L'abscissione è un meccanismo auto-regolativo per cui gli alberi da frutto rilasciano naturalmente parte dei frutticini ed è un evento agronomico importante dal punto di vista del produttore perché incide sulla qualità del raccolto a maturazione. Nonostante questo meccanismo auto-regolativo, gli alberi da frutto trattengono troppi frutticini, influendo negativamente non solo sulla dimensione e la qualità finale dei frutti, ma anche sulla fioritura nell’anno successivo. Per evitare questi effetti negativi, i coltivatori utilizzano comunemente diradanti chimici che agiscono su fiori o frutticini, allo scopo di regolare il carico iniziale ed ottenere così una qualità della frutta corrispondente alle esigenze di mercato. In melo il diradamento chimico è una pratica comune la cui efficacia sugli alberi da frutto è dipendente, purtroppo, da fattori ambientali e dai diversi genotipi. Un diradante chimico ampiamente utilizzato, il carbaryl (Sevin), è stato ritirato dal mercato e parzialmente sostituito con la benziladenina (BA), una citochinina che ha un effetto più contenuto sull'albero e sulla salute umana. A livello molecolare, l'abscissione è un processo coordinato principalmente dall'auxina e dall'etilene. Entrambi questi ormoni svolgono il loro ruolo a livello della zona di abscissione (AZ). Il flusso continuo dell'auxina attraverso la AZ inibisce il processo di abscissione, mentre l'etilene induce una regolazione positiva degli enzimi degradanti la parete cellulare provocando la separazione delle cellule della AZ e la caduta dei frutticini. Le informazioni riguardanti il segnale che causa la diminuzione del flusso di auxina e l'aumento nella sensibilità all'etilene nella AZ sono tuttavia ancora parziali e piuttosto carenti. In Arabidopsis thaliana l'isolamento di mutanti con difetti nel processo di abscissione dei fiori ha permesso l'individuazione di geni coinvolti o nel processo di differenziazione della AZ o nella via di trasduzione del segnale. Per quanto riguarda la cascola fisiologica dei frutticini in melo, le informazioni riguardanti il segnale che genera l’evento abscissione sono tuttora carenti e le collezioni di geni legati a tale fenomeno sono ancora molto parziali. La maggior parte delle ricerche, infatti, si è concentrata principalmente sullo studio dell’effetto di prodotti chimici sulla qualità della frutta e sulla fioritura, mentre solamente pochi studi hanno considerato la dinamica dei cambiamenti trascrizionali conseguente all'induzione dell’abscissione. Sulla base dei dati disponibili, è stata proposta l’ipotesi che considera lo stato nutrizionale all’interno della popolazione di frutticini e fra i fruitticini ed i germogli vegetativi come segnale necessario per l’attivazione dell’abscissione. Recentemente, lo sviluppo di approcci trascrittomici di carattere massale, basato sulle tecnologie microarray, ha consentito di studiare in maniera più approfondita questo processo biologico. Un recente studio effettuato in pomodoro ha permesso di studiare geni coinvolti nel mantenimento dell’omeostasi dell'auxina a livello di AZ in seguito ad una diminuzione del flusso della stessa durante l'induzione dell’abscissione nel fiore. Il modello proposto rappresenta un punto di partenza molto rilevante per identificare altri geni coinvolti nella regolazione dell’abscissione e nella sensibilizzazione dell’AZ all'etilene. In questa tesi sono stati impiegati due differenti approcci per studiare l’abscissione in melo: 1) Un approccio massale trascrittomico per isolare i geni strettamente coinvolti nelle prime fasi induttive dell’abscissione e 2) lo studio di composti organici volatili (VOCs) emessi durante l’induzione dell’abscissione. 1) L'abscissione di frutticini di melo è stata indotta usando la BA come agente diradante. Frutticini differenti per dimensione e posizione all'interno del corimbo sono stati raccolti entro i quattro giorni dal trattamento. L'espressione genica è stata analizzata per mezzo di un vetrino 30K recentemente sviluppato. L'analisi dei profili trascrizionali dei frutticini cascolanti e non cascolanti è stata esaminata allo scopo di identificare marcatori molecolari associati al destino del frutto. Il livello di specie reattive dell’ossigeno (ROS) e di alcuni carboidrati (glucosio, fruttosio, saccarosio, sorbitolo e amido) è stato misurato nella cortex degli stessi campioni. Un modello ipotetico per l’abscissione di frutticini di melo è stato ottenuto unendo i dati trascrittomici e metabolomici disponibili. Secondo questo modello, il trattamento con la BA amplificherebbe lo stress nutrizionale già in atto all'interno dell'albero, il quale viene percepito soprattutto dalla cortex di frutticini il cui sviluppo viene