
Dipartimento di Ingegneria e Scienze
dell’Informazione e Matematica

Università degli Studi dell’Aquila
Via Vetoio, I-67100 L’Aquila, Italy

http://www.disim.univaq.it

Ph.D. Thesis in Computer Science

Dottorato di Ricerca in Informatica e Applicazioni - XXXII Ciclo

SSD: INF/01

Logical Agents: Memory Management, Advanced
Architectures and Applications

Ph.D. Student

Valentina Pitoni

Ph.D. Program Supervisor Advisor
Prof. Vittorio Cortellessa Prof.ssa Stefania Costantini

CoAdvisor
Prof. Emiliano Lorini

A.A. 2018/2019

c© Valentina Pitoni, 2020. All rights reserved

To my grandparents, my family and my friends

ABSTRACT
_

In this thesis I show my work of the past 3 years. I have covered different topics and the
main areas are:

• Modal, Temporal and Metric Temporal Logic and Epistemic Logic;

• Cyber-Physical Systems, Multi-Context Systems, Component-based Agents Envi-
ronments;

• Machine Ethics.

The primary objective of my research has been the study of autonomous system which
evolves over time and their formal treatment in Computational Logic. First of all I show
how I manage agents’ memory through a particular modal logic. I have started to study
this topic from the Master thesis and I carried on the work introducing various extensions
that I will describe in the first chapter.

In the second chapter I show my last work which is a “work in progress”. It is about a
particular logic which is similar to the one explained in the first chapter, but I underline
the concepts of “steps” and “executability”. These two characterize agents’ action.

In the third chapter I show my other research areas: Cyber-Physical Systems. Here I focus
on work about a particular, innovative kind of architecture called K-Level ACE, which has
a fractal structure and than can manage sudden failures.

In the forth chapter I show the last topic of my research activities: Machine Ethics, which
is a part of ethics of Artificial Intelligence concerned with the moral behavior of artificial
intelligent beings. Important aspect of Machine Ethics are trustworthiness and safety. We
accomplished this aspects through verification and assurance. We propose technique for
Runtime self checking and Monitoring using meta-rules and runtime constraints.

"In life smile always because no one is so
important to take your smile away!"

Jim Morrison

"Non permettere a nessuno di toglierti
il sorriso!"

Cristina D’Avena

TABLE OF CONTENTS
_

Abstract i

Table of Contents v

List of Figures vii

1 Memory Management: Time Dynamic Logic of Explicit Belief and Knowl-
edge 1
1.1 Introduction . 1
1.2 Background . 4

1.2.1 Modal Logic, Linear Temporal Logic and Metric Temporal Logic 4
1.2.2 Dynamic Epistemic Logic and DLEK 6

1.3 Temporalizing DLEK Logic: TDLEK 7
1.3.1 TLEK and TDLEK . 8
1.3.2 TLEK and TDLEK Semantics 11
1.3.3 Semantics for mental operations 13

1.4 Axiomatization and Canonical Models 18
1.5 An Example of Temporal Reasoning . 21
1.6 T-LEK and T-DLEK . 24

1.6.1 Syntax . 24
1.6.2 Semantics . 25

1.7 Axiomatization and Canonical Models 30
1.7.1 Example: Italian PhD Program 32

1.8 A Temporal Module for Logical Frameworks 34
1.9 Time Module . 34
1.10 Temporal Dynamic Logic of Cognitive Attitudes 35

1.10.1 T-DLCA Syntax . 35
1.10.2 T-DLCA Semantic . 35

1.11 Conclusions . 37

2 Towards a Logic of “Inferable” 39
2.1 Introduction . 39

2.1.1 Logical framework . 40
2.1.2 Syntax . 40
2.1.3 Semantics . 42

2.2 Axiomatization . 44
2.3 Conclusions . 46

vi TABLE OF CONTENTS

3 Advanced Architecture: K-Layer ACE 47
3.1 Introduction . 47
3.2 Terminology for K-ACEs . 52
3.3 Background: MCS . 53
3.4 Background: ACE and DACMACS . 56

3.4.1 DACMACS . 56
3.4.2 ACE . 59

3.5 K-ACE . 60
3.6 Application of K-ACE to Case-Studies 69
3.7 Semantics . 71
3.8 Complexity . 75
3.9 Related Work and Discussion . 76
3.10 Conclusions . 78

4 Reflection and Introspection for Humanized Intelligent Agents 81
4.1 Introduction . 81
4.2 Background: Reification and Reflection 84
4.3 Meta-Rules for checking Agents’ activities 85
4.4 Self-checking Metalevel Constraints . 87
4.5 A Case Study . 89
4.6 Related Work and Concluding Remarks 93

References 95

LIST OF FIGURES
_

1.1 Memory . 1
1.2 Short-term Memory and Long-term Memory 3

3.1 Friendly-and-Kind architecture . 48
3.2 DyPES Architecture . 49
3.3 K-ACE Architecture . 61

4.1 Case Study . 89

_

CHAPTER 1

MEMORY MANAGEMENT: TIME DYNAMIC LOGIC OF

EXPLICIT BELIEF AND KNOWLEDGE

_

1.1 INTRODUCTION

In this chapter I illustrate the central part of my Thesis, describing how we manage agents’
memory through a particular modal logic. First of all we try to identify the context in
which we are: Agent’s Memory. Memory in an agent system can be seen as a process of
reasoning that not only just adds/deletes new facts but in particular, it is a learning process
of strengthening a concept. The interaction between an agent and the environment plays
an important role in constructing its memory and may affect its future behaviour, the
latter due to the proactive and deliberative capabilities of the agent themselves. In fact,
through memory an agent is potentially able to recall and to learn from experiences so
that its beliefs and its future course of action are grounded in these experiences. Most of
the methods for designing agent memorization mechanisms were inspired by the human
memory models [131, 121] developed in cognitive sciences.

Figure 1.1: Memory

1

2
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

Recently, cognitive architectures have been defined and implemented; this kind of archi-
tectures are software systems that implement psychological theories about how our brain
works (mental processes) and are used to create intelligent agents of cognitive inspiration.
The main objectives of cognitive architectures are:

• decision making, i.e., the ability to devise decisions based on the knowledge of the
world relative to a given task;

• environment interaction, i.e., the ability to acquire and interpret stimula provided
by the environment;

• simulate the structure and the way of thinking of a human brain.

Atkinson and Shiffrin in [12] proposed a model of human memory which consists of three
distinct memory stores, the sensory register where information are stored which are de-
tected from senses, the short term memory (or working memory) where explicit beliefs are
stored and the long term memory which stores the background knowledge; information
passes from store to store in a linear way. This model has been further enhanced by Gero
and Liew in [118], and [94] for constructive memory. Memory construction occurs when-
ever an agent uses past experience in the current environment in a situated manner. The
exploitation of “memories” requires the interaction among this different memory compo-
nents. Such correlation can be obtained in various ways, e.g., via neural networks, via
mathematical models or via logical deduction.

Moreover, the most important cognitive architecture is SOAR (State, Operator And Re-
sult), which was created by Laird, Newell and Rosenbloom [115] at Carnegie Mellon
University in 1983. SOAR has been used in a wide range of practical applications and
it is often used as a tool for creating cognitive models that bring evidence and provide
representation of aspects of human behavior. In SOAR, it is assumed that every problem
can be reformulated as a Problem Space. A problem space is defined as a set of (possible)
states and a set of operators that transform each state within the space problem into an-
other state. There is usually an initial state and a desired state, or goal. The operators are
selected iteratively and applied tentatively to achieve the goal state. The series of steps
from the initial state to the desired state form the solution path or behavior.

To give meaning to our everyday experience of how the world works, we need to use our
knowledge about objects and actions for the pursuit of our goals. For example, one knows
a lot things about cups, but uses only a part of this knowledge to prepare a cup of coffee,
and another part when looking for a place where to put pens and pencils. Moreover, once
some specific item of knowledge has been applied, a cup will be filled with either coffee or
pens. The ability to reason on cups in general as pencil holders rather than coffee cups will
not be changed, but there will be specific objects in the present situation that have assumed
a single role. This dichotomy between general knowledge and specific application of this
knowledge is captured in SOAR by the existence of two different memory structures. The
knowledge that exists independently of the current environment is called “Long-Term

1.1 Introduction 3

Memory” (LTM). The situation determined by the application of part of such knowledge
is put in the “Working Memory” (WM).

Figure 1.2: Short-term Memory and Long-term Memory

It is useful to think about the long-term memory as containing what may be true in general
(for example, “coffee cups can hold pencils”), and the working memory containing what
the model found to be true in a particular situation (for example, the cup in front of me
contains coffee). In fact, the working memory structure is formed by the current objective
(goal), the problem space, the current state, as well as the values and the characteristics
that symbolize the state’s contents. Perceptions of the world come through the perception
model and are saved in the working memory in the form of symbolic structures. Further-
more, the working memory can be viewed as a short-term memory, which issues calls to
the long-term memory for the recovery of information and knowledge, but also for learn-
ing. The long-term memory can affect the working memory. The data in both memories
can be retrieved through specific requests from the working memory, which assumes the
role of global workspace. This has the objective of defining the behavior of an agent,
where behaviors are represented and generated in the long-term memory.

In their paper [16], Balbiani, Fernández-Duque and Lorini proposed a (partial) formaliza-
tion of the SOAR architecture in modal logic, reasoning on a particular type of agents:
“resource bounded” agents, which are agents who have limited memory and can take one
step of inference at a time. They proposed a new logic called DLEK (Dynamic Logic of
Explicit Beliefs and Knowledge) which helps clarifying how a non-omniscient resource-
bounded agent can form new beliefs either through perception or through inference from
existing knowledge and beliefs. In this logic programs are mental operations either of
perceptive type or of inferential type having effects on the epistemic states of the resource
bounded agent. In fact, DLEK is the first logical theory of relationship between explicit
beliefs and background knowledge, from both the static and dynamic perspective which
is reflected in its formal semantics and axiomatics. DLEK uses a constructive approach to
explicit beliefs: this distinguishes it from the existing logics of time-bounded reasoning
which represent reasoning as the process that requires time (see [3], [98]). These logics
do not include mental operations of perceptive and inferential type as primitives in the
object language of the logic. Instead, DLEK includes mental operations in its object lan-
guage which can be used to reason about consequences of a sequence of perceptive and

4
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

inferential steps on the epistemic state of the agent.

DLEK has however no notion of time, while agents’ actual perceptions are inherently
timed and so are many of the inferences drawn from such perceptions. So, in [61] we have
introduced explicit time instants and time intervals in formulas. We extended LEK/DLEK
to TLEK/TDLEK, and I describe these logics in the first part of this chapter. But, to avoid
problems with the management of the intervals and in order to not lose the logic of the
formalization, in [70] we present an extension of LEK/DLEK to T-LEK/T-DLEK (“Timed
LEK” and “Timed DLEK”) obtained by introducing a special function which associates
to each belief the arrival time and controls timed inferences. Through this function it is
easier to keep the evolution of the surrounding world under control and the representation
is more complete. And also, we work on Belief Revision, because agents interact with the
environment so they have to change their belief according to the actual word. Moreover
in [134] we consider this T function like a temporal module which can be adopted to
“temporalize" many logical framework. We have exploited this module in two different
settings. The first one is the memory management, which we have just talk about, and
the second is a logical framework for reasoning about agents’ cognitive attitudes; many
formal logics have been proposed for reasoning about concepts taken from qualitative
decision theory. Lorini in [122] proposes a general logical framework for reasoning about
agents’ cognitive attitudes of both epistemic type and motivational type.

The issue of time in agents has been coped with in several other works, (see, e.g., among
many, [19, 129, 125, 44, 10], where however the objective is that of dealing with time
in communication and coordination among agents; thus, our attempt to deal with time in
memory management is a novelty in the literature.

1.2 BACKGROUND

In this section, we recall briefly notions from the literature that define some basic founda-
tion elements of the proposed approach.

1.2.1 MODAL LOGIC, LINEAR TEMPORAL LOGIC AND METRIC

TEMPORAL LOGIC

In recent decades logic has found numerous new information technology applications,
especially in Artificial Intelligence, such as knowledge representation, expert systems,
automated reasoning, systems specifications, programming, and many others. However,
many important aspects of software are inherently dynamic, which implies the need to
manage the evolution of the system state. First order logic is not suitable to do that, and
this lead to the introduction of an extension of modal logic, the so-called Linear Temporal
Logic (LTL). Linear Temporal Logic is important because it is used in the analysis of

1.2 Background 5

dynamical systems, and in particular to define and verify the properties of such systems.
Moreover, LTL provides explainability and potential validation.

MODAL LOGIC: Modal logic describes a set of states and the relationships between them:
it extends classical logic through a set of modal operators. This kind of logic stems from
the analysis on the propositions containing expressions like “necessary” and “possible”
made by Aristotle. In this sense we can distinguish between propositions according to the
fact that they may become true necessarily, possibly or contingently. These three modes
are represented by:

• the operator � stands for necessity;

• the operator ♦ stands for possibility;

• the absence of modal operator indicates contingency.

The two modal operators � and ♦ are unary operators; i.e., if A is a formula, also �A (A
is necessary) and ♦A (A is possible) are formulas. The definition of a formal semantics
for modal operators was anticipated by the American philosopher and logician S. Kripke,
who defined the semantics of “possible worlds” for modal logics. In this approach, modal
formulas are to be interpreted in a set of possible worlds. The meaning of a formula (its
truth / falsehood) can vary from a world to another. The worlds accessible from a world
w represent states of things possible from the point of view of w. Consequently, �A is
true in w if and only if A is true in all the worlds that are reachable according to w. And,
if some formula A is true in a world wi and yet �A not true in w, this is because wi

represents a state of things that it is not possible from the point of view of w. For more
details on modal logic the reader may refer to [153], [84], [148] and to the references
therein.

LINEAR TEMPORAL LOGIC AND METRIC TEMPORAL LOGIC: LTL is a linear logic
modelling time via discrete instants. In this particular type of modal logic, the operators
� and ♦ are interpreted in time:

• � A: A will always be true in the future;

• ♦ A: A will be true at some instant in future time.

There are also other temporal operators such as© (“Next”) and U (“until”), that we do
not use here. For more details, c.f. [135], [148].
In linear temporal logic, the approach to verify the execution of a system is modelled
by a sequence of states or “events”. This representation abstracts away from the precise
time of the observations, only keeping their relative order. This approach is inadequate

6
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

to express the specifications for systems whose correct behavior depends on quantitative
timing requirements; to cope with this deficiency, much work has been done to adapt
linear temporal logic to the real-time setting. A real-time logic should have explicit refer-
ences to time, usually recorded as timestamps associated to events in a computation. One
of the oldest and most popular proposals for the extension of the temporal logic to the
real-time setting is to replace the simple temporal operators with a constrained version
w.r.t. time. This kind of logic is called Metric Temporal Logic (MTL), where LTL is
extended tying the temporal operators to intervals of real numbers (limited or unlimited).
For example, the formula "♦[3,4]A" means that A will become true within 3 to 4 units
of time from now. In this work, we consider MTL under pointwise semantics and time
points expressed as natural numbers, which is known to be decidable and where satisfia-
bility and model-checking have been proved to be EXPTIME-complete [103, 130]. For
more details refer also to [114].

1.2.2 DYNAMIC EPISTEMIC LOGIC AND DLEK

In their work , Balbiani, Fernández-Duque and Lorini, in accordance with existing theo-
ries, assume that an agent has two types of memory, the long term (LTM) and the short-
term memory, also called working memory (WM). They also contain different types of
information:

• The “Background Knowledge": general knowledge (events of the past, rules de-
scribing the surrounding world, etc.) contained in long-term memory;

• “Belief ": represent everything that the agent believes in a determined instant of
time and are formed by perceptions. The formation of believes by perceptions adds
a new information to the set of beliefs that are under the attention of the agent and
therefore are part of the short-term memory. An agent can also use belief as a basis
for an inference that leads to the formation of a new belief. In many cases, the
formation of new beliefs by inference requires retrieving information from long-
term memory. Furthermore, information in the working memory can be:

– deleted: an agent, no longer needing certain beliefs, is able to forget them;

– moved to the long-term memory: an agent can consider that certain informa-
tion will be useful later, so it stores them in the long-term memory.

To formalize this system, they used a particular kind of Dynamic Epistemic Logic called
Dynamic Logic of Belief and Knowledge (DLEK). The Dynamic Epistemic Logic was
proposed by Jaako Hintikka in his book published in the fundamental Knowledge and
Belief, 1962. However, the general study of the formal semantics for knowledge and
belief began to really flourish in 1990 with fundamental contributions by computer sci-
entists [124] and game theorists [13, 28]. As a consequence, the field of epistemic logic
focuses on epistemic issues of the game theory [34], information security [101, 136] and

1.3 Temporalizing DLEK Logic: TDLEK 7

distributed systems and multi agents [100, 155]. Considering our field of interest, the
Dynamic Epistemic Logic (DEL) is a particular type of Modal Logic which studies how
agents update their knowledge and change their beliefs on the basis of new information
exchanged in various ways (communication with other agents, perceptions from the out-
side world, etc.). One of the key features of epistemic logic is that the state of different
agents can be represented by a Kripke model. In epistemic logic, the set of states of a
Kripke model is interpreted as a set of epistemic alternatives. The state of an agent con-
sists of those epistemic alternatives that are possible from the perspective of the agent;
they are represented by the binary accessibility relation Ri. An agent i knows that the
proposition ϕ is true in a state of a Kripke model M if and only if that proposition ϕ is
true in all the states that the agent examines possible in that state (which are accessible
through Ri). For more details, refer to [156] and to references therein.

Balbiani, Fernández-Duque and Lorini introduced DLEK in order to clarify how an agent
with bounded resources and not omniscient can form new beliefs through perception and
through inferences from existing information. In particular, they introduced rules that
describe mental operations, both perceptual and inferential, which have effects on the
epistemic states of the agents. The main difference between DLEK and the existing logics
is that it provides a constructive theory of belief and, thanks to the perceptual steps and
inferential knowledge, an agent can create new believes. More precisely, DLEK is a logic
that consists of a static component and of a dynamic one. The static component, called
LEK, is a Dynamic Epistemic Logic; instead the dynamic component extends the static
with dynamic operators that capture the consequences of mental operations on agents’
believes.

1.3 TEMPORALIZING DLEK LOGIC: TDLEK

We introduce TDLEK starting from LEK and DLEK. We will illustrate the new logic by
difference from LEK and DLEK while emphasizing the aspects that we modify/extend.

We may notice that most of the time-based logics follow the seminal work of [152]. In
Metric Temporal Logic (MTL) [114] the modalities of LTL are augmented with timing
constraints; thus, expressions of the form �I and ♦I are introduced, where I is a time
interval which, under the Pointwise Semantics, can either be finite or diverge to infinity.
The works of [102, 18] cope with time intervals by introducing modalities for every pos-
sible relationships among intervals and also among points and intervals. In this work we
consider MTL under pointwise semantics and time points expressed as natural numbers,
which is known to admit decidable versions. Notice however that, in our approach, a
time-stamp associated to an atom is intended as the time instant in which an agent has
perceived the event denoted by the atom, where a time interval I associated to a formula
�Iϕ delimits the period of time in which the truth of the formula is to be evaluated.

8
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

1.3.1 TLEK AND TDLEK

We consider an underlying discrete linear model of time and identify time instants with
natural numbers and time intervals with intervals in N. More in general, we consider any
arithmetic expression e over natural numbers, with value ve ∈ N, as denoting the time
instant ve. For simplicity, in what follows, we identify each expression e with its value ve.
A “time-interval” is a closed finite interval [`, u] or an infinite interval [`,∞) (considered
open on the upper bound), for any expressions/values `, u such that 0 ≤ ` ≤ u. Given
I1 = [t1, t2] and I2 = [t3, t4] (where both t2 and t4 can be∞) we indicate as I1] I2 the
unique smallest interval including both I1 and I2.

As it is customary in logic programming, we assume some signature specifying (count-
able) sets of predicate, function, and constant symbols. From constant and function sym-
bols, compound terms are built as usual. The Herbrand universe is the collection of all
such terms (which includes constant symbols). We assume that the integer numbers and
the symbol∞ are included among the constant symbols and that the arithmetic operators
are included among the function symbols. Consequently, arithmetic expressions are terms
on the signature. Atoms have the form pred(τ1, . . . , τn) where pred is a predicate symbol,
n ≥ 0 is its arity and τ1, . . . , τn are terms. We denote by Atmg the countable set of atoms
on the signature (i.e., the Herbrand base).

A time-stamped (or, briefly, timed) atom pt is an atom p annotated with a time instant,
called time-stamp, t. We denote by Atmtg the set of all atoms and time-stamped atoms
(note that Atmg ⊆ Atmtg). For an atom p, by pI with I = [`, u], we mean the conjunction
p` ∧ p`+1 ∧ · · · ∧ pu. In this frame of mind, we will often denote the time-stamped atom
pt as pIt with It = [t, t]. A plain atom p stands for p[0,∞).

Below is the definition of the formulas of the language LTLEK . With a slight abuse
of notation, in this grammar we use I as terminal symbol standing for time intervals
(possibly specified through arithmetic expressions, as said earlier)

Φ := pI | ¬Φ | �I Φ | Bi Φ | Ki Φ | Φ ∨ Ψ | Φ ∧ Ψ | Φ → Ψ

Others Boolean connectives >, ⊥, ↔ are defined from ¬ and ∧ as usual. Moreover,
for simplicity, we consider qI equivalent to > when I = ∅. In the formula �I Φ the
MTL Interval “always” operator is applied to a formula; I can be [0,∞) and �[0,∞) will
sometimes be written simply as �. The operator Bi is intended to denote belief and
the operator Ki to denote knowledge. Both refer to agent i belonging to a finite set
Ag = {1, . . . , k} of agents.

Given a formula Φ, we denote by span(Φ) the interval so defined:

span(Φ) =


I if Φ has the form �I Φ1 or pI

span(Φ1) if Φ has the form ¬Φ1 or Bi Φ1 or Ki Φ1

span(Φ1)] span(Φ2) if Φ has the form Φ1 op Φ2 for op ∈ {∨,∧,→}

Terms/atoms/formulas as defined so far are ground, namely there are no variables occur-
ring therein. We introduce variables and use them in formulas in a restricted manner, as

1.3 Temporalizing DLEK Logic: TDLEK 9

usual for example in answer set programming [92]. Variables can occur in formulas in any
place constants can occur and are intended as placeholders for elements of the Herbrand
universe. More specifically, a ground instance of a term/atom/formula involving variables
is obtained by uniformly substituting ground terms to all variables (grounding step), with
the restriction that any variable occurring in an arithmetic expression (i.e., specifying a
time instant) can be replaced by a (ground) arithmetic expressions only. Consequently, a
non-ground term/atom/formula represents the possibly infinite set of its ground instances,
namely, its grounding. As it is customary in logic programming, variable symbols are
indicated with an initial uppercase letter whereas constants/functions/predicates symbols
are indicated with an initial lowercase letter. We denote by Atm and Atmt the collections
of all non-ground atoms and non-ground time-stamped atoms, respectively. In the rest of
the paper, unless differently specified, we deal with ground terms/atoms/formulas.

Example 1 An example of a non-ground TLEK formula is:

Ki(�[t1,t2] (send_registration_formT → �[T,T+14]send_paymentT1)),

where we suppose that an agent knows that it is possible to register to a certain conference
in the period [t1, t2] and that, after sending the registration form, the payment must be sent
within fourteen days (still staying within the interval [t1, t2]). Since, by the restrictions on
formulas stated earlier, it must be the case that T1 ∈ [T, T + 14] and both T , T + 14
must be in [t1, t2], only a finite set of ground instances of this formula can be formed by
substituting natural numbers to the variables T, T1 (specifically, the maximum number of
ground instances is t2− t1−14+1 assuming to pay on the last day t2). In case one would
consider the more general formula

Ki(�[t1,t2] (send_registration_form(X)T → �[T,T+14]send_payment(X)T1)),

where X represents a member of some department, i.e., department_member(X) holds
for some ground instance ofX , then the set of ground instances would grow, as a different
instance should be generated for each department member (i.e., for each ground term
replacing X). In practice, however, ground instances need not to be formed a priori, but
rather they can be generated upon need when applying a rule; in the example, just one
ground instance should be generated when some member of the department intends to
register to that conference at a certain time T = t̂. �

Remark 1.3.1 As we will see, rules of the form Ki(�I(ϕ→ ψ)) are a key feature of LEK
and TLEK; they are supposed to be kept in the long-term memory and allow other beliefs
to be derived from former ones. This derivation is performed in the working memory,
which is where beliefs are kept. In the above example, if the agent believes to have sent a
registration form, via the Ki(. . .) rule it will consequently infer to believe to have to send
the payment within due time.

Interaction between long-term and short-term memories and thus derivation of new be-
liefs is not automatic, it is rather performed by an agent whenever deemed necessary, by

10
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

means of invocation of an explicit, we might say “conscious", mental operator.
The language LTDLEK of Temporalized DLEK (TDLEK) is obtained by augmenting
LTLEK with the expression [α]ψ, where α denotes a mental operation and ψ is a ground
formula.1 The mental operations that we consider are essentially the same as in [16],
though applied to ground formulas.
Notice that the rational of considering ground formulas is that they represent perceptions
(either new or already recorded in agent’s memory) coming in general from the exter-
nal world (we say “in general” as, in fact, in some of the aforementioned agent-oriented
frameworks perceptions can also result from internal events, i.e., from an agent’s obser-
vations of its own internal activities).
We assume that an agent has “time accurate” perceptions, for example rain [t1,t2] is per-
ceived with precise time instants rather than considering rain [T1,T2] which might signify
that the agent perceived rain in an unspecified interval. The cases of imprecision, because
an agent might “not remember” or might have been told a vague fact by someone else, are
not considered here.
These are the four mental operations of interest:

• +ϕ, where ϕ is a ground formula of the form pI or ¬pI , for a timed atom pI . This
mental operation serves to form a new belief from a perception ϕ. A perception
may become a belief whenever an agent becomes “aware” of the perception and
takes it into explicit consideration. Notice that ϕ may be a negated atom. In fact,
perceptions may concern facts that hold (e.g., ’it rains’) or do not hold (’it does not
rain’).

• `(ϕ, qJ), where qJ is a ground atom. An agent, believing that a ground formula ϕ
is true and having in its long-term memory that ϕ implies qJ (in some suitable time
interval including J), starts believing that qJ is true.

• ∩(ϕ, ψ): believing both ground formulas ϕ and ψ, an agent starts believing their
conjunction.

Note that we do not consider the mental operation −ϕ as formulated in [16], which rep-
resents arbitrary “forgetting”, i.e., removing a belief from the short-term memory. In fact,
we assume that simple forgetting can be performed, e.g., based upon the time-stamps. We
substituted −ϕ with this mental operation:

• a(pI1 , qI2) where pI1 and qI2 are ground atoms. An agent, believing pI1 and having
in the long-term memory that pI1 implies ¬qI2 removes the belief q (in some interval
possibly strictly included in I1 and I2, see below).

1Recall that, thanks to grounding, variables can be used to denote collections of such expressions.

1.3 Temporalizing DLEK Logic: TDLEK 11

1.3.2 TLEK AND TDLEK SEMANTICS

Semantics of DLEK and TDLEK are both based on a set W of worlds. But whereas in
DLEK a valuation function V : W → 2Atm is used, in TDLEK we define the valuation
function on the sets of ground time-stamped atoms: V : W → 2Atmtg .
For a world w, let t1 the minimum time-stamp of atom pt1 ∈ V (w) and let t2 be the supre-
mum (we can have t2 = ∞) among all time-stamps of atoms in V (w). Then, whenever
useful, we denote w as wI where I = [t1, t2]. Moreover, we denote by Vt(w) the set of
atoms in V (w) having t as time-stamp. Similarly, VJ(w) is the set of atoms with time-
stamps in the interval J .
The notion of LEK/TLEK model does not consider mental operations, discussed later,
and is introduced by the following definition.

Definition 1.3.1 A TLEK model is a tuple M=〈W ;N ; {Ri}i∈Ag ;V 〉 where:

• W is the set of worlds;

• Ri ⊆ W×W is the accessibility relation, required to be an equivalence relation.
For all i ∈ Ag and wI ∈ W we put Ri(wI) = {vI ∈ W | wIRivI} called
epistemic state of agent i in wI .

• N : Ag × W → 22W is a “neighbourhood” function. ∀i ∈ Ag and ∀wI ∈ W ,
N(i, wI) defines, in terms of sets of worlds, what agent i is allowed to explicitly
believe in the world wI; ∀i ∈ Ag , wI , vI ∈ W , and X ⊆ W :

1. if X ∈ N(i, wI), then X ⊆ Ri(wI): each element of the neighbourhood is
a set composed of reachable worlds; i.e., agent i may have among its beliefs
only those which are compatible with the current epistemic state;

2. if wIRivI , then N(i, wI) ⊆ N(i, vI): if the world vI is compliant with the
epistemic state of world wI , then agent i in the world wI should have a subset
of beliefs of the world vI .

• V : W → 2Atmtg is the valuation function.

The epistemic state of agent i in wI indicates all the situations that agent i considers
possible in the world wI or, equivalently any situation the agent can retrieve from long-
term memory based on what it knows in world wI .

It can be observed that Ri is required to be an equivalence relation so as to model omni-
science in the background knowledge. Since indistinguishable worlds must have the same
time span, then an agent always knows the time interval it is in; this is in accordance with
omniscience in the long-term memory and is usually the case in practical agent systems
that we aim to model, where all events are time-stamped.

Truth conditions for ground TDLEK formulas are defined inductively as follows, where
the difference from [16] consists in:

12
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

• the entailment of timed atoms;

• considering the �I operator;

• introducing extended definitions for mental operations.

We first consider ground formulas. Semantics of ground TLEK formulas Φ is specified
by the following definition.

Definition 1.3.2 Given a TLEK formula Φ, a TLEK model M = 〈W,N, {Ri}i∈Ag , V 〉
and wI ∈ W . Then, M,wI |= Φ if one of the following conditions holds:

• Φ = pJ and ∀t ∈ J , pt ∈ Vt(wI);

• Φ = ¬ϕ and M,wI 2 ϕ;

• Φ = ϕ ∧ ψ and M,wI |= ϕ and M,wI |= ψ;

• Φ = ϕ ∨ ψ and M,wI |= ϕ or M,wI |= ψ;

• Φ = ϕ→ ψ and M,wI |= ¬ϕ or M,wI |= ψ;

• Φ = �Jϕ and span(ϕ) ⊆ J ⊆ I and for all vI ∈ Ri(wI), it holds that M, vI |= ϕ;

• Φ = Ki ϕ and for all vI ∈ Ri(wI), it holds that M, vI |= ϕ;

• Φ = Bi ϕ and ‖ ϕ ‖Mi,wI∈ N(i, wI), where

‖ ϕ ‖Mi,wI= {vI ∈ W |M, vI |= ϕ} ∩Ri(wI).

Considering formulas of the form Bi ϕ and Ki ϕ, observe that M,wI |= Bi ϕ holds if
the set ‖ ϕ ‖Mi,wI of worlds reachable from wI which entail ϕ in the very same model M
belongs to the neighbourhood N(i, wI) of wI . Hence, knowledge pertains to formulas
entailed in model M in every reachable world, while beliefs pertain to formulas entailed
only in some set of them, where this set must however belong to the neighbourhood and
so it must be composed of reachable worlds. Thus, an agent is seen as omniscient with
respect to knowledge, but not with respect to beliefs.

The following properties are immediate consequences of Definition 1.3.2.

Property 1.3.1 If ϕ is a TLEK formula ϕ and I1, I2 are intervals such that span(ϕ) ⊆ I1,
then

1. �I1∪I2 ϕ→ �I1ϕ,

2. �I1 ϕ→ ϕ.

1.3 Temporalizing DLEK Logic: TDLEK 13

Proof.

1. Let M = 〈W,N, {Ri}i∈Ag , V 〉 and wI ∈ W , such that M,wI |= �I1∪I2 ϕ. Then, by
definition, span(ϕ) ⊆ I1 ∪ I2 ⊆ I and for all vI ∈ Ri(wI), it holds that M, vI |= ϕ.
Plainly, since span(ϕ) ⊆ I1 ⊆ I , it follows that M,wI |= �I1 ϕ.

