Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetically inherited disorder predominantly caused by mutations in the PKD1 and PKD2 genes, which encode for Polycystin 1 and 2 (PC1 and PC2) (Bergmann et al, 2018). Together, the Polycystins form a receptor-membrane complex that is involved in a multitude of cellular processes, such as tissue and cell homeostasis (Bergmann et al, 2018; Watnick & Germino, 2003). The loss-of-function of PC1 or PC2 leads to excessive cell proliferation and the formation of tubular protrusions, termed cysts (Rowe & Boletta, 2014). The Polycystins Complex localizes to primary cilia, sensory organelles that extend from the cell membrane and respond to environmental stimuli by conveying signaling pathways to the cell (Anvarian et al, 2019). Dysfunction in cilia can lead to a broad spectrum of diseases referred to as ciliopathies, with one of the most frequently occurring being ADPKD (Reiter & Leroux, 2017). Our lab previously published that the loss of function of PC1, located in cilia, leads to a metabolic reprogramming (Rowe et al, 2013; Podrini et al, 2018). This prompted us to investigate the role of cilia in nutrient sensing. Our group found that cells ablated of cilia (Ift88 KO) show a difference in the usage of nutrients compared to cilia presence (Ctrl cells). Moreover, we published that cilia elongate in the absence of nutrients or in the absence of glutamine and shorten in response to the addition of glutamine (Gln) (Steidl et al., 2023). In this thesis, we found that Ift88 KO cells are less dependent on glucose for growth. Of interest, dysfunctional cilia of Pkd1 KO MEFs do respond to Gln supplementation in a manner similar to control cells. We previously reported that Asparagine Synthetase (ASNS) localized at the base of cilia mediates the cellular response to glutamine. To investigate the potential ciliary role of ASNS, we established a stable mIMCD3 cell line expressing ASNS fused to mNeonGreen fluorescent-tag, and localized mNG-ASNS to the cilia-centrosome complex (Steidl et al., 2023). Next, to investigate the underlying mechanism behind the cilia length response to glutamine and the changes in the ciliary landscape that could crosslink cilia to metabolism, we initiated a large-scale proteomics study using mIMCD3 cells expressing a ciliary target, NPHP3, fused to the proximity labeling tag, BioID2. The proteomics data analysis identified 22 proteins significantly changing with the removal of glutamine. We continued working with the ciliary candidates OSBPL8 and IFT20, which decrease with glutamine removal specific to the cilium. However, several proteins changed both in expression levels and in ciliary abundance. In fact, ASNS was enriched with the removal of glutamine in both the cytoplasm and the cilium. Further, in the attempt to accumulate ASNS in the cilium, we treated mNG-ASNS cells with CilioBrevin D, which inhibits the intraflagellar retrograde transport complex of cilia and found that ASNS accumulates at the tip of the cilium. In line with all the above data, we found that ciliary levels of PC2 decreased in response to glutamine removal. To investigate the role of PC2 in the cilia length response to glutamine removal, we generated Pkd2 KO IMCD3 cells. Cilia of Pkd2 KO cells respond to glutamine by shortening similar to respective controls. In addition, we characterized the metabolic phenotype of Pkd2 KO and Ctrl IMCD3 cells, as this was never assessed before. We found that Pkd2 KO IMCD3 cells have lower maximal respiration compared to controls in starved media conditions, similar to Pkd1 KO cells.
Il rene policistico autosomico dominante (ADPKD) è una malattia genetica erediatria causata da mutazioni nei geni PKD1 e PKD2, che codificano per le policistine (PC1 e PC2). Il complesso delle policistine agisce come recettore di membrana, che è coinvolto in diversi processi cellulari, importanti per l’omeostasi cellulare. La perdita di funzione di PC1 o PC2 provoca un’eccessiva proliferazione cellulare e la formazione di protrusioni del tubulo renale, definite cisti. Le Policistine localizzano al ciglio primario, un organello sensoriale che si estende dalla membrana cellulare e risponde agli stimoli ambientali attivando cascate di segnalazione all’interno della cellula. Disfunzioni a livello del ciglio provocano un ampio spettro di patologie definite ciliopatie, delle quali ADPKD rappresenta la più frequente. Il nostro laboratorio ha precedentemente pubblicato che la perdita di funzione di PC1 determina una riprogrammazione del metabolismo cellulare. Questo ci ha indotti a investigare il ruolo del ciglio nel metabolismo. Il nostro gruppo ha scoperto che cellule in cui il ciglio è rimosso (Ift88 KO) mostrano una differenza nell’utilizzo dei nutrienti rispetto alle cellule dotate di ciglio. Abbiamo inoltre pubblicato che il ciglio si allunga in assenza di nutrienti o in assenza di glutammina, e si accorcia in risposta all’aggiunta di glutammina (Gln). In questo elaborato, abbiamo scoperto che cellule knock-out per Ift88 sono meno dipendenti dal glucosio per la loro crescita rispetto alle cellule knock out per Pkd1. Inoltre, le ciglia di MEF knock-out per Pkd1 rispondano correttamente alla supplementazione di Gln. In precedenza abbiamo riportato che l’enzima Asparagina Sintetasi (ASNS) localizzata alla base del ciglio e media la risposta cellulare alla glutammina. Per investigare il potenziale ruolo di ASNS a lvello del ciglio, abbiamo ottenuto una linea cellulare mIMCD3 che esprime in modo stabile ASNS fusa al tag fluorescente mNeonGreen, e abbiamo localizzato mNG-ASNS al complesso ciglio-centrosoma. In seguito, per indagare il meccanismo con cui la lunghezza del ciglio varia in risposta alla