We consider sone analytic problems arising in sub-Riemannian geometry. First, we construct singular solutions to the CR Yamabe equation in the Heisenberg group in two regimes: nearly cylindrical solutions via bifurcation theory and nearly locally spherical solutions via a refined implicit function argument. We then consider the Einstein-Hilbert action in the CR setting. We characterize stationary points as pseudo-Einstein structures, then showing the role of embeddability in determining the sign of the second variation at standard spheres.
Geometric aspects of PDEs on sub-Riemannan manifolds
AFELTRA, Claudio
2023
Abstract
We consider sone analytic problems arising in sub-Riemannian geometry. First, we construct singular solutions to the CR Yamabe equation in the Heisenberg group in two regimes: nearly cylindrical solutions via bifurcation theory and nearly locally spherical solutions via a refined implicit function argument. We then consider the Einstein-Hilbert action in the CR setting. We characterize stationary points as pseudo-Einstein structures, then showing the role of embeddability in determining the sign of the second variation at standard spheres.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Tesi.pdf
accesso aperto
Dimensione
764.75 kB
Formato
Adobe PDF
|
764.75 kB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/123631
Il codice NBN di questa tesi è
URN:NBN:IT:SNS-123631