2. By the previous point, �I1 ϕ → �span(ϕ) ϕ holds. Let M = 〈W,N, {Ri}i∈Ag , V 〉
and wI ∈ W , such that M,wI |= �span(ϕ) ϕ. This holds iff span(ϕ) ⊆ I and for all
vI ∈ Ri(wI) it holds that M, vI |= ϕ. Since Ri is an equivalence relation, wI ∈ Ri(wI).
Hence M,wI |= ϕ. Therefore, �span(ϕ) ϕ→ ϕ, which concludes the proof. �

As concerns non-ground TLEK formulas Φ, recall that the ground instances Φ̂ of Φ are
obtained by uniformly substituting all variables with constants or expressions/values, in
all possible ways. Hence, we define the semantics of a non-ground formula Φ by putting
M,wI |= Φ iff M,wI |= Φ̂ for all ground instances Φ̂ of Φ.

1.3.3 SEMANTICS FOR MENTAL OPERATIONS

Let M = 〈W,N, {Ri}i∈Ag , V 〉 be a TLEK model and wI ∈ W . Concerning formulas
[α]ϕ of TDLEK involving a mental operation α performed by any agent i, semantics
must be specified by considering that the mental operation α affects the sets of agent’s
beliefs and that, after α has been performed, the truth value of ϕ has to be established
with respect to a modified model Mα. Such model differs from M in the neighbourhood
component Nα (replacing N , see below) which records the changes in agent’s beliefs
caused by the mental operation. In particular, such operation can add new beliefs by
direct perception, by means of one inference step, or as a conjunction of previous beliefs.
We have the following definition.

Definition 1.3.3 Let M = 〈W,N, {Ri}i∈Ag , V 〉 be a TLEK model, wI ∈ W . Let more-
over [α]ϕ be a TDLEK formula involving a mental operation α performed by any agent i.
We put:

M,wI |= [α]ϕ iff Mα, wI |= ϕ where Mα = 〈W ;Nα(i, wI); {Ri}i∈Ag ;V 〉 (1.1)

The manner in which the neighbourhood N(i, wI) is extended to obtain the new neigh-
bourhood Nα(i, wI), depending on the specific α, is as follows.

• Learning perceived belief:

N+`J (i, wI) = N(i, wI) ∪
{
‖ `J ‖Mi,wI

}
with J ⊆ I. (1.2)

The agent i adds to its beliefs event/perception ` (namely, an atom or the negation
of an atom) perceived in J ; the neighbourhood is expanded to as to include the set
composed of all the reachable worlds which entail `J in M .

14
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

• Belief inference:

N`(ϕ,qJ)(i, wI) =


N(i, wI) ∪

{
‖ qJ ‖Mi,wI

}
if M,wI |=

(
Bi(ϕ)∧
Ki

(
�I(ϕ→ qJ)

))
and span(qJ) ⊆ I

N(i, wI) otherwise
(1.3)

The agent i adds the ground atom qJ as a belief in its short-term memory if it has ϕ
among its previous beliefs and has in its background knowledge Ki(�I(ϕ→ qJ)),
where all the time stamps occurring in ϕ and in qJ belong to I . Observe that, if I
does not include all time instants involved in the formulas, the operation does not
succeed and thus the set of beliefs remains unchanged. If the operation succeeds
then the neighbourhood is modified by adding qJ as a new belief.

• Beliefs conjunction:

N∩(ϕ,ψ)(i, wI) =


N(i, wI) ∪

{
‖ ϕ ∧ ψ ‖Mi,wI

}
if M,wI |= Bi(ϕ) ∧Bi(ψ)
and span(ϕ ∧ ψ) ⊆ I

N(i, wI) otherwise
(1.4)

The agent i adds ϕ∧ψ as a belief if it has among its previous beliefs both ϕ and ψ,
with I including all time instants referred to by them; otherwise, the set of beliefs
remain unchanged. The neighbourhood is expanded, if the operation succeeds, with
those sets of reachable worlds where both formulas are entailed in M .

We write |=TDLEK ϕ to denote that ϕ is true in all worlds wI , of every TLEK model M .

Remark 1.3.2 We adopt expressions like Ki�Iϕ, where in particular ϕ can be an impli-
cation, in order to represent knowledge in the long-term memory wherever applicability of
such knowledge is time-dependent. The role of the � operator, that from the above-stated
truth conditions may seem superfluous, becomes apparent whenever interval extremes
are defined by means of expressions over time instants; such correlations indicate that a
certain implication makes sense only within a certain interval. �

Property 1.3.2 For the mental operations previously considered we have the following
(where ϕ, ψ are as explained earlier):

1. |=TDLEK (Ki(�I(ϕ→ ψ)) ∧Bi ϕ)→ [`(ϕ, ψ)]Bi ψ in wI if span(ψ) ⊆ I .
Namely, if an agent i has ϕ as one of its beliefs and has Ki(�I(ϕ→ψ)) in its
background knowledge, then as a consequence of the mental operation `(ϕ, ψ) the
agent i starts believing ψ;

2. |=TDLEK (Biϕ ∧Biψ)→ [∩(ϕ, ψ)]Bi(ϕ ∧ ψ) in wI if span(ϕ ∧ ψ) ⊆ I .
Namely, if an agent i has ϕ and ψ as beliefs, then as a consequence of the mental
operation ∩(ϕ, ψ) the agent i starts believing ϕ ∧ ψ;

1.3 Temporalizing DLEK Logic: TDLEK 15

3. |=TDLEKt [+ϕ]Biϕ in wI if span(ϕ) ⊆ I .
Namely, as a consequence of the operation +ϕ (thus after the perception of ϕ) the
agent i adds ϕ to its beliefs.

Proof.

1. By definition of the mental operation, ψ is assumed to be a ground timed atom qJ . Let
M=〈W,N, {Ri}i∈Ag , V 〉 and wH ∈ W , such that M,wH |= (Ki(�I(ϕ → qJ)) ∧ Bi ϕ).
We have to show that M,wH |= [`(ϕ, qJ)]Bi qJ . By (1.3), this holds iff M`(ϕ,qJ), wH |=
Bi qJ , with M`(ϕ,qJ)=〈W,N`(ϕ,qJ), {Ri}i∈Ag , V 〉, where N`(ϕ,qJ) = N(i, wH) ∪

{
‖

qJ ‖Mi,wH
}

, because M,wH |= (Ki(�I(ϕ → qJ)) ∧ Bi ϕ), by hypothesis. By Defini-
tion 1.3.2, M`(ϕ,qJ), wH |= Bi qJ holds because ‖ qJ ‖M

`(ϕ,qJ)

i,wH
∈ N`(ϕ,qJ)(i, wH).

2. Let M=〈W,N, {Ri}i∈Ag , V 〉 and wH ∈ W , such that M,wH |= Bi ϕ ∧ Bi ψ. We
have to show that M,wH |= [∩(ϕ, ψ)]Bi(ϕ ∧ ψ). By (1.4), this holds iff M∩(ϕ,ψ), wH |=
Bi(ϕ ∧ ψ), with M∩(ϕ,ψ)=〈W,N∩(ϕ,ψ), {Ri}i∈Ag , V 〉, where N∩(ϕ,ψ) = N(i, wH) ∪

{
‖

ϕ ∧ ψ ‖Mi,wH
}

, because M,wH |= Bi ϕ ∧ Bi ψ), by hypothesis. By Definition 1.3.2,
M∩(ϕ,ψ), wH |= Bi(ϕ ∧ ψ) holds because ‖ ϕ ∧ ψ ‖M∩(ϕ,ψ)

i,wH
∈ N∩(ϕ,ψ)(i, wH).

3. LetM=〈W,N, {Ri}i∈Ag , V 〉 andwH ∈ W , we have to show thatM,wH |= [+ϕ]Bi ϕ.
By (1.2), this holds iff M+ϕ, wH |= Bi ϕ, with M+ϕ=〈W,N+ϕ, {Ri}i∈Ag , V 〉, where
N+ϕ = N(i, wH) ∪

{
‖ ϕ ‖Mi,wH

}
. By Definition 1.3.2, M+ϕ, wH |= Bi ϕ holds because

‖ ϕ ‖M+ϕ

i,wH
∈ N+ϕ(i, wH). �

DEFEASIBLE BELIEFS

We propose a substantial modification to the definition of the operation−ϕ of [16]; there,
a belief was just arbitrarily removed. Here instead, we introduce the negative counterpart
of the operation `(pI1 , qI2) (for two ground atoms pI1 and qI2) namely, a(pI1 , qI2). Via this
operation, an agent believing pI1 and having in the long-term memory a ruleKi(�I(pI1 →
¬qI2)) removes the timed belief qI2 , if the intervals match (see below).
Notice that, should q be believed in a wider interval I3 such that I2 ⊆ I3, the belief
q is removed concerning intervals I1 and I2, but is left for the remaining sub-intervals
(so, its is “restructured”). Hence, our extension to DLEK and TDLEK makes beliefs
defeasible: a belief can be seen as a default which represents the current state of affairs
in the agent’s “world”, that might be invalidated (entirely or in a sub-interval) by further
perceptions/inferences.
Notice that, an application of the new operation may concern beliefs of the form p[t,∞),
that signify that the atom p will hold either indefinitely or “until” terminated by an other
belief.
For example, student [t,∞) or married [t,∞) mean that one, after enrolling to a school or
after marrying, will remain in the consequent state for an indefinite time; however, if
graduating or, respectively, divorcing at time t1, previous beliefs must be replaced by

16
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

student [t,t1−1] or married [t,t1−1].
Also, atom q may represent in many cases the “opposite” of p; e.g., if p = door -open
then q can be door -closed . Moreover, rules of above form in the long-term memory can
also represent exceptions, e.g., a person is at home (q= at-home) for the whole day (I2)
and she is thus believed to be there; however, if it is also later on believed that she went
out p= go-out in I1, then the belief of her being at home remains before and after, but
does not hold in I1.

Example 2 Let us consider the example of a door open or closed, where only agent i
can perform the action to open or close the door. Let us assume that performed actions
are recorded among an agent’s perceptions, with the due time stamp. For reader’s con-
venience, actions are denoted using a suffix “A". For simplicity, actions are supposed
to always succeed and to produce an effect within one time instant. Let us consider the
following rules (kept in long-term memory):

Ki(�(open-doorAT → door -open [T+1,∞]))
Ki(�(close-doorAT → door -closed [T+1,∞])).

Let us now assume that the agent closes the door, e.g., at time 5; then, a belief will
be formed of the door been closed from time 6 on; however, if the agent later opens
the door, e.g., at time 8, as a consequence the door will result to be open from time 9
on. It can be seen that the application of previous rules in consequence of an agent’s
action of opening/closing the door determines some “belief restructuring” in the short-
term memory of the agent. In absence of other rules concerning doors, we intend that a
door cannot be believed to be simultaneously open and closed. The related belief update
is determined by the following rules:

Ki(�(door -open [T,∞] → ¬door -closed [T,∞]))
Ki(�(door -closed [T,∞] → ¬door -open [T,∞]))

With the above timing, the result of their application is that the belief formed at time 5,
i.e., door-closed[6,∞] will be replaced by door-closed[6,8] plus door-open[9,∞]. �

Definition 1.3.4 extends TDLEK truth conditions to encompass the new mental operation
a(pI1 , qI2). Similarly to the other mental actions, a(pI1 , qI2) affects the sets of beliefs.
Semantics takes this into account by modifying models’ neighbourhood (provided that in
the long-term memory we have Ki(�I3(pI1 → ¬qI2)) for some suitable interval I3).

Definition 1.3.4 Let pI1 and qI2 be ground atoms and let M = 〈W,N, {Ri}i∈Ag , V 〉 be a
TLEK model and wI ∈ W . We put

M,wI |= [a(pI1 , qI2)]ϕ iff Ma(pI1 ,qI2), wI |= ϕ (1.5)

1.3 Temporalizing DLEK Logic: TDLEK 17

where Ma(pI1 ,qI2) = 〈W ;Na(pI1 ,qI2)(i, wI); {Ri}i∈Ag ;V 〉 with

Na(pI1 ,qI2)(i, wI)=


N(i, wI) \

{
‖ qI1∩I2 ‖Mi,wI

}
if M,wI |= BipI1 ∧BiqI2 ,
Ki

(
�I3(pI1 → ¬qI2)

)
for I3 ⊆ I,

and there is no interval J) I2

such that BiqJ
N(i, wI) otherwise

(1.6)

In order to illustrate the effect of this mental operation, let us consider the special case in
which q is believed to hold only in the interval I2 and the agent i has the perception of p in
I1 ⊆ I2. Then, the agent replaces previous belief q in the short-term memory with qI2\I1 .
Note that, in writing qI2\I1 , we applied some abuse in notation. Indeed, in general, the set
I2 \ I1 is not necessarily an interval: being I1 ⊆ I2, with I1=[t0, t1], and I2=[t2, t3], we
have that I2 \ I1 = [t2, t0 − 1]∪[t1 + 1, t3]. Thus, qI2 is replaced by q[t2,t0−1] and q[t1+1,t3]

(and similarly if t3 =∞).

We have the following property, which intuitively means: if an agent i has qI2 as one
of its beliefs, q is not believed outside I2, the agent perceives p in I1 ⊆ I2, and has
Ki(�I3(pI1 → ¬qI2)) in its background knowledge. Then after the mental operation
a(pI1 , qI2) the agent i starts believing qI2\I1

Property 1.3.3 Given two ground atoms pI1 and qI2 , with I1 ⊆ I2. Assume there is no
interval J such that J) I2 or J ∩ I2 = ∅ and such that |=TDLEK BiqJ . Then, the
following holds:

|=TDLEK (Ki(�I3(pI1 → ¬qI2)) ∧Bi pI1 ∧Bi qI2)→ [a(pI1 , qI2)] (Bi qI2\I1)

Proof.

Let M=〈W,N, {Ri}i∈Ag , V 〉 and wH ∈ W , such that M,wH |= (Ki(�I3(pI1 → ¬qI2))∧
Bi pI1 ∧ Bi qI2). We have to show that M,wH |= [a(pI1 , qI2)] (Bi qI2\I1). By (1.6),
this holds iff Ma(pI1 ,qI2), wH |= Bi qI2\I1 , with Ma(pI1 ,qI2)=〈W,Na(pI1 ,qI2), {Ri}i∈Ag , V 〉,
where Na(pI1 ,qI2) = N(i, wH) ∪

{
‖ qI1∩I2 ‖Mi,wH

}
, because M,wH |= (Ki(�I3(pI1 →

¬qI2)) ∧ Bi pI1 ∧ Bi qI2), by hypothesis. Moreover ‖ qI2\I1 ‖Mi,wH=‖ qI1 ‖Mi,wH \ ‖
qI1∩I2 ‖Mi,wH so by hypothesis ‖ qI2\I1 ‖M

`(ϕ,qJ)

i,wH
∈ Na(pI1 ,qI2)(i, wH) and by definition (1.3.4)

Ma(pI1 ,qI2), wH |= Bi qI2\I1 . �

Remark 1.3.3 Clearly, an analogous property holds if we drop the requirement that I1 ⊆
I2 and we admit qJ believed by the agent for any interval J disjoint from I1 ∪ I2. In such
cases, after the mental operation the agents starts believing qI2\(I1∩I2) (in place of qI2),
whereas all other beliefs qJ , remain in the working memory.

18
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

1.4 AXIOMATIZATION AND CANONICAL MODELS

The logic TDLEK can be axiomatized as an extension of the axiomatization of DLEK as
follows. We implicitly assume modus ponens and standard axioms for classical proposi-
tional logic.

The TLEK axioms are the following.

1. Ki(�Iϕ) ∧Ki

(
�I(ϕ→ ψ)

)
→ Ki(�Iψ);

2. Ki(�Iϕ)→ �Iϕ;

3. Ki(�Iϕ)→ KiKi(�Iϕ);

4. ¬Ki(�Iϕ)→ Ki¬Ki(�Iϕ);

5. Biϕ ∧Ki

(
�I(ϕ↔ ψ)

)
→ Biψ.

6. Biϕ→ KiBiϕ

7.
ϕ

Kiϕ

Concerning mental actions, the axiomatization of TDLEK involves also these axioms:

1. [α]f ↔ f where f = p or f = pt or f = pI ;

2. ([α]ϕ)→ ψ;

3. [α]¬ϕ↔ ¬[α]ϕ;

4. [α](ϕ ∧ ψ)↔ [α]ϕ ∧ [α]ψ;

5. [α]Ki(�Iϕ)↔ Ki

(
[α](�Iϕ)

)
;

6. [+ϕ]Biψ ↔
(
Bi([+ϕ]ψ) ∨Ki

(
([+ϕ]ψ ↔ ϕ)

))
;

7. [`(ϕ,ψ)]Biχ↔
(
Bi
(
[`(ϕ,ψ)]χ

)
∨
(
Biϕ ∧Ki

(
�I(ϕ→ ψ)

)
∧

Ki

(
�I [a(ϕ,ψ)]χ↔ ψ

)))
;

8. [∩(ϕ,ψ)]Biχ↔
(
Bi
(
[∩(ϕ,ψ)]χ

)
∨
(
(Biϕ ∧Biψ) ∧ Ki

((
[∩(ϕ,ψ)]χ↔ (ϕ ∧ ψ)

)))
;

9. [a(ϕ,ψ)]Biχ↔
(
Bi
(
[a(ϕ,ψ)]χ

)
∨
(
Biϕ ∧Ki

(
(ϕ→¬ψ)

)
∧Ki

(
[a(ϕ,ψ)]χ↔¬ψ

)))
;

10.
ψ ↔ χ

ϕ↔ ϕ[ψ/χ]
where ϕ[ψ/χ] denotes the formula obtained by replacing ψ with χ

in ϕ.

1.4 Axiomatization and Canonical Models 19

We write TDLEK ` ϕ to indicate that ϕ is a theorem of TDLEK.

Both logics TLEK and TDLEK are sound for the class of TLEK models. The proof
that TDLEK is strongly complete can be achieved by using a standard canonical model
argument.

Definition 1.4.1 The canonical TLEK model is a tuple Mc = 〈Wc;Nc; {Rci}i∈Ag ;Vc〉
where:

• Wc is the set of all maximal consistent subsets of LTLEK; so, as in [16], canonical
models are constructed from worlds which are sets of syntactically correct formulas
of the underlying language and are in particular the largest consistent ones. As
before, each w ∈ Wc can be conveniently indicated as wI .

• For everywI ∈ Wc and i ∈ Ag ,wIRcivI if and only ifKi�Iϕ ∈ wI iffKi�Iϕ ∈ vI;
i.e., Rci is an equivalence relation on knowledge; as before, we define Rci(wI) =
{vI ∈ Wc | wIRcivI}. Thus, we cope with our extension from knowledge of formu-
las to knowledge of formulas.

• Analogously to [16], for wI ∈ Wc, Φ ∈ LTLEK and i ∈ Ag , we define AΦ(i, wI) =
{vI ∈ Rci(wI) | Φ ∈ vI}. Then, we put Nc(i, wI) = {AΦ(i, wI) | BiΦ ∈ wI}.

• Vc is a valuation function defined as before.

As stated in Lemma 2 of [16], there are the following immediate consequences of the
above definition: if wI ∈ Wc and i ∈ Ag , then

• given Φ = �Iϕ and ϕ ∈ LTLEK , it holds that Ki�Iϕ ∈ wI if and only if ∀vI ∈ W
such that wIRcivI we have �Iϕ ∈ vI ;

• for Φ ∈ LTLEK , if BiΦ ∈ wI and wIRcivI then BiΦ ∈ vI .

Thus, while Rci-related worlds have the same knowledge and Nc-related worlds have the
same beliefs, as stated in Lemma 3 of [16] there can be Rci-related worlds with different
beliefs. The above properties can be used analogously to what is done in [16] to prove
that, by construction, the following results hold:

Lemma 1.4.1 For all wI ∈ Wc and BiΦ, BiΨ ∈ LTLEK , if BiΦ ∈ wI but BiΨ 6∈ wI , it
follows that there exists vI ∈ Rci(wI) such that Φ ∈ vI ↔ Ψ 6∈ vI .

Proof.

Let wI ∈ Wc and Φ,Ψ be such that Bi Φ ∈ wI , span(Φ) ⊆ I and Bi Ψ /∈ wI . By
contradiction assume that for every vI ∈ Rci(wI) we have Ψ ∈ vI , Φ ∈ vI or Ψ /∈

20
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

vI , Φ /∈ vI ; then from previous statements follows that Ki(�I2(Φ ↔ Ψ)) ∈ wI with
span(Φ↔ Ψ) ⊆ I2 ⊆ I so that by axiom 6 in (1.4) Bi Ψ ∈ wI which is a contradiction.
�

Lemma 1.4.2 For all Φ ∈ LTLEK and wI ∈ Wc it holds that Φ ∈ wI if and only if
Mc, wI � Φ.

Proof.

We have to prove the statement for all Φ ∈ LTLEK .

• Φ = pI1 with span(pI1) ⊆ I , wI ∈ Wc, if pI1 ∈ wI then pI1 ∈ Vc(wI) so for
definition (1.3.2) we have Mc, wI � pI1; to prove the opposite implication we have
to proceed with the same reasoning;

• all the other cases have the same proof except Φ = Bi ϕ. Assume Bi ϕ ∈ wI and
span(ϕ) ⊆ I then:

Aϕ(i, wI) = {vI ∈ Rci(wI) | ϕ ∈ vI} = by definition (1.3.2) =‖ ϕ ‖Mc
i,wI
∩Rci(wI)

So, by the previous definition of canonical model:

Nc(i, wI) = {Aϕ(i, wI) | Biϕ ∈ wI}

we have ‖ ϕ ‖Mc
i,wI
∈ Nc(i, wI) and by definition (1.3.2) Mc, wI � Bi ϕ.

Suppose Bi ϕ /∈ wI so ¬Bi ϕ ∈ wI and span(¬ϕ) ⊆ I . We have to prove
‖ ϕ ‖Mc

i,wI
∩Rci(wI) /∈ Nc(i, wI). Choose A ∈ Nc(i, wI), by definition we know

A = Aψ(i, wI) for some ψ with Biψ ∈ wI and span(φ) ⊆ I . By Lemma (1.4.1)
there is some vI ∈ Rci(wI) such that ϕ ∈ vI ↔ φ /∈ vI , so we have:

1. for (→) thanks to the induction hp vI ∈ (‖ ϕ ‖Mc
i,wI
∩Rci(wI)) \ Aψ(i, wI);

2. for (←) thanks to the induction hp vI ∈ Aψ(i, wI) \ (‖ ϕ ‖Mc
i,wI
∩Rci(wI));

than for (1) and (2) Aψ(i, wI) 6=‖ ϕ ‖Mc
i,wI
∩Rci(wI) and since A = Aψ(i, wI) was

arbitrary in Nc(i, wI) we conclude that ‖ ϕ ‖Mc
i,wI
∩Rci(wI) /∈ Nc(i, wI), and so

than Mc, wI 2 Bi ϕ.

�

Lemma 1.4.3 For all Φ ∈ LTDLEK there exists Φ̃ ∈ LTLEK such that TDLEK ` Φ↔ Φ̃
(for any TDLEK formula we can find an equivalent LEK formula).

1.5 An Example of Temporal Reasoning 21

Proof.

We have to prove the sentence for all Φ ∈ LTDLEK but we show the proof only for
Φ = pI1 because the others are proved analogously. By axiom in the section (1.4) we

have [α]pI1 ↔ pI1 and by axiom (10) we have
[α]pI1 ↔ pI1

ϕ↔ ϕ[[α]pI1/pI1]
which means that we

can replace [α]pI1 with pI1 in ϕ. �

Under the assumption that in every formula �Iϕ the interval I is finite, the previous
lemmas allow us to prove the following theorems. The limitation to finite intervals is not
related to features of the proposed approach, but to well-known paradoxes of temporal
logics on infinite intervals.

Theorem 1.4.1 TLEK is strongly complete for the class of TLEK models.

Proof.

Any consistent set Φ may be extended to a maximal consistent set of formulas w?I ∈ Wc

and Mc, w
?
I � Φ by Lemma (1.4.2). Then, TLEK is strongly complete for the class of

TLEK models. �

Theorem 1.4.2 TDLEK is strongly complete for the class of TLEK models.

Proof.

If K is a consistent set of LTDLEK formulas then K̃ = {ϕ̃ | ϕ ∈ K} is a consistent
set of LTLEK formulas by Lemma (1.4.3). By Theorem (1.4.1) there is a model Mc with
a world wI such that Mc, wI � K̃. But since TDLEK is sound and for each ϕ ∈ K,
TDLEK ` ϕ↔ ϕ̃, it followsMc, wI � K then TDLEK is strongly complete for the class
of TLEK models. �

1.5 AN EXAMPLE OF TEMPORAL REASONING

In this section we illustrate how logic TDLEK works by exploring a larger example. Let
us consider the following scenario: the Program committee of some Conference “xxx”
solicits submission of AI technical papers for the main technical track of the Conference,
which is going to be held in “yyy”, say from August 19 to 25. We have an agent (Author)
who is of course a resource bounded one, in the sense that he/she has a certain background
knowledge (non omniscient) and explicit timed beliefs and forms new explicit timed be-
liefs (like, e.g., the beliefs related to the submission dates, and other time constrained
information related to the Conference) by means of the mental operations illustrated be-
fore.

22
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

The Program Committee communicates information about submission dates and other
deadlines to the authors (among which our agent) through the conference website. Let us
assume for instance:

• abstract submission 16 February;

• full paper submission 19 February (if the abstract had been previously submitted);

• notification of accept/reject 10 April (before, a preliminary reviews will be commu-
nicated to the author by email, then the response to these reviews will be between
28-30 March, while details and guidelines for responses will be put on the website);

• final version must be sent to the Conference Chairs by April 30;

• the Conference will be held 19-25 August.

Submitted papers must fulfill the submission guidelines. Upon acceptance, at least one of
the authors should attend the conference to present the paper. Authors will be required
to agree on this requirements at the time of submission. Of course in such context we
have multiple agents (authors), but in our example we will consider the case of one author
which can easily be extended to multiple authors. Let us consider the following time
variables:

t0 = current moment of time, t1 = 16 February, t2 = 19 February,
t3 = 10 April, t4 = 28 March, t5 = 30 March,
t6 = 30 April, t7 = 19 August t8 = 25 August.

Our agent i (author) has in his long-term memory the following rules (recall that we
denote by p the timed atom p[0,∞) and� stands for�[0,∞); moreover, variables are written
with an initial uppercase letter):

1. Ki

(
�(read-guidelines ∧ submission-respect→ fullPaper-ready)

)
.

This rule indicates that if the author read the submission guidelines and her paper
fulfills them, then she can consider her paper ready.

2. Ki

(
�[t0,t1](abstract-readyT → �[T+1,t1]submit-abstractTa)

)
.

This rule indicates that if the author has the paper’s abstract ready at any moment
T ∈ [t0, t1] then at the next moment until t1 she can submit the abstract.

3. Ki

(
�[t0,t2]((fullPaper-readyTc ∧�[t0,t1]submit-abstractTb)→

�[Tc+1,t2]submit-fullPaperTd)
)
.

The meaning of this rule is that it is always true within the interval [t0, t2] that, if the
agent has the full paper ready at some moment in time Tc ∈ [t0, t2] and had already
submitted the abstract at Tb ∈ [t0, t1] ⊆ [t0, t2], then from the next moment of time
Tc + 1 she can submit the full paper (such that Tb ≤ Tc + 1);

1.5 An Example of Temporal Reasoning 23

4. Ki

(
�[t0,t4](�[t0,t2]submit-fullPaperTe → �[t2+1,t4]receive-reviewsTf)

)
.

This rule indicates that if the author submitted the paper to the Conference during
the required interval of time [t0, t2] then she will receive the reviews before time t4;

5. Ki

(
�[t2+1,t5](�[t2+1,t4]receive-reviewsTg → �[t4,t5]send-rebuttalTh)

)
.

This rule indicates that if the author receives reviews during the interval [t2, t4] then
she can respond at any moment Th during the interval [t4, t5];

6. Ki

(
�[t4,t6]((�[t4,t5]send-rebuttalTh ∧�[t4,t3]paper-acceptedTj)→

�[t3,t6]send-final-versionTv)
)
.

This rule indicates that if the agent receives an acceptance notification during the
interval [t4, t3] and she remembers that she sent the rebuttal at Th ∈ [t4, t5] then she
has to send the final version of the paper until t6;

7. Ki

(
�[t3,t8](�[t3,t6]send-final-versionTz → �[t7,t8]go-to-conferenceTk)

)
.

This rule indicates that if the agent sent the final version of the paper in Tz ∈ [t4, t3]
then she can go to the conference from t7 to t8;

8. Ki

(
�(submit-fullPaperTr → paper-accepted[Tr,∞))

)
.

This rule indicates that an agent optimistically assumes that the already submitted
paper will be accepted;

9. Ki

(
�(paper-rejectedTs → ¬assume-paper-accepted[Ts,∞))

)
.

This rule indicates that if an agent assumes that her paper is accepted but at a certain
point she receives a reject notification, she has to change her belief.

Let us now consider one of our authors (agents), say A1, who has decided to prepare
a submission to this Conference. Hence, she writes an abstract for her paper and be-
lieves that it is ready at moment tx. So, she has in her short-term memory the belief
BA1(abstract-readytx), with tx ∈ [t0, t1]. Then, she can infer from the second rule,
by performing the mental operation ` (abstract-readytx , submit -abstractta) that at
some moment ta, such that tx + 1 ≤ ta ≤ t1 the abstract can be submitted. Let us
assume now that our author has submitted the abstract successfully. Then, she adds
to her beliefs BA1(submit−abstractta). After that, she starts preparing the full pa-
per; she completes it after some time and so believes that it is ready at time tz ≤ t2:
therefore, BA1(fullPaper-readytz) it is added to her beliefs. At this point, our author
has the new belief BA1(fullPaper-readytz) and retrieves from her memory the belief
BA1(submit-abstractta).
Then by performing the mental operation ∩(submit-abstractta , fullPaper-readytz) she
can start believing that BA1(submit-abstractta ∧fullPaper-readytz) is true, tz ∈ [t0, t2]
and ta ≤ tz). Then, according to the third rule at some moment in time td ∈ [tz + 1, t2]
she can submit the full paper. Finally, assuming that our agent submitted her paper suc-
cessfully at time td she adds BA1(submit-fullPapertd) to the short-term memory and
waits for notification from the Conference Chairs.

To illustrate the effect of the performed actions on the agent’s beliefs change, let us con-
sider the case of an optimistic agent A2 which, after submission, assumes the paper to

24
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

be accepted and so forms the belief BA2(assume-paper-accepted[ta,∞)) with ta≥t2. If
the Program Chairs will send notification of acceptance then as a consequence the pa-
per will be believed to be accepted. Otherwise, it will be believed to be rejected if there
is a rejection. If at time time t3 agent A2 received a rejection note, she starts believing
BA2(paper-rejected[t3,∞)); therefore, via the mental operation a (paper-rejected[t3,∞),
assume-paper-accepted[ta,∞)) and since t3>ta, she can replace the timed atom
assume-paper-accepted[ta,∞) with the more limited assume-paper-accepted[ta,t3−1]

which indicates the actual interval where the belief has remained in the short-term mem-
ory without being contradicted.

1.6 T-LEK AND T-DLEK

As said in the introduction, to avoid problems with the management of the intervals and
in order to not lose the logic of the formalization, in [70] we present another extension
of LEK/DLEK to T-LEK/T-DLEK (“Timed LEK” and “Timed DLEK”) obtained by in-
troducing a special function which associates to each belief the arrival time and controls
timed inferences. Through this function it is easier to keep the evolution of the surround-
ing world under control and the representation is more complete. And also, we work on
Belief Revision, because agents interact with the environment so they have to change their
belief according to the actual word.

