My PhD was mainly focused on efficient materials for photon managing in several applications. The major topic I dealt with during my thesis was the development and the characterization of photonic crystals based on novel, extremely high refractive index materials. As a parallel project, my focus was the development of materials for biological applications such as high contrast, anti-Stokes imaging and ratiometric intracellular pH sensing. In detail, I worked on the nanofabrication and characterization of photonic crystals based on transition metal dichalcogenides (TMDs). In this period, I demonstrated the potential of TMDs for their applications to photonics, due to a surprisingly high refractive index in their transparency range. TMDs have some fabrication issues that limit their use in electronics and photonics. However, I demonstrated that these limitations can be lifted by converting the corresponding pre-processed transition metal oxide by annealing it at high temperatures in presence of a chalcogenizing agent. The synthesis of the transition metal oxide was performed with atomic layer deposition, a powerful thin film growth technique that allows for extreme control on thickness and perfect conformality over any substrate. In this work I demonstrated the possibility to overcome strong fabrication constraints for TMDs by producing, characterizing and modeling TMD-based photonic crystals. To my knowledge, this is the first example of nanofabricated structures for photonics made with TMDs. My work on photon managing techiniques continued shifting focus towards biotechnological applications. Specifically, I carried on a project I dealt with during my master thesis that was targeted at the development of high efficiency materials for sensitized triplet-triplet annihilation based up-conversion (TTA-UC) in multicomponent organic systems. Briefly, TTA-UC is a technique that allows for the generation of a high energy light starting from a lower energy excitation. It has great interest in solar energy, but recently it is under the spotlight for its potential as anti-Stokes, high contrast fluorophore for biological imaging. However, TTA-UC biocompatibility is still under investigation because of poor water-solubility of the most efficient materials. In my work, this issue was tackled and solved by developing self-assembled nano-micelles loaded with a model TTA-UC chromophore pair. This approach preserves TTA-UC performances in water and biological media. In parallel, I carried on the work on biological applications of photon managing techniques for a different target, the sensing of intracellular pH with a particular class of core/shell engineered heterostructured nanocrystals called Dot-in-Bulk (DiB). These nanocrystals feature a dual color emission consisting in well separated red and green bands originating from core and shell, respectively. The different exposure to the environment of core and shell determines a different sensitivity to oxidative and reductive species as H+ and OH- ions, respectively. Specifically, the core is weakly affected by the environment, while the opposite is true for the shell. This double sensitivity makes DiB extremely promising for ratiometric pH sensing. In this work, pH sensitivity was first demonstrated in solution. Then, DiB were internalized in human embrionic kidney (HEK) cells. Importantly, viability tests showed no cytotoxicity, demonstrating good biocompatibility for DiB nanocrystals. After the internalization into HEK cells, I was able to track an externally induced modification to cellular pH, demonstrating for the first time a single particle, fully inorganic ratiometric pH sensor based on a dual color emitting structure.

