Structural proof theory deals with formal representation of proofs and with the investigation of their properties. This thesis provides an analysis of various non-classical logical systems using proof-theoretic methods. The approach consists in the formulation of analytic calculi for these logics which are then used in order to study their metalogical properties. A specific attention is devoted to studying the connections between classical and non-classical reasoning. In particular, the use of analytic sequent calculi allows one to regain desirable structural properties which are lost in non-classical contexts. In this sense, proof-theoretic versions of embeddings between non-classical logics - both finitary and infinitary - prove to be a useful tool insofar as they build a bridge between different logical regions.

Through and beyond classicality: analyticity, embeddings, infinity

TESI, Matteo
2023

Abstract

Structural proof theory deals with formal representation of proofs and with the investigation of their properties. This thesis provides an analysis of various non-classical logical systems using proof-theoretic methods. The approach consists in the formulation of analytic calculi for these logics which are then used in order to study their metalogical properties. A specific attention is devoted to studying the connections between classical and non-classical reasoning. In particular, the use of analytic sequent calculi allows one to regain desirable structural properties which are lost in non-classical contexts. In this sense, proof-theoretic versions of embeddings between non-classical logics - both finitary and infinitary - prove to be a useful tool insofar as they build a bridge between different logical regions.
11-set-2023
Inglese
PIAZZA, Mario
PIAZZA, Mario
Scuola Normale Superiore
Esperti anonimi
File in questo prodotto:
File Dimensione Formato  
Tesi.pdf

accesso aperto

Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/123585
Il codice NBN di questa tesi è URN:NBN:IT:SNS-123585