Negli ultimi tempi il recupero di diversi tipi di metalli dai rifiuti ha acquistato notevole interesse. Una delle ragioni è che i rifiuti, e in particolare i rifiuti elettronici, contengono metalli considerati strategici. Infatti, la disponibilità di questi metalli è limitata e diminuisce, poiché le risorse naturali sono limitate, e i loro prezzi variano in base ai mercati e alla politica di gestione dei paesi produttori. In realtà, i metalli strategici sono generalmente definiti come metalli che sono necessari per la difesa nazionale di un paese, ma sono minacciati da interruzioni di approvvigionamento a causa della modesta produzione nazionale. Tuttavia, la definizione di metalli strategici può includere anche i metalli che sono importanti non solo per la difesa nazionale, ma anche per le industrie che svolgono un ruolo importante nello sviluppo economico di un paese, ad esempio quelle legate all’energia, all’ambito aerospaziale, a quello delle telecomunicazioni, computer e tecnologia mobile. Per queste ragioni è diventato molto interessante ed urgente trovare un modo strategico per recuperare questi metalli dai rifiuti. In questo lavoro, è stato studiato il recupero di risorse da diversi rifiuti. In particolare, dopo l'introduzione e la descrizione dei sistemi sperimentali, nel Capitolo 3 viene discusso il recupero dell'oro, unitamente ad altri metalli (argento, rame e stagno) dalle schede di circuiti stampati (PCB) a fine vita. Si consideri che i metalli più pericolosi e preziosi sono contenuti proprio nei circuiti stampati. In particolare, è stato studiato un processo che comprende un attacco acido seguito dalla complessazione oro con tiourea o tiosolfato, due sostanze che potrebbero sostituire i ben più tossici cianuri, tipicamente utilizzati per la dissoluzione dell'oro. Inoltre, è stato esaminato l'effetto degli ultrasuoni durante la lisciviazione, al fine di verificare se il loro effetto consentisse di aumentare la resa d’estrazione. Infatti, negli ultimi anni, gli ultrasuoni sono stati studiati per assistere l'estrazione idrometallurgica dei metalli da minerale ma la loro applicazione industriale è ancora limitata, nonostante diversi vantaggi siano stati riconosciuti dalla loro applicazione: una maggiore liberazione dei metalli in tempi più brevi, minore concentrazione di reagenti necessaria e basse temperature di lavoro. Pertanto, l'uso di ultrasuoni potrebbe rappresentare un vantaggio per aumentare anche il recupero dei metalli preziosi dai rifiuti. Successivamente, è stato condotto uno studio per valutare il recupero dell'argento da pannelli fotovoltaici a fine vita e, più in generale, il processo più semplice e più economico per il completo recupero di risorse dai pannelli fotovoltaici. Sono stati quindi testati diversi metodi sia idrometallurgici che pirometallurgici e i risultati migliori si sono ottenuti combinando un trattamento pirometallurgico e tre idrometallurgici. I parametri di processo, come temperatura e durata del trattamento sono stati studiati e ottimizzati, sia per il riscaldamento che per i trattamenti chimici e i risultati di questo studio sono presentati nel Capitolo 4. Inoltre, visto che l'idea sembra economicamente valida, è stata anche testata a TRL 5 e i risultati emersi sono stati utilizzati per richiedere un finanziamento europeo. Infatti, è stato approvato il progetto "ReSiELP", che in tre anni dovrebbe costruire un impianto per esportare questa tecnologia a TRL 7. Successivamente, nel Capitolo 5, è stato studiato un modo per recuperare il tantalio dai condensatori a fine vita e neodimio da magneti permanenti. Per separare il tantalio dalla silice, è stato studiato e testato un trattamento con acido fluoridrico, mentre nel recupero del neodimio il processo noto in letteratura è stato modificato introducendo un trattamento con ammoniaca che aumenta la purezza del sale doppio di neodimio e sodio che viene recuperato. Dopo questi studi sull'estrazione dei metalli da rifiuti elettronici, è stato testato un metodo per aumentare il valore del materiale recuperato. Infatti, oltre al valore intrinseco di questi metalli, un ulteriore