUSIONS AND PERSPECTIVES 

The potentiality of MIRS as milk phenotyping tool has been documented in the 

literature. The accuracy of prediction models largely differs across milk traits, and the 

standardization of reference methods, the increase of biological variability of data through 

collaborations among different countries, the large scale data recording, and the study of the 

most suitable editing and spectra pre-treatments would lead to improvement of the robustness 

of prediction models. 

In the present work the effectiveness of MIRS to predict milk MCP, Ca and P contents, 

and TA has been demonstrated. The prediction performance were satisfactory for RCT, k20 

and a30, given the improvement of prediction models based on a overextending of the 

traditional reference analysis time, while the accuracy of a60 prediction need to be enhanced. 

Milk Ca and P contents were predicted with good accuracy, even though Ca prediction model 

only permits to discriminate between low and high contents of Ca and need to be improved. 

Moreover, TA of milk was predicted with satisfactory accuracy. 

The MCP, mineral contents and acidity of milk were moderately and favourably 

correlated to physical-chemical composition. Moreover, given the existence of heritable 

genetic variation of milk Ca, P and TA and high genetic correlations of Ca, P, and TA with 

milk protein and fat percentages, an indirect improvement of the former traits could be 

achieved through direct selection of the latter features. 

The possibility to predict samples which coagulate after the traditional testing time of 30 

minutes, should be considered for genetic purposes. In fact, these samples are often discarded 

from genetic analyses and considered as missing information, leading to possible biases in the 

prediction of sires merit for coagulation traits. 

The aforementioned genetic purposes could be followed given the possibility to recorder 

large amount of milk phenotypes, with reduced costs and times thanks to MIRS technology. 

New milk phenotypes should be routinely available at population level if their prediction 

models are apply to MIRS instruments routinely used in milk laboratories for the milk-

recording schemes to predict protein, casein, fat and lactose contents. 

Concluding, the possibility to use mid infrared spectroscopy as phenotyping tool for milk 

MCP, mineral content and acidity was demonstrated and a genetic improvement of these 

nutritional and technological characteristics of milk could be facilitated by this technology. 
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