Osteoarthritis (OA) is the most common rheumatic disease in the world and represents the first cause of disability in the world. OA results from the loss of balance between degradation and repair inside cartilage, in favor of degradation, with increased activity of catabolic enzymes such as matrix metalloproteinases and decreased production of ECM proteins. Chondrocytes are responsible for the repair and biosynthesis of elements of the extracellular matrix. Experimental findings support the hypothesis that diabetes is an independent risk factors for OA. However, correct molecular mechanisms underlying the diabetes-associated OA phenotype is still largely unknown. Firstly chondrocytes cell growth, ROS levels and apoptosis were analyzed using different glucose concentration. Results shown that chondrocytes prefer 2.5 mM of glucose which was used as normal glucose concentration and 25 mM of glucose was used as high glucose concentration. ROS levels and cell death increase in chondrocytes growth in high glucose environment. Also cytoskeletal network is more disorganized in C28/I2 cells growth at high glucose concentration, this correlates with different RalA-GTP levels which is involved in the regulation of cytoskeletal organization. Experiments were performed even using medium supplemented by ITS (Insulin-transferrin-selenium) to promote chondrocyte differentiation and IL-1β was used to simulate osteoarthritic cartilage environment. Ral A-GTP levels are lower in cells grown in 25 mM of glucose and stimulated with IL1β. Levels of p-ERK1/2 decrease in cells grown at high glucose concentration and in cells stimulated with IL1β. Furthermore, NF-κB, iNOS and LC3II levels were evaluated. Results demonstrate that high glucose media block autophagic process in chondrocytes. Effect of glucose concentration on human primary chondrocytes cells was evaluated after only 24 h to understand which signaling pathways is activated by high glucose environment. Phosphorylation of ERK1/2, p38, Akt and p65 is altered in chondrocytes growth at high glucose concentration and this correlates with an increase secretion of MMP-13. To better analyze the role of ROS levels in the chondrocytes I worked for 6 months in the Dr. Loeser Lab at the School of Medicine in the University of North Carolina at Chapel Hill; one of the best lab in the cartilage biology field. I worked on PRX6 which is involved in the recovery from H2O2. Oxidation state of PRX6 was evaluated in chondrocytes treated with different stimuli, like H2O2, Fn-f, menadione (men) and DMNQ. After this experiment, we wanted to see if PRX6 could impact the MAPK signaling pathways in cells treated with IGF-1, menadione, combination of menadione and IGF-1 and with Fn-f. Localization of PRX6 was analyzed using nuclear and cytoplasm extraction. Then I worked in collaboration with Prof. Laura Cipolla and Prof. Maddalena Collini to develop and characterized a new gelatin-based hydrogel using Diethylsquarate as crosslinker.
L’osteoartrite (OA) è una delle malattie reumatiche con più alta incidenza nel mondo moderno e rappresenta la pricipale cause di disabilità. L’OA è data da un disquilibrio tra degradazione e riparazione della cartilagine, a favore della degradazione, con un incremento dell’attivita degli enzimi catabolici come le matrici metalloproteinasiche. I condrociti sono responsabili della riparazione e della biosintesi degli elementi che compongono la ECM. Diversi studi supportano l’ipotesi che il diabete è uno dei fattori che causano l’osteoartrite. Sebbene non si conoscono ancor ai meccanismi molecolari che permettano l’associazione tra diabete e OA. Abbiano analizzato la crescita cellulare, i livelli dei ROS e l’apoptosi di condrociti posti in terreno con differenti concentrazioni di glucosio. I risultati mostrano che i condrociti preferiscono la concentrazione 2.5 mM di glucosio che è stata utilizzata come concentrazione normoglicemica; mentre 25 mM di glucosio è stata utilizzata come concentrazione iperglicemica. I livelli di ROS e la morte cellulare aumentano in condrociti cresciuti in alto glucosio, anche il citoscheletro si presenta disorganizzato in cellule C28/I2 cresciute in queste condizioni. Questo correla con lo stato di attivazione della GTPasi RalA, la cui attivazione è ridotta in condizioni iperglicemiche. Infatti questa GTPasi è coinvolta nella regolazione della riorganizzazione citoscheletrica. Inoltre sono stati effettuati esperimenti utilizzando medium contenenti ITS (Insulina, transferrina e selenio) che pruomuove il differenziamento a condrocita; mentre l’interleuchina-1β per simulare l’ambiente osteoartritico. Anche in uesto caso i livelli di RalA GTP diminuiscono in cellule cresciute in 25 mM glucosio e stimolate con