The overarching theme presented this thesis is the generation of large (x1) and local-scale (x2) 3D structural models of regions of the Pennine Alps, for which I introduce modelling workflows that combine high-resolution new and legacy structural datasets derived from fieldwork with implicit modelling algorithms. The implicit approach builds the tectonic architecture as an analogy between the relative distance among geological structures and a volumetric scalar field, within which geological structures are represented as isovalue surfaces. In particular, in this thesis I employ the Discrete Smooth Interpolator algorithm. The study areas, situated in the northwestern Alps between Mont Blanc and Monte Rosa, lacked prior comprehensive three-dimensional representations. This region exhibits the Austroalpine-Penninic collisional wedge and the Helvetic-Ultrahelvetic sequence of thrust sheets. This tectonic sequence is represented in the first, regional-scale 3D model presented in this thesis, spanning approximately 1,500 km2 along the Italian-Swiss boundary. The modelling workflow for the creation of this model incorporates structural interpretations on vertical cross-sections to propagate geological knowledge to the subsurface, ensuring the geological realism of the final outcome, resulting in a deterministic model that provides a comprehensive summary of the tectonic architecture and captures the state of the knowledge about the region. Geological structures represented by the model include hierarchical shear zones, isoclinal and/or recumbent folds, and networks of faults. Successively, I redirect my attention to two more localised regions (extensions less than 30km2) encompassed within the boundaries of the regional model, the Lago di Cignana area and the Tournalin-Roisetta ridge. With the objective of reducing subjectivity and uncertainty of the final outcomes, I employ techniques that rely on the abundance of the structural database and leverage constraints provided by the implicit modelling approach. For this, I perform three-dimensional interpolation of vectorial data, incorporate inequality constraints to integrate off-contact information in the interpolation (i.e., observations collected away from tectonic boundaries), and account for uncertainties in the structural database through stochastic simulations of vectorial data that replicate spherical distributions identified in the input database. In the Lago di Cignana area, I adapt the modelling workflow to represent non-cylindrical, isoclinal recumbent folds exposed in the region, and I employ interpolations and simulations of fold axes. The value of the uncertainty analysis is demonstrated by its ability to suggest, among the alternative possible scenarios, partial rotation within segments of the isoclinal folds, possible closures along the axial plane, and higher uncertainties localised at the fold hinges. Conversely, for the modelling of the Tournalin-Roisetta ridge, I interpolate and simulate the normal vectors to schistosity data and incorporate off-contact observations. Results reveal that inequality constraints enable the creation of alternative, smoother solutions, and the uncertainty analysis indicates higher uncertainties away from direct measurements and reveals oscillations of up to 100 meters orthogonal to the layers. Throughout the different chapters of this thesis, I provide descriptions of the modelling workflows elucidating the rationale behind the selection of the modelling strategies and present the three-dimensional outcomes of the implicit modelling approach applied to the Pennine Alps.

