SiGe BiCMOS semiconductor technology has been increasing its application domain especially for the development of complex microwave monolithically integrated circuits (MMIC) required for modern telecommunication systems. This thesis presents a set of building blocks developed in different SiGe BiCMOS technologies for reconfigurable antenna applications. The developed blocks are oriented to the implementation of electronically scanned phased arrays or of switched beam antenna systems. The red thread that links the different topics is the next generation mobile communication systems, namely 5G systems. However, 5G networks instead of providing specific requirements for each block are employed as an application context that is adopted to provide a real employment scenario for each device proposed in this work. The thesis is organized as follows. In the first chapter, an overview about development opportunities of 5G technology is illustrated. In the second chapter, a brief introduction in the world of MMIC and SiGe technology has been provided. In the third chapter, beam-forming networks are dealt introducing the design of an 8x8 Butler matrix and a Wilkinson combiner/divider in SiGe BiCMOS technology. In the fourth chapter, a quarter wavelength resonant filter phase shifter is presented. An innovative technique to realize a phase shifter using the peculiarity of the pass-band filters. In the fifth chapter, it is presented a study on metamaterial structures based on Split Ring Resonators integrated with on-chip Coplanar Wave guides. In the last chapter, a FDD technique is illustrated along with the design of a Duplexer in K/Ka-band with High/Low pass filter.

SiGe BicMOS Building Blocks for 5G Applications

2019

Abstract

SiGe BiCMOS semiconductor technology has been increasing its application domain especially for the development of complex microwave monolithically integrated circuits (MMIC) required for modern telecommunication systems. This thesis presents a set of building blocks developed in different SiGe BiCMOS technologies for reconfigurable antenna applications. The developed blocks are oriented to the implementation of electronically scanned phased arrays or of switched beam antenna systems. The red thread that links the different topics is the next generation mobile communication systems, namely 5G systems. However, 5G networks instead of providing specific requirements for each block are employed as an application context that is adopted to provide a real employment scenario for each device proposed in this work. The thesis is organized as follows. In the first chapter, an overview about development opportunities of 5G technology is illustrated. In the second chapter, a brief introduction in the world of MMIC and SiGe technology has been provided. In the third chapter, beam-forming networks are dealt introducing the design of an 8x8 Butler matrix and a Wilkinson combiner/divider in SiGe BiCMOS technology. In the fourth chapter, a quarter wavelength resonant filter phase shifter is presented. An innovative technique to realize a phase shifter using the peculiarity of the pass-band filters. In the fifth chapter, it is presented a study on metamaterial structures based on Split Ring Resonators integrated with on-chip Coplanar Wave guides. In the last chapter, a FDD technique is illustrated along with the design of a Duplexer in K/Ka-band with High/Low pass filter.
18-gen-2019
Inglese
Integrated circuits
Metal oxide semiconductors
Crupi, Felice
Boccia, Luigi
Arnieri, Emilio
Università della Calabria
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/142268
Il codice NBN di questa tesi è URN:NBN:IT:UNICAL-142268