This thesis addresses the study of absorption dynamics in invariant domains (enclosures) for semigroups of quantum Markov maps. The work is divided in three chapters. In Chapter 1 we recall the main definitions, properties and results about the mathematical objects involved in this work: W*-algebras, normal states, semigroups of quantum Markov maps. In Chapter 2 we introduce the notion of absorption operator associated to an invariant domain, which is a generalization of absorption probabilities in the noncommutative setting; absorption operators turn out to share many remarkable features with their classical counterpart. We start showing some first properties of absorption operators, especially the interplay between their spectral resolution and the communication structure of the semigroup. We then move on to study the relationship between absorption operators and recurrence; as a relevant byproduct, we show that the null recurrent space is an enclosure and this allows to complete the result about the decomposition of semigroups of quantum Markov maps into their transient, positive recurrent and null recurrent restrictions. Absorption operators are also fixed points of the semigroup and, under the assumption that the recurrent space is absorbing, we are able to provide a description in terms of absorption operators of the fixed points set of the semigroup; this allows us to deduce some useful properties about fixed points and enclosures. Moreover, we analyze the role played by absorption operators in ergodic theory and we are able to prove a noncommutative generalization of the ergodic theorem for Markov chains. We conclude the chapter presenting and studying some concrete models showing non-trivial absorption dynamics and ranging from finite to infinite dimension, from discrete to continuous time. Chapter 3 is devoted to study the long-time behavior of the position process associated to a homogeneous open quantum random walk on a lattice with finite dimensional local space. We prove that the properly rescaled position process asymptotically approaches a mixture of Gaussian measures. We can generalize the existing central limit type results and give more explicit expressions for the involved asymptotic quantities, dropping any additional condition on the walk. We use deformation and spectral techniques, together with reducibility properties of the local map associated with the open quantum walk; a key role is also played by absorption operators. Further, we can provide a large deviation principle in the case of a positive recurrent local map and at least lower and upper bounds in the general case. Finally, we are able to show the almost sure convergence of the mean shift on the lattice to a random variable that we can completely describe.

Lo scopo del presente lavoro di tesi è lo studio delle dinamiche di assorbimento in domini invarianti (enclosures) per semigruppi markoviani quantistici. Il lavoro è diviso in tre capitoli. Nel primo capitolo ricordiamo le principali definizioni, proprietà e risultati riguardanti gli oggetti matematici con cui si avrà a che fare: W*-algebre, stati normali e semigruppi markoviani quantistici. Nel secondo capitolo introduciamo la nozione di operatore di assorbimento associato ad un determinato dominio invariante, che è la generalizzazione non commutativa delle probabilità di assorbimento; gli operatori di assorbimento condividono numerose proprietà con la loro controparte classica. Inizialmente mostriamo le prime proprietà degli operatori di assorbimento, specialmente l'interazione tra la loro risoluzione spettrale e la struttura di comunicazione del semigruppo. Successivamente spostiamo l'attenzione sullo studio della relazione tra operatori di assorbimento e ricorrenza; un risultato collaterale rilevante è che lo spazio ricorrente nullo è un dominio invariante e questo completa il risultato sulla decomposizione dei semigruppi markoviani quantistici nelle loro restrizioni transiente, ricorrente positiva e ricorrente nulla. Gli operatori di assorbimento sono anche punti fissi del semigruppo e, a condizione che lo spazio ricorrente sia assorbente, siamo in grado di fornire una descrizione dei punti fissi in termini degli operatori di assorbimento; questo permette di dedurre alcune utili proprietà dei punti fissi e dei domini invarianti. Inoltre, analizziamo il ruolo rivestito dagli operatori di assorbimento nel quadro della teoria ergodica e mostriamo la generalizzazione non commutativa del teorema ergodico per le catene di Markov. Concludiamo il capitolo presentando e studiando alcuni modelli concreti che possiedono delle dinamiche di assorbimento non banali e che variano tra dimensione finita o infinita e tempo discreto o continuo.

