Alzheimer's disease (AD) is the most common form of dementia among elderly. It is characterized by progressive loss of memory and other deficits in cognition and behaviour that inevitably affect self-care. Until now, AD was often conceptualized as a unitary clinico-pathological entity. However, in the last few years, several studies led to the recognition of distinct clinical and neuropathological phenotypes, spreading the view of AD as a highly heterogeneous disorder. Recent studies revealed that Aβ assemblies might have structural differences among AD brains and that such pleomorphic assemblies can correlate with distinct disease phenotypes. Neuroinflammation is a fascinating and not yet fully explored aspect of AD. The role of neuroinflammation in AD pathogenesis was highlighted after the discovery that mutations in genes encoding immune receptors increase the risk to develop AD. However, the involvement of neuroinflammation in the generation of different clinicopathological profiles of AD in unknown. Gene profile studies may offer grounds to explore such involvement. One of the objectives of this study was therefore to test whether some players of neuroinflammation, with particular attention to microglia and some cytokines, are relevant for the development of distinct AD phenotypes. Aim of this project was to study the main molecular mechanisms involved in the generation of different clinical/neuropathological phenotypes of the disease and possibly provide grounds for a molecular classification of the disease. Following an approach similar to that largely used in the study of prion diseases, a multidisciplinary strategy has been chosen in order to: 1) Identify molecular profiles based on the content of Aβ peptides in brains from AD patients with different clinical and neuropathological phenotypes. 2) Test the hypothesis that some players of neuroinflammation (microglial cells and immunocytokines) are involved in the determination of clinical and pathological phenotypes of AD. We found that in both sporadic and inherited forms of AD, amyloid aggregates differ in the biochemical composition of Aβ species. These differences affect the physicochemical properties of Aβ assemblies including aggregation kinetics, resistance to degradation by proteases, seeding ability and capability to induce distinct patterns of Aβ-amyloidosis when injected into mice. Concerning microglia, we found that are differently represented within the brain of patients affected by distinct clinic-pathological forms of AD and that such differences concern morphology, distribution and density. We observed that overall levels of the neuroinflammatory molecules analyzed are significantly higher in AD samples than controls, regardless of their pro or anti-inflammatory effect. Moreover, results revealed that it is possible to isolate different neuroinflammatory subgroups through the relative quantity of different neuroinflammatory molecules. Among the molecules analyzed, CXCL13 resulted significantly higher in AD patients compare to non-demented subjects. ELISA assay confirmed the relevance of this result also in cerebrospinal fluid (CSF) while in plasma only a similar trend was observed. Overall these data suggest that the distinct mixtures of Aβ seeds with distinctive physicochemical and biological properties lead to the generation of distinct AD molecular subgroups. In the same way, is it possible to identify neuroinflammatory profiles in AD patients, based on inflammatory molecules secreted by microglia. These profiles seem to be not in accordance with those identified by Aβ. Finally, the results of these study nominate CXCL13 as a potential biomarker of neuroinflammation in AD, but further investigations are required to fully characterize its implications in the pathology and its usefulness in the diagnostic protocols for the disease.
La malattia di Alzheimer (MA) è la forma più comune di demenza tra gli anziani. È caratterizzata da una progressiva perdita di memoria, deficit cognitivi ed alterazioni comportamentali. Fino ad ora, la MA è stata pensata come un'entità clinico-patologica unitaria. Tuttavia, negli ultimi anni, diversi studi hanno portato al riconoscimento di fenotipi clinici e neuropatologici distinti, suggerendo una nuova visone della malattia come altamente eterogenea. Studi recenti hanno rivelato che gli aggregati di Aβ presenti nei cervelli di diversi pazienti Alzheimer potrebbero presentare caratteristiche strutturali differenti e che tali gruppi pleomorfi potrebbero essere correlati con fenotipi distinti della malattia. La neuroinfiammazione è un aspetto affascinante e ancora poco esplorato della MA. Il ruolo della neuroinfiammazione nella patogenesi della malattia è supportato dalla scoperta di mutazioni geniche, codificanti per i recettori immunitari, associate ad un aumentano rischio di sviluppare la MA. Tuttavia, il coinvolgimento della neuroinfiammazione nella generazione di diversi profili clinico-patologici della MA è tuttora sconosciuto. Lo Scopo di questo progetto è stato quello di studiare i principali meccanismi molecolari coinvolti nella generazione di diversi fenotipi clinici/neuropatologici della patologia e possibilmente fornire i presupposti per una classificazione molecolare della malattia. Seguendo un approccio simile a quello largamente utilizzato nello studio delle malattie da prioni, è stata scelta una strategia multidisciplinare al fine di: 1) Identificare i profili molecolari basati sul contenuto dei peptidi Aβ nel cervello di pazienti con differenti fenotipi clinici e neuropatologici di MA. 2) Verificare l'ipotesi che alcuni attori della neuroinfiammazione (cellule microgliali e citochine) siano coinvolti nella determinazione dei fenotipi clinici e patologici della MA. Abbiamo trovato che in entrambe le forme sporadiche ed ereditarie della MA, gli aggregati di amiloide differiscono nella composizione biochimica delle specie di Aβ. Queste differenze influenzano le proprietà fisico-chimiche degli aggregati