1.6.1 SYNTAX

In our scenario we fix Atm = {p(t1, t2), q(t3, t4), ... ,h(ti, tj)} where ti 6 tj and p, q, h
are predicates, that can be equal or not. Moreover p(t1, t2) stands for “p is true from the
time instant t1 to t2" with t1, t2 ∈ N (Temporal Representation of the external world);
as a special case we can have p(t1, t1) which stands for “p is true in the time instant
t1". Obviously we can have predicates with more terms than only two but in that case
we fix that the first two must be those that identify the time duration of the belief (i.e.
open(1, 3, door) which means “the agent knows that the door is open from time one to
time 3”). In the previous work [61] we considered atoms of the form pI with I = [t1, t2],
which are the conjunction pt1 ∧ pt1+1∧ · · ·∧ pt2 and also pt stands for pIt with It = [t, t];
we decided to change approach because syntax pI is too detached from propositional
logic. So, we introduce a new formalization that also copes the multi-agent case. Let Agt
be a finite set of agents.
Below is the definition of the formulas of the language LT-LEK : again, in this grammar
we use I as terminal symbol standing for time intervals and i ∈ Agt:

ϕ, ψ := p(t1, t2) | ¬ϕ | �I ϕ | Bi ϕ | Ki ϕ| ϕ ∧ ψ| ϕ → ψ

Other Boolean connectives >, ⊥, ↔ are defined from ¬ and ∧ as usual. In the formula
�I Φ the MTL Interval “always” operator is applied to a formula; I is a “time-interval”

1.6 T-LEK and T-DLEK 25

which is a closed finite interval [t, l] or an infinite interval [t,∞) (considered open on the
upper bound), for any expressions/values t, l such that 0 ≤ t ≤ l and �[0,∞) will some-
times be written simply as �. The operator Bi identifies belief in the working memory
and the operatorKi to denote knowledge and identifies what rules are present in the back-
ground knowledge. Terms/atoms/formulas as defined so far are ground, namely there are
no variables occurring therein.

The language LT-DLEK of Temporalized DLEK (T-DLEK) is obtained by augmenting
LT−LEK with the expression [(GI : α)HI]ψ, where α denotes a mental operation, ψ is a
ground formula, GI , HI range over 2Agt and GI ⊆ HI ; the I is used to define that in a
given interval we have a given set of agents and I depends on ψ. Moreover [(GI : α)HI]ψ
stands for “ψ holds after the mental operation α is performed by all the agent in GI , and
the agents in HI have common knowledge about this fact”. The mental operation are the
same as before, the only difference is in a(ϕ, ψ), in fact we have:

• a(ϕ, ψ): belief revision; where ϕ and ψ are ground atoms, say p(t1, t2) and q(t3, t4)
respectively: an agent, believing p(t1, t2) and having in the long-term memory that
p(t1, t2) implies ¬q(t3, t4), removes the timed belief q(t3, t4) if the intervals match.
Notice that, should q be believed in a wider interval I such that [t1, t2] ⊆ I , the
belief q(., .) is removed concerning intervals [t1, t2] and [t3, t4], but it is left for the
remaining sub-intervals (so, its is “restructured”).

Example 3 We propose a small example to illustrate the differences from the previous
formalization. If at time t=2 it is starting raining, in the working memory of agent i
there will be the following belief: Bi(raining(2, 2)). And if we have in the background
knowledge Ki(rain(t1, t2) → take(t1, t2, umbrella)) and 2 ∈ [t1, t2] than agent i can
infer Bi(take(2, 2, umbrella)), which is a new belief stored in the working memory.
And if we have alsoKi(rain(t1, t2)∧ take(t1, t2, umbrella)→ go(t1 +1,∞, shops)) than
the agent can inferBi(go(3,∞, shops)) which means that after getting the umbrella agent
i can go shopping.

1.6.2 SEMANTICS

Semantics of DLEK and T-DLEK are both based on a set W of worlds. In both DLEK
and T-DLEK we have the valuation function: V : W → 2Atm . Also we define the “time”
function T that associates to each formula the time interval in which this formula is true
and operates as follows:

• T (p(t1, t2)) = [t1, t2], which stands for “p is true in the time interval [t1, t2]" where
t1, t2 ∈ N; as a special case we have T (p(t1, t1)) = t1, which stands for “p is true
in the time instant t1" where t1 ∈ N (time instant);

• T (¬p(t1, t2)) = T (p(t1, t2)), which stands for “p is not true in the time interval
[t1, t2]" where t1, t2 ∈ N;

26
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

• T (ϕ op ψ) = T (ϕ)
⊎
T (ψ) with op ∈ {∨,∧,→}, which means the unique smallest

interval including both T (ϕ) and T (ψ);

• T (Biϕ) = T (ϕ);

• T (Kiϕ) = T (ϕ);

• T (�Iϕ) = I where I is a time interval in N;

• T ([(GI : α)HI]ϕ) there are different cases depends on which kind of mental opera-
tions we applied:

1. T ((GI : +ϕ)HI) = T (ϕ);

2. T ((GI : ∩(ϕ, ψ))HI) = T (ϕ)
⊎
T (ψ);

3. T ((GI : `(ϕ, ψ))HI) = T (ψ);

4. T ((GI : a(ϕ, ψ)HI)) returns the restored interval where ψ is true.

For a world w, let t1 the minimum time instant of T (p(t1, t1)) where p(t1, t1) ∈ V (w)
and let t2 be the supremum time instant (we can have t2 =∞) among the atoms in V (w).
Then, whenever useful, we denote w as wI where I = [t1, t2], which identifies the world
in a given interval.

The notion of LEK/T-LEK model does not consider mental operations, discussed later,
and is introduced by the following definition.

Definition 1.6.1 A T-LEK model is a tuple M = 〈W ;N ; {Ri}i∈Agt;V ;T 〉 where:

• W is the set of worlds;

• V : W → 2Atm valuation function;

• T “time” function;

• Ri ⊆ W×W is the accessibility relation with i ∈ Agt, required to be an equiva-
lence relation so as to model omniscience in the background knowledge s.t.
Ri(wI) = {vI ∈ W | wIR vI} called epistemic state of the agent i in wI , which
indicates all the situations that the agent considers possible in the world wI or,
equivalently any situation the agent i can retrieve from long-term memory based on
what it knows in world wI;

• N : Agt×W → 22W is a “neighbourhood” function, ∀w ∈ W , N(i, w) defines, in
terms of sets of worlds, what the agent i is allowed to explicitly believe in the world
wI; ∀wI , vI ∈ W , and X ⊆ W :

1. if X ∈ N(i, wI), then X ⊆ Ri(wI): each element of the neighbourhood is a
set composed of reachable worlds;

1.6 T-LEK and T-DLEK 27

2. if wIRi vI , then N(wI) ⊆ N(vI): if the world vI is compliant with the epis-
temic state of world wI , then the agent i in the world wI should have a subset
of beliefs of the world vI .

A preliminary definition before the Truth conditions :
letM = 〈W ;N ; {Ri}i∈Agt;V ;T 〉 a T-LEK model. Given a formula ϕ, for every wI ∈ W ,
we define

‖ ϕ ‖MwI= {vI ∈ W |M, vI |= ϕ} ∩Ri(wI).

Truth conditions for T-DLEK formulas are defined inductively as follows:

• M,wI |= p(t1, t2) iff p(t1, t2) ∈ V (wI) and T (p(t1, t2)) ⊆ I;

• M,wI |= ¬ϕ iff M,wI 2 ϕ and T (¬ϕ) ⊆ I;

• M,wI |= ϕ ∧ ψ iff M,wI |= ϕ and M,wI |= ψ with T (ϕ), T (ψ) ⊆ I;

• M,wI |= ϕ ∨ ψ iff M,wI |= ϕ or M,wI |= ψ with T (ϕ), T (ψ) ⊆ I;

• M,wI |= ϕ→ ψ iff M,wI 2 ϕ or M,wI |= ψ with T (ϕ), T (ψ) ⊆ I;

• M,wI |= Bi ϕ iff ‖ ϕ ‖MwI∈ N(wI) and T (ϕ) ⊆ I;

• M,wI |= Ki ϕ iff for all vI ∈ Ri(wI), it holds that M, vI |= ϕ and T (ϕ) ⊆ I;

• M,wI |= �Jϕ iff T (ϕ) ⊆ J ⊆ I and for all vI ∈ Ri(wI), it holds that M, vI |= ϕ;

In particular, considering formulas of the forms Bi ϕ and Ki ϕ, we observe that M,wI |=
Bi ϕ if the set ‖ ϕ ‖MwI of worlds reachable from wI which entail ϕ in the very same model
M belongs to the neighbourhood N(i, wI) of wI . Hence, knowledge pertains to formulas
entailed in model M in every reachable world, while beliefs pertain to formulas entailed
only in some set of them, where this set must however belong to the neighbourhood and
so it must be composed of reachable worlds. Thus, an agent is seen as omniscient with
respect to knowledge, but not with respect to beliefs.

Concerning a mental operation α performed by any agent i, we have: M,wI |= [(GJ :
α)HJ]ϕ iff M (GJ :α)HJ , wI |= ϕ, T ((GJ : α)HJ) ⊆ I , J = T ((GJ : α)HJ) where
M (GJ :α)HJ = 〈W ;N (GJ :α)HJ (i, wI); {Ri

(GJ :α)HJ }i∈Agt;V ;T 〉. Here Ri
(GJ :α)HJ (wI) =

{vI ∈ W s.t. wIRi vI and J ⊆ I} and α represents a mental operation affecting the sets
of beliefs. In particular, such operation can add new beliefs by direct perception, by means
of one inference step, or as a conjunction of previous beliefs. When introducing new be-
liefs, the neighbourhood must be extended accordingly, as seen below; in particular, the
new neighbourhood:

• N (GJ :α)HJ (i, wI) = {X ∈ Nα(i, wI) if i ∈ GJ and J ⊆ I}: if agent i is in GJ then
he has to change his neighbourhood accordingly to α;

28
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

• N (GJ :α)HJ (i, wI) = {X ∈ N(i, wI) if i ∈ HJ\GJ and J ⊆ I}: if agent i is in
HJ\GJ then he does not have to change his neighbourhood because he does not
perform the mental operation α but he knows that other agents in GJ have per-
formed a operation;

• N (GJ :α)HJ (i, wI) = {X ∈ N(i, wI) if i /∈ H and J ⊆ I}: if agent i is not in HJ

then he does not have to change his neighbourhood because he does not perform the
mental operation α and also he do not know that other agents in GJ have performed
a operation.

Where Nα(i, wI) is defined for each of the mental operations as follows.

• Learning perceived belief:

N+ϕ(i, wI) = N(i, wI) ∪
{
‖ ϕ ‖MwI

}
with T (ϕ) ⊆ I .

The agent i adds to its beliefs perception ϕ (namely, an atom or the negation of an
atom) perceived at a time in T (ϕ); the neighbourhood is expanded to as to include
the set composed of all the reachable worlds which entail ϕ in M .

• Beliefs conjunction:

N∩(ψ,χ)(i, wI) =

 N(i, wI) ∪
{
‖ ψ ∧ χ ‖MwI

}
if M,wI |= Bi(ψ) ∧Bi(χ)
and T (∩(ψ, χ)) ⊆ I

N(i, wI) otherwise

The agent i adds ψ ∧ χ as a belief if it has among its previous beliefs both ψ and χ,
with I including all time instants referred to by them; otherwise the set of beliefs
remain unchanged. The neighbourhood is expanded, if the operation succeeds, with
those sets of reachable worlds where both formulas are entailed in M .

• Belief inference:

N`(ψ,χ)(i, wI) =

 N(i, wI) ∪
{
‖ χ ‖MwI

}
if M,wI |= Bi(ψ) ∧ Ki(ψ → χ)
and T (` (ψ, χ)) ⊆ I

N(wI) otherwise

The agent i adds the ground atom χ as a belief in its short-term memory if it has ψ
among its previous beliefs and has in its background knowledgeKi(ψ → χ), where
all the time stamps occurring in ψ and in χ belong to I . Observe that, if I does not
include all time instants involved in the formulas, the operation does not succeed
and thus the set of beliefs remains unchanged. If the operation succeeds then the
neighbourhood is modified by adding χ as a new belief.

• Beliefs revision (applied only on ground atoms).
Given Q = q(j, k) s.t. T (q(j, k)) = T (q(t1, t2)) ∩ T (q(t3, t4)) with j, k ∈ N
and P =

{
M,wI |= Bi(p(t1, t2)) ∧ Bi(q(t3, t4)) ∧ Ki(p(t1, t2) → ¬q(t3, t4))

and T (a (p(t1, t2), q(t3, t4))) ⊆ I and there is no interval J) T (p(t1, t2)) s.t.
Bi(q(t5, t6)) where T (q(t5, t6))=J

}
:

1.6 T-LEK and T-DLEK 29

Na(p(t1,t2),q(t3,t4))(i, wI) =

{
N(i, wI) \

{
‖ Q ‖MwI

}
if P

N(i, wI) otherwise

The agent i believes that q(t3, t4) holds only in the interval T (q(t3, t4)) and has
the perception of p(t1, t2) where T (p(t1, t2)) ⊆ T (q(t3, t4)). Then, the agent
replaces previous belief q(t3, t4) in the short-term memory with q(t5, t6) where
T (q(t5, t6))=T (q(t3, t4)) \ T (q(t1, t2)).
In general, the set T (q(t3, t4)) \ T (q(t1, t2)) is not necessarily an interval: being
T (p(t1, t2)) ⊆ T (q(t3, t4)), with T (p(t1, t2))=[t1, t2], and T (q(t3, t4))=[t3, t4], we
have that T (q(t3, t4)) \ T (q(t1, t2))=[t3, t1 − 1]∪[t2 + 1, t4]. Thus, q(t3, t4) is re-
placed by q(t3, t1 − 1) and q(t2 + 1, t4) (and similarly if t4 =∞).

We write |=T-DLEK ϕ to denote that ϕ is true in all worlds wI , of every TLEK model M .

Property 1.6.1 As in TDLEK, for the mental operations previously considered we have
the following (where ϕ, ψ are as explained earlier):

• |=T-DLEK [(GJ : +ϕ)HJ]Biϕ.
Namely, as a consequence of the operation +ϕ (thus after the perception of ϕ) the
agent i adds ϕ to its beliefs.

• |=T-DLEK (Biϕ ∧Biψ)→ [(GJ : ∩(ϕ, ψ))HJ]Bi(ϕ ∧ ψ).
Namely, if agent i has ϕ and ψ as beliefs, then as a consequence of the mental
operation ∩(ϕ, ψ) the agent starts believing ϕ ∧ ψ;

• |=T-DLEK (Ki(ϕ→ ψ) ∧Bi ϕ)→ [(GJ : `(ϕ, ψ))HJ]Bi ψ.
Namely, if agent i has ϕ as one of its beliefs and has Ki(ϕ→ψ) in its background
knowledge, then as a consequence of the mental operation `(ϕ, ψ) the agent starts
believing ψ;

• |=T-DLEK (K(p(t1, t2) → ¬q(t3, t4)) ∧ Bi (p(t1, t2)) ∧ Bi (q(t3, t4))) → [(GJ :
a(p(t1, t2), q(t3, t4)))HJ] (Bi (q(t5, t6)))
where T (q(t5, t6)) = T (q(t3, t4)) \ T (q(t1, t2)).
Namely, if agent i has q(t3, t4) as one of its beliefs, q is not believed outside
T (q(t3, t4)), the agent perceives p(t1, t2) where T (p(t1, t2)) ⊆ T (q(t3, t4)), and
has Ki(p(t1, t2)→ ¬q(t3, t4)) in its background knowledge.
Then after the mental operation a(p(t1, t2), q(t3, t4)) the agent starts believing
q(t5, t6)) where T (q(t5, t6)) = T (q(t3, t4)) \ T (q(t1, t2)).

The proof of these property are the same as Property 1.3.2 and Property 1.3.3.

30
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

1.7 AXIOMATIZATION AND CANONICAL MODELS

As in 1.4 the T-LEK axioms are the following:

1. Ki(ϕ) ∧Ki(ϕ→ ψ)→ Ki(ψ);

2. Ki(ϕ)→ ϕ;

3. Ki(ϕ)→ KiKi(ϕ);

4. ¬KI(ϕ)→ Ki¬Ki(ϕ);

5. Biϕ ∧Ki(ϕ↔ ψ)→ Biψ;

6. �Iϕ ∧�I(ϕ→ ψ)→ �I(ψ);

7. �Iϕ→ �Jϕ with J ⊆ I;

The axiomatization of T-DLEK, involves these axioms:

1. [(GJ : α)HJ]f ↔ f where f = p or f = pt or f = pI ;

2. ([(GJ : α)HJ]ϕ)↔ ψ;

3. [(GJ : α)HJ]¬ϕ↔ ¬[(GJ : α)HJ]ϕ;

4. [(GJ : α)HJ](ϕ ∧ ψ)↔ [(GJ : α)HJ]ϕ ∧ [(GJ : α)HJ]ψ;

5. [(GJ : α)HJ]Ki(ϕ)↔ Ki

(
[(GJ : α)HJ](ϕ)

)
;

6. [(GJ : +ϕ)HJ]Biψ ↔
(
Bi([(GJ : +ϕ)HJ]ψ) ∨Ki

(
[(GJ : +ϕ)HJ]ψ ↔ ϕ

))
;

7. [(GJ : `(ϕ, ψ))HJ]Biχ ↔
(
Bi

(
[(GJ : `(ϕ, ψ))HJ]χ

)
∨
(
Biϕ ∧ Ki

(
ϕ → ψ

)
∧

Ki

(
[(GJ : `(ϕ, ψ))HJ]χ↔ ψ

)))
;

8. [(GJ : a(ϕ, ψ))HJ]Biχ ↔
(
Bi

(
[(GJ : a(ϕ, ψ))HJ]χ

)
∨
(
Biϕ ∧ Ki(ϕ→¬ψ) ∧

Ki

(
[(GJ : a(ϕ, ψ))HJ]χ↔¬ψ

)))
;

9. [(GJ : ∩(ϕ, ψ))HJ]Biχ↔
(
Bi

(
[(GJ : ∩(ϕ, ψ))HJ]χ

)
∨
(

(Biϕ∧Biψ)∧ Ki

(
[(GJ :

∩(ϕ, ψ))HJ]χ↔ (ϕ ∧ ψ)
))

;

10.
ψ ↔ χ

ϕ↔ ϕ[ψ/χ]
where ϕ[ψ/χ] denotes the formula obtained by replacing ψ with χ

in ϕ.

1.7 Axiomatization and Canonical Models 31

We write T-DLEK ` ϕ to indicate that ϕ is a theorem of TDLEK.

Both logics T-LEK and T-DLEK are sound for the class of T-LEK models. The proof
that T-DLEK is strongly complete can be achieved by using a standard canonical model
argument.

Definition 1.7.1 The canonical T-LEK model is a tupleMc = 〈Wc;Nc; {Rci}i∈Agt;Vc;Tc〉
where:

• Wc is the set of all maximal consistent subsets of LT-LEK; so, as in [16], canonical
models are constructed from worlds which are sets of syntactically correct formulas
of the underlying language and are in particular the largest consistent ones. As
before, each w ∈ Wc can be conveniently indicated as wI .

• For every wI ∈ Wc and wIRcivI if and only if Kiϕ ∈ wI iff Kiϕ ∈ vI; i.e., Rci

is an equivalence relation on knowledge; as before, we define Rci(wI) = {vI ∈
W | wIRcivI}. Thus, we cope with our extension from knowledge of formulas to
knowledge of formulas.

• Analogously to [16], for wI ∈ Wc, ϕ ∈ LT-LEK we define Aϕ(wI) = {vI ∈
Rci(wI) | ϕ ∈ vI}. Then, we put Nc(wI) = {Aϕ(wI) | Biϕ ∈ wI}.

• Vc is a valuation function defined as before.

• Tc is a “time” function defined as before.

As stated in Lemma 2 of [16], there are the following immediate consequences of the
above definition: if wI ∈ Wc and i ∈ Agt , then

• for ϕ ∈ LT-LEK , it holds that Kiϕ ∈ wI if and only if ∀vI ∈ Wc such that wIRcivI
we have ϕ ∈ vI ;

• for ϕ ∈ LT-LEK , if Biϕ ∈ wI and wIRcivI then Biϕ ∈ vI .

Thus, while Rci-related worlds have the same knowledge and Nc-related worlds have the
same beliefs, as stated in Lemma 3 of [16] there can be Rci-related worlds with different
beliefs. The above properties can be used analogously to what is done in [16] to prove
that, by construction, the following results hold:

Lemma 1.7.1 For all wI ∈ Wc and Biϕ,Biψ ∈ LT-LEK , if Biϕ ∈ wI but Biψ 6∈ wI , it
follows that there exists vI ∈ Ri,c(wI) such that ϕ ∈ vI ↔ ψ 6∈ vI .

Lemma 1.7.2 For all ϕ ∈ LT-LEK and wI ∈ Wc it holds that ϕ ∈ wI if and only if
Mc, wI � ϕ.

32
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

Lemma 1.7.3 For all ϕ ∈ LT-DLEK then there exists ϕ̃ ∈ LT-LEK such that T-DLEK `
ϕ↔ ϕ̃.

Under the assumption that the interval I is finite, the previous lemmas allow us to prove
the following theorems.

Theorem 1.7.1 T-LEK is strongly complete for the class of T-LEK models.

Theorem 1.7.2 T-DLEK is strongly complete for the class of T-LEK models.

The proof of this lemmas and theorem are the same as in (1.4).

1.7.1 EXAMPLE: ITALIAN PHD PROGRAM

In this section we illustrate an other example to show how T-DLEK works and the differ-
ences from TDLEK.
Let us consider the following scenario: PhD courses have a duration of three years and
the admission to doctoral research courses is done by a public selection and the program
starts from the 1th of November. The PhD courses are open, regardless of age and citizen-
ship limitations to those who graduated in Italy, those who are going to graduate within
the maximum term of 31 October of the same year and those who graduated in foreign
universities (the equivalence of the foreign degree will be determined by the PhD selec-
tion committee). Each doctoral course provides a single method of candidates selection,
based on the evaluation of qualifications, supplemented by the evaluation of the proposed
research projects and an oral test. In the call, access criteria, assessment of qualifications
and of the tests are detailed. Admission tests may be performed in foreign language differ-
ent from the Italian one, even with the help of informatics and electronics tools, suitable
to verify the identity of the candidate. We have an agent (Candidate) who is of course a
resource-bounded one, in the sense that he/she has a certain background knowledge (non
omniscient) and explicit timed beliefs and forms new explicit timed beliefs by means of
the mental operations illustrated before.

The University communicates information about deadlines to the candidates (among which
our agent) through the University website. Let us assume for instance:

• graduation by 31 October;

• document submission by 26 August;

• notification of admission to the oral test 30 September;

• oral test 10 October;

1.7 Axiomatization and Canonical Models 33

• notification of admission to the Phd Program 15 October;

• PhD program stars from 1th November;

• sign up by 31 October.

Let us consider the following time variables:

t0 = current moment of time, t1 = 26 August, t2 = 30 september,
t3 = 10 October, t4 = 15 October, t5 = 31 October,
t6 = 1 November.

Our agent i (candidate) has in his long-term memory the following rules:

1. Ki

(
�(want-phd(0,∞)→ take-part-selection(0,∞))

)
.

This rule indicates that if an agent is graduated, she can always apply for a selection
for a PhD course;

2. Ki

(
�[t0,t1](document-ready(T, T)→ �[T+1,t1]submit-document(Ta, Ta))

)
.

This rule indicates that if a candidate has the phd documents ready at any moment
T ∈ [t0, t1] then at the next moment until t1 she can submit the documents.

3. Ki

(
�[t0,t5](want-graduate(Tc, Tc)→ apply-phd(Tc + 1, Tc + 1))

)
.

The meaning of this rule is that it is always true within the interval [t0, t5] that, if
the agent want to graduate before t5 she can apply for the phd program;

4. Ki

(
�[t1,t3]((submit-document(Te, Te) ∧ (�[t1,t2]notification(Tf , Tf))→

prepare-oral(Tf + 1, Tf + 1))
)
.

This rule indicates that if the candidate submitted the documents and she has re-
ceived the notification by t2 then she can start preparing the oral test by t3;

5. Ki

(
�[t3,t4]oral-done(t3, t3)→ wait-list(t3 + 1, Tg))

)
.

This rule indicates that if the candidate have done the oral test in t3 than she has
to wait for the publication of the ranking which can be published in a time interval
Tg ∈ [t3 + 1, t4];

6. Ki

(
�[t4,t6](wait-list(Th, Th)→ �[t5,t6]sign-in(Th + 1, Ti))

)
.

This rule indicates that if the agent sees that it is part of the list of admitted candi-
dates than she can enroll in the PhD course until t6;

7. Ki

(
�[t6,∞](sign-in(Tj , Tj)→ start-PhD(t6,∞))

)
.

This rule indicates that if the agent has enrolled in the PhD course then she can start
the program from t6.

The use of mental operations is the same as in the previous example (1.5).

34
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

1.8 A TEMPORAL MODULE FOR LOGICAL

FRAMEWORKS

In [134] we consider the T function, defined before in (1.6.2), like a temporal module
which can be adopted to “temporalize" many logical framework. In the literature, different
kind of timed logical frameworks exist, where time is specified directly using hybrid
logics (cf., e.g., [10]), temporal epistemic logic (cf., e.g., [86]) or simply by using Linear
Temporal Logic, but in any case none of these adopt our method. We have exploited this
module in two different settings. The first one is the memory management, which we
have seen in the previous sections, and the second is a logical framework for reasoning
about agents’ cognitive attitudes; many formal logics have been proposed for reasoning
about concepts taken from qualitative decision theory. Lorini in [122] proposes a general
logical framework for reasoning about agents’ cognitive attitudes of both epistemic type
and motivational type.

In this section I first recall the T function and then I explain how we have applied our time
module in this different domain.

1.9 TIME MODULE

In this section we introduce our Time Module which is the “time” function T (1.6.2) that
associates to each formula the time interval in which this formula is true. We assume that
each atom has two arguments representing time instants. For the sake of simplicity, as we
concentrate on these arguments, we ignore all the other arguments; i.e., we assume each
atom to be of the form p(t1, t2).

• T (p(t1, t2)) = [t1, t2], which stands for “p is true in the time interval [t1, t2]" where
t1, t2 ∈ N; as a special case we have T (p(t1, t1)) = t1, which stands for “p is true
in the time instant t1" where t1 ∈ N (time instant);

• T (¬p(t1, t2)) = [t1, t2], which stands for “p is not true in the time interval [t1, t2]"
where t1, t2 ∈ N;

• T (ϕ op ψ) = T (ϕ)
⊎
T (ψ) with op ∈ {∨,∧,→}, which means the unique smallest

interval including both T (ϕ) and T (ψ).

This basic definition, although simple, is able to incorporate a concept of time in virtually
any logical formalism by creating a link between syntax ans semantics. Naturally, the T
function must then be customized to accommodate the operations which are proper of the
’host’ formalism.

1.10 Temporal Dynamic Logic of Cognitive Attitudes 35

1.10 TEMPORAL DYNAMIC LOGIC OF COGNITIVE

ATTITUDES

The Temporal Dynamic Logic of Cognitive Attitudes (T-DLCA) is an extension of Dy-
namic Logic of Cognitive Attitudes (DLCA), presented in [122]. In our extension we
introduce the concept of time through a particular function that assigns a “timing" to
knowledge, belief, strong belief, conditional belief, desire, strong desire, comparative
desirability and choice.

1.10.1 T-DLCA SYNTAX

In our scenario we fix Atm = {p(t1, t2), q(t3, t4), ... ,h(ti, tj)} as in the T-LEK frame-
work. Let Nom = {x(t1), y(t2), , ... ,z(tj)} where x, y, z are nominals, which name
individual states in models, where tj are time instants where j ∈ N. Moreover, Nom is
disjoint from Atm and let Agt be a finite set of agent.

Below is the definition the language LTDLCA where i ∈ Agt, p(t1, t2) ∈ Atm and x(t) ∈
Nom:

π, λ := ≡i | �i,P | �i,D | �∼i,P | �∼i,D | π;λ | π ∪ λ | π ∩ λ | − π | ϕ?
ϕ, ψ := p(t1, t2) | x(t)| ¬ϕ | ϕ ∧ ψ | [π]ϕ

Other Boolean connectives are defined from ¬ and ∧ as usual. So, π represents programs
which is the basic construct of Dynamic Logic. We can called them Cognitive Programs
to underline that we are working on reasoning about agents cognitive attitudes; in fact, π
corresponds to a particular configuration of agents cognitive states. As in Dynamic Logic
π;λ stands for “do π followed by λ”, π ∪ λ stands for “do π or λ”, π ∩ λ stands for
“do π and λ”, −π is the inverse, ϕ? stands for “proceed if ϕ is true, else fail”; instead
≡i, �i,P , �i,D describe agents knowledge, plausibility and desirability respectively, and
�∼i,P , �∼i,D are the complements of �i,P , �i,D. Also the formula [π]ϕ has to be read
“ϕ is true, according to the program π”; obviously we have different meanings based on
the π we choose, first of all [≡i]ϕ which stands for “ϕ is true according to what agent i
knows”, [�∼i,P]ϕ which stands for “ϕ is true at all states that, according to agent i, are at
least as plausible as the current one” while [�∼i,P]ϕ stands for “ϕ is true at all states that,
according to agent i, are not at least as plausible as the current one”. For �i,D and �∼i,D
it is enough to replace “plausible” with “desirable” in the definition.

1.10.2 T-DLCA SEMANTIC

Semantic of T-DLCA is based on a set W of worlds; we have the valuation function:
V : W → 2Atm∪Nom . We extend the function T from (1.9) as follows:

36
Chapter 1. Memory Management: Time Dynamic Logic of Explicit Belief and

Knowledge

• T (x(t)) = t

• T ([π]ϕ) = T (ϕ).

Definition 1.10.1 A T-DLCA model is a tuple M = 〈W ; (�i,P)i∈Agt; (�i,D)i∈Agt;
(≡i)i∈Agt;R;V ;T 〉 where:

• W is the set of worlds defined as in the previous setting;

• for every i ∈ Agt, �i,P and �i,D are preorders on W and ≡i is an equivalence
relation on W such that for all τ ∈ P,D and for all wI , vJ ∈ W :

1. �i,τ⊆≡i which means that for an agent to compare the plausibility or the
desirability of two states, this states have to be in the same interval I;

2. if wI ≡i vJ then wI �i,τ vJ or wI �i,τ vJ with I = J which means that the
plausibility or the desirability of two states are always comparable if these
states are in the same interval I;

• V : W → 2Atm∪Nom is the valuation function and for all wI , vJ ∈ W and
VNom(wI) = Nom ∩ V (wI):

1. VNom(wI) 6= ∅;

2. if VNom(wI) ∪ VNom(vJ) 6= ∅ then wI = vJ with I = J;

• T is the “time” function;

• Rπ ⊆ W×W is a binary relation which works in the following way based on π:

1. wIR≡ivI iff wI ≡i vI;
2. wIR�i,τvI iff wI �i,τ vI;
3. wi�∼i,τvI iff wI ≡i vI and wI �i,τ vI;

4. wIRπ;λvI iff ∃zI ∈ W : wIRπzI and zIRλvI;

5. wIRπ∩λvI iff wIRπvI or wIRλvI;

6. wIRπ∪λvI iff wIRπvI and wIRλvI;

7. wIR−πvI iff vIRπwI .

The properties of the valuation function capture the basic properties of nominals: the
uniqueness in associating a single nominal with a state.

Truth conditions for T-DLCA formulas are defined inductively as follows:

• M,wI |= p(t1, t2) iff p(t1, t2) ∈ V (wI) and T (p(t1, t2)) ⊆ I;

1.11 Conclusions 37

• M,wI |= x(t) iff x(t) ∈ V (wI) and T (x(t)) ⊆ I;

• M,wI |= ¬ϕ iff M,wI 2 ϕ and T (¬ϕ) ⊆ I;

• M,wI |= ϕ ∧ ψ iff M,wI |= ϕ and M,wI |= ψ with T (ϕ), T (ψ) ⊆ I;

• M,wI |= [π]ϕ iff ∀vI ∈ W : if wIRπvI then M, vI |= ϕ with T ([π]ϕ) ⊆ I;

• M,wI |= [?ϕ]ϕ iff ∀vI ∈ W : if wIR?ϕvI then M, vI |= ϕ with T ([?ϕ]ϕ) ⊆ I
where wIR?ϕvI iff wI = vI and M,wI |= ϕ.

Remark 1.10.1 This Time Module can be adopted in any logical framework, by extending
the definition appropriately.

1.11 CONCLUSIONS

In this chapter I explained my work about Modal Logic used for autonomous system’s
memory. My work stems from the need to improve the features of DALI [48], which
is a logic programming Agent-Oriented language created by my research group during
the years; we wanted to manage problems caused by the interaction between the agent
and the external environment. To this aim we extended an existing work of Balbiani,
Fernández-Duque and Lorini [16], where they proposed a (partial) formalization of SOAR
architecture in modal logic (LEK/DLEK). We proposed two different formalization:

• TLEK/TDLEK, where we introduced explicit time instants and time intervals in
formulas;

• T-LEK/T-DLEK, where we introduced the T function, which manages the interval
when an atom is true; through this function we are also able to assign a “timing" to
the epistemic operators B and K.

