Parkinson's disease motor and non motor symptoms could be traced through sensors embedded in wearables. Signals from wearables should be interpreted and made clinically available. The use of derived digital biomarkers allows the more ecological research to be used in event prediction and clinical trials even in complex settings such as neurodegenerative diseases.

From the disease phenotype to the clinical actionable information: the digital revolution of Parkinson's disease

Massimo, Marano
2022

Abstract

Parkinson's disease motor and non motor symptoms could be traced through sensors embedded in wearables. Signals from wearables should be interpreted and made clinically available. The use of derived digital biomarkers allows the more ecological research to be used in event prediction and clinical trials even in complex settings such as neurodegenerative diseases.
15-giu-2022
Inglese
DI LAZZARO, VINCENZO
ANTONELLI INCALZI, RAFFAELE FRANCO
Università Campus Bio-Medico
File in questo prodotto:
File Dimensione Formato  
DT_304_MaranoMassimo.pdf

accesso aperto

Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/118731
Il codice NBN di questa tesi è URN:NBN:IT:UNICAMPUS-118731