In this thesis we study dynamics of geodesics of meromorphic connections. In the first part of the thesis we study relation among singular flat metrics, meromorphik k-differentials and meromorphic connections. In the second part of the thesis we study dynamics of infinite self-intersecting geodesics and we provide a possible classification of omega limit sets of infinite self-intersecting geodesics.
Dynamics of geodesics for meromorphic connections on Riemann surfaces
2020
Abstract
In this thesis we study dynamics of geodesics of meromorphic connections. In the first part of the thesis we study relation among singular flat metrics, meromorphik k-differentials and meromorphic connections. In the second part of the thesis we study dynamics of infinite self-intersecting geodesics and we provide a possible classification of omega limit sets of infinite self-intersecting geodesics.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Rakhimov_K_Thesis.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/137474
Il codice NBN di questa tesi è
URN:NBN:IT:UNIPI-137474