Gravel-bed braided rivers are distinctive natural environments that provid a wide range of key environmental, economic and recreational services. There is, however,a growing concern that over the twentieth century, an increasing number of braided rivers have metamorphosed into wandering or single thread channels, representing a loss of key habitats, geodiversity and amenity. While in some situations, shifts in channel pattern may be unambiguously linked to abrupt changes in flow or sediment supply, the lack of a theoretical basis underpinning the development and maintenance of braiding makes identification of the cause and effect of channel metamorphosis hazardous. A growing body of research has suggested that the transition between channelpatterns may depend on the poorly understood interaction between the flow regime,sediment supply and vegetation colonisation. Such interactions are governed by critical thresholds, due to changes in flow resistance and bank strength associated with the distribution, form and intensity of vegetation colonisation. Subtle changes in flow or sediment supply that promote vegetation growth or indeed remove itthrough inundation or attrition. This can lead to complex non-linear shifts in the balance of forces that govern sediment transport and bedform morphodynamics, ultimately resulting in one-way changes in channel morphology. There is, therefore, a critical need to develop a quantitative understanding of these feedbacks in orderto design sustainable river management programmes that seek to optimize the ecological and socio-economic benefits these rivers offer. In summary, this thesis aims to advance our understanding of the morphodynamics of braided rivers and the role numerical models may have in helping to interrogate their behavior and governing controls.
Numerical Modelling of Braiding Processes in Gravel-Bed Rivers
Baral, Bishnu Raj
2018
Abstract
Gravel-bed braided rivers are distinctive natural environments that provid a wide range of key environmental, economic and recreational services. There is, however,a growing concern that over the twentieth century, an increasing number of braided rivers have metamorphosed into wandering or single thread channels, representing a loss of key habitats, geodiversity and amenity. While in some situations, shifts in channel pattern may be unambiguously linked to abrupt changes in flow or sediment supply, the lack of a theoretical basis underpinning the development and maintenance of braiding makes identification of the cause and effect of channel metamorphosis hazardous. A growing body of research has suggested that the transition between channelpatterns may depend on the poorly understood interaction between the flow regime,sediment supply and vegetation colonisation. Such interactions are governed by critical thresholds, due to changes in flow resistance and bank strength associated with the distribution, form and intensity of vegetation colonisation. Subtle changes in flow or sediment supply that promote vegetation growth or indeed remove itthrough inundation or attrition. This can lead to complex non-linear shifts in the balance of forces that govern sediment transport and bedform morphodynamics, ultimately resulting in one-way changes in channel morphology. There is, therefore, a critical need to develop a quantitative understanding of these feedbacks in orderto design sustainable river management programmes that seek to optimize the ecological and socio-economic benefits these rivers offer. In summary, this thesis aims to advance our understanding of the morphodynamics of braided rivers and the role numerical models may have in helping to interrogate their behavior and governing controls.File | Dimensione | Formato | |
---|---|---|---|
BARAL_PhD_Thesis_Final_Correction.pdf
accesso aperto
Dimensione
71.64 MB
Formato
Adobe PDF
|
71.64 MB | Adobe PDF | Visualizza/Apri |
BARAL_Disclaimer.pdf
non disponibili
Dimensione
966.97 kB
Formato
Adobe PDF
|
966.97 kB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/102586
URN:NBN:IT:UNITN-102586