The analysis of similar trajectories in a network provides useful information for route recommendation or fraud detection. In this thesis, we are interested in algorithms to efficiently retrieve similar trajectories. Many studies have focused on retrieving similar trajectories by extracting the geometrical information of trajectories. We provide a similarity function by making use of both the temporal aspect of trajectories and the structure of the underlying network. We propose exact and approximation techniques that offer the top-k most similar trajectories with respect to a query trajectory within a given time interval in an efficient way. We also investigate how our ideas can be applied to similar behavior of the tourists, so as to offer a high-quality prediction of their next movements.

Efficient Algorithm for time-based similarity of trajectory on graph

2020

Abstract

The analysis of similar trajectories in a network provides useful information for route recommendation or fraud detection. In this thesis, we are interested in algorithms to efficiently retrieve similar trajectories. Many studies have focused on retrieving similar trajectories by extracting the geometrical information of trajectories. We provide a similarity function by making use of both the temporal aspect of trajectories and the structure of the underlying network. We propose exact and approximation techniques that offer the top-k most similar trajectories with respect to a query trajectory within a given time interval in an efficient way. We also investigate how our ideas can be applied to similar behavior of the tourists, so as to offer a high-quality prediction of their next movements.
4-mag-2020
Italiano
Grossi, Roberto
Marino, Andrea
Università degli Studi di Pisa
File in questo prodotto:
File Dimensione Formato  
report_Shima_Moghtasedi.pdf

Open Access dal 08/05/2023

Tipologia: Altro materiale allegato
Dimensione 71.01 kB
Formato Adobe PDF
71.01 kB Adobe PDF Visualizza/Apri
Shima_Moghtasedi.pdf

Open Access dal 08/05/2023

Tipologia: Altro materiale allegato
Dimensione 6.73 MB
Formato Adobe PDF
6.73 MB Adobe PDF Visualizza/Apri
Thesis_Shima_Moghtasedi.pdf

Open Access dal 08/05/2023

Tipologia: Altro materiale allegato
Dimensione 6.73 MB
Formato Adobe PDF
6.73 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/137635
Il codice NBN di questa tesi è URN:NBN:IT:UNIPI-137635