Negli ultimi venti anni la genetica e la biologia molecolare hanno contribuito significativamente al progresso scientifico-medico, fornendo strumenti per isolare, clonare e studiare molti dei geni che compongono il genoma umano. E’ ora possibile analizzare contemporaneamente l'espressione di migliaia di geni, ossia valutare quello che viene chiamato profilo genico, grazie all’uso di speciali supporti tecnologicamente avanzati denominati microarray. Un singolo esperimento di espressione genica realizzato con microarray produce migliaia di dati, per i quali è necessario un approccio rigoroso di tipo matematico e bioinformatico, sia nelle fasi di acquisizione e analisi che in quelle di interpretazione e archiviazione. A differenza delle fasi di preparazione dei campioni e ibridizzazione dei vetrini, che ormai sono regolate da protocolli sufficientemente standardizzati, i passaggi che portano dall’estrazione dei dati all’interpretazione biologica dei risultati non possono essere riassunti in un protocollo unico. Questo progetto di dottorato ha avuto lo scopo di studiare i metodi di progettazione di un esperimento di espressione genica mediante microarray e gli strumenti bioinformatici che servono a realizzare le fasi di estrazione e pre-trattamento dei dati, l’analisi statistica e l’interpretazione dei risultati. Tali metodi sono stati applicati a quattro esperimenti realizzati nel laboratorio presso il quale è stata svolta questa tesi. Sono stati individuati, fra quelli disponibili, i metodi bioinformatici per l’estrazione, il pre-trattamento e l’analisi statistica dei dati più affidabili e versatili per l’eliminazione degli errori legati alla metodica e per l’acquisizione di un dato statisticamente robusto. Il confronto critico dei metodi analizzati ha messo in luce la necessità di mettere a punto una soluzione ottimale di analisi per ciascun esperimento. La valutazione degli strumenti utili per l’interpretazione biologica dei risultati ha messo, invece, in evidenza profonde limitazioni legate essenzialmente all’assenza di informazioni ordinatamente catalogate e alla incompleta modellazione dei processi di co-regolazione genica nelle banche dati.

Dai dati grezzi all’interpretazione biologica: progettazione e analisi degli esperimenti di espressione genica realizzati mediante microarray

2009

Abstract

Negli ultimi venti anni la genetica e la biologia molecolare hanno contribuito significativamente al progresso scientifico-medico, fornendo strumenti per isolare, clonare e studiare molti dei geni che compongono il genoma umano. E’ ora possibile analizzare contemporaneamente l'espressione di migliaia di geni, ossia valutare quello che viene chiamato profilo genico, grazie all’uso di speciali supporti tecnologicamente avanzati denominati microarray. Un singolo esperimento di espressione genica realizzato con microarray produce migliaia di dati, per i quali è necessario un approccio rigoroso di tipo matematico e bioinformatico, sia nelle fasi di acquisizione e analisi che in quelle di interpretazione e archiviazione. A differenza delle fasi di preparazione dei campioni e ibridizzazione dei vetrini, che ormai sono regolate da protocolli sufficientemente standardizzati, i passaggi che portano dall’estrazione dei dati all’interpretazione biologica dei risultati non possono essere riassunti in un protocollo unico. Questo progetto di dottorato ha avuto lo scopo di studiare i metodi di progettazione di un esperimento di espressione genica mediante microarray e gli strumenti bioinformatici che servono a realizzare le fasi di estrazione e pre-trattamento dei dati, l’analisi statistica e l’interpretazione dei risultati. Tali metodi sono stati applicati a quattro esperimenti realizzati nel laboratorio presso il quale è stata svolta questa tesi. Sono stati individuati, fra quelli disponibili, i metodi bioinformatici per l’estrazione, il pre-trattamento e l’analisi statistica dei dati più affidabili e versatili per l’eliminazione degli errori legati alla metodica e per l’acquisizione di un dato statisticamente robusto. Il confronto critico dei metodi analizzati ha messo in luce la necessità di mettere a punto una soluzione ottimale di analisi per ciascun esperimento. La valutazione degli strumenti utili per l’interpretazione biologica dei risultati ha messo, invece, in evidenza profonde limitazioni legate essenzialmente all’assenza di informazioni ordinatamente catalogate e alla incompleta modellazione dei processi di co-regolazione genica nelle banche dati.
11-dic-2009
Italiano
Pellegrini, Silvia
Università degli Studi di Pisa
File in questo prodotto:
File Dimensione Formato  
Pubblicazioni_allegate_alla_tesi.pdf

embargo fino al 16/12/2049

Tipologia: Altro materiale allegato
Dimensione 28.42 kB
Formato Adobe PDF
28.42 kB Adobe PDF
Tesi_Dottorato_Erika_Melissari.pdf

embargo fino al 16/12/2049

Tipologia: Altro materiale allegato
Dimensione 6.27 MB
Formato Adobe PDF
6.27 MB Adobe PDF
Characterisation_of_gene_expression_profiles_of_yeast_cells_expressing.pdf

embargo fino al 16/12/2049

Tipologia: Altro materiale allegato
Dimensione 420.54 kB
Formato Adobe PDF
420.54 kB Adobe PDF
Effect_of_prolonged_phenytoin_administration_on_rat_brain_gene.pdf

embargo fino al 16/12/2049

Tipologia: Altro materiale allegato
Dimensione 841.9 kB
Formato Adobe PDF
841.9 kB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/127812
Il codice NBN di questa tesi è URN:NBN:IT:UNIPI-127812