Questa tesi tratta della creazione di modelli 3D strutturali su larga scala (x1) e su scala locale (x2) di regioni delle Alpi Pennine, per cui introduco workflow di modellazione 3D che combinano dati strutturali di terreno (sia originali che già pubblicati) con algoritmi di modellazione implicita. L'approccio di modellazione implicito rappresenta l'architettura tettonica costruendo un’analogia tra la distanza relativa tra strutture geologiche e un campo scalare volumetrico. In questo campo, le strutture geologiche sono rappresentate da superfici di equipotenziali, e la loro geometria è vincolata da osservazioni geologiche di terreno che influenzano sia valore che l'orientamento del campo scalare. In particolare, in questa tesi utilizzo l'algoritmo Discrete Smooth Interpolator. Le aree di studio sono situate nelle Alpi nord-occidentali, tra il Monte Bianco e il Monte Rosa, e non sono mai state oggetto di uno studio di modellazione 3D di questa portata. Nella regione sono esposti il dominio Austroalpino, il Piemontese, il Pennidico e il sistema Elvetico-Ultraelvetico. Questa sequenza tettonica è rappresentata nel primo modello 3D presentato in questa tesi, che si estende per circa 1.500 km2 lungo il confine tra Italia e Svizzera. Il workflow di modellazione per questo modello prevede la creazione di interpretazioni strutturali in sezioni verticali, necessarie a ottenere un risultato che rispetti principi di realismo geologico. Il risultato è un modello deterministico che cattura la conoscenza dell'architettura tettonica a scala regionale, rappresentando strutture quali zone di taglio, pieghe ripiegate, isoclinali e/o coricate, e il reticolo di faglie. Successivamente, la tesi si focalizza su due regioni di dimensioni inferiori (estensioni inferiori ai 30 km2), quali l'area del Lago di Cignana e la dorsale Tournalin-Roisetta, locate all'interno dei confini del modello regionale. Con l'obiettivo di minimizzare l’input soggettivo interpretativo, i workflow di modellazione applicano tecniche volte a sfruttare l'abbondanza di dati strutturali e i vincoli forniti dall'approccio di modellazione implicito. Per questo, performo interpolazione 3D di dati vettoriali, incorporo vincoli di disuguaglianza (inequality constraints) per integrare osservazioni raccolte non in corrispondenza di contatti tettonici e, integro soluzioni per lo studio di incertezza che si basano su simulazioni stocastiche dei dati vettoriali, replicando distribuzioni statistiche identificate nel database di terreno. Nell'area del Lago di Cignana, adatto il workflow di modellazione alla rappresentazione di pieghe isoclinali coricate non cilindriche, e utilizzo interpolazione e simulazione di assi di piega. L’analisi di incertezza dimostra il suo valore suggerendo, tra i diversi scenari possibili, rotazioni parziali di segmenti delle pieghe isoclinali, possibile chiusura delle pieghe lungo il piano assiale e incertezze più elevate localizzate alle cerniere. D’altro lato, per la modellazione della dorsale Tournalin-Roisetta, utilizzo interpolazione e simulazione dei vettori normali ai dati di scistosità per la rappresentazione della successione ofiolitica, e incorporo vincoli di disuguaglianza, riducendo l’incertezza introdotta dall’interpretazione in carta. Nei diversi capitoli di questa tesi descrivo i workflow di modellazione, le ragioni che supportano la scelta delle strategie di modellazione, e presento i modelli 3D impliciti di queste regioni delle Alpi Pennine.

Implicit 3D structural modelling in metamorphic mountain belts: regional and local-scale applications in the Pennine Alps (NW Italy)

