We consider sone analytic problems arising in sub-Riemannian geometry. First, we construct singular solutions to the CR Yamabe equation in the Heisenberg group in two regimes: nearly cylindrical solutions via bifurcation theory and nearly locally spherical solutions via a refined implicit function argument. We then consider the Einstein-Hilbert action in the CR setting. We characterize stationary points as pseudo-Einstein structures, then showing the role of embeddability in determining the sign of the second variation at standard spheres.

Geometric aspects of PDEs on sub-Riemannan manifolds

AFELTRA, Claudio
2023

Abstract

We consider sone analytic problems arising in sub-Riemannian geometry. First, we construct singular solutions to the CR Yamabe equation in the Heisenberg group in two regimes: nearly cylindrical solutions via bifurcation theory and nearly locally spherical solutions via a refined implicit function argument. We then consider the Einstein-Hilbert action in the CR setting. We characterize stationary points as pseudo-Einstein structures, then showing the role of embeddability in determining the sign of the second variation at standard spheres.
31-lug-2023
Inglese
MALCHIODI, ANDREA
Scuola Normale Superiore
Esperti anonimi
File in questo prodotto:
File Dimensione Formato  
Tesi.pdf

accesso aperto

Dimensione 764.75 kB
Formato Adobe PDF
764.75 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/123631
Il codice NBN di questa tesi è URN:NBN:IT:SNS-123631