glutammina, e i cambiamenti nelle caratteristiche ciliari che potrebbero connettere il ciglio al metabolismo, abbiamo avviato un’analisi proteomica su larga scala, utilizzando cellule mIMCD3 che esprimono un dominio della proteina NPHP3 che localizza al ciglio, fusa con BioID2, che media la marcatura per biotilinazione di proteine vicine (proximity labelling). L’analisi dei dati di proteomica ha identificato 22 proteine che cambiano in modo significativo in risposta all’assenza di glutammina. Abbiamo confermato che le proteine ciliari OSBPL8 e IFT20 diminuiscono al ciglio in assenza di glutammina. Tuttavia, molte proteine presentano differenze sia in termini di espressione che nella loro abbondanza a livello del ciglio. Fra queste, in assenza di glutammina, ASNS aumenta sia nel citoplasma che a livello del ciglio. Inoltre, nel tentativo di indurre l’accumulo di ASNS nel ciglio, abbiamo trattato le cellule mNG-ASNS con CilioBrevinD, che inibisce il complesso di trasporto retrogrado intraflagellare del ciglio, e osservato che ASNS si accumula all’apice del ciglio. In linea con tutti i dati sopra presentati, abbiamo scoperto che i livelli di PC2 diminuiscono nel ciglio in assenza di glutammina. Infine, abbiamo generato cellule IMCD3 knock out per Pkd2. Il ciglio di cellule knock out per Pkd2 risponde alla glutammina accorciandosi, in maniera simile ai rispettivi controlli. Tuttavia, la caratterizzazione del fenotipo metabolico di queste cellule ha rivelato che hanno una respirazione massima minore rispetto ai controlli in condizioni di deprivazione di nutrienti, in maniera simile a quanto osservato per cellule Pkd1 KO. Questo è importante perché una caratterizzazione di cellule mancanti di Pkd2 non era mai stata svolta.
Analisi dell´Interazione tra il Ciglio Primario e la Riorganizzazione del Metabolismo nella Malattia da Rene Policistico
NIELSEN, ANNE KALLEHAUGE
2024
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetically inherited disorder predominantly caused by mutations in the PKD1 and PKD2 genes, which encode for Polycystin 1 and 2 (PC1 and PC2) (Bergmann et al, 2018). Together, the Polycystins form a receptor-membrane complex that is involved in a multitude of cellular processes, such as tissue and cell homeostasis (Bergmann et al, 2018; Watnick & Germino, 2003). The loss-of-function of PC1 or PC2 leads to excessive cell proliferation and the formation of tubular protrusions, termed cysts (Rowe & Boletta, 2014). The Polycystins Complex localizes to primary cilia, sensory organelles that extend from the cell membrane and respond to environmental stimuli by conveying signaling pathways to the cell (Anvarian et al, 2019). Dysfunction in cilia can lead to a broad spectrum of diseases referred to as ciliopathies, with one of the most frequently occurring being ADPKD (Reiter & Leroux, 2017). Our lab previously published that the loss of function of PC1, located in cilia, leads to a metabolic reprogramming (Rowe et al, 2013; Podrini et al, 2018). This prompted us to investigate the role of cilia in nutrient sensing. Our group found that cells ablated of cilia (Ift88 KO) show a difference in the usage of nutrients compared to cilia presence (Ctrl cells). Moreover, we published that cilia elongate in the absence of nutrients or in the absence of glutamine and shorten in response to the addition of glutamine (Gln) (Steidl et al., 2023). In this thesis, we found that Ift88 KO cells are less dependent on glucose for growth. Of interest, dysfunctional cilia of Pkd1 KO MEFs do respond to Gln supplementation in a manner similar to control cells. We previously reported that Asparagine Synthetase (ASNS) localized at the base of cilia mediates the cellular response to glutamine. To investigate the potential ciliary role of ASNS, we established a stable mIMCD3 cell line expressing ASNS fused to mNeonGreen fluorescent-tag, and localized mNG-ASNS to the cilia-centrosome complex (Steidl et al., 2023). Next, to investigate the underlying mechanism behind the cilia length response to glutamine and the changes in the ciliary landscape that could crosslink cilia to metabolism, we initiated a large-scale proteomics study using mIMCD3 cells expressing a ciliary target, NPHP3, fused to the proximity labeling tag, BioID2. The proteomics data analysis identified 22 proteins significantly changing with the removal of glutamine. We continued working with the ciliary candidates OSBPL8 and IFT20, which decrease with glutamine removal specific to the cilium. However, several proteins changed both in expression levels and in ciliary abundance. In fact, ASNS was enriched with the removal of glutamine in both the cytoplasm and the cilium. Further, in the attempt to accumulate ASNS in the cilium, we treated mNG-ASNS cells with CilioBrevin D, which inhibits the intraflagellar retrograde transport complex of cilia and found that ASNS accumulates at the tip of the cilium. In line with all the above data, we found that ciliary levels of PC2 decreased in response to glutamine removal. To investigate the role of PC2 in the cilia length response to glutamine removal, we generated Pkd2 KO IMCD3 cells. Cilia of Pkd2 KO cells respond to glutamine by shortening similar to respective controls. In addition, we characterized the metabolic phenotype of Pkd2 KO and Ctrl IMCD3 cells, as this was never assessed before. We found that Pkd2 KO IMCD3 cells have lower maximal respiration compared to controls in starved media conditions, similar to Pkd1 KO cells.File | Dimensione | Formato | |
---|---|---|---|
AnneNielsen_211223_thesis.pdf
Open Access dal 16/01/2025
Dimensione
31.69 MB
Formato
Adobe PDF
|
31.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/117713
URN:NBN:IT:UNISR-117713