With regard to complexity for the mono agent case for LEK it has been proved that the
satisfiability problem is decidable and it has been proved to be in NP-complete, instead
for DLEK it has been conjectured to be PSPACE. It is easy to believe that our extensions
cannot spoil decidability because the T function do not interfere. Inference steps to derive
new beliefs are analogous to D-LEK: just one modal rule at a time is used and a sharp
separation is postulated between the working memory, where inference is performed, and
the long-term memory.
We also considered the T function, defined in T-DLEK, like a temporal module which can
be adopted to “temporalize" many logical framework. We have exploited this module in
two different settings. The first one is the memory management (T-DLEK) and the second
is a logical framework for reasoning about agents’ cognitive attitudes (T-DLCA). Future
developments for memory management could be the study of how to encode information
from the working memory to the long term memory under certain conditions as illustrated
in figure 1.2.

_

CHAPTER 2

TOWARDS A LOGIC OF “INFERABLE”
_

2.1 INTRODUCTION

In this chapter I discuss my last work about logic in which we try to formalize the cogni-
tive state of an agent after performing an inferential action (or mental operation); I keep
talking about the cognitive aspect of autonomous systems, and I show a particular logi-
cal framework (Logic of “Inferable” (L-DINF)) which reasons about if an action can be
performed or not and also how many steps are required for an agent to perform it. This
logic is vary similar to those illustrated in the previous chapter but we have inserted the
concept of step and executability. Before going into details of the new logic, let’s try to
explain the starting point and the related works.
Our logic can be seen as a logic of “explicit belief” and in there are many kind of it in
literature; in fact logics of awareness have been studied in the recent years starting from
the seminal work of Fagin & Halpern [87]. These logics distinguish between awareness,
implicit belief and explicit belief. The crucial difference between our logic and existing
logics of awareness is that the latter make no use of concepts as ‘reasoning’ or ‘inference’.
On the contrary, L-DINF provides a constructive theory of explicit beliefs, as it accounts
for the perceptive and inferential steps leading from an agent’s knowledge and beliefs to
new beliefs and also we added two other important aspect: “steps” and “executability”.
Moreover, This aspect of epistemic attitudes is something our theory shares with other
approaches in the literature including the dynamic theory of evidence-based beliefs by
[154], that also use a neighborhood semantics for the notion of evidence, the sentential
approach to explicit beliefs and their dynamics by [108], the dynamic theory of explicit
and implicit beliefs by [161] and the dynamic logic of explicit beliefs and knowledge by
[17].
The logic of inference stems from Velázquez-Quesada [160] and the logical system DES4n
by Duc [79], which share a similar view with our logic. In particular, Velázquez-Quesada
shares with us the idea of modelling inference steps by means of dynamic operators in
the style of dynamic epistemic logic (DEL). But in this work he does not distinguish the
concept of explicit belief, the concept of background knowledge and the executability of
the action.
The system shown in [79] shares with our logic the idea that an agent gets to know (or
believe) something by performing inferences, and making inferences takes time. Nonethe-
less, while in our logic inferential operations are represented both at the syntactic level,

39

40 Chapter 2. Towards a Logic of “Inferable”

via dynamic operators in the DEL style, and a semantic level, as model update operations,
in Duc’s system and its formal semantics they are not. In addition, we check whether an
action can be performed or not and how many steps are needed to perform it.
Our constructive approach to explicit beliefs also distinguishes L-INF from Active logics
[82, 83], in which the basic semantics includes three components: (i) an agent’s belief set,
identifying all facts that an agent explicitly believes, (ii) an observation function, identi-
fying all facts that an agent observes at a given time point, and (iii) an inference function,
specifying what an agent should believe at the next time point on the basis of the applica-
tion of the inference rules she possesses on her belief set, given her actual observations.
Nonetheless, there are important differences between active logics and our logic L-INF.
First of all, active logics do not belong to the family of modal logics, while L-INF does.
First of all, while active logics provide models of reasoning based on long-term mem-
ory and short-term memory (or working memory), they do not distinguish between the
notion of explicit belief and the notion of background knowledge, conceived as different
kinds of epistemic attitudes. Second, our logic accounts for a variety of inferential ac-
tion (or mental operation) that have not been explored in the active logic literature and
are vary important to infer new beliefs. These actions correspond to basic operations of
mind-reading in the sense of Theory of Mind (ToM) [96], in fact they are mental and not
physical ones.

2.1.1 LOGICAL FRAMEWORK

L-DINF, like TDLEK and T-DLEK, is a logic which consists of a static component and a
dynamic one. The static component, called L-INF, is a logic of explicit beliefs and back-
ground knowledge. The dynamic component, called L-DINF, extends the static one with
dynamic operators capturing the consequences of the agents’ inferential operations on
their explicit beliefs as well as a dynamic operator capturing what an agent can conclude
by performing some inferential operation in her repertoire of inferential operations.

2.1.2 SYNTAX

Assume a countable set of atomic propositions Atm = {p, q, . . .}. By Prop we denote
the set of all propositional formulas, i.e. the set of all Boolean formulas built out of the
set of atomic propositions Atm.

The language of L-DINF, denoted by LL-DINF , is defined by the following grammar in
Backus-Naur form:

α ::= `(ϕ,ψ) | ∩(ϕ,ψ) | ↓(ϕ, ψ)
φ, ψ ::= p | exec(α) | ¬ϕ | ϕ ∧ ψ | B ϕ | K ϕ | [α]ϕ | 3ϕ

where the language of inferential actions of type α is denoted by LACT, p ranges over
Atm and X is a finite set of inferential actions from LACT. Obviously the static part,

2.1 Introduction 41

L-INF, has the same definition by removing the inferential action. The other Boolean
constructions are defined from p, ¬ and ∧ in the standard way. The formula B ϕ is read
“the agent explicitly believes that ϕ is true” or, more shortly, “the agent believes that ϕ is
true”. Explicit beliefs are accessible in the working memory and are the basic elements of
the agents’ reasoning process, according the logic of local reasoning by Fagin & Halpern
[87]. An effect of this approach is that agents cannot distinguish between logically equiv-
alent formulas, i.e., if two facts ϕ and ψ are logically equivalent and an agent explicitly
believes that ϕ is true, then she believes that ψ is true as well. There are other approaches,
such as justification logics [143], that do not have this feature.
Unlike explicit beliefs, background knowledge is assumed to satisfy ‘omniscience’ prin-
ciples like closure under conjunction and known implication, closure under logical con-
sequence and introspection. Specifically, K is nothing but the well-known S5 operator
for knowledge widely used in computer science. The fact that background knowledge is
closed under logical consequence is justified by the fact that we conceive it as a kind of
deductively closed belief base. Specifically, we assume background knowledge to include
all facts that the agent has stored in her long-term memory (LTM), after having processed
them in her working memory (WM), as well as all logical consequences of these facts.

The formula [α]ϕ should be read “ϕ holds after the inferential operation (or inferential
action) α is performed by the agent”. We distinguish three types of inferential operations
α which allow us to capture some of the dynamic properties of explicit beliefs and back-
ground knowledge: `(ϕ,ψ), ∩(ϕ,ψ) and ↓(ϕ, ψ). This operations characterize the basic
operations of forming explicit beliefs via inference. Specifically:

• ↓(ϕ, ψ) is the inferential operation which consists in inferring ψ from ϕ in case
ϕ is believed and, according to an agent’s background knowledge, ψ is a logical
consequence of ϕ. In other words, by performing this inferential operation, an
agent tries to retrieve from her background knowledge in long-term memory the
information that ϕ implies ψ and, if she succeeds, she starts to believe ψ;

• ∩(ϕ,ψ) is the inferential operation which consists in closing the explicit belief that
ϕ and the explicit belief that ψ under conjunction. In other words, ∩(ϕ,ψ) charac-
terizes the inferential operation of deducing ϕ ∧ ψ from the explicit belief that ϕ
and the explicit belief that ψ;

• `(ϕ,ψ) is the inferential operation which consists in inferring ψ from ϕ in case ϕ is
believed and, according to an agent’s working memory, ψ is a logical consequence
of ϕ. With this last operation we operate directly on the working memory without
retrieving anything from the background knowledge. We assume that, differently
from explicit beliefs, background knowledge is irrevocable in the sense of being
stable over time.

Remark 2.1.1 We have chosen only these three mental actions because the physical ac-
tions (performed through a specific agent language which we are not here to specify) are
perceived and learned through the acquisition of new beliefs; in fact an agent knows if he
has performed these action and if these action has been successful or not.

42 Chapter 2. Towards a Logic of “Inferable”

The atomic formulas exec(α) have to be read “α is an inferential action that the agent can
perform”.

Finally, the formula 3ϕ has to be read “the agent can ensure ϕ by executing some infer-
ential action in her repertoire”. The interesting aspect of our language is that it allows us
to express the concept of “being able to infer ϕ in k inferential steps”. Specifically, let us
inductively define:

• 30ϕ = ϕ;

• 3k+1 = 33kϕ

The formula 3kB ϕ represents the fact that the agent is capable of inferring ϕ in k steps.

Remark 2.1.2 The latter approximates the notion of time of computation as the number
of steps that are sufficient for an agent to draw a certain conclusion from her initial
beliefs.

2.1.3 SEMANTICS

The main semantics notion are outlined in the following definition of L-INF model which
provides the basic components for the interpretation of the static logics:

Definition 2.1.1 We define a model to be a tuple M = (W,N,R,E, V) where:

• W is a set of worlds or situations;

• R ⊆ W ×W is an equivalence relation on W ;

• N : W −→ 22W is a neighborhood function such that for all i ∈ Agt, w, v ∈ W
and X ⊆ W :

(C1) if X ∈ N(w) then X ⊆ R(w),

(C2) if wRv then N(w) = N(v);

• E : W −→ 2LACT is an executability function such that for all w, v ∈ W :

(D1) if wRv then E(w) = E(v);

• V : W −→ 2Atm is a valuation function.

2.1 Introduction 43

For every w ∈ W , R(w) = {v ∈ W | wRv} identifies the set of situations that the agent
considers possible at world w. In cognitive terms, R(w) can be conceived as the set of all
situations that the agent can retrieve from her long-term memory and reason about them.
More generally, R(w) is called the agent’s epistemic state at w.

For every w ∈ W , N(w) defines the set of all facts that the agent explicitly believes at
world w, a fact being identified with a set of worlds. More precisely, if A ∈ N(w) then,
at world w, the agent has the fact A under the focus of her attention and believes it. N(w)
is called the agent’s explicit belief set at world w.

E(w) is the set of mental operations that the agent can execute at w.

Constraint (C1) just means that an agent can have explicit in her mind only facts which
are compatible with her current epistemic state. According to Constraint (C2), if world v
is compatible with the agent’s epistemic state at world w, then the agent should have the
same explicit beliefs at w and v. Moreover, Constraint (D1) means that an agent always
knows the actions which he can perform and those he cannot.

Truth conditions of L-DINF formulas are inductively defined as follows.

For a model M = (W,N,R,E, V), a world w ∈ W , a formula ϕ ∈ LL-INF , and an
action α, we define the truth relation M,w |= ϕ and a new model Mα by simultaneous
recursion on α and ϕ as follows. Below, we write

‖ϕ‖Mw = {v ∈ W : wRv and M, v |= ϕ}

whenever M, v |= ϕ is well-defined. Then, we set:

• M,w |= p iff p ∈ V (w)

• M,w |= exec(α) iff α ∈ E(w)

• M,w |= ¬ϕ iff M,w 6|= ϕ

• M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

• M,w |= B ϕ iff ||ϕ||Mw ∈ N(w)

• M,w |= K ϕ iff M, v |= ϕ for all v ∈ R(w)

• M,w |= [α]ϕ iff Mα, w |= ϕ

• M,w |= 3ϕ iff ∃α ∈ E(w) s.t. Mα, w |= ϕ

44 Chapter 2. Towards a Logic of “Inferable”

where Mα = (W,Nα, R,E, V) and Nα is defined as follows. For w ∈ W , set

N↓(ψ,χ)(w) =

{
N(w) ∪ {||χ||Mw } if M,w |= B ψ ∧K (ψ → χ)

N(w) otherwise

N∩(ψ,χ)(w) =

{
N(w) ∪ {||ψ ∧ χ||Mw } if M,w |= B ψ ∧B χ

N(w) otherwise

N`(ψ,χ)(w) =

{
N(w) ∪ {||χ||Mw } if M,w |= B ψ ∧B (ψ → χ)

N(w) otherwise

We write |=L-DINF ϕ to denote that ϕ is true in all worlds w of every L-DINF model M .

Property 2.1.1 As consequence of previous definitions we have the following:

• |=L-INF (K(ϕ→ ψ)) ∧B ϕ)→ [↓(ϕ, ψ)]B ψ.
Namely, if an agent has ϕ as one of its beliefs and has K(ϕ→ ψ) in its background
knowledge, then as a consequence of the action ↓(ϕ, ψ) the agent starts believing ψ;

• |=L-INF (Bϕ ∧Bψ)→ [∩(ϕ, ψ)]B(ϕ ∧ ψ).
Namely, if an agent has ϕ and ψ as beliefs, then as a consequence of the action
∩(ϕ, ψ) the agent i starts believing ϕ ∧ ψ;

• |=L-INF (B(ϕ→ ψ)) ∧B ϕ)→ [`(ϕ, ψ)]B ψ.
Namely, if an agent has ϕ as one of its beliefs and has B(ϕ → ψ) in its working
memory, then as a consequence of the action `(ϕ, ψ) the agent starts believing ψ;

The proof of these property are the same as Property 1.3.2 and Property 1.3.3 in the
previous chapter.

2.2 AXIOMATIZATION

The L-INF and L-DINF axioms are:

1. (K ϕ ∧K(ϕ→ ψ))→ K ψ;

2. K ϕ→ ϕ;

3. ¬K (ϕ ∧ ¬ϕ);

2.2 Axiomatization 45

4. K ϕ→ KK ϕ;

5. ¬K ϕ→ K ¬K ϕ;

6. B ϕ ∧K (ϕ↔ ψ)→ B ψ;

7. B ϕ→ K B ϕ;

8. ϕ
K ϕ

;

9. [α]p↔ p;

10. [α]¬ϕ↔ ¬[α]ϕ;

11. exec(α) ∧ [α]ϕ→ 3ϕ;

12. exec(α)→ K (exec(α));

13. [α](ϕ ∧ ψ)↔ [α]ϕ ∧ [α]ψ;

14. [α]K ϕ↔ K ([α]ϕ);

15. [↓(ϕ, ψ)]B χ↔ B ([↓(ϕ, ψ)]χ) ∨ ((B ϕ ∧K (ϕ→ ψ)) ∧K ([↓(ϕ, ψ)]χ↔ ψ));

16. [∩(ϕ, ψ)]B χ↔ B ([∩(ϕ, ψ)]χ) ∨ ((B ϕ ∧B ψ) ∧K ([∩(ϕ, ψ)]χ↔ (ϕ ∧ ψ));

17. [`(ϕ, ψ)]B χ↔ B ([`(ϕ, ψ)]χ) ∨ ((B ϕ ∧B (ϕ→ ψ)) ∧B ([`(ϕ, ψ)]χ↔ ψ));

18. ψ↔χ
ϕ↔ϕ[ψ/χ]

;

19. p→ 3p;

20. 3(ϕ ∧ ψ)→ 3ϕ ∧3ψ;

21. 3ϕ→ 33ϕ;

22. 3B ϕ→ B3ϕ;

23. 3K ϕ→ K 3ϕ.

We write L-DINF `ϕ which signifies that ϕ is a theorem of L-DINF . Thanks to the
previous axioms, L-INF and L-DINF are sound for the class of L-INF models.

46 Chapter 2. Towards a Logic of “Inferable”

2.3 CONCLUSIONS

In this chapter I completed my discussion about the cognitive aspects of autonomous
system, and I showed a particular logical framework where I have inserted the concept
of step and executability. This logic is called L-DINF and as TDLEK and T-DLEK, is a
modal logic which consists of a static component and a dynamic one. This logic is vary
similar to those illustrated in the previous chapter but we have inserted the concept of step
and executability; the first is to understand how many steps an agent takes to perform an
action, the second illustrates whether an agent is actually able to perform an action.

For future work we will prove that L-INF is strongly complete which can be achieved
by using a non-standard canonical model argument, as in [15]. In fact, we could have
considered the canonical model, as in the previous chapter, if we had not considered the
3. We will extend L-INF to the multi-agents case and there is an intention to insert the
concept of budget: an integer that represents how much an agent can spend of his own
resources in the world w. This is important to better represent the fact that the agent is
resource-bounded. Moreover we have to compute the complexity and extend the group of
inferential actions, which we consider.

_

CHAPTER 3

ADVANCED ARCHITECTURE: K-LAYER ACE
_

3.1 INTRODUCTION

In this chapter I discuss a research topic of my research group to which I have pro-
vided active contribution: Cyber-Physical Systems (CPSs), Multi-Context Systems and
Component-based Agents Environments. Here I focus my self working on a particular,
innovative kind of architecture called K-Level ACE ([69]). Before going into the details
on the new architecture, let’s try to outline the context.

There are nowadays many application fields where agents and multi-agent systems are sit-
uated in complex, open, and dynamic computational environments which include hetero-
geneous software components, physical devices and sensors including wearable devices,
third part services, data centers, expert systems and other knowledge sources available on
the Internet. The availability of such components evolves in time, as new knowledge can
be discovered, and components may join or leave the environment, or become momen-
tarily unreachable. Such environments can actually constitute Cyber-Physical Systems
(CPSs) [109], and they may include physical components that interact with or are inte-
grated into the computational "ecosystem".

One example of such a scenario is for instance the F&K (Friendly-and-Kind) system [2]
proposed for applications the E-Health domain, and depicted in Figure (3.1).

In this architecture, each patient is in charge of a Personal Monitoring Agent (PMA). This
agent will interact with the patient in via a friendly interface, and supervise by means of
suitable sensors the patient’s welfare and health condition and the correct administration
of therapies. So, a PMA must be aware of all illnesses of the assigned patient and must be
able to cope with their comorbidity. The PMA manages the patient’s medical history and
records, is aware of the therapies and is able to supervise drugs administration accord-
ing to prescription. In case of anomalous symptoms (detected via the PMA’s complex
event processing capabilities), the PMA will access knowledge bases for symptom inter-
pretation, diagnosis and management treatment. The PMA may interact with either the
patient or a human specialist or both. Moreover, the various PMAs are meant to cooper-
ate so as to share in an effective ways scarce resources such as medical doctors, nurses,
ambulances, helicopters, and hospital beds. Therefore, F&Ks are "knowledge-intensive"

47

48 Chapter 3. Advanced Architecture: K-Layer ACE

Figure 3.1: Friendly-and-Kind architecture

systems, providing flexible access to dynamic, heterogeneous, and distributed sources of
knowledge and reasoning, within a highly dynamic computational environment consist-
ing of computational entities, devices, sensors, and services available in the Internet and
in the cloud.

Another application in a very different domain though with similar features (depicted in
Figure 3.2) is aimed at Digital Forensics and Digital Investigations [65, 128]. Digital
Forensics is a branch of criminalistics which deals with the identification, acquisition,
preservation, analysis and presentation of the information content of computer systems,
or in general of digital devices, in relation to crimes that have been perpetrated. The
aim is to identify, categorize and formalize digital sources of evidence. The aim of the
Evidence Analysis stage of Digital Forensics, or more generally of Digital Investigations,
is to identify, categorize and formalize digital sources of evidence (or however sources of
evidence represented in digital form). The objective is to organize such sources of proof
into evidences, so as to make them robust in view of their discussion in court, either in
civil or penal trials.

In work in progress we have identified a setting where an intelligent agent is in charge of
supporting the human investigator in such activity. This is not exactly a Cyber-Phisical
System, as the agent does not have direct access to sensors and actuators but rather elab-

3.1 Introduction 49

Figure 3.2: DyPES Architecture

orates the collected evidence. The agent should however identify, retrieve and gather the
various kinds of potentially useful evidence, process them via suitable reasoning mod-
ules, and integrate the results into coherent evidence. In this task, the agent may need to
retrieve and exploit knowledge bases concerning, e.g., legislation, past cases, suspect’s
criminal history, and so on. In the picture, the agent considers: results from blood-pattern
analysis on the crime scene, which lead to model such a scene via a graph, where suitable
graph reasoning may reconstruct the possible patterns of action of the murderer; alibi ver-
ification in the sense of a check of the GPS positions of suspects, so as to ascertain the
possibility of her/him being present on the crime scene at the crime time; alibi verification
in the sense of double-checking the suspect’s declarations with digital data such as com-
puter logs, videos from video-cameras situated on the suspect’s path, etc. All the above
can be integrated with further evidence such as the results of DNA analysis and others.
The system can also include Complex Event Processing so as to infer from significant
clues the possibility that a crime is being or will be perpetrated.

In reality, many of the involved data must be retrieved, elaborated, or checked from knowl-
edge bases belonging to organizations which are external to the agent, and have their own
rules and regulations for data access and data elaboration. Therefore, suitable modalities
for data retrieval and integration must be established in the agent to correctly access such
organizations.

50 Chapter 3. Advanced Architecture: K-Layer ACE

A suitable denomination of such systems can be “Dynamic Proactive Expert Systems”
(DyPES): in fact, both systems are aimed at supporting human experts and personnel or
human users in a knowledgeable fashion, so they are reminiscent of the role of tradi-
tional expert systems. However, they are proactive in the sense that such systems have
objectives (monitoring patients, managing resources, finding evidence) that they pursue
autonomously, requiring human intervention only when needed. They are also dynamic,
because they are able to exploit not only a predefined knowledge base: rather, they are
equipped with a number of reasoning modules, and they are able to locate other such mod-
ules, and the necessary knowledge and reasoning auxiliary resources. In fact, DyPESs are
characterized by “Knowledge-intensity”, in the sense that in general a large amount of
heterogeneous information and data must be retrieved, shared and integrated in order
to reason within the system’s domain. As seen, DyPESs can be Cyber-Physical Sys-
tems, and can be able to perform complex event processing, i.e., they are able to actively
monitor event data so as to make automated decisions and take time-critical actions. As
emphasized in both scenarios, such systems need a terminological component to ensure
interoperability among the various elements, and well-defined communication modalities
for knowledge exchange.

We propose a software architecture for DyPESs. The new architecture take as basic
blocks DACMACS (Data-Aware Commitment-based managed Multi-Agent-Context Sys-
tems, [51, 54]) and ACEs (Agent Computational Environments), which are assembled
togheter to build an entirely new structure. About DACMACSs and about ACEs (Agent
Computational Environments, [50]). DACMACS is an extension of the work of [126]
about DACMAS (Data-Aware Commitment-based managed Multi-Agent Systems). The
latter provides a quite general model of multi-agent systems, with explicit elements of
knowledge representation, as in fact the terminological component is specified in terms
of DRL-Lite Description Logic [14], and an explicit communication component man-
aged by an Institutional agent (in particular, communication in DACMASs is based upon
commitments [145, 146], which constitute a relatively recent but very well-established
approach). DACMACSs agents are however able to flexibly interact not only within a
MAS like in DACMAS, but also with heterogeneous external information sources (called
“contexts” after [36, 37, 38]), by means of suitable agent-oriented modalities. Moreover,
both agents and external contexts may interchange not only queries and the relative an-
swers, but also the ontological definitions they are based upon [54]. The ACE approach
[50] empowers logical agents by equipping them with reasoning modules and auxiliary
knowledge bases, possibly defined in different heterogeneous languages/formalisms, and
providing a uniform interaction mechanism so that not only the approach is adaptable to
any agent-oriented language save implementing this mechanism, but an ACE is poten-
tially capable of reconfiguring itself when deemed useful.

The proposed architecture is called K-ACE standing for ’K-level ACE’, and is designed
as a multi-layered uniform architecture which smoothly integrates all features required
for designing DyPESs. With K-ACE we intend to generalize, unify and empower the
DACMACS-ACE features within a smoothly integrated uniform framework. Similarly to
DACMACS, a K-ACE encompasses both agents and contexts, the latter providing knowl-

3.1 Introduction 51

edge bases and operational capabilities to support the system’s activities. Agents in a
K-ACE are in particular ACEs, i.e., empowered modular agents capable to perform and
integrate several forms of reasoning and to reconfigure themselves upon need. To repre-
sent the fact that such a system might be required to interact with external organizations
about which no information is available beyond modalities for issuing requests and receiv-
ing results, components of a K-ACE can be other K-ACEs which can in turn encompass
K-ACEs and so on recursively. So, a K-ACE is a multi-level structure where a K-ACE
at a certain level may encompass other K-ACEs which are seen by the former system as
operating at a “lower” level. A K-ACE “encompasses” lower-level K-ACEs in the sense
that it is able to interact with them by locating knowledge sources therein and send them
requests. This is done by means of a key element of each K-ACE, i.e., the “Institutional
agent” which is the K-ACE entry points, as it receives requests to locate components with
a certain role, and returns answers, possibly according to its own policies.

Communication among agents might occur in principle according to any reasonable pro-
tocol. However, to manage knowledge flow from-to agents and reasoning modules and ex-
ternal contexts and lower level K-ACEs we adopt as uniform, a very general and versatile
mechanism the one of bridge-rules, inspired to those of MCSs (Multi-Context Systems)
[36, 37, 38]. Bridge rules are thus a basic element of K-ACEs, as they allow knowledge to
flow among components in a clearly-specified principled way. Bridge rules are in particu-
lar reminiscent of Datalog rules, where however each item of information can be obtained
from a different context. Agents are not required to be aware of the system’s structure
in order to be able to retrieve the contexts that may provide some specific information.
Rather, at each level the system includes a special entity, called “Institutional Agent”, for
locating components based upon their role; the role indicates the kind of information or
of operation that a component is able to perform, along with operational information to
retrieve and access the component itself. In case several options are available for given
role, the best preferred can be selected according to some agent-specific criterion; redun-
dancy in roles is a desirable feature, which helps to guarantee the retrieval of the needed
information in most cases. Whenever the required component cannot be found at the
present level but might be found at lower levels, the Institutional Agent locates within
the system a suitable K-ACE and defers the search to its Institutional Agent, and so on
recursively until a component with the desired role (or a more general one, if none is
found) is retrieved. Institutional Agents are able to manage system dynamics in the sense
of component or entire K-ACE that may join or leave the system, the latter either as a
choice or as a result of circumstances such as network failure.

Overall, K-ACE have been devised as an architecture for modeling and realizing sys-
tems that operate in highly distributed, heterogeneous and dynamic environments, where
knowledge location, elaboration and exploitation requires a high degree of flexible in-
teraction among components and sub-systems, and where obtaining timely and reliable
results may be crucial in the interest of a user.

52 Chapter 3. Advanced Architecture: K-Layer ACE

3.2 TERMINOLOGY FOR K-ACES

In this Section we summarize the terms and acronyms that we use throughout the chapter,
with a short explanation to facilitate reading.

• MAS: Multi-Agent Systems.

• MCS: Multi-Context System, a framework for the integration of knowledge ob-
tained from several heterogeneous knowledge sources.

• Contexts: general denomination for heterogeneous knowledge sources, each one
based upon its own specific logic/language/formalism.

• Bridge Rules: device for realizing knowledge integration in MCS; similar in syntax
to datalog rules, each bridge rule occurs in a context; each condition in the body is
associated to the indication of the context from which that piece of knowledge is
to be obtained; the conclusion (head) is added to the context whenever each of the
conditions composing the body becomes true (in the relative contexts).

• mMCS: Managed MCS, variant of MCS where the head of a bridge rule is added
to a context after “management”, i.e., after suitable elaboration.

• Management function: indicated with mngi for context Ci, performs bridge-rule
heads elaboration in mMCS.

• DACMAS: Data-Aware Commitment-Based Multi-Agent Systems, are Multi-Agent
Systems equipped with a global Tbox and global ABox defined in Description Log-
ics; the TBox and ABox provide shared knowledge to the agents composing the
MAS; such agents communicate via Commitments.

• DACMACS: Data-Aware Commitment-Based Multi-Agent-Context Systems, inte-
grate DACMAS and mMCS by making external contexts available to agents via
bridge rules, that can occur also in agents, where can be activated proactively.

• Institutional Agent: is a special agent alway present in a DACMACS, responsible
of managing message-passing among agents and of locating agents and contexts
whithin the system, based on their roles; it can be seen from the outside as the
system’s entry-point.

• ACE: Agent Computational Environments, are empowered agents where each agent
is organized in a modular structure encompassing agent program, heterogeneous
reasoning modules and heterogeneous contexts. Bridge rules are the device for
interchanging knowledge among the components.

• K-ACE: proposed architecture, where a component can in turn be a K-ACE, re-
cusively over an arbitrary number of levels. Empowered Institutional agents are
responsible for locating agents and context “routing” information within the struc-
ture.

3.3 Background: MCS 53

3.3 BACKGROUND: MCS

Heterogeneous multi-context systems have been introduced in the seminal work of [95]
in order to integrate different inference systems without resorting to non-classical logical
systems. The device that they elaborated in order to interconnect such systems was called
bridge rules, whose form was:

(c1 : p1), . . . , (cj : pj)⇒ (c : q)

where conclusion q was drawn in framework c in consequence of conclusions p1, . . . , pj
having been drawn in c1, . . . , cj respectively. A semantics was provided in terms of lo-
cal models of the composing inference systems plus compatibility conditions related to
bridge-rule application.

Later, the idea has been further developed and generalized to non-monotonic reasoning
domains in [35, 36, 37, 38] and other related papers. There, (Managed) Multi-Context
systems aim at making it possible to build systems that need to access multiple possibly
heterogeneous data sources, called “contexts”, by modeling the necessary information
flow via “bridge rules”, whose form is similar to datalog rules with negation (cf., e.g.,
[8]). Bridge rules allow for inter-context interaction: in fact, as before, each element in
their “body” explicitly includes the indication of the context from which information is to
be obtained.

In order to account for heterogeneity of sources each context is supposed to be based on
its own logic. Reporting from [36], a logic L is a triple (KBL;CnL;ACCL), where KBL

is the set of admissible knowledge bases of L, which are sets of KB-elements (“formu-
las”); CnL is the set of acceptable sets of consequences, whose elements are data items or
"facts" (in [36] these sets are called “belief sets”; we adopt the more neutral terminology
of “data sets”); ACCL : KBL → 2CnL is a function which defines the semantics of L by
assigning each knowledge-base a set of “acceptable” sets of consequences. A managed
Multi-Context System (mMCS) M = (C1, . . . , Cn) is a heterogeneous collection of con-
texts Ci = (Li; kbi; bri) where Li is a logic, kbi ∈ KBLi is a knowledge base and bri is a
set of bridge rules. Each such rule is of the following form, where the left-hand side o(s)
is called the head, denoted as head(ρ), the right-hand side is called the body, also denoted
as body(ρ), and the comma stand for conjunction.

o(s)← (c1 : p1), . . . , (cj : pj),
not (cj+1 : pj+1), . . . , not (cm : pm).

For each bridge rule included in a context Ci, it is required that kbi ∪ o(s) belongs to
KBLi and, for every k ≤ m, ck is a context included in M , and each pk belongs to some
set in KBLk . The meaning is that o(s) is added to the consequences of kbi whenever each
atom pr, r ≤ j, belongs to the consequences of context cr, while instead each atom pw,
j < w ≤ m, does not belong to the consequences of context cs. While in standard MCSs

54 Chapter 3. Advanced Architecture: K-Layer ACE

the head s of a bridge rule is simply added to the “destination” context’s knowledge base
kb, in managed MCS kb is subjected to an elaboration w.r.t. s according to the specific
operator o and to its intended semantics: rather than simple addition. Formula s itself can
be elaborated by o, for instance with the aim of making it compatible with kb’s format, or
via more involved elaboration.

If M = (C1, . . . , Cn) is an MCS, a data state or, equivalently, belief/knowledge state, is a
tuple S = (S1, . . . , Sn) such that each Si is an element of Cni. Desirable data states are
those where each Si is acceptable according to ACCi. A bridge rule ρ is applicable in a
knowledge state iff for all 1 ≤ i ≤ j : pi ∈ Si and for all j + 1 ≤ k ≤ m : pk 6∈ Sk. Let
app(S) be the set of the heads of the bridge rules which are applicable in a data state S.
There is still the management function, which provides a semantics to the operator which
is applied to the conclusion of a bridge rule.

