In the last decades, enormous efforts have been pushed toward the development of therapeutic approaches for human genetic diseases. These approaches are of great interest for patients with coagulation disorders, since they would benefit from even a small increase in functional protein levels. The Chapter 1 describes the use of chaperone-like compounds as a potential strategy for severe Haemophilia B patients. In Haemophilia B the majority of the disease-causing mutations are missense, and they can cause a structural change of the protein. Misfolded proteins can aggregate in intracellular compartments or be degraded from the proteasome in the unfolded protein response (UPR) pathway resulted in protein reduced expression. Taking into account molecular chaperones’ role, researchers developed different molecules called chemical and pharmacological chaperones. These molecules are able to modulate the protein folding and to restore the biosynthesis of proteins impaired by missense mutations. For all these reasons, we explored a therapeutic approach based on the treatment of cells expressing Factor IX missense mutations with chemical and pharmacological chaperones. We selected six missense mutations causing severe HB and first of all we confirmed that our expression model was able to mimic the clinical phenotype observed in patients (type I Haemophilia B <1% of secreted wild type protein). Were also performed immunofluorescence assays to evaluate the cellular trafficking of the missense variants and to demonstrate the retention into endoplasmic reticulum. Screening with chaperone-like compounds revealed that only two chemical chaperones were effective for our variants and were able to increase the secretion in dose dependent manner. The activity assays revealed that only one variant, the R294Q, has an encouraging activity for this type of approach and can be rescued to a moderate phenotype with Na-BA compound. The Chapter 2 describes the usage of engineered transcription factors (eTFs) fused with a deactivated Cas9 (dCas9) as a potential strategy for FVII deficiency and for Haemophia A. Moreover, it was compared with another system, that we previously used for FVII deficiency, the transcription activator-like effector protein (TALE) fused to a transcription activator. Transcription impairment by promoter mutations represents a small but considerable cause of severe coagulation factors defects and of all genetic diseases. In a previous study, we explored the Transcription Activation-like Effectors (TALE). For this reason, we decided to explore a new and customizable system able to induce transcription activation, the CRISPR activation system (CRISPRa). We decided to use the FVII deficiency model in order to compare two different transcription activation systems in-vitro. As a model to exploit which of the two systems was more effective in restoring transcription, we chose to use the wild type F7 promoter and one severe mutation the -61 T>G, falling in the HNF-4 hepato-specific transcription activator binding site. Through the expression of gene reporter plasmids, we tested a TALE protein resulted effective in our previous work (TF4) and a gRNA that was designed to bind the same sequence. The data obtained from gene reporter assays showed a great efficacy of the CRISPRa system in comparison with TF4. Interestingly, the effect on the endogen FVII protein increase is higher in the cells treated with gRNAF7.5/dCas9-VPR than in the cells treated with TF4. Due to the versatility of the CRISPR activation system and the effortlessness of realization we decided to explore this technique to F8 promoter. We designed different gRNAs able to explore a significant sequence near the transcription start site. Interestingly, in cells transfected with a combination of two gRNAs the reporter gene levels increase in an additive manner, reporting that the couple of gRNAs 1+2 were able to achieve an additive increment of about 40-fold.
Negli ultimi anni, sono stati fatti molti sforzi per lo sviluppo di approcci terapeutici per le malattie geniche. Questi approcci sono di grande interesse per i pazienti affetti da coagulopatie, in quanto possono trarre giovamento anche da un piccolo aumento di proteina funzionale. Nel Capitolo 1 si descrive l’utilizzo di composti che mimano chaperoni molecolari come strategia terapeutica per i pazienti affetti da Emofilia B severa. Nell’Emofilia B la maggior parte delle mutazioni causanti malattia sono missenso, e possono essere motivo di cambiamenti strutturali della proteina. Le proteine mal ripiegate, possono aggregare in compartimenti intracellulari o essere degradati dal proteasoma, riducendone l’espressione. Tenendo conto del ruolo naturale dei chaperoni, i ricercatori hanno sviluppato diverse molecole chiamate chaperoni chimici e farmacologici. Queste molecole sono in grado di modulare il folding proteico e di ristabilire la sintesi delle proteine in presenza di mutazioni missenso. Per questi motivi, abbiamo selezionato sei mutazioni missenso che causano Emofilia B di tipo I e abbiamo confermato che il nostro modello d’espressione fosse in grado di mimare il fenotipo clinico. Si è andati ad effettuare saggi di immunofluorescenza per valutare il trafficking proteico per confermare la ritenzione delle varianti all’interno del reticolo endoplasmatico. Lo screening con i composti ha rivelato solo due candidati in grado di incrementare la secrezione proteica in maniera dose dipendente. Inoltre, da studi sull’attività abbiamo individuato una sola variante, la R294Q, avente un’attività specifica tale da poter ristabilire i livelli simili a quelli di un fenotipo clinico moderato in presenza del trattamento col composto Na-PBA. Nel Capitolo II si descrive un approccio mediato da fattori trascrizionali ingegnerizzati fusi alla proteina Cas9 disattivata come strategia terapeutica per il deficit da FVII e l’Emofilia A. Inoltre, si è voluto comparare questo sistema con un altro, già usato precedentemente per il deficit da FVII, che utilizza proteine TALE (trascription activation-like effector) fuse ad attivatori