In this thesis we study dynamics of geodesics of meromorphic connections. In the first part of the thesis we study relation among singular flat metrics, meromorphik k-differentials and meromorphic connections. In the second part of the thesis we study dynamics of infinite self-intersecting geodesics and we provide a possible classification of omega limit sets of infinite self-intersecting geodesics.

Dynamics of geodesics for meromorphic connections on Riemann surfaces

2020

Abstract

In this thesis we study dynamics of geodesics of meromorphic connections. In the first part of the thesis we study relation among singular flat metrics, meromorphik k-differentials and meromorphic connections. In the second part of the thesis we study dynamics of infinite self-intersecting geodesics and we provide a possible classification of omega limit sets of infinite self-intersecting geodesics.
18-mar-2020
Italiano
Abate, Marco
Università degli Studi di Pisa
File in questo prodotto:
File Dimensione Formato  
Rakhimov_K_Thesis.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/137474
Il codice NBN di questa tesi è URN:NBN:IT:UNIPI-137474