The biology community is collecting a large amount of raw data, such as the genome sequences of organisms, microarray data, interaction data such as gene-protein interactions, protein-protein interactions, etc. This amount is rapidly increasing and the process of understanding the data is lagging behind the process of acquiring it. An inevitable first step towards making sense of the data is to study their regularities focusing on the non-random structures appearing surprisingly often in the input sequences: patterns. In this thesis we discuss three incarnations of the pattern discovery task, exploring three types of patterns that can model different regularities of the input dataset. While mask patterns have been designed to model short repeated biological sequences, showing a high conservation of their content at some specific positions, permutation patterns have been designed to detect repeated patterns whose parts maintain their physical adjacency but not their ordering in all the pattern occurrences. Transposons, instead, model mobile sequences in the input dataset, which can be discovered by comparing different copies of the same input string, detecting large insertions and deletions in their alignment.
Discovery of Unconventional Patterns for Sequence Analysis: Theory and Algorithms
2011
Abstract
The biology community is collecting a large amount of raw data, such as the genome sequences of organisms, microarray data, interaction data such as gene-protein interactions, protein-protein interactions, etc. This amount is rapidly increasing and the process of understanding the data is lagging behind the process of acquiring it. An inevitable first step towards making sense of the data is to study their regularities focusing on the non-random structures appearing surprisingly often in the input sequences: patterns. In this thesis we discuss three incarnations of the pattern discovery task, exploring three types of patterns that can model different regularities of the input dataset. While mask patterns have been designed to model short repeated biological sequences, showing a high conservation of their content at some specific positions, permutation patterns have been designed to detect repeated patterns whose parts maintain their physical adjacency but not their ordering in all the pattern occurrences. Transposons, instead, model mobile sequences in the input dataset, which can be discovered by comparing different copies of the same input string, detecting large insertions and deletions in their alignment.File | Dimensione | Formato | |
---|---|---|---|
giovanni_battaglia_final_phd_thesis.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/128506
URN:NBN:IT:UNIPI-128506