This experimental work is devoted to perform accurate gravity measurements using atom interferometry. In the last two decades, atom interferometry has developed from an interesting demonstration of quantum physics into an important tool for precision measurements in fundamental physics as well as for practical applications in geodesy and inertial navigation. Essentially all such high precision atom interferometers are nowadays implemented using laser cooled atoms interacting with specially tailored pulses of light acting as beam splitters and mirrors for the matter-waves. In particular, the thesis is focused on the measurement of the Newtonian gravitational constant G through the use of a Rb cold atomic fountain. It relies on the simultaneous measurement of the accelerations of two vertically displaced, freely falling cold atomic samples, by means of Raman atom interferometry. The use of two displaced sensors allow a dramatic common mode phase noise suppression, so highly accurate gradiometric measurements are possible. Well-characterized source masses are placed close to the interferometers in two different positions and the relative phase shift is recorded. This removes the effects of all the fixed masses and makes the measurement doubly differential, both in time and space. A faithful simulation of the gravitational field of the source masses provides a phase shift as a function of G. This is compared to the acquired differential phase shift and a value of the gravitational constant is extracted. A study of the systematics leads to an aimed relative accuracy of the order of 10^-4.

Precision gravity measurements with atom interferometry

2013

Abstract

This experimental work is devoted to perform accurate gravity measurements using atom interferometry. In the last two decades, atom interferometry has developed from an interesting demonstration of quantum physics into an important tool for precision measurements in fundamental physics as well as for practical applications in geodesy and inertial navigation. Essentially all such high precision atom interferometers are nowadays implemented using laser cooled atoms interacting with specially tailored pulses of light acting as beam splitters and mirrors for the matter-waves. In particular, the thesis is focused on the measurement of the Newtonian gravitational constant G through the use of a Rb cold atomic fountain. It relies on the simultaneous measurement of the accelerations of two vertically displaced, freely falling cold atomic samples, by means of Raman atom interferometry. The use of two displaced sensors allow a dramatic common mode phase noise suppression, so highly accurate gradiometric measurements are possible. Well-characterized source masses are placed close to the interferometers in two different positions and the relative phase shift is recorded. This removes the effects of all the fixed masses and makes the measurement doubly differential, both in time and space. A faithful simulation of the gravitational field of the source masses provides a phase shift as a function of G. This is compared to the acquired differential phase shift and a value of the gravitational constant is extracted. A study of the systematics leads to an aimed relative accuracy of the order of 10^-4.
7-gen-2013
Italiano
Tino, Guglielmo Maria
Beverini, Nicolò
Università degli Studi di Pisa
File in questo prodotto:
File Dimensione Formato  
Rosi_Thesis_Errata_no_note.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 39.16 kB
Formato Adobe PDF
39.16 kB Adobe PDF Visualizza/Apri
Thesis_Rosi_final_version.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 8.11 MB
Formato Adobe PDF
8.11 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/131153
Il codice NBN di questa tesi è URN:NBN:IT:UNIPI-131153