ARIENTI, GLORIA
2024

Abstract

The overarching theme presented this thesis is the generation of large (x1) and local-scale (x2) 3D structural models of regions of the Pennine Alps, for which I introduce modelling workflows that combine high-resolution new and legacy structural datasets derived from fieldwork with implicit modelling algorithms. The implicit approach builds the tectonic architecture as an analogy between the relative distance among geological structures and a volumetric scalar field, within which geological structures are represented as isovalue surfaces. In particular, in this thesis I employ the Discrete Smooth Interpolator algorithm. The study areas, situated in the northwestern Alps between Mont Blanc and Monte Rosa, lacked prior comprehensive three-dimensional representations. This region exhibits the Austroalpine-Penninic collisional wedge and the Helvetic-Ultrahelvetic sequence of thrust sheets. This tectonic sequence is represented in the first, regional-scale 3D model presented in this thesis, spanning approximately 1,500 km2 along the Italian-Swiss boundary. The modelling workflow for the creation of this model incorporates structural interpretations on vertical cross-sections to propagate geological knowledge to the subsurface, ensuring the geological realism of the final outcome, resulting in a deterministic model that provides a comprehensive summary of the tectonic architecture and captures the state of the knowledge about the region. Geological structures represented by the model include hierarchical shear zones, isoclinal and/or recumbent folds, and networks of faults. Successively, I redirect my attention to two more localised regions (extensions less than 30km2) encompassed within the boundaries of the regional model, the Lago di Cignana area and the Tournalin-Roisetta ridge. With the objective of reducing subjectivity and uncertainty of the final outcomes, I employ techniques that rely on the abundance of the structural database and leverage constraints provided by the implicit modelling approach. For this, I perform three-dimensional interpolation of vectorial data, incorporate inequality constraints to integrate off-contact information in the interpolation (i.e., observations collected away from tectonic boundaries), and account for uncertainties in the structural database through stochastic simulations of vectorial data that replicate spherical distributions identified in the input database. In the Lago di Cignana area, I adapt the modelling workflow to represent non-cylindrical, isoclinal recumbent folds exposed in the region, and I employ interpolations and simulations of fold axes. The value of the uncertainty analysis is demonstrated by its ability to suggest, among the alternative possible scenarios, partial rotation within segments of the isoclinal folds, possible closures along the axial plane, and higher uncertainties localised at the fold hinges. Conversely, for the modelling of the Tournalin-Roisetta ridge, I interpolate and simulate the normal vectors to schistosity data and incorporate off-contact observations. Results reveal that inequality constraints enable the creation of alternative, smoother solutions, and the uncertainty analysis indicates higher uncertainties away from direct measurements and reveals oscillations of up to 100 meters orthogonal to the layers. Throughout the different chapters of this thesis, I provide descriptions of the modelling workflows elucidating the rationale behind the selection of the modelling strategies and present the three-dimensional outcomes of the implicit modelling approach applied to the Pennine Alps.
21-feb-2024
Inglese
Questa tesi tratta della creazione di modelli 3D strutturali su larga scala (x1) e su scala locale (x2) di regioni delle Alpi Pennine, per cui introduco workflow di modellazione 3D che combinano dati strutturali di terreno (sia originali che già pubblicati) con algoritmi di modellazione implicita. L'approccio di modellazione implicito rappresenta l'architettura tettonica costruendo un’analogia tra la distanza relativa tra strutture geologiche e un campo scalare volumetrico. In questo campo, le strutture geologiche sono rappresentate da superfici di equipotenziali, e la loro geometria è vincolata da osservazioni geologiche di terreno che influenzano sia valore che l'orientamento del campo scalare. In particolare, in questa tesi utilizzo l'algoritmo Discrete Smooth Interpolator. Le aree di studio sono situate nelle Alpi nord-occidentali, tra il Monte Bianco e il Monte Rosa, e non sono mai state oggetto di uno studio di modellazione 3D di questa portata. Nella regione sono esposti il dominio Austroalpino, il Piemontese, il Pennidico e il sistema Elvetico-Ultraelvetico. Questa sequenza tettonica è rappresentata nel primo modello 3D presentato in questa tesi, che si estende per circa 1.500 km2 lungo il confine tra Italia e Svizzera. Il workflow di modellazione per questo modello prevede la creazione di interpretazioni strutturali in sezioni verticali, necessarie a ottenere un risultato che rispetti principi di realismo geologico. Il risultato è un modello deterministico che cattura la conoscenza dell'architettura tettonica a scala regionale, rappresentando strutture quali zone di taglio, pieghe ripiegate, isoclinali e/o coricate, e il reticolo di faglie. Successivamente, la tesi si focalizza su due regioni di dimensioni inferiori (estensioni inferiori ai 30 km2), quali l'area del Lago di Cignana e la dorsale Tournalin-Roisetta, locate all'interno dei confini del modello regionale. Con l'obiettivo di minimizzare l’input soggettivo interpretativo, i workflow di modellazione applicano tecniche volte a sfruttare l'abbondanza di dati strutturali e i vincoli forniti dall'approccio di modellazione implicito. Per questo, performo interpolazione 3D di dati vettoriali, incorporo vincoli di disuguaglianza (inequality constraints) per integrare osservazioni raccolte non in corrispondenza di contatti tettonici e, integro soluzioni per lo studio di incertezza che si basano su simulazioni stocastiche dei dati vettoriali, replicando distribuzioni statistiche identificate nel database di terreno. Nell'area del Lago di Cignana, adatto il workflow di modellazione alla rappresentazione di pieghe isoclinali coricate non cilindriche, e utilizzo interpolazione e simulazione di assi di piega. L’analisi di incertezza dimostra il suo valore suggerendo, tra i diversi scenari possibili, rotazioni parziali di segmenti delle pieghe isoclinali, possibile chiusura delle pieghe lungo il piano assiale e incertezze più elevate localizzate alle cerniere. D’altro lato, per la modellazione della dorsale Tournalin-Roisetta, utilizzo interpolazione e simulazione dei vettori normali ai dati di scistosità per la rappresentazione della successione ofiolitica, e incorporo vincoli di disuguaglianza, riducendo l’incertezza introdotta dall’interpretazione in carta. Nei diversi capitoli di questa tesi descrivo i workflow di modellazione, le ragioni che supportano la scelta delle strategie di modellazione, e presento i modelli 3D impliciti di queste regioni delle Alpi Pennine.
Modello strutturale; Alpi Pennine; Modelli Impliciti; Analisi incertezza; Alpi NW
BISTACCHI, ANDREA LUIGI PAOLO
Università degli Studi di Milano-Bicocca
File in questo prodotto:
File Dimensione Formato  
phd_unimib_789518.pdf

accesso aperto

Dimensione 16.74 MB
Formato Adobe PDF
16.74 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/78126
Il codice NBN di questa tesi è URN:NBN:IT:UNIMIB-78126