vantaggio potrebbe essere ottenuto recuperando questi metalli sotto forma di nanoparticelle, le quali presentano proprietà molto interessanti e promettenti in confronto ai corrispondenti materiali massivi. Le proprietà di quest’ultime sono ottiche, magnetiche, catalitiche, termodinamiche ed elettrochimiche. Inoltre, i nanomateriali possono fornire soluzioni alle sfide tecnologiche e ambientali nei settori della conversione energetica, della catalisi, della medicina e del trattamento dell'acqua. In quest’ottica, sono state prodotte nanoparticelle diverse utilizzando come materie prime le soluzioni in cui erano stati precedentemente ntrattati i rifiuti elettronici. In particolare sono state sintetizzate e caratterizzate nanoparticelle di ossido di stagno, argento, rame, ossido di rame, oro e ferro, ed i risultati dello studio sono presentati nel Capitolo 6. Tutte le nanoparticelle sono state sintetizzate utilizzando processi idrometallurgici e l'utilizzo di reagenti il più possibile ecocompatibili (quali l'acido ascorbico o lo sciroppo di glucosio) nonché la sperimentazione di una tecnologia, quali gli ultrasuoni, considerata ecologica e già testata durante la lisciviazione dei rifiuti elettronici. In questo caso, l'applicazione degli ultrasuoni ha consentito di ridurre le dimensioni delle particelle sintetizzate grazie all’effetto di cavitazione che generano nel liquido. Sono stati sviluppati diversi processi per produrre i sei tipi di nanoparticelle. I materiali ottenuti sono stati analizzati con plasma ad accoppiamento induttivo (ICP), microscopia a scansione e trasmissione elettronica (SEM e TEM), diffrazione a raggi X, diffrazione laser e spettroscopia UV. I risultati hanno dimostrato che i metodi sviluppati consentono di recuperare i metalli con elevata resa e di produrre nanoparticelle di ossido di stagno, argento, rame, ossido di rame, oro e ferro ad alta purezza e di dimensioni comprese tra 2 e 200 nm. Infine, è stata studiata anche un'applicazione interessante e innovativa per i metalli recuperati, in particolare argento e rame, ed i risultati riportati nel Capitolo 7 di questa tesi. In particolare, l'argento e la polvere di rame sono stati introdotti nel rivestimento di ossidazione elettrolitica al plasma. L'ossidazione al plasma elettrolitico (PEO), chiamata anche "Microarc Oxidation" (MAO), è una tecnica di rivestimento superficiale relativamente nuova ma che inizia ad essere impiegata nella produzione di rivestimenti ceramici d’ossido su leghe leggere quali l'alluminio, il titanio o il magnesio. Il trattamento PEO può migliorare le proprietà di resistenza alla corrosione e all'usura di questi metalli o conferisce diverse altre proprietà funzionali, tra cui diminuzione dell’attrito e protezione termica. Inoltre, il PEO può essere utilizzato come pretrattamento per fornire un substrato per altri rivestimenti. Il PEO deriva dall'anodizzazione convenzionale, ma presenta molti vantaggi, come ad esempio elevate proprietà dei rivestimenti di resistenza a usura e corrosione, l’impiego di elettroliti più rispettosi dell'ambiente e la possibilità di inserire nel rivestimento particelle provenienti dall'elettrolita. Il PEO dei metalli è un processo complesso che combina la formazione di film di ossido, la dissoluzione e la rottura del dielettrico: il campione, come anodo, è immerso in un elettrolita ed il processo impiega elevate tensioni e densità di corrente all'interno di un serbatoio che funge da catodo. A causa dell'elevata tensione che deve essere al di sopra del potenziale di rottura del dielettrico, durante il trattamento PEO vi sono micro-scariche anodiche persistenti sulla superficie. Queste micro-scariche di breve durata sono la chiave del processo; si muovono casualmente sulla superficie trattata provocando la crescita di un rivestimento ceramico d’ossido e permettendo di incorporare composti nel rivestimento. Negli studi presentati in questa tesi, le polveri di argento e rame sono state introdotte nel rivestimento PEO mediante aggiunta diretta nell'elettrolita per conferire rispettivamente l'effetto antimicrobico / antimicotico e antivegetativo ai campioni.

