The design of two new systems for recording and analysing the spatial distribution of sound energy, employing arrays of transducers and cameras, is discussed. Both acoustic and visual spatial information is recorded and combined together to produce static and dynamic colour maps, with a specially designed software and employing Ambisonics and Spatial PCM Sampling (SPS), two common spatial audio formats, for signals processing. The first solution consists in a microphone array made of 32 capsules and a circular array of eight cameras, optimized for low frequencies. The size of the array is designed accordingly to the frequency range of interest for automotive Noise, Vibration & Harshness (NVH) applications. The second system is an underwater probe with four hydrophones and a panoramic camera, with which it is possible to monitor the effects of underwater noise produced by human activities on marine species. Finite Elements Method (FEM) simulations have been used to calculate the array response, thus deriving the filtering matrix and performing theoretical evaluation of the spatial performance. Field tests of the proposed solutions are presented in comparison with the current state-of-the-art equipment. A method to playback panoramic video with spatial audio is presented, making use of Virtual Reality (VR) technology, spatial audio, individualized Head Related Transfer Functions (HRTFs) and personalized headphones equalization.

Viene discussa la progettazione di due nuovi sistemi per la registrazione e l'analisi della distribuzione spaziale dell'energia sonora, impiegando array di trasduttori e telecamere. Le informazioni spaziali acustiche e visive sono registrate e combinate insieme per produrre mappe a colori statiche e dinamiche, tramite un software appositamente realizzato, il quale per l'elaborazione dei segnali impiega Ambisonics e Spatial PCM Sampling (SPS), due formati di audio spazializzato. La prima soluzione consiste in un array di microfoni composto da 32 capsule e un array circolare di otto telecamere, ottimizzato per le basse frequenze. Le dimensioni dell'array sono progettate in base all'intervallo di frequenza di interesse per applicazioni automobilistiche di tipo NVH - Noise, Vibration & Harshness. Il secondo sistema è una sonda subacquea con quattro idrofoni e una fotocamera panoramica, con la quale è possibile monitorare gli effetti del rumore subacqueo prodotto dalle attività umane sulle specie marine. Simulazioni agli elementi finiti (FEM) sono state utilizzate per calcolare la risposta degli array, derivando così le matrici di filtraggio ed eseguendo valutazioni teoriche delle prestazioni spaziali. I test sul campo delle soluzioni proposte sono presentati in confronto ai sistemi attualmente considerati lo stato dell'arte. Viene infine presentato un metodo per riprodurre video panoramici con audio spaziale, utilizzando la tecnologia di realtà virtuale (VR), audio spazializzato, HRTFs individualizzate ed equalizzazione personalizzata delle cuffie.

Recording, analysis and playback of spatial sound field using novel design methods of transducer arrays

2020

Abstract

The design of two new systems for recording and analysing the spatial distribution of sound energy, employing arrays of transducers and cameras, is discussed. Both acoustic and visual spatial information is recorded and combined together to produce static and dynamic colour maps, with a specially designed software and employing Ambisonics and Spatial PCM Sampling (SPS), two common spatial audio formats, for signals processing. The first solution consists in a microphone array made of 32 capsules and a circular array of eight cameras, optimized for low frequencies. The size of the array is designed accordingly to the frequency range of interest for automotive Noise, Vibration & Harshness (NVH) applications. The second system is an underwater probe with four hydrophones and a panoramic camera, with which it is possible to monitor the effects of underwater noise produced by human activities on marine species. Finite Elements Method (FEM) simulations have been used to calculate the array response, thus deriving the filtering matrix and performing theoretical evaluation of the spatial performance. Field tests of the proposed solutions are presented in comparison with the current state-of-the-art equipment. A method to playback panoramic video with spatial audio is presented, making use of Virtual Reality (VR) technology, spatial audio, individualized Head Related Transfer Functions (HRTFs) and personalized headphones equalization.
Registrazione, analisi e riproduzione del campo sonoro spaziale utilizzando nuovi metodi di progettazione di array di trasduttori
mar-2020
Inglese
Viene discussa la progettazione di due nuovi sistemi per la registrazione e l'analisi della distribuzione spaziale dell'energia sonora, impiegando array di trasduttori e telecamere. Le informazioni spaziali acustiche e visive sono registrate e combinate insieme per produrre mappe a colori statiche e dinamiche, tramite un software appositamente realizzato, il quale per l'elaborazione dei segnali impiega Ambisonics e Spatial PCM Sampling (SPS), due formati di audio spazializzato. La prima soluzione consiste in un array di microfoni composto da 32 capsule e un array circolare di otto telecamere, ottimizzato per le basse frequenze. Le dimensioni dell'array sono progettate in base all'intervallo di frequenza di interesse per applicazioni automobilistiche di tipo NVH - Noise, Vibration & Harshness. Il secondo sistema è una sonda subacquea con quattro idrofoni e una fotocamera panoramica, con la quale è possibile monitorare gli effetti del rumore subacqueo prodotto dalle attività umane sulle specie marine. Simulazioni agli elementi finiti (FEM) sono state utilizzate per calcolare la risposta degli array, derivando così le matrici di filtraggio ed eseguendo valutazioni teoriche delle prestazioni spaziali. I test sul campo delle soluzioni proposte sono presentati in confronto ai sistemi attualmente considerati lo stato dell'arte. Viene infine presentato un metodo per riprodurre video panoramici con audio spaziale, utilizzando la tecnologia di realtà virtuale (VR), audio spazializzato, HRTFs individualizzate ed equalizzazione personalizzata delle cuffie.
microphone array
sound color mapping
FEM simulation
personalized HRTFs
Ambisonics
Spatial PCM Sampling SPS
hydrophone array
ING-IND/11
Università degli Studi di Parma
File in questo prodotto:
File Dimensione Formato  
Relazione_attivita_dottorato_DanielPinardi.pdf

accesso solo da BNCF e BNCR

Tipologia: Altro materiale allegato
Dimensione 508.19 kB
Formato Adobe PDF
508.19 kB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/135264
Il codice NBN di questa tesi è URN:NBN:IT:UNIPR-135264