The design of “non-structural” elements, including the cladding panels for precast RC buildings, plays a key role in the building seismic response. The large damages that occurred in precast RC buildings, during the recent earthquakes in southern Europe were mainly caused by the collapse of the cladding panels. Therefore, is required to revise, to revise the technological and design philosophy the panel-to-structure connection devices in RC precast structures. Starting from these considerations, the main topic of this thesis is the investigation of such connection devices. Deeply understanding the working principle of these systems makes it possible to open a way to solve the problem. The influence of the panels to the global response of precast structure is studied for different types of panel-to-structure connections (two types of hammer-head straps) and panels-to-foundation connections (fixed and rocking panels). Numerical models for the in-plane response of connection devices are developed using both existing experimental data from shaking table test performed by University of Ljubljana and result of new tests carried out at the Structures and Materials Testing Laboratory of University of Florence A new connection device, which better uncouples the in-plane seismic response, is developed and studied analytically and experimentally. The study highlights that traditional devices fail due to their limited in-plane displacement capacity while the new device has much better behaviour. The study showed that in-plane direction was critical for connection compared to the out-of-plane one. It also showed that fixed-base panels provide a better seismic performance of connection devices.

Seismic response of vertical concrete façade systems in reinforced concrete prefabricated buildings

2020

Abstract

The design of “non-structural” elements, including the cladding panels for precast RC buildings, plays a key role in the building seismic response. The large damages that occurred in precast RC buildings, during the recent earthquakes in southern Europe were mainly caused by the collapse of the cladding panels. Therefore, is required to revise, to revise the technological and design philosophy the panel-to-structure connection devices in RC precast structures. Starting from these considerations, the main topic of this thesis is the investigation of such connection devices. Deeply understanding the working principle of these systems makes it possible to open a way to solve the problem. The influence of the panels to the global response of precast structure is studied for different types of panel-to-structure connections (two types of hammer-head straps) and panels-to-foundation connections (fixed and rocking panels). Numerical models for the in-plane response of connection devices are developed using both existing experimental data from shaking table test performed by University of Ljubljana and result of new tests carried out at the Structures and Materials Testing Laboratory of University of Florence A new connection device, which better uncouples the in-plane seismic response, is developed and studied analytically and experimentally. The study highlights that traditional devices fail due to their limited in-plane displacement capacity while the new device has much better behaviour. The study showed that in-plane direction was critical for connection compared to the out-of-plane one. It also showed that fixed-base panels provide a better seismic performance of connection devices.
2020
Inglese
Andrea Vignoli, Maurizio Orlando, Tatjana Isaković
Università degli Studi di Firenze
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/132523
Il codice NBN di questa tesi è URN:NBN:IT:UNIFI-132523