di Aβ tra cui la cinetica di aggregazione, la resistenza alla degradazione da parte delle proteasi, la capacità di “seeding” e quella di indurre profili distinti di Aβ-amiloidosi quando iniettati nei topi. Riguardo la microglia, abbiamo scoperto che essa è differentemente rappresentata all'interno del cervello di diversi pazienti Alzheimer e che tali differenze riguardano morfologia, distribuzione e densità. Abbiamo osservato che i livelli complessivi delle molecole neuroinfiammatorie analizzate sono significativamente più alti nei campioni di MA rispetto ai controlli, indipendentemente dal loro effetto pro o anti-infiammatorio. Inoltre, i risultati hanno rivelato che è possibile isolare diversi sottogruppi neuroinfiammatori attraverso la quantità relativa delle diverse molecole neuroinfiammatorie. Tra le molecole analizzate, la chemochina CXCL13 è risultata significativamente più alta nei pazienti con MA rispetto ai soggetti non dementi. Il saggio ELISA ha confermato la rilevanza di questo risultato anche nel liquido cerebrospinale (CSF) mentre nel plasma è stata osservata solo una simile tendenza. Nel complesso questi dati suggeriscono che le distinte miscele di peptidi Aβ con proprietà chimico-fisiche distintive generano sottogruppi molecolari di MA distinti. Allo stesso modo, è possibile identificare profili neuroinfiammatori, basati su molecole infiammatorie secrete dalla microglia. Questi profili sembrano non essere conformi a quelli identificati dai peptidi Aβ. Infine, i risultati di questi studi candidano CXCL13 a potenziale biomarker neuroinfiammatorio nella MA. Tuttavia, sono necessarie ulteriori indagini per caratterizzare pienamente le sue implicazioni nella patologia e la sua utilità nei protocolli diagnostici per la malattia.
Phenotypic Heterogeneity in Alzheimer's Disease: the study of molecular factors involved in generation of different clinical-pathological phenotypes.
SORRENTINO, STEFANO
2019
Abstract
Alzheimer's disease (AD) is the most common form of dementia among elderly. It is characterized by progressive loss of memory and other deficits in cognition and behaviour that inevitably affect self-care. Until now, AD was often conceptualized as a unitary clinico-pathological entity. However, in the last few years, several studies led to the recognition of distinct clinical and neuropathological phenotypes, spreading the view of AD as a highly heterogeneous disorder. Recent studies revealed that Aβ assemblies might have structural differences among AD brains and that such pleomorphic assemblies can correlate with distinct disease phenotypes. Neuroinflammation is a fascinating and not yet fully explored aspect of AD. The role of neuroinflammation in AD pathogenesis was highlighted after the discovery that mutations in genes encoding immune receptors increase the risk to develop AD. However, the involvement of neuroinflammation in the generation of different clinicopathological profiles of AD in unknown. Gene profile studies may offer grounds to explore such involvement. One of the objectives of this study was therefore to test whether some players of neuroinflammation, with particular attention to microglia and some cytokines, are relevant for the development of distinct AD phenotypes. Aim of this project was to study the main molecular mechanisms involved in the generation of different clinical/neuropathological phenotypes of the disease and possibly provide grounds for a molecular classification of the disease. Following an approach similar to that largely used in the study of prion diseases, a multidisciplinary strategy has been chosen in order to: 1) Identify molecular profiles based on the content of Aβ peptides in brains from AD patients with different clinical and neuropathological phenotypes. 2) Test the hypothesis that some players of neuroinflammation (microglial cells and immunocytokines) are involved in the determination of clinical and pathological phenotypes of AD. We found that in both sporadic and inherited forms of AD, amyloid aggregates differ in the biochemical composition of Aβ species. These differences affect the physicochemical properties of Aβ assemblies including aggregation kinetics, resistance to degradation by proteases, seeding ability and capability to induce distinct patterns of Aβ-amyloidosis when injected into mice. Concerning microglia, we found that are differently represented within the brain of patients affected by distinct clinic-pathological forms of AD and that such differences concern morphology, distribution and density. We observed that overall levels of the neuroinflammatory molecules analyzed are significantly higher in AD samples than controls, regardless of their pro or anti-inflammatory effect. Moreover, results revealed that it is possible to isolate different neuroinflammatory subgroups through the relative quantity of different neuroinflammatory molecules. Among the molecules analyzed, CXCL13 resulted significantly higher in AD patients compare to non-demented subjects. ELISA assay confirmed the relevance of this result also in cerebrospinal fluid (CSF) while in plasma only a similar trend was observed. Overall these data suggest that the distinct mixtures of Aβ seeds with distinctive physicochemical and biological properties lead to the generation of distinct AD molecular subgroups. In the same way, is it possible to identify neuroinflammatory profiles in AD patients, based on inflammatory molecules secreted by microglia. These profiles seem to be not in accordance with those identified by Aβ. Finally, the results of these study nominate CXCL13 as a potential biomarker of neuroinflammation in AD, but further investigations are required to fully characterize its implications in the pathology and its usefulness in the diagnostic protocols for the disease.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_809731.pdf
accesso aperto
Dimensione
6 MB
Formato
Adobe PDF
|
6 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/107026
URN:NBN:IT:UNIMIB-107026