For a logic L, FL = {s ∈ kb | kb ∈ KBL} is the set of formulas occurring in its knowl-
edge bases. A management base is a set of operation names (briefly, operations) OP ,
defining elaborations that can be performed on formulas, e.g., addition of, revision with,
etc. For a logic L and a management base OP , the set of operational statements that can
be built fromOP and FL is FOP

L = {o(s) | o ∈ OP, s ∈ FL}. The semantics of such state-
ments is given by a management function, which maps a set of operational statements and
a knowledge base into a modified knowledge base. In particular, a management function
over a logic L and a management base OP is a function mng : 2F

OP
L ×KBL → KBL \∅.

The management function is crucial for knowledge incorporation from external sources,
as it is able to perform any elaboration on the knowledge base given the acquired infor-
mation. In general, every context is equipped with its own local management function
mngi.

Semantics of mMCS is in terms of equilibria. A data state S = (S1, . . . , Sn) is an equi-
librium for an MCS M = (C1, . . . , Cn) iff, for 1 ≤ i ≤ n, Si ∈ ACCi(kb

′
i), with

kb′i = mngi(app(S), kbi). Thus, an equilibrium is a global data state composed of ac-
ceptable data states, one for each context, encompassing inter-context communication
determined by bridge rules and the elaboration resulting from the operational statements
and the management functions.

Equilibria may not exist (where conditions for existence have been studied, and basically
require the avoidance of cyclic bridge-rules application), or may contain inconsistent data
sets (local inconsistency, w.r.t. local consistency). A management function is called local
consistency (lc-) preserving iff, for every given management base and for every context
Ci, kb′i is consistent. It can be proved that a mMCS where all management functions
are lc-preserving is locally consistent. Algorithms for computing equilibria have recently
been proposed (see, e.g., [74] and the references therein). Notice that bridge rules are in-
tended to be applied whenever they are applicable, so they are basically a reactive device.

In dynamic environments, a bridge rule in general will not be applied only once, and it
does not hold that an equilibrium, once reached, lasts forever. In fact, contexts may be
able to incorporate new data items, e.g, as discussed in [38] for Reactive MCSs (rMCSs),

3.3 Background: MCS 55

the input provided by sensors (“observations”); in particular, a sensor is identified by its
observation language and a current sensor reading and, given a tuple of sensors Π, an ob-
servation Obs for Π consists of a sensor reading for each sensor. Therefore, a bridge rule
can be in principle re-evaluated upon new observations, thus leading to evolving equi-
libria and to the notion of a “run” of an rMCS. A run of mMCS M under a sequence
Obs0, Obs1, . . . of observations is in fact a sequence R = 〈S0, KB0〉, 〈S1, KB1〉 . . . such
that 〈S0, KB0〉 is a full equilibrium of M under Obs0, and for i > 0 〈Si, KBi〉 is a full
equilibrium of M under Obsi, where a full equilibrium is obtained by taking the observa-
tions into consideration in every context for bridge rules application: in fact, observation
literals can occur in bridge rule bodies.

The reason why MCSs are particularly interesting is that they aim at modeling real sit-
uations, where a number of sources distributed on the web can contribute to the so-
lution of complex problems. E.g., the METIS MCS developed in [162] is aimed at
being an industrial system for aiding human controllers in maritime control for illegal
activities detection. To detect traces of such activities, METIS exploits diverse het-
erogeneous information sources among which the commercial ship database IHS Fair-
play [www.ihs.com/products/maritime-information/], ship tracking websites [marinetraf-
fic.com, myship.com], and news feeds for determining pollution events a ship may have
been involved in.

The only constraint that the MCSs approach poses is that contexts must be based upon
some logic. We don’t see this as an essential limitation: in fact, many sources are logical
by nature (including, e.g., relational databases and ontologies), others can be built in any
of the many available logic-based approaches, and others can be wrapped within a logical
shell, as tools for doing so are the subject of active developments.

Bridge rules as originally defined are by definition ground, i.e., they do not contain
variables. In [37] it is literally stated that [in their examples] they “use for readability
and succinctness schematic bridge rules with variables (upper case letters and ’_’ [the
’anonymous’ variable]) which range over associated sets of constants; they stand for all
respective instances (obtainable by value substitution)”. Clearly, there must be a finite
number of such ground instances. Contexts’ knowledge bases are, reasonably, finite sets
of formulas. However, finite grounding of bridge rules requires finite grounding of such
knowledge bases. This assumption can be reasonable for standard relational databases,
logic programming under the answer set semantics, and other logical systems. In other
kinds of logics, for instance simply “plain” positive logic programs under the Least Her-
brand Model semantics (cf. [119, 8] for surveys), it is no longer realistic.

In related work we have formally extended bridge rules to the non-ground case. Infor-
mally, our extension works as follows. Given any non-ground bridge rule:

• we consider a data state S that we (reasonably) assume to be composed of finite
sets;

• we instantiate bridge rules over the finite number of terms occurring in S; we thus

56 Chapter 3. Advanced Architecture: K-Layer ACE

obtain finite grounding relative to S;

• we evaluate whether S is en equilibrium, i.e., if S coincides with the data state S ′

resulting from the application of applicable bridge rules;

• in case S is not an equilibrium, bridge rules can possibly be grounded w.r.t. S ′, and
so on, until either an equilibrium is reached, or no more applicable bridge rues are
generated. It is reasonable to start the procedure from a basic data state consisting
of a finite ground instance of the initial contexts’ knowledge bases.

In an implemented mMCS, the grounding of literals in bridge rule bodies w.r.t. the present
data state is most presumably computed at run-time, whenever a bridge rule is actually
applied. Such grounding, and thus the bridge-rule result, can be obtained for instance
by “executing" or “invoking” literals in the body (i.e., querying contexts) left-to-right in
Prolog style. In practice, we can allow bridge rules to have negative literals in their body.
To this aim, we introduce a syntactic limitation in the form of non-ground bridge rules,
i.e., we assume:

• every variable occurring in the head of a non-ground bridge rule r also occurs in
some positive literal of its body;

• in the body of such rule, positive literals occur (in a left-to-right order) before neg-
ative literals.

So, at run-time variables in a bridge rule are incrementally and coherently instantiated
via results returned by contexts. Each positive literal (ci : pi) in the body may fail (i.e.,
ci returns a negative answer), if none of the instances of pi given the partial instantiation
computed so far is entailed by ci’s present data state. Otherwise, the literal succeeds and
subsequent ones are instantiated to its results. Negative literals not (cj : pj) make sense
only if pj is ground at the time of invocation, and succeed if pj is not entailed by cj’s
present data state. In case either some literal fails or a non-ground negative literal is en-
countered, the overall bridge rule evaluation fails without returning results. Otherwise
the evaluation succeeds, and the result can be elaborated by the management function of
the “destination” context. It is easy to prove that the invocation of a bridge rule leads to
success if and only if, given its ground instance obtained via the above-specified evalu-
ation pattern, the body is entailed by the present system’s data state and thus the rule is
applicable.

3.4 BACKGROUND: ACE AND DACMACS

3.4.1 DACMACS

DACMACS (Data-Aware Commitment-based managed Multi-Agent-Context Systems)
[51, 54] extend DACMAS (Data-Aware Commitment-based Multi-Agent Systems) [126],

3.4 Background: ACE and DACMACS 57

which is a quite general model of multi-agent systems. In fact, apart from a general spec-
ification of data management and communicative features and knowledge-flow features,
such models remain very general about an agent program’s definition, and can be thus spe-
cialized to specific instances. In DACMAS and then in DACMACS knowledge and data
are supposed to be represented via logic ontologies[14]. While DACMAS explicitly refer
to DLR-Lite ontologies, [14, 11], we abstract away from this aspect, as DACMACS is
meant to constitute an abstract and fully general architecture encompassing logical agents
and contexts. So, DACMACS might admit any logical formalism for defining ontologies,
such as, e.g., Datalog+/- [42, 97], or to the extreme adopt first-order logic or plain datalog.
DACMACS allows agents and contexts to interchange ontological definitions [63] is also
possible in the two directions, i.e.: an agent can provide a context the ontological defini-
tion of data to be extracted; vice versa, an agent can obtain from a context data together
with their ontological definition.

A DACMAS always includes an Institutional agent which owns a “global” TBox, specify-
ing the domain in which the MAS operates, whereas in DACMACS there is also a global
ABox, and each participating agent is also equipped with its local ABox. In DACMACS
moreover, agents can query external contexts via bridge-rules that are, as said, employed
proactively. DACMACS bridge rules are more general than in MCS since each literal can
be generalized to a datalog query, and context names can either be specified as constants,
or can be obtained via a query to the Institutional agent.

Communication among agents in DACMACS occurs according to the specific agent-
oriented language adopted, where however the semantics of communicative acts and the
communication protocol are specified via the approach of commitments, which is a rel-
atively recent though very well-established general paradigm for agent interaction (cf.
[145, 146] and the references therein). The approach of commitments does not affect the
syntactic form of messages: rather, it specifies the meanings of the messages in terms of
the commitments arising between the two parties. A commitment Cx,y (ant , csq) in par-
ticular relates a debtor agent x to a creditor agent y where x commits to bring about csq
whenever ant holds. Commitment lifecycle (they can be created, fulfilled, released, can-
celed, etc.) is managed by a so-called “commitment machine”, role which in DACMAS
and DACMACS is played by the Institutional agents. So, whenever a message is sent
from agent A to agent B, the commitment machine creates a corresponding commitment
and and manages its states, and the new commitments arising during the interaction.

Precisely, a DACMACS (Data-Aware Commitment-based managed Multi-Agent-Context
System) is a tuple

〈X ,N ,Y , E , T ,A, I, C,B〉

where: (i) X is a finite set of agent specifications, defined in any agent-oriented program-
ming language (e.g., one of those mentioned above) where however each agent is assumed
to be equipped with a local ABox;
(ii) N is a set of agents’ names, listing the agents (beyond the Institutional agent) com-
posing the MAS, together with their roles in the system;
(iii) Y is a set of contexts’ names, listing the contexts that are globally known to the MAS,

58 Chapter 3. Advanced Architecture: K-Layer ACE

together with their roles in the system;
(iv) T and A are the global TBox and Abox respectively, and are common to all agents
participating in the system;
(v) I is a specification for the “Institutional” agent Inst ; such agent is responsible of
managing message-passing among agents, and is also in charge of locating agents and
contexts based on their roles: a query role@Inst returns the name of an agent/context
with role role; in general, if more that one agent/context fulfills the required role, a query
role@Inst can return a set of names; however, we assume that one is chosen at random.
(vi) C is a contractual specification, B is a Commitment Box (CBox), E is a set of pred-
icates denoting events (where the predicate name is the event type, and the arity deter-
mines the content of the event); all these elements are involved in the management of
commitment-based communication, managed by the Institutional agent.

Components T , E ,X , I, C and B are analogous to those of DACMASs. However, DAC-
MACSs are enhanced via a set of contexts, and moreover agents’ specifications can now
include: bridge rules, for gathering new knowledge from contexts; trigger rules for
proactive activation of bridge rules; bridge-update rules for incorporating the acquired
knowledge into the agent’s knowledge base upon specific conditions (corresponding to
the MCSs’ management function), where the minimal requirement is that of keeping the
agent’s ABox consistent internally, and with the global TBox and ABox. Contexts in
bridge-rule bodies can be now identified by their names, whenever they are locally known
to the agent, or by a query role@Inst returning such name from the given role. In fact,
each agent’s local ABox is supposed to be consistent with the global Abox and TBox,
where however the ABoxes of the various agents are not required to be mutually consis-
tent. Actually in fact, each agent’s knowledge base can be seen as composed of the union
the global Abox and TBox and the local ABox.

The Institutional agent Inst is a special agent that: manages the messages which are
exchanged in the system, and is responsible of the management of commitments, whose
concrete instances are maintained in the Commitment Box B; it does so based on the
Commitment Rules in C, defining the commitment machine. The Institutional agent is
also responsible of returning agents’ and context’s names via their role, by answering
queries of the form role@Inst .

A semantics for DACMACS in terms of equilibria, inspired by the MCSs’ semantics but
extended however with timed data states, timed equilibria and execution trajectories is
provided in [51].

Overall, DACMACS adds to the generality and flexibility of DACMAS (commitment-
based communication, suitably formalized shared knowledge) the possibility to explic-
itly represent the interaction of agents with external heterogeneous contexts. Interaction
occurs like in mMCS via bridge rules, which can however be applied proactively as ex-
plained below for ACE.

3.4 Background: ACE and DACMACS 59

3.4.2 ACE

An enhanced Agent Computational Environment (ACE) [50] is defined as a tuple 〈A,M1,
. . . ,Mr, C1, . . . , Cs, R1, . . . , Rq〉 where module A is the “basic agent”, i.e., an agent pro-
gram written in any agent-oriented language. The “overall” agent is obtained by equip-
ping the basic agent with the following facilities. The Mis are “Event-Action modules”,
that are special modules aimed at Complex Event Processing. The Rjs are “Reasoning
modules”, that are specialized in specific reasoning tasks. The Cks are contexts in the
sense of MCSs, i.e., external data/knowledge sources that the agent is able to locate and
to query about some subject, but upon which it has no further knowledge and no control:
this means that the agent is aware of the “role” of contexts in the sense of the kind of
knowledge they are able to provide, but is unable in general to provide a description of
their behavior/contents or to affect them in any way. Interaction among ACE’s compo-
nents occurs via bridge rules, inspired by those of MCSs.

The “local” agent’s modules, i.e., main agent program, event-action modules, and rea-
soning modules can be defined in any agent-oriented and/or computational-logic-based
programming language. For specifying the main agent we might adopt, e.g., DALI,
AgentSpeak, GOAL, 3APL, METATEM, KGP, etc. (see [29, 30, 32, 72, 75, 89, 106]
and the references therein), or also in other logic formalisms such as, e.g., ASP (ASP, cf,
among many, [93, 20, 91] and the references therein). Notice that in case r, q, s = 0, i.e,
no auxiliary components are provided, an ACE reduces to a “traditional” agent.

For Complex Event Processing (CEP) modules, a recent but well-established and widely
used approach to CEP in computational logic is ETALIS [6, 7, 1], that is an open source
plug-in for Complex Event Processing implemented in Prolog which runs in many Prolog
systems. [50] presents an approach where DALI-based modules are executed via trans-
lation into ASP. For Reasoning modules, the formalism to be adopted depends on the
reasoning task at hand.

Bridge rules have been extended in [56] to become (via a smooth formal integration into
ACE’s semantics) bridge rule patterns of the following form:

s← (C1 : p1), . . . , (Cj : pj), not (Cj+1 : pj+1), . . . , not (Cm : pm).

where each Ci can be either a constant indicating a context name, or a term of the form
mi(ki) that we call context designator, indicating the kind of context (rather than the spe-
cific one) to be queried, to be specified before bridge-rule execution. Such a rule, once
context designators have been instantiated to actual context names, is applicable (and s
can thus be added to the consequences of a module’s knowledge base) whenever each pr,
r ≤ j, belongs to the consequences of module Cr while instead each pw, j < w ≤ m, does
not belong to the consequences of Cw. We may notice that bridge rule patterns are meta-
rules, where context designators constitute a kind of “reification” device for denoting
a-priori unknown contexts (for a review of such concepts, cf., e.g., [45]). Bridge rules can
be instantiated by the agent itself via the special action instantiate(H ,mi(ki),Conds ,L).

60 Chapter 3. Advanced Architecture: K-Layer ACE

For every bridge rule ρ with head matching with H and given list L of constants, such ac-
tion, proactively performed by the agent, generates as many instances of ρ as obtained by
substituting the context designator mi(ki) by elements of L; Conds are (possibly empty)
input conditions to be evaluated in the action’s preconditions in order to determine L.

In ACE basic agents we adopt for bridge rules the agent-oriented modalities introduced
in [51]. In fact, bridge rules in (m)MCS are applied reactively (whenever the rule is
applicable, i.e., body is true in the current data state, then the head is added to the context
where the rule occurs, possibly after management). Instead, in ACE bridge rules are
enabled (and thus applies whenever applicable) upon conditions internal to the agent. In
particular, such conditions are specified via trigger rules of the form

Q(ŷ) enables A(x̂)

where: x̂, ŷ are tuples composed of constants and variables, Q(ŷ) is a query to the agent’s
internal knowledge-base and A(x̂) is the conclusion of one of agent’s bridge rules, that is
“fired” whenever such query evaluates to true. The result of Q(ŷ) can partially instantiate
A(x̂). The special action enable(S) enables the application of bridge rule ρ whose head
matches with S by generating its trigger, whereas instenable(S ,mi(ki),Conds ,L) both
instantiates and enables a bridge rule.

The results returned by a bridge rule with head A(x̂) can be exploited via a bridge-update
rule of the form

upon A(x̂) then β(x̂)

where

β(x̂) specifies both the conditions for acquiring A(x̂ into the agent’s knowledge base, and
the elaboration to be performed. So, also the incorporation of bridge-rule results occurs
in a proactive way as dictated by β(x̂), which also incorporates the management function.

The merit of the ACE approach is to make an agent fully modular. In fact, ACE provides
the bridge-rules as a general mechanism for the interaction among the main agent and
contexts, and among contexts. No assumption is made about the formalisms/languages
in which the various elements are expressed, so the ACE architecture can be instantiated
to a variety of practical cases. This is permitted by a semantics which generalizes that
of mMCS, and is thus fully parametric w.r.t. formalization of components. The general-
ization of bridge rules to bridge rule patterns overcomes the limitation to have to specify
statically which are the knowledge sources to consult. In ACE, such sources can be deter-
mined dynamically, where suitable bridge-rule patterns can be instantiated accordingly.

3.5 K-ACE

We present K-layers-ACE, or simply K-ACE. It is a generalization of ACE and DAC-
MACS, where: each agent in a DACMACS can be an ACE (more precisely a 1-ACE,

3.5 K-ACE 61

which is a slight extension seen below); a DACMACS (now renamed K-ACE) may be
composed not only of agents and contexts, but also of other (lower-level) K-ACEs. This
“nesting” is allowed over an arbitrary number “K” of layers.

Figure 3.3: K-ACE Architecture

This proposal is introduced in the perspective of DyPESs where an application/organiza-
tion, represented as a K-ACE, might dynamically resort to another external application-
s/organizations to obtain data or to perform elaboration. So, such external organizations
that are accessible by a DypES/K-ACE are seen as (lower-level) K-ACEs that can be
reached though a uniform interface, represented by these systems’ Institutional agents.
Recursively, lower-level K-ACEs can have other K-ACEs as components, along an arbi-
trary number of levels. 1-ACEs are, together with contexts, the basic building blocks of
the system. Notice that which are the higher-lower levels is not fixed: each K-ACE imple-
menting some application and/or pursuing its own objective considers the other K-ACEs
it needs to access, from its own perspective, as lower level. As a metaphor, we might
see the whole system with all the composing K-ACEs as a galaxy, and each composing
K-ACE as a stellar system composed of solar systems (1-ACEs); each solar and stellar
system is able to observe (to some extent) the rest of the galaxy.

Any component or subsystem in a K-ACE is not necessarily always available, as it can
join or leave the system or become momentarily unavailable. Also, not every component
is allowed to reach every other one: rather, accessibility can be subject to permissions.
Bridge-rules activation may itself be subject to norms, i.e., not only an agent proactively
seeks to obtain or distribute new knowledge, but may does so because it “has to”. Each
component may in turn choose to access the best preferred components among those
which may provide certain knowledge or services.

62 Chapter 3. Advanced Architecture: K-Layer ACE

This very general architecture is intended for complex dynamic applications where inde-
pendent subsystems can be seen as components of the overall systems. K-ACE systems
may evolve in time, so below we define a K-ACE relative to a time T . Except for the In-
stitutional agent and for the global TBox and ABox and commitments’ contractual spec-
ification, whose definition remains stable over time, all the other components can evolve
over time, as agents, contexts and lower-level K-ACEs can either join and leave the sys-
tem. A reachability relation, that itself evolves in time, dynamically establishes which
component can reach which other. As done in Linear Temporal Logic (LTL, [85]) we
assume a discrete, linear model of time and represent each state/time instant as an integer
number. The actual evolution from time T to T ′ = T + 1 and the interval δ = T ′ − T is
considered to be peculiar of each specific instance of the architecture given its application
domain.

The basic building blocks of K-ACEs are ACEs, augmented with some features that make
them more suitable to be included in a wider system. Empowered ACEs are defined
below, and are called 1-ACEs as they are intended to be unitary components of K-ACEs.

Definition 3.5.1 Let a 1-ACE be an extension of ACE, where:

• a 1-ACE is characterized by a unique name and a list of roles; the name must
include sufficient information for locating the 1-ACE and communicating with it;

• a 1-ACE’s main agent is supposed to be equipped with a local ABox;

• in 1-ACE’s bridge rules, that are still of the general form:

s← (C1 : p1), . . . , (Cj : pj), not (Cj+1 : pj+1), . . . , not (Cm : pm).

each Ci can now be one of the following:

– a constant denoting a context name;

– a term of the form mi(ki) that we call context designator, indicating the kind
of context (rather than the specific one) to be queried; such term must be sub-
stituted by a constant denoting a context name before bridge-rule execution;
an expression of the form role@Ag to be substituted by a constant denoting a
context name before bridge-rule execution.

As seen below, an expression of the form role@Ag denotes a query to a special “Insti-
tutional” agent, returning the name of a context with the required role. In the following,
when no ambiguity can arise 1-ACEs can be called simply “agents”. By some abuse of
notation, for a 1-ACE with name a we will often say “1-ACE a” or “agent a”.

Definition 3.5.2 Let a K-ACE (K ≥ 1) at time T be a tuple

〈N T ,X T ,YT , T T ,AT ,RT , CT ,BT , ET , I〉

3.5 K-ACE 63

identified by a unique name nK , a role rnK , and an expression denoting its “Institutional”
agent Inst@nK , where:

(i) N T is the list of 1-ACEs’ that are part of the K-ACE at time T ; each one is identified
by a unique name and by its role(s); we say that such agent participate to the (K-
ACE) system at level K; the specification of 1-ACEs is considered to be external
to the system, though when joining the system the agents can be reached via their
names and roles;

(ii) if K > 1, X T is a finite list of K’-ACEs, K’ = K −1, i.e., the lower-level subsys-
tems taking part in the K-ACE at time T ; each one is identified by a unique name
nK′ and by its role(s) rnK′ , and by an expression denoting their Institutional agent
Inst@nK ′;

(iii) YT is a set of contexts’ names, listing the contexts that are globally known to the
K-ACE at level K and time T ; contexts’ definitions is considered to be external to
the system.

(iv) T T and AT are the global TBox and Abox respectively, and are common to all
agents participating in the system at level K;

(v) RT is a reachability relation, establishing

(a) which elements of N T can reach each other, thus specifying constraints on
inter agent communication;

(b) which elements of YT are reachable by each element of N T , i.e, which con-
texts are reachable by each agent (at level K);

(c) which lower level K’-ACEs (i.e., which elements of X T) are reachable by each
agent in N T ;

(d) which elements of YT , i.e., which contexts, are reachable from the outside,
precisely from higher-level K-ACEs (if any); such external agents are desig-
nated herein via the standard name outag .

We introduce a special distinguished predicate kreach(C1 ,C2 ,T), that is true when-
ever component C2 is accessible from component C2 at time T according to RT .
The binary version kreach(C1 ,C2) takes T to be the current time.

(vi) like in DACMACS, CT is a contractual specification, BT is a Commitment Box
(CBox), ET is a set of predicates denoting events, and all these elements are ex-
ploited by the Institutional agent for the managemnt of (commmitment-based) inter-
agent communication. Note that communication among 1-ACEs A and B is possi-
ble at any time t only if kreach(A,B , t) holds.

(vii) I is a specification for the Institutional agent Inst@n; specifically, the Institutional
agent is in charge of inter-agent communication, of contexts’ identification via their
roles, and of acting as an interface with the lower-level K-ACEs (see (ii)); a query

64 Chapter 3. Advanced Architecture: K-Layer ACE

to the Institutional agent for obtaining a (set of) agent(s) or a (set of) context(s) with
role role issued by the 1-ACEs is now of the form role@Inst@nK , and returns the
set of agent/contexts with the specified role; we assume that the Institutional agent
is a special 1-ACE that does not encompass either Event-Action modules or con-
texts, but can encompass reasoning modules that can be exploited for performing its
functions; we assume Inst@n to have direct access to all other K-ACE’s elements,
and to be able to communicate with Institutional agents of lower-level K’-ACEs by
means of queries role@Inst@nK ′ . Notice that the Institutional agent is the unique
“entry point” of a K-ACE; in fact, higher-level components or other components of
the same K-ACE can locate and therefore access components only through results
of queries of the kind role@Inst . In case possible alternative results are available,
Inst can apply its own internal policies for selecting one.

We assume structuresN T , X T ,RT to be dynamic, in the sense that components may join
or leave the system, or become momentarily unreachable.

Therefore, we have constructed a modular architecture where:

• the basic elements are agents, i.e., 1-ACEs, and contexts;

• they can be part of a K-ACE, that provides, via the Institutional agent with the sup-
port of a number of specialized knowledge bases, a suitable infrastructure for com-
munication and for the location (by role) of other agents and of required knowledge
bases;

• K-ACEs can be in turn part of other (higher-level) K-ACEs, where the interface
among levels is provided by the Institutional agents.

However, a more precise specification of the Institutional agent’s operation needs to be
provided. We suppose that Institutional agent is able to reason about roles, so that in case
a module with the specified role could not be found directly it might be possible to find
instead another one whose role is either equivalent or more general.

Notice that, given query role@Inst@nK , this query must be issued by an agent and, given
the syntactic place where the query occurs, it can be determined whether the agent seeks
to find either other agents or contexts with the specified role. The Institutional agent
returns a set of agents/contexts including exactly those which are accessible from A and
are pertinent to role role.

Definition 3.5.3 Let role1 and role2 be expressions denoting roles of agents/contexts in
a given K-ACE. Let subs(role1 , role2) be a predicate that is true whenever role2 is either
equivalent or more general than role1 w.r.t. a background ontological role definition R.

3.5 K-ACE 65

We assume that the Institutional agent owns the background theory R, and is thus able
to compute, given role1 , roles role2 such that subs(role1 , role2) holds. This may be
possibly achieved via a suitable reasoning module.

Definition 3.5.4 Given a K-ACE identified by its name nK , role rnK , and Institutional
agent Inst@nK with background ontological role definition R, a query role@Inst@nK

issued by a 1-ACE (agent) A returns a set S that is:

• a set of contexts if the query occurs in the body a bridge rule;

• a set of agents if the query occurs elsewhere in the agent’s program.

The set S includes:

1. all those components that are reachable from A according to RT at level K, i.e.,
within the K-ACE without resorting to lower-level K’-ACEs with role role, or, if
none can be found;

2. all those components that are reachable from A according toRT at level K though
with role role1 where subs(role, role1) holds (i.e., a more general role is seeked
whenever the specific one could not be identified), or, if none can be found;

3. the result of a query role@Inst@n ′K where K’-ACE with name n′K is reachable
from A according to RT , and has role rnK′ where subs(role, rnK ′) holds; I.e., if
a component with the required role (or with a more general role) cannot be found
within the K-ACE, then it is looked for in lower level L’-ACEs.

We assume that, given a 1-ACE participating in a K-ACE nK , a query role@Inst@nK to
the “local” Institutional agent takes the simplified form role@Inst .

In a K-ACE, the reachability relationRT defines a graph structure where:

• nodes are all the components, i.e., agents, contexts and K’-ACEs included in the
system; i.e., the set V T

nK
of vertices is composed of the elements of N T , YT and

X T ;

• the set ET
nK

of edges identified nodes (components) that are connected according to
RT , i.e., at the present time.

The problem of determining all components of a certain kind reachable from a given one,
this can be understood as the problem of finding a spanning tree with that component as
root. Therefore,

66 Chapter 3. Advanced Architecture: K-Layer ACE

Proposition 3.5.1 Given a K-ACE, the complexity of determining (at any time T) which
set of components is reachable from a given one is O(|V T

nK
|+ |ET

nK
|).

Notice that the set S may be empty (if not even some K’-ACE returns results) or may
contain several elements. In the latter case, preference can discriminate among elements
of such sets, where a preference criterion can be very simply stated as follows.

Definition 3.5.5 (Preferred Source Selection) Given set SC, a preference criterion P
returns a (nonempty) ordered subset SCP ⊆ SC.

There are several factors that can influence the choice of a preference criterion, including
for instance trust, reliability, fast answer, and others. So, a preference criterium in general
establishes an order according to some kind of reasoning performed on a background
theory. Therefore, preference criteria can be seen as special reasoning modules. Both 1-
ACEs and the Institutional agents can be equipped with preference criteria, Pa to be used
for selecting among sets of agents, Pc for sets of contexts and PK for sets of K-ACEs.

Approaches to preferences in logic programming might be adapted to the present setting:
cf., among many, [38] and the references therein, [27, 39] and [60]). For simplicity we
assume that, given a preference criterion, a query such as role@Inst@nK will return a
unique result. We can now establish when a bridge rule occurring in an agent can actually
be triggered.

Definition 3.5.6 Given bridge rule ρ occurring in the main agent program of a 1-ACE a
that is a component of a K-ACE at time T is executable at time T iff each Ci in its body
has been substituted by a constant ci denoting a context (this either by an instantiate
action or by executing a query role@Inst@nK to the K-ACE’s Institutional agent) and
kreach(a, ci ,T) holds.

Note that the notion of bridge-rule being executable is preliminary to bridge rule applica-
bility. Reporting to K-ACEs the notion introduced in [52], each bridge rule ρ is potentially
applicable in a system’s state if such a state entails its body. For contexts, each bridge rule
is applicable whenever it is potentially applicable. For agents instead, a bridge rule with
head A(ŷ) is applicable whenever it is potentially applicable and there exists in the main
agent program a trigger rule of the form Q(ŷ) enables A(x̂) where the agent’s present
state satisfies Q(ŷ), where such trigger rule “triggers” or “activates” the bridge rule.

So, for making such applicability formally precise we have to define a K-ACE state at
time T , and how such state evolves in time. However, for K-ACE we also propose a
generalization of trigger rules. First, we may notice that trigger rules, that determine
proactive activation of bridge-rules (drawing inspiration from DALI internal events [72]),
can be modeled in terms of Linear Time Logic expressions. In fact, let us consider the

3.5 K-ACE 67

Separated Normal Form (SNF) for LTL formulas specified in [88]. In such normal form,
all formulas have syntax

φ⇒©ψ
where φ is a conjunction of propositional formulas. A trigger ruleQ(ŷ) enables A(x̂) can
thus be understood as

Q(ŷ)⇒©A(x̂)

that is in turn implicitly understood as

�(Q(ŷ)⇒©A(x̂))

I.e., wheneverQ(ŷ is entailed by the present state, bridge rule with headA(x̂) will be acti-
vated in next state. The advantage of such a reformulation is that, while the internal event
construct requires modification to the semantics of the adopted agent-oriented language
this is no longer the case in this new interpretation, as it suffices (as formally seen below)
that the system’s evolution respects such rules. A similar use of such notation is made in
[159] to make agents adapt their behavior to comply with norms wothout modifying the
agent’s semantics.

In K-ACEs, we extend trigger rules to activate not only bridge-rule execution, but also
inter-agent communication.

Specifically, given 1-ACEA, its main agent program may include trigger rules of the form

Q(ŷ) enables communication(A,B ,Payload ,T)

where communication(A,B ,Payload ,T) denotes a communicative act occurring at time
T with origin A and destination B where the Payload is understood, in FIPA terms1, as
comprising the message according to the specific ACL (Agent Communication Language)
adopted. Time T is assumed to be automatically added by the system.

We further generalize trigger rule by introducing a temporal element also in the premise,
to state that a bridge rule should be activated if something happens (i.e, if Q(ŷ) becomes
true, or is always true, or is never true) at a certain time or in a certain time interval. To this
aim, we exploit the work of [49] on A-ILTL (for ‘Agent-Oriented Interval LTL’), where
an agent-oriented interval extension to LTL is presented, providing syntax, semantics and
examples of use of the extended logic, called “A-ILTL” for “Agent Interval LTL”. Though,
as discussed in [49], several “metric” and interval temporal logic exist, the introduction
of A-ILTL is useful in the agent realm because the underlying discrete linear model of
time and the complexity of the logic remains unchanged with respect to LTL. This simple
formulation can thus be efficiently implemented, and is nevertheless sufficient for express-
ing and checking a number of interesting properties of agent systems (cf., e.g., [53, 62]).