Strategic metals recovery from wastes

CERCHIER, PIETROGIOVANNI
2017

Abstract

Negli ultimi tempi il recupero di diversi tipi di metalli dai rifiuti ha acquistato notevole interesse. Una delle ragioni è che i rifiuti, e in particolare i rifiuti elettronici, contengono metalli considerati strategici. Infatti, la disponibilità di questi metalli è limitata e diminuisce, poiché le risorse naturali sono limitate, e i loro prezzi variano in base ai mercati e alla politica di gestione dei paesi produttori. In realtà, i metalli strategici sono generalmente definiti come metalli che sono necessari per la difesa nazionale di un paese, ma sono minacciati da interruzioni di approvvigionamento a causa della modesta produzione nazionale. Tuttavia, la definizione di metalli strategici può includere anche i metalli che sono importanti non solo per la difesa nazionale, ma anche per le industrie che svolgono un ruolo importante nello sviluppo economico di un paese, ad esempio quelle legate all’energia, all’ambito aerospaziale, a quello delle telecomunicazioni, computer e tecnologia mobile. Per queste ragioni è diventato molto interessante ed urgente trovare un modo strategico per recuperare questi metalli dai rifiuti. In questo lavoro, è stato studiato il recupero di risorse da diversi rifiuti. In particolare, dopo l'introduzione e la descrizione dei sistemi sperimentali, nel Capitolo 3 viene discusso il recupero dell'oro, unitamente ad altri metalli (argento, rame e stagno) dalle schede di circuiti stampati (PCB) a fine vita. Si consideri che i metalli più pericolosi e preziosi sono contenuti proprio nei circuiti stampati. In particolare, è stato studiato un processo che comprende un attacco acido seguito dalla complessazione oro con tiourea o tiosolfato, due sostanze che potrebbero sostituire i ben più tossici cianuri, tipicamente utilizzati per la dissoluzione dell'oro. Inoltre, è stato esaminato l'effetto degli ultrasuoni durante la lisciviazione, al fine di verificare se il loro effetto consentisse di aumentare la resa d’estrazione. Infatti, negli ultimi anni, gli ultrasuoni sono stati studiati per assistere l'estrazione idrometallurgica dei metalli da minerale ma la loro applicazione industriale è ancora limitata, nonostante diversi vantaggi siano stati riconosciuti dalla loro applicazione: una maggiore liberazione dei metalli in tempi più brevi, minore concentrazione di reagenti necessaria e basse temperature di lavoro. Pertanto, l'uso di ultrasuoni potrebbe rappresentare un vantaggio per aumentare anche il recupero dei metalli preziosi dai rifiuti. Successivamente, è stato condotto uno studio per valutare il recupero dell'argento da pannelli fotovoltaici a fine vita e, più in generale, il processo più semplice e più economico per il completo recupero di risorse dai pannelli fotovoltaici. Sono stati quindi testati diversi metodi sia idrometallurgici che pirometallurgici e i risultati migliori si sono ottenuti combinando un trattamento pirometallurgico e tre idrometallurgici. I parametri di processo, come temperatura e durata del trattamento sono stati studiati e ottimizzati, sia per il riscaldamento che per i trattamenti chimici e i risultati di questo studio sono presentati nel Capitolo 4. Inoltre, visto che l'idea sembra economicamente valida, è stata anche testata a TRL 5 e i risultati emersi sono stati utilizzati per richiedere un finanziamento europeo. Infatti, è stato approvato il progetto "ReSiELP", che in tre anni dovrebbe costruire un impianto per esportare questa tecnologia a TRL 7. Successivamente, nel Capitolo 5, è stato studiato un modo per recuperare il tantalio dai condensatori a fine vita e neodimio da magneti permanenti. Per separare il tantalio dalla silice, è stato studiato e testato un trattamento con acido fluoridrico, mentre nel recupero del neodimio il processo noto in letteratura è stato modificato introducendo un trattamento con ammoniaca che aumenta la purezza del sale doppio di neodimio e sodio che viene recuperato. Dopo questi studi sull'estrazione dei metalli da rifiuti elettronici, è stato testato un metodo per aumentare il valore del materiale recuperato. Infatti, oltre al valore intrinseco di questi metalli, un ulteriore vantaggio potrebbe essere ottenuto recuperando questi metalli sotto forma di nanoparticelle, le quali presentano proprietà molto interessanti e promettenti in confronto ai corrispondenti