quindi bloccato. Nei frutti più deboli, questo stress viene quindi percepito a livello del seme. La traduzione di questo stress avviene probabilmente attraverso il crosstalk tra ROS, zuccheri e ormoni ed è seguito da un blocco dell'embriogenesi e dall'attivazione della AZ. 2) Frutticini di due diverse cultivar (Golden Delicious e Red Chief) con differente potenziale di abscissione trattati con due differenti diradanti chimici (BA e metamitron) sono stati analizzati per mezzo del PTR-MS (proton transfer reaction mass-spectrometer), entro i dieci giorni dal trattamento, allo scopo di identificare composti organici volatili (VOCs) associati all’abscissione. I risultati hanno evidenziato che i frutticini con potenziale di abscissione maggiore in entrambe le cultivar emettono più isoprene rispetto ai frutti persistenti. E’ stata inoltre evidenziata una correlazione significativa tra emissioni di isoprene e contenuto di ABA della cortex, parallelamente all’attivazione specifica dei rispettivi geni biosintetici. Successivamente avviene l’attivazione ritardata dei geni coinvolti nei passaggi chiave della via del metileritritolo fosfato (MEP), che fornisce i precursori per la biosintesi sia del volatile che dell’ormone. Secondo questi risultati, si può ipotizzare per l’isoprene un ruolo di detossificatore di ROS, la cui attivazione è mediata e controllata a livello trascrizionale dall’ABA. Le prospettive future di questa ricerca saranno focalizzate su tutte le linee di ricerca finora perseguite. La funzione biologica dei geni identificati tramite l’approccio trascrittomico sarà ulteriormente studiata a livello cellulare, tramite ibridazioni in situ, e i loro profili di espressione genica saranno ulteriormente validati. Particolare attenzione sarà prestata ai fattori di trascrizione e agli altri elementi regolativi coinvolti nel cross-talk ormonale. Per quanto attiene i composti volatili (isoprene) saranno validati i risultati finora ottenuti allo scopo di verificare possibili applicazioni pratiche in sistemi previsionali che consentano di predire il livello di carica fruttifera e, quindi, di dosare i trattamenti diradanti nell’ottica di un’agricoltura sostenibile.
Setting up of molecular tools for studying abscission in apple (Malus x domestica)
ECCHER, GIULIA
2011
Abstract
L'abscissione è un meccanismo auto-regolativo per cui gli alberi da frutto rilasciano naturalmente parte dei frutticini ed è un evento agronomico importante dal punto di vista del produttore perché incide sulla qualità del raccolto a maturazione. Nonostante questo meccanismo auto-regolativo, gli alberi da frutto trattengono troppi frutticini, influendo negativamente non solo sulla dimensione e la qualità finale dei frutti, ma anche sulla fioritura nell’anno successivo. Per evitare questi effetti negativi, i coltivatori utilizzano comunemente diradanti chimici che agiscono su fiori o frutticini, allo scopo di regolare il carico iniziale ed ottenere così una qualità della frutta corrispondente alle esigenze di mercato. In melo il diradamento chimico è una pratica comune la cui efficacia sugli alberi da frutto è dipendente, purtroppo, da fattori ambientali e dai diversi genotipi. Un diradante chimico ampiamente utilizzato, il carbaryl (Sevin), è stato ritirato dal mercato e parzialmente sostituito con la benziladenina (BA), una citochinina che ha un effetto più contenuto sull'albero e sulla salute umana. A livello molecolare, l'abscissione è un processo coordinato principalmente dall'auxina e dall'etilene. Entrambi questi ormoni svolgono il loro ruolo a livello della zona di abscissione (AZ). Il flusso continuo dell'auxina attraverso la AZ inibisce il processo di abscissione, mentre l'etilene induce una regolazione positiva degli enzimi degradanti la parete cellulare provocando la separazione delle cellule della AZ e la caduta dei frutticini. Le informazioni riguardanti il segnale che causa la diminuzione del flusso di auxina e l'aumento nella sensibilità all'etilene nella AZ sono tuttavia ancora parziali e piuttosto carenti. In Arabidopsis thaliana l'isolamento di mutanti con difetti nel processo di abscissione dei fiori ha permesso l'individuazione di geni coinvolti o nel processo di differenziazione della AZ o nella via di trasduzione del segnale. Per quanto riguarda la cascola fisiologica dei frutticini in melo, le informazioni riguardanti il segnale che genera l’evento abscissione sono tuttora carenti e le collezioni di geni legati a tale fenomeno sono ancora molto parziali. La maggior parte delle ricerche, infatti, si è concentrata principalmente sullo studio dell’effetto di prodotti chimici sulla qualità della frutta e sulla fioritura, mentre solamente pochi studi hanno