Absorption in Invariant Domains for quantum Markov evolutions

GIROTTI, FEDERICO
2022

Abstract

This thesis addresses the study of absorption dynamics in invariant domains (enclosures) for semigroups of quantum Markov maps. The work is divided in three chapters. In Chapter 1 we recall the main definitions, properties and results about the mathematical objects involved in this work: W*-algebras, normal states, semigroups of quantum Markov maps. In Chapter 2 we introduce the notion of absorption operator associated to an invariant domain, which is a generalization of absorption probabilities in the noncommutative setting; absorption operators turn out to share many remarkable features with their classical counterpart. We start showing some first properties of absorption operators, especially the interplay between their spectral resolution and the communication structure of the semigroup. We then move on to study the relationship between absorption operators and recurrence; as a relevant byproduct, we show that the null recurrent space is an enclosure and this allows to complete the result about the decomposition of semigroups of quantum Markov maps into their transient, positive recurrent and null recurrent restrictions. Absorption operators are also fixed points of the semigroup and, under the assumption that the recurrent space is absorbing, we are able to provide a description in terms of absorption operators of the fixed points set of the semigroup; this allows us to deduce some useful properties about fixed points and enclosures. Moreover, we analyze the role played by absorption operators in ergodic theory and we are able to prove a noncommutative generalization of the ergodic theorem for Markov chains. We conclude the chapter presenting and studying some concrete models showing non-trivial absorption dynamics and ranging from finite to infinite dimension, from discrete to continuous time. Chapter 3 is devoted to study the long-time behavior of the position process associated to a homogeneous open quantum random walk on a lattice with finite dimensional local space. We prove that the properly rescaled position process asymptotically approaches a mixture of Gaussian measures. We can generalize the existing central limit type results and give more explicit expressions for the involved asymptotic quantities, dropping any additional condition on the walk. We use deformation and spectral techniques, together with reducibility properties of the local map associated with the open quantum walk; a key role is also played by absorption operators. Further, we can provide a large deviation principle in the case of a positive recurrent local map and at least lower and upper bounds in the general case. Finally, we are able to show the almost sure convergence of the mean shift on the lattice to a random variable that we can completely describe.
11-feb-2022
Inglese
Lo scopo del presente lavoro di tesi è lo studio delle dinamiche di assorbimento in domini invarianti (enclosures) per semigruppi markoviani quantistici. Il lavoro è diviso in tre capitoli. Nel primo capitolo ricordiamo le principali definizioni, proprietà e risultati riguardanti gli oggetti matematici con cui si avrà a che fare: W*-algebre, stati normali e semigruppi markoviani quantistici. Nel secondo capitolo introduciamo la nozione di operatore di assorbimento associato ad un determinato dominio invariante, che è la generalizzazione non commutativa delle probabilità di assorbimento; gli operatori di assorbimento condividono numerose proprietà con la loro controparte classica. Inizialmente mostriamo le prime proprietà degli operatori di assorbimento, specialmente l'interazione tra la loro risoluzione spettrale e la struttura di comunicazione del semigruppo. Successivamente spostiamo l'attenzione sullo studio della relazione tra operatori di assorbimento e ricorrenza; un risultato collaterale rilevante è che lo spazio ricorrente nullo è un dominio invariante e questo completa il risultato sulla decomposizione dei semigruppi markoviani quantistici nelle loro restrizioni transiente, ricorrente positiva e ricorrente nulla. Gli operatori di assorbimento sono anche punti fissi del semigruppo e, a condizione che lo spazio ricorrente sia assorbente, siamo in grado di fornire una descrizione dei punti fissi in termini degli operatori di assorbimento; questo permette di dedurre alcune utili proprietà dei punti fissi e dei domini invarianti. Inoltre, analizziamo il ruolo rivestito dagli operatori di assorbimento nel quadro della teoria ergodica e mostriamo la generalizzazione non commutativa del teorema ergodico per le catene di Markov. Concludiamo il capitolo presentando e studiando alcuni modelli concreti che possiedono delle dinamiche di assorbimento non banali e che variano tra dimensione finita o infinita e tempo discreto o continuo.
Canale quantistico; Semigruppo; Assorbimento; Ricorrenza quant.; Traiettorie quant.
Università degli Studi di Milano-Bicocca
File in questo prodotto:
File Dimensione Formato  
phd_unimib_842896.pdf

accesso aperto

Dimensione 3.81 MB
Formato Adobe PDF
3.81 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/107638
Il codice NBN di questa tesi è URN:NBN:IT:UNIMIB-107638