Elliptic divisibility sequences have been introduced by Ward, in 1948. The terms of an elliptic divisibility sequence represent the denominators of the abscissas of the iterates of a point on an elliptic curve. The aim of this thesis is to understand when a term of an elliptic divisibility sequence has a primitive divisor. In the thesis, we prove some explicit results, some uniform results, and we will focus on some particular examples. Moreover, we will study a class of sequences strictly related to elliptic divisibility sequences.

Primitive divisors of elliptic divisibility sequences

VERZOBIO, MATTEO
2021

Abstract

Elliptic divisibility sequences have been introduced by Ward, in 1948. The terms of an elliptic divisibility sequence represent the denominators of the abscissas of the iterates of a point on an elliptic curve. The aim of this thesis is to understand when a term of an elliptic divisibility sequence has a primitive divisor. In the thesis, we prove some explicit results, some uniform results, and we will focus on some particular examples. Moreover, we will study a class of sequences strictly related to elliptic divisibility sequences.
28-giu-2021
Italiano
Elliptic curves
Elliptic divisibility sequences
Primitive divisors
Recurrence sequences
Dvornicich, Roberto
File in questo prodotto:
File Dimensione Formato  
abfile.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 111.48 kB
Formato Adobe PDF
111.48 kB Adobe PDF Visualizza/Apri
phd_final.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF Visualizza/Apri
summaryactivities.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 46.17 kB
Formato Adobe PDF
46.17 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/142436
Il codice NBN di questa tesi è URN:NBN:IT:UNIPI-142436