Il mio lavoro di tesi è stato mirato allo sviluppo di materiali per manipolazione della luce. Il principale obiettivo è stato quello di fabbricare e caratterizzare cristalli fotonici basati su materiali innovativi ad alto indice di rifrazione. Terminato questo progetto, l’obiettivo del mio lavoro si è spostato verso lo sviluppo di materiali per applicazioni biologiche: imaging anti-Stokes e sensing del pH intracellulare. In dettaglio, ho lavorato sulla nanofabbricazione e la caratterizzazione di cristalli fotonici a base di dicalcogenuri di metalli di transizione (TMD). In questo progetto ho dimostrato la potenzialità dei TMD per l’applicazione in fotonica che deriva da un indice di rifrazione sorprendentemente elevato nel loro intervallo di trasparenza. I TMD hanno limiti di fabbricazione che ne impediscono l’applicazione efficiente in fotonica. Nel mio lavoro ho dimostrato che questi limiti possono essere superati convertendo l’ossido di metallo di transizione corrispondente ad alta temperatura in presenza di un agente calcogenizzante. La sintesi dell’ossido di metallo di transizione è stata fatta con atomic layer deposition, tecnica di deposizione di film sottili estremamente potente che permette di controllare con estrema precisione la composizione e lo spessore del film depositato, oltre che di avere perfetta conformalità su qualunque substrato. In questo lavoro, ho prodotto, caratterizzato e modellizzato per la prima volta cristalli fotonici a base di TMD, dimostrando la possibilità di superare forti limiti di fabbricazione con tecniche semplici. Concluso questo progetto, il mio lavoro sulla manipolazione della luce è continuato, cambiando però l’interesse principale verso materiali per biotecnologie. In dettaglio, ho portato avanti un progetto di cui mi sono occupato durante la tesi di laurea che aveva come obiettivo lo sviluppo di materiali ad alta efficienza per up-conversion sensibilizzato basato su annichilazione tripletto-tripletto (TTA-UC). Il TTA-UC è una tecnica che permette di generare fotoni ad alta energia partendo da un’eccitazione ad energia minore, che è molto interessante per l’energia solare ma recentemente ha trovato applicazione anche in ambito biotecnologico come colorante ad alto contrasto e ad emissione anti-Stokes. L’applicabilità del TTA-UC a sistemi biologici è ancora sotto indagine perché le tipiche molecole che vengono utilizzate hanno una pessima solubilità in acqua. Nel mio lavoro, questo problema è stato affrontato e risolto sviluppando nano-micelle autoassemblate caricate con i cromofori per TTA-UC. Questa tecnica ha permesso di solubilizzare in acqua e in ambiente biologico i componenti per TTA-UC mantenendo un’alta efficienza. In parallelo, ho portato avanti il lavoro sulle applicazioni biotecnologiche con un obiettivo diverso, il sensing raziometrico del pH intracellulare utilizzando una particolare classe di nanocristalli core/shell chiamati dot-in-bulk (DiB). Questi nanocristalli hanno un’emissione a due colori che consiste in bande di fotoluminescenza molto separate che originano dal core e dalla shell, rispettivamente. La differente esposizione degli eccitoni di core e di shell all’ambiente circostante determina una diversa sensibilità a specie ossidanti e riducenti come ioni H+ e OH-, rispettivamente. In dettaglio, il core è poco influenzato dall’ambiente, mentre per la shell vale l’opposto. Questa doppia sensibilità rende i DiB estremamente interessanti per il sensing raziometrico. Nel mio lavoro, ho dimostrato per prima cosa la sensibilità al pH in soluzione. Verificata la non tossicità dei DiB per le cellule, questi ultimi sono stati inclusi in cellule HEK sia fissate che vive, dimostrando in entrambi i casi la possibilità di misurare una variazione di pH indotta esternamente. Questa è la prima dimostrazione di sensori di pH raziometrici a singola particella basati su nanocristalli inorganici a doppia emissione.

