Recent years have seen a proliferation of exact results in quantum field theories, owing mostly to supersymmetric localisation. Coupled with decades of study of dualities, this ensured the development of many novel nontrivial correspondences linking seemingly disparate parts of the mathematical landscape. Among these, the link between supersymmetric gauge theories with 8 supercharges and Painlev{\'e} equations, interpreted as the exact RG flow of their codimension 2 defects and passing through a correspondence with two-dimensional conformal field theory, was highly surprising. Similarly surprising was the realisation that three-dimensional matrix models coming from M-theory compute these solutions, and provide a non-perturbative completion of the topological string. Extending these two results is the focus of my work. After giving a review of the basics, hopefully useful to researchers in the field also for uses besides understanding the thesis, two parts based on published and unpublished results follow. The first is focused on giving Painlev{\'e}-type equations for general groups and linear quivers, and the second on matrix models.
Quantum Field Theories, Isomonodromic Deformations and Matrix Models
Globlek, Fran
2022
Abstract
Recent years have seen a proliferation of exact results in quantum field theories, owing mostly to supersymmetric localisation. Coupled with decades of study of dualities, this ensured the development of many novel nontrivial correspondences linking seemingly disparate parts of the mathematical landscape. Among these, the link between supersymmetric gauge theories with 8 supercharges and Painlev{\'e} equations, interpreted as the exact RG flow of their codimension 2 defects and passing through a correspondence with two-dimensional conformal field theory, was highly surprising. Similarly surprising was the realisation that three-dimensional matrix models coming from M-theory compute these solutions, and provide a non-perturbative completion of the topological string. Extending these two results is the focus of my work. After giving a review of the basics, hopefully useful to researchers in the field also for uses besides understanding the thesis, two parts based on published and unpublished results follow. The first is focused on giving Painlev{\'e}-type equations for general groups and linear quivers, and the second on matrix models.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
accesso aperto
Dimensione
2.43 MB
Formato
Adobe PDF
|
2.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/64980
URN:NBN:IT:SISSA-64980