The Method of Moments (MoM) is deeply described and used for the analysis of electromagnetic (EM) radiation and scattering problems involving arbitrarily shaped 3D targets. The proposed MoM formulation allows us to investigate perfect and imperfect conductor, and dielectric object. Next, a novel method for efficient MoM analysis of electrically large objects using Characteristic Basis Functions (CBFs) is proposed to reduce the matrix solution time. The CBFs are special types of high-level basis functions, defined over the domains that encompass a relatively large number of conventional sub-domain bases, e.g., triangular patches or rooftops. This technique differs from other similar approaches developed previously, in several aspects. First, it includes mutual coupling effects directly by using primary and secondary CBFs, which are then used to represent the unknown induced currents on the blocks, and solved via the Galerkin method rather than using iterative refinements. Second, the Characteristic Basis Function Method (CBFM) is more general, and can be applied to a wide class of electromagnetic problems.

Efficient techniques for Solving Electromagnetic Scattering by Electrically Large Arbitrarily Shaped Three-Dimensional Objects

2008

Abstract

The Method of Moments (MoM) is deeply described and used for the analysis of electromagnetic (EM) radiation and scattering problems involving arbitrarily shaped 3D targets. The proposed MoM formulation allows us to investigate perfect and imperfect conductor, and dielectric object. Next, a novel method for efficient MoM analysis of electrically large objects using Characteristic Basis Functions (CBFs) is proposed to reduce the matrix solution time. The CBFs are special types of high-level basis functions, defined over the domains that encompass a relatively large number of conventional sub-domain bases, e.g., triangular patches or rooftops. This technique differs from other similar approaches developed previously, in several aspects. First, it includes mutual coupling effects directly by using primary and secondary CBFs, which are then used to represent the unknown induced currents on the blocks, and solved via the Galerkin method rather than using iterative refinements. Second, the Characteristic Basis Function Method (CBFM) is more general, and can be applied to a wide class of electromagnetic problems.
22-feb-2008
Italiano
Monorchio, Agostino
Mittra, Raj
Università degli Studi di Pisa
File in questo prodotto:
File Dimensione Formato  
03_PhD_Chapter1.pdf

embargo fino al 13/03/2048

Tipologia: Altro materiale allegato
Dimensione 285.95 kB
Formato Adobe PDF
285.95 kB Adobe PDF
04_PhD_Chapter2.pdf

embargo fino al 13/03/2048

Tipologia: Altro materiale allegato
Dimensione 794.67 kB
Formato Adobe PDF
794.67 kB Adobe PDF
05_PhD_Chapter3.pdf

embargo fino al 13/03/2048

Tipologia: Altro materiale allegato
Dimensione 629.48 kB
Formato Adobe PDF
629.48 kB Adobe PDF
06_PhD_Chapter4.pdf

embargo fino al 13/03/2048

Tipologia: Altro materiale allegato
Dimensione 373.75 kB
Formato Adobe PDF
373.75 kB Adobe PDF
07_PhD_Conclusion.pdf

embargo fino al 13/03/2048

Tipologia: Altro materiale allegato
Dimensione 11.2 kB
Formato Adobe PDF
11.2 kB Adobe PDF
08_PhD_Bibliography.pdf

embargo fino al 13/03/2048

Tipologia: Altro materiale allegato
Dimensione 15.92 kB
Formato Adobe PDF
15.92 kB Adobe PDF
02_PhD_TableOfContents.pdf

embargo fino al 13/03/2048

Tipologia: Altro materiale allegato
Dimensione 62.54 kB
Formato Adobe PDF
62.54 kB Adobe PDF
09_PhD_Publications.pdf

embargo fino al 13/03/2048

Tipologia: Altro materiale allegato
Dimensione 15.5 kB
Formato Adobe PDF
15.5 kB Adobe PDF
00_PhD_FrontMatter.pdf

embargo fino al 13/03/2048

Tipologia: Altro materiale allegato
Dimensione 43.68 kB
Formato Adobe PDF
43.68 kB Adobe PDF
01_PhD_Abstract.pdf

embargo fino al 13/03/2048

Tipologia: Altro materiale allegato
Dimensione 11.76 kB
Formato Adobe PDF
11.76 kB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/131307
Il codice NBN di questa tesi è URN:NBN:IT:UNIPI-131307