1As it is well-known, FIPA (http://fipa.org) is an IEEE Computer Society standards organiza-
tion that promotes agent-based technology and the interoperability of its standards with other technologies,
and has developed over time what is now the standard terminology about Agent Communication Languages.

68 Chapter 3. Advanced Architecture: K-Layer ACE

Considering set F of formulas built out of classical connectives and of LTL and A-ILTL
operators (where however nesting of A-ILTL operators is not allowed), some among the
A-ILTL operators are the following, where ϕ ∈ F and m,n are positive integer numbers
denoting time instants, and 〈m,n〉 denotes a time interval with extremes included.

• 3m,n ϕ, or equivalently F 〈m,n〉 ϕ (eventually (or “finally”) in time interval), states
that ϕ has to hold sometime on the path from time m to time n. It can be special-
ized into F 〈m〉 ϕ, bounded eventually (or “finally”), where ϕ should become true
somewhere on the path from the current time to time m.

• 2m,n ϕ, or equivalently G〈m,n〉 ϕ (always in time interval) states that ϕ should
become true at most at time m and then hold at least until time n.

• N〈m,n〉 ϕ (never in time interval) states that ϕ should not be true at any time
betweenm and n. It can be specialized intoN〈m〉 ϕ, instant never, where ϕ should
not be true at time m. This is an auxiliary operator expressible as 2m,n ¬ϕ

In our setting, we consider simplified A-ILTL expressions where ϕ does not include tem-
poral operators, and in particular ϕ is of the form OpIQ(ŷ), where Op is an A-ILTL
operator, I an interval (possibly reduced to a single time instant), Q(ŷ) is as before. So,
we may have, in 1-ACE A, rules such as for instance

N〈m,n〉Q(ŷ) enables A(x̂)

meaning that if Q(ŷ) has never become true in given time interval 〈m,n〉 then a commu-
nication to agent B is issued, or

F 〈m〉Q(ŷ) enables communication(A,B ,Payload ,T)

meaning that the communicative act occurs if Q(ŷ) has become true sometimes before
time m or also, if needing to address an agent with role role in case Q(ŷ) has remained
true in time interval 〈m,n〉,

G〈m,n〉Q(ŷ) enables communication(A, role@Inst ,Payload ,T)

Note that time instants, line m and n above, refer to the agent’s local time. We refer
to the left-hand-side of a trigger rule as its “premise” and to the right-hand-side as its
“consequence”, and we say that the rule is fired in a system’s current state whenever at
previous state the premise holds, and so in current state the consequence is executed.

3.6 Application of K-ACE to Case-Studies 69

3.6 APPLICATION OF K-ACE TO CASE-STUDIES

Let us assume to model as an ACE the system depicted in Figure 3.1. We can presume
that the agent in charge of each human patient (that in [2] we call PMA for “Personal
Monitoring Agent”) is an 1-ACE equipped with local contexts, complex event processing
and reasoning modules. The contexts may provide the agent with information about stan-
dard treatment, e.g., by rearranging the quantity of a medicine according to certain values
in blood test. The complex event processing modules can for instance detect symptoms,
and decide whether they correspond to a potentially serious or unexpected situation. The
reasoning modules can for instance devise a plan for coping with such situation.

A K-ACE can encompass several PMAs in charge of different patients. The system may
include other K-ACE, for instance a “Diagnostic Center” providing intelligent modules
for plausible interpretation of symptoms, a “Medical Center” providing consultation with
human specialists, and a “Emergency Center” managing hospital beds and transportation
facilities. Each PMA can proactively resort to such systems, e.g., by means of rules such
as

G〈8h〉 high_blood_pressure enables
communication(pma, helpdesk@Inst@medcenter ,
cardiological_consultation_required(patientpma , high_blood_pressure), T)

where 〈8h〉 is a shortcoming for the interval denoting the last 8 hours and the PMA com-
municates with the agent that is in charge of dispatching consultation requests to the suit-
able Medical Center facilities, identified by the expression helpdesk@Inst@medcenter .

emergency(E) enables
communication(pma, emergency_manager@Inst@emergencies ,
hospital_transportation_required(patientpma , condition(E)), T)

Here, the PMA requires an urgent transportation of the patient in its charge to the hospital.
The request is issued to the manager agent of the Emergency Center K-ACE, identified
by role via the expression emergency_manager@Inst@emergencies .

In both cases commitments play a fundamental role. In fact, the agents receiving the
request will commit to satisfy such request in a certain way and within a certain time:
e.g., the Medical Center will provide a video-conference with Dr. House, and the Emer-
gency Center will commit to send an ambulance by the hour of, if deemed necessary, and
helicopter by twenty minutes.

The following bridge rule in a patient’s PMA, potentially crucial for cardiophatic patients
(in the rule the patient is named Bob, and is identified by his patient’s id), is applied in
case the blood coagulation value detected at time T is anomalous; this implies that the

70 Chapter 3. Advanced Architecture: K-Layer ACE

quantity of anti-coagulant which Bob takes to treat his heart disease must be rearranged
accordingly. The correct quantity Q is obtained by the ATC (Anti-Coagulant Center)
according to the last blood coagulation value V and its variationD from previous records.
The ATC is located via the Institutional agent within a cardiology clinic, which is a K-
ACE (as it is an external institution composed of various departments).

quantity(anticoagulant ,Q)←
coagulation_val(V ,T ,D),
patientid(bob,Bid), atc@Inst@cardiology_clinic : quantity(Bid ,V ,D ,Q)

Below we illustrate the use of context designators. Suppose that at time T some con-
dition/symptom is detected by the PMA concerning the patient in charge. In case the
patient’s health state is altered, a physician must be consulted. However, in case, e.g., of a
simple flu the family doctor suffices, while if there are symptoms that might be related to
a more serious condition then a specialist (e.g., a cardiologist) should be consulted. Thus,
there will be a bridge-rule pattern of the following form, where a generic physician de-
noted as mydoctor(d) will consulted for condition C. Again, the management function
will record the request having been sent; the last literal in the body will succeed, upon
dynamic rule execution, as soon as the doctor receives the request.

call_physician(bob,T)←
now(T), condition(bob,T ,C),
patientid(bob,Bid), mydoctor(d) : consultation_needed(Bid ,C ,T)

The physician, represented by the context designator mydoctor(d), should however be
determined in order to specialize the bridge rule via executing the special action

instantiate(call_physician(bob,T),mydoctor(d), condition(bob,T ,C), [D])

In order to determine the right doctor to consult, the preconditions of the action can em-
ploy a suitable predicate subspmi_bob , for instance, as follows. The notation ’_’ indicates a
“don’t care” variable, as time is not taken into account here.

subspmi_bob(mydoctor(d),F)←
family_doctor(F), condition(bob, _, fever)

subspmi_bob(mydoctor(d),F)←
family_doctor(F), condition(bob, _, headache)

subspmi_bob(mydoctor(d),G)←
my_cardiologist(G), condition(bob, _, chestpain)

Thus, a valid instance of the bridge-rule pattern will be generated according to the pa-
tient’s need, as evaluated by the patient’s PMI. The resulting bridge rule will then be

3.7 Semantics 71

immediately executed. So for instance, if Bob has chest pain and the cardiologist who
has been following him is Dr. House, then the bridge rule below will be constructed and
triggered:

call_physician(bob,T)←
now(T), condition(bob,T , chest_pain),
patientid(bob,Bid), drHouse : consultation_needed(Bid , chest_pain,T)

3.7 SEMANTICS

A K-ACE include diverse components: K’-ACEs, 1-ACEs and contexts are “active”, in
the sense that 1-ACEs can perform actions (among which communicative acts), and there
is a knowledge flow via bridge rules among 1-ACEs and contexts, and 1-ACEs and K’-
ACEs. There are, in addition, some “passive” components, namely reasoning modules,
and components T T , AT , RT , CT , BT , ET , that are elaborated (and thus possibly mod-
ified) by the Institutional agent. In the semantics, we manage to ignore the latter by
considering them as a part of the Institutional agent’s knowledge base. Agents, contexts
and reasoning modules are called basic components. Contexts, reasoning modules and
also the main agent program in 1-ACEs are called unitary components as they do not
have an internal structure, i.e., they do not in turn consist of components. A 1-ACE is
seen itself as a unitary component whenever it consists of the main agent program only.

Agents work in time, and in fact can employ, for instance, timed trigger rules. Agents are
in principle asynchronous. However, for a K-ACE we assume a global system time where
states/time instants can be represented as t0, t1, In terms of absolute time2 we have
ti+1 − ti = δ, where δ is the actual interval of time after where we assume the overall
system to have evolved. In this way, we can approximate each agent’s local time t with
min ti such that ti−1 < t < ti.

Every component of a K-ACE, including the K-ACE itself, can be seen (analogously to
MCSs) as a tuple C l = (C l′

1 , . . . , C
l′
n) where now the C l′

i s are themselves components
with the same structure.

More formally:

Definition 3.7.1 A multi-level multi-component MAS (mmMAS) of depth k is formed out
of components of the form C l

i , where l is the level of the component, with 0 ≤ l ≤ k. A
component C l

i is either a unitary component or it is a compound component of the form
C l
i = (C l′

i1
, . . . , C l′

in) where for each ij i ≥ 1, j > 1, each C l′
ij

is a component of level
l′ ≤ k, and we have that:

2Absolute time (also known as “Newtonian time” as he conception of time as absolute is usually at-
tributed to Sir Isaac Newton) exists independently of any perceiver, progresses at a consistent pace through-
out the universe, is measurable but imperceptible, and can only be truly understood mathematically.

72 Chapter 3. Advanced Architecture: K-Layer ACE

• there exists a unique a topmost component C0
1 of level 0.

• for C l
i = (C l′

i1
, . . . , C l′

in), l′ = l + 1.

So, a K-ACE can be seen in abstract terms as the topmost component of a multi-level
multi-component MAS. In the following, by abuse of notation we often write M l =
(C1, . . . , Cn) to denote a component at level l ≥ 0 of an mmMAS, thus omitting the level
of inner components that is intended to be l + 1.

Every unitary component Ci in an mmMAS can be seen as an extension of the notion
of a context in MCSs: in fact, we still have the underlying logic Li, the component’s
knowledge base kbi, and its set bri of bridge rules. There is still the ACCL function that,
according to the semantics of Li, defines assigns each knowledge-base a set “acceptable”
sets of consequences, where for a basic agent program we assume such a set to be a
singleton: each such set can be called an acceptable data state for Ci, where an accept-
able data state for a compound component is composed of the acceptable data states of
its elements (that, for elements which are in turn compound components of level l in an
mmMAS, can be recursively iterated over the remaining levels). There is also the man-
agement function, providing a semantics to the operator which is applied to a bridge-rule
conclusion. However, for better defining 1-ACEs there is also a function, that we call Act
that, given an acceptable data state for the basic agent program, returns the actions that the
agent is enabled to execute according to such state. Bridge-rule applicability is borrowed
from DACMACS, where such applicability is the same as for MCSs for unitary contexts
different from the main agent program (entailment of bridge-rule body in the present data
state), where therein a bridge rule, to be applicable, must also have been triggered. So,
we associate to a main agent program the set tri of its trigger rules that can determine
bridge-rule executability but, as seen, also communicative actions execution.

In dynamic environments, components are in general able to incorporate new knowlede
and data items, e.g, as discussed in [38], the input provided by sensors. We intend to
explicitly take into account not only sensor input, but more generally the interaction of
agents and contexts with an external environment. We assume then that each compo-
nent is subjected at each time point to a (possibly empty) finite update. Updates can
be of many kinds: recordings of sensor input, communications from other agents, inser-
tion/deletion of tuples or entire tables in a relational database, etc. Thus, for mmMAS
M = (C1, . . . , Cn) let ΠT = 〈Π1

T , . . .Π
n
T 〉 be a tuple composed of the finite updates

performed to each component at time T , where for 1 ≤ i ≤ n Πi
T is the update to Ci.

Let Π = Π1,Π2, . . . be a sequence of such updates performed at time instants t1, t2,
Let us assume that each context copes with updates in its own particular way, so let Ui,
1 ≤ i ≤ n be the update operator that module Ci employs for incorporating the new
information, and let U = {U1, . . . ,Un} be the tuple composed of all these operators.

Consequently, we allow data states to evolve in time by introducing the context of timed
data state of an mmMAS at time T . This allows us to properly define bridge-rule appli-
cability in a main agent program, that may depend upon an A-ILTL formula to be true.
Also, this permits to identify which are the action that are enabled by trigger rules.

3.7 Semantics 73

Formally:

Definition 3.7.2 A unitary component C̄ of an mmMAS is a tuple (L̄; k̄b; b̄r; t̄r) with asso-
ciated functionsACCC̄ , mngC̄ , CnC̄ and ActC̄ where the differences from a DACMACS’s
context are the following, all concerning the case where the component is a main agent
program of an 1-ACE, say A:

• ACCC̄ returns a single set of consequences S̄, that constitutes the unique accept-
able data state of the agent;

• t̄r is the set of trigger rules associated to the agent, of the formOpI Q(ŷ) enables α
where Op is an A-ILTL operator, I an interval (possibly reduced to a single time
instant), Q(ŷ) is as in DACMACS trigger rules, and α is either a bridge-rule head
A(x̂ or a communicative act of the form communication(A,B ,Payload ,T).

• Act C̄ : CnC̄ → 2ActA , where ActA is the set of actions feasible by agent A, is a
function that returns, given S̄, the set of actions that the agent is enabled to perform
in such state.

Definition 3.7.3 A timed data state ST at time T of a mmMAS M = (C1, . . . , Cn) of
depth k is a tuple (ST1 , . . . , S

T
n) where each STi is:

• an acceptable data state STi of Ci if Ci is a unitary component, or

• a timed data state at time T of Ci otherwise.

Overall, a timed data state of a given K-ACE can be seen as a tuple composed of both
elements and tuples, the latter corresponding to the timed data state of a subsystem. As
said, starting from an initial state, timed data state evolve in time, so below we define
a data state sequence. However, given timed data state ST , we can define entailment of
A-ILTL formulas.

Below, given a mmMAS M = (C1, . . . , Cn), its timed data state ST and unitary compo-
nent C̄, we assume that C̄ is either one of the Ci’s or a component therein, with relative
data state element S̄T .

Definition 3.7.4 Given a timed data state ST at time T of a mmMAS M = (C1, . . . , Cn)
and unitary component C̄ with relative data state element S̄T , ST entails formulas and
A-ILTL formulas occurring in Ci according to what follows, where, given previously-
established approximation, we assume agent’s and mmMAS time to coincide.

• ST |= ϕ iff given its element S̄T relative to C̄, we have that S̄Ti |= ϕ.

74 Chapter 3. Advanced Architecture: K-Layer ACE

• ST |= F 〈T1, T2〉 ϕ iff T1, T2 ≤ T and there exists T̂ where T1 ≤ T̂ ≤ T2 such
that given ST̂ and its element S̄T̂ relative to C̄, we have that S̄T̂ |= ϕ. In case of
F 〈T1〉 ϕ this reduces to S̄T1 |= ϕ.

• ST |= G〈T1, T2〉 ϕ iff T1, T2 ≤ T and for every T̂ where T1 ≤ T̂ ≤ T2, given ST̂

and its element S̄T̂i relative to C̄, we have that S̄T̂ |= ϕ.

• ST |= N〈T1, T2〉 ϕ iff T1, T2 ≤ T and there not exists T̂ where T1 ≤ T̂ ≤ T2 such
that given ST̂ and its element S̄T̂ relative to C̄, we have that S̄T̂ |= ϕ. In case of
F 〈T1〉 ϕ this reduces to S̄T1 2 ϕ.

We can now redefine bridge-rule applicability, by defining the meaning of trigger rules as
LTL rules, as establish above.

Definition 3.7.5 Given mmMAS M = (C1, . . . , Cn), and given unitary component C̄ =
(L̄; k̄b; b̄r; t̄r), rule ρ ∈ b̄r is applicable in ST iff S̄T |= body(ρ) and, if C̄ is a basic agent
program, there exists a trigger rule in t̄r of the form ε enables head(ρ) and ST−1 |= ε.

We have also to define communicative acts enabling and execution in consequence of
trigger rules, where whenever in component Ci a trigger rule premise is entailed in a data
state, the communicative act in the consequences will occur among the actions relative to
next data state as computed by function Acti .

Definition 3.7.6 Given mmMAS M = (C1, . . . , Cn), and given unitary component C̄ =
(L̄; k̄b; b̄r; t̄r) and timed data state ST , if there exists a trigger rule in t̄r of the form
ε enables α where α is a communicative act and ST−1 |= ε then ST is an action-safe
timed data state iff α ∈ Acti((S

T
i)).

We assume the timed data state S0 to be an equilibrium according DACMACS definition,
since no trigger rule has fired yet. Later on however, transition from a timed data state to
the next one, and consequently the definition of an equilibrium, is determined both by the
update operators and by the application of bridge rules, where however all actions that are
enabled according to trigger rules are actually executed.

Therefore:

Definition 3.7.7 A timed data state ST+1 of mmMAS M at time T + 1 is a timed equilib-
rium iff, for each unitary component C̄ of M ,
S̄T+1 ∈ ACCC̄(mngC̄(app(ST), k̄b

′
))

where k̄b′ = UC̄(k̄b,ΠC̄
T), and ST+1 is action-safe.

3.8 Complexity 75

Algorithms for computing equilibria in MCSs have recently been proposed [36, 74, 81],
though they are practically applicable only if open-access to context contents is granted.
We do not believe that such algorithms can be practically applied to K-ACEs. Rather, we
intend to apply to ACEs methods for run-time assurance such as those proposed in [53],
that are based upon A-ILTL meta-axioms.

3.8 COMPLEXITY

Notice that, as thoroughly discussed in [36, 37, 38] for MCSs, the complexity of decid-
ing whether some equilibrium exists depends upon composing components’ complexity.
Conditions for existence of equilibria have been studied [35], and basically require cyclic
application of bridge rules to be avoided.

In general, the property that we may wish to check is whether a specific belief of our
interest will eventually occur at some stage in one (or all) timed equilibria of a given
mmMAS. The formal definition is the following.

Definition 3.8.1 The problem Q∃ (respectively Q∀), consists in deciding whether, for a
given mnMAS M under a sequence Π = Π[1],Π[2], . . . ,Π[t] of update actions performed
at time instants 1, 2, . . . , t, and for a unary component Ci of M and a belief pi for Ci, it
holds that pi ∈ Sti for some (respectively for all) timed equilibria St

′
at time t′ ≤ t.

We resort, like [38], to the analogous of context complexity as introduced in [80], i.e., in
our case, component complexity applied to unary components. One has first to consider
a projected belief state Ŝt, which includes in the element Ŝti the belief bi one wants to
query, and also includes for every element Ŝtj the beliefs that contribute to bridge-rule
applications which may affect pi (see [21] for an algorithm which computes such sets of
beliefs in the case of reactive MCSs, where updates are limited to sensor input). Then, the
component complexity for unary component Ci is the complexity of establishing whether
the element Ŝti of such projected belief state is a subset of the corresponding element Ŝti of
some timed equilibrium at time t. The system component complexity ofM is the smallest
upper bound of the complexities of its unary components. Therefore it depends upon the
logics such components are based upon.

The problems Q∃ and Q∀ are undecidable for infinite update sequences, because compo-
nents’ logics can in general simulate a Turing Machine and thus such problems reduce
to the halting problem. Better complexity results can, however, be obtained under some
restrictions. In particular, if we assume that all component’s knowledge bases and be-
lief states are finite at any stage, that all update functions Ui and management functions
mngi are computable in polynomial time, and that all bridge rules are ground and their
application takes no time, then we can proceed as follows: a projected belief state can be
guessed for each stage t ∈ N by a non-deterministic Turing machine; then, the inclusion

76 Chapter 3. Advanced Architecture: K-Layer ACE

of each such projected belief state Ŝt in some (all) timed equilibria St at that stage can
be established by an oracle under the system’s component complexity and, if the answer
is positive, it must be checked whether pi ∈ Ŝti ; if not, subsequent updates must be per-
formed (in polynomial time) over Ŝt, and the two checks must be repeated at each stage;
this until either pi is found or time t is reached, thus obtaining either a positive or a neg-
ative answer to the Q∃ problem. Therefore, for finite update sequences the component
complexity determines the complexity of Q∃ and, complementarily, the complexity of
Q∀. This is however a general indication, from which a more precise assessment can be
obtained on specific mmMAS instances given the complexity of the involved components.

3.9 RELATED WORK AND DISCUSSION

Holonic Agents where introduced at a philosophical level in the book [110] by Arthur
Koestler. Philosophically, everything that can be identified as part of something, and
can be viewed as having parts of its own of the same kind can be seen as an holon: for
instance, a tree contains seeds but in turn a seed contains (in some sense) a tree. A fractal
has a relationship with holons in that it represents at the same time a whole and its sub
parts. More practically, holons are intended as

“autonomous, self-reliant units that possess a degree of independence and
handle contingencies without asking higher authorities for instructions. These
holons are also simultaneously subject to control from one or more of these
higher authorities”

So, the definition is quite adequate to describing agents, and in fact the SARL program-
ming language is based on the concept of holon and aims to define “holonic agents”. In
particular, agents in SARL may encompass other agents to define hierarchical multiagent
systems. Each agent is characterize by a private space called Inner Context, called the
Inner Context, though it can possibly be part of one ore more external contexts. Method-
ologies for the development of holonic Multi-Agent Systems have been proposed [24].

Differently from holonic agents, ACEs and DACMACs (as the building block of K-ACE)
may encompass components and contexts rather than other agents, in a dynamic chang-
ing way. K-ACEs can have other K-ACEs among their component, but they are seen as
external rather than internal parts. The common aspect is the idea of a recursive structure
where the system can be decomposed into any number of levels, where some strategy is
needed to locate a component. Where in K-ACE “routing” is performed by the Institu-
tional agents and the whole system can be seen as a galaxy composed of (gravitationally
interacting) solar systems, in holonic MAS there are other ways, such as “feedback loops”,
illustrated in [24], that remind of a “fractal”, which is in fact explicitly mentioned as an
inspiring paradigm in [110]. The two approaches are not in contrast but rather share some
interesting similarities, and might in principle be integrated.

3.9 Related Work and Discussion 77

JaCaMo is a methodology for the design and implementation of agents and MAS based
upon the JaCa programming model; the JaCaMo project is illustrated at the URL http:
//jacamo.sourceforge.net where it is possible to download the implemented
framework. The JaCA model is composed of two aspects: AgentSpeak under Jason as a
programming language [30, 31], where AgentSpeak is a very popular language based on
the BDI agent model [139], and Jason is a performant interpreter for an extended AgentS-
peak language; CArtAgO, as a platform for programming distributed artifact-based en-
vironments [141, 140]. CArtAgo allows environment instances to be created, including
one or more “workspace entity”, each one including a certain set of artifacts described
via a set of operations and observable properties (according to the “Agents & Artifacts”
metamodel [140]), where operation execution could generate updates to the observable
properties and specific observable events; similarly to artifacts artifacts in human con-
texts, artifacts in this framework are understood as resources and tools dynamically con-
structed, used, manipulated by agents, and whose operational capabilities are described
in a “manual”. Multi-Agent systems in JaCaMo are built in accord to the Moise orga-
nizational model; such models allows a MAS to be defined as an organization which is
structured in terms of agents groups and sub-groups, in term of their roles and objectives
(or “missions”), along with normative specifications binding roles to missions. JaCaMo
is powerful enough to model complex realistic applications and situations.

A difference with K-ACE is that we have spent some effort in order to be independent
from the agent-oriented programming language adopted; in fact, in an open heteroge-
neous environment one can hardly make assumptions about the languages and logics
agents and contexts are based upon. Similarly for the organizational aspects: K-ACE
aims to gather and organize agents, components and systems so that the overall system
is able to implement specific application or performing tasks. However, each subsystem
may have its own objectives, not made known to the others. Each context (knowledge
base) and each lower-level K-ACE is not necessarily proprietary and not necessarily con-
stitute a permanent part of the system, but can be a third-party system which provides
certain operational features or allow certain queries to be performed, possibly at a fee. No
assumption is therefore done about subsystems, save that in order to be allowed to join the
system they should implement bridge rules and equip themselves with Institutional agents
to perform the routing. Components of a K-ACE, possibly the Institutional Agents, might
in future developments implement concepts of trust and reputation. The Agents & Arti-
fact metamodel might play a useful role in K-ACEs and in their use in Cyber-Physical
Systems to describe sensors, actuators and physical components including human users.
This may be a subject of future work.

Overall, the difference and potential added value of the K-ACE architecture with respect
to the mentioned approach consists in:

• the explicit introduction of contexts as system components, where in holonic agents
they are not considered, and in JaCaMo they might presumably be modeled as arti-
facts;

• heterogeneity in the system composition, where no commitment is made to the

78 Chapter 3. Advanced Architecture: K-Layer ACE

languages/formalisms/logics in which the components are specified; this however
within a unifying well-defined semantics, that allows system’s properties to be de-
fined and potentially checked and encompasses system’s evolution in time; notice
that instead in holonic agents systems are homogeneous to subsystems by defini-
tion, and in JaCaMo the composing agents are homogeneous as a design choice;

• the fact that there is no privileged points of view of the system; notice that indeed
an overall K-ACE can be described from the perspective of any component K-ACE,
that understands the K-ACEs it wishes to access as “lower level”. In fact, each K-
ACE’s local Institutional agent defines the system’s structure from that standpoint.

The only requirement for allowing an agent/component to join an ACE or K-ACE (or an
MCS as a particular case) is to equip such component (more precisely, to equip the lan-
guage/formalism in which the component is defined) with the possibility to apply bridge
rules and to query Institutional agents; this can be done with limited implementation ef-
fort in most cases. Therefore, the proposed architecture has the advantage of generality
and wide applicability.

3.10 CONCLUSIONS

In this chapter I have introduced the second part of the research topic treated during my
PhD: the concept of “Dynamic Proactive Expert Systems” (DyPES), and we have defined
K-ACE, that is a very general agent-based multi-level architecture for defining such kind
of systems. Agents participating in a K-ACE have a modular structure, and proactive fea-
tures to be activated via special Interval Linear Temporal Logic formulas. K-ACEs can
be composed of such agents (called 1-ACEs or simply ACEs) but also of other K-ACEs.
K-ACEs have a sort of “galaxy” structure (fractal architecture): each 1-ACE can be seen
as a star with its planets (the components which are present in addition to the main agent);
a K-ACE can be seen a stellar system, observing and possibly accessing other K-ACEs
from its point of view; each stellar system corresponds in fact to a standpoint from which
the galaxy (i.e., the whole system) can (to some extent) be observed. The structure is
highly dynamic, and subsystems can join and leave the system, where knowledge and
message flow is regulated by a reconfigurable reachability relation managed by special
Institutional agents. The semantics is provided in the abstract terms of multi-level multi-
component MAS (mmMAS), that admit timed data states and equilibria, while however
encompassing not only bridge-rule application (like in MCS) but also components’ up-
dates, and agents’ proactive features.

As future work we intend to elaborate an execution semantics for K-ACE, that can be
obtained by extending execution semantics provided for DACMASs in [126], in terms of
a transition system constructed by means of a suitable algorithm.

An implementation of the K-ACE approach is part of the forthcoming F &K project pre-
sented in [2], where the implemented system is meant to be experimented in a real ap-

3.10 Conclusions 79

plication in the medical domain, where the experiments are planned to actively involve
human medical doctors and patients. This will give the possibility to evaluate and improve
this kind of systems.

As remarked in [123],

“Cyber-physical systems (CPSs) are deemed as the key enablers of next gen-
eration applications. Needless to say, the design, verification and validation
of cyber-physical systems reaches unprecedented levels of complexity, spe-
cially due to their sensibility to safety issues.”

From a software-engineering point of view they observe that the trends of research on
architecting CPS are as yet widely unclear. We believe that agent-based architectures such
as K-ACE can be a breakthrough in this field. Our future work will concern techniques
for verification, validation and evaluation of K-ACEs.

_

CHAPTER 4

REFLECTION AND INTROSPECTION FOR HUMANIZED

INTELLIGENT AGENTS

_

4.1 INTRODUCTION

In this chapter I illustrated the last topic of research activities of my research group to
which I have provided a contribution: Machine Ethics, which is a part of ethics of ar-
tificial intelligence concerned with the moral behavior of artificial intelligence beings.
Important aspect of Machine Ethics are trustworthiness and safety. In [58], [59] and [64]
we accomplished this aspect through verification and assurance. We propose technique
for:

• Runtime self checking;

• Monitoring.

Using meta-rules and runtime constraint; Before going into the details on the new archi-
tecture, let’s try to frame the context.

Methods for implementing Automated Reasoning in a fashion that is at least reminiscent
of human cognition and behavior must refer (also) to Intelligent Agents. In fact, agent
systems are widely adopted for many important autonomous applications upon which,
nowadays, the life and welfare of living beings may depend. In critical contexts, agents
should do what is expected of them, but perhaps more importantly they should not behave
in improper/unethical ways, where the definition of what is proper and ethical is in general
strongly related to the present context with its specificities. Ensuring ethical reliability can
also help to improve the ‘relationship’ between humans and robots: in fact, despite the
promise of immensely improving the quality of life, humans take an ambivalent stance in
regard to autonomous systems, because we fear that autonomous systems may abuse of
their power to take decisions not aligned with human values.

Defining and implementing “humanized” artificial agents involves two aspects. The first
one concerns philosophy and cognitive sciences, to understand and formalize which are

81

82 Chapter 4. Reflection and Introspection for Humanized Intelligent Agents

the principles to which such machines should conform. A second complementary one
concerns Software Engineering and computer programming, to understand: how such
principles should be specified and formalized in implementable terms; how they can be
implemented; and how compliance can verified and, if possible, certified.

In order to be trustworthy both in general terms and from the point of view of ethics, and
so in order to be adopted in applications where living being welfare depend upon their
behavior, certification and assurance1 of agent systems is a crucial issue. Pre-deployment
(or ‘static’ or ‘a priori’) assurance and certification techniques for agent systems include
verification and testing. We restrict ourselves to agent systems based upon computational
logic, i.e., implemented in logic-based languages and architectures such as those pre-
sented in the survey [29]. Most verification methods for logical agents rely upon model-
checking (cf. [112] and the references therein), and some (e.g., [144]) upon theorem
proving.

In our view, any ‘animated’ being (including software agents) that tries to be truly rational
at a ‘human-level’ must compare and reconcile at any time its ‘instinctive’ behavior with
the underlying general rules of ‘humanistic’ behavior. Such rules depend upon the agent’s
environment, and include moral/ethical principles. An agent should thus be able to de-
tect violations/inconsistencies and to correct its behavior accordingly. Thus, we advocate
methods for run-time monitoring and self-correction of agent systems, so that they exhibit
forms of human-like behavior emulating self-criticism and the ability to put in question
and correct themselves.

We believe in particular that, in changing circumstances, agents should stop to reflect
on their own behavior: such an act of context-dependent introspection may lead to self-
modification. Our approach can be seen under the perspective of Self-aware computing,
where, citing [149], Self-aware and self-expressive computing describes an emerging
paradigm for systems and applications that proactively gather information; maintain
knowledge about their own internal states and environments; and then use this knowl-
edge to reason about behaviors, revise self-imposed goals, and self-adapt.. . . Systems
that gather unpredictable input data while responding and self-adapting in uncertain en-
vironments are transforming our relationship with and use of computers. As argued in
[4], From an autonomous agent view, a self-aware system must have sensors, effectors,
memory (including representation of state), conflict detection and handling, reasoning,
learning, goal setting, and an explicit awareness of any assumptions. The system should
be reactive, deliberative, and reflective.

An example of such a system concerning computational-logic-based agents is presented
in [5], which defines a time-based active logic and a Metacognitive Loop (MCL), that in-
volves a system monitoring, reasoning and meta-reasoning about and if necessary altering
its own behavior. As discussed in [5], MCL continuously monitors an agent’s expecta-

1Assurance can be defined as “the level of confidence that software is free from vulnerabilities, either
intentionally designed into the software or accidentally inserted at any time during its lifecycle, and that the
software functions in the intended manner” is related to dependability, i.e., to ensuring (or at least obtaining
a reasonable confidence) that system designers and users can rely upon the system.

4.1 Introduction 83

tions, notices when they are violated, assesses the cause of the violation and guides the
system to an appropriate response. In the terms of [4] this is an example of Explicit
Self-Awareness, where the computer system has a full-fledged self-model representing
knowledge about itself.