materiali massivi. Le proprietà di quest’ultime sono ottiche, magnetiche, catalitiche, termodinamiche ed elettrochimiche. Inoltre, i nanomateriali possono fornire soluzioni alle sfide tecnologiche e ambientali nei settori della conversione energetica, della catalisi, della medicina e del trattamento dell'acqua. In quest’ottica, sono state prodotte nanoparticelle diverse utilizzando come materie prime le soluzioni in cui erano stati precedentemente ntrattati i rifiuti elettronici. In particolare sono state sintetizzate e caratterizzate nanoparticelle di ossido di stagno, argento, rame, ossido di rame, oro e ferro, ed i risultati dello studio sono presentati nel Capitolo 6. Tutte le nanoparticelle sono state sintetizzate utilizzando processi idrometallurgici e l'utilizzo di reagenti il più possibile ecocompatibili (quali l'acido ascorbico o lo sciroppo di glucosio) nonché la sperimentazione di una tecnologia, quali gli ultrasuoni, considerata ecologica e già testata durante la lisciviazione dei rifiuti elettronici. In questo caso, l'applicazione degli ultrasuoni ha consentito di ridurre le dimensioni delle particelle sintetizzate grazie all’effetto di cavitazione che generano nel liquido. Sono stati sviluppati diversi processi per produrre i sei tipi di nanoparticelle. I materiali ottenuti sono stati analizzati con plasma ad accoppiamento induttivo (ICP), microscopia a scansione e trasmissione elettronica (SEM e TEM), diffrazione a raggi X, diffrazione laser e spettroscopia UV. I risultati hanno dimostrato che i metodi sviluppati consentono di recuperare i metalli con elevata resa e di produrre nanoparticelle di ossido di stagno, argento, rame, ossido di rame, oro e ferro ad alta purezza e di dimensioni comprese tra 2 e 200 nm. Infine, è stata studiata anche un'applicazione interessante e innovativa per i metalli recuperati, in particolare argento e rame, ed i risultati riportati nel Capitolo 7 di questa tesi. In particolare, l'argento e la polvere di rame sono stati introdotti nel rivestimento di ossidazione elettrolitica al plasma. L'ossidazione al plasma elettrolitico (PEO), chiamata anche "Microarc Oxidation" (MAO), è una tecnica di rivestimento superficiale relativamente nuova ma che inizia ad essere impiegata nella produzione di rivestimenti ceramici d’ossido su leghe leggere quali l'alluminio, il titanio o il magnesio. Il trattamento PEO può migliorare le proprietà di resistenza alla corrosione e all'usura di questi metalli o conferisce diverse altre proprietà funzionali, tra cui diminuzione dell’attrito e protezione termica. Inoltre, il PEO può essere utilizzato come pretrattamento per fornire un substrato per altri rivestimenti. Il PEO deriva dall'anodizzazione convenzionale, ma presenta molti vantaggi, come ad esempio elevate proprietà dei rivestimenti di resistenza a usura e corrosione, l’impiego di elettroliti più rispettosi dell'ambiente e la possibilità di inserire nel rivestimento particelle provenienti dall'elettrolita. Il PEO dei metalli è un processo complesso che combina la formazione di film di ossido, la dissoluzione e la rottura del dielettrico: il campione, come anodo, è immerso in un elettrolita ed il processo impiega elevate tensioni e densità di corrente all'interno di un serbatoio che funge da catodo. A causa dell'elevata tensione che deve essere al di sopra del potenziale di rottura del dielettrico, durante il trattamento PEO vi sono micro-scariche anodiche persistenti sulla superficie. Queste micro-scariche di breve durata sono la chiave del processo; si muovono casualmente sulla superficie trattata provocando la crescita di un rivestimento ceramico d’ossido e permettendo di incorporare composti nel rivestimento. Negli studi presentati in questa tesi, le polveri di argento e rame sono state introdotte nel rivestimento PEO mediante aggiunta diretta nell'elettrolita per conferire rispettivamente l'effetto antimicrobico / antimicotico e antivegetativo ai campioni.
15-dic-2017
Inglese
e-waste recovery tantalum neodymium pv panels silicon nanoparticles silver copper iron tin dioxide gold cuprous oxide
DABALA', MANUELE
BERNARDO, ENRICO
Università degli studi di Padova
288
File in questo prodotto:
File Dimensione Formato  
Tesi_completa.pdf

accesso aperto

Dimensione 24.91 MB
Formato Adobe PDF
24.91 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/83565
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-83565