considerato la dinamica dei cambiamenti trascrizionali conseguente all'induzione dell’abscissione. Sulla base dei dati disponibili, è stata proposta l’ipotesi che considera lo stato nutrizionale all’interno della popolazione di frutticini e fra i fruitticini ed i germogli vegetativi come segnale necessario per l’attivazione dell’abscissione. Recentemente, lo sviluppo di approcci trascrittomici di carattere massale, basato sulle tecnologie microarray, ha consentito di studiare in maniera più approfondita questo processo biologico. Un recente studio effettuato in pomodoro ha permesso di studiare geni coinvolti nel mantenimento dell’omeostasi dell'auxina a livello di AZ in seguito ad una diminuzione del flusso della stessa durante l'induzione dell’abscissione nel fiore. Il modello proposto rappresenta un punto di partenza molto rilevante per identificare altri geni coinvolti nella regolazione dell’abscissione e nella sensibilizzazione dell’AZ all'etilene. In questa tesi sono stati impiegati due differenti approcci per studiare l’abscissione in melo: 1) Un approccio massale trascrittomico per isolare i geni strettamente coinvolti nelle prime fasi induttive dell’abscissione e 2) lo studio di composti organici volatili (VOCs) emessi durante l’induzione dell’abscissione. 1) L'abscissione di frutticini di melo è stata indotta usando la BA come agente diradante. Frutticini differenti per dimensione e posizione all'interno del corimbo sono stati raccolti entro i quattro giorni dal trattamento. L'espressione genica è stata analizzata per mezzo di un vetrino 30K recentemente sviluppato. L'analisi dei profili trascrizionali dei frutticini cascolanti e non cascolanti è stata esaminata allo scopo di identificare marcatori molecolari associati al destino del frutto. Il livello di specie reattive dell’ossigeno (ROS) e di alcuni carboidrati (glucosio, fruttosio, saccarosio, sorbitolo e amido) è stato misurato nella cortex degli stessi campioni. Un modello ipotetico per l’abscissione di frutticini di melo è stato ottenuto unendo i dati trascrittomici e metabolomici disponibili. Secondo questo modello, il trattamento con la BA amplificherebbe lo stress nutrizionale già in atto all'interno dell'albero, il quale viene percepito soprattutto dalla cortex di frutticini il cui sviluppo viene quindi bloccato. Nei frutti più deboli, questo stress viene quindi percepito a livello del seme. La traduzione di questo stress avviene probabilmente attraverso il crosstalk tra ROS, zuccheri e ormoni ed è seguito da un blocco dell'embriogenesi e dall'attivazione della AZ. 2) Frutticini di due diverse cultivar (Golden Delicious e Red Chief) con differente potenziale di abscissione trattati con due differenti diradanti chimici (BA e metamitron) sono stati analizzati per mezzo del PTR-MS (proton transfer reaction mass-spectrometer), entro i dieci giorni dal trattamento, allo scopo di identificare composti organici volatili (VOCs) associati all’abscissione. I risultati hanno evidenziato che i frutticini con potenziale di abscissione maggiore in entrambe le cultivar emettono più isoprene rispetto ai frutti persistenti. E’ stata inoltre evidenziata una correlazione significativa tra emissioni di isoprene e contenuto di ABA della cortex, parallelamente all’attivazione specifica dei rispettivi geni biosintetici. Successivamente avviene l’attivazione ritardata dei geni coinvolti nei passaggi chiave della via del metileritritolo fosfato (MEP), che fornisce i precursori per la biosintesi sia del volatile che dell’ormone. Secondo questi risultati, si può ipotizzare per l’isoprene un ruolo di detossificatore di ROS, la cui attivazione è mediata e controllata a livello trascrizionale dall’ABA. Le prospettive future di questa ricerca saranno focalizzate su tutte le linee di ricerca finora perseguite. La funzione biologica dei geni identificati tramite l’approccio trascrittomico sarà ulteriormente studiata a livello cellulare, tramite ibridazioni in situ, e i loro profili di espressione genica saranno ulteriormente validati. Particolare attenzione sarà prestata ai fattori di trascrizione e agli altri elementi regolativi coinvolti nel cross-talk ormonale. Per quanto attiene i composti volatili (isoprene) saranno validati i risultati finora ottenuti allo scopo di verificare possibili applicazioni pratiche in sistemi previsionali che consentano di predire il livello di carica fruttifera e, quindi, di dosare i trattamenti diradanti nell’ottica di un’agricoltura sostenibile.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Dottorato_Giulia_Eccher.pdf
accesso aperto
Dimensione
54.99 MB
Formato
Adobe PDF
|
54.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/118190
URN:NBN:IT:UNIPD-118190