IL-1β. Inoltre in queste condizioni diminuiscono ache i livelli di p-ERK1/2. Sono stati valutati anche i livelli di NF-κB, iNOS e LC3II. I risultati dimostrano che l’alto glucosio blocca l’autofagia nei condrociti. Inoltre sono stati valutati anche i pathways attivati dall’alto glucosio in condrociti primari umani dopo 24 h di trattamento. I risultati mostrano che la fosforilazione di ERK1/2, p38, Akt e p65 è alterata in condrociti cresciuti in condizioni iperglicemiche tale evento è correlato con un aumento di MMP-13. Per analizzare meglio il ruolo dei ROS nei condrociti ho lavorato per 6 mesi nel laboratorio del Dr. Loeser alla scuola di medicina presso l’università della north Carolina a Chapel Hill. Ho lavorato su PRX6 che è coinvolto nella detossificazione dai ROS. Lo stato di ossidazione di PRX6 è stato valutato nei condrociti trattati con diversi stimoli come H2O2, Fn-f, menadione (men) and DMNQ. Dopo questi esperimenti abbiamo voluto osservare se PRX6 potesse influenzare i pathway delle MAPK in cellule trattate con IGF-1, menadione, combinazione tra IGF-1 e menadione e con Fn-f. è stata valutata la localizzazione di PRX6 che si è visto essere sia nucleare che citoplasmatico. Inoltre ho lavorato in collaborazione con Prof. Laura Cipolla e Prof. Maddalena Collini per sviluppare e caratterizzare nuovi idrogel fatti di gelatina usando come agente cross-linkante lo squarato.
Role of glucose and peroxiredoxin 6 in human chondrocytes and novel biomaterial for in vitro three-dimensional chondrocytes culture
STUCCHI, SIMONE
2020
Abstract
Osteoarthritis (OA) is the most common rheumatic disease in the world and represents the first cause of disability in the world. OA results from the loss of balance between degradation and repair inside cartilage, in favor of degradation, with increased activity of catabolic enzymes such as matrix metalloproteinases and decreased production of ECM proteins. Chondrocytes are responsible for the repair and biosynthesis of elements of the extracellular matrix. Experimental findings support the hypothesis that diabetes is an independent risk factors for OA. However, correct molecular mechanisms underlying the diabetes-associated OA phenotype is still largely unknown. Firstly chondrocytes cell growth, ROS levels and apoptosis were analyzed using different glucose concentration. Results shown that chondrocytes prefer 2.5 mM of glucose which was used as normal glucose concentration and 25 mM of glucose was used as high glucose concentration. ROS levels and cell death increase in chondrocytes growth in high glucose environment. Also cytoskeletal network is more disorganized in C28/I2 cells growth at high glucose concentration, this correlates with different RalA-GTP levels which is involved in the regulation of cytoskeletal organization. Experiments were performed even using medium supplemented by ITS (Insulin-transferrin-selenium) to promote chondrocyte differentiation and IL-1β was used to simulate osteoarthritic cartilage environment. Ral A-GTP levels are lower in cells grown in 25 mM of glucose and stimulated with IL1β. Levels of p-ERK1/2 decrease in cells grown at high glucose concentration and in cells stimulated with IL1β. Furthermore, NF-κB, iNOS and LC3II levels were evaluated. Results demonstrate that high glucose media block autophagic process in chondrocytes. Effect of glucose concentration on human primary chondrocytes cells was evaluated after only 24 h to understand which signaling pathways is activated by high glucose environment. Phosphorylation of ERK1/2, p38, Akt and p65 is altered in chondrocytes growth at high glucose concentration and this correlates with an increase secretion of MMP-13. To better analyze the role of ROS levels in the chondrocytes I worked for 6 months in the Dr. Loeser Lab at the School of Medicine in the University of North Carolina at Chapel Hill; one of the best lab in the cartilage biology field. I worked on PRX6 which is involved in the recovery from H2O2. Oxidation state of PRX6 was evaluated in chondrocytes treated with different stimuli, like H2O2, Fn-f, menadione (men) and DMNQ. After this experiment, we wanted to see if PRX6 could impact the MAPK signaling pathways in cells treated with IGF-1, menadione, combination of menadione and IGF-1 and with Fn-f. Localization of PRX6 was analyzed using nuclear and cytoplasm extraction. Then I worked in collaboration with Prof. Laura Cipolla and Prof. Maddalena Collini to develop and characterized a new gelatin-based hydrogel using Diethylsquarate as crosslinker.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_752363.pdf
accesso aperto
Dimensione
6.79 MB
Formato
Adobe PDF
|
6.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/72716
URN:NBN:IT:UNIMIB-72716