trascrizionali. Le mutazioni del promotore che inficiano la trascrizione rappresentano una piccola seppur considerevole causa dei difetti di fattori della coagulazione e di tutti i disordini genetici. In uno studio precedente, si è voluto studiare la capacità di proteine TALE di ristabilire la trascrizione in presenza di mutazioni del promotore. Per questo motivo, si è deciso di esplorare un nuovo sistema personalizzabile in grado di indurre la trascrizione, il sistema CRISPR activation. Per questo studio si è deciso di utilizzare il modello utilizzato per il precedente studio con le proteine TALE in modo da poter effettuare un confronto. I modelli dove sono stati testati i due sistemi sono il promotore wild-type del FVII e una mutazione severa del promotore (-61T>G), che ricade nel sito naturale di legame del fattore di trascrizione epato-specifico HFN-4. Tramite l’utilizzo vettori d’espressione contenenti geni reporter, abbiamo confrontato la proteina TALE risultata efficace dal precedente studio con un gRNA che abbiamo disegnato in modo da riconoscere la stessa sequenza sul promotore. I dati ottenuti dal confronto hanno mostrato una maggior efficienza del sistema CRISPRa nei saggi con il gene reporter, e, in maniera interessante, anche un aumento sulla proteina endogena FVII con questo sistema in confronto con la TALE. Grazie alla versatilità del sistema CRISPRa abbiamo deciso di applicarlo anche al promotore del F8. Abbiamo disegnato sei diversi gRNA per esplorare una porzione di promotore. È stato interessante notare che in cellule trattate con una combinazione di due gRNA l’incremento dei livelli di reporter avviene in maniera additiva, dimostrando che la coppia di gRNA 1+2 sono capaci di raggiungere un incremento di 40 volte.
Modulation at transcriptional and post-translational level to develop therapeutic approaches for coagulation factor deficiencies
PIGNANI, Silvia
2018
Abstract
In the last decades, enormous efforts have been pushed toward the development of therapeutic approaches for human genetic diseases. These approaches are of great interest for patients with coagulation disorders, since they would benefit from even a small increase in functional protein levels. The Chapter 1 describes the use of chaperone-like compounds as a potential strategy for severe Haemophilia B patients. In Haemophilia B the majority of the disease-causing mutations are missense, and they can cause a structural change of the protein. Misfolded proteins can aggregate in intracellular compartments or be degraded from the proteasome in the unfolded protein response (UPR) pathway resulted in protein reduced expression. Taking into account molecular chaperones’ role, researchers developed different molecules called chemical and pharmacological chaperones. These molecules are able to modulate the protein folding and to restore the biosynthesis of proteins impaired by missense mutations. For all these reasons, we explored a therapeutic approach based on the treatment of cells expressing Factor IX missense mutations with chemical and pharmacological chaperones. We selected six missense mutations causing severe HB and first of all we confirmed that our expression model was able to mimic the clinical phenotype observed in patients (type I Haemophilia B <1% of secreted wild type protein). Were also performed immunofluorescence assays to evaluate the cellular trafficking of the missense variants and to demonstrate the retention into endoplasmic reticulum. Screening with chaperone-like compounds revealed that only two chemical chaperones were effective for our variants and were able to increase the secretion in dose dependent manner. The activity assays revealed that only one variant, the R294Q, has an encouraging activity for this type of approach and can be rescued to a moderate phenotype with Na-BA compound. The Chapter 2 describes the usage of engineered transcription factors (eTFs) fused with a deactivated Cas9 (dCas9) as a potential strategy for FVII deficiency and for Haemophia A. Moreover, it was compared with another system, that we previously used for FVII deficiency, the transcription activator-like effector protein (TALE) fused to a transcription activator. Transcription impairment by promoter mutations represents a small but considerable cause of severe coagulation factors defects and of all genetic diseases. In a previous study, we explored the Transcription Activation-like Effectors (TALE). For this reason, we decided to explore a new and customizable system able to induce transcription activation, the CRISPR activation system (CRISPRa). We decided to use the FVII deficiency model in order to compare two different transcription activation systems in-vitro. As a model to exploit which of the two systems was more effective in restoring transcription, we chose to use the wild type F7 promoter and one severe mutation the -61 T>G, falling in the HNF-4 hepato-specific transcription activator binding site. Through the expression of gene reporter plasmids, we tested a TALE protein resulted effective in our previous work (TF4) and a gRNA that was designed to bind the same sequence. The data obtained from gene reporter assays showed a great efficacy of the CRISPRa system in comparison with TF4. Interestingly, the effect on the endogen FVII protein increase is higher in the cells treated with gRNAF7.5/dCas9-VPR than in the cells treated with TF4. Due to the versatility of the CRISPR activation system and the effortlessness of realization we decided to explore this technique to F8 promoter. We designed different gRNAs able to explore a significant sequence near the transcription start site. Interestingly, in cells transfected with a combination of two gRNAs the reporter gene levels increase in an additive manner, reporting that the couple of gRNAs 1+2 were able to achieve an additive increment of about 40-fold.File | Dimensione | Formato | |
---|---|---|---|
Pignani PhD thesis PDFA.pdf
Open Access dal 16/02/2019
Dimensione
3.75 MB
Formato
Adobe PDF
|
3.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/125237
URN:NBN:IT:UNIFE-125237