The thesis presents experimental and two-dimensional (2D) numerical results of four tests concerning rapidly varying free surface flows induced by the sudden removal of a sluice gate. For the acquisition of the experimental data, an imaging technique capable of providing spatially distributed information was adopted: a coloring agent was added to the water, the opalescent bottom of the facility was backlighted, and photographs of the area of interest were taken. The gray tones of the acquired images were converted into water depths by means of transfer functions derived from a static calibration. The potential sources of error of the proposed procedure are discussed. A local comparison with an ultrasonic device showed a 20% maximum deviation in 95% of the observations. The tests were simulated through a 2D MUSCL-Hancock finite volume numerical model, based on the classic shallow water approximations, in which the intercell water depths are estimated according to the surface gradient method. A global analysis of the relative frequency distributions of the deviation between numerical and experimental results is performed. Despite some evident differences at a local scale, the adopted 2D numerical model is capable of reproducing the main features of the flow fields under investigation.

Modellazione numerica e fisica di moti bidimensionali a pelo libero

2004

Abstract

The thesis presents experimental and two-dimensional (2D) numerical results of four tests concerning rapidly varying free surface flows induced by the sudden removal of a sluice gate. For the acquisition of the experimental data, an imaging technique capable of providing spatially distributed information was adopted: a coloring agent was added to the water, the opalescent bottom of the facility was backlighted, and photographs of the area of interest were taken. The gray tones of the acquired images were converted into water depths by means of transfer functions derived from a static calibration. The potential sources of error of the proposed procedure are discussed. A local comparison with an ultrasonic device showed a 20% maximum deviation in 95% of the observations. The tests were simulated through a 2D MUSCL-Hancock finite volume numerical model, based on the classic shallow water approximations, in which the intercell water depths are estimated according to the surface gradient method. A global analysis of the relative frequency distributions of the deviation between numerical and experimental results is performed. Despite some evident differences at a local scale, the adopted 2D numerical model is capable of reproducing the main features of the flow fields under investigation.
2D numerical modelling and physical modelling of unsteady free surface flows
31-mar-2004
Italiano
numerical and physical modelling
unsteady free surface flows
Non compilare!
ICAR/02
Università degli Studi di Parma
File in questo prodotto:
File Dimensione Formato  
Tesi_Dottorato_Maranzoni.pdf

accesso solo da BNCF e BNCR

Tipologia: Altro materiale allegato
Dimensione 17.33 MB
Formato Adobe PDF
17.33 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/135518
Il codice NBN di questa tesi è URN:NBN:IT:UNIPR-135518