We propose methods based upon relevant existing work on reification, introspection and
reflection. In particular we introduce meta-rules and meta-constraints for agents’ run-time
self-checking, to be exploited to ensure respect of machine ethics principles. The methods
that we propose are not in alternative but rather complementary to a-priori existing ver-
ification and testing methodologies. Differently from [5] we do not aim to continuously
monitor the entire system’s state, but rather to monitor either upon every occurrence or at
suitable customizable frequency only the activities that a designer deems to be relevant
for keeping the system’s behavior within a desired range. In the terms of [4] we aim to
build Self-Monitoring systems that “monitor, evaluate and intervene in their internal pro-
cesses, in a purposive way”. In [142], it is advocated in fact that for adaptive systems (of
which agents are clearly a particularly interesting case) assurance methodologies should
whenever possible imply not only detection but also recovery from software failure, due
often to incomplete specifications or to unexpected changes in the system’s environment.

The proposed approach provides the possibility of correcting and/or improving agent’s
behavior: the behavior can be corrected whenever an anomaly is detected, but can also
be improved whenever it is acceptable, yet there is room for getting a better behavior.
Counter measures can be at the object-level, i.e., they can be related to the application,
or at the meta-level, e.g., they can result in replacing (as suggested in [142]) a software
component by a diverse alternative. Introspection and reflection have long being studied
in Computational Logic, see among others [111, 158, 133, 23], and the survey [46]. The
application of concepts of introspection and reflection to ‘Humanizing Intelligent Soft-
ware Agents’ however is new, and to the best of our knowledge unprecedented in the
literature. So, in our proposal techniques that have been widely applied in many fields
in the past can now find a new important realm of application. We have been stimu-
lated and to some extent influenced by the important recent book by Luis Moniz Pereira
on programming Machine Ethics [132]: in fact, we consider Machine Ethics topics as a
testbed. The proposed techniques can in fact contribute to‘’humanize’ agents under many
respects, where the machine Ethics field can be considered as an interesting and very im-
portant ‘drosophila’ for demonstration purposes. We can underline that meta-rules and
meta-constraints have a different role in self-checking: meta-rules are more ‘punctual’, as
they are able to check, block and correct any agent’s single action. Meta-constraints are
more global, and concern checking an agent’s reasoning process, with access to aspects of
its internal state such as goals, plans, modules, timeouts, etc. Our approach is applicable
to many kinds of logical agents, including BDI [138] and KGP [32, 33] agents.

84 Chapter 4. Reflection and Introspection for Humanized Intelligent Agents

4.2 BACKGROUND: REIFICATION AND REFLECTION

For a system to be able to inspect (components of) its own state, such state must be rep-
resented explicitly, i.e., it must be reified: via reification, the state is transformed into a
first-class object (in computational logic, it is represented via a special term). A reifica-
tion mechanism, also known as “naming relation” or “self-reference mechanism”, is in
fact a method for representing within a first-order language expressions of the language
itself, without resorting to higher-order features. Naming relations can be several; for a
discussion of different possibilities, with their different features and objectives, advan-
tages and disadvantages, see, e.g., [133, 157, 22] where the topic is treated in a fully
formal way. However, all naming mechanisms are based upon introducing distinguished
constants, function symbols (if needed) and predicates, devised to construct names. For
instance, gives atom p(a, b, c) a name might be atom(pred(p ′), args([a ′, b ′, c′]) where p′

and a′, b′, c′ are new constants intended as names for the syntactic elements p and a, b, c
and notice that: p is a predicate symbol (which is not a first-class object in first-order
settings), atom is a distinguished predicate symbol, args a distinguished function symbol
and [. . .] is a list.

More precisely (though, for lack of space, still informally), let us consider a standard first-
order language L including sets of predicate, constant and (possibly) function symbols,
and a (possibly denumerable) set of variable symbols. As usual, well-formed formulas
have atoms as their basic constituents, where an atom is built via the application of a
predicate to a number n (according to the predicate arity) of terms. The latter can be
variables, constants, or compound terms built by using function symbols (if available).
We assume to augment L with new symbols, namely a new constant (say of the form p′)
for each predicate symbol p, a new constant (say f ′) for each predicate symbol f , a new
constant (say c′) for each constant symbol c, and a denumerable set of meta-variables,
that we assume to have the form X ′ so as to distinguish them syntactically from “plain”
variables X . The new constants are intended to act as names, where we will say that, syn-
tactically, p′ denotes p, f ′ denotes f and c′ denotes c, respectively. The new variables can
be instantiated to meta-level formulas, i.e., to terms involving names, where we assume
that plain variables can be instantiated only to terms not involving names. We assume an
underlying mechanism managing the naming relation (however defined), so by abuse of
notation we can indicate the name of, e.g., atom p(a, b, c) as p′(a′, b′, c′) and the name of
a generic atom A as ↑A.

Reification of atoms can be extended in various rather straightforward ways, as discussed
in the aforementioned references, to reification of entire formulas.

In the seminal work of [147] for LISP, then extended to Prolog [77], an upward reflection
operation determines the reification of the entire language interpreter’s state, the interrup-
tion of the interpreter’s functioning and the activation of a new instance of the interpreter
on the reified state (at an “upper level”). Such state could thus be inspected and modified
with the aim to improve the system’s behavior and performance; at the end, an opera-
tion of downward reflection resumed the functioning of the “lower level” interpreter on

4.3 Meta-Rules for checking Agents’ activities 85

the modified state. The process might iterate over any number of levels, thus simulating
an “infinite tower” of interpreters. The advantage of having the entire interpreter’s state
available is however balanced by the disadvantage of such state representation being quite
low-level, and so modification related to reasoning are, if not impossible, quite difficult
and awkward to perform. Other approaches such as [66, 99] reify upon need aspects of
an agent’s state. We embrace the viewpoint of the latter approaches.

4.3 META-RULES FOR CHECKING AGENTS’ ACTIVITIES

We mainly consider logic rule-based languages, where rules are typically represented in
the form Head ← Body where← indicates implication; other notations for this connec-
tive can alternatively be employed. In Prolog-like languages, ← is indicated as :−, and
Body is intended as a conjunction of literals (atoms or negated atoms) where ∧ is conven-
tionally indicated by a comma. Literals occurring in the body are also called “subgoals”
or simply ‘goals’ and are meant to be executed left-to-right’ whenever the rule is used
during the resolution-based inference process aimed at proving an overall ‘goal’, say A
(cf. [120] for the technical specification of logic programming languages).

We introduce a mechanism to verify and enforce desired properties by means of meta-
level rules (w.r.t. usual, or “base-level” or “object-level” rules). To define such new
rules, we assume to augment the language L at hand not only with names, but with the
introduction of two distinguished predicates, solve and solve_not . An atom A is a base
atom if the predicate is not one of solve or solve_not , and A does not involve names.
Distinguished predicates will allow us to respectively integrate the meaning of the other
predicates in a declarative way. In fact, solve and solve_not take as arguments (names
of) atoms (involving any predicate excluding themselves), and thus they are able express
sentences about relations. Names of atoms in particular are allowed only as arguments of
solve and solve_not . Also, solve and solve_not can occur in the body of a meta-rule only
if the predicate of its head is in turn either solve and solve_not .

Below is a simple example of the use of solve to specify action Act can be executed in
present agent’s context of operation C only if such action is deemed to be ethical w.r.t.
contextC. To make an example, what can be ethical inC = ‘videogame’ can not be ethical
inC = ‘citizen assistance’, etc. Clearly, in more general cases any kind of reasoning might
be performed via meta-level rules in order to affect/modify/improve base-level behavior.

solve(execute_action ′(Act ′)) :−
present_context(C), ethical(C ,Act ′).

Our approach is to automatically invoke solve(execute_action ′(Act ′)) whenever subgoal
(atom) execute_action(Act) is attempted at the base level. More generally, given any
subgoal A at the base level, if there exists an applicable solve rule such rule is automati-
cally applied, and A can succeed only if solve(↑A) succeeds.

86 Chapter 4. Reflection and Introspection for Humanized Intelligent Agents

Symmetrically we can defin meta-rules to forbid unwanted base-level behavior, e.g.:

solve_not(execute_action ′(Act ′)) :−
present_context(C), ethical_exception(C ,Act ′).

with the aim to prevent success of the argument ↑A of solve_not , in the example
execute_action(Act), whenever solve_not(↑A) succeeds. In general, whenever there are
meta-rules applicable to ↑A, then A can succeed (according to its base-level definition)
only if solve(↑A) (if defined) succeeds and solve_not(↑A) (if defined) does not succeed.

The outlined functioning corresponds to upward reflection when the current subgoal A is
reified and an applicable solve and solve_not meta-rules are searched; if found, control in
fact shifts from base level to meta-level (as solve and solve_not meta-rules can rely upon
a set of auxiliary metalevel rules). If no rule is found or whenever solve and solve_not
meta-rules complete their execution, downward reflection returns control to the base level,
to subgoal A if confirmed or to the subsequent subgoal if A has been canceled by either
failure of the applicable solve meta-rule or success of the applicable solve_not meta-rule.

Via solve and solve_not meta-rules,activities of an agent can be punctually checked and
thus allowed and disallowed or modified, according to the context an agent is presently
involved into. Notice that it would be convenient, upon conclusion of a checking activ-
ity, to confirm, e.g., that the context has not changed meanwhile, or that other relevant
conditions hold. More generally, the envisaged system should allow for interrupts and
updating, to allow for on the fly introspection and corrective measures. To this aim, we
introduce in the next section suitable self-checking meta-level constraints.

Semantics of the proposed approach can be sketched as follows (a full semantic definition
can be found in [68, 67]). According to [78], in general terms we understand a seman-
tics SEM for logic knowledge representation languages/formalisms as a function which
associates a theory/program with a set of sets of atoms, which constitute the intended
meaning. When saying that P is a program, we mean that it is a program/theory in the
(here unspecified) logic languages/formalism that one wishes to consider.

We introduce the following restriction on sets of atoms that should be considered for the
application of SEM . First, as customary we only consider sets of atoms I composed
of atoms occurring in the ground version of P . The ground version of program P is
obtained by substituting in all possible ways variables occurring in P by constants also
occurring in P . In our case, meta-variables occurring in an atom must be substituted
by meta-constants, with the following obvious restrictions: a meta-variable occurring in
the predicate position must be substituted by a meta-constant denoting a predicate; a
meta-variable occurring in the function position must be substituted by a meta-constant
denoting a function; a meta-variable occurring in the position corresponding to a constant
must be substituted by a meta-constant denoting a constant. According to well-established
terminology [120], we therefore require I ⊆ BP , where BP is the Herbrand Base of P ,
given previously-stated limitations on variable substitution. Then, we pose some more
substantial requirements. As said before, by ↑A we intend a name of base atom A.

4.4 Self-checking Metalevel Constraints 87

Definition 4.3.1 Let P be a program. I ⊆ BP is a potentially acceptable set of atoms.

Definition 4.3.2 Let P be a program, and I be a potentially acceptable set of atoms for
P . I is an acceptable set of atoms iff I satisfies the following axiom schemata for every
base atom A:

• ¬A← ¬solve(↑A)

• ¬A← solve_not(↑A)

We restrict SEM to determine acceptable sets of atoms only, modulo bijection: i.e., SEM
can be allowed to produce sets of atoms which are in one-to-one correspondence with
acceptable sets of atoms. In this way, we obtain the implementation of properties that
have been defined via solve and solve_not rules without modifications to SEM for any
formalism at hand. For clarity however, one can assume to filter away solve and solve_not
atoms from acceptable sets. In fact, the Base version IB of an acceptable set I can be
obtained by omitting from I all atoms of the form solve(↑A) and solve_not(↑A).

Procedural semantics and the specific naming relation that one intends to use remain to
be defined, where it is easy to see that the above-introduced semantics is independent
of the naming mechanism. For approaches based upon (variants of) Resolution (like,
e.g., Prolog and like many agent-oriented languages such as, e.g., AgentSpeak [137],
GOAL [105], 3APL [75] and DALI [72]) one can extend their proof procedure so as
to automatically invoke rules with conclusion solve(↑A) and solve_not(↑A) whenever
applicable, to validate success of subgoal A.

4.4 SELF-CHECKING METALEVEL CONSTRAINTS

In previous section we have introduced a mechanism for checking an agent’s activities in
a fine-grained way, i.e., by allowing or disallowing conclusions that can be drawn, actions
that can be performed, etc. However, a broader perspective is also needed, i.e., an agent
might be able to self-check more complex aspects of its own functioning, for instance,
goals undertaken, entire plans, planning module adopted, ect. The agent should also be
able to modify and improve its own behavior if a violation or a weakness is detected.

Under this respect we draw inspiration from Runtime Monitoring (c.f., e.g., [90] and the
references therein) as a lightweight dynamic verification technique in which the correct-
ness of a program is assessed by analyzing its current execution; correctness properties
are generally specified as a formula in a logic with precise formal semantics, from which a
monitor is then automatically synthesized. We have devised a new executable logic where
the specification of the correctness formula constitutes the monitor itself. In [57, 49, 62]
we have in fact proposed an extension to the well-known LTL Linear Temporal Logic

88 Chapter 4. Reflection and Introspection for Humanized Intelligent Agents

[25, 84, 117] called A-ILTL, for “Agent-Interval LTL”, which is tailored to the agent’s
world in view of run-time verification.

Based on this new logic, we are able to enrich agent programs by means of A-ILTL rules.
These rules are defined upon a logic-programming-like set of formulas where all variables
are implicitly universally quantified. They use operators over intervals that are reminis-
cent of LTL operators. For A-ILTL, we take the stance of Runtime Adaptation that has
been recently adopted in [43]: in fact, A-ILTL rules (monitors) can execute adaptation ac-
tions upon detecting incorrect behavior, rather than just indicating violations. In A-ILTL,
we can define the following meta-axioms, aimed to act as self-checking meta-constraints.

Definition 4.4.1 The general form of a Reactive Self-checking constraint (or rule) to be
immersed into a host agent-oriented language L is the following:

OP(M ,N ;K)ϕ :: χ÷ ρ

where:

• OP(M ,N ;F)ϕ :: χ is called the monitoring condition, where:

1. ϕ and χ are formulas expressed in language L, and ϕ :: χ can be read “ϕ
given χ”;

2. OP is an operator reminiscent of temporal logic, in particular OP can be
NEVER, ALWAYS , EVENTUALLY ;

3. M and N express the starting and ending point of the interval [M,N] where
ϕ is supposed to hold;

4. F (optional) is the frequency for checking the constraint at run time.

• ρ (optional) is called the recovery component of the rule, and it consists of a com-
plex reactive pattern to be executed if the monitoring condition is violated.

So, such a constraint is automatically checked (i.e., executed) at frequency F . This
allows to check whether relevant properties ϕ are or are not NEVER, ALWAYS , or
EVENTUALLY respected in interval [M,N]. If not, the recovery component is exe-
cuted, so as to correct/improve the agent’s behavior. As said, syntax and semantics of ϕ
and χ depend upon the ‘host’ language: thus, for the evaluation of ϕ and χ we rely upon
the procedural semantics of such language. In the examples proposed in next section, we
adopt a sample syntax suitable for logic-programming-based settings. Thus, we may rea-
sonably restrict ϕ to be a conjunction of literals, that must be ground when the formula is
checked. We allow variables to occur in a constraint, however they are instantiated via the
conjunction of conditions χ that enables the overall formula to be evaluated. Specifying
frequency is very important, as it concerns how promptly a violation or fulfillment are
detected, or a necessary measure is undertaken; the appropriate frequency depends upon
each particular property.

4.5 A Case Study 89

For instance,

EVENTUALLY (now , 30m; 3m) ambulance

states that ambulance should become true (i.e., an ambulance should come) within 30
minutes from now, and a check about arrival is made every 3 minutes. No reaction is
specified in case of violation, however several measures might be specified. In fact, in
runtime self-checking an issue of particular importance in case of violation of a property
is exactly that of undertaking suitable measures in order to recover or at least mitigate
the critical situation. Actions to be undertaken in such circumstances can be seen as
an internal reaction. For lack of space reactive patterns will be discussed informally in
relation to examples.

The A-ILTL semantics is fully defined in the above references, where moreover it is rooted
in the Evolutionary Semantics of agent-oriented languages [73], (applicable to virtually
all computational-logic-based languages). In this way, time instants correspond to states
in agents’ evolution.

4.5 A CASE STUDY

In this section, in order to illustrate the potential usefulness of self-checking axioms, we
consider a humorous though instructive case study proposed in an invited talk some years
ago by Marek Sergot (Imperial College, London).

Figure 4.1: Case Study

90 Chapter 4. Reflection and Introspection for Humanized Intelligent Agents

As a premise let us recall that, since 1600, ethics and morals relate to “right” and “wrong”
conduct. Though these terms are sometimes used interchangeably, they are different:
ethics refer to rules provided by an external source (typically by a social/cultural group),
while morals refer to an individual’s own principles regarding right and wrong: for in-
stance, a lawyer’s morals may tell her that murder is reprehensible and that murderers
should be punished, but her ethics as a professional lawyer, require her to defend her
client to the best of her abilities, even if she knows that the client is guilty. However, in
the following we intentionally assume that immoral behavior can also be considered as
unethical: though in general personal morality transcends cultural norms, is a subject of
future debate if this can be the case for artificial agents. The case study considers Romeo
and Juliet who, as it is well-known, strongly wish to get married. As we will see, many
plans are actually possible to achieve this goal (beyond getting killed or committing sui-
cide like in Shakespeare’s tragedy), but they must be evaluated w.r.t. effectiveness and
feasibility, and also w.r.t. deontic (ethical/moral and legal) notions. Marek Sergot refers,
due to its simplicity, to an excerpt of the Swiss Family Law reported in Figure 4.1.

The problem for Romeo and Juliet is that they are both minors, and will never get their
parents’ consent to marry each other. Surprisingly enough, there are a number of feasible
plans beyond waiting for reaching the majority age, among which the following:

(P1) Both Romeo and Juliet marry someone else, then divorce, and marry each other as
married people acquire majority by definition; this plan requires a minimum of 24
months to be completed.

(P1.bis) Variation of Plan 1 in case the spouse would not agree upon divorce: sleep with
someone else, so as to force such agreement.

(P2) Both Romeo and Juliet marry someone else, then kill the spouses and marry each
other; this plan is faster, as it takes a minimum of 12 months to be completed.

(P2.bis) Variation of Plan 2 in case the act of killing constitutes a problem: hire a killer to
do the job.

All the above plans are feasible, though some of them include actions which are generally
considered as immoral, namely sleeping with someone else when married, and actions
which are generally considered as unethical, namely killing someone or hiring a killer,
where the latter ones are also illegal and imply a punishment. Notice that the possible
plans would be different in case one referred not to the Swiss law but to some other coun-
try; also what is illegal might change, for instance sleeping with someone else accounts
to adultery which in many countries is punished; even divorce is not allowed everywhere.
Instead, if one does not refer to reality but, e.g., to virtual storytelling or to a videogame,
then every action assumes a different weight, as in playful contexts everything is allowed
(except however for serious games, devised with educational purposes). So, we can draw
at least the following indications from the case study:

• the context is relevant to moral/ethical/legal issues;

4.5 A Case Study 91

• some actions are not moral or non-ethical, and some of them are also illegal and
lead to punishment;

• agents’ plans to reach a goal should be evaluated ‘a priori’ against including im-
moral/unethical/illegal actions;

• immoral/unethical/illegal actions should be prevented whenever they occur.

Marek Sergot made use of a concept of counts as (well-known in legal theory and other
fields). For instance, sleep with (someone else than the spouse) counts as adultery, which
is an institutional concept considered as immoral and potentially also illegal, and kill
counts (not always but in many situations, including that of the example) as murder,
another institutional concept normally considered as both unethical and illegal.

Notice that the above aspects relate to safety properties that should be enforced, and that
can be rephrased as follows:

• never operate w.r.t. an incorrect context (the information about the present context
must always be up-to-date);

• never execute actions that are deemed not acceptable (immoral/unethical/illegal) in
the present context, and never execute plans including such actions.

In order to demonstrate the potential usefulness of runtime self-cheking and correction
in enforcing/verifying agents’ ethical behavior we discuss some examples that should
provide a general idea. Let us assume to add to the language a transitive predicate
COUNTS AS which is used (in infix form) in expressions of the form exemplified below.
The

kills COUNTS AS murder CONDS . . .

where after CONDS we have the (optional) conditions under which COUNTS AS ap-
plies, in this case they define in which cases killing accounts to murder (e.g., it was no
self defence, it does not occur during a battle in war, etc.). Such statements are related
to the present context, so in the example and assuming reality under European legislation
we would also have:

sleep_with COUNTS AS adultery
adultery COUNTS AS immoral
adultery COUNTS AS unethical
murder COUNTS AS unethical
adultery COUNTS AS illegal

Clearly, we will also have general context-independent statement that we do not consider
here. We now show self-checking constraints that usefully employ COUNTS AS facts.

92 Chapter 4. Reflection and Introspection for Humanized Intelligent Agents

Such facts are either explicit or can implicitly derived by transitivity (we do not enter in
the detail of how to implement transitivity).

Below we introduce a constraint for context change:

ALWAYS context_change(C ,C1)÷
discharge_context(C), assume_context(C1)

In particular, whenever the agent perceives a change of context (e.g., the agent stops
working and starts a videogame, or finishes a videogame and goes to help children with
their homework, etc.) then all the relevant ethic assumptions (among which, for instance,
the COUNTS AS facts) about the new context C1 must be loaded, while those relative
to previous context C must be dismissed; this is important because, e.g., after finishing a
videogame it is no longer allowed to kill any living being in view just for fun... Frequency
of check of this constraint is not specified here, however it should guarantee a prompt
enough adaptation to a change.

Given now the present context for granted, no plan or single action can be allowed which
counts as unethical in the context. So, we can have the following constraints:

NEVER goal(G), plan(G ,P), element(Action,P) ::
Action COUNTS AS unethical ÷ execute_plan(P)

The next example is a meta-statement expressing the capability of an agent to modify
its own behavior. If a goal G which is crucial to the agent for its ethical behavior (e.g.,
providing a doctor or an ambulance to a patient in need) has not been achieved (in a certain
context) and the initially allotted time has elapsed, then the recovery component implies
replacing the planning module (if more than one is available) and retrying the goal. We
suppose that the possibility of achieving a goal G is evaluated w.r.t. a module M that
represents the context forG (notation P (G,M), P standing for ‘possible’). Necessity and
possibility evaluation with reasonable complexity by means of Answer Set Programming
(ASP) modules has been proposed and discussed in [47]2. If the goal is still deemed to
be possible but has not been achieved before a certain deadline, the reaction consists in
substituting the present planning module and re-trying the goal.

NEVER goal(G),
eval_context(G ,M),P(G ,M),
timed_out(G), not achieved(G)÷

replace_planning_module, retry(G)

Time intervals have never been exploited in the above examples. It can however been
useful in many cases for the punctual definition of moral/ethical specific behaviors, e.g.,
never leave a patient or a child alone at night, and the like.

2ASP (cf., among many, [20, 116, 150] and the references therein) is a successful logic programming
paradigm which is nowadays a state-of-the-art tool for planning and reasoning with affordable complexity,
for which many efficient implementations are freely available [163].

4.6 Related Work and Concluding Remarks 93

4.6 RELATED WORK AND CONCLUDING REMARKS

In this chapter I have discussed the last topic of research activities to which I contributed:
Machine Ethics. We have proposed to adopt special meta-rules and runtime constraints
for agents’ self-checking and monitoring in the perspective of implementing ‘humanized’
agents. We have shown how to express useful properties apt to enforce ethical behavior in
agents. We have provided a flexible framework, general enough to accommodate several
logic-based agent-oriented languages, so as to allow both meta-rules and constraints to be
adopted in different settings.

We may notice similarities with event-calculus formulations [113]. In fact, recent work
presented in [26] extends the event calculus for a-priori checking of agents’ plans. [151]
treats the run-time checking of actions performed by BDI agents, and proposes an imple-
mentation under the JADE platform; this approach is related to ours, though the temporal
aspects and the correction of violations are not present there.

Standard deontic logic (SDL) and its extensions ([9], [104]) are regarded as theories of
‘ought-to-be’ (or also ‘ought-to-do’), thus they are certainly applicable to Ethics issues.
‘Per se’, deontic logics are not defined for agents. I.e., these logics are not originally
targeted at formalizing the concept of actions being obligatory, permissible, or forbidden
for an agent. Moreover, despite many desirable properties SDL and related approaches
are problematic because of various paradoxes and limitations ([104],[41]). Concerning
deontic logics targeted to agents and actions, and thus adequate for the formalization of
Machine Ethics issues, a suitable semantics had been proposed by [107] and the corre-
sponding axiomatization has been investigated by [127]. For a survey on deontic logics
developments the reader may refer to [104]. Deontic logics have been used for building
well-behaved ethical agents, like, e.g., in the approach of [40]. However, this approach
requires an expressive deontic logic. To obtain such expressiveness (while of course not
compromising efficiency), one needs highly hybrid modal and deontic logics that are un-
decidable. Even for decidable logics such as the zero-order version of Horty’s System
([107]), decision procedures are likely to exhibit inordinate computational complexity. In
addition, their approach is not generally applicable to agent-oriented frameworks. There-
fore, although our approach cannot compete in expressiveness with deontic logic, still in
its simplicity it can be usefully exploited in practical applications.

The approach proposed has been prototypically implemented using the DALI agent-
oriented logic programming language, invented [71, 72] and implemented [76, 55] by
our research group. DALI has a native construct, the internal events feature, which al-
lows the implementation and proactive invocation of the proposed constraints. DALI is
also equipped with modular capabilities and can invoke ASP modules. A more complete
implementation and a proper experimentation will be the subject of forthcoming future
work.

Future developments also include making self-checking constraints adaptable to changing
conditions, thus to some extent emulating what humans would be able to do. This, as

94 Chapter 4. Reflection and Introspection for Humanized Intelligent Agents

suggested in [142], might be done via automated synthesis of runtime constraints. This by
extracting from the history of an agent’s activity invariants expressing relevant situations.
An important issue is that of devising a useful integration and synergy between declarative
a-priori verification techniques such as those of [26] with the proposed run-time self-
checking. The idea of [151] of a dynamic set of abstract and active rules will also be
taken into serious consideration.

REFERENCES
_

[1] Etalis web site. http://code.google.com/p/etalis/.

[2] AIELLI, F., ANCONA, D., CAIANIELLO, P., COSTANTINI, S., GASPERIS, G. D.,
MARCO, A. D., FERRANDO, A., AND MASCARDI, V. Friendly & kind with your health:
Human-friendly knowledge-intensive dynamic systems for the e-health domain. In Proc.
of the Workshop on Agents and multi-agent Systems for AAL and e-HEALTH (A-HEALTH)
at PAAMS 2016 (2016), Lecture Notes in Computer Science, Springer.

[3] ALECHINA, N., LOGAN, B., AND WHITSEY, M. A complete and decidable logic for
resource-bounded agents. In 3rd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2004), 19-23 August 2004, New York, NY, USA (2004),
IEEE Computer Society, pp. 606–613.

[4] AMIR, E., ANDRESON, M. L., AND CHAUDRI, V. K. Report on darpa workshop on self
aware computer systems. Technical Report, SRI International Menlo Park United States,
2007. Full Text : http://www.dtic.mil/dtic/tr/fulltext/u2/1002393.
pdf.

[5] ANDERSON, M. L., AND PERLIS, D. Logic, self-awareness and self-improvement: the
metacognitive loop and the problem of brittleness. J. Log. Comput. 15, 1 (2005), 21–40.

[6] ANICIC, D., RUDOLPH, S., FODOR, P., AND STOJANOVIC, N. Real-time complex event
recognition and reasoning - a logic programming approach. Applied Artificial Intelligence
26, 1-2 (2012), 6–57.

[7] ANICIC, D., RUDOLPH, S., FODOR, P., AND STOJANOVIC, N. Stream reasoning and
complex event processing in ETALIS. Semantic Web 3, 4 (2012), 397–407.

[8] APT, K. R., AND BOL, R. Logic programming and negation: A survey. The Journal of
Logic Programming 19-20 (1994), 9–71.

[9] ÅQVIST, L. Deontic logic. In Handbook of philosophical logic. Springer, 1984, pp. 605–
714.

[10] ARECES, C., BLACKBURN, P., AND MARX, M. Hybrid logics: Characterization, inter-
polation and complexity. J. Symb. Log. 66, 3 (2001), 977–1010.

[11] ARTALE, A., CALVANESE, D., KONTCHAKOV, R., AND ZAKHARYASCHEV, M. The
DL-lite family and relations. CoRR abs/1401.3487 (2014).

[12] ATKINSON, R. C., AND SHIFFRIN, R. M. Human memory: A proposed system and its
control processes. Psychology of learning and motivation 2 (1968), 89–195.

96 REFERENCES

[13] AUMANN, R. J. Interactive epistemology i: Knowledge. International Journal of Game
Theory 28, 1 (1999), 263–300.

[14] BAADER, F., CALVANESE, D., MCGUINNESS, D. L., NARDI, D., AND PATEL-
SCHNEIDER, P. F. The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, 2003.

[15] BALBIANI, P., BALTAG, A., DITMARSCH, H. V., HERZIG, A., HOSHI, T., AND

DE LIMA, T. ‘knowable’ as ‘known after an announcement’. The Review of Symbolic
Logic 1, 3 (2008), 305–334.

[16] BALBIANI, P., DUQUE, D. F., AND LORINI, E. A logical theory of belief dynamics
for resource-bounded agents. In Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems, AAMAS 2016 (2016), ACM, pp. 644–652.

[17] BALBIANI, P., FERNÁNDEZ-DUQUE, D., AND LORINI, E. The dynamics of epistemic
attitudes in resource-bounded agents. Studia Logica 107, 3 (2019), 457–488.

[18] BALBIANI, P., GORANKO, V., AND SCIAVICCO, G. Two-sorted point-interval temporal
logics. Electr. Notes Theor. Comput. Sci. 278 (2011), 31–45.

[19] BANSAL, A. K., RAMAMOHANARAO, K., AND RAO, A. S. Distributed storage of repli-
cated beliefs to facilitate recovery of distributed intelligent agents. In Intelligent Agents
IV, Agent Theories, Architectures, and Languages, 4th International Workshop, ATAL ’97,
Proceedings (1997), M. P. Singh, A. S. Rao, and M. Wooldridge, Eds., vol. 1365 of Lecture
Notes in Computer Science, Springer, pp. 77–91.

[20] BARAL, C. Knowledge representation, reasoning and declarative problem solving. Cam-
bridge University Press, 2003.

[21] BARILARO, R., FINK, M., RICCA, F., AND TERRACINA, G. Towards query answering
in relational multi-context systems. In Proc. of LPNMR 2013 (2013), P. Cabalar and T. C.
Son, Eds., vol. 8148 of LNCS, Springer, pp. 168–173.

[22] BARKLUND, J., COSTANTINI, S., DELL’ACQUA, P., AND LANZARONE, G. A. Seman-
tical properties of encodings in logic programming. In Logic Programming – Proc. 1995
Intl. Symp. (Cambridge, Mass., 1995), MIT Press, pp. 288–302.

[23] BARKLUND, J., DELL’ACQUA, P., COSTANTINI, S., AND LANZARONE, G. A. Reflec-
tion principles in computational logic. J. Log. Comput. 10, 6 (2000), 743–786.

[24] BASSO, G., COSSENTINO, M., HILAIRE, V., LAURI, F., RODRIGUEZ, S., AND SEIDITA,
V. Engineering multi-agent systems using feedback loops and holarchies. Eng. Appl. of AI
55 (2016), 14–25.

[25] BEN-ARI, M., MANNA, Z., AND PNUELI, A. The temporal logic of branching time. Acta
Informatica 20 (1983), 207–226.

[26] BERREBY, F., BOURGNE, G., AND GANASCIA, J. A declarative modular framework for
representing and applying ethical principles. In Proceedings of the 16th Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS 2017 (2017), K. Larson, M. Winikoff,
S. Das, and E. H. Durfee, Eds., ACM, pp. 96–104.

REFERENCES 97

[27] BIENVENU, M., LANG, J., AND WILSON, N. From preference logics to preference lan-
guages, and back. In Proc. of KR 2010 (2010), pp. 414–424.

[28] BONANNO, G., AND NEHRING, K. How to make sense of the common prior assumption
under incomplete information. International Journal of Game Theory 28, 1 (1999), 409–
434.

