Recent years have seen a proliferation of exact results in quantum field theories, owing mostly to supersymmetric localisation. Coupled with decades of study of dualities, this ensured the development of many novel nontrivial correspondences linking seemingly disparate parts of the mathematical landscape. Among these, the link between supersymmetric gauge theories with 8 supercharges and Painlev{\'e} equations, interpreted as the exact RG flow of their codimension 2 defects and passing through a correspondence with two-dimensional conformal field theory, was highly surprising. Similarly surprising was the realisation that three-dimensional matrix models coming from M-theory compute these solutions, and provide a non-perturbative completion of the topological string. Extending these two results is the focus of my work. After giving a review of the basics, hopefully useful to researchers in the field also for uses besides understanding the thesis, two parts based on published and unpublished results follow. The first is focused on giving Painlev{\'e}-type equations for general groups and linear quivers, and the second on matrix models.

Quantum Field Theories, Isomonodromic Deformations and Matrix Models

Globlek, Fran
2022

Abstract

Recent years have seen a proliferation of exact results in quantum field theories, owing mostly to supersymmetric localisation. Coupled with decades of study of dualities, this ensured the development of many novel nontrivial correspondences linking seemingly disparate parts of the mathematical landscape. Among these, the link between supersymmetric gauge theories with 8 supercharges and Painlev{\'e} equations, interpreted as the exact RG flow of their codimension 2 defects and passing through a correspondence with two-dimensional conformal field theory, was highly surprising. Similarly surprising was the realisation that three-dimensional matrix models coming from M-theory compute these solutions, and provide a non-perturbative completion of the topological string. Extending these two results is the focus of my work. After giving a review of the basics, hopefully useful to researchers in the field also for uses besides understanding the thesis, two parts based on published and unpublished results follow. The first is focused on giving Painlev{\'e}-type equations for general groups and linear quivers, and the second on matrix models.
19-set-2022
Inglese
Tanzini, Alessandro
Bonelli, Giulio
SISSA
Trieste
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/64980
Il codice NBN di questa tesi è URN:NBN:IT:SISSA-64980