Advanced Strategies for Light Management in Photonics, Imaging, and Sensing

PEDRINI, JACOPO
2017

Abstract

My PhD was mainly focused on efficient materials for photon managing in several applications. The major topic I dealt with during my thesis was the development and the characterization of photonic crystals based on novel, extremely high refractive index materials. As a parallel project, my focus was the development of materials for biological applications such as high contrast, anti-Stokes imaging and ratiometric intracellular pH sensing. In detail, I worked on the nanofabrication and characterization of photonic crystals based on transition metal dichalcogenides (TMDs). In this period, I demonstrated the potential of TMDs for their applications to photonics, due to a surprisingly high refractive index in their transparency range. TMDs have some fabrication issues that limit their use in electronics and photonics. However, I demonstrated that these limitations can be lifted by converting the corresponding pre-processed transition metal oxide by annealing it at high temperatures in presence of a chalcogenizing agent. The synthesis of the transition metal oxide was performed with atomic layer deposition, a powerful thin film growth technique that allows for extreme control on thickness and perfect conformality over any substrate. In this work I demonstrated the possibility to overcome strong fabrication constraints for TMDs by producing, characterizing and modeling TMD-based photonic crystals. To my knowledge, this is the first example of nanofabricated structures for photonics made with TMDs. My work on photon managing techiniques continued shifting focus towards biotechnological applications. Specifically, I carried on a project I dealt with during my master thesis that was targeted at the development of high efficiency materials for sensitized triplet-triplet annihilation based up-conversion (TTA-UC) in multicomponent organic systems. Briefly, TTA-UC is a technique that allows for the generation of a high energy light starting from a lower energy excitation. It has great interest in solar energy, but recently it is under the spotlight for its potential as anti-Stokes, high contrast fluorophore for biological imaging. However, TTA-UC biocompatibility is still under investigation because of poor water-solubility of the most efficient materials. In my work, this issue was tackled and solved by developing self-assembled nano-micelles loaded with a model TTA-UC chromophore pair. This approach preserves TTA-UC performances in water and biological media. In parallel, I carried on the work on biological applications of photon managing techniques for a different target, the sensing of intracellular pH with a particular class of core/shell engineered heterostructured nanocrystals called Dot-in-Bulk (DiB). These nanocrystals feature a dual color emission consisting in well separated red and green bands originating from core and shell, respectively. The different exposure to the environment of core and shell determines a different sensitivity to oxidative and reductive species as H+ and OH- ions, respectively. Specifically, the core is weakly affected by the environment, while the opposite is true for the shell. This double sensitivity makes DiB extremely promising for ratiometric pH sensing. In this work, pH sensitivity was first demonstrated in solution. Then, DiB were internalized in human embrionic kidney (HEK) cells. Importantly, viability tests showed no cytotoxicity, demonstrating good biocompatibility for DiB nanocrystals. After the internalization into HEK cells, I was able to track an externally induced modification to cellular pH, demonstrating for the first time a single particle, fully inorganic ratiometric pH sensor based on a dual color emitting structure.
13-mar-2017
Italiano
Il mio lavoro di tesi è stato mirato allo sviluppo di materiali per manipolazione della luce. Il principale obiettivo è stato quello di fabbricare e caratterizzare cristalli fotonici basati su materiali innovativi ad alto indice di rifrazione. Terminato questo progetto, l’obiettivo del mio lavoro si è spostato verso lo sviluppo di materiali per applicazioni biologiche: imaging anti-Stokes e sensing del pH intracellulare. In dettaglio, ho lavorato sulla nanofabbricazione e la caratterizzazione di cristalli fotonici a base di dicalcogenuri di metalli di transizione (TMD). In questo progetto ho dimostrato la potenzialità dei TMD per l’applicazione in fotonica che deriva da un indice di rifrazione sorprendentemente elevato nel loro intervallo di trasparenza. I TMD hanno limiti di fabbricazione che ne impediscono l’applicazione efficiente in fotonica. Nel mio lavoro ho dimostrato che questi limiti possono essere superati convertendo l’ossido di metallo di transizione corrispondente ad alta temperatura in presenza di un agente calcogenizzante. La sintesi dell’ossido di metallo di transizione è stata fatta con atomic layer deposition, tecnica di deposizione di film sottili estremamente potente che permette di controllare con estrema precisione la composizione e lo spessore del film depositato, oltre che di avere perfetta conformalità su qualunque substrato. In questo lavoro, ho prodotto, caratterizzato e modellizzato per la prima volta cristalli fotonici a base di TMD, dimostrando la possibilità di superare forti limiti di fabbricazione con tecniche semplici. Concluso questo progetto, il mio lavoro sulla manipolazione della luce è continuato, cambiando però l’interesse principale verso materiali per biotecnologie. In dettaglio, ho portato avanti un progetto di cui mi sono occupato durante la tesi di laurea che aveva come obiettivo lo sviluppo di materiali ad alta efficienza per up-conversion sensibilizzato basato su annichilazione tripletto-tripletto (TTA-UC). Il TTA-UC è una tecnica che permette di generare fotoni ad alta energia partendo da un’eccitazione ad energia minore, che è molto interessante per l’energia solare ma recentemente ha trovato applicazione anche in ambito biotecnologico come colorante ad alto contrasto e ad emissione anti-Stokes. L’applicabilità del TTA-UC a sistemi biologici è ancora sotto indagine perché le tipiche molecole che vengono utilizzate hanno una pessima solubilità in acqua. Nel mio lavoro, questo problema è stato affrontato e risolto sviluppando nano-micelle autoassemblate caricate con i cromofori per TTA-UC. Questa tecnica ha permesso di solubilizzare in acqua e in ambiente biologico i componenti per TTA-UC mantenendo un’alta efficienza. In parallelo, ho portato avanti il lavoro sulle applicazioni biotecnologiche con un obiettivo diverso, il sensing raziometrico del pH intracellulare utilizzando una particolare classe di nanocristalli core/shell chiamati dot-in-bulk (DiB). Questi nanocristalli hanno un’emissione a due colori che consiste in bande di fotoluminescenza molto separate che originano dal core e dalla shell, rispettivamente. La differente esposizione degli eccitoni di core e di shell all’ambiente circostante determina una diversa sensibilità a specie ossidanti e riducenti come ioni H+ e OH-, rispettivamente. In dettaglio, il core è poco influenzato dall’ambiente, mentre per la shell vale l’opposto. Questa doppia sensibilità rende i DiB estremamente interessanti per il sensing raziometrico. Nel mio lavoro, ho dimostrato per prima cosa la sensibilità al pH in soluzione. Verificata la non tossicità dei DiB per le cellule, questi ultimi sono stati inclusi in cellule HEK sia fissate che vive, dimostrando in entrambi i casi la possibilità di misurare una variazione di pH indotta esternamente. Questa è la prima dimostrazione di sensori di pH raziometrici a singola particella basati su nanocristalli inorganici a doppia emissione.
photonics,; imaging,; upconversion,; pH; sensing
MEINARDI, FRANCESCO
Università degli Studi di Milano-Bicocca
File in questo prodotto:
File Dimensione Formato  
phd_unimib_709055.pdf

accesso aperto

Dimensione 17.84 MB
Formato Adobe PDF
17.84 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/77709
Il codice NBN di questa tesi è URN:NBN:IT:UNIMIB-77709