Graphs are a common representation in many problem domains, including engineering, finance, medicine, and scientific applications. Different problems map to very large graphs, often involving millions of vertices. Even though very efficient sequential implementations of graph algorithms exist, they become impractical when applied on such actual very large graphs. On the other hand, graphics processing units (GPUs) have become widespread architectures as they provide massive parallelism at low cost. Parallel execution on GPUs may achieve speedup up to three orders of magnitude with respect to the sequential counterparts. Nevertheless, accelerating efficient and optimized sequential algorithms and porting (i.e., parallelizing) their implementation to such many-core architectures is a very challenging task. The task is made even harder since energy and power consumption are becoming constraints in addition, or in same case as an alternative, to performance. This work aims at developing a platform that provides (I) a library of parallel, efficient, and tunable implementations of the most important graph algorithms for GPUs, and (II) an advanced profiling model to analyze both performance and power consumption of the algorithm implementations. The platform goal is twofold. Through the library, it aims at saving developing effort in the parallelization task through a primitive-based approach. Through the profiling framework, it aims at customizing such primitives by considering both the architectural details and the target efficiency metrics (i.e., performance or power).

High-Performance and Power-Aware Graph Processing on GPUs

BUSATO, FEDERICO
2018

Abstract

Graphs are a common representation in many problem domains, including engineering, finance, medicine, and scientific applications. Different problems map to very large graphs, often involving millions of vertices. Even though very efficient sequential implementations of graph algorithms exist, they become impractical when applied on such actual very large graphs. On the other hand, graphics processing units (GPUs) have become widespread architectures as they provide massive parallelism at low cost. Parallel execution on GPUs may achieve speedup up to three orders of magnitude with respect to the sequential counterparts. Nevertheless, accelerating efficient and optimized sequential algorithms and porting (i.e., parallelizing) their implementation to such many-core architectures is a very challenging task. The task is made even harder since energy and power consumption are becoming constraints in addition, or in same case as an alternative, to performance. This work aims at developing a platform that provides (I) a library of parallel, efficient, and tunable implementations of the most important graph algorithms for GPUs, and (II) an advanced profiling model to analyze both performance and power consumption of the algorithm implementations. The platform goal is twofold. Through the library, it aims at saving developing effort in the parallelization task through a primitive-based approach. Through the profiling framework, it aims at customizing such primitives by considering both the architectural details and the target efficiency metrics (i.e., performance or power).
2018
Inglese
331
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Dimensione 32.14 MB
Formato Adobe PDF
32.14 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/113892
Il codice NBN di questa tesi è URN:NBN:IT:UNIVR-113892