Stress granules (SG) are cytoplasmic membrane-less condensates that contain translationally stalled mRNAs, pre-initiation factors and RNA-binding proteins (RBPs). SGs are induced by various stress conditions, including exposure to heavy metal, oxidative stress, temperature upshift, change in osmolarity and viral infection. SGs form via a process known as liquid-liquid phase separation. In mammalian cells, SGs appear as dynamic liquid-like condensates that rapidly dissolve upon stress relief. Recent biochemical evidence demonstrates that SGs can change their material properties and convert from a dynamic liquid-like state into a solid-like state, referred to as physiological and aberrant states, respectively. Conversion of SGs into an aberrant state has been linked to the development of neurodegenerative diseases, including Amyotrophic Lateral Sclerosis, Frontotemporal Lobar Degeneration and inclusion body myositis. Moreover, mutations in genes encoding for SG-resident proteins, such as TDP-43, FUS and hnRNPA1, decrease SG dynamics. Therefore, understanding the molecular causes that promote the maturation of SGs into a dysfunctional and potentially toxic state may hold promise for the cure of these neurodegenerative diseases. It was recently shown that SGs can be targeted to autophagy for degradation. However, it was unclear whether autophagy-mediated clearance of SGs is the preferred pathway or whether cells activate other mechanisms to promote the dissolution of SGs, even when these SGs contain mutated and misfolded proteins. In this thesis we investigate the fate of physiological and aberrant SG, focusing on SG degradation by autophagy versus SG disassembly with the assistance of chaperones and we elucidate the interplay between protein quality control and SGs. Our results support the interpretation that SGs, also when aberrantly enriched for misfolded proteins, are not preferentially cleared by autophagy but they are rather disassembled with the assistance of chaperones. We also provide evidence supporting a role for a new player, the Hsp90 chaperone, as key regulator of SG turnover. We further demonstrate the functional implications of deregulated SG disassembly on key signalling pathways that regulate cell metabolism and cell growth. In conclusion, we propose that SG turnover is linked to cell functionality and may have important implications in neurodegenerative and cancer diseases.
I granuli di stress (SG) sono condensati citoplasmatici senza membrana che contengono mRNA non tradotto, fattori di pre-inizio della traduzione e proteine leganti l'RNA (RBP). I SG si formano in risposta a condizioni di stress, come ad esempio: l'esposizione a metalli pesanti, stress ossidativo, aumento della temperatura, cambiamento di osmolarità e infezioni virale. I SG si formano attraverso un processo specifico noto come separazione di fase liquido-liquido. Nelle cellule di mammifero, i SG appaiono come condensati simil-liquidi molto dinamici, infatti si formano/dissolvono rapidamente in risposta allo stress. Recenti prove biochimiche dimostrano che i SG possono cambiare le loro proprietà materiali passando da uno stato dinamico simil-liquido, ad uno stato solido, i primi sono definiti come SG fisiologici e i secondi sono aberranti. La conversione dei SG in uno stato aberrante è stata associata allo sviluppo di malattie neurodegenerative, tra le quali ritroviamo la sclerosi laterale amiotrofica, la degenerazione lobo-frontotemporale. Inoltre, le mutazioni nei geni che codificano per proteine presenti nei SG, come TDP-43, FUS e hnRNPA1, diminuiscono la dinamicità dei SG. Pertanto, la comprensione delle cause molecolari che promuovono la maturazione dei SG da uno stato fisiologico a uno stato disfunzionale e potenzialmente tossico può essere un importante punto per la cura di queste malattie neurodegenerative. Recentemente è stato dimostrato che i SG possono essere indirizzati all'autofagia per esser degradati. Tuttavia, non era chiaro se la clearance dei SG mediata dall’autofagia fosse la via preferita o se le cellule attivassero altri meccanismi per promuovere la dissoluzione dei SG, anche quando questi SG contengono proteine mutate e misfoldate. In questa tesi esaminiamo il destino della SG fisiologici e aberranti, concentrandoci sulla degradazione delle SG mediante autofagia rispetto al disassemblaggio dei SG ad opera delle proteine chaperoniche e chiariamo l'interazione tra il controllo di qualità delle proteine e i SG. I nostri risultati supportano l'interpretazione che i SG, anche quando accumulano proteine misfoldate non vengono prevalentemente degradati dall'autofagia, ma sono piuttosto disassemblati con l'assistenza delle proteine chaperoniche. Forniamo anche prove a sostegno del ruolo di un nuovo chaperone l`Hsp90 come regolatore chiave del turnover dei SG. Dimostriamo le implicazioni funzionali di un deregolato disassemblaggio dei SG sulle principali vie di segnalazione che regolano il metabolismo cellulare e la crescita cellulare. In conclusione, proponiamo che il turnover dei SG sia legato alla funzionalità cellulare e possa avere importanti implicazioni nelle malattie neurodegenerative e tumorali.
Stress granules and protein quality control: two converging pathways in cell health and disease
2019
Abstract
Stress granules (SG) are cytoplasmic membrane-less condensates that contain translationally stalled mRNAs, pre-initiation factors and RNA-binding proteins (RBPs). SGs are induced by various stress conditions, including exposure to heavy metal, oxidative stress, temperature upshift, change in osmolarity and viral infection. SGs form via a process known as liquid-liquid phase separation. In mammalian cells, SGs appear as dynamic liquid-like condensates that rapidly dissolve upon stress relief. Recent biochemical evidence demonstrates that SGs can change their material properties and convert from a dynamic liquid-like state into a solid-like state, referred to as physiological and aberrant states, respectively. Conversion of SGs into an aberrant state has been linked to the development of neurodegenerative diseases, including Amyotrophic Lateral Sclerosis, Frontotemporal Lobar Degeneration and inclusion body myositis. Moreover, mutations in genes encoding for SG-resident proteins, such as TDP-43, FUS and hnRNPA1, decrease SG dynamics. Therefore, understanding the molecular causes that promote the maturation of SGs into a dysfunctional and potentially toxic state may hold promise for the cure of these neurodegenerative diseases. It was recently shown that SGs can be targeted to autophagy for degradation. However, it was unclear whether autophagy-mediated clearance of SGs is the preferred pathway or whether cells activate other mechanisms to promote the dissolution of SGs, even when these SGs contain mutated and misfolded proteins. In this thesis we investigate the fate of physiological and aberrant SG, focusing on SG degradation by autophagy versus SG disassembly with the assistance of chaperones and we elucidate the interplay between protein quality control and SGs. Our results support the interpretation that SGs, also when aberrantly enriched for misfolded proteins, are not preferentially cleared by autophagy but they are rather disassembled with the assistance of chaperones. We also provide evidence supporting a role for a new player, the Hsp90 chaperone, as key regulator of SG turnover. We further demonstrate the functional implications of deregulated SG disassembly on key signalling pathways that regulate cell metabolism and cell growth. In conclusion, we propose that SG turnover is linked to cell functionality and may have important implications in neurodegenerative and cancer diseases.I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/133663
URN:NBN:IT:UNIPR-133663