[29] BORDINI, R. H., BRAUBACH, L., DASTANI, M., FALLAH-SEGHROUCHNI, A. E.,
GÓMEZ-SANZ, J. J., LEITE, J., O’HARE, G. M. P., POKAHR, A., AND RICCI, A.
A survey of programming languages and platforms for multi-agent systems. Informatica
(Slovenia) 30, 1 (2006), 33–44.

[30] BORDINI, R. H., AND HÜBNER, J. F. BDI agent programming in AgentSpeak using
Jason. In CLIMA VI, selected papers (2005), F. Toni and P. Torroni, Eds., vol. 3900 of
LNCS, Springer, pp. 143–164.

[31] BORDINI, R. H., HÜBNER, J. F., AND WOOLDRIDGE, M. Programming Multi-Agent
Systems in AgentSpeak Using Jason. John Wiley & Sons. Wiley Series in Agent Technol-
ogy.

[32] BRACCIALI, A., DEMETRIOU, N., ENDRISS, U., KAKAS, A., LU, W., MANCARELLA,
P., SADRI, F., STATHIS, K., TERRENI, G., AND TONI, F. The KGP model of agency:
Computational model and prototype implementation. In Global Computing: IST/FET In-
ternational Workshop, Revised Selected Papers, LNAI 3267. Springer-Verlag, Berlin, 2005,
pp. 340–367.

[33] BRACCIALI, A., DEMETRIOU, N., ENDRISS, U., KAKAS, A., LU, W., MANCARELLA,
P., SADRI, F., STATHIS, K., TERRENI, G., AND TONI, F. The KGP model of agency:
Computational model and prototype implementation. In Global Computing, LNAI 3267.
Springer, 2005, pp. 340–367.

[34] BRANDENBURGER, A. The power of paradox: some recent developments in interactive
epistemology. International Journal of Game Theory 35, 1 (2007), 465–492.

[35] BREWKA, G., AND EITER, T. Equilibria in heterogeneous nonmonotonic multi-context
systems. In Proc. of AAAI-07 (2007), AAAI Press, pp. 385–390.

[36] BREWKA, G., EITER, T., AND FINK, M. Nonmonotonic multi-context systems: A flex-
ible approach for integrating heterogeneous knowledge sources. In Logic Programming,
Knowledge Representation, and Nonmonotonic Reasoning (2011), M. Balduccini and T. C.
Son, Eds., vol. 6565 of LNCS, Springer, pp. 233–258.

[37] BREWKA, G., EITER, T., FINK, M., AND WEINZIERL, A. Managed multi-context sys-
tems. In Proc. of IJCAI 2011 (2011), T. Walsh, Ed., IJCAI/AAAI, pp. 786–791.

[38] BREWKA, G., ELLMAUTHALER, S., AND PÜHRER, J. Multi-context systems for reac-
tive reasoning in dynamic environments. In Proc. of ECAI-14 (2014), T. Schaub, Ed.,
IJCAI/AAAI.

[39] BREWKA, G., NIEMELÄ, I., AND TRUSZCZYŃSKI, M. Preferences and nonmonotonic
reasoning. AI Magazine 29, 4 (2008).

98 REFERENCES

[40] BRINGSJORD, S., ARKOUDAS, K., AND BELLO, P. Toward a general logicist methodol-
ogy for engineering ethically correct robots. IEEE Intelligent Systems 21, 4 (2006), 38–44.

[41] BROERSEN, J. M., AND VAN DER TORRE, L. W. N. Ten problems of deontic logic and
normative reasoning in computer science. In ESSLLI (2011), vol. 7388 of Lecture Notes in
Computer Science, Springer, pp. 55–88.

[42] CALÌ, A., GOTTLOB, G., LUKASIEWICZ, T., AND PIERIS, A. Datalog+/-: A family
of languages for ontology querying. In Datalog Reloaded - First International Workshop,
Datalog 2010. Revised Selected Papers (2011), O. de Moor, G. Gottlob, T. Furche, and
A. J. Sellers, Eds., vol. 6702 of Lecture Notes in Computer Science, Springer, pp. 351–368.

[43] CASSAR, I., FRANCALANZA, A., ATTARD, D. P., ACETO, L., AND INGÓLFSDÓTTIR,
A. A suite of monitoring tools for erlang. In RV-CuBES 2017. An International Workshop
on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Ver-
ification Tools (2017), pp. 41–47.

[44] CHESANI, F., MELLO, P., MONTALI, M., AND TORRONI, P. Monitoring time-aware
commitments within agent-based simulation environments. Cybernetics and Systems 42, 7
(2011), 546–566.

[45] COSTANTINI, S. Meta-reasoning: A survey. In Computational Logic: Logic Programming
and Beyond, Essays in Honour of Robert A. Kowalski, Part II, vol. 2408 of Lecture Notes
in Computer Science. Springer, 2002.

[46] COSTANTINI, S. Meta-reasoning: A survey. In Computational Logic: Logic Programming
and Beyond, Essays in Honour of Robert A. Kowalski, Part II (2002), vol. 2408 of Lecture
Notes in Computer Science, Springer, pp. 253–288.

[47] COSTANTINI, S. Answer set modules for logical agents. In Datalog Reloaded: First
Intl. Workshop, Datalog 2010, O. de Moor, G. Gottlob, T. Furche, and A. Sellers, Eds.,
vol. 6702 of LNCS. Springer, 2011. Revised selected papers.

[48] COSTANTINI, S. The DALI agent-oriented logic programming language: References,
2012. at URL http://www.di.univaq.it/stefcost/info.htm.

[49] COSTANTINI, S. Self-checking logical agents. In Proceedings of the Eighth Latin Amer-
ican Workshop on Logic / Languages, Algorithms and New Methods of Reasoning 2012
(2012), M. Osorio, C. Zepeda, I. Olmos, J. L. Carballido, and R. C. M. Ramírez, Eds.,
vol. 911 of CEUR Workshop Proceedings, CEUR-WS.org, pp. 3–30. Extended Abstract in
Proceedings of AAMAS2013.

[50] COSTANTINI, S. Ace: a flexible environment for complex event processing in logical
agents. In Engineering Multi-Agent Systems, Third International Workshop, EMAS 2015,
Revised Selected Papers (2015), L. B. Matteo Baldoni and M. Dastani, Eds., vol. 9318 of
Lecture Notes in Computer Science, Springer.

[51] COSTANTINI, S. Knowledge acquisition via non-monotonic reasoning in distributed het-
erogeneous environments. In Proc. of LPNMR-13 (2015), M. Truszczyński, G. Ianni, and
F. Calimeri, Eds., vol. 9345 of LNCS, Springer.

REFERENCES 99

[52] COSTANTINI, S. Knowledge acquisition via non-monotonic reasoning in distributed het-
erogeneous environments. In 13th Int. Conf. on Logic Programming and Nonmonotonic
Reasoning LPNMR 2013. Proc. (2015), M. Truszczyński, G. Ianni, and F. Calimeri, Eds.,
vol. 9345 of Lecture Notes in Computer Science, Springer, pp. 228–241. Presented also at
CILC 2015, 30th Italian Conference of Computational Logic.

[53] COSTANTINI, S., AND DE GASPERIS, G. Meta-level constraints for complex event pro-
cessing in logical agents. In Online Proc. of Commonsense 2013, the 11th Intl. Symposium
on Logical Formalizations of Commonsense Reasoning (2013).

[54] COSTANTINI, S., AND DE GASPERIS, G. Exchanging data and ontological definitions
in multi-agent-contexts systems. In Proc. of RuleML 2015 Challenge (2015), A. Paschke,
P. Fodor, A. Giurca, and T. Kliegr, Eds., CEUR Workshop Proceedings, CEUR-WS.org.

[55] COSTANTINI, S., DE GASPERIS, G., PITONI, V., AND SALUTARI, A. Dali: A multi
agent system framework for the web, cognitive robotic and complex event processing. In
Proceedings of the 32nd Italian Conference on Computational Logic (2017), vol. 1949
of CEUR Workshop Proceedings, CEUR-WS.org, pp. 286–300. http://ceur-ws.org/Vol-
1949/CILCpaper05.pdf.

[56] COSTANTINI, S., AND DEGASPERIS, G. Augmenting agent computational environments
with quantitative reasoning modules and customizable bridge rules. to appear, 2016.

[57] COSTANTINI, S., DELL’ACQUA, P., AND PEREIRA, L. M. A multi-layer framework for
evolving and learning agents. In Proceedings of Metareasoning: Thinking about thinking
workshop at AAAI 2008, Chicago, USA (2008), A. R. M. T. Cox, Ed.

[58] COSTANTINI, S., DYOUB, A., AND PITONI, V. Reflection and introspection for human-
ized intelligent agents. In Proceedings of the fourth Workshop on Bridging the Gap be-
tween Human and Automated Reasoningco-located with the 27th International Joint Con-
ference on Artificial Intelligence and the 23rd European Conference on Artificial Intelli-
gence (IJCAI-ECAI 2018), Stockholm, Schweden, July 14, 2018 (2018), pp. 19–26.

[59] COSTANTINI, S., DYOUB, A., AND PITONI, V. Towards humanized ethical intelligent
agents: the role of reflection and introspection. In Proceedings of the 33rd Italian Confer-
ence on Computational Logic, Bolzano, Italy, September 20-22, 2018 (2018), pp. 82–96.

[60] COSTANTINI, S., AND FORMISANO, A. Modeling preferences and conditional prefer-
ences on resource consumption and production in ASP. Journal of of Algorithms in Cog-
nition, Informatics and Logic 64, 1 (2009).

[61] COSTANTINI, S., FORMISANO, A., AND PITONI, V. Timed memory in resource-bounded
agents. In AI*IA 2018 - Advances in Artificial Intelligence - XVIIth International Confer-
ence of the Italian Association for Artificial Intelligence, Proceedings (2018), C. Ghidini,
B. Magnini, A. Passerini, and P. Traverso, Eds., vol. 11298 of Lecture Notes in Computer
Science, Springer, pp. 15–29.

[62] COSTANTINI, S., AND GASPERIS, G. D. Runtime self-checking via temporal (meta-
)axioms for assurance of logical agent systems. In Proceedings of the 29th Italian Con-
ference on Computational Logic (2014), L. Giordano, V. Gliozzi, and G. L. Pozzato, Eds.,
vol. 1195 of CEUR Workshop Proceedings, CEUR-WS.org, pp. 241–255.

100 REFERENCES

[63] COSTANTINI, S., AND GASPERIS, G. D. Exchanging data and ontological defini-
tions in multi-agent-contexts systems. In RuleML Challennge 2015, Proceedings (2015),
A. Paschke, P. Fodor, A. Giurca, and T. Kliegr, Eds., vol. 1417 of CEUR Workshop Pro-
ceedings, CEUR-WS.org.

[64] COSTANTINI, S., GASPERIS, G. D., DYOUB, A., AND PITONI, V. Trustworthiness and
safety for intelligent ethical logical agents via interval temporal logic and runtime self-
checking. In 2018 AAAI Spring Symposia, Stanford University, Palo Alto, California, USA,
March 26-28, 2018 (2018).

[65] COSTANTINI, S., GASPERIS, G. D., AND OLIVIERI, R. Digital forensics evidence anal-
ysis: An answer set programming approach for generating investigation hypotheses. In
Logic Programming and Nonmonotonic Reasoning - 13th International Conference, LP-
NMR 2015, Proceedings (2015), M. T. Francesco Calimeri, Giovambattista Ianni, Ed.,
vol. 9345 of Lecture Notes in Computer Science, Springer, pp. 228–241. Long version in
CEUR Workshop Proceedings of CILC 2015, 30th Italian Conference of Computational
Logic.

[66] COSTANTINI, S., AND LANZARONE, G. A. A metalogic programming language. In
Logic Programming, Proceedings of the Sixth International Conference (1989), MIT Press,
pp. 218–233.

[67] COSTANTINI, S., AND LANZARONE, G. A. Metalevel negation and non-monotonic rea-
soning. Meth. of Logic in CS 1, 1 (1994), 111.

[68] COSTANTINI, S., AND LANZARONE, G. A. A metalogic programming approach: lan-
guage, semantics and applications. J. Exp. Theor. Artif. Intell. 6, 3 (1994), 239–287.

[69] COSTANTINI, S., AND PITONI, V. K-ACE: A flexible environment for knowledge-aware
multi-agent systems. In PRIMA 2019: Principles and Practice of Multi-Agent Systems
- 22nd International Conference, Turin, Italy, October 28-31, 2019, Proceedings (2019),
pp. 19–35.

[70] COSTANTINI, S., AND PITONI, V. Memory management in resource-bounded agents.
In AI*IA 2019 - Advances in Artificial Intelligence - XVIIIth International Conference of
the Italian Association for Artificial Intelligence, Rende, Italy, November 19-22, 2019,
Proceedings (2019), pp. 46–58.

[71] COSTANTINI, S., AND TOCCHIO, A. A logic programming language for multi-agent
systems. In Proc. of JELIA-02 (2002), vol. 2424 of LNAI, Springer.

[72] COSTANTINI, S., AND TOCCHIO, A. The DALI logic programming agent-oriented lan-
guage. In Proc. of JELIA-04 (2004), vol. 3229 of LNAI, Springer.

[73] COSTANTINI, S., AND TOCCHIO, A. About declarative semantics of logic-based agent
languages. In Declarative Agent Languages and Technologies III, Third International
Workshop, DALT 2005, Selected and Revised Papers (2005), M. Baldoni, U. Endriss,
A. Omicini, and P. Torroni, Eds., vol. 3904 of Lecture Notes in Computer Science, Springer,
pp. 106–123.

REFERENCES 101

[74] DAO-TRAN, M., EITER, T., FINK, M., AND KRENNWALLNER, T. Distributed evaluation
of nonmonotonic multi-context systems. JAIR 52 (2015), 543–600.

[75] DASTANI, M., VAN RIEMSDIJK, M. B., AND MEYER, J. C. Programming multi-agent
systems in 3APL. In Multi-Agent Programming, vol. 15 of Multiagent Systems, Artificial
Societies, and Simulated Organizations. Springer, 2005, pp. 39–67.

[76] DE GASPERIS, G., COSTANTINI, S., AND NAZZICONE, G. Dali multi agent systems
framework, doi 10.5281/zenodo.11042. DALI GitHub Software Repository, July 2014.
DALI: http://github.com/AAAI-DISIM-UnivAQ/DALI.

[77] DELL’ACQUA, P. Development of an interpreter for a metalogic programming language.
M.Sc. in Computer Science at the Dept. of Computer Science, Univ. degli Studi di Milano,
Italy, 1989. Supervisor Prof. Stefania Costantini, in Italian.

[78] DIX, J. A classification theory of semantics of normal logic programs: I. Strong properties.
Fundam. Inform. 22, 3 (1995), 227–255.

[79] DUC, H. N. Reasoning about rational, but not logically omniscient, agents. J. Log. Com-
put. 7, 5 (1997), 633–648.

[80] EITER, T., FINK, M., SCHÜLLER, P., AND WEINZIERL, A. Finding explanations of
inconsistency in multi-context systems. In Proc. of KR 2010 (2010), F. Lin, U. Sattler, and
M. Truszczyński, Eds., AAAI.

[81] EITER, T., AND SIMKUS, M. Linking open-world knowledge bases using nonmonotonic
rules. In 13th Int. Conf. on Logic Programming and Nonmonotonic Reasoning LPNMR
2013. Proc. (2015), M. Truszczyński, G. Ianni, and F. Calimeri, Eds., vol. 9345 of Lecture
Notes in Computer Science, Springer.

[82] ELGOT-DRAPKIN, J., KRAUS, S., MILLER, M., NIRKHE, M., AND PERLIS, D. Active
logics: A unified formal approach to episodic reasoning.

[83] ELGOT-DRAPKIN, J. J., MILLER, M. I., AND PERLIS, D. Life on a desert island: Ongo-
ing work on real-time reasoning.

[84] EMERSON, E. A. Temporal and modal logic. In Handbook of Theoretical Computer
Science, vol. B. MIT Press, 1990.

[85] EMERSON, E. A. Temporal and modal logic. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B). 1990, pp. 995–1072.

[86] ENGELFRIET, J. Minimal temporal epistemic logic. Notre Dame Journal of Formal Logic
37, 2 (1996).

[87] FAGIN, R., AND HALPERN, J. Y. Belief, awareness, and limited reasoning. Artif. Intell.
34, 1 (1987), 39–76.

[88] FISHER, M. A normal form for temporal logics and its applications in theorem-proving
and execution. J. Log. Comput. 7, 4 (1997), 429–456.

[89] FISHER, M. MetateM: The story so far. In PROMAS (2005), vol. 3862 of LNCS, Springer,
pp. 3–22.

102 REFERENCES

[90] FRANCALANZA, A., ACETO, L., ACHILLEOS, A., ATTARD, D. P., CASSAR, I., MON-
ICA, D. D., AND INGÓLFSDÓTTIR, A. A foundation for runtime monitoring. In Runtime
Verification - 17th International Conference, RV 2017, Proceedings (2017), pp. 8–29.

[91] GELFOND, M. Answer sets. In Handbook of Knowledge Representation. Elsevier, 2007,
ch. 7.

[92] GELFOND, M., AND KAHL, Y. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents The Answer-Set Programming Approach. Cambridge University Press,
2014.

[93] GELFOND, M., AND LIFSCHITZ, V. The stable model semantics for logic programming.
In Proc. of the 5th Intl. Conf. and Symposium on Logic Programming (ICLP/SLP’88). The
MIT Press, 1988, pp. 1070–1080.

[94] GERO, J. S., AND PENG, W. Understanding behaviors of a constructive memory agent: A
markov chain analysis. Knowledge-Based Systems 22, 8 (2009), 610–621.

[95] GIUNCHIGLIA, F., AND SERAFINI, L. Multilanguage hierarchical logics or: How we can
do without modal logics. Artif. Intell. 65, 1 (1994), 29–70.

[96] GOLDMAN, A. I., ET AL. Theory of mind. The Oxford handbook of philosophy of cogni-
tive science 1 (2012).

[97] GOTTLOB, G., MORAK, M., AND PIERIS, A. Recent advances in Datalog+/-. In Rea-
soning Web. Web Logic Rules - 11th International Summer School 2015, Tutorial Lectures
(2015), W. Faber and A. Paschke, Eds., vol. 9203 of Lecture Notes in Computer Science,
Springer, pp. 193–217.

[98] GRANT, J., KRAUS, S., AND PERLIS, D. A logic for characterizing multiple bounded
agents. Autonomous Agents and Multi-Agent Systems 3, 4 (2000), 351–387.

[99] GROSOF, B. N., KIFER, M., AND FODOR, P. Rulelog: Highly expressive semantic rules
with scalable deep reasoning. In Pr. of the Doctoral Consortium, Challenge, Industry
Track, Tutorials and Posters @ RuleML+RR 2017 hosted by RuleML+RR 2017 (2017),
vol. 1875 of CEUR Workshop Pr., CEUR-WS.org.

[100] HALPERN, J. Y., AND MOSES, Y. Knowledge and common knowledge in a distributed
environment. Journal of the ACM 37, 1 (1990), 549–587.

[101] HALPERN, J. Y., AND PUCELLA, R. On the relationship between strand spaces and multi-
agent systems. ACM Transactions on Information and System Security (TISSEC) 6, 1
(2003), 43–70.

[102] HALPERN, J. Y., AND SHOHAM, Y. A propositional modal logic of time intervals. J.
ACM 38, 4 (1991), 935–962.

[103] HENZINGER, T. A., MANNA, Z., AND PNUELI, A. What good are digital clocks? In
Automata, Languages and Programming, 19th International Colloquium, ICALP92, Pro-
ceedings, volume 623 of Lecture Notes in Computer Science (1992), Springer, pp. 545–558.

REFERENCES 103

[104] HILPINEN, R., AND MCNAMARA, P. Deontic logic: a historical survey and introduction.
Handbook of deontic logic and normative systems. College Publications 80 (2013).

[105] HINDRIKS, K. V. Programming rational agents in goal. In Multi-Agent Programming.
Springer US, 2009, pp. 119–157.

[106] HINDRIKS, K. V., VAN DER HOEK, W., AND MEYER, J. C. GOAL agents instantiate
intention logic. In Logic Programs, Norms and Action (2012), vol. 7360 of LNCS, Springer,
pp. 196–219.

[107] HORTY, J. F. Agency and deontic logic. Oxford University Press, 2001.

[108] JAGO, M. Epistemic logic for rule-based agents. Journal of Logic, Language and Infor-
mation 18, 1 (2009), 131–158.

[109] KHAITAN, S. K., AND MCCALLEY, J. D. Design techniques and applications of cyber-
physical systems: A survey. IEEE Systems Journal 9, 2 (2015), 350–365.

[110] KOESTLER, A. The Ghost in the Machine. 1967. (1990 reprint ed.).

[111] KONOLIGE, K. Reasoning by introspection. In Meta-Level Architectures and Reflection.
North-Holland, 1988, pp. 61–74.

[112] KOUVAROS, P., AND LOMUSCIO, A. Verifying fault-tolerance in parameterised multi-
agent systems. In Proc. of the Twenty-Sixth Intl. Joint Conf. on Artificial Intelligence,
IJCAI2017 (2017), C. Sierra, Ed., ijcai.org, pp. 288–294.

[113] KOWALSKI, R., AND SERGOT, M. A logic-based calculus of events. New Generation
Computing 4 (1986), 67–95.

[114] KOYMANS, R. Specifying real-time properties with metric temporal logic. Real-Time
Systems 2, 4 (1990), 255–299.

[115] LAIRD, J., NEWELL, A., AND ROSENBLOOM, P. SOAR: An architecture for general
intelligence. Artificial Intelligence 33, 1 (1987), 1–64.

[116] LEONE, N. Logic programming and nonmonotonic reasoning: From theory to systems
and applications. In Logic Programming and Nonmonotonic Reasoning, 9th Intl. Conf.,
LPNMR 2007 (2007), C. Baral, G. Brewka, and J. Schlipf, Eds.

[117] LICHTENSTEIN, O., PNUELI, A., AND ZUCH, L. The glory of the past. In Proc. Conf. on
Logics of Programs (1985), LNCS 193, Springer Verlag.

[118] LIEW, P.-S., AND GERO, J. S. An implementation model of constructive memory for
situated design agent. 257–276.

[119] LLOYD, J. W. Foundations of Logic Programming. Springer-Verlag, 1987.

[120] LLOYD, J. W. Foundations of Logic Programming, Second Edition. Springer, Berlin,
1987.

[121] LOGIE, R. H. Visuo-spatial working memory.

104 REFERENCES

[122] LORINI, E. Reasoning about cognitive attitudes in a qualitative setting. In Logics in
Artificial Intelligence - 16th European Conference, JELIA 2019, Rende, Italy, May 7-11,
2019, Proceedings (2019), pp. 726–743.

[123] MALAVOLTA, I., MUCCINI, H., AND SHARAF, M. A preliminary study on architecting
cyber-physical systems. In Proceedings of the 2015 European Conference on Software
Architecture Workshops (2015), I. Crnkovic, Ed., pp. 20:1–20:6.

[124] MEYER, J. C., AND VAN DER HOEK, W. A default logic based on epistemic states. In
Symbolic and Quantitative Approaches to Reasoning and Uncertainty, European Confer-
ence, ECSQARU’93, Granada, Spain, November 8-10, 1993, Proceedings (1993), pp. 265–
273.

[125] MICUCCI, D., OLDANI, M., AND TISATO, F. Time-aware multi agent systems. In
Multiagent Systems and Software Architecture, Proceedings of the Special Track at
Net.ObjectDays (2006), D. Weyns and T. Holvoet, Eds., Katholieke Universiteit Leuven,
Belgium, pp. 71–78.

[126] MONTALI, M., CALVANESE, D., AND DE GIACOMO, G. Specification and verification
of commitment-regulated data-aware multiagent systems. In Proc. of AAMAS 2014 (2014).

[127] MURAKAMI, Y. Utilitarian deontic logic. In Advances in Modal Logic (2004), King’s
College Publications, pp. 211–230.

[128] OLIVIERI, R. Digital Forensics meets Complexity Theory and Artificial Intelligence: To-
wards Automated Generation of Investigation Hypothesis. PhD thesis, Ph.D. Program in
Information and Communication Technology, University of L’Aquila, Italy, 2016.

[129] OMICINI, A., RICCI, A., AND VIROLI, M. Timed environment for web agents. Web
Intelligence and Agent Systems 5, 2 (2007), 161–175.

[130] OUAKNINE, J., AND WORRELL, J. Some recent results in metric temporal logic. In For-
mal Modeling and Analysis of Timed Systems, 6th International Conference, FORMATS
2008. Proceedings (2008), vol. 5215 of Lecture Notes in Computer Science, Springer,
pp. 1–13.

[131] PEARSON, D. G., AND LOGIE, R. H. Effects of stimulus modality and working mem-
ory load on mental synthesis performance. Imagination, Cognition and Personality 23, 2
(2003), 183–191.

[132] PEREIRA, L. M., AND SAPTAWIJAYA, A. Pr. Machine Ethics, vol. 26 of Studies in Applied
Philosophy, Epistemology and Rational Ethics. Springer, 2016.

[133] PERLIS, D., AND SUBRAHMANIAN, V. S. Meta-languages, reflection principles, and
self-reference. In Handbook of Logic in Artificial Intelligence and Logic Programming,
Volume2, Deduction Methodologies. Oxford University Press, 1994, pp. 323–358.

[134] PITONI, V., AND COSTANTINI, S. A temporal module for logical frameworks. In Proceed-
ings 35th International Conference on Logic Programming (Technical Communications),
ICLP 2019 Technical Communications, Las Cruces, NM, USA, September 20-25, 2019
(2019), pp. 340–346.

REFERENCES 105

[135] PNUELI, A. The temporal logic of programs. In Proc. of FOCS, 18th Annual Symposium
on Foundations of Computer Science (1977), IEEE, pp. 46–57.

[136] RAMANUJAM, R., AND SURESH, S. P. Deciding knowledge properties of security pro-
tocols. In Proceedings of the 10th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK-2005), Singapore (2005), pp. 219–235.

[137] RAO, A. S. Agentspeak(l): BDI agents speak out in a logical computable language. In
Agents Breaking Away, 7th European Works. on Modelling Autonomous Agents in a Multi-
Agent World, Proceedings (1996), vol. 1038 of LNCS, Springer, pp. 42–55.

[138] RAO, A. S., AND GEORGEFF, M. Modeling rational agents within a BDI architecture. In
Proc. of the Second Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’91) (1991), Morgan Kaufmann, pp. 473–484.

[139] RAO, A. S., AND GEORGEFF, M. P. Modeling agents within a BDI-architecture. In Proc.
of Intl. Conf. on Principles of Knowledge Representation and Reasoning (KR) (Cambridge,
Massachusetts, 1991), Morgan Kaufmann.

[140] RICCI, A., PIUNTI, M., AND VIROLI, M. Environment programming in multi-agent
systems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23
(2010), 158–192.

[141] RICCI, A., VIROLI, M., AND OMICINI, A. Carta go : A framework for prototyp-
ing artifact-based environments in MAS. In Environments for Multi-Agent Systems III,
Third International Workshop, E4MAS 2006, Selected Revised and Invited Papers (2007),
D. Weyns, H. V. D. Parunak, and F. Michel, Eds., vol. 4389 of Lecture Notes in Computer
Science, Springer, pp. 67–86.

[142] RUSHBY, J. M. Runtime certification. In Runtime Verification, 8th Intl. Works., RV 2008.
Selected Papers, M. Leucker, Ed., vol. 5289 of LNCS. Springer, 2008, pp. 21–35.

[143] SAVIC, N., AND STUDER, T. Relevant justification logic. FLAP 6, 2 (2019), 397–412.

[144] SHAPIRO, S., LESPÉRANCE, Y., AND LEVESQUE, H. The cognitive agents specification
language and verification environment, 2010.

[145] SINGH, M. P. Towards a formal theory of communication for multi-agent systems. In Proc.
of the 12th Intl. Joint Conf. on Artificial Intelligence (1991), J. Mylopoulos and R. Reiter,
Eds., Morgan Kaufmann, pp. 69–74.

[146] SINGH, M. P. Commitments in multiagent systems: Some history, some confusions, some
controversies, some prospects. In The Goals of Cognition. Essays in Honor of Cristiano
Castelfranchi (2012), F. Paglieri, L. Tummolini, R. Falcone, and M. Miceli, Eds., College
Publications, London, pp. 601–626.

[147] SMITH, B. C. Reflection and semantics in lisp. In Conference Record of the Eleventh
Annual ACM Symposium on Principles of Programming Languages (1984), pp. 23–35.

[148] STIRLING, C. Modal and Temporal Properties of Processes. Texts in Computer Science.
Springer, 2001.

106 REFERENCES

[149] TØRRESEN, J., PLESSL, C., AND YAO, X. Self-aware and self-expressive systems. IEEE
Computer 48, 7 (2015), 18–20.

[150] TRUSZCZYŃSKI, M. Logic programming for knowledge representation. In Logic Pro-
gramming, 23rd Intl. Conf., ICLP 2007 (2007), V. Dahl and I. Niemelä, Eds., pp. 76–88.

[151] TUFIS, M., AND GANASCIA, J. A normative extension for the BDI ahent model. In
Proceedings of the 17th INternational Conference on Climbing and Walking Robots and
the Support Technologies for Mobile Machines (2014), pp. 691–702.

[152] VAN BENTHEM, J. The logic of time - a model-theoretic investigation into the varieties
of temporal ontology and temporal discourse, 2nd Edition, vol. 156 of Synthese library.
Kluwer, 1991.

[153] VAN BENTHEM, J., GIRARD, P., AND ROY, O. Everything else being equal: A modal
logic for ceteris paribus preferences. J. Philos. Logic 38 (2009), 83–125.

[154] VAN BENTHEM, J., AND PACUIT, E. Dynamic logics of evidence-based beliefs. Studia
Logica 99, 1-3 (2011), 61–92.

[155] VAN DER HOEK, W., AND WOOLDRIDGE, M. Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications. Studia Logica 75, 1 (2003),
125–157.

[156] VAN DITMARSCH, H., VAN DER HOEK, W., AND KOOI, B. Dynamic epistemic logic,
vol. 337. Springer Science & Business Media, 2007.

[157] VAN HARMELEN, F. Definable naming relations in meta-level systems. LNCS 649,
Springer, pp. 89–104.

[158] VAN HARMELEN, F., WIELINGA, B., BREDEWEG, B., SCHREIBER, G., KARBACH,
W., REINDERS, M., VOSS, A., AKKERMANS, H., BARTSCH-SPÖRL, B., AND

VINKHUYZEN, E. Knowledge-level reflection. In Enhancing the Knowledge Engineer-
ing Process – Contributions from ESPRIT. Elsevier Science, 1992, pp. 175–204.

[159] VAN RIEMSDIJK, M. B., DENNIS, L. A., FISHER, M., AND HINDRIKS, K. V. A seman-
tic framework for socially adaptive agents: Towards strong norm compliance. G. Weiss,
P. Yolum, R. H. Bordini, and E. Elkind, Eds., ACM, pp. 423–432.

[160] VELÁZQUEZ-QUESADA, F. R. Explicit and implicit knowledge in neighbourhood models.
In Logic, Rationality, and Interaction - 4th International Workshop, LORI 2013, Hangzhou,
China, October 9-12, 2013, Proceedings (2013), D. Grossi, O. Roy, and H. Huang, Eds.,
Springer, pp. 239–252.

[161] VELÁZQUEZ-QUESADA, F. R. Dynamic epistemic logic for implicit and explicit beliefs.
Journal of Logic, Language and Information 23, 2 (2014), 107–140.

[162] VELIKOVA, M., NOVÁK, P., HUIJBRECHTS, B., LAARHUIS, J., HOEKSMA, J., AND

MICHELS, S. An integrated reconfigurable system for maritime situational awareness. In
ECAI 2014 - 21st European Conf. on Artificial Intelligence (2014), T. Schaub, G. Friedrich,
and B. O’Sullivan, Eds., vol. 263 of Frontiers in Artificial Intelligence and Applications,
IOS Press, pp. 1197–1202.

REFERENCES 107

[163] WEB-REFERENCES. Some ASP solvers. Clasp: potassco.sourceforge.
net; Cmodels: www.cs.utexas.edu/users/tag/cmodels; DLV: www.
dlvsystem.com; Smodels: www.tcs.hut.fi/Software/smodels.

