Carbon Dots (CDs), a recent class of biocompatible carbonaceous nanoparticles of only few nm in size, have the potential to permeate into the current scenario of lighting materials and transform diverse technological sectors, thanks to their unique blend of sustainability and attractive visible fluorescence. Indeed, such zero-dimensional nanostructures can be considered the carbon-based alternative to semiconductor quantum dots, awarded with the Nobel Prize in Chemistry in 2023. Respect to the quantum dots, however, challenges persist due to limited understanding of the chemical and photophysical mechanisms governing CD synthesis and optical properties. Current research aims to develop synthetic methods for controlled preparation of CDs with tailored optical properties, particularly targeting intense red emission. This study addressed such current challenges still hindering pervasive use of CDs in technological devices. More specifically, it analyzed different bottom-up synthetic strategies, improving currently existing methodologies or contributing to develop new rational synthetic routes for CDs. Enhanced red emission components was tackled and obtained both via synthetic approaches and through post-synthetic coupling with plasmonic metal nanoparticles. Physicochemical properties of the synthesized CDs were accurately scrutinized, with particular attention on photophysical emission dynamics. Investigations into the resistance of CDs to photochemical degradation are pivotal for elucidating key technological aspects associated with their implementation in devices and for clarifying the contribution of molecular fluorophores to nanoparticle emission. Finally, two technological applications in lighting and chemical sensing devices, were selected for their relevance for industrial innovation and the applicative potential of synthesized CDs in these fields was demonstrated. This involved the fabrication of polymer color-conversion nanocomposites, of laser active media and of a fluorescence based portable platform for sensing of pH and antioxidant activity of chemical compounds. Ultimately, this work joins the research community’s effort to exploit the emission properties of CDs in bottom-up procedures, providing original perspectives and preparative strategies while highlighting crucial considerations. In the applicative sections, it contributed to facilitate solution-based processing procedures of these nanoparticles, integrating whenever possible experimental procedures with numerical optimizations, at the aim of proving the outstanding potential of CDs for the technological world.
I Carbon Dots (CD), una recente classe di nanoparticelle carbonacee biocompatibili di dimensioni di soli pochi nm, hanno il potenziale di permeare nel panorama attuale dei materiali fluorescenti e trasformare diversi settori tecnologici, grazie alla loro particolare combinazione di sostenibilità e fluorescenza visibile. Infatti, tali nanostrutture zero-dimensionali possono essere considerate l'alternativa a base di carbonio ai quantum dots semiconduttori, premiati con il Nobel per la Chimica nel 2023. Rispetto ai quantum dots, tuttavia, persistono delle sfide a causa della limitata comprensione dei meccanismi chimici e fotofisici che regolano la sintesi dei CD e le loro proprietà ottiche. La ricerca attuale mira a sviluppare metodi sintetici per la preparazione controllata di CD con proprietà ottiche su misura, mirando in particolare all'intensa emissione rossa. Questo studio ha affrontato tali attuali sfide che ancora ostacolano l'uso pervasivo dei CD nei dispositivi tecnologici. Più specificamente, ha analizzato diverse strategie sintetiche "bottom-up", migliorando metodologie esistenti o contribuendo allo sviluppo di nuovi percorsi sintetici razionali per i CD. Sono state affrontate e ottenute componenti di emissione rossa potenziate sia attraverso approcci sintetici che tramite accoppiamento post-sintetico con nanoparticelle metalliche plasmoniche. Le proprietà fisico-chimiche dei CD sintetizzati sono state accuratamente esaminate, con particolare attenzione alla dinamica dell'emissione fotofisica. Le indagini sulla resistenza dei CD alla degradazione fotochimica sono cruciali per chiarire gli aspetti tecnologici chiave associati alla loro implementazione nei dispositivi e per chiarire il contributo dei fluorofori molecolari all'emissione delle nanoparticelle. Infine, sono state selezionate due applicazioni tecnologiche nell'illuminazione e nei dispositivi di rilevamento chimico, per la loro rilevanza per l'innovazione industriale, e il potenziale applicativo dei CD sintetizzati in questi campi è stato dimostrato. Ciò ha coinvolto la fabbricazione di nanocompositi polimerici per la conversione del colore, di mezzi attivi al laser e di una piattaforma portatile a fluorescenza per il rilevamento del pH e dell'attività antiossidante di composti chimici. In definitiva, questo lavoro si unisce agli sforzi della comunità di ricerca per sfruttare le proprietà di emissione dei CD nei procedimenti "bottom-up", fornendo prospettive e strategie preparative originali mentre evidenzia considerazioni cruciali. Nelle sezioni applicative, ha contribuito a facilitare procedure di lavorazione basate su soluzione di queste nanoparticelle, integrando quando possibile, procedure sperimentali con ottimizzazioni numeriche, al fine di dimostrare il potenziale eccezionale dei CD per il mondo tecnologico.
Advanced materials based on carbon dots for technological applications
Minervini, Gianluca
2024
Abstract
Carbon Dots (CDs), a recent class of biocompatible carbonaceous nanoparticles of only few nm in size, have the potential to permeate into the current scenario of lighting materials and transform diverse technological sectors, thanks to their unique blend of sustainability and attractive visible fluorescence. Indeed, such zero-dimensional nanostructures can be considered the carbon-based alternative to semiconductor quantum dots, awarded with the Nobel Prize in Chemistry in 2023. Respect to the quantum dots, however, challenges persist due to limited understanding of the chemical and photophysical mechanisms governing CD synthesis and optical properties. Current research aims to develop synthetic methods for controlled preparation of CDs with tailored optical properties, particularly targeting intense red emission. This study addressed such current challenges still hindering pervasive use of CDs in technological devices. More specifically, it analyzed different bottom-up synthetic strategies, improving currently existing methodologies or contributing to develop new rational synthetic routes for CDs. Enhanced red emission components was tackled and obtained both via synthetic approaches and through post-synthetic coupling with plasmonic metal nanoparticles. Physicochemical properties of the synthesized CDs were accurately scrutinized, with particular attention on photophysical emission dynamics. Investigations into the resistance of CDs to photochemical degradation are pivotal for elucidating key technological aspects associated with their implementation in devices and for clarifying the contribution of molecular fluorophores to nanoparticle emission. Finally, two technological applications in lighting and chemical sensing devices, were selected for their relevance for industrial innovation and the applicative potential of synthesized CDs in these fields was demonstrated. This involved the fabrication of polymer color-conversion nanocomposites, of laser active media and of a fluorescence based portable platform for sensing of pH and antioxidant activity of chemical compounds. Ultimately, this work joins the research community’s effort to exploit the emission properties of CDs in bottom-up procedures, providing original perspectives and preparative strategies while highlighting crucial considerations. In the applicative sections, it contributed to facilitate solution-based processing procedures of these nanoparticles, integrating whenever possible experimental procedures with numerical optimizations, at the aim of proving the outstanding potential of CDs for the technological world.File | Dimensione | Formato | |
---|---|---|---|
36 ciclo - MINERVINI gianluca.pdf
accesso aperto
Dimensione
11.73 MB
Formato
Adobe PDF
|
11.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/116971
URN:NBN:IT:POLIBA-116971