The Miller-Abrahams random resistor network is used to study electron transport in amorphous solids. This resistor network is given by the complete random graph built on a marked homogeneous Poisson point process on R^d and each edge {x,y} is associated to a filament with conductance depending on the temperature, the distance between the points x,y and their associated marks. In this thesis we consider the subgraph containing only edges with lower bounded conductances and, using the method of randomized algorithms developed by Duminil-Copin et al. and the renormalization argument proposed by Grimmett and Marstrand, we analyze the connection probabilities and the left-right crossings in appropriate regimes. These percolation properties are key ingredients for understanding the asymptotic behavior at low temperature of the effective conductivity of the Miller-Abrahams random resistor network. Joint work with Alessandra Faggionato (Sapienza University, Rome).

Percolation in the Miller-Abrahams random resistor network

MIMUN, HLAFO ALFIE
2020

Abstract

The Miller-Abrahams random resistor network is used to study electron transport in amorphous solids. This resistor network is given by the complete random graph built on a marked homogeneous Poisson point process on R^d and each edge {x,y} is associated to a filament with conductance depending on the temperature, the distance between the points x,y and their associated marks. In this thesis we consider the subgraph containing only edges with lower bounded conductances and, using the method of randomized algorithms developed by Duminil-Copin et al. and the renormalization argument proposed by Grimmett and Marstrand, we analyze the connection probabilities and the left-right crossings in appropriate regimes. These percolation properties are key ingredients for understanding the asymptotic behavior at low temperature of the effective conductivity of the Miller-Abrahams random resistor network. Joint work with Alessandra Faggionato (Sapienza University, Rome).
28-gen-2020
Inglese
Miller-Abrahams random resistor network; point processes; percolation; conductivity; renormalization; randomized algorithm; sharpness of the phase transition; statistical mechanics
FAGGIONATO, ALESSANDRA
Università degli Studi di Roma "La Sapienza"
File in questo prodotto:
File Dimensione Formato  
Tesi_dottorato_Mimun.pdf

accesso aperto

Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/99028
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-99028