The classical Dynamic Programming (DP) approach to optimal control problems is based on the characterization of the value function as the unique viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation. The DP scheme for the numerical approximation of viscosity solutions of Bellman equations is typically based on a time discretization which is projected on a fixed state-space grid. The time discretization can be done by a one-step scheme for the dynamics and the projection on the grid typically uses a local interpolation. Clearly the use of a grid is a limitation with respect to possible applications in high-dimensional problems due to the curse of dimensionality. Here, we present a new approach for finite horizon optimal control problems where the value function is computed using a DP algorithm with a tree structure algorithm (TSA) constructed by the time discrete dynamics. In this way there is no need to build a fixed space triangulation and to project on it. The tree will guarantee a perfect matching with the discrete dynamics and drop off the cost of the space interpolation allowing for the solution of very high-dimensional problems. Then, we analyse first order error estimates which ensure the convergence of the scheme. Finally, we introduce the extension to high-order schemes and the coupling with Proper Orthogonal Decomposition technique. Numerical tests will show the effectiveness of the proposed method.

A Tree-Structure Algorithm for Optimal Control Problems via Dynamic Programming

SALUZZI, LUCA
2020

Abstract

The classical Dynamic Programming (DP) approach to optimal control problems is based on the characterization of the value function as the unique viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation. The DP scheme for the numerical approximation of viscosity solutions of Bellman equations is typically based on a time discretization which is projected on a fixed state-space grid. The time discretization can be done by a one-step scheme for the dynamics and the projection on the grid typically uses a local interpolation. Clearly the use of a grid is a limitation with respect to possible applications in high-dimensional problems due to the curse of dimensionality. Here, we present a new approach for finite horizon optimal control problems where the value function is computed using a DP algorithm with a tree structure algorithm (TSA) constructed by the time discrete dynamics. In this way there is no need to build a fixed space triangulation and to project on it. The tree will guarantee a perfect matching with the discrete dynamics and drop off the cost of the space interpolation allowing for the solution of very high-dimensional problems. Then, we analyse first order error estimates which ensure the convergence of the scheme. Finally, we introduce the extension to high-order schemes and the coupling with Proper Orthogonal Decomposition technique. Numerical tests will show the effectiveness of the proposed method.
10-feb-2020
Inglese
Gran Sasso Science Institute
File in questo prodotto:
File Dimensione Formato  
2020_Saluzzi.pdf

accesso aperto

Dimensione 10.6 MB
Formato Adobe PDF
10.6 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/116496
Il codice NBN di questa tesi è URN:NBN:IT:GSSI-116496