This Ph.D. Thesis proposes energy saving solutions and analyses different system layouts for a middle size excavator with the objective of improving the energy efficiency and reducing the fuel consumption. In the last years, pollutant emissions and energy crisis have become issues of global nature. The consequent increase of fuel costs and more stringent regulations have forced the academic world to focus the attention on the efficiency improvement and on the reduction of fuel consumption, even for off-road mobile machinery. Also for the original equipment manufacturers (OEMs), more efficient vehicles are gaining importance resulting in a reduction of fuel and life cycle costs. To satisfy this market requirements, the manufacturers of earth-moving machinery are focusing on the development of energetic improvements which concern not only the hydraulic system but also the interaction between the engine and the hydraulic system, new control strategies and better feedback control algorithms. Different approaches for a new system design can be distinguished; the activity conducted in this thesis has the aim of investigate these approaches and find the most energy efficient system for the 9 ton excavator object of study. The starting point of this project has been the development of a detailed model of the considered machine, calibrated and validated on experimental tests; numerical results have been obtained on the basis of working cycles defined by the JCMAS standard which provides general information about typical tasks of the considered machine. The excavator is originally equipped with a Load Sensing Flow Sharing hydraulic system. Different energy saving solutions have been identified for the reference system including the hydraulic hybridization, lower load sensing pressure level, independent metering and dual pump system. An optimization methodology has been exploited to manage the control strategy and dimension the main components. Furthermore, alternative system layouts, open center and closed center, have been investigated, modelled by means of mathematical tools and compared with the reference system to define the best solution in term of energy efficiency and fuel consumption. For each solution, the flow areas of the valves spool have been optimized through a dedicated methodology based on genetic algorithm to evaluate and quantify their influence on the fuel consumption and on the performance of the machine. Simulation results have showed the potentials of the proposed layouts in term of fuel saving as well as the optimization results showed the important impact of the spool design on fuel economy. In conclusion, this Thesis gives a contribution to the investigation of energy saving solutions for a middle size excavator with the final goal of improving the energy efficiency and reducing the fuel consumption. The results obtained are encouraging and create the basis for future developments.
Questa tesi di dottorato propone soluzioni di risparmio energetico e analizza diversi layout circuitali per un escavatore di medie dimensioni con l'obiettivo di migliorarne l'efficienza energetica e ridurre il consumo di combustibile. Negli ultimi anni, le emissioni inquinanti e la crisi energetica sono diventate questioni di natura globale. Il conseguente aumento dei costi del carburante e normative più stringenti hanno costretto il mondo accademico a focalizzare l'attenzione sul miglioramento dell'efficienza e sulla riduzione del consumo di carburante, anche per le macchine mobili. Per soddisfare queste esigenze di mercato, i costruttori di macchine movimento terra si stanno concentrando sullo sviluppo di soluzioni che permettano miglioramenti energetici e che riguardano non solo il sistema idraulico ma anche l'interazione tra il motore e il sistema idraulico, nuove strategie di controllo e migliori algoritmi per il controllo. Si possono distinguere diversi approcci per una nuova progettazione del sistema; l'attività svolta in questa tesi ha lo scopo di indagare questi approcci e trovare il sistema idraulico più efficiente per l'escavatore da 9 tonnellate oggetto di studio. Il punto di partenza di questo progetto è stato lo sviluppo di un modello dettagliato della macchina, calibrato e validato su prove sperimentali; i risultati numerici sono stati ottenuti sulla base di cicli di lavoro definiti dalla normative JCMAS che fornisce informazioni sui cicli di lavoro tipici per la macchina considerata. L'escavatore è originariamente dotato di un sistema idraulico Load Sensing Flow Sharing. Sono state identificate diverse soluzioni di risparmio energetico per il sistema di riferimento, tra cui l'ibridizzazione idraulica, variazione dinamica del pump margin della pompa, sistema con metering separato e sistema con doppia pompa. Una metodologia di ottimizzazione è stata sfruttata per gestire la strategia di controllo e dimensionare i componenti principali. Inoltre, sono stati studiati e modellati layout circuitali alternativi, a centro chiuso e a centro aperto, e confrontati con il sistema di riferimento per definire la migliore soluzione in termini di efficienza energetica e consumo di carburante. Per ciascuna soluzione, le leggi d’area del gruppo di distribuzione sono state ottimizzate attraverso una metodologia dedicata basata su algoritmi genetici per valutare e quantificare la loro influenza sul consumo di carburante e sulle prestazioni della macchina. I risultati della simulazione hanno mostrato le potenzialità dei layout proposti in termini di risparmio di carburante, così come i risultati di ottimizzazione hanno evidenziato l'impatto importante delle leggi d’area sui consume del sistema. In conclusione, questa Tesi ha dato un contributo allo sviluppo di soluzioni di risparmio energetico e allo studio di layout circuitali per un escavatore idraulico con l'obiettivo di migliorare l'efficienza energetica e ridurre il consumo di carburante. I risultati ottenuti sono incoraggianti e creano la base per gli sviluppi futuri.
Energy saving solutions and system layouts analysis for earth-moving machinery - The case of a hydraulic excavator
2019
Abstract
This Ph.D. Thesis proposes energy saving solutions and analyses different system layouts for a middle size excavator with the objective of improving the energy efficiency and reducing the fuel consumption. In the last years, pollutant emissions and energy crisis have become issues of global nature. The consequent increase of fuel costs and more stringent regulations have forced the academic world to focus the attention on the efficiency improvement and on the reduction of fuel consumption, even for off-road mobile machinery. Also for the original equipment manufacturers (OEMs), more efficient vehicles are gaining importance resulting in a reduction of fuel and life cycle costs. To satisfy this market requirements, the manufacturers of earth-moving machinery are focusing on the development of energetic improvements which concern not only the hydraulic system but also the interaction between the engine and the hydraulic system, new control strategies and better feedback control algorithms. Different approaches for a new system design can be distinguished; the activity conducted in this thesis has the aim of investigate these approaches and find the most energy efficient system for the 9 ton excavator object of study. The starting point of this project has been the development of a detailed model of the considered machine, calibrated and validated on experimental tests; numerical results have been obtained on the basis of working cycles defined by the JCMAS standard which provides general information about typical tasks of the considered machine. The excavator is originally equipped with a Load Sensing Flow Sharing hydraulic system. Different energy saving solutions have been identified for the reference system including the hydraulic hybridization, lower load sensing pressure level, independent metering and dual pump system. An optimization methodology has been exploited to manage the control strategy and dimension the main components. Furthermore, alternative system layouts, open center and closed center, have been investigated, modelled by means of mathematical tools and compared with the reference system to define the best solution in term of energy efficiency and fuel consumption. For each solution, the flow areas of the valves spool have been optimized through a dedicated methodology based on genetic algorithm to evaluate and quantify their influence on the fuel consumption and on the performance of the machine. Simulation results have showed the potentials of the proposed layouts in term of fuel saving as well as the optimization results showed the important impact of the spool design on fuel economy. In conclusion, this Thesis gives a contribution to the investigation of energy saving solutions for a middle size excavator with the final goal of improving the energy efficiency and reducing the fuel consumption. The results obtained are encouraging and create the basis for future developments.File | Dimensione | Formato | |
---|---|---|---|
Relazione_finale_Andrea_Bedotti.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Dimensione
234.67 kB
Formato
Adobe PDF
|
234.67 kB | Adobe PDF | |
PhD_Thesis_Andrea_Bedotti.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Dimensione
9.16 MB
Formato
Adobe PDF
|
9.16 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/134236